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Introduction générale

Motivation

0.1. L’objet principal de cette these est de donner une interprétation géométrique
des résultats de Rankin et Selberg sur le produit scalaire de deux formes automor-
phes (cuspidales et partout non ramifiées) pour GL(2) sur un corps de fonctions.
Cette géométrisation fait partie du Programme de Langlands Géométrique initié par
V.Drinfeld, A.Beilinson et G.Laumon. Comme premiere motivation, rappelons les ré-
sultats de G.Laumon ([14]) et M.Rothstein ([13]) dans le cas de GL(1) qui nous sert
de modele.

Soit X une courbe projective, lisse et connexe de genre ¢ > 1 sur C. Notons
M’ le schéma de Picard de X qui parametre les classes d’isomorphie de Ox-modules
inversibles [, de degré 0. Soit M I’espace grossier de modules des faisceaux inversibles
L sur X munis d’une connexion (integrable) V: L — L ®@p, Qx. C’est un C-schéma
en groupes abéliens (pour le produit tensoriel), muni d’une structure naturelle de
HO(X, Qx)-torseur sur M'. Il existe un Oprxpr-module inversible Aut a connexion
(relative a M) qui est le noyau de deux transformations de Fourier

F Dgcoh(DM/) — Dgcoh(OM)
et
F Db (OM) — Db (DM/)

+ ~qcoh qcoh

Le théoreme de Laumon-Rothstein dit que ces foncteurs sont quasi-inverse ['un
de Uautre (a un décallage et un automorphisme (—1)* preés). Ce resultat peut étre
obtenu comme une conséquence formelle de deux relations d’orthogonalité. L’une
d’elles s’écrit sous la forme:

le complexe
R(pry3).(pris Aut @ pri; Aut)

est canoniquement isomorphe a A Oy dans Dgcoh(OMxM) (6 un décallage et un auto-
morphisme (—1)* prés),

OU Prys, Pryg : M x M x M" — M x M’ et priy : M x M x M' — M x M sont les
projections, A: M — M x M est le morphisme diagonal, et I'image directe par rapport
a pry, est calculée au sens de D-modules.

La variante /-adique de cette relation d’orthogonalité est la suivante. Soit X une
courbe projective, lisse et connexe de genre g > 1 sur un corps algébriquement clos de



caractéristique positive p. On fixe un nombre premier ¢ different de p et une cloture
algébrique Q, de Qy. Soit Fy un Qp-faisceau lisse de rang 1 sur X.

On ne dispose pas d’espace de modules des systemes locaux f-adiques sur X.
Cependant, on peut considérer les déformations de Fy (au sens suivante: si A est
une Qg—algébre Artinienne locale a corps résiduel Q; alors une A-déformation de Fj
est un A-faisceau lisse F' de rang 1 sur X muni d’un isomorphisme F' & 4 Qg:;Eo). Le
systeme local Fy admet la déformation universelle £ (cf. Prop. 1). Notons R la base
de cette déformtion universelle. En fait, R est un anneau des séries formelles sur Qy
de dimension 2g.

Pour tout n > 0 on a un R-faisceau lisse £ de rang 1 sur X (cf. sect. 1.3.1).
Notons Pic™ X le schéma de Picard de X qui parametre les classes d’isomorphie de Ox-
modules inversibles de degré n. Par la theorie de corps de classes abelien géométrique,
E(™) est Iimage inverse par rapport a un morphisme naturel X — Pic” X d’un
R-faisceau lisse £" de rang 1 sur Pic” X. Notons EJ', EJ les deux relevements de E a

Spf(R & R).

Pour tout n il existe un isomorphisme canonique de R & R-modules
HE(Pic” X, Hom (I}, F3)) S R(—g),

ou la structure de R'® R-module sur R est définie par le morphisme diagonal R & R —
R. De plus, on a H'(Pic” X, Hom(E}?, E})) =0 pour tout © # 2g.

C’est ce type de relations d’orthogonalité qu’on cherche a établir dans le cadre

l-adic pour GL(2) au lieu de GL(1).

0.2. Rappelons le résultat de Rankin et Selberg mentionné au début, notre deuxieme
source d’inspiration.

Soit X une courbe projective, lisse et géométriquement connexe de genre ¢ sur le
corps fini F, a g elements. On fixe un nombre premier £ inversible dans F,, une cloture
algébrique Q,; de Qy, une racine carré de q dans Qy, et une cloture algébrique F, de
F,.

Soit E un Q-faisceau lisse et géométriquement irréductible de rang 2 sur X.
V.Drinfeld (et D.Gaitsgory dans [2]) ont associé a £ un Q,-faisceau pervers irréductible
Autg sur le champ de modules Buny des fibrés vectoriels de rang 2 sur X, qui est en
un sens convenable vecteur propre des opérateurs de Hecke par rapport a F.

Soit Buny(F,) 'ensemble de classes d’isomorphie de fibrés vectoriels de rang 2 sur
X. On note ¢p : Buny(F,) — Qy la fonction "trace de Frobenius” associé au faisceau
pervers Autg. C’est la forme automorphe (cuspidale et partout non ramifiée) associé



a I au sens habituel de correspondance de Langlands. On note Bun} la composante
connexe de Buny qui correspond aux fibrés de degré n.
Pour tout n € Z on a

_ g e
>, ZawperBes(l) = ydet(l—Frg™ [H/(X, EndE)),

ot X=X QF, F, et Fr est le Frobenius géométrique. En plus, si Ey et Fy sont deux
Qq¢-faisceaur lisses et géométriquement irréductibles de rang 2 sur X qui sont non
isomorphes, alors pour tout n € Z

Remarque . Pour a € Z /27 notons Bunpqy, (F,) 'ensemble de classes d’isomorphie des
PGLy-fibrés sur X de degré a. Si det Iy — det s alors la fonction L — ¢px(L)er, (L)

ne depend que de I'image de L € Bunj(F,) dans BunpZ>® *(F,) et on a

1

1 # Pic® X(F,)
LeBung (Fg) LeBung 294 2(F)

ott Pic® X (I, ) est le group de Picard de faisceaux inversibles sur X de degré 0. Comme
£Pic X(F,) = g det(1 — Fr g™ H'(X, Q1))

on a finalement pour tout a € Z /27

1
2. Fawr ¢ (Den(l) = ¢ det(l = Frg™ Endo )

LeBung gy, (Fg)

Résultats principaux

0.3. On fixe un corps k algébriquement clos de caractéristique positive, un nombre
premier ¢ different de caractéristique de k. Soit X une courbe projective, lisse et
connexe de genre g > 1 sur k. Choisissons un systeme local f-adique irréductible
Ey de rang 2 sur X. Soit E la déformation universelle de Fy, R la base de cette
déformation universelle (cf. sect. 1.1.1). En fait, R est un anneau des séries formelles



sur Q; de dimension 8¢ — 6 (cf. Prop. 1). Notons E; (i = 1,2) les deux relevements
de E a Spf(R® R).

D’apres V.Drinfeld (et D.Gaitsgory, [2]), on a un faisceau pervers irréductible Autg,
sur le k-champ Buny; de modules des fibrés vectoriels de rank 2 sur X, qui est un vecteur
propre des operateurs de Hecke par rapport a Ep. On note Auty la restriction de
Autg, a la composante connexe Bunj de Bun;y qui correspond aux fibrés de degré n.

On montre que la construction de Gaitsgory reste valable pour les déformations de
Fy, ce qui nous permet a définir un R-faisceau pervers Auty sur Bunj (cf. sect. 1.4.1).
(Pour la definition d’un R-faisceau pervers cf. sect. 0.2.1).

Les automorphismes scalaires des fibrés vectoriels definissent une action de G, sur
Bunj par 2-automorphismes de champs. Notons %; le quotient de Bunj par cette
action, de sorte que le mophisme naturel Bunj — m; est une G,,-gerbe (cf. sect.
1.2.1). Du fait que Aut}; est pervers, il est un image réciproque d’un faisceau M[—l]
sur Bun,, ot Auty, est un R-faisceau pervers.

Le résultat pricipal de cet exposé est le

Théoréme Principal Global . Pour tout n € Z il existe un isomorphisme canon-

ique de R & R-modules

ou la structure de R'® R-module sur R est definie par le morphisme diagonal R O R —
R. De plus, on a H' (Bun,, Autgf Qper Autg ) =0 pour tout 1 # 0.

Remarque . i) Le champ %Z n’est pas de type fini. Cependant, Aut% est le pro-
longement par zero de sa resriction a un sous-champ de %ﬁj, qui lui est de type fini
(cf. Cor. 1).

ii) Les cohomologies a support compact d’un champ ne sont & priori pas définies. Nous
allons utiliser la définition du livre & venir de G.Laumon et L.Moret-Bailly ([7],(18.8))
communiquée a l'auteur par G.Laumon (cf. Appendice A). Leur définition est in-
spirée par une idée de J.Bernstein et V.Lunts ([8]). Une définition analogue a été aussi
communiqué a ’auteur par V.Drinfeld.

0.4. On déduit le Théoreme Principal Global d’un résultat local. Pour I’énoncer on a
besoin de quelques notations.

Notons Sh}" le champ qui classifie les faisceaux cohérents sur X de rang générique 1
et de degré n (cf. sect. 1.2.2). Soit ® Shi" le champ qui classifie les couples (O < Fy) sur
X, ou Fy € ShT (cf. sect. 1.2.2). On a un morphisme représentable %7y : © Shi* — Sh¥



qui envoie (O <y Fy) sur Fy. On a aussi un morphisme ), : ©Sh* — Sh{ qui envoie
(O < Fy) sur Fi/Ims. On vérifie facilement que 7} est un fibré vectoriel de rang n.
On note Flag, le champ qui parametre les suites exactes

0=-Q—=M— I —0, (1)

ou M est un fibré vectoriel de rang 2 et de degré n sur X, et ) est le faisceau inversible
canonique sur X (de sorte que F est un faisceau cohérent sur X de rang générique 1).
Soit Ext le champ qui classifie les suites exactes 0 — Q =7 — O — 0 sur X. Le
morphisme Ext — Speck est donc un fibré vectoriel généralisé (non-représentable) de
rang 1 — ¢ (la définition d’un fibré vectoriel généralisé est donnée dans sect. 0.2.2). On
a un morphisme naturel £xt — Aj.
Considerons le champ © Sh" XSh?Tagm.zg_za ou le morphisme Ta‘gn-l—Qg—Q — Shi

envoie la suite (1) sur F;. On a un morphisme représentable ° Shy" xgpnFlag, o, 5 —
Ext qui envoie la collection (O S FR050 M= F - 0) sur le 'pull-back’ de (1)
par rapport a (O <y Fy). On définie le couplement i : © Sh" Xgyn Ta‘gn-l—Qg—Q — A}
comme le morphisme composé ? Shi” xgpn Ta‘gn-l—Qg—Q — Ext — A}. Notons L, le
faisceau d’Artin-Schreier sur A} (cf. sect. 0.2.3).

Pour un intier positif n on note X la puissance symétrique n-ieme de X. C’est
le schéma de modules des diviseurs effectifs D de degré n sur X. Soit Pic" X le champ
de Picard qui classifie les faisceaux inversibles sur X de degré n. On a un morphisme
m: X — Pic” X qui envoie un diviseur D € X sur le faisceau inversible O(D).

Soit det : Sh — Pic” X le morphisme naturel qui envoie Fy sur det Fy (cf. [12]). On
det s

dispose d’une fleche © Sh}* — X qui envoie (O < Fy) sur (O = det Fy) € X™, (Ici
X () est consideré comme le schéma de modules des couples (O — A, A € Pic" X)).
On note

©n : 0 Shlln XSh? 0 Shlln XSh? Flagn+2g_2 — X(n) X Pic X X(n)

le morphisme qui envoie la collection (O SN F,0 & Fi,0 - Q - M — F, — 0)

det 51 et s

sur (O — det F1,0 df—> det Fy). (Ici X xpin x X est identifié au schéma de
modules des triplés (s/,s" : O — A, A € Pic" X)).

Notons i : X — X®) xpin v X I'immersion fermée qui envoie (O < A) sur
(O3 A,0 = A). .

Soit A une Q-algebre locale d’Artin a corps résiduel Q. Pour un A-faisceau lisse

E sur X (cf. sect. 0.2.1) on note L% le A-faisceau pervers de Laumon sur Shg (cf.
sect. 1.3.1).



Théoréme Principal Local . Soient i, Fy deuxr A-faisceaux lisses de rang 2 sur
X. Le complexe

(wn hi(pry 7o L, @4 pryme L, @, Pris "Ly Og, Pras 7 Ly)[3n + 2 — 2g]

est un A-faisceau pervers sur X xpinx XU, Il est supporté par le sous-schéma
fermé a : X 5 X0 xpin x X et est canoniquement isomorphe a

(B @4 Ey) (=1 — 1+ g)[n]

Remarque . i) Le morphisme ¢, peut étre facilement decomposé en des morphismes
représentables et des fibrés vectoriels généralisés, par example de facon suivante

0 Shlln XSh? 0 Shlln XSh? Flagn+2g_2 — X(n) X Pic X (0 Shlln XSh? Flagn+2g_2) —
X(n) XPic™ X (X(n) X gl‘t) — X(n) XPic" X X(n)

Par suite, (,)1 peut étre aussi defini comme le composé de foncteurs correspondants.
ii) On verra que I’énoncé du Théoreme Local Principal est local par rapport a Fy, Fs.
Pour cette raison on peut espérer établir un résultat analogue pour les systemes locaux
a coefficients de torsion.

La preuve au niveau de fonctions

0.5. Dans ce numero nous rappelons les traits marquants de la demonstration due a
Rankin et Selberg de 1’énoncé 0.2. On conserve les notations de 0.2.

La forme automorphe ¢z : Buny(F,) — Q est uniquement déterminée par ses
propriétés:

pour tout point fermé x € X, tout L € Buny(F,)

1) op(L(x)) = tr(Fry, det E)pg(L)

1
2) E S‘QE(L/) = —qz tI’(FI’mE)QOE(L),
'es
ou S est I'ensemble des fibrés vectoriels L' tels que L C L' C L(z) et deg I = deg L+1,
¢» = q9°87, Fr, est le Frobenius géométrique agissant sur la fibre géométrique en z;

3) Etant donné une suite exacte 0 — Q@ — L — A — 0, ott A est un Ox-module
inversible de degré n, on a

er(L) = (—1)”"’39—3(]_&329__3 S tr(Fraiy s B (< uy s >),
5:0—=A



ot u € Ext'(A, ) correspond 2 0 = Q — L — A — 0, ¢ : F, = Q; est un caractere
additif nontrivial, divs est consideré comme un F,-point du schéma X. (Pour la

définition du faisceau E™ sur X cf. sect. 1.3.1).
Tout d’abord on démontre la formule suivante.

0.5.1. Soient Ey, By deur Qq-faisceaux lisses et géométriquement irréductibles de rang
2 sur X. Etant donné un Ox-module inversible A de degré n, on a

1 - n
#Aut(Q — L,a) or (L), (L) = ¢ Y tr(Frapy,, (E10 ) ™),
A ’

Q= L,o:(det L)RQ—1= 5:0 =5 A

ou la premiére somme est prise sur [‘ensemble de classes d’isomorphie des triples
(Q— L,a), ou Q — L est une inclusion de Q dans un fibré vectoriel L de rang 2 sur
X (on ne suppose pas que Q est localement facteur direct de L), et o : (det L)@Q "= A
est un isomorphisme.

Le point essentiel est ’assertion suivante dont la verification est laissée au lecteur.
Notons o, : X(=2m) » X" 4 X () Je morphisme qui envoie (D', D) sur D' + 2D.

0.5.2. Soient By, By deux Qu-faisceaus lisses de rang 2 sur X. Sur (F1 @ Eg)(”) on a
une filtration canonique
0CFoCHC...CHay=(E®E)™
par Qq-faisceaux constructibles tels que
Fo) Foped =5 (0,) (B2 @ BCT2™)V R (det Ey)™ @ (det B,)0™)

pour 0 <m < 5 (F_y =0).

Remarque . La variante non-géométrisée de cette assertion s’ecrit: si £y, £y sont deux
espaces vectoriels de dimension 2, alors on a

SYm”(El & EZ) = & (det El ® det E2)®m ® Symn—Zm El Q Sym”_zm Ez_

m>0

Voici la démonstration de 0.5.1. Etant donné un triplet (@ — L,a) comme ci-
dessus, on note D le diviseur effectif sur X tel que Q(D) — L est un sous-fibré
vectoriel, m = deg D. On a une suite exacte 0 — Q(D) — L — A(—D) — 0. Notons
u € Ext'(A(—D),Q(D)) I'element correspondant. En plus, on a Aut(Q — L,a) =
Hom(A(—=D),Q(D)).



Par suite, la premiere somme s’ecrit

L X S gD (Lo, (L) =

m>0 pDeX(m)(F,) u€Ext'(A(-D),Q(D))
Z Z q_ dim Hom(A(-D),Q(D)) tr(Frp, (det El)(m) @ (det Ez)(m)) :
m>0 peXx(m

Z S‘QEI(L'U)S‘QE2(L'U)7

veExt! (A(-2D),Q)

ou la suite exacte 0 = Q — L, — A(—2D) — 0 correspond a v.
En utilisant la propriété 3) de @g, on obtient finalement

D=3 Z tr(Frp, (det £,)0) @ (det Ey)™)

m>0 DeX(m)(F,)
Z tr(Frps, Ein_zm) ® Eén_Zm)),
D'e|A(-2D)|
ot on a noté |A(—2D)| 'ensemble des diviseurs effectifs de la classe A(—2D). L’applica-

tion de 1’énoncé 0.5.2. acheve la démonstration de 0.5.1.

Comme corollaire immédiat de 0.5.1 on obtient
0.5.3. Soient Fy, Fy deur Qq-faisceaur lisses et géométriquement irréductible de rang
2 sur X. Pour toutn >0 on a

Z #Aut(; 1) o (L)er, (L) = q4—4g Z tx(Frp, (By @ Ez)(”))7

Q—LdegL=n+2g—2 DEX(")(]Fq)

ou la premiére somme est prise sur 'ensemble de classes d’isomorphie des couples
(Q — L), ou Q — L est une inclusion de @ dans un fibré vectoriel de rang 2 et de
degré n 4+ 2g — 2 sur X (on ne suppose pas que ) est localement facteur direct de L ).

Rappelons que la fonction L attachée au systeme local E; @ Fy sur X est définie
par la série formelle

L(E1 @ Fs,t) Z Z tr(Frp, (£ @ Ez)(n))tn
n>0 DeX(n

dans Q[[t]] et, d’apres la formule des traces de Grothendieck (cf. [SGA5] (exp.15,
par.3, N.2) et [SGA 4%][Rapport](4.10)) on a

L(Ey @ Ey,t) Hdet (1—Fr t, H(X, B @ Ey)) 0™,

r=0

10



oit Fr est le Frobenius géométrique, X = X QF, F,.
Il resulte de 0.5.3 qu’on a 1’égalité entre séries formelles

1 .
2 2 m@d‘“"mm’“—1>¢E1<L>¢E2<L>tn=q4-4gL<El®Ez,t>

n>0 LEBunn+2g 2

En utilisant la cuspidalité de g, on verifie que si ¢r(L) # 0 et deg L est assez
grand, alors Ext'(Q, L) = 0 et dimHom(Q, L) = deg L 4+ 6 — 6g. D’autre part, si
det ET— det Fy alors la somme

> e Den()

LeBun)t?97%(F,)

ne depend que de n mod 2. Pour conclure, il reste a comparer le comportement asymp-
totique des séries ci-dessus lorsque ¢ tend vers ¢~!, en utilisant I'interprétation coho-

mologique de la fonction L(E; @ Fa,t).

Les aspects nouveaux au niveau géométrique

0.6. On rappelle en 1.1 la structure de la déformation universelle £/ d’un systeme local
(-adique Ey sur la courbe X (sous la condition End(FEy) = Q). La base R de cette
déformation est un anneau des séries formelles sur Q; de dimension 2 + (29 — 2)m2
ou m est le rang de FEy. En plus, on calcule la cohomologie de Hom(FEy, Es) sur X, ou
E, et Fy sont deux relevement de E au spectre formel de R & R (cf. Prop.2).

On introduit en 1.2.1 le champ %ﬁ; qui est le quotient de Bun} par 'action de G,
(precisons que G, adit sur Bunj par 2-automorphismes de champs. Cette action est
donnée par les automorphismes scalaires des fibrés vectoriels). Le morphisme naturel
7 : Bun} — Bun, est une G,,-gerbe.

En 1.4 nous rappelons la construction due a D.Gaitsgory du faisceau pervers Autg,
pour le systeme local irréductible Fy de rang 2 sur X. On montre que cette construction
reste valable pour les déformations de Ey, ce qui permet a définir le R-faisceau pervers
Autg sur Buny. En fait, en adaptant les arguments originaux de [2], on construit
d’abord un R-faisceau pervers Auty sur Bun, et on pose Auty = 7 mE[—l]. En
plus, on donne une nouvelle démonstration pour la deuxieme propriete de Hecke de
Autg.

La partie gauche de la formule 0.2 s’interpréte géométriquement comme

RT.(Bunj, Aut%r ® Auth) (2)

11



Notons B(G,,) le champ classifiant du group multiplicatif. D’une part, on observe par
la formule de projection que les cohomologies RI'.(B(G,, ), Q,) interviennent dans (2).

D’autre part, ils interviennent dans la partie droite de 0.2 comme une géométrisation
du dénominateur q_% (cf. Appendice A, éxample 1). Puisqu’on veut une réponse

comme en (.1, on se propose de calculer

RFC(Bun;, Autgf ® Aut};)

au lieu de (2).

