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TOWARDS CANONICAL REPRESENTATIONS
OF FINITE HEISENBERG GROUPS

by Sergey Lysenko

Abstract. — We consider a finite abelian group M of odd exponent n with a sym-
plectic form ω : M ×M → µn and the Heisenberg extension 1→ µn → H → M → 1
with the commutator ω. According to the Stone–von Neumann theorem, H admits
an irreducible representation with the tautological central character (defined up to a
nonunique isomorphism). We construct such an irreducible representation ofH defined
up to a unique isomorphism, so canonical in this sense.

Résumé (Vers les représentations canoniques des groupes de Heisenberg finis). — On
considère un groupe fini abélien M d’exposant impair n avec une forme symplectique
ω : M ×M → µn. Soit 1 → µn → H → M → 1 une extension de Heisenberg dont
le commutateur est ω. D’après un théorème de Stone-von Neumann, H admet une
représentation irréductible avec le caractère central tautologique, qui est définie à un
isomorphisme non unique près. Nous construisons une telle représentation définie à un
unique isomorphisme près, donc canonique dans ce sens.

1. Introduction

1.0.1. Consider a finite abelian group M of odd exponent n with a symplectic
form ω : M ×M → µn. It admits a unique symmetric Heisenberg extension
1→ µn → H → M → 1 with the commutator ω. According to the Stone–von
Neumann theorem, H admits an irreducible representation with the tautolog-
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570 S. LYSENKO

ical central character (defined up to a nonunique isomorphism). We construct
such an irreducible representation of H defined up to a unique isomorphism,
so canonical in this sense, over a suitable finite extension of Q.
1.0.2. We are motivated by the following question of Dennis Gaitsgory about
[7]. Let X be a smooth projective connected curve over an algebraically closed
field k. Let T be a torus over k with a geometric metaplectic data G as in [5].1
To fix ideas, consider the sheaf-theoretic context of `-adic sheaves on finite
type schemes over k. Let (H,GZH

, ε) be the metaplectic Langlands dual datum
associated to (T,G) in ([5], Section 6), so H is a torus over Q̄` isogenous to
the Langlands dual of T . Let σ be a twisted local system on X, for (H,GZH

)
in the sense of [5], Section 8.4. To this data in ([5], Section 9.5.3) we attached
the DG-category of Hecke eigensheaves. The question is whether this category
identifies canonically with the DG-category Vect of Q̄`-vector spaces. In [7], we
constructed such an irreducible Hecke eigensheaf for σ out of a given irreducible
representation of a certain finite Heisenberg group (denoted by Γ given by
formula (33) in [7], Section 5.2.4) with the tautological central character.

This is why we are interested in constructing a canonical irreducible rep-
resentation of finite Heisenberg groups as in Section 1.0.1. We do this only
assuming the order of M odd, the case of even order remains open.

2. Main result

2.0.1. Let e be an algebraically closed field of characteristic zero. Let M be a
finite abelian group, ω : M×M → e∗ a bilinear form, which is alternating, that
is, ω(m,m) = 0 for any m ∈ M . Assume the induced map M → Hom(M, e∗)
is an isomorphism, that is, the form is nondegenerate.

If L ⊂ M is a subgroup, L⊥ = {m ∈ M | ω(m, l) = 0 for all l ∈ L} is its
orthogonal complement; this is a subgroup. The group L is isotropic if L ⊂ L⊥.
The subgroup L is Lagrangian if L⊥ = L. For a Lagrangian subgroup, we get
an exact sequence

0→ L→M → L∗ → 0,(1)

where L∗ = Hom(L, e∗). Namely, we send m ∈M to the character l 7→ ω(m, l)
of L. This exact sequence always admits a splitting L∗ → M , which is a
homomorphism; see, for example, ([4], Lemma 5.2). For such a splitting after
the obtained identification M →̃ L× L∗, the form ω becomes

ω((l1, χ1), (l2, χ2)) = χ1(l2)
χ2(l1) ,(2)

for li ∈ L, χi ∈ L∗.