Pour ¢a, on donne tout d’abord une interprétation géométrique de 1’énoncé 0.5.1,
a savoir Théoreme 2, sect. 2.2.1. C’est un résultat local en quelque sorte qui n’est pas
relié a l'irréducibilité des systemes locaux évoqués. La difficulté principale est que la
démonstration de 0.5.1 donné ci-dessus ne se géométrise pas directement. On obtient
Théoreme 2 autrement, comme une conséquence formelle du Théoreme Principal Local
qui, a connaissance de I'auteur, n’apparait pas explicitement dans la méthode classique
de Rankin-Selberg pour GL(2).

Le but de la sect. 2 est de déduir le Théoreme Principal Global du Théoreme 2 en
adaptant les arguments de 0.5 a la situation géométrique. On exploite le fait que au-
dessus du support de Aut}, le morphisme naturel Flag, — Bun} est universellement
a(n)-acyclic, ou a(n) est une fonction de n telle que a(n) — oo lorsque n — oo.
On rancontre aussi une difficulté technique reliée au fait que I'image inverse de Auty,
a Flag, est donnée par la formule explicite (qui géométrise la propriété 3) de ¢r)
seulement sur un ouvert "assez grand” de Flag, (cf. Remarque 8, sect. 1.4.1).

La sect. 3 est consacrée a la démonstration du Théoreme Principal Local. L’idée de
cette démonstration, qui est absente au niveau de fonctions, est d’étudier les propriétés
locales (pour la topologie €tale de la base) de l'image directe en question. On observe,
en particulier, que la restriction de cette image directe a I’henselisé (strict) d’un point
arbitraire de la base ne depend pas des systemes locaux Fy, £3.

En sect. 4, qui est essentiellement independante du reste de la these, on introduit les
faisceaux P sur le champ X X pin x Tagn_l_Qg_Q. Le but est de démontrer qu’ils sont
pervers. En plus, on calcule tous les faisceaux de cohomologies (pour la t-structure
habituelle) de Pp. Comme une application, on démontre la deuxieme propriété de
Hecke de Autg.

Dans "appendice D on propose une conjecture qui renforce un résultat de Laumon
(Théoreme (3.3.8),[3]). On construit aussi un analog du Q,-faisceau constructible
correspondant pour un groupe reductif arbitraire.
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0.1 Main results
0.1.1

Let X be a smooth complete connected curve of genus ¢ > 1 (defined over k, cf.
sect. 0.2.1). Let Fy be an irreducible 2-dimensional (-adic local system on X. Let F
be the universal deformation of Ey and R be the base of this universal deformation
(cf. sect. 1.1.1). In fact, R is a ring of formal power series over Q; of dimension 8g — 6
(cf. Prop. 1). Denote by E; (« = 1,2) the two liftings of £ to the formal spectrum of
R® R.

D.Gaitsgory in [2] has associated to Fy an irreducible perverse sheaf Autg, on
the moduli stack Buny of 2-bundles on X, which is a Hecke eigen-sheaf with respect
to Fo. Denote by Aut} its restriction to the connected component Bunjy of Bun,
that corresponds to bundles of degree n. Gaitsgory’s construction is still valid for
deformations of Fy, so that we have an R-perverse sheaf Aut on Buny (cf. sect. 1.4.1).
(The definition of an R-perverse sheaf is given in sect. 0.2.1). Scalar automorphisms of
2-bundles provide an action of G,, on Bun} by 2-automorphisms of stacks. Denote by
Bun, the quotient of Bun} under this action, so that the natural morphism Bun} —
m; is a Gy, -gerb (cf. sect. 1.2.1). Since Auty is perverse, it is a pull-back of some
sheaf Auty[—1] on Bun,, where Auty, is a perverse R-sheaf.

The main result of this work is the following

Main Global Theorem . For any integer n there is a canonical isomorphism of
R & R-modules L
HY(Buny, Autpy @ g Autp, )5 R(-1),

where the R & R-module structure on R is given via the diagonal mapping R © R — R.
Besides, we have H'(Bun,, Autgf QperAuty, ) =0 for o #0.

Remark 1. i) The stack m is not of finite type. However, mg is the extension by
zero of its restriction to an open substack of %Z which is of finite type (cf. Coro-
lary 1).

ii) The cohomology with compact support of a stack a pripori was not defined. We
will use a definition from the forthcoming book of G.Laumon and L.Moret-Bailly
([7],(18.8)) communicated to the author by G.Laumon (cf. Appendix A). Their defi-
nition is inspired by an idea of J.Bernstein and V.Lunts ([8]). An analogous definition
was also communicated to the author by V.Drinfeld.
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0.1.2

We derive Main Global Theorem from some local result, which can be considered as
a geometrization of the classical Rankin-Selberg method for GL(2) (cf.[9], [10]). To
formulate it we need some notation.

Denote by Sh} the stack that classifies coherent sheaves on X of generic rank 1 and
of degree n (cf. our conventions in sect. 0.2.3, cf. also sect. 1.2.2). Let °Sh* be the

stack that classifies pairs (O < Fy) on X, where Fy € Sh] (cf. sect. 1.2.2). We have
a representable map °m : ©Sh]* — Sh} that sends (O < Fy) to Fy. We also have a

map m, : ©Sh’ — Sh¥ that sends (O < Fy) to Fy/Ims. Notice that 7} is a vector
bundle of rank n. Denote by Flag, the stack that classifies exact sequences

0=-Q—M— F =0,

where M is a bundle of rank 2 and degree n on X, and €2 is the canonical invertible
sheaf on X (so that F} is a coherent sheaf on X of generic rank 1).

Let Ext be the stack classifying the exact sequences 0 — Q@ —7 — O — 0 on
X. Then Ext — Speck is a generalized (non-representable) vector fibration of rank
1 — g (the definition of a generalized vector fibration is given in sect. 0.2.2). We have
a natural morphism Ext — A} .

Consider the stack © Sh" xSh?Tagn_l_zg_z, where the morphism Tagn_l_zg_z — Sh}

sends a sequence (1) to Fy. We have a representable map © Shy* xgynFlag, , , — Ext

that sends a collection (O S0 0 M= F— 0) to the pull-back of (1) w.r.t.
(O < Fy). Define the pairing x : °Sh” xsnn Flag, 5, , — A} as the composition
O ShY" Xgpr Ta‘gn-l—Qg—Q — Ext — A}. Denote by L, the Artin-Schreier sheaf on A} (cf.
sect. 0.2.3).

For a positive integer n we denote by X the n-th symmetric power of X. Let
Pic™ X denote the Picard stack that classifies invertible sheaves on X of degree n. We
have a morphism 7 : X — Pic" X that sends a divisor D € X to the invertible
sheaf O(D).

Let det : Sh} — Pic” X be the natural map that sends Fy to det Fy (cf. [12]). We

det s

have a map °Sh}* — X that sends (O < Fi) to (O = det Fy) € X, (Here X ()
is considered as the moduli scheme of pairs (O — A, A € Pic" X)). Denote by

©n : 0 Shlln XSh? 0 Shlln XSh? Flagn+2g_2 — X(n) X Pic X X(n)

the morphism that sends a collection (O &y F,0 & Fi,0 = Q > M — F;, = 0)

det 51 det so

to (O < det F1,0 < det Fy). (Here we consider X0 xpin v X as the moduli
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scheme of triples (s',s" : O — A, A € Pic" X)). Let ¢ : X — X xpiny X be
the closed immersion that sends (O <y A) to (O < A, (’)ff_—i A).

Let A be a local Artin Q;-algebra with residue field Q,;. For a smooth A-sheaf K
on X (cf. sect. 0.2.1) we denote by L% the Laumon’s perverse A-sheaf on Shg (cf.
sect. 1.3.1).

Main Local Theorem . Let Fy, Fy be any smooth A-sheaves on X of rank 2. The

complex

(6n)i(pr mg L, @4 prs 75 L, O, Prig i Ly Qg, Pras p"Ly)[3n + 2 — 2g]
is a perverse A-sheaf on X xpin x X It is supported at the closed subscheme
i X0 o X0 wpin v XM and s canonically isomorphic to

LBy @4 B2)M (=0 — 1+ g)[n]

Remark 2. i) The morphism ¢, is easily written as the composition of representable
morphisms and generalized vector fibrations, for example as follows

0 Shlln XSh? 0 Shlln XSh? Flagn+2g_2 — X(n) X Pic X (0 Shlln XSh? Flagn+2g_2) —
X(n) XPic™ X (X(n) X gl‘t) — X(n) XPic" X X(n)

So, (pn)r can also be defined as the composition of the corresponding functors.

ii) We will see that the assertion of Main Local Theorem is local w.r.t. E, Ey. For this
reason one may hope that the same result is also true for local systems with torsion
coefficients.

0.2 Conventions
0.2.1

We fix an algebraically closed ground field k of positive characteristic. In this paper all
the schemes and stacks will be defineed over k. We also fix a prime number ¢ different
from char k and an algebraic closure Qy of Qp. Let E\ C Qy be either a finite extension
field of Qy or Q. By a E\-sheaf we will always mean a constructible F\-sheaf.

We will be working with algebraic stacks in the smooth topology and with (per-
verse) F\-sheaves on them (cf. [6]).

Let & be an algebraic stack locally of finite type. The notion of a (perverse) F)-
sheaf on A" localizes in the smooth topology: for a scheme S locally of finite type and
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a smooth surjective morphism S — & the category of (perverse) E\-sheaves on X is
equivalent to the corresponding category of sheaves on S equipped with the descent
datas.

If Aisalocal Artin Fy-algebra with residue field F) then the category of (perverse)
A-sheaves on X is the category of pairs (p, F'), where F' is a (perverse) E\-sheaf on X
and p: A — End(F) is an action of A on F. We say that a (perverse) A-sheaf F' on X
is A-flat if the functor N — F @4 N from the category of finite type A-modules to the
category of (perverse) A-sheaves is exact. By a smooth A-sheaf we mean an A-sheaf
(p, F') such that F'is a smooth E)-sheaf and all the geometric fibres of (p, F') are free
A-modules of finite type.

If R is a complete local noetherian E\-algebra with residue field £\ and maximal
ideal m then we denote by A(X, R) (resp., by PA(X, R)) the projective 2-limit of the
categories of R/m"-sheaves (resp., of perverse R/m"-sheaves) on X (for the general
notion of the categorical projective 2-limit ¢f. SGA4, éxposé 6 (6.10). In our case this
notion coincides with that of sect. 1.1.3). In other words, an object of A(X, R) (resp.,
of PA(X,R)) is a projective system (F,, ¢, )nen, where F,, is a R/m”-sheaf (resp.,
a perverse R/m"-sheaf) and ¢, : Fp1 @p/met1 B/m"=F), is an isomorphism. Mor-
phisms in A(X, R) (resp., in PA(X, R)) are morphisms of the corresponding projective
systems.

The formalism we need is not put into shape yet, and we will satisfy ourselves with
the following definitions. If F is a finite extension of Qy then the category of R-sheaves
(resp., of perverse R-sheaves) on X' is, by definition, the category A(X,R) (resp.,
PA(X, R)). If E\ = Q then we define the category of R-sheaves (resp., of perverse
R-sheaves) on X as the following full subcategory of A(X, R) (resp., of PA(X, R)).
An object F of A(X, R) (resp., of PA(X, R)) is an R-sheaf (resp., a perverse R-sheaf)
on X if there exists a finite extension field E, of Q, a complete local noetherian
F,-algebra R’ with residue field £, and an isomorphism R’ ®Eu Q/=R such that F
lies in the essensial image of the functor A(X, R') — A(X, R) (resp., of the functor
PA(X,R') — PA(X, R)) that sends M to M @, Q.

Remark 3. To use the geometric intuition, an R-sheaf on X can be thought of as a
sheaf on X' x Spf(R), i.e., a family of l-adic sheaves on X’ parametrized by R.

0.2.2

Throughout the paper the phrase "complex on a stack” will mean an object of a
suitable derived category on this stack (in general, it is neither a sheaf nor a perverse
sheaf). However, the existence of such a derived category will never be used, any
complex will appear only through its cohomologies (in the perverse or usual sense).
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Following [2], we say that a morphism f : X} — &5 of algebraic stacks is a general-
ized vector (resp., affine) fibration if there exists a homomorphism of smooth unipotent
group schemes A — A’ over X3 (resp., a homomorphism of smooth unipotent group
schemes A — A" over X, and an A’-torsor X| over X3) such that X;—=A'/ A (resp.,
X=X/ A). If, in addition, A and A’ can be chosen smooth over Xy of constant
relative dimensions n and n’ respectively then we say that f is a generalized (vector
or affine) fibration of rank n’ — n. Notice that the stack A’/ A depends in some sense
only on the quasi-isomorphism class of the complex A — A’ (cf. SGA4, t.3, éxp.18,
1.4.10).

For a morphism f : X1 — &5 of algebraic stacks we will use the functor f* between
the derived categories. When f is representable (resp., a generalized (vector or affine)
fibration) we will use the functors fi and f. (resp., the functor fi). However, we will
also need the functor f, for more general non-representable morphisms. For them we
use a definition of Appendix A.

Remark 4. A definition of the derived category of smooth-étale sheaves on a stack is
given in the forthcoming book [7] of G.Laumon and L.Moret-Bailly. They introduce
a notion of a Bernstein-Lunts stack (cf.also Appendix A) and partially establish a
formalism of ’six operations’ a la Grothendieck for Bernstein-Lunts stacks of finite
type and morphisms between them.

0.2.3

For example, when we write: ”consider the stack that classifies pairs M; — M, with
M (resp. M,) being a coherent sheaf on X of generic rank ¢y and of degree d; (resp.,
of gen. tk iy and of degree dy)”, the reader should keep in mind that what we mean
is the following k-stack. Its category fibre over a scheme S is the groupoid whose
objects are inclusions M; < M, of coherent sheaves on S x X that are S-flat and such
that the quotient My/ M, is also S-flat, and for any point s € S the conditions on the
generic rank and on the degree of M; |sxx (i = 1,2) hold. Morphisms from an object
My — M; to an object M| — M} are by definition the isomorphisms M;=M; and
My= M}, making the natural diagram commutative.

By a local system we mean a smooth Q-sheaf. We fix a finite subfield F, C k of ¢
elements. We also fix a square root of ¢ in Q; and define using it the sheaf Qg(%) over
SpecF, and, hence, over Spec k. We denote by ) the canonical invertible sheaf on X.

We fix a nontrivial additive character ¢ : F, — @} and denote by £, the Artin-
Schreier sheaf on A} associated to 1 (cf. SGA4%, [Sommes trig.], 1.7). If « is the
coordinate on A} then the equation ¢4 — ¢ = z defines an F,-torsor over A}, and L,
is a smooth Qg-sheaf of rank 1 on Al obtained from this torsor by extension of the
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structure group via ¢!, The Fourier transform functor is normalized to preserve the
perversity and weights. (cf. the explicit formulae in sect. 1.4.1).
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1 Reminders and complements

1.1 The universal deformation of a local system
and cohomologies of Hom(E, E,).

1.1.1

Let £\ be either a finite extension field of Q; or Q,. Fix a smooth F\-sheaf Fy on X of
rank m. In this subsection we recall the structure of the universal deformation of Fg.
This construction is standard (cf.[1] for the definition of pro-representability, etc.).

Let n € X be the generic point of X and 7 — n — X be a geometric point over 7.
Set GG = m1(X,n). Denote by Cg, the category of local Artin F\-algebras with residue
field Ey. (Cg, will also be denoted symply by C). Recall that for A € Ob(Cg,) the
functor that sends F to Ej is an equivalence of the category of smooth A-sheaves on
X of rank m with the category of pairs (E, p), where E is a free A-module of rank m
and p : G — Auty F is a representation (it is required that, as a representation over
E,, p is already defined over a finite extension field of Q; and is continuous in the
(-adic topology).

Definition 1. Let A € Ob(Cg,). An A-deformation of Eq is a pair (E, 1), where
E is a smooth A-sheaf on X of rank m and ¢ : £ ®4 E\— Fy is an isomorphism of
F\-sheaves on X.

Define the functor Fg, : Cp, — Sets by Fg,(A) = the set of isomorphism classes of
A-deformations of Fj.

Proposition 1. Suppose that End(FEo) = E\ then Fg, is pro-representable by a pro-
pair (R, F), where R is a ring of formal power series over E\ of dimension 2 + (29 —
2)m?. If m C R is the mazimal ideal of R then Hompg, (m/m?, E\)= H' (X, End Fy)
canonically. If, in addition, Ey is finite over Qq then the pro-pair (R©g, Qi E@g, Q)
pro-represents the functor FEo@ngz'

Lemma 1. Suppose that End(FEy) = E,

1) If E is an A-deformation of Fo then End(E) = A.

2) Let A" — A, A" — A be two morphisms in Cg,. Suppose that A” — A is surjective
then the natural morphism Fgy(A" x4 A”) — Fg,(A) X Fp, (4) Fg,(A") is a bijection.

Proof 2) The surjectivity is easy. To prove the injectivity use point 1) and Corollary
3.6,p.217 of [1]. O
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Lemma 2. Let A’ — A be a surjective morphism in Cg, , whose kernel is a 1-dimensional
E\-vector space. Let V' be a free A'-module of rank m. Put V =V’ @ A. Then the

natural morphism
GL(V/) — PGL(V/) ><PGL(V) GL(V) XGL(detV) GL(det V/)
is an isomorphism of groups. [

Proof of Proposition 1

Consider the ring E)[z]/(£?) of dual numbers. The groupoid of E,[¢]/(¢?)-deformations
of Fy is naturally equivalent to the category of extensions 0 — FEy —7 — Fy — 0
on X. It follows that the tangent space to Fg, is identified with Exty (FEo, Eo) =
H' (X, EndFEy). Now combining Lemma 1 with Theorem 2.11,p.212 of [1] we get the
pro-representability of Fg, by a pro-pair (R, ).

Let us show that the morphism of functors associating to an A-deformation F of Fy
the A-deformation det E of det Fjy is a formally smooth morphism from the universal
deformation of Iy to the universal deformation of det Fy. Let A" — A, V' and V be as
in Lemma 2. Suppose that V' is equipped with a structure of A-deformation of Fy. Let
p: G — Auty V be the corresponding representation of G. Since H(X, Endy Ey) = 0,
we get H*(X,EndyFy) = 0 by Poincaré duality. It follows that the corresponding
representation of G in PGL(V) can be lifted to a representation p’ : G — PGL(V").
Now our assertion follows from Lemma 2.

Notice that the universal deformation of det Fy is formally smooth, because it
is isomorphic to the universal deformation of the trivial 1-dimensional local system,
which is an infinitesimal formal FEy-group (cf. SGA3,t.1, éxposé 7p, 3.3).

It follows that R is formally smooth (i.e., by Prop. 2.5(i) of [1], is a ring of formal
power series over F)).

Since x(EndoFy) = (2 —2g)(m? — 1), we have dim H' (X, End Ey) = (29 — 2)m? + 2.

If E) is finite over @, then (R® Qy, F @ Q) is a pro-pair for the functor Fr0,:
C — Sets, so that it defines a morphism of functors hpg g, — Fpeg, and we have to
show that this is an isomorphism. ( Here hpg g, : C — Sets is the functor represented
by R & Qy, in other words, hpe g,(A) = Homyyew g,—a1,(R © Qs A)). Since we already
know that Fg g, can be represented by a ring of formal power series over Qy, our
assertion follows from the fact that the induced map on the tangent spaces is an
isomorphism. O

By definition, £ = (E,)nen, En € Fg,(R/m™) are such that the image of E,4q
under Fg,(R/m"t') — Fg (R/m") is E,. Fix a R/m"-deformation of Fy in the iso-
morphism class £, and denote it by the same symbol E,. For any n fix an isomorphism
of R/m"-deformations of Fo: E,11 @pmrt1 B/m"=E,. Then the projective system
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(En)nen is an object £ of A(X, R) equipped with an isomorphism F ®@p Ex—FEy of
E\-sheaves on X . From Proposition 1 it also follows that if Fy = Q; then F € A(X, R)
is, in fact, an R-sheaf.

Notice that R is defined up to a canonical isomorphism, and the R-sheaf E is
defined up to a non-canonical isomorphism.

Definition 2. For a local system Ey (i.e., for B\ = Q) the R-sheaf £ will be reffered
to as the universal deformation of Fy, and the ring R will be reffered to as the base of
the universal deformation of K.

1.1.2

In the rest of sect. 1.1 we set Fy = Q. Put R®QZR = @(R/m”) ®q, (R/m™). This
is a ring of formal power series over Qy of dimension 2dim R. Put F; = F@g (R ® R),
where the R-module structure on R® R is given by p; : R — R® R (i=1,2). Now
Hom(FE1, E3) is a smooth R & R-sheaf on X.

In this subsection we establish some properties of RI'( X, Hom(FE, E3)) we need in
section 2.

Consider the morphism Hom(FEy, Eay) — Hom(Fy, Fa) @per R=End(E) " R
Applying the functor H*(X, .), we get a canonical morphism H*(X, Hom(E;, Ey)) —
H*(X, R)=R(-1).

Proposition 2. 1) RI'(X, Hom(FE,, E3)) is well-defined as an object of Dpa( R R).
2) It can be represented in Dpat( R & R) by a complex (VO — V1 — V?2) of free R® R-
modules with tk V® =1tk V? = 1, tk V! = (29 — 2)m? + 2 such that the differential in
V' is zero modulo the mazimal ideal 0fR® R.

3) The canonial morphism H*(X, Hom (Ey, Ey)) — R(—1) is an isomorphism of R & R-

modules.