1. There is a published version of this paper. However, the reader should use the version
from the References, which corrects some mistakes of the published version.
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TOWARDS CANONICAL REPRESENTATIONS OF FINITE HEISENBERG GROUPS571

We have H2(M, e∗) →̃ Hom(H2(M,Z), e∗) by the universal coefficient theo-
rem [2]. So, up to an isomorphism, there is a unique central extension

1→ e∗ → He∗ →M → 1,(3)
with the commutator ω. We are interested in understanding the category of
representations of He∗ with the tautological central character.
2.0.2. For a finite abelian group L, its exponent is the least common multiple
of the orders of the elements of L. Let n be the exponent ofM ; this is a divisor
of

√
|M | ∈ N.

Let µn = µn(e). Let us be given a central extension
1→ µn → H →M → 1,(4)

together with a symmetric structure σ in the sense of [1], Section 1.1,2 and com-
mutator ω. That is, σ is an automorphism of H such that σ2 = id, σ|µn = id,
and σ modµn is the involution m 7→ −m of M .

From now, on assume n odd. Then by [1], Sections 1.1–1.3, there is a
unique symmetric central extension (4) with commutator ω (up to a unique
isomorphism). Besides, (3) is isomorphic to the push-out of (4) under the
tautological character ι : µn ↪→ e∗.

The extension H is constructed as follows. Let β : M ×M → µn be the
unique alternating bilinear form such that β2 = ω. We take H = M × µn with
the product

(m1, a1)(m2, a2) = (m1 +m2, a1a2β(m1,m2)),
for mi ∈M,ai ∈ µn. Then σ(m, a) = (−m, a) for m ∈M,a ∈ µn.

Let G = Sp(M), the group of automorphisms of M preserving ω. Let g ∈ G
act on H, sending (m, a) to (gm, a). This gives the semidirect product H oG.
2.0.3. The following version of the Stone–von Neumann theorem holds for H;
the proof is left to the reader.

Proposition 2.1. — Up to an isomorphism, there is a unique irreducible rep-
resentation of H over e with the tautological central character ι : µn ↪→ e∗.

2.0.4. Write L(M) for the set of Lagrangian subgroups in M . For L ∈ L(M),
let L̄ be the preimage of L in H; this is a subgroup. If χL : L̄ → e∗ is a
character extending the tautological character ι : µn ↪→ e∗, set

HL = {f : H → e | f(l̄h) = χL(l̄)f(h), for l̄ ∈ L̄, h ∈ H}.
This is a representation of H by right translations. It is irreducible with central
character ι.

2. This paper is published as Beilinson, A. (2006), Langlands parameters for Heisenberg
modules. In Bernstein, J., Hinich, V., Melnikov, A. (eds.) Studies in Lie Theory. Progress
in Mathematics, vol 243. Birkhäuser Boston.. However, this definition seems absent in the
published version.
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572 S. LYSENKO

2.0.5. We study the following.
Problem. — Describe the category Repι(H) of representations of H over e
with central character ι : µn ↪→ e∗. Is there an object of Repι(H), which is
irreducible and defined up to a unique isomorphism? (If yes, it would provide
an equivalence between Repι(H) and the category of e-vector spaces).
2.0.6. Let I be the set of primes appearing in the decomposition of n; write
n =

∏
p∈I p

r(p) with r(p) > 0. Let K ⊂ e be the subfield generated over Q by
{√p | p ∈ I} and µn.

Theorem 2.2. — There is an irreducible representation π of H over K with
central character ι : µn ↪→ K∗ defined up to a unique isomorphism. The H-
action on π extends naturally to an action of H oG.

Remark 2.3. — Let K ′ ⊂ e be the subfield generated over Q by µn. The field
of definition of the character of π is K ′. However, we do not expect that for any
H with n odd Theorem 2.2 holds already with K replaced by K ′, but we have
not checked that. Our choices of √p for p ∈ I are made to use the results of
[6], and the formulas from [6] do not work without these choices. Note also the
following. If L is an odd abelian group, and b : L×L→ e∗ is a nondegenerate
symmetric bilinear form, then the Gauss sum of b is defined as

G(L, b) =
∑
l∈L

b(l, l).

Using the classification of such symmetric bilinear forms given in [8], one can
check that G(L, b)4 =| L |2. Since the construction of π in Theorem 2.2 is
related to representing the corresponding 2-cocyle (given essentially by cer-
tain Gauss sums) as a coboundary (after some minimal additional choices), we
expect that our choices of √p for p ∈ I are necessary.

Remark 2.4. — For L ∈ L(M), the H-representation HL from Section 2.0.4
is defined over K. We sometimes view it as a representation over K; it is hoped
that the precise meaning is clear from the context.