Remark 5. jFrom the geometric point of view, we calculate the direct image under the
projection X x Spf(R) Xg,ccq,5Pf (1) = Spf(R) Xgpecq, SPL(R), and the point 3) of the
above proposition says that the second highest direct image is canonically isomorphic
to the (Tate twisted) constant sheaf on the diagonal Spf(R) — Spf(R) Xgpecq, SPI(R).

1.1.3

To prove Proposition 2 we need some general lemmas about perfect derived categories.
They are collected in this subsection.
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Lemma 3. Let A be a local noetherian ring with mazimal ideal m.

1) If K is a perfect complex of A-modules then it can be represented as a direct sum
K = Ko @& Ky of two perfect complexes, where Ko is acyclic and the differential in
Ky @a A/m is zero.

2) If Ky and Ky are perfect complexes of A-modules such that the differential in K; @a
A/m is zero (i = 1,2) and [ : Ky — Ky is a homotopical equivalence then f is an
isomorphism of complexes.

O

Suppose we are given a projective system of categories (Cy,)nen, fut1 @ Cog1 — Ca.
Then 2-1imC,, is the category defined as follows. An object of 2-1imC,, is a collection
(Cny O )nen , where ¢, € ObCh, @y ¢ fuy1¢np1—¢n. A morphism from (¢, oy )nen to
(¢, a! )nen is a collection (53,)nen, Where 3, : ¢, — ¢, is @ morphism in C, such that

the diagram
Frt1(Bpt1)

Jr41Cng1 — fn+lc;z+1
Lo, Lal
Cn By c

commutes for any n € N.

Lemma 4. If A is a complete local noetherian ring with maximal ideal m then the
natural functor Dpae(A) — 2—@Dparf(A/m”) is an equivalence of categories.

O

1.1.4

Denote by A the category whose objects are surjective local homomorphisms R — A
of Q-algebras with A € ObC. A morphism from R — A to R — A’ is a morphism
A — A’ in C making the natural diagram commute.

Proof of Proposition 2 1f A € ObC and F is a flat A-sheaf on X then we suppose
known that RI'(X, F) € Dpart(A). Since its tor-dimension is easily estimated using the

projection formulae, it follows that RI'( X, F) can be represented by a perfect complex
(U° — U' — U?) of A-modules.
For any R — A in A the complex

RF(Xv Hom(Elv EQ) ®R®R (A @ A))
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lies in Dpart(A®@ A). For any morphism in A as above we have a canonical isomorphism

L ——
RE(CX, Hom(Er, B) o (A© A)) Gasa (A0 A)5
RF(Xv Hom(Elv EQ) ®R®R (A/ ® A/))

By definition, RI'(X, Hom(F1, Ey)) = @RF(X, Hom(Ey, Ey) @pgr (RO R/m™)).
Now 1) of Proposition 2 follows from Lemma 4. Besides, for any R — A in A we get
a canonical isomorphism

L
RI(X, Hom(Ey, By)) ©pen (A©@ A RO(X, Hom(Ey, By) @pap (A© A))

Chose a perfect complex V of R & R-modules that represents RI(X, Hom (E,, Ey))
and such that the differential in V ®@pg p Q is zero. By 2) of Lemma 3 this complex is
defined up to a non-canonical isomorphism of complexes of R & R-modules. However,
the complex V @prg g Q is defined up to a canonical isomorphism. More precisely, we
have canonically Vi @ gz p Q= H'(X, End Ey) for every i. The point 2) of Proposition
2 follows. .

Notice that RI'(X, Hom (Ey, ) ©Wrg p B— RI(X, EndE) which is the direct sum
RI(X, R) & RI'(X, EndoF). Since H'(X, EndoF) = 0 for ¢ # 1, we can conclude that
the differential in V @g¢ r R is zero.

In the rest of the proof R — A will denote an object of A, I C A ® A will be the
ideal of the diagonal and J C [ will be another ideal of A @ A.

The next assertion is an immediate consequence of the universal property of (R, F).

Lemma 5. Suppose that the images of Iy @rgr (A @ A) and Ey @prer (A@ A) in
Fr,(A® A/J) coincide then J = 1. 0O

Lemma 6. Let B € ObC and My, M, be two non-isomorphic B-deformations of Fy.
Then H°(X, Hom (M, My)) = Hompg (M, M) and for any f € Homp(M,;, My)“ the
morphism f @id : My ®@p Qr — My ®p Qp vanishes.

Proof We have f ®id € Endg(FEy) = Q. Suppose that f @ id # 0 then f @ id is an
isomorphism of Qp-vector spaces. It follows that f is an isomorphism of B[G]-modules.
Multiplying f by an element of Q we get an isomorphism of B-deformations of Fp, a
contradiction. O

Lemma 7. Put B = A®@ A/J. Suppose that the differential d® : V°® @rop B —
V! @pe r B vanishes. Then J = 1.
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Proof Consider the B-deformations M; = FE; @psp B of FEy (i = 1,2). By our
assumption, H(X, Hom (M, M3))=V°@p e p B is a free B-module of rank 1. Suppose
that J # I then My and M, are non-isomorphic by Lemma 5. Denote by n the maximal
ideal of B and set Annn = {b € B | bn = 0}. By Lemma 6, Annn annihilates
H°(X, Hom(M,, My)). Since Annn # 0, we get a contradiction. O

Consider the complex V @Rré R (A® A). Combining Lemma 7 with the Poincaré
duality, one proves that the image of the differential d' : V' @pgp (A @ A) —
V? @ror (A® A) is I(V? @rer (A @ A)). In other words, the natural morphism
H*(X, Hom(E\, ) @pgr (A @ A)) — A(—1) is an isomorphism.

Passing to the limit we get the desired assertion.

O (of Proposition 2)

1.2 Definitions of stacks
1.2.1

Denote by Bun; the moduli stack of vector bundles on X of rank i. So, its category
fibre at a scheme S is the groupoid whose objects are rank i vector bundles on S x X,
and morphisms are isomorphisms of such bundles. This is an algebraic stack whose
connected components are indexed by n € Z: the component Bun; classifies vector
bundles on X of rank ¢ and degree n. The stack Bun is locally of finite type, smooth
and of dimension 7*(¢g — 1) over Speck. The stack Bun; (resp., Bun]) will also be
denoted by Pic X (resp., Pic” X). This is the Picard stack of X.

Consider the k-prestack whose category fibre at a scheme S is the following groupoid.
Its objects are vector bundles L on S x X of rank ¢ and degree n. A morphism from
L1 to Ly is an equivalence class € {(A, f)}/ ~, where A is an invertible sheaf on S,
f:Li=Ly® Ais an isomorphism of Ogy x-modules, and the pairs (A, f) and (A, f')
are equivalent if there exists an isomorphism A=A’ making commute the diagram

L & LoA

NS
Ly A

We define Bun? as the stack associated to this prestack. Then the natural morphism
7 : Bun! — Bun? is a Gy,-gerb.

Lemma 8. Bun? is an algebraic stack locally of finite type. It is smooth of dimension
i*(g—1)+1.
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Proof Let S be a scheme, L; and Ly be vector bundles on S x X of rank ¢ and
degree n. Consider the morphism Isom(Ly, Ls) — S obtained by the base change
S (Ll—’j;2) Bun! x Bun; from the diagonal mapping Bun; — Bun! x Bun. Recall
that Isom( /L1, L2) is an open subscheme of some affine S-scheme V(F), where F is a
coherent Og-module, and Isom(Ly, Lz) is of finite type over S (cf.[6],Th.4.14.2.1). We
have a free action of G,, on Isom( L1, Ly), and the square is cartesian

n n n n
Buny’ xggm Buny”  —  Bunj’ x Bun;

T T (L1, L)
M(Ll,lzg)/@m — S

It follows that Isom(Lq, L2)/G,, is an open subscheme of P(F), in particular it is
separated over S. So, the diagonal mapping Bun? — Bun? X Bun? is representable,

separated and quasi-compact.

If Y — Bun! is a presentation of Bun; then the composition ¥ — Bun! — %f
is a presentation of Bun;. O

We denote by Bun; the disjoint union of the stacks m for n € Z.

The morphism 7 : Bun] — %f is, in fact, the canonical morphism Pic" X —
Pic™ X, where Pic" X is the Picard scheme of X. Any closed point  of X defines a
section . : Pic" X — Pic" X of this G,,-gerb. Namely, if one consider Pic” X as the
moduli scheme of pairs (A, t) with A € Pic" X, t : A,—k being a trivialization of the
geometric fibre of A at « then o, sends (A, 1) to A.

Remark 6. Denote by Bunpgr,, the moduli stack of PGL;-bundles on X. There exists a

morphism 7 : %f — Bunpgr, such that the composition Bun;' N %f N Bunpgr,
is the canonical map Bun; — Bunpgr,. The morphism 7 is representable, smooth and
separated. Let ty : Bun? x Pic® X — Bun? be the map that sends (L, A) to L @ A.
We have a map tx : m x Pic® X — %f such that the diagram

Bun? x Pic® X X Bun;}
3 i 3
Bun, x Pic® X X Bun,

commutes, and the following two squares are cartesian

Bun? —  Bunpqy, Bun? i Bunpqar,
T tx T T ix 7
. pr e . pr e
Bun x Pic®x = Bun” Bun? x Pic® X = Bun:

K3
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1.2.2

By Sh; we denote the moduli stack of coherent sheaves of generic rank ¢ on X. This
stack is algebraic, its connected components are numbered by n € Z: the component
Shi classifies coherent sheaves of rank 7 and degree n on X. The stack Sh is locally
of finite type and smooth of dimension (g — 1).

For two pairs of integers (11, ny) and (i1, 12) we denote by FI7'"? the stack that clas-
sifies pairs (M; — M), where M; and M, are coherent sheaves on X with M;/M;_,
being of generic rank 7; and of degree n;. We have a map p;'2 + FII'72 — Shgl_:»zz)
that sends the above pair to M. This map is representable and proper. In addi-
tion, we have a map denoted by ¢! : FI'1"* — Shi' x Shi> that sends an object
(My; — My) to (My, My/My). Tt is easy to see that qu;;” is a generalized vector
fibration. This, in particular, implies that FI:';"* is smooth.

We denote by Sh7is™ (resp., by Shi™™) the open (resp., locally closed) substack
of Shi that corresponds to those coherent sheaves whose maximal torsion subsheaf
has length at most m (exactly m). To be precise, the stack structure on Sh}"™ is
defined as follows. If ﬁzin_m is the preimage of Shi’ x Pic"™™ X under ¢;5;"™™ then

~—,— M

the restriction of pgi"™™ to .ﬁg:n_m is a locally closed immersion Fl; — Sh,
and this substack is denoted Sh]"™.The stack Shi*" is smooth (and can also be defined
as the complement of Sh™=""" to Sh™<™ with the reduced stack structure).

For i > 1 we denote by Sh’" (resp., by °Sh’") the stack that classifies pairs (F}, s :
Q@=L — F) (vesp., (F;, s : Q%=1 < F})) with F; € Sh”. We have an obvious open
embedding j; : ©Sh!" — Sh*. By =, : Sh!" — Sh” is denoted the natural projection.
The morphism 7/, : ®Sh! — Sh;_; sends a pair (F;,s : Q%=1 < [}) to F;/Im(s).
This is a generalized vector fibration. Set also °w; = 7; o ;.

By Shg" we denote the stack of pairs (Fo,s : O — Fp) with Fy € Shy. (This
notation does not agree with [2]!)

We denote by W”" the stack that classifies exact sequences 0 — Q =7 — A — 0
on X with 4 € Pic” X. The morphism W" — Pic" X that sends the above exact
sequence to A is a generalized vector fibration of rank n + 1 — g.

By X — Sh? we will always mean the morphism that sends a divisor D to
Q(D)/Q. By div : Sh? — X is denoted the morphism norm (cf. [11],6). If
Dy,..., D, are effective divisors on X then it sends the Ox-module Op, ;. 4+p., &
ODQ"‘...‘I‘DS D...D ODS to D1 + 2D2 + ...+ SDS.

1.2.3

The following notations are used in sect. 3 and 4.
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We denote by Pic™ X the preimage under m; : Sh!* — Sh] of the open substack
Pic” X C Sh}. Let ig : Pic” X — Pic™ X be the zero section of the natural projection
Pic™ X — Pic™ X. We have an open immersion X — Pic™ X, and ig : Pic® X —
Pic™ X is the complement of X to Pic™ X with the reduced stack structure.

Lemma 9. [f S is a locally noetherian scheme and Fy € (Shy)s then there exists a
natural morphism Fy — det Fy of Ogyx-modules. It depends functorially on S.

Proof Since Fy is S-flat and dim X =1, locally on S in Zarisky topology there exists
a resolution 0 — F~1 — F° — [y — 0 of Fy, where F'=!, F* are locally free coherent
sheaves of constant ranks, say m — 1 and m respectively. Instead of constructing a
morphism Fy — (det F°) @ (det F~1)*, we define a mapping F; @ (det F'~') — det F°
as follows. If s € Fy and s, € F~' (0 <4 <m — 1) then it sends s @ (sy A=+ A Sp_1)
to SA (51 A Asp_1) € det FO where 5§ € F is a (local) lifting of s.

The mapping Fy — det F} constructed locally on S is compatible with the descent
datas. O

The above lemma shows that there is a natural morphism Sh* — Pic” X. Namely,
if S € (Aff /Speck) and Fy € (Sh})s then every section O — F defines a section of
det F as the composition O — F; — det F.

The following square is cartesian

Sh" — Pic" X
T T
OSh* — X0

We define the stack Sh]" from the cartesian square

Sh? — Pid" X
T 1o (3)
Sh’{” — Pic" X

(The author does not know whether ShY" is reduced).

Notice that ShY" xgpr Shi™ is the stack that clasifies the collections: Fo € Sh{,
A € Pic" ™™ X, an extension 0 — Fy — F; — A — 0, and a section O — Fy. In
particular, this stack is smooth of dimension ¢ — 1. This, in particular, implies that
Shi™ is reducible. Its irreducible components are numbered by m > 0. The component
corresponding to m is the closure of Sh{" Xgpr ShT™ in Sh'".
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1.3 Definitions of sheaves
1.3.1
Let A € ObC and E be a smooth A-sheaf on X. Denote by sym : X" — X the

natural map, and consider the smooth A-sheaf E¥" on X" (the tensoring is taken
over A). The A-sheaf sym,(E®") carries a natural S™-action. Using the projection
formulae for sym, we see that it is flat over A. Notice that sym,(E®™)[n] is a perverse
A-sheaf (flat over A).

We set B = (sym,(E¥"))%". Since E(™ is a direct summand of sym,(E®"),
E[n] is also a perverse A-sheaf (flat over A). For a morphism A — B in C we have
(K ®@a B)(”)/—TE(”) @4 B naturally.

Consider the open substacks "**Sh{ C " Sh{ of Shy that correspond to regular
semi-simple and regular sheaves respectively. In other words ’ Sh is the image of the
(smooth) map X — Sh?, and "** Sh¥ is identified with (X AN) /G, where A is

the divisor of coinciding points. We have a cartesian square

Lol
Xm = Flyg

Lyl ., ‘
and py 7 is an S"-Galois étale covering over "** Shy.

.....

Recall that the Springer’s sheaf Spry on Shy is defined by

Spri = pé """ (IJ, o qé""’o odiv"(EX .- X E)

.....

This is a perverse A-sheaf (flat over A), and it coincides with the Goresky-MacPherson
extension of its restriction to "** Sh{. In addition, it carries a natural S™-action (cf.

Lemma 3,p.15 of [2] or Theorem 3.3.1 of [3]).

Definition 3. For a smooth A-sheaf I/ on X we define the Laumon’s perverse A-sheaf
L% on Shy as Homgn (triv, Spri), where triv denotes the trivial representation of the
symmetric group S™.

L% 1s a direct summand of Spry,, hence it is an A-flat perverse A-sheaf. For a
morphism A — B in C we have L}, @4 B:;,C?E@AB) naturally. The pull-back of £} to
X is identified with £, Besides, £} is the Goresky-MacPherson extension of its
restriction to "** Shy.

If Ey is a local system on X such that End(Fy) = Q; and the pair (R, E) is
constructed out of Ky as in sect.1.1.1 then the above definition yields a perverse R-
sheaf £ on Shy equipped with an isomorphism £} @g Qg:;/:%o
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1.3.2

For two non-negative integers ¢, ¢y consider the diagram

€1,¢2
90,0
C1,C2 ) c1 c2
FIgg ™% She x Shs
Pl

c1+eo
She

Let A € ObC and FE, E5 be a pair of smooth A-sheaves on X. Following [2], we define
the perverse A-sheaf £7'% on Shg ™% by

€1,C2 C1,C2 *

C1,C2 n n
'CEl,EQ = Poor © Y400 ( 7 X 'CEQ)

Again, this sheaf is a Goresky-MacPherson extension of its restriction to "** Shit™®

(cf. Prop.2 of [2]).

1.4 Gaitsgory’s construction of Auty and the Hecke property

Let Fg be an irreducible local system on X of rank 2. The purpose of this subsection
is to recall the Gaitsgory’s definition of the perverse sheaf Autg, on Buny (cf. [2]) and
explain that this construction is still valid for deformations of Ey. This leads to the
definition of the perverse R-sheaf Autg on Bun,, where F is the universal deformation
of Ey, and R is the base of its universal deformation. In fact, we adapt the original

argument of Gaitsgory ([2]) to first construct the perverse R-sheaf Autg on Buny and

define Auty by Autp = 7* Autg[—1], where 7 : Buny — Bun, is the natural map.
A new proof of the second Hecke property of Autg is also given.

1.4.1

Gaitsgory’s construction of Autg is given in termes of the following "fundamental
diagram’ (first introduced by G.Laumon in [4], éxposé 1, sect.l, cf. also [2] sect.
2.1.1):
0 Sh/ln £> Shlln 0 Sh/2n+2g—2
< 7 Nem e N\
Shg Shy Shy+29~2
(The corresponding stacks and morphisms are defined in sect. 1.2.2). Notice that 7
is a vector bundle of rank n, and 7] is a generalized vector fibration of rank n+1 —g.
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Following [2], for an integer ¢ we denote by .Sh; C Sh; the open substack that
corresponds to sheaves M € Sh; such that Ext'(L, M) = 0 for any L € Pic®’ X with
d <e.

Notice that over 9,_5 Sh the morphism 73 : Shi® — Sh7 is a vector bundle of rank
n —6g + 6.

For the convenience of the reader we recall the definition of the Fourier transform
functor Four between the derived categories on Shf" and on ®Shy"* 7% If A € C and

K is an A-complex on Sh}* then

- * T * n+1-—
Four(K) = pri(pr” K @, 1" Ly)ln + 1 = g)(-—5—)
is an A-complex on °Shy"" 7% If K is an A-complex on ©Sh,"™™* then

n+1l—g

Four(ﬁ’) = pr,(pr” K R, W Ly)n+1—gl( 5 )

is an A-complex on Sh{". Here p : Sh{" xgyn" Shy*?9=% — Al is the natural pairing
(defined as in sect. 0.1.2), and the projections pr and pr’ are given by the diagram

’

Shi* xgnp® Shy 2972 2 OGhy+2—?
Jpr U
Sh’ KEY Sh?

The stack Flag, introduced in sect. 0.1.2 is the preimage of Bun} under °my :
OShy* — Sh%. Let j : Flag, — °Shj' be the natural open immersion. Put

- <m - - — n;<m
Flag, ., , = Flag,,,, o N s I(Shl . )

Set also

Flag, = Flag, N °75(.Sh}),
cFlagnSm =, Flag, N Flagfm

Denote by . Bun; the image of . Bunj under 7.

Definition 4. For A € C, F a smooth A-sheaf of rank 2, n > 0 define the A-complex
K972 on Flag, ,,, 5 by

K972 = j* o Four o jiy o mf (L%)[n]
L
Notice that for a morphism A — B in C we have K7}, @4 B:;IC%@AB.
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We have a smooth map mx : Bung xX — Buny that sends (M,z € X) to M(z).
We have also a map my : Buny x X — Buny included into the commutative diagram

Buny, xX X Bun,
1 #xid =
Bun, x X X Bun,

Let A € C, E be a smooth A-sheaf of rank 2. We put Fy:= F @4 Q.

Theorem 1. Let Ey be irreducible. There exists an A-flat perverse A-sheaf Auty on
Bun, that satisfies:

(1) if n > 6g — 4 then the sheaves °mi7*(Auty)[n — 6g + 5](—=2g + 2) and K} are
canonically tsomorphic over ggwag?. (Here Auty, is the restriction of Autg to Bun, ).
(2) mi (Autp) = Autg & A2 E canonically

(3) for a morphism A — B in C we have Autg @4 B— Autgg,p canonically.

Remark 7. (i) The map ggwagil — 5, Bun, is smooth and surjective with connected
fibres. It easily follows that by the properties (1)-(2) the perverse A-sheaf Autg is
defined up to a canonical isomorphism.

(ii) Put Auty = 7* Autg[—1]. Then Autg is a perverse A-sheaf on Bun,. For A = Q,
it was constructed by D.Gaitsgory (cf. Main Theorem C, [2]).

Definition 5. Let Fy be an irreducible local system on X of rank 2. Let E be its
universal deformation and R be the base of its universal deformation. By Theorem 1,
to the pair (R, F) is associated the object Auty of PA(Buny, R) such that for any
morphism R — A in A (cf. sect. 1.1.4) we have Auty @rA— Autgg,a canonically. Tt
is easy to see that Auty is, in fact, a perverse R-sheaf flat over R.

The proof of Theorem 1 (modulo the results of D.Gaitsgory ([2],ch.3)) is given in
sect. 1.4.2-1.4.3. Now we formulate some additional properties of Auty we need in
sect. 2.

Proposition 3. For any m > 0 there exists a constant consti(m) such that for n >
consty(m) we have

Ons7*(Auty)[n — 6g + 5](—2g + 2) =K

canonically over Flagnsm
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Remark 8. The conjecture of Laumon (cf.[4]) states that this isomorphism holds for
any n > 2g — 2 over the whole of Flag,. At the level of functions ’trace of Frobenius’
this conjecture is true.

Proposition 4. There exists a constant consty such that for any invertible sheaves

A, B on X with deg A — deg B > consty the fibre of Autp at A @ B vanishes.

The proof of both Proposition 3 and Proposition 4 will be given in sect. 1.4.4. Now
we derive an important corolary.

Corolary 1. There exists a constant consts such that for any integers n,m with n >
2m + consts the perverse A-sheaf Auty, is the extension by zero of ils restriction to the
open substack ,, Bun, of Bun,.

Proof We can suppose that consty, > 2g — 2. It is well known that there exists a
constant, say ¢, such that any rank 2 bundle M on X can be included into an exact
sequence 0 - A =+ M — B — 0, where A, B are invertible sheaves on X with
deg A — deg B > c.

Pick consts such that consts > 49— 4+ const, and consts > 4g—4—c. Let M be a
rank 2 bundle on X of degree n. It defines a k-point of %; Suppose that the fibre of
m does not vanish at this point and chose an exact sequence 0 - A — M — B — 0
as above. By Proposition 4, we have ¢ < deg A — deg B < consty. Let m be an integer
such that n > 2m 4+ const;. Now for any invertible sheaf I of degree < m we have

Ext'(L, A) = Ext'(L,B) = 0 and, hence, Ext'(L, M) = 0. O

1.4.2

In this subsection we prove the following result which is a part of Theorem 1.

Proposition 5. Let Ey be irreducible and let n satisfy: n > 6g—4. There exists an A-
flat perverse A-sheaf St on o, Bun, such that the sheaves *n37*(S5)[n—6g+5](—2g9+2)

and K7, are canonically isomorphic over ggFlagnsl. For a morphism A — B in C we
have naturally S, @4 B= Spg g

Remark 9. The perverse A-sheaf ST, is defined up to a canonical isomorphism, because

the map QgFlagnsl —9, Bun, is smooth and surjective with connected fibres.

Proposition 5 will be a consequence of (Theorem 5,[2]) and of the following asser-
tion:
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Proposition 6. Let n satisfy n > 4g — 3. The irreducibility of FEq implies that the
canonical maps
Juomy (L) = jue o mg (L) — Jix o mq (L)

. . <1 . m;<1
are isomorphisms over Shy"=". In particular, over Shy"=" the perverse A-shea
P 1 p s 1 p

Juony(Ly)[n] is A-flat.

Lemma 10. Let Y be an algebraic stack, F' be an A-flat perverse A-sheaf on Y. Put
Fo = F @4 Q. There exists a filtration 0 C Fy C Fy C -+ C Fr, = F of F by
perverse A-subsheaves such that Fiii/F;—Fy as perverse A-sheaves (0 <1 < k). If, in
addition, U — Y is an open substack, and Fy is the Goresky-MacPherson extension
of its restriction to U then the same holds for F'.

Proof Let m C A be the maximal ideal. Choose t € A,t # 0 such that tm = 0. Then
the sequence 0 — F @4 (t) = F — F @4 A/(t) — 0 is exact, and F @4 (t)—=F,. The
first assertion follows by induction on dimg, A.

If0— Gy -G — Gy — 0 is an exact sequence of perverse sheaves on ), and G;
(1 = 1,2) is the Goresky-MacPherson extension of its restriction to U then the same
is true for G. The second assertion follows. [

Proof of Proposition 6
It suffices to show that jy o (L) — jix 0 T5(L7%) is an isomorphism over Sh}"<',
For this combine (Theorem 6,[2]) with the first assertion of the previous lemma. O

Lemma 11. Let f : X — Y be a representable morphism of algebraic stacks, with
Y locally of finite type. Suppose that there exists a presentation m : S — Y and an
isomorphism X xy SSPN x S over S. Then the functor f* is an equivalence between
the categories of smooth A-sheaves on Y and on X respectively.

Proof The notion of a smooth A-sheaf on Y localizes in the smooth topology, so that
we are reduced to the case, where Y is a scheme. In this case our assertion follows
from SGA1,6xp.9,Cor.6.11 and éxp.11, Prop.1.1. O

Lemma 12. For m > 1 any fibre of the morphism m+2g_2Flagn§m_1 — mt2g—2 Bung

.. . —60+6 — 6016 . . .
is isomorphic to A} ITON S, where S C A7 9 s a closed subscheme of codimension
> m. Besides, S is Gy, -equivariant.

Proof For M € 12,2 Bunj and D € X" we have dim Hom(Q, M(—=D)) = x(M @
Q' (=D)) = (n—6g+6) —2m and dimHom(Q, M) = y(M @ Q') = n — 6g + 6.
Since dim X (™) = m, our assertion follows. [J

The next result is straightforward.
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Lemma 13. Let YV be a smooth algebraic stack, F be a perverse A-sheaf on Y flat
over A. Suppose that Fo = F @4 Qy is a local system on Y (appropriately shifted).
Then F is a smooth A-sheaf on Y (appropriately shifted).

O

Proof of Proposition 5
By Proposition 6, over Flagi1 the A-complex K% is an A-flat perverse A-sheaf. Since

7, 1s an irreducible perverse sheal over Tag?, by Lemma 10 over this stack K% is
the Goresky-MacPherson extension of its restriction to any nonempty open substack
U C Flag: .

Consider the restriction of w3 : ShY® — Sh} to 9,2 Bunj C Shj. This is a vector

bundle, and its projectivization coincides with

pry : 25—2Flag, Xy, Bunl 29—2 Bunj — 5,2 Bunj
It follows that the natural morphism 5,_;Flag, — 2,2 Bun; satisfies the conditions of
Lemma 11.

By Theorem 5 of [2], there exists a perverse sheaf Sp on g, Bunj such that

B — T3 SE [n — 694 6](—2g +2) over QgTagil. Let U be a nonempty open substack

of 5y Bunj, where S is smooth. Denote by U’ (resp., by U”) the preimage of U under

ggTag? — 9, Bunj (resp., under 5,Flag, — 5, Bun}). Now, by Lemma 13, K% is a

smooth A-sheaf over U’ (appropriately shifted). Since U” \ U’ is of codimension 2 in

U", K% can be extended as a smooth A-sheaf from U’ to U”. Let U be the image of
U under 7.

Applying Lemma 11 to the morphism U” — U we learn that there exists a perverse
A-sheaf I on U such that the inverse image of F[n—6g+5](—2g-+2) to U’ is isomorphic
to K% over U’. Define the perverse A-sheaf Sy, as the Goresky-MacPherson extension
of F under U — ,, Bun,.

Since the Goresky-MacPherson extension commutes with a smooth base change,
we get the isomorphism K% =0m37%(Sy)[n — 69 + 5](—2g + 2) over QgTagil.

Since the morphism ggwagil — 24 %Z is smooth and surjective, the A-flatness of

S follows from the A-flatness of K over QgFlagil. Similarly, given a morphism A —

B in C, the isomorphism Sy @4 B~ S%@)AB is obtaned from the analogous isomorphism
for K. O

1.4.3

In this subsection we finish the proof of Theorem 1.
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For m > 0 put Flagnm+2g_2 = Flag, o, o Xsnr Sh"™. The stack Flagg_l_zg_2 is also
denoted by W™ (cf. sect. 1.2.2) . For m > 0 there exists a natural isomorphism

W XM STFlag,, o, s

that sends a collection (0 = Q =+ M — A = 0,D € X)) to (0 = Q — M(D) —
M(D)/Q = 0) € Flag, 5,5, (0 = Q(D)/Q — M(D)/Q — A(D) — 0) € Shy™).
Denote by K572 the restriction of Kt~ to Tag:_mg_?
Our next result will be a corolary of our considerations in sect.4.1.2. ( We would
like to underline that in the following assertion Fy is not supposed irreducible ).

Proposition 7. Let A € C, I be a smooth A-sheaf of rank 2 on X. Then for m > 0,

n > 2m there is a canonical isomorphism
0 S ey o I (/\QE)(m)[Qm]
over W=2m x X" Besides, T”IC%Hg_2 =0 for n < 2m.

The proof will be given in sect. 4.2.

For m > 0 we again denote by my : Bunj x X(™) — Bunj**" the smooth map
that sends (L, D € X)) to L(D). Similarly, we have the map myx : Bun, x X(™) —
m;Hm. Define p, : W*~2%2 _ Bun; as the composition W22 — Flag, —
Bun? — Bun,.

Corolary 2. Suppose that Fq is irreducible. Let n > 6g — 4,m > 0. Then over
2y Bun, x X we have canonically

i (Sh S Sy R(AEE)™

Proof 1) Since A*E is of rank 1, one easily reduces this assertion to the case m = 1.
2) Let 9,WW"~29%2 be the preimage of o, Bun; under p,. Denote the restriction p, :
9, W"T29T2 — o Bun, by the same symbol. We have a commutative diagram

— —1
—2g42
Qan 2w X = 2g+1Flagn+2
1 pnxid 1

29 Bun; x X X 2941 Bumz—l_2
Combining Proposition 7 with Proposition 5, we get a canonical isomorphism
(pn x id) my S5 2 (pn x 1) (SE R A2 E)
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Since p, : 2, W22 5 5, Bun; is smooth and surjective with connected fibres, there

is a unique isomorphism m}(52+2):>/ ST R A% E that induces v. O

Proof of Theorem 1
For n > 6g—4 define the perverse A-sheaf mg as the Goresky-MacPherson extension
of 8% to m; Since my is smooth, from Corolary 2 we conclude that for n > 6g — 4
and m > 0 we have m}(m+2m):>/mg K(A2E)™ over Bun, x X (™),
For any n pick a divisor D : Spec k — X (™) of degree m such that n+2m > 6g—4.
We define Auty, as
—n+2m

Auty = mD(AutE )y @ (A2ES)

where mp is the composition Bum2 axp Bum2 x X (m) ¥ BunnHm By Corolary 2, this

definition is independent of D. Moreover, the property (2) is automatically satisfied.

To show that Auty is A-flat it is enough to prove the flatness over , Bun, for each
¢ € 7. Given n, ¢ € Z pick again D : Speck — X" such that n + 2m > 6g — 4 and
¢+ m > 2g. We have mp(. %ﬁj) C 24 %;“m, so that the A-flatness of mg over

. Bun, follows from the A-flatness of S}, over 5, Bun2+2m

Given a morphism A — B in C, the isomorphism AutE ®aB— Autg(&qB is obtained
by the same argument from the analogous isomorphism for Sg. O

1.4.4

In this subsection we prove Proposition 3 and Proposition 4.

Let A € C, E be a smooth A-sheaf of rank 2 on X. In this subsection the local
system Fo = E @4 Q; is assumed irreducible.

The proof is based on the following result of D.Gaitsgory, which is a strengthened
version of Proposition 6.

Proposition 8. For any m > 0 there exists a constant consty(m) such that for n >
consty(m) the canonical maps

Juomy (L) = jue o mg (L) — Jix o mq (L)

m;<
are ismorphisms over Shy"="".

Proof For A = Qy this is (footnote 4,[2]). The general case is reduced to A = Q, as
in Proposition 6. O
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Corolary 3. Let n satisfy: n > 6g —4 and n — 2g + 2 > consty(m). Then we have
canonically

Omsa*(Auty)[n — 6g 4 5](—2¢ + 2) =K%
—<m
over 9,_oFlag,”

o . . ——<m
Proof By Proposition 8, under our assumptions K% is a perverse A-sheaf over Flag, ~
and is the Goresky-MacPherson extension of its restriction to any nonempty open

substack of Tagnsm. Since Qg_zmnsm — Qg_zm; is smooth, our assertion follows
from (1) of Theorem 1. O

For any n the natural map W™ — Pic” X (obtained by restricting 1) is a gener-
alized vector fibration. Denote by i : Pic™ X — W™ its zero section.

The proof of the following result was communicated to the author by V.Drinfeld
(and is due to D.Gaitsgory).

Lemma 14. The irreducibility of Eo implies that i5(°K5>"%) = 0 forn > 4g — 4.
Proof Denote by Pic”™ X the preimage of Pic™ X under 7y : Sh]* — Sh}. Consider the

morphisms X % Pic™ X 3 Pic™ X obtained from ° Shi* 2% ShY” I8 Sh? by the base
change Pic" X < Sh?. By Deligne’s theorem, for n > 4¢g — 4 the direct image of £
under the Abel-Jacoby map X /G,, — Pic” X vanishes. Now from (Lemma 16,2])
it follows that for n > 4g — 4 we have (7 o EI)IE(”) = 0. Applying now (Theorem
1.2.2.4,[5]) we get the desired assertion. O

Proof of Proposition /
Pick consty such that consty > 2g — 2 and consty + 6g — 4 > consts(2g — 1). Let
A, B be invertible sheaves on X with deg A — deg B > consty and deg A + deg B = n.

By (2) of Theorem 1, we may assume B = Q(D), where D is an effective divisor on

X of degree 2g — 1. Consider the k-point ({2 (f’_OQ QD) d A) of zg_zFlagnQy—l, where

i : Q= Q(D) is the canonical inclusion. By Corolary 3, it is enough to show that the
fibre of K% at this point vanishes. By Proposition 7, we can replace () (fg) QD)sA)

id, )
by (2 (f—g) Q@& A(—=D)). Now our assertion follows from Lemma 14. O
Proof of Propsition 3
Step 1. Pick const;(0) such that const;(0) > 4g — 5, const1(0) > 2g — 2, const,(0) >
—2g + consty(2g — 1). If n > const1(0) then Flagiﬂ_}tzg_l) C 2g_2F1agnSf§(;;—l) and, by
Corolary 3, we have an isomorphism

Orrrr(Ruty 0 [n — 29 + 3)(—2g + 2) KD
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1

over Flagii__z(zg_l). Now using the commutative diagram

Wn—29+2 y Y(29-1) =% Tagii-_zt?g—l)
\L anid \L

Bun, x X (29-1) X Bun;+2(2g_1)

and Proposition 7, we get the isomorphism p* (Auty)[n — 6g + 5](—2¢ + 2)=°K . So,
for m = 0 our assertion is proved.
Step 2. We claim that if n — 2m > 49 — 4 4 consts and n — 2m > const;(0) then

for any 0 < ¢ < m the complex K% is the extension by zero of its restriction to

Qg_gwag;. Indeed, by Proposition 7, it is enough to show that the complex of °A% ™
is the extension by zero of its resriction to 2g_2m§_2t. By the assertion of Step 1
and Corolary 1, this is the case.

Step 3. Pick consty(m) such that consti(m) > 4g—4+2m+consts, consty(m) > 6g—
4, consti(m) > 2g — 2 + consty(m), consty(m) > 2m + const1(0). Let n > consti(m).
By Corolary 1, m is the extension by zero of its restriction to g, %ﬁ; By
Corolary 3, we have the desired isomorphism over gg_gwagnsm. Now our assertion
follows from Step 2.

O( Proposition 3)

Remark 10. Using Proposition 8 and Lemma 14, it is not difficult to prove the cuspi-
dality of Autg, where Auty = 7* Autg[—1]. We will not need this fact.
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2 Orthogonality relations between automorphic
sheaves attached to 2-dimensional irreducible
local systems

2.1 Cohomology of *(Hom(E,, Ey))™

In this subsection we make the assumptions and use the notations of sect.1.1 (with
E\ = Q). So, Ey is a local system on X of rank m such that End(Fy) = Qp, F is
its universal deformation and R is the base of this universal deformation. Recall that
I, = F Qg (R® R) (i = 1,2), where the R-module structure on ROR is given by
pi: R — RO R. So, (Hom(Ey, Ey))™ is an R @ R-sheaf on X,

Chose a closed point @ € X. Recall that it defines the G,,-torsor «, : Pic" X —
Pic" X (cf. sect. 1.2.1). Define the scheme * X from the cartesian square

OZ/

ex() 2% x(n)
1 I
Pic" X 2 Pic" X

Denote by “(Hom(FEx, Eg))(”) the inverse image of (Hom(F;, Eg))(”) to X (1),

The purpose of this subsection is to present a proof of the following result.
Proposition 9. Ifn > 0 then we have
H2 P2 (X ™) “(Hom (B, Ba)) ™) R(—n — 1)

canonically, where the R & R-module structure on R is given via the diagonal mapping

R& R — R. Besides,
H2220 (X0, 2 (Hom By, £2))™) = 0
for0 < <n.

This will be done using the results of sect. 1.1 and of Appendices B and C.

2.1.1

To prove Proposition 9 we need the following linear algebra lemma.
Let A be a (commutative) ring of characteristic 0. Consider a complex of A-

modules M = (A — M™! N A), where M~! is a free A-module of rank r. (So,
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M=% = M° = Aand M =0 for + > 0 and 7 < —2). Suppose that there exists a

basis e1,...,e, € M~ such that d(ey),...,d(e.) is a regular sequence for A. Put

I = Imd. Let p; : M — M][2] be a morphism of complexes such that the induced

map M~? — MP is an isomorphism. Define the morphism ¢ : QM — ((}n@ M)[2]
=1 =1

as p1 @id@--- @id+... +id@--- ® id®@¢1. Then there is a (unique) morphism
©n : Sym" (M) — Sym"(M)[2] such that the diagram commutes
SM 5 & M2
=1 =1
U U
Sym™(M) 2 Sym"(M)[2]

Lemma B.1. Define the object K € Dpar(A) from the distinguished triangle K —
Sym"™(M) 25 Sym"™(M)[2]. Then H*(K)=A/I and H(K) =0 for —n < i < 0 and for
1> 0.

The proof is given in Appendix B.

2.1.2

Denote by Y, : X=1) <y X the closed immersion that sends D to D + 2. We
consider Y, as a divisor on X and write sometimes Y, < X for the same closed
subscheme. Denote by 'Y, the inverse image of Y, under sym : X” — X (In other
words, the closed immersion 'Y, < X" is obtained from Y, — X by the base change
sym : X™ — X)), Denote by 'Y, the inverse image of = under pr; : X" — X. So, 'Y}
and 'Y, are divisors on X" and we have 'Y, ='Y! + ...+ 'Y

Consider the invertible sheaf O(Y;) on X,

Lemma 15. *X® is naturally isomorphic to the total space of O(Yy) with removed
zero section.

Proof Denote by Y — X" x X the universal divisor. Clearly, the inverse image
of Y* ynder the closed immersion X x z < X x X is the divisor Y, x = on
X x 2 with some multiplicity r > 0. It is enough to show that r = 1, i.e., to show
that the following square is cartesian

yruniv — XMW xX
T T

XO0=1) 5 B x) g
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To do so, denote by 'Y“*¥ the inverse image of Y% under X" x X Wy () X
It is enough to show that the inverse image of 'Y**¥ under the closed immersion

X" xax — X" x X is'Y, x & with multiplicity one. But this is obvious. [

The following lemma follows immediately from the formalism of 6 functors.
Lemma 16. Let [ : Y — Z be a proper morphism of separeted schemes of finite
type. Let ' € DX(Y,Qy), G € DX(Z,Qy). Denote by ay : RI(Z, filF) é:@ RI.(Z,G) —
RI.(Z, /iF é@ G) the —-product on 7 and by ay : RI.(Y,F) é:@ RI.(Y, f*G) —
RT.(Y, F é:@ [*G) the —-product on'Y. Then the following diagram commutes

RI.(Y, F) & RI.(Z,G) & RI.(Z, HF & G)
1ides S ay
RT.(Y, F) & RIL(Y, f*G),

where b : RI'.(Z,G) — RU(Y, f*G) is the natural morphism. O

Proof of Proposition 9

By Proposition C.1, the complex (o) Q; is included into a distinguished triangle
(@ )Qr — Qu(—1)[—2] = Qp on X where ¢ € HQ(X(”), Q¢(1)) is the Chern class of
O(Y:). By the Kunneth formulae, we have

X" Q) = @ HY(X,Q) 0 0 (X, Q)

and H*(XW, Q) = H*(X™, Q,)%. Denote by ¢ the image of ¢ in H*(X™, Q,(1)). The
construction of the Chern class is functorial, so that ¢’ is the Chern class of O('Y).

Since 'Y, = ’Yl,l + ... 4+'Y], we get

d=@1@ - @1l+...+1@ - @1®@e¢ €
H?(X,Qu(1)) @ HY(X,Qp) @ --- @ HY(X, Q) & ...
O HUX, Q) @+ @ H(X, Q) @ HA(X, Q1)) C H*(X™, Qu(1)),

where ¢; € H*(X,Q(1)) is the Chern class of the invertible sheaf O(z) on X. Since
deg O(x) = 1, we have ¢; # 0. On X we get the distinguished triangle

()" (Hom(Br, E))()[2] = (Hom(Br, E))™ = (Hom(Ey, B))™(1)[2]
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Denote by
¢n : RD(XM (Hom(Ey, Ey))™) — RI(X™ (Hom(Ey, Fy))™)(1)[2]

the morphism obtained from (Hom (Ey, Fy))™ 5 (Hom(Ey, Ey))™(1)[2 ] by applying
the functor RI(X™, . ). We get the distinguished triangle in Dpai( R & R)

RE(CX™ (Hom(Ey, E,))™)(1)[2] = RD(X™, (Hom(Ey, E,))™) &
RIO(X") (Hom(Ey, Ey))™)(1)[2]

Since sym,(Hom(FEy, E3))®™ is a direct sum over the irreducible representations of

S,., the same holds for RT'(X™, (Hom(E,, Eq))¥") = ® RI(X, Hom(Fy, Ey)), and we
=1

have naturally

RT(X™, (Hom(Ey, B2))™)=5( & RI(X, Hom(Ey, Es)) )"

=1

Denote also by ¢ : ® RT(X, Hom(Fy, Ey)) — ® RI(X, Hom(E4, Es))(1)[2] the mor-
=1 =1

phism obtained from sym,(Hom(Ey, Fy))®" 5 sym,(Hom(Ey, Ey))®™(1)[2] by apply-
ing the functor RI'(X ™, . ).