3. Proof of Theorem 2.2

3.0.1. Reduction. — For p ∈ I, let

Hp = {h ∈ H | h(ps) = 1 for s large enough}

and similarly for Mp. Then, Hp ⊂ H is a subgroup that fits into an exact
sequence 1→ µpr(p) → Hp →Mp → 1, and H =

∏
p∈I Hp, a product of groups.

Indeed, ω(Hp, Hq) = 1, for p, q ∈ I, p 6= q. Besides, σ preserves Hp for each
p ∈ I, so (Hp, σ|Hp

) is a symmetric Heisenberg extension of (Mp, ωp) by µpr(p) .
Here, ωp : Mp ×Mp → µpr(p) is the restriction of ω. So, Problem 2.0.5 reduces
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TOWARDS CANONICAL REPRESENTATIONS OF FINITE HEISENBERG GROUPS573

to the case of a prime n. If Mp = 0, then take πp to be the one-dimensional
representation given by the tautological character µpr(p) ↪→ e∗.

For p ∈ I odd, let Kp ⊂ e be the subfield generated over Q by µpr(p) and√
p. We prove Theorem 2.2 in the case of an odd prime n, getting for p ∈ I

a representation πp of Hp over Kp, hence over K also. Then, for any odd n,
π =

⊗
p∈I πp is the desired representation.

3.0.2. From now on, we assume n = pr for an odd prime p.

3.1. Case r = 1. —
3.1.1. In this section, we assume M is a Fp-vector space of dimension 2d. To
apply the results of [6], pick an isomorphism ψ : Fp →̃ µp. It allows us to
identify H with M ×Fp. We then view L(M), H as algebraic varieties over Fp.
We also allow the case d = 0.
3.1.2. Recall the following construction from ([6], Theorem 1).3

Pick a prime ` 6= p and an algebraic closure Q̄` of Q`. We assume that
Q̄` is chosen in such a way that K ⊂ Q̄` is a subfield. In particular, we get√
p ∈ K ⊂ Q̄`. This gives rise to the Q̄`-sheaf Q̄`( 1

2 ) over SpecFp.
Pick a one-dimensional Fp-vector space J of parity d mod 2 as Z/2Z-graded.

Let A be the line bundle (of parity zero as Z/2Z-graded) on L(M) with fiber
J ⊗ detL at L ∈ L(M). Write L̃(M) for the gerbe of square roots of A.

In loc.cit, we constructed an irreducible perverse sheafF on L̃(M)×L̃(M)×H.
Although in loc.cit., we mostly worked over an algebraic closure Fp, F is defined
over Fp.

Lemma 3.1. — For any i : SpecFp → L̃(M) × L̃(M) × H, tr(Fr, i∗F ) ∈ K.
Here, Fr is the geometric Frobenius endomorphism.

Proof. — This follows from formula (10) in [6], Section 3.3. Namely, after a
surjective smooth localization (the choice of an additional Lagrangian in M),
there is an explicit formula for F as the convolution along H of two explicit
rank one local systems. Their traces of Frobenius lie in K, as their definition
involves only the Artin–Schreier sheaf and Tate twists. So, the same holds after
the convolution along the finite group H(Fp). �

3.1.3. For an algebraic stack S → SpecFp, we write S(Fp) for the set of iso-
morphism classes of its Fp-points. In view of the isomorphism ψ : Fp →̃ µp
fixed above, for L ∈ L(M)(Fp), we identify L̄ = L× µp with L× Fp. Let

F cl : L̃(M)(Fp)× L̃(M)(Fp)×H(Fp)→ K

be the function trace of Frobenius of F .

3. For this construction, we adopt the conventions of loc.cit about Z/2Z-gradings and
étale Q̄`-sheaves on schemes over Fp.
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574 S. LYSENKO

For L ∈ L(M)(Fp), its preimage in L̃(M)(Fp) consists of two elements. We
let µ2 act on L̃(M)(Fp) over L(M)(Fp) permuting the elements in the preimage
of each L ∈ L(M)(Fp). We call a function h : L̃(M)(Fp) → K genuine, if it
changes by the nontrivial character of µ2 under this µ2-action. Recall that F cl
is genuine with respect the first and second variables.