The morphism ¢ is a —-product by an element ¢ € H*(X™ Q,(1)). By Lemma 16,
we can replace the —-product on X by that on X". It follows that

p=p @id@- - @id+... +id@-- @id g

Pick a perfect complex M of R & R-modules that represents RI'(X, Hom (Ey, Es)).
We suppose that M is chosen as in 2) of Proposition 2. Pick a morphism ¢; : M —
M (1)[2] that represents ¢, in D, (R @ R) (s0, ¢ is defined up to a homotopy). Since
¢1 # 0, it follows that ¢ is given by the diagram

MY — M'— M?
!
MO(1) — M*(1) - M?*(1),

where the vertical arrow is an isomorphism of R & R-modules.

Notice that M! is a free R & R-module of rank dim R, and the ideal of the diagonal
in R® R is generated by a regular sequence of dim R elements. Now combining 3) of
Proposition 2 with Lemma B.1 we get the desired assertion.

O( Proposition 9)
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2.2 Proof of Main Global Theorem
2.2.1

Denote by f : Flag, ,,,_, — Pic" X the morphism that sends (€ — L) to (det L)@Q™".
Recall that 7 : X — Pic” X sends a divisor D to O(D).

The following assertion, which is a corolary of Main Local Theorem, will be a key
point in our proof of Main Global Theorem.

Theorem 2. Let A € C, Fy and Ey be smooth A-sheaves on X of rank 2. For any

n > 0 there is a canonical isomorphism

L r—
FKEP72 04 K7 Sm((By @4 Ey)™)[2n]

Remark 11. The morphism f is not of finite type. However, by Proposition 7, the com-

plex IC%"’Qg_2 is the extension by zero of its restriction to the open substack Flagns_l_[gj_z

<[3]

of Flag, ., , and the composition Flag, /)  , < Flag,, _, Jy Pic™ X is of finite type.

Proof of Theorem 2
For the pojection pry : © ShY" Xgpn © ShY* xgpn Flag, 5., — Flag, ,,,_, we have

/CETZg > Q4 /CE;I'Zg 2[—4n —2429|(—n—-14+¢9)=
pray(pry 7o' L, @a P13 7o L, O, Pris Ly Og, iz " Ly)
The following diagram commutes
0 Shlln XSh? 0 Shlln XSh? Flagn+2g_2 Fi; Flagn+2g_2

X xpiny X0 —  Pi" X

and the composition X ) fi> X xpin x X =5 Pic™ X coincides with 7. Therefore,
our assertion follows from Main Local Theorem.

O(Theorem 2)
Remark 12. Since (¢, )1 can be defined as in (Remark 2, sect. 0.1.2), the diagram (4)

L
also shows that the complex f;(ICE'zg_z ® ICE:Zg_Z) can be defined without using
Appendix A. (In particular, this complex is bounded).
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2.2.2

Fix a closed point @ € X and define the stack * Bunj from the cartesian square

“ Bunj — Bunj
¥ 4
&n—Qg—I—Q X 0‘4 Picn—2g+2 X

Y

€ . -1 . -
where Bunj — Pic" %% X is the composition Bunj M picn X 9% ity
Then the composition * Bun} — Bun} = Bun, is a p-gerb. Define also the stack
“Flag,, from the cartesian square

’Flag, — Flag,
+ 3

“Bunj; — Bunj,

where the right vertical arrow is the restriction of °my. For m > 0 we denote by

xFlagnSm the preimage of Flagnsm under “Flag, — Flag,. Let ¢, : Flagnzm — Flag,,

be the complement of Flagnsm_l to Flag,. Let "¢, : xFlagan — “Flag, be the
= <m—1 =

complement of “Flag,~ to “Flag,,.

Denote by “K% the inverse image of K%[1] under “Flag, — Flag,.

Lemma 17. Let A € C, Ey and Ey be smooth A-sheaves on X of rank 2. Ifn > 0
and m > 0 then the following three complexes are placed in (usual) degrees < —2m

- _o5 L _

1) RT(Flagy .y, o, ™K 7% & "3
— Sm . _o L _

2) RT.(Flag, 5,0 15, (K572 & Kp77))
—_—>m . n o L rn —

3) ch(wFlagnq_zg_za%* (xICE-ll—Zg 2 @ ICE;|—2g 2))

m

Proof 1) First, we show this for m = 0. For the projection pr, : X ) % pion x WP — WP

we have
n+1—g

2
where p : X0 xpin x W' — A} is the natural pairing. Since dim(X(”) Xpicn x W") =
2n + 1 — g, our assertion follows.

proy(pry B @ Ly)[2n 4+ 1 — g]( EUNATES

The case of an arbitrary m is reduced to m = 0 as follows. By Proposition 7, if
n < 2m then our complex vanishes otherwise it is isomorphic to

=0 0y-n—2m-+4+2g9—2 LO n—2m-+42g—2 L
R’FC(Flagn—Qm—l—Qg—Q? ICEl ® ICEQ )®

RI(X™ (det By @ det I55)™))[4m]
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Since R[(X(™) | (det Ey @ det Fy)™) is placed in degrees < 2m, we are reduced to the
case m = 0.

2)Using the fact that T”IC%Hg_2 = 0 for n < 2m and using the stratification of
Flag, ., , by the locally closed substacks Tag?_mg_% m > 0, one reduces the desired
assertion to the point 1).

3) follows immediately from 2). O

2.2.3

In this subsection we suppose that Fy is an irreducible local system on X of rank 2,
E is its universal deformation, and R is the base of this universal deformation. Let
E1, F5 be the smooth R @ R-sheaves on X defined as in section 1.1.2.

Proposition 10. Let m > 0,n > 2m. Then we have
—<m n _o L n 9\ —
H(“Flag, 5, . Kt ™ @ K ) S R(—n — 1)

o em L ,
canonically. Besides, HZ(xFlagnizg_z,x/CE;zg_z ® QU/C%—:Zg_Z) =0 for —2m <1 <0
and 1 > 0.

Proof Consider the diagram consisting of cartesian squares

X0 5 pien X L Tlag,,,,

0 T ay T
ex(n) Pic" X « xFla‘gn-I—Qg—?

By Theorem 2, we have canonically
L
RE(7 X, “(Hom (Er. B))[2n + 2] RU(Flag, 45, . K5E™ & k)

So, our assertion follows from Proposition 9 and 3) of Lemma 17. O

Denote by h : “Flag, — Bun, the composition “Flag, — Flag, — Bun 5 Bun,.
Notice that A is representable. If L is a rank 2 vector bundle on X of degree n
then the fibre of h at the k-point Speck RN Bunj — Bun, of Bun, is identified with
(Hom(®, L) \ {0})/p.

Let h<™ : xTagnSm — Bun, be the restriction of A to xTagnSm. Our next result

follows easily from Lemma 12.
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Lemma 18. For any m 270 OVET ptog—1 Bun; we have
1) (Rzn—lzg"'lz(hgm);)Q{:;Qg(—n + 6g — 6) canonically
2) (Rzn_lzg-l—lz_i(hsm)!)(@g =0 f07“ 0<1<2m. O

Proposition 11. There exists a constant consts > 0 with the following property. If
n —4g + 2 > 2m + consts, 2m > consts, and n > consti(m) then

" T L T —
H(C)(Bum'2 , AUtEf ® AutE2)—>R(—1)

; (s n L n . .
canonically and H (Bun,, Autg. @ Autg) =0 for —2m + consts <i <0 and 1 > 0.
Proof By Proposition 3, we have (h<™)*(Auty)[n — 69+ 6](—2g+2)="K% canonically

—<m re— . .
over “Flag,~ . By Corolary 1, Auty is the extension by zero of its restriction to
—— . — <m — "N . —— .
m+2g—1 Bun,. Since h=™ : *Flag~ — Bun, is smooth over m+2g—1 Bun, of relative
dimension n — 6g + 6, we have a canonical map

L . L,
(hgm);(wlC%f ® *Kl,) = Autg: @ Autg, (—n + 29 — 2)
Define the complex K from the distinguished triangle

L Y L,
K — (hgm);(xlC%f © *Kp,) = Autg: @ Autg,(—n + 29 — 2)

Pick a constant constg such that for any n the perverse R-sheaf m has cohomology
sheaves (w.r.t. the usual t-structure) in degrees < constg. (The existence of such con-
stant follows from 2) of Theorem 1). jFrom Lemma 18 we see that K has cohomology
sheaves only in (usual) degrees < —2m — 1 + 2constg.

Since dim(mg) = 49 — 3 does not depend on n, our assertion follows from Propo-
sition 10. O

Proof of Main Global Theorem '

Given a pair of integers n, 1 € Z, we calculate HZC(Bun;, Autgf ® Autj%) as follows. Pick
m such that 2m > consts and —2m + consts < 1. Pick a divisor D : Speck — X of
degree ¢ such that n 4+ 2¢—4g +2 > 2m + consts, n+2c¢ > consty(m). Denote by mp
the composition Bum2 P Bum2 x X (0 ¥ Bunn—l_zc. By 2) of Theorem 1, we have
Autye " @ Autyy ) Auty. @ Auty,) @ (A2 El*)g ® (A2E,)Y. Since (A2EDY) @

(ANE )E)) is a free R © R-module (of rank 1), we have

mD(AutE*

n+2c¢ n+2c¢

AutE* AH_QC)

H: (Bun, © Auty,

Hi(Bunj, Auty. © Auty,) @ (AE))S @ (AE)Y
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Since ((/\QEI*)E;) ® (/\QEQ)E;)) @re r B— R canonically, applying Proposition 11 one
concludes the proof.

O (Main Global Theorem)
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3 Local geometrized Rankin-Selberg method for
GL(2)

The purpose of this section is to prove Main Local Theorem.

All the results of section 3 (with obvious changes) are still true if one replaces Q,
by any A € C. However, to underline the essential points of proofs, we work over Q.
The reader will easily pass from Q; to A.

n
3.1 The complex Fp . .
3.1.1
For the projection pry : Shi* xgyrFlag, ., — Sh{" put
K" = (pry)y”Ly[2n + 2 — 2]
In other words, K™ = Four(;:Q,)(=25*2)[n+1—g], where j : Flag, ,,_, —° Shy+29—?

2
IS an open immersion.
Recall that the stack Sh'{” was defined in sect. 1.2.3.

Lemma 19. The complex K™ is supported at the closed substack Sh™ of Sh".

For m > 0 denote by vu.m @ (Pic"™™ X)) x Shy' — Sh] the morphism that sends
(A, Fp) to (A& Fy). The square is cartesian

Flag, 0, « W' ™ x X
!
Sh? 2 (Pic"™™ X)) x ShT

Proof of Lemma 19
In fact, we will show that the restriction of K™ to ® Sh}* vanishes.
The following diagram consists of cartesian squares

OShT e X Shy
- -

Sh"  «— (Pid™™™ X) x Sh/™
" "

Sh & (Pic"™™ X) x Shy
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It suffices to show that for any m the restriction of K™ to X(»=™) x Sh!™ vanishes.
Consider the Fourier transform for the diagram

Pic"™™ X wrom
pN e
Pic"™" X

As is easy to see, the Fourier transform of the constant sheaf on W"~™ vanishes when
restricted to X(*=") < Pic"™™ X. Since Four commutes with the base change

(Pic™™™ X) x Sh? 4" Sh”,

and one can do the Fourier transform variable by variable, our assertion follows. [J
Let v : ©Sh{* xgpn © Shi" — Sh{” be the morphism that sends a pair of sections to
their sum. Define the stack °° Sh” from the cartesian square

0 Shlln XSh? 0 Shlln 2} Shlln
T T

00 Shi™ —  Sh{"

Lemma 20. There exists a (unique) morphism 1 : °° Sh{™ — X making commute
the diagram
0o Shllln — 0 Shlln X shr 0 Shlln
bn !
X (n) X0 xpen X

Proof We have a cartesian square

1=

X L X0 i X0
b !
Pic" X = Pic" X,
where the right vertical arrow is the summation of two sections. So, our assertion
follows from the fact that the square (3) is cartesian (cf. sect. 1.2.3). O

To prove Main Local Theorem, we have to calculate the direct image (with compact
support) of the sheaf

("v)" K" @ (m5 L, By L, )]
under the morphism
0 Shlln Xsh?o Shlln — X(n) X Pic X X(n)

By Lemma 19, the latter sheaf is supported at the closed substack ° Shi"™ —
O Sh{” xgpn © Shi", and we can give the following definition.
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Definition 6. For any local systems I, 5 on X of rank 2 put
By, = (V) K" @ (mg L, By L)) 0]
This is a complex on X,

S0, Main Local Theorem is reduced to the following result.

Theorem 3. For any local systems FEyi, £y on X of rank 2 there exists a canonical
isomorphism

By, (Er @ By) ! (=n =1 + g)[n]
in the derived category on X,

3.1.2 Plan of the proof of Theorem 3

Our proof of Theorem 3 consists of the following parts:

0) We notice that the sheaf (F; @ E3)™ on X has the property: for any open
subscheme j : U — X the natural map (E; @ Fq)™ — (R%,)5*(E; @ F)™ is an
isomorphism.

1) We establish the isomorphism of Theorem 3 over the open subscheme X — A,
where A is the divisor of coinciding points (this is the purpose of sect. 3.1.3).

2) We show that Fp 5 [—n] is a Q-sheaf, and for any open subscheme j : U — X
the map Fz p [—n] = (R%).)J*(FE, g,[—n]) is an isomorphism.

The point 2) is local w.r.t. the étale topology. Its proof, which is the purpose of
sect. 3.2, is divided into several steps:

2.1) We prove Theorem 3 under the additional assumption: E; = E;; & Epn (1 = 1,2),
where F;; is a rank 1 local system on X. (this is done in sect. 3.2.1-3.2.6).

2.2) If Fy, sy, E1, E} are local systems on X of rank 2, Speck DX s a k-point
and XD X(7) {5 the (strict) henselization of X at D then we show that the

restrictions of F5 . and of Fpg, o to X )P are isomorphic (cf. Lemma 30, sect. 3.2.7).
! 1772

(In particular, combining 2.1) and 2.2) we see that F 5 [—n] is a Q-sheaf).

2.3) We conclude with the following simple observation (cf. Lemma 31, sect. 3.2.7):
Let Y be a k-scheme of finite type, Fy, F; be constructable Qs-sheaves on Y. Suppose
that for any k-point Spec k > Y the restrictions of F; and of F, to Y¥ are isomorphic,
where YV is the (strict) henselization of Y at y. If for an open subscheme j : U — Y
the natural map F; — (RYJ.)j*F; is an isomorphism then the same holds for F.
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3.1.3

Consider the natural morphism °Sh}" — X" xpim x ShT that sends (O < Fy) to

(O Y det Fy, Fy). Tt is representable (and later we will see that it is affine (cf.

Lemma 34)). Denote by
by 2 O Sh? Xshyp Flag, 0, 5 — X xpin x Flag, 1o, o

the morphism obtained from the previous one by the base change Flag, ., , — Sh}.

Recall that W™ is the stack that can be considered as an open substack of Flag, ,,, ,,
namely the preimage of Pic” X C Sh} under Flag, ,, , — Shy.The following lemma
is straightforward.

Lemma 21. For the morphism
b 2 O ST Xanp Flag, 5y — X xpicn x Flag, 2,2

the complex (¢dn (1™ Ly) is the extension by zero of its restriction to the open substack
X(n) XPic” X Wwn.
0

Proposition 12. Let Fy, F;y be local sytems on X of rank 2. Then there is a canonical
isomorphism

Fiymy— (B @ E)(=n — 1 + g)[n]
over X" — A where A is the divisor of coinciding points.
Proof Consider the natural morphism
@n % id : *ShY" xgpn © Sh* xgpn Flag, 5,5 — X spin v X spin i Flag, ,,

The preimage of X(™— A under div : Sh§ — X is 7** Sh?  and over "** Sh{ we have
L2 dive B0 canonically. Therefore, by the projection formulae, the complex

(pn x id)i(pry 7o L, @ prymg L, @ pris p"Ly @ pryg " Ly)
is isomorphic to
pri By @ prs BYY @ (90 x id)y pris i Ly © pra i Ly)

over (X(”)— A) Xpien x (X(”)— A) xpien x Flag, 5, 5. Furthermore, by Lemma 21,
(pn X id)ipris p* Ly @ pris Ly is the extension by zero of its restriction to

X xpien x X0 Xpion x W

Since the natural map E;n) ® Eén) — (B @ Ey)™ is an isomorphism over X" — A,
our assertion follows from the fact that W" — Pic" X is a generalized vector fibration
of rank n+1—¢. O
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3.2 Local properties of Fj .
3.2.1

Denote by .J,, the set of 2 x 2-matrices ¢ = (¢;;), where ¢;; € Z4 and E]‘ ¢;j = n for
any ¢. For ¢ € J, put

Ve = (X ) s X)) o (X ea) 5 X (o))

So, Y¢ classifies the 2 x 2-matrices (D;;) of divisors D;; € X (€3) guch that E]‘ D;; does
not depend on 7. Denote by J| the set of 2 x 2-matrices ¢ = (¢};), where ¢;; € Z, and
> .ct.=n. We have a map h : J! — J, that sends ¢ to ¢ = (¢;;) with

4,5 1
’ ’
C1; = g Cij» C2i = g Cji
J J

Put Y, = || Y For ¢ € J/ put 'Y = [[ X, so 'Y parametrizes the matrices
c€Jn ]

(ng) of divisors D!, € X©5) . put 'y, = L] 'Y¢. Denote by norm : 'Y, — Y, the
e
morphism that sends (D;;) to (D;;), where

Dy = ZD;j, Dy = ZD;Z»
J J

Clearly, norm maps 'Y to Y, where ¢ = h(¢). Denote by norm®: || 'Y = Y*
ceh1(c

the restriction of norm. Y

The scheme Y admits a stratification by locally closed subschemes .. Y°¢ C Y°. The
strata are numbered by ¢ € h='(¢). First, define .Y as the open subscheme of 'Y
given by the condition D, N D, = (). Then the composition »Y¢ — 'Y< " V¢ is a
locally closed immersion. As a subscheme of Y, .Y can be defined by imposing the
condition: deg(Dy; N Dy;) = ¢, for i =1,2.

Our next result is straightforward.

Lemma 22. 1) Y° is of pure dimension n. The irreducible components of Y° are
numbered by the set h='(c). Namely, to ¢ € h™'(c) there corresponds the component
norm("Y) = (the closure of 2Y° in Y°).

2) norm 'Y, — 'Y, is the normalization of Y, (more precisely, it is a finite morphism,
an isomorphism over an open dense subscheme of Y,,, and'Y,, is smooth). In particular,

(norm®),Q[n]—=ICy-,

where 1Cy ¢ is the intersection cohomology sheaf on Y°.

O
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3.2.2
Let ¢ € J,. We have a cartesian square
(X (en) s X(e2)) sepin v (X(e20) 5 X)) X0 spin x X ()
i i
ye — X0,
and ¢ is a closed immersion. Put

c _ (0 n C11,€12 0 n €21,€22
M = ( Shl ><Sh61 flop ) XSh? ( Shl Xshg flop )

So, M¢ is the stack that classifies the collections (O AN Gy — 1,0 Sa Gy — FY),
where Fy € Sh¥,G; € Sh{* for i = 1,2. We have a natural morphism M¢ — (X (c11) x

det 51

X(Cl2)) X Picn X (X(C21) X X(C22)) that sends the above collection to (O — det Gy —

det so

det Fy, O — det (G5 — det Fy). Denote by
Pt M s Flag, 5, — (X5 X)) sepien x (X (21) 5 X(22))
the composition of the above morphism with the projection pry. Denote by
pe s ME ey Flag,, o, 5 — “ShY" xapp ©ShY" Xapp Flag, o,
the natural projection.

Proposition 13. For any ¢ € J, there is a canonical isomorphism

(NP ) (pris "Ly @ prigp™Ly)[3n + 2 = 2g]=(i)(ICy)(—n — 1 + g),
The proof occupies sect. 3.2.3-3.2.6. Now we derive an important corolary.

Corolary 4. Theorem 3 holds under the additional assumption: E; = E; & Fn (i =
1,2), where E;; is a rank 1 local sytem on X.

Proof Let ¢ € J,. From Proposition 13 it follows that
(e )i(pr] 7o L F, @ Prymo L5 5, @ pris ™ Ly @ pryg " Ly)[3n + 2 — 2g]
is canonically isomorphic to the direct image of
prip( B 8 B @ prg (BSY B ES) @ (9).(10y) (-0 — 14 g)
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under
(X(Cu) « X(012)) X Picn X (X(C21) « X(C22)) s X0 wpin y X
Clearly, it is supported at 7 : X" — X xpin x X and the corresponding complex
on X is a perverse sheaf which is a Goresky-MacPherson extension of its restriction
to a sufficiently small open subscheme.
So, under our assumptions Fr p is a direct sum of perverse sheaves, every of

them is a Goresky-MacPherson extension of its restriction to a sufficiently small open
subscheme. Our assertion follows now from Proposition 12. O

3.2.3 Plan of the proof of Proposition 13

Our proof of Proposition 13 will consist of the following steps:

Step 1. Let °M° C M¢ be the open substack defined by the condition: G and G,
are invertible. Denote by °p¢ (resp., by %¢°) the restriction of p° (resp., of ¢°) to
OME Xgpn Tagn_l_zg_z. Using Lemma 21 we will show that

(P )(p°) (pris ™ Loy @ prig ™ Ly)[3n + 2 — 2g]—
Coo ) (Cp°) (prig ™ Ly @ prig p* Loy)[3n + 2 — 2]

naturally.
Step 2. Define the closed substack X°¢ of M¢ from the cartesian square

OMC E; 0 Shlln XSh? 0 Shlln
T T
e 00 Sh™

We will prove that for the projection pry : "M Xgpn Flag, o, » — OM¢ the complex
(pry i(°p)*(pris " Ly @ priz puLy) is supported at A°.
By Lemma 20, there is a (unique) morphism 7 : X'* — Y° making commute the
diagram
X — oMe
bt !
ve 5 (X)) 5 X(2)) spn y (X (o) x X(e22))

Denote by 'p® the restriction of p° to X xgurFlag, 5, 5. Denote by '¢° the composition
X Xspp Flag, 19, o Pye I ye, So, it will remain to show that

(NP ) (prigpu™Ly @ pryg ™ Ly)[3n + 2 — 29| = 1Cye(—n — 1 4 g)
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naturally.
Step 3. We will prove that the complex

(NP ) (prigpu™Ly @ progp™Ly)(n + 1 — g)[2n + 2 — 2] (5)

is a Qq-sheaf (i.e., it is placed in usual degree 0).
Step 4. Denote by Z¢ C X° the closed substack given by the condition sy + s3 = 0.
Let 7: Z¢ = Y be the composition Z¢ — X¢ Ty,

We will show that (5) is, in fact, the highest (i.e. the (2n+2—2g)-th) direct image
with compact support of

(') (pris "Ly @ praz ™ Ly)(n +1—g)

under the morphism ’p°. This will allow us to reduce the assertion of Proposition 13
to establishing a canonical isomorphism

ROTIQZ:;(normC)*Qg (6)

Step 5. Using 2) of Lemma 25 we construct the canonical isomorphism (6).

3.2.4

For a pair of integers ¢;,co € Z, such that ¢; + co = n denote by N2 the stack

that classifies the collections (O G o Fy), where Fy € Sh}, G; € Pic™ X.
Let m > 0. Recall that the stack Tagnm_l_zg_z was defined in sect. 1.4.3. The stack
Neve X Shp Tagnm_l_zg_z classifies the collections: D € X(m), D, € X(Cl), Dy € X(C2_m),
an extension 0 — Q(D) — L — O(D) — 0, where D = D; + Dy, and a mophism
£:O(Dy) — L/ making commute the diagram

O(Dy) — L/Q
N
o(D)

(Here GGy — Fy is the inclusion O(Dy) fi L/Q, and O s (3, is the canonical section
O — O(Dy)).
Denote by fi : N2 xgyn Flagnm+2g_2 — A} the composition

€1,C2 m 0 qL/n ~7 Booal
N X Shy Flagn+2g_2 — Shl X Shy Flagn+2g_2 — Ak?
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where the first arrow is the natural map. Denote by b5 : N xgyn Flagnm+2g_2 —

(X () 5 X(27m)) spemm Flagnm+2g_2 the morphism that sends the above collection
to

((Dy,Dy), D € X™ 0 = QD) = L - O(D) - 0), (7)

where D = Dy + Dy. In other words, 62 is the morphism that forgets £. Notice that
b2 is an affine bundle of rank m.

Denote by Veiez e (X0 5 X{e2mm)) sy Tagnm_l_zg_z the closed substack
defined by the condition Dy > D. In other words, this stack is defined from the
cartesian square

Ve (X x X2mm)) i m y Flag, g,
] b pr
X(m) % X(C1—m) % X(CQ—m) N X(m) % X(cl) % X(CQ—m)7

where the lowest horizontal arrow is the closed immersion that sends (D € X™) D! €
Xe=m) D, e X=m)) to (D, D + DY, Dy), and pr is the natural projection.

Lemma 23. The complex (b0 )2wi* Ly is supported at V.

Proof 1f Speck — (X&) x X(2=m)) e o Flagnm+2g_2 is a k-point defined by a
collection (7) then the restriction of g*L, to the fibre of b5 over this point is a
constant sheaf if and only if Dy > D. O

3.2.5

For n > 0 denote by G,,(k) the group of units of the ring k[t]/(t") (¢ is a variable).
Clearly, G,,(k) is the set of k-points of the commutative affine algebraic group G, (over
k). For example, GG; = G,,. Denote by B((G,) the classifying stack of G,.

Lemma 24. There is a canonical isomorphism H*"(B(G,), Q) =Qu(n). Besides,
HZ*""Y(B(G,), Q) = 0.

Proof 1) For n =1, i.e., for G, this is known. (cf. Example 1, Appendix A)

2) For any n we have an exact sequence 0 — U, — G, — G, — 0, where U, is
unipotent. The natural map B(G,,) EN B(G,,) is a generalized vector fibration of rank
1 —n (it is a U,-gerb). So, fiQ=Qu(n — 1)[2n — 2]. Our assertion follows now from
the point 1).

O
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Recall that "Shg" C Shg' is the open substack that classifies regular torsion sheaves
(cf. sect. 1.3.1). Let " Sh(" be the complement of "Shg' to Shy" (with the reduced stack
structure).

Lemma 25. 1) All the fibres of div : Shi — X" are stacks of dimension —m. The
fibres of the restriction div : " Sh]" — X™) are of dimension < —m.
2) There is a canonical isomorphism

R_zm diV; Qg/—\;@g(m)
Besides, R™>™ 1 div,Q, = 0.
Proof 1) is straightforward. 2) Let "div be the restriction of div to "Shy'. By 1),

the natural morphism R™"("div)Q, — R™*" div, Qy is an isomorphésm. Since "div is
smooth of relative dimension —m, we have a natural morphism ("div)iQ, — Q.(m)[2m].

Let Speck B X be a k-point with D =~ _\ d.[z], d, > 0. Then the fibre of "div
over D is isomorphic to [[, .y B(Ga,). So, our assertion follows from Lemma 24 by
the Kunneth formulae. [

3.2.6

Proof of Proposition 13.
Step 1. Denote by M the stack that classifies the collections (O — det Gy, Gy —

i, 0 N Gy — Fy), where Fy € ShT, G; € Shi* for ¢ = 1,2. Then ¢° is the

composition
M iy Flag, s 5 MG g Flag, g — (X1 5 X)) sy (X (20) s X2,
where ¢f is obtained by the obvious base change from the map
OShi™ — X1 xpicen x Shit
det 51

that sends (O AN Gh) to (O = det Gy, Gy). Let MS$ C M be the open substack
defined by the condition: G is invertible. By Lemma 21,

(eDh(p) (pris ™ Ly @ prigpuLy)

is the extension by zero of its restriction to the open substack *M¢ xspn Flag, o, C
M$ xgpr Flag, ,,,_,. Notice that over “M¢ xgpn Flag, ,.—, the map ¢f is an isomor-
phism. Applying an analogous argument with G5 instead of Gy, one "replaces” the
stack "M xgprn Flag, ., _, by its open substack *M® xgpn Flag, o .
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Step 2. ;From the cartesian square

Opc

OMC XSh? Flagn+2g_2 - 0 Shlln XSh? 0 Shlln XSh? Flagn+2g_2
} pry ]

OMC E; 0 Shlln XSh? 0 Shlln
we get an isomorphism
(pro)i("p") (pris ™ Loy @ prig ™ Ly)[3n + 2 — 2g]= pr™("v) K" [n],

where K™ is the complex defined in sect. 3.1.1. ;From Lemma 19 we conclude that
(pry 1(°p°)*(pris "Ly @ prigp*Ly) is supported at A°.

Step 3. Let m > 0. Denote by ‘¢% (resp., by 'pS,) the restriction of ‘¢ (resp., of 'p°)
to the stack X' xgpn Flagnm_I_Qg_Q. Put

c(m) = ( cunmm Gz ) S Jn—2m7

Co1 — 1M Cop — M

and denote by a¢, : X(™) x Y™ 5 V¢ the finite morphism that sends (D, (D)) to

Dll_I_D D12_|_D
D21_|_D D22_|_D

Lemma 26. There is a canonical isomorphism
(e (po) " (pris ™ Loy @ pros ™ L) = (ag, 1 Qe(—n — 1+ g)[—2n — 2 + 2]
over Y°.

Proof The stack X'¢ xgpn Flagnm+2g_2 classifies the collections: D € XU a matrix

(Dij) € Y¢, where
c Clg — M
s 11 €12 = .
€21 Co2 — M

an extension 0 — Q(D) — L — O(D) — 0, where D = D;y + D;; € X =) and two
morphisms & : O(D;1) — L/ making commute the diagram

O(Dy) % I/

N

O(

)

)
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Denote by fr + X Xgpn Tagnm_l_zg_z — X (™) % Y? the morphism that sends the above
collection to (D, (D*)). This is a composition of an affine bundle of rank 2m and a
generalized vector fibration of rank n — 2m + 1 — ¢g. (The point is that the sum of
ranks does not depend on m!)

We have a closed immersion X (™) x Ye(m) s X(m) » V€ that sends (D, (Dij)) to

Dll + D D12
<D7<D21_|_D D22 ))
Using Lemma 23 one shows that (f5)i("pS, )" (prisu* Ly @ pris pu*Ly) is supported at

X s yelm) ey X(m) 5 Y€, (The argument is analogous to that of Step 1).
Denote temporary by Y the stack given by the cartesian square

Yy — X° X shr Flag;n_l_zg_z
] b
X (m) o yelm) gy X(m) xye

Since the restriction of ('p2, )*(pris u*Ly @ prigu*Ly) to Y is the constant sheaf Qy,
our assertion follows. [
So, calculating the direct image (5) w.r.t the stratification of X® xgyn Flag,, o, 5 by

locally closed substacks X' xgyn Flagnm+2g_2, m > 0, we conclude that (5) is a Qy-sheaf.
Remark 13. In addition, on the sheaf (5) we get a canonical filtration by Q,-subsheaves

OCclhCcFiClyC...

such that F,,/F,_1—(a )\Q for m > 0. (Here F_; = 0). Since for m > 0 we have
Ye(m) = (), this filtration is finite.

Step 4. Denote by "Sh} C Shy the image of the (smooth) morphism Flag, ,,,_, —
Shy. Notice that "Sh} xgu» ShT"™ is the preimage under the natural morphism Shi™” —
Sh¢' of the open substack "Sh{" C Sh{'.

Put "X¢ = X'¢ xgun "ShY. Denote by "X° the complement of "X to X,

Lemma 27. The morphism n®: X° — Y is of finite type and all its fibres are stacks
of dimension < 0. The fibres of the restriction n°: " X° — Y are of dimension < 0.

Proof For m > 0 the stack X'° X gun Sh}"™ classifies the collections: Fy € Shy', a matrix
(Di;) € Y¢, where
= €y Cp— M c Jn—m7
Cyy Gy —M
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an extension 0 — Iy — Fy — O(D) — 0, where D = D;; + Dy € X=m) “and two
morphisms & : O(D;;) — F; making commute the diagram

ODy) & F

N
o(D)

The morphism X'¢ xgpr Shy"™ — Shi' xY© that sends the above collection to
(Fo, (D)) is a composition of an affine bundle of rank 2m and a generalized vector fi-
bration of rank —m. Since X (™) x Y — V¢ is finite, using 1) of Lemma 25 we conclude
that all the fibres of the resriction of n° to X' xgur Shi"™ (resp., to "X'® xgpn Shi™)
are of dimension 0 (resp., of dimension < 0). Besides, X'® xgy» Shi"™ =0 for m > n,
because .J,,_,, = () in this case. Our assertion follows.

O (Lemma 27)

Since ) : 9Shy"**7=* — Sh” is a generalized vector fibration of rank n+1 — g, and
Flag, 5,5 = ?Shy+*~?
the fibres of "¢ are stacks of dimension at most n 4+ 1 —g. So, the sheaf (5) is, in fact,

is an open immersion, from the above lemma it follows that

the highest direct image with compact support of

(') (pris "Ly @ praz ™ Ly)(n +1—g)

under the morphism ‘¢°.
Denote by "¢ the composition "A'¢ xgyn © Slr1/2n—|'2g_2 2oy s e L ve Let

. 0 In+2g—2 0 m 0 m 0 m+2g—2
rpc.rXc X Shy Sh2 — Shl X Shy Shl X Shy Sh2

be the natural morphism. By abuse of notation, g : © Sh{" xgpn © Sh’zm'Qg_2 — A will

also denote the natural pairing. Clearly,
Xe X Shyp Flagn+2g_2 C "Xxe X Shp 0 Shlzn+2g_2

is an open substack. Now we state that the natural morphism

R¥"H2729 ("), ("p° ) (pris ™ Ly @ prig pLy) —
R¥2729 ("), ("p°)* (pris 1 Ly @ prys ™ Loy)

is an isomorphism. Indeed, if V' is the complement of Flag, ,, , to ° Shy"**97% then
the fibres of the morphism pr; : "Sh} xgpr V' — "Sh} are of dimension <n +1 —g.

60



Recall that Z¢ C X'¢ is the closed substack given by the condition s; + s3 = 0. Let
"Z¢ be the preimage of "X¢ under Z¢ — X°. Recall that for the projection

pry : Sh" xgpp? Shyt#7% — Sh"

the complex (pr; )i* Ly is supported at the zero section Sh] — Sh" and is canonically
isomorphic to Qu(—n — 1 + g)[—2n — 2 + 2¢] over Sh. It follows that

(Pr1)!(rpc)*(PrT3 M*/Qw @ pr§3 /fﬁw)

is supported at "Z¢ and is naturally isomorphic to Q¢(—n — 1 + g)[—2n — 2 + 2g] over
rZe.

Recall that 7 : Z2° — Y* is the composition Z2° — X° 5 Y°. Let "7 be the
restriction of 7 to "Z¢. jFrom Lemma 27 it follows that R°("7)Q,— R°nQ, naturally.
So, to finish the proof it remains to establish the canonical isomorphism (6).

Step 5. The stack Z¢ classifies the commutative diagrams

Gl — F1
fu 1
0O = d,

where (7; € Pic®™ X, Fy € Sh (and all the arrows are inclusions). We stratify Z¢ by
locally closed substacks +Z¢ C Z¢ as follows. The strata are indexed by ¢ € h™'(c).
The stratum »Z° is defined by imposing the condition: deg(Gy () G2) = ;.

Lemma 28. There is a commutative diagram

C/ZC — Z°
bor bt ®)
/YC/ ngm 1/c7
and we have RO(.7)Qr=Qy canonically. Besides, R™*(.7)Q; = 0.
Proof Let ¢ € h™'(¢). For a triple of divisors (D, D},, D};) with Dj, € X() define

!
n—c .
Fp; pi,.py, € Shy 2 from the cocartesian square

7 7
O(Dn + D12) — FDil,DQQ,Dél

/I\
O(Dyy) — O(Dy, + Dy)
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Then . Z¢ is the stack classifying the collections: (Dj,, Dy,, Dy;) with D}, € X (€y),
Iy € Shgéz) and an exact sequence 0 — Fp: pr p; — F1 — Fy — 0.

The morphism »Z¢ — X (1) x X (¢12) 5 X (1) Shé52 that sends the above collection
to (D}, Dy, DYy, Fo) is a generalized vector fibration of rank ¢,. Let .7 be the
composition of the latter morphism with X (1) x X(G12) » X(1) Shé52 XAV e,
Then the diagram (8) commutes. Our assertion follows now from 2) of Lemma 25.

O (Lemma 28)

By Lemma 28, R°(norm o C/T);Qg:;(normcl)*(@g, where norm® : 'Y< — Y*¢is the
restriction of norm, and R™'(norm o »7)Q, = 0. Now the spectral sequence that
computes 71Qy w.r.t. the stratification of Z¢ by »2Z¢’s shows the following. On R°nQy
there is a filtration parametrized by the partially ordered set h~'(c) (the order is
that of adjunction of the »Z¢’s ), with successive quotients being (norm®),Qy. Since
the different successive quotients are supported on different irreducible components
of Y (cf. Lemma 22), this filtration degenerates over some open dense subscheme
of Y into a direct sum. Now it suffices to show that R°nQy[n] is a perverse sheaf
which is a Goresky-MacPherson extension of its restriction to a sufficiently small open

subscheme. Since the same is true for (norm®),.Qu[n], we are done.
O (Proposition 13)

3.2.7
Our next result is closely related to (Lemma 18, [2]).

Lemma 29. Let Fy, Ey be local systems on X of the same rank. Let Speck Boxm
be a k-point. Denote by XD — X ) the (strict) henselization of X at D. Then
the restrictions of L and of L, lo XD s oy ShE are isomorphic.

Proof Let § : X' — X be an étale Galois covering. Denote by X' (X) c X'
the open subscheme parametrizing the divisors D’ € X' for which o(D')(\ D' = ()
for any o € Gal(X'/X),o # 1. The morphism X" — X(®) is not étale for n > 1,
however its restriction X’(X) — X is étale and surjective. We have a cartesian
square

X"X) —» X»

X3 XS

XXy — X0
where X""(X) is the preimage of X’ (X) under the canonical map X™ — X'(",
From this square we get a canonical isomorphism

E™ |y (x) =67 E) | x)

62



for any local system E on X. Denote by Shy(X’) the stack of torsion sheaves of
length n on X’. Denote by Shi (X, X’) C Shj(X’) the preimage of X' (X) under
div : Shi(X") — X'". We have a cartesian square
ShR(X, X)) 5 Shr(x)
1 div Jdiv
XXy — X0

where 6™ is given by T' € Shy(X') — 6.1 € Shy(X). (This notation agrees with [2]).
Recall that for any local system F on X

(") LE= L5k lsng (x.x)

canonically. Chose a lifting Speck — X'W(X) — X®™ of D : Speck — X, It
induces a map XP — X'W(X) over X(™ and, hence, a map X" x .y Shy 2
Sh2(X, X'). We see that the restriction of £} to XD x ¢, Sh is isomorphic to the
inverse image of Lf., |Shg(X,X/) under ¢g. Since ¢ : X' — X was an arbitrary Galois
covering, our assertion follows.

O(Lemma 29)

Lemma 30. Let Ey, By, Eq, EY) be local systems on X of rank 2. Let Speck B xn)
be a k-point and X"P — X be the (strict) henselization of X™ at D. Then the
restrictions of Fg p, and of .7:”{ g to XD are isomorphic.

Proof The morphism 7 from Lemma 20 can be written as the composition % Sh}" UK
Shy X ym Shi 2 X so that

Ty =N @ (L, W LE,)),

where N = n{(°v)*K"[n]. By Lemma 29, the restrictions of N @ (L% X L% ) and
of N @ (L‘%{ X /Q%é) to XD x ¢ (Shy X ym Shi) are isomorphic. Our assertion
follows by the base change theorem. OJ

Lemma 31. LetY be a k-scheme of finite type. Let Fi, Fy be constructable Q-sheaves
on' Y. Suppose that for any k-point Speck = Y the restrictions of Fy and of Fy to
YV are isomorphic, where YV is the (strict) henselization of Y at y. If for an open
subscheme j : Y' — Y the natural map Fy — (R°j.)j*Fy is an isomorphism then the
same holds for F;.
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Proof Consider the cartesian square

Y « Y%
L 1
Y « YV

To say that (F2), — ((R%.)j*F2), is an isomorphism is equivalent to say that
HO(YY, Fy) — HO(Y",F,) is an isomorphism. The latter property depends only on
the restriction of F; to Y¥. O

According to our plan (cf. sect. 3.1.2), Theorem 3 is proved. So, Main Local
Theorem is also proved.
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4 Perverse sheaves P}

This section is, in essential, independent of all the rest of the paper. Here we introduce
the sheaves Pp on X xpin x Tagn_l_Qg_Q. The purpose is to show that they are
perverse. Besides, all the cohomology sheaves of P w.r.t. the usual t-structure are
calculated (cf. Proposition 15).

Except to the proof of Proposition 7, the results of this section are not needed to
prove Main Global Theorem.

4.1 Definition and first properties of P}
4.1.1
Let E be a local system on X of rank 2. Consider the perverse sheaf
primo £ @ @ Ly[2n + 1 = g] (9)

on ®Shy" xgnnFlag, 5, 5. Let ¢, : ©ShY" xgur Flag, 5, 5 — X xpien x Flag,,,, 5 be
the morphism defined in sect. 3.1.3.

Proposition 14. Both

(@n)i(pri mo Ly @ p"Ly)[2n +1 = g]

and
(fn)(pri oy Ly @ p”Ly)[2n +1 — g]

are perverse SheCL’UGS on
X(n) XPic” X Flagn+2g_2

Definition 7. For any local system F on X of rank 2 put
Pr = (o h(primo Ly @ ™ Ly)[2n + 1 — g

In fact, Pg depends also on 1. We will write Pf , if we want to express this depen-
dence.