Let us write L0 for a point of L̃(M)(Fp) over L ∈ L(M)(Fp). As in [6],
Section 2, for L0, N0 ∈ L̃(M)(Fp), viewing HL,HN as H-representations over
K, we define the canonical intertwining operator

FN0,L0 : HL → HN
by

(FN0,L0f)(h1) =
∫
h2∈H

F clN0,L0(h1h
−1
2 )f(h2)dh2,

where our measure dh2 is normalized by requiring that the volume of a point
is 1. Here, F clN0,L0 is the restriction of F cl, where we fix the first two variables
to be N0, L0.

Let G = Sp(M) viewed as an algebraic group over Fp. It acts naturally on
L(M), H, and L̃(M). By definition, for g ∈ G, (m, a) ∈ H, g(m, a) = (gm, a)
for m ∈ M,a ∈ Fp, and this action preserves the symmetric structure σ on
H. If g ∈ G, f : H → K, then gf : H → K is given by (gf)(h) = f(g−1h).
Then, g ∈ G(Fp) yields an isomorphism HL →̃ HgL. We let G act diagonally
on L̃(M)× L̃(M)×H.

The above intertwining operators satisfy the following properties.
• FL0,L0 = id.
• FR0,N0 ◦ FN0,L0 = FR0,L0 for any R0, N0, L0 ∈ L̃(M)(Fp).
• For any g ∈ G(Fp), we have g ◦ FN0,L0 ◦ g−1 = FgN0,gL0 .

Definition 3.2. — Let π be the K-vector space of collections fL0 ∈ HL, for
L0 ∈ L̃(M)(Fp), satisfying the property: for N0, L0 ∈ L̃(M)(Fp), one has

FN0,L0(fL0) = fN0 .

This is our canonical H-representation over K.

We let G(Fp) act on L̃(M)(Fp) × H(Fp) diagonally. This yields a G(Fp)-
action on π, sending {fL0} ∈ π to the collection L0 7→ g(fg−1L0).

3.2. Case r ≥ 1. —
3.2.1. Let L be a finite abelian group and p be any prime number. For k ≥ 0,
let L[pk] = {l ∈ L | pkl = 0} and

ρk(L) = L[pk]/(L[pk−1] + pL[pk+1]).
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TOWARDS CANONICAL REPRESENTATIONS OF FINITE HEISENBERG GROUPS575

Each ρk(L) is a vector space over Fp. Note that

ρk(Z/pmZ) →̃
{
Z/pZ, m = k

0, otherwise.

For finite abelian groups L,L′, one has canonically ρk(L×L′) →̃ ρk(L)×ρk(L′).
3.2.2. Canonical isotropic subgroup. — Let p be any prime and M be a finite
abelian p-group of exponent n = pr with an alternating nondegenerate bilinear
form ω : M × M → µn. We first construct by induction on r a canonical
isotropic subgroup S ⊂ M such that Aut(M) fixes S, and S⊥/S is an Fp-
vector space.

Write the set {r > 0 | ρr(M) 6= 0} as {r1, . . . , rs}, with 0 < r1 < r2 <
. . . < rs. There is an orthogonal direct sum (M,ω) →̃ ⊕si=1(Mi, ωi), where
ωi : Mi ×Mi → µn is an alternating nondegenerate bilinear form, and Mi is a
free Z/pri-module of finite rank.

Let

r′ =
{
rs

2 , rs is even
rs+1

2 , rs is odd.

Set S1 = pr
′
M . Since ω takes values in µprs , S1 is isotropic and fixed by

Aut(M). By induction hypothesis, we have a canonical isotropic subgroup
S′ ⊂M1 := S⊥1 /S1 such that S′⊥/S′ is an Fp-vector space, where S′⊥ denotes
the orthogonal complement of S′ in M1. Let S be the preimage of S′ under
S⊥1 →M1. This is our canonical isotropic subgroup in M .

Set Mc = S⊥/S; it is equipped with the induced alternating nondegenerate
bilinear form ωc : Mc ×Mc → µp; the subscript c stands for ‘canonical’.
3.2.3. We keep the assumptions of Theorem 2.2, so p is odd. View S as a
subgroup of H via s 7→ (s, 0) ∈ H, for s ∈ S. Let HS = S⊥ × µn; this
is a subgroup of H. Since S lies in the kernel of β : S⊥ × S⊥ → µn, we
get the alternating nondegenerate bilinear form βc : Mc ×Mc → µp given by
βc(m1,m2) = β(m̃1, m̃2), for m̃i ∈ S⊥ over mi.