The proof of Proposition 14 will be given in sect. 4.1.5.
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4.1.2

We stratify the stack Flag, ,,, , as follows. The strata are numbered by m > 0. The

stratum indexed by m is Flagnm+2g_2 = Flag, 5, 5 xsur ShT"™. Recall (cf. sect. 1.4.3)
that we have a natural isomorphism

W XM STFlag,, o,y
Denote by g : X xp s y W* — Al the natural pairing. Denote by
i (X072 s pinmam o W) XU X spin  Flag,

the closed immersion that sends a collection (D' € X0=2m) e XM 00— M—
O(D") = 0)to (D' +2D € X (0= Q = M — O(D') = 0,D) € W2 x X(m)y,

Proposition 15. For any m > 0 the restriction of Pp to X xpion x Flagnm+2g_2 is
supported at the closed substack

i (X072 s pinmam o W) XU X spin  Flag,
and is canonically isomorphic to
iL(pry BV @ pri(det )7 @ priy Ly ) (=m)[2n + 1 — g — 2m]

In particular, this restriction coincides with the (2m —2n — 1+ g)-th cohomology sheaf
of Pi (w.r.t. the usual t-structure). Besides, Pg has cohomology sheaves (w.r.t. the
usual t-structure) in degrees 2m —2n —1+¢,0 < m < [5].

Recall that X — Sh* is the map that sends a divisor D to Q(D)/Q. Denote by
ft : Shg" xgpm X (™ — Al the natural pairing. Let Yom - X(=m) 5 Shi™ — ©ShY™ be
the morphism defined by the cartesian square

0GR X(n=m) o ghem
" "
Sht & (Pic"™™ X) x Sh

(Vn,m was defined in sect. 3.1.1). Denote by § : X=2m) o x(m) _y x(n=m) o X (M) the
closed immersion that sends (D', D) to (D" + D, D).

Our Proposition 15 will be a consequence of the following result.
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Proposition 16. Let E be a local system on X of rank 2. Consider the sheaf
T2 Vi Mo £ @ Pras ™ Ly
on X(=m) 5 (Shg™ xSh(r)nX(m)). For the projection
prys : X7 5 (ShE™ xgp X)) — X (n7m) o x(m)

the sheaf (pry3)i(priy Vo To L @ prig p*Ly) is supported at the closed subscheme ¢ :
Xn=2m) oo X (m) 5 X (=m) 5 X7 and is canonically isomorphic to

S.(EC=2) & (det E)™)(—m)[—2m]

4.1.3

Following [3], for 0 < m < 2 denote by 4, : X("=2™) x X (™) — Sh{ the morphism that
sends (D', D) to O(D'+ D)/O & Q(D)/Q. Our next result is a weakened version of
Theorem (3.3.8), [3] in the special case corresponding to the partition (n —m,m) of n
and a rank 2 local system. It will be used to define the isomorphism of Proposition 16.

Lemma 32. Lel I be a local system on X of rank 2. For 0 < m < o lhere is a
natural morphism

05 Ly — B0 & (det £)™) (—m)[—2m]

Proof Denote by j : U — X"=27) 5 X(™) the open subscheme corresponding to pairs
of divisors (D', D), where D" and D are reduced subschemes of X that do not intersect.
The morphism py s flé:::::é — Shy is a locally trivial fibration over the image of

.....

U under iy,. It follows that H*"(iy L%) is locally constant over U. Using Theorem
(3.3.8) of [3], one shows that

H2 (05 L) EC ® (det B)™(—m)
over UU. Furthermore, E"=2™ & (det E)™)(—m) — (R%},)5* E®~?™ & (det )™ (—m)

is an isomorphism. This provides a morphism
H2 (15 L) — BT R/ (det B)™)(—m)
and we are done. [

Remark 1. 1t can be checked that the morphism of the above lemma induces an
isomorphism on the highest cohomology sheaves (w.r.t. the usual t-structure)

H2 (15 L) EC ® (det B)™ (—m)

We will not use this fact. For generalizations of this assertion see Appendix D.
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4.1.4

Define the morphism ¢’ from the cartesian square

X=m) 5 (She? xgpn X)) 2 X (emm) e x(m)
T8 1o
X(n_zm) X (Shgn XSh(r)nX(m)) — X(n_zm) X X(m)

Define the morphism p’ : X("=2™) x (Sh{™ xgpm X (™)) — Shy by p’ = TGOV m OPT19 0 0.

Proof of Proposition 16

Step 1. The morphism 7, ,, factors through the locally closed immersion Sh}*” — Sh{,
and the corresponding morphism (Pic"™™ X)) x Shg' — Shi"™ is an affine bundle of
rank m. Put Sh7"™ =9 Sh!" Xspr Shy™™ and define o : X (n—m) o Shy™ — 9Sh™™ from
the cartesian square

X0 S 5 o

. i/ i/.
(Pic"™™ X) x Shy” —  Shi™

Then pry5 can be written as the composition

X(n_m) X (Shgn XShsnX(m)) ai;d 0 Shlln’m ><Sh6" X(m) — X(n_m) X X(m)

1%

In; . . .
o L comes from © Shy™™ xgpm X 50 we will use the projection

The sheaf pri,~
formula for a x id.
Define the stack Y™™ from the cartesian square

0 Shlln’m X sh X(m) — X(n_m) X X(m)

1 16
yn;m — X(n—?m) % X(m)

So, Y™™ is the stack classifying the collections: D € X D" ¢ X("=2%) and a diagram
0— QD) - F — OD'+D) —0,
Ts (10)
@

where O — O(D’ + D) is the canonical section.
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Given an exact sequence 0 — Q(D)/Q — Fi — O(D’' 4+ D) — 0, there exists a
canonical inclusion O(D’) — F; making commute the diagram

F1 — O(D/ + D)
T
o)

Therefore, there is a distinguished section so : O — F} defined as the composition
O — O(D') — Fi. 1t follows that 57””” can be considered as the stack that classifies
the collections: D € X" D' ¢ X(»=2m) &' . O — Q(D)/Q and an exact sequence
0—=QD)/QY— Fi = O+ D) = 0. (We put s =5+ sg).

In particular, there is a morphism 3 : Y™™ — Shg™ xSh(r)nX(m) that sends a collec-
tion as above to (', D).

One easily checks that (o x id)ipri, p*Ly is supported at Y™™ and is naturally
isomorphic to 3** L, (—m)[—2m] over Y™,

Step 2. The diagram commutes

Shy & X020 (ST xgun X0V P X (im2m) o X ()
X (n=2m) o y(m)

where 73 is the zero section of the vector bundle pry;. Let us define a morphism
(pris)(p"™ Ll @ pryg p™Ly) — B2 8 (det B)™) (—m)[~2m]
as follows. Using Lemma 32, we get the morphisms
PeLE @ pryg Ly — (io)«ig(p" L @ pryg pu”Ly) = (io)uin, L —
(f0) (B2 B (det £)) (=m)[~2m]
Applying (pr;5)1, we get the morphism
(pria)(p* Ly @ prig L) — B2 & (det £)™) (—=m)[—2m]

It remains to show that this is an isomorphism.

Step 3. Denote by V"™ the stack that classifies the collections: D € X D' ¢
X(=2m) and an exact sequence 0 — Q(D)/Q — F — O(D'+ D)/O — 0. The natural
projection ¢ : Y™ — X(=2m) 5 X(7) is a generalized vector bundle of rank 0. We
have an isomorphism " SY"" gver X (»=2m) » X(m) that sends a diagram (10) to

(0—=QD)/Q— Fi/Ims —- O(D'+ D)/O — 0)
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Denote by 3 : Y™™ — Shy" XShSnX(m) the composition

y”?mgji”;m i Shgn XSh(r)nX(m)

Denote by p : Y™ — Shg the morphism that sends (D, D’,0 — Q(D)/Q — F —
OD'+ D)/O —0) to F.
We have to show that

a(p* Ly @ B Ly) — B R (det B)™)

is an isomorphism. Since the morphism is already constructed, the problem is local
w.r.t. X, and one can suppose E to be trivial. However, we will only assume F =
Ei & E;, where Fy, Ey are rank 1 local systems on X. Recall that on the one hand,
by ((3) of Proposition 2, [2]) we have L3— Go<e<n £ 5, and on the other hand,

(E1 6 EQ)(”):; Do<e<n (sum)*(Efc) X Eén_c)), where sum : X (@ x X("=9) 5 X () ig the
summation of divisors.

We will show that qi(p*L%" 5, @ B*1*Ly) vanishes unless m < ¢ < n —m, and for
m < ¢ < n — m there is an isomorphism

q;(p*,CEi_EZ ® ﬁ*u*ﬁlp):((sum)!(EfC_m) X Eé”_m_c))) X (Fy ® EQ)(m)
Recall that
PELE 5 5 (pry) pry (g5 ) (div % div)*(EY &) B"),

where the involved morphisms are illustrated by the diagram

c

YV g Flen=e 28 Flen=e 00 gne s Shpme WA X (@) xn-0)
} pry
yn;m

So, the problem is to calculate the direct image of
pr3 (a5 )" (div x div)(B{Y B BY7) @ pri 5Ly (1)
under the composition

VU sy Flig ™ = Yrim B x=2m) oy
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To do so we stratify the stack Y"™ xgpp Flgo™" by locally closed substacks U., .,
parametrized by pairs (¢q,cy), where 0 < ¢; <m,0<¢; <n—mand ¢; +¢c3 =c. We
say that a point

(D,D',0 = Q(D)/Q — F — O(D' + D)/O = 0,F C F) (12)

is a point of U, ., if

length(Fo) = ¢; and length(Go) = e,

where Fo = (2(D)/Q) N F" and Gy is the image of F' in O(D' + D)/O. Put Dy =
div £y, Dy = div Gy. We have a map

Govoy t Usp oy — (X122 5 X(nmm=e2)y s (x(en) o x(m=en))
that sends (12) to (Dy, D" + D — Dy, Do, D — Dy). It factors through the closed

immersion 9., ., defined by the cartesian square

8

X () s X)) s (X9 s X =)
4 1 sum x sum
X=Xt 5 X{rmm) ¢ X ()

Notice that U, ., — X2 is a generalized (non-representable) vector fibration of rank

0. The diagram commutes

yrim X sy f-lgig—c y ym A x(n=2m) o x(m)

T T

U017C2 — Xan

The restriction of pr3(gyo )" (div x div)*(Eic) X Eén_c)) to Uy, ¢, is isomorphic to the
inverse image of Eic) X Eén_c) under the composition
Us, o 257 (X12) 5 xnmm=ea)y o (x (o) o xm=en)y _y x(9) 5 x(n=0)

Denote by 7, ., the restriction of prj g*u*Ly to Ue, .,. For m < ¢ < n —m the closed
subscheme of X§™ defined by the condition Dy > D is given by the obvious closed
immersion (X(C_m) X X(”_m_c)) x X(m) X&’Cm.

Lemma 33. We have (g0, )1 Te; .0, =0 unless ¢p = 0,¢2 > m. If m <c¢<n—m then
(9o.c 1 To.. is supported at the closed subscheme (X(C_m) X X(”_m_c)) x X(m) X&’Cm
and is naturally isomorphic to the constant sheaf Q, over it.
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Proof of the lemma We have the morphisms

. poB) xid
Ueproo = Y™ X (xtnm2m)  x 0m)) X0 ( —)> Al x X

C1,C2 C1,62

of generalized vector bundles over X' . Denote by ¢ their composition. Fix a point
Speck — X7 given by a collection of divisors (D, D', Dy, D1) as above. Consider
the morphism ¢ xid : U,, ., X xmm Speck — A} (of generalized vector bundles over

Spec k) obtained from ¢ by the base change Spec k — X

C1,62°

1) Let us show that ¢ x id vanishes if and only if Dy =0 and Dy > D.
The stack Ue, ¢, X xpm Speck classifies the diagrams

0— QD) — F — O +D))O —0

T T T
0= QDy)/Q — F' — OD)JO =0

Define an object K of the derived category of k-vector spaces from the exact triangle
K — RHom(O(D' + D)/O,Q(D)/) — RHom(O(D1)/O,Q(D)/QDy)). The coarse

moduli space of Uy, ., xxnm Speck coincides with H'(K) (if needed, we identify a

k-vector space and the corresponding k-scheme, whose set of k-points is this space).
The morphism ¢ x id is the compostion of linear maps
Ucy ey X xmm Speck — HY(K) — A}
The corresponding linear functional H'(K) — k is the composition
H'(K) = Ext'(O(D' + D)/O,(D)/Q) 8 k,

where f, € (Ext'(O(D' + D)/O,Q(D)/Q))*= Hom(Q(D)/Q, QD" + D)/Q) is the
canonical inclusion fo: Q(D)/Q — Q(D' 4+ D)/. The sequence is exact

HY(K) — Ext'(O(D' + D)/O,Q(D)/Q) % Ext!(O(Dy)/O,0(D)/Do))

Besides, fy vanishes on Ker(g) if and only if Dy = 0 and D; > D. Our assertion
follows.

2) Now let m < ¢ < n —m. It is easy to see that th§ restriction of 7o, to
((X(C_m) X X(”_m_c)) X X(m)) X xmm Ug e 18 the constant sheaf Q,. Our lemma follows.
O (Lemma 33)
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For m < ¢ < n — m the diagram commutes

(X(emm) 5 x(n=m=o)y s x(m) SWEI yr(n=2m) oy (m)
N\ T
X"
Lemma 33 implies the degeneration of the spectral sequence that computes the
direct image (¢ o pry)r of the sheaf (11) w.r.t. the stratification by the U, .,’s. Thus,
(g0 pro)(pr3 (s~ (div x div) (B BB @ pri 7w Ly) - (13)

vanishes unless m < ¢ < n—m. If m < ¢ < n —m then the only stratum that
contributes to this direct image is the open one, and (13) is isomorphic to the direct

image of (Efc_m) X Eén_m_c)) X (B, @ Ey)™ under
sum X id ¢ (X7 s X0mm=ely e x0m) y x(nm2m) o x0m)
This concludes the proof.
O (Proposition 16)
4.1.5

Proof of Proposition 15

Step 1. We have a closed immersion
i// . X(n_m) X pijen—m x Flag;n_l_zg_z — X(n) XPic” X Flag;n_l_zg_z

that sends (D € X™ D, € X(=m) (0 — Q — F — O(D, — D) — 0) € Wr2m)
to(D+ Dy € X De X" (0 Q= F— O — D) = 0) € W), The

morphism
b % id O ST X spn Flagny g,y — X Xpien x Flag, o, (14)

obtained from ¢, by the base change Flagnm+2g_2 — Flag, .y, , factors through 7.
After the base change (Pic"™™ X') x Shg' — Shi"™ the morphism

0 Shlln Xsh? Flag;n_l_zg_z — X(n_m) X pijen—m x Fla‘g;n+2g_2
becomes the projection

(X (n=m) X (picn—m x) W) X (Shg” xShS"X(m)) — (X X (picn-m x) W) % Xt
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The restriction of the sheaf (9) to
(X(n—m) X (Picn—m x) Wn—m) % (Shgn XShS"X(m))
is
PrYs Y Mo £ @ Prig (17 Ly @ pray Ly [2n + 1 — g]
So, by Proposition 16, the restriction of Pj to

is isomorphic to
i 7Ly @ (pry & B2 8 (det B)))(—m)[2n + 1 — g — 2]

In particular, it follows that the restriction of Pg to X (™) xpjen XFLELgZ_I_Qg_2 is supported
at
i (X(n—ZTn) X pign—2m x Wn—?m) w X (m) = x () X Picn X Flagnm+2g_2

Step 2. After the base change under ' the morphism (14) becomes the projection
(X(n_zm) X (Picn—2m X) W) 5 (Shg" XShg"X(m)) -
(X(n—Qm) X(Picn—2mX) Wn—?m) « X(m)

The restriction of our perverse sheaf (9) to

(X(n—zm) X (Picn=2m x) Wn—?m) % (Shgn XShS"X(m))
is isomorphic to

prig "Ly © prisy p" L @ prag " Ly[2n + 1 — g]
Applying again Proposition 16 we get the desired result. [

Lemma 34. 1) The natural morphism Sh}* — Pic™ X xpin x Sh] is affine.
2) The square
Shlln — Pid" X XPic" X Sh;1
T T
0 Shlln — X(n) XPic™ X Sh;1

is cartesian. In particular,
Gp + O ShY" xsnp Flag, 5,5 — X xpion x Flag, 5, 4

is an affine morphism.
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Proof 1) Recall that the map Sh!* — Pic” X was defined in sect. 1.2.3. Tt yields the
morphism Sh!* — Pic”™ X xpjn x ShY.

Suppose that S € (Aff /k) and we are given a morphism S — Pic” X xpjen x ShY
defined by a sheaf Fy € (Sh])s and a section O 2 det Fy. Let Z be the S-scheme of
sections of Fy, Z' be the S-scheme of sections of det ;. The mapping Fy — det F
provides an affine morphism Z — Z’ over S. The section O 3 det I} defines a
morphism S — Z’ over S. Put Z = S x4 Z. Then the square

Shlln — Pid" X XPic" X Sh;1
T t
Z = S
is cartesian.

2) is straightforward. O
Proof of Proposition 1}

By 2) of Lemma 34, P lives in non-negative perverse dimensions. On the other hand,
by Proposition 15, Pg has (usual) cohomology sheaves in degrees 2m — (2n+1— g) for
0 <m < [§], and the support of the cohomology sheaf with number 2m — (2n +1 — g)
has dimension (2n + 1 — g) — 3m. So, the support condition is satisfied, Pg lives in
non-positive perverse dimensions. Thus, P is perverse.

To show the perversity of (¢, ).(pry oLy @ p*Ly)[2n + 1 — g] notice that the dual
to the perverse sheaf (9) is

pry g L @ WLy-1(2n+1—g)2n+1—g]

and use the Poincaré duality.
O (Proposition 14)

4.1.6

In this subsection we explain how to express the complex Fz 5 in terms of Pr. (As
a corolary of Proposition 15 we will get another proof of the fact that F5 5 [-n]is a
Q-sheaf and another proof of Proposition 12).

Lemma 35. Let Fy, Fy be local systems on X of rank 2. Then there is a natural
isomorphism

(Pry)1(PE, 4 @ Pr, y—1)[=0]=Fg, 5,
where

pry X(n) XPic” X T&gn_l_zg_z — X(n)

is the projection.
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Proof
1) Consider the morphism [—1] : ©Sh{* xgpn Flag, 5,5 — Sh" xgp Flag, ,,,_, that

sends O < Fito O S F and does not change an extension of Fy. The inverse image
of w*Ly under [—1] is p*Ly-1. We have also the morphism

[—1] : X(n) XPic™ X Flagn+2g_2 — X(n) XPic" X Flagn+2g_2
that sends O < det F} to © = det F; and preserves an extension of Fy. Clearly, the
inverse image [—1]"Pg , is P 1.
2) One easily checks that the direct image (with compact support) of the sheaf

Ix rn

DI L, © Py AL, © pria i £y © priy i Ly[3n + 2 — 2]
under the morphism
OShy" xspp ©ShY" xshp Flag, o,y — X Xpion x X xpion x Flag,, 5,
is naturally isomorphic to
pris Pr, @ pris Pr,[—n] (15)

The direct image (with compact suport) of the latter sheaf under the projection pry,
is supported at i : X — X xpin x X and is naturally isomorphic to T 1y
To complete the proof it remains to notice that, by 1), the restriction of (15) under

i % id s XU xpion x Flag, g, — X xpion x X xpin x Flag,, 5,

is Py @ 771%271/}_1.
0

Denote by o, : X("=2m) x X(") _— X () the morphism that sends (Dy, D3) to
D1+ 2D,.

Another proof of the fact that Fp, p [—n] is a Qq-sheaf.

We calculate the direct image (pr, )(Pp, , @ 77}%271/]_1)[—71] using the stratification of
X0 xpen x Ta‘gn-l—Qg—Q by locally closed substacks X" xpin x T&Lg:“g_27 (m >0).

Denote by Q™ the restriction of 77%171/} @ 77%271/]_1[—71] to X xpin x Tag:_l_zg_z.
Our assertion is an immediate consequence of Lemma 36. [
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Lemma 36. For 0 <m < 7 we have a natural isomorphism

(pry)1Q" ()< (B2 @ B2 B ((det By)™ @ (det Ey)™))(—n — 1+ g)[n],

where -
pry s X0 xpion x Flagnm+2g—2 - X

is the projection. If m > % then (pr);Q™ = 0.

Proof The diagram commutes

i (X2 e nmam e W2 ) o XM 5 X iy Flag,, s

b prys L pry
X (n=2m) o y(m) Iny X (n)

By Proposition 15, Q™ is naturally isomorphic to
iLpris (B @ BIT) @ ((det B1)™ @ (det By)™))(—2m)[3n + 2 — 2g — 4m]

So, our assertion follows from the fact that for any k the morphism W* — Pic* X is
a generalized vector fibration of rank £ + 1 — g.

O (Lemma 36)

Remark 15. The above argument also shows that on .7:}_7?717& (n+1—g)[—n] there is a
canonical filtration

0CFH CFC- - CHay=Fp pn+1-g)-n]
by constructable Q;-subsheaves such that
Fo)Fp = BT @ BT R (det By @ (det By) ™)
m/ Fr1 = (0m )«((Ey @ By ) B ((det By )T @ (det E5)™))

for 0 <m < 5. (Here F_y = 0).

Another proof of Proposition 12
Over X — A the filtration from Remark 15 is reduced to the isomorphism

Fo=Fg, g, (n +1 = g)[—n]

Since F0:>/E£n) ® Eén) and the natural inclusion Ein) ® Eén) — (F1 ® Eg)(”) is an

isomorphism over X" — A, our assertion follows. [J
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Remark 16. Let Fy, Ey be local sytems on X of rank 2. One can construct a canonical
filtration 0 C Fj; C F| C --- C F[’ﬂ] = (k@ Eg)(”) on (F; @ Eg)(”) by constructable

Qs-subsheaves with successive quotients
FT/)’L/FT/)’L—I/:;Fm/Fm_17

where (F}) is the filtration from Remark 15. So, at the level of functions ’trace of
Frobenius’ (in other words, in the classical theory of automorphic forms) this is the
end of the proof of Main Local Theorem . However, in the geometrical theory one still
has to show that not only the corresponding graded objects but the filtered objects
itself are isomorphic. This was one of the main difficulties of the geometrization of the
classical Rankin-Selberg relations.

4.2 An application

In this subsection we prove Proposition 7.

Proof of Proposition 7
For n > 0 for the projection pry, : X" xpinx Flag, 2,2 — Flag, s, » we have

(prz);Pg(n—l';_g ):;IC%Hg_Z. Our assertion follows immediately from Proposition 15.
0
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A Cohomology with compact support of a stack

Let A be a noetherian ring such that char A is invertible in k.

Definition 8 ([7],(18.7.1)). A representable morphism f : }; — ), of algebraic
stacks is called universally n-acyclic (w.r.t. A) if for any morphism U — ), with
U € (Aff /k), any étale sheaf F of A-modules on U the natural map F — R°(fv ). [ F
is an isomorphism and Ri(fy).F = 0 for 1 < < n, where fiy : U xy, Vi — U is the
projection.

Notice that the composition of two representable and universally n-acyclic mor-
phisms is also universally n-acyclic. A morphism obtained by a base change from a
representable and universally n-acyclic morphism is also universally n-acyclic.

Definition 9 ([7],(18.7.4)). An algebraic stack A’ is a Bernstein-Lunts stack (w.r.t.
A) if for any n > 0 there exists a presentation of finite type 7 : S — A’ such that 7 is
universally n-acyclic (w.r.t. A), and S is separated.

Remark 17. 1) If X is a Bernstein-Lunts stack then for any n > 0 there exists a
presentation 7w : S — A" as in the above definition such that = is, in addition, smooth
of constant relative dimension.

i) If X7 — X3 is a representable and separated morphism of algebraic stacks, and X
is a Bernstein-Lunts stack then X is also a Bernstein-Lunts stack.

Lemma 37. If M is a separated algebraic space with an action of an affine algebraic
group G then M /G is a Bernstein-Lunts stack (w.r.t. A).

Proof (cf. [7], Lemma (18.7.5)). To construct a presentation 7 : S — M/G as
in definition 9, it is enough to construct a universally n-acyclic smooth algebraic
space U of finite type with a free action of G on U such that U/G is a separated
algebraic space. Then we can set S = (M x U)/G. Since G C GL(V) for some
vector space V, it is enough to construct U in the case GG = GL(V). Then we can
take the Stieffel variety U = Inj(V,W) C Hom(V, W) that parametrizes injective
linear operators V. — W, where W is a vector space such that dimW > dimV
(if dimW > dimV then the codimension in Hom(V, W) of the set of non-injective
operators equals dimW —dimV + 1). O

Lemma 38. The stack Bun? is a Bernstein-Lunts stack (w.r.t. A).

Proof Consider the morphism 7 : Bun? — Bunpgr, (cf. Remark 6, sect.1.2.1). It is
representable and separated. By Lemma 37, Bunpgr, is a Bernstein-Lunts stack. So,
we are done. [
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Let Y be an algebraic space of finite type, X be a Bernstein-Lunts stack, and
f X = Y be a morphism of finite type. Let F' be a bounded complex on &X'. Pick
an integer b such that F' has nontrivial cohomology sheaves only in the usual degrees
< b. Let d be an integer such that all the geometric fibres of f are of dimension < d.
Following ([7], (18.8)) we will define for any n > 0 the complex 7>244p—n(fif") on Y.
(Here 7<., 7>, denote the troncation functors corresponding to the usual t-structure).

Let 7 : S — X be a presentation of finite type and universally n-acyclic, with S
being separated. Then f o7 is also separated. We can suppose that 7 is smooth of
constant relative dimension, say e.

First, consider the case, where f is representable and separated. Then A" is an
algebraic space, and 7 is separated. Using the Poincaré duality we see that the natural
map mA — A(—e)[—2¢] induces an isomorphism 7>9._, mA—A(—e€)[—2e]. It follows
that the natural map fimn*F(e)[2¢] — fiF induces an isomorphism

Tsadyb—n((f 0TI F(€)[2€])=Ts2045-0 ([iF)

So, we return to the general case and put

7_22d-|—b—n(f!F)S = TZZd-l—b—n((f o W)!W*F(e)[%])

(The subscript S means that this complex depends on the presentation 7 : S — &).
If, in addition, n’ : S — S is a smooth and surjective morphism of relative dimen-
sion €', and 7' is universally n-acyclic then we have a natural isomorphism

Ts2a4b—n((f o mo T W7 F(e+ €')[2e + 2€']) = s2a46—n ((f 0 7)™ F(€)[2¢€])
Given two presentations my : 57 — A, w9 1 59 — A as above, we define the isomorphism

Ts2dtb—n([1F) s, = T>2a40—n ([1F)s,

to be the composition

Ts2dtb—n ([1F) s, = Ts2dtb—n ([1F) 51, = To2d40—n ([1F) s,

where S13 = 57 Xy Sy. If m1; = 75 then this is the identical isomorphism. Given three
presentations m; : S; — X (i = 1,2,3) as above, one checks the commutativity of the
diagram
Tsodtb—n([iF)s, = T>2aqo-n(fil)s,
} Ve
T>2d4b—n (f1F)s,

using Stz = 51 Xx S2 Xy S3. 50, T>oi16-n(fil')s does not depend on a presentation
m: 5 = A and we can skip the subscript 5.
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Ezample 1. Consider the classifying stack B(Gm') of the multiplicative group. We have
H.(B(Gn),A) =A(n)if i = =2n,n € N, and H(B(G,,),A) = 0 for all other 1.

Ezample 2. Let G be a finite group such that the order of (7 is invertible in A. Then
HY(B(G),A) = A and H.(B(G),A) = 0 for i # 0. (When working with (-adic sheaves

instead of torsion sheaves the assumption on the order of (7 is not neccesary).
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B Some linear algebra

Let A be a commutative ring of characteristic 0. Let M be a bounded complex of
A-modules. Then S, acts on the complex ® M, and we put Sym"(M) = ((% M),
=1 =1

Clearly, Sym*™ (M) is a direct summand of Sym*(M) @4 Sym'(M), so that we have
both natural morphisms Sym*(M) @4 Sym'(M) — Sym (M) and Sym"* (M) —
Sym*(M) @4 Sym'(M).

We will be interested in complexes M of the form (- = M2 — M~' — A — 0),
i.e., we suppose that M® = A and M' = 0 for i > 0. Denote by o<k, o> the *foolish’
troncation functors. Put V' = o<_; M, so the sequence of complexes

0—-A—->M-—-V =0

is exact. Define a morphism f, : Sym”(M) — Sym”"™' (M) as the composition A @
Sym™(M) — M @ Sym™(M) = Sym'(M) @ Sym"(M) — Sym""'(M). We get an
inductive system of complexes (Sym"™ (M), f.)nen. Put Sym™ (M) = @Sym”(M).

Lemma 39. For any n > 0 the sequence of complezes
0 — Sym"(M) Eid Sym™t (M) — Sym™ (V) — 0

is exact, where the second arrow is defined by functoriality from the natural morphism

M—=V.
n+1
Proof If k <0 then ( (5-5 M)k is the direct sum

=1

R R n+1
[ & MY@---@ M) g [(®

V)]
i1+ Finp1=ki;=0 for some ; i=1
The group 5,41 acts on every summand in square brackets. It is easy to understand
that the invariants
[ ® M Q- ® Min+1]5n+1
i1+ Finp1=ki;=0 for some ;
are identified with (Sym”(M))*. O
From the above lemma it follows that the natural morphism Sym™ (M) — Sym® (M)
is injective and o»_, Sym"(M) — o>_, Sym™ (M) is an isomorphism for any n > 0.
So, Sym™ (M) is a filtered complex with the filtration (Sym"(M)),en. Since the mor-
phisms Sym*(M) @ Sym'(M) — Sym**(M) are compatible with f,, by passing to
the limit we get the morphism of multiplication Sym™ (M) @ Sym®™ (M) — Sym™ (M)
(compatible with the above filtration).
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Lemma 40. Suppose that M = (M~ o A), ie, M' = 0 fori < —1. Then
Sym™ (M) is the Koszul complex for (M~ ,d™"). In addition,

Sym"(M) — o>_, Sym™ (M)
is an isomorphism for anyn > 0. O

Now we impose on M the additional condition: M =0 for i < —2 and M~% = A,
so M =(A— M~ — A). Then we have

Lemma 41. Let n > 0.
1) For any k we have (Sym™(M))* = (Sym™(M))=2"* canonically.
2)If0 <k <n then (Sym”(M))_k = /\k(M_l) @ /\k_Z(M_l) @ /\k_4(M_1) ®... O

Set W = o>_4M. Pick ¢; € A* and consider the exact sequence 0 — W —
M — A[2] — 0, where M — A[2] is given by M™% 2% A. Let us define a mor-
phism g, : Sym™ ™' (M) — Sym”(M)[2] as the composition Sym"t' (M) — Sym'(M)®
Sym" (M) = M @ Sym™(M) — (A[2]) @ Sym"™(M). The proof of the next result is

analogous to that of Lemma 39.

Lemma 42. For any n > 0 the sequence
0 — Sym™ (W) — Sym™ (M) 2% Sym™(M)[2] — 0

is exact, where the first arrow is defined by functoriality from the natural morphism

W — M. O

Remark 18. i) The morphism (Sym™™ (M))* £ (Sym™(M))**? can be also described
as follows. For —n —1 < k < 0 this is the morphism /\_k(M_l) @ /\_k_z(M_l) d...—
/\_k_z(M_l) @ ... that sends /\_k(M_l) to zero and induces isomorphisms on the
others direct summands A“*"2(M )= A=F=2 (MY, ... . For k < —n — 1 this is an
isomorphism (that preserves the corresponding direct summands).

ii) Passing to the limit we get an exact sequence

0 — Sym™ (W) — Sym> (M) % Sym*(M)[2] — 0
Denote by ¢,, the composition Sym”™ (M) I Sym™ (M) £ Sym™(M)[2]. In par-

ticular, ¢ 1s given by the diagram

A= M1 A

la
A= M1 A
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Define the morphism ¢ : é M — é M[2]as p1 Qid® -+ - @id4+...+1d®@ - @id Qp;.
=1 =1

Then the diagram commutes

U U
Sym™(M) £ Sym"(M)[2]

Proof of Lemma B.1
Sym™ (W) is the Koszul complex for d(e;),... ,d(e.) € A, so that the natural map
Sym™ (W) — A/I is a quasi-isomorphism. Our assertion follows now from Lemmas 42

and 39. O
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C Chern classes

Let S be a smooth scheme, A € PicS,f : Y — S be the complement of the zero
section to the total space of A. Fix n > 0 invertible as a function on S.

Lemma 43. The complex f.pu, is included into a distinguished triangle

c(A)
fettn = Z/nZ[=1] =" p,[1],
where ¢(A) € H*(S, i) is the Chern class of A.

To prove this lemma we need the following straightforward result.

Lemma 44. Let A be an abelian category, D(A) be its derived category. Let K' =
K — K" be a distinguished triangle in D(A). Suppose that the morphism H'(K") —
Hi"'l(K’) is surjective. Then there is a unique morphism 7<;1 K' — 7<; K such that
the composition <1 K' — 7<; K — 7<;11 K is obtained from o by applying the functor
T<iy1, and the triangle T« K' — 7<; K — 7<; K" is distinguished. O

Proof of Lemma 43

Recall that the Kummer exact sequence 1 — p,, — G, vy G,, — 1 on S defines a
distinguished triangle G, [1] — G, [1] LN tn]2], and the Chern class of A € PicS =
Homp(Z, G,,[1]) is the composition §o. A € Homp(Z, ,[2]) of morphisms in the derived
category.

Consider now the Kummer exact sequence on Y. It provides a distinguished tri-
angle fu, — f.G, — f.G, on S. As is easily seen, the moprhism (R°f,)G,, —
(R f)pn is surjective (the question is local for the étale topology on S, and one can
assume f to be the projection S x G,, — 5). Since 7<1 fiptn— fittn, by Lemma 44 we
get a distinguished triangle

futtn = (R°£)G,, = (RO£)G,,
Let us now construct a morphism (R°f,)G,, — Z. If U is a smooth scheme then
HY(U x G,,,G,, )= H(U,G,,) x H*(U,Z)

canonically. Let S — S be an étale morphism. Put Y/ = S’ x5 Y and denote by
g: G, xY' — Y the action of G,, on Y. Let s € H°(S,(R°f.)G,,). Since Y is
smooth, to s o g there corresponds an element of H*(Y’, Z) = H%(S’, Z). This provides
a morphism (R°f,)G,, — Z. Tt is included into an exact sequence

0— G, — (R°f)G,, = Z — 0,
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where the first arrow comes from the natural morphism G,, — f.f*G,,. Using Chech
coverings one proves that the corresponding element of Ext(Z,G,, ) = PicS is A. In
other words, we get a distinguished triangle (R°f,)G,, — Z A Gy [1] on S.

The morphism s yeilds a morphism of exact sequences

0 - G, — (RG, — Z — 0
lz—=a" | In
0 - G, — (RG, — Z — 0

The latter provides a commutative diagram, where the rows and columns are distin-
guished triangles

(R°L)G, — Z 3 Gull]
o Ln N3
R°£)G, — Z B Gu[l
N3 NS 1o
fnll] = Z/Z S )
So, the morphism Z/nZ — 11,,[2] in the lowest row is ¢(A). O
The next assertion follows immediately from Lemma 43 by Verdier duality.

Proposition C.1. Suppose that S is a smooth separated scheme of finite type. Then

fiptn ts included into a distinguished triangle fip, — Z[/nZ[—2] ) tn on S, where

c(A) € H*(S, ) is the Chern class of A.
0
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D On the Laumon’s perverse sheaf £.

In this appendix we formulate a conjectural strengthened version of Theorem (3.3.8),[3]
by Laumon. (It is nowhere used in the paper, but clarifies the place of our Lemma
32 in general theory). An analog of the corresponding constructible Q-sheaf is also
defined for an arbitrary reductive group.

D.1

Let £ be a local system on X. Let m = (my,...,ms) be a partition of m, i.e.,
my > mg > - >ms >0and > m; =m. Put d; = m; — mypq,meqpr = 0. We have a
morphism

Tt X s X)Xy gpm

that sends (Dy,..., D;) to Op,1..yp, ® Op,up, © -+ ® Op,.
Following [3], define the polynomial functor R(41-+%)V of a Q,-vector space V as
follows. If s > dim V then R4V = 0. If s < dim V then

R4y« Sym® V @ Sym® (A2V) @ - - @ Sym®(A*V)

is the irreducible subrepresentation of GL(V') of the highest weight dywy + - -+ + dsws
(with w; being the highest weight of A°V). Consider the sheaf

EWR(ANE)R ®... ) (A E)) (16)
on
X(dl) X oo X X(ds) (17)

If (Dy,...,D,)is a k-point of this scheme then we put D; = Y di.[z] (1 =1,...,5).
The fibre of (16) at (Dy,..., D) is the tensor product over @ € X of the vector spaces

: Sym®e (A E,)
=1

K3

In particular, there is a canonical inclusion

® R(dl,mvn'vdS@)Ex — ® (é Symdl’m(/\ZEx)) (18)
zEX reX =1

Our next assertion is a particular case of Proposition D.2.
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Proposition D.1. There is a (unique) constructable Qp-subsheaf S of (16) such that
for any k-point (Dy, ..., D,) of X4 x ... x X(4s) the fibre

(SE)(D1...D2)
is the image of the canonical inclusion (18).

Conjecture 1. There is a canonical isomorphism
HH (i, L) TSR,

5
where k=377, di* 5.

D.2
D.2.1

Let (& be a connected reductive linear algebraic group over Q;. Fix a Cartan subgroup
H C G and an ordering on the set of roots. Denote by AT the semigroup of dominant
weights. Let Repry be the category of finite-dimensional representations of G (over
Q). For a € AT denote by V™ € Repr, the irreducible representation of G' with
highest weight a. We also denote by W< C V' the 1-dimensional subspace generated
by a highest weight vector.

For a finite set I denote by E([) the category of surjective morphisms I — I’. (In
other words, this is the category associated to the partially ordered set of equivalence
relations on ). For any morphism a : I — A" we define a functor

fo : E(I)° — Reprg,

as Tollows.

Let I 25 I' be a surjection. Consider the representation @ V) of G! and restrict
el
it to G via the diagonal mapping G — G'. Generate a subrepresentation of G

by the 1-dimensional subspace ® Wo « @ Vo) and restrict it to G via the diag-
i€l i€l
onal mapping (¢ — G''. The obtained representation is, by definition, f,(h). For a

morphism
roLoa
Lo (19)
[//
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in E(I) we have an obvious inclusion f,(h') C f.(h), so f, becomes a functor. Clearly,

fa(h)= @ Ve,

el

where o' : I' = A% is given by o/(i') = Eieh—l(i/) a(1).

D.2.2
Fix s > 0 and a collection d = (dy,...,ds) € (Z4)°. The scheme (17) can be thought

of as the moduli scheme of (Z,)*-valued divisors on X of degree d. Namely, a point
(D1, ..., Ds) of this scheme is the divisor that associates to x € X the collection

de = (dy gy dsy)

Put I = || I;, where I; = {1,2,...,d;}. Define a map 3 : [ — (Z)*® constant on

=1
every I; by B(I;) = (0,...,1,...,0). (1 occurs in the i-th place). For a surjection
1% I denote by 3" : I' = (Z4)* the map given by (i) = Eieh—l(i’) B(1).
The scheme (17) admits a stratification by locally closed subschemes U, indexed
by the (isomorphism classes of) objects h € Ob E(I). The stratum U, parametrizes

the divisors
S (i)l

eI’

where {z;};ep are distinet points of X. Clearly, given two surjections [ N I U 1",
we have Uy C Uy if and only if A factors through h.

Now suppose that we are given a morphism ~ : (Z4)* — A of semigroups. Define
a: I — A% by a = y0 3. There exists a unique constructable Q;-sheaf S* on (17)
with the following properties. The restriction of S to U} is the constant sheaf with
fibre f,(h). For a morphism (19) in F(I) the corresponding cospecialization map is
the inclusion f,(h') — f.(h).

Notice that for a sufficiently small open subscheme j : U — X(4) x ... x X(ds)
S — (R%,)7*8%" is an isomorphism.

D.2.3

Now we present a twisted version of the above construction.
Fix a geometric point 7 — X over the generic point n — X. Recall that G-
local systems on X form a groupoid whose objects are continuous homomorphisms
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F : m(X,7) — G(Q); morphisms are inner automorphisms of G(Q,) which make
the natural diagram commutative. If V € Repry and F'is a G-local system on X
then we denote by Vi the corresponding smooth Q-sheaf on X (its fibre at 7 is the
representation 7 (X, 1) — G(Q;) — AutV of m1(X,7)).

Let e1,...,es be the standard basis of (Z4)®.

Proposition D.2. Given a G-local system F' on X, d € (Z4)°, and v : (Z4)* — At
as above, consider the constructable Q,-sheaf

(17 0

on (17). There is a (unique) constructable Q,-subsheaf S;lﬂ of (20) whose fibre at a
k-point (D1,...,Ds) is
& (Vi)

reX
]

Notice that for the trivial G-local system I on X we get S;’W:;Sd”. Again for a
sufficiently small open subscheme j : U — X)) x ... x X{¥) the natural morphism
S;lﬂ — (Roj*)j*S;i’W is an isomorphism.

90



References

1]
2]
3]

[4]

[10]

[11]

[12]

[13]
[14]

M.Schlessinger, Functors of Artin rings, Trans. AMS, vol.130,n.2 (1968).
D.Gaitsgory, thesis.

G.Laumon, Correspondance de Langlands géométrique pour les corps de fonc-

tions, Duke Math.J., vol.54, No.2, p.309-359 (1987).

G.Laumon, Faisceaux automorphes pour GL,: la premiere construction de Drin-

feld, preprint alg-geom/9511004(1995).

G.Laumon, Transformation de Fourier, constantes d’équations fonctionnelles et

conjecture de Weil, Publ.Math. IHES(1987),N65,p.131-210.

G.Laumon, L.Moret-Bailly, Champs algebriques, preprint 92-42, Université Paris-
Sud (1992).

G.Laumon, L.Moret-Bailly, Champs algebriques, Springer, (to appear).

J.Bernstein, V.Lunts, Equivariant Sheaves and Functors, Lect.Notes in Math.,

1578 (1994).

R.A.Rankin, Contributions to the theory of Ramanujan’s function 7(n) and sim-
ilar arithmetical functions, Proc. Cambr. Phil.Soc., vol.35(1939), p.351-356 and
p.357-372.

D.Bump, The Rankin-Selberg Method: A survey. in: Number theory, trace for-
mulas and discrete groups, Symp. in Honor of Atle Selberge, Oslo/Norway 1987,
p.49-109 (1989).

A.Grothendieck, Techniques de construction et théoremes d’existence en
géométrie algebrique 4: les schémas de Hilbert, Sem. Bourbaki 221(1960/61),
Benjamin (1966).

F. Knudsen, D.Mumford, The projectivity of the moduli space of stable curves.
1: Preliminaries on "det” and "Div”., Math. Scandinav., 39,p.19-55 (1976).

M.Rothstein, Sheaves with connections on abelian varieties, alg-geom /9602023

G.Laumon, Transformation de Fourier généralisée, alg-geom /9603004

91



n® d’impression 2111
1°" Trimestre 1999