Set Hc = Mc × µp with the product

(m1, a1)(m2, a2) = (m1 +m2, a1a2βc(m1,m2)).

This is a central extension 1 → µp → Hc → Mc → 1 with the commutator
ωc = β2

c and the symmetric structure σc(m, a) = (−m, a) for (m, a) ∈ Hc.
Let αS : HS → Hc be the homomorphism sending (m, a) to (m modS, a),

for m ∈ S⊥; its kernel is S.
As in Section 3.1, we get the algebraic stacks L̃(Mc),L(Mc), Hc over Fp.

Let G = Sp(M,ω) be the group of automorphisms of M preserving ω; this is a
finite group. We let g ∈ G act on H sending (m, a) to (gm, a). Let g ∈ G act

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



576 S. LYSENKO

on functions f : H → K by (gf)(h) = f(g−1h) for h ∈ H. For L ∈ L(M), this
yields an isomorphism g : HL →̃ HgL of K-vector spaces.

Since G preserves S⊥, we have the homomorphism G→ Gc := Sp(Mc)(Fp).
Via this map, G acts on L(Mc)(Fp), L̃(Mc)(Fp), and Hc.
3.2.4. We denote elements of L(Mc) by a capital letter with a subscript c. For
Lc ∈ L(Mc), let L ∈ L(M) denote the preimage of Lc under S⊥ →Mc.

For Lc ∈ L(Mc), we have the representation HLc
of Hc over K defined in

Section 3.1.3, and the H-representation HL over K defined in Section 2.0.4.
For Lc ∈ L(Mc), any f in the space of invariants HSL is the extension by

zero under HS ↪→ H. The space HSL is naturally a Hc-module. We get an
isomorphism of Hc-modules τLc : HLc →̃ HSL, sending f to the composition
HS αS−−→ Hc

f−→ K extended by zero to H.
For g ∈ G, Lc ∈ L(Mc), the isomorphism g : HL →̃ HgL yields an isomor-

phism g : HSL →̃ HSgL of S-invariants.

3.2.5. Given L0
c , N

0
c ∈ L̃(Mc)(Fp), we define a canonical intertwining operator

FN0
c ,L

0
c

: HL →̃ HN(5)

as the unique isomorphism of H-modules such that the diagram commutes

HSL
FN0

c ,L0
c−−−−−→ HSN

τLc

x xτNc

HLc −−−−−→
FN0

c ,L0
c

HNc

Here, FN0
c ,L

0
c
are the canonical intertwining operators from Section 3.1.3. The

properties of the canonical intertwining operators of Section 3.1.3 imply the
following properties of (5):
• FL0

c,L
0
c

= id for L0
c ∈ L̃(Mc)(Fp).

• For R0
c , N

0
c , L

0
c ∈ L̃(Mc)(Fp), one has

FR0
c,N

0
c
◦ FN0

c ,L
0
c

= FR0
c,L

0
c
.

• For g ∈ G,N0
c , L

0
c ∈ L̃(Mc)(Fp), we have g ◦ FN0

c ,L
0
c
◦ g−1 = FgN0

c ,gL
0
c
.

Definition 3.3. — Let π be the K-vector space of collections fL0
c
∈ HL, for

L0
c ∈ L̃(Mc)(Fp) satisfying the property: for N0

c , L
0
c ∈ L̃(M)(Fp), one has

FN0
c ,L

0
c
(fL0

c
) = fN0

c
.

The element h ∈ H sends {fL0
c
} ∈ π to the collection {h(fL0

c
)} ∈ π. This is

our canonical H-representation over K.
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TOWARDS CANONICAL REPRESENTATIONS OF FINITE HEISENBERG GROUPS577

The group G acts on π sending {fL0
c
} ∈ π to the collection L0

c 7→ g(fg−1L0
c
).

This is a version of the Weil representation of G. (This G-representation was
also obtained in [3] for the case when the field of coefficients is C; however, a
canonical representation of H was not constructed in therein).

The above actions of H and G on π combine to an action of the semidirect
product H oG on π. Theorem 2.2 is proved.
Acknowledgment. — I am grateful to Sam Raskin for a discussion of the sub-
ject via email.
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