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Introduction

0.0.1 Motivation. In this paper inspired by [Gai08] we study the twisted Whit-
taker categories for metaplectic groups (in the sense of [Lys]). This is a part of the
quantum geometric Langlands program [Sto], [Gai], ([Fre07], Section 6.3), [GL].

Let G be a connected reductive group over an algebraically closed field k of
characteristic p > 0. Let O = k[[t]] ⊂ F = k((t)), write GrG = G(F )/G(O) for
the affine grassmannian of G. Let us briefly describe the aspect of the quantum
geometric Langlands program, which motivates our study. Assume given a central
extension 1 → Gm → E → G(F ) → 1 in the category of group ind-schemes over k
together with a splitting over G(O). Let N ≥ 1 be invertible in k, ζ : μN (k) → Q̄

∗
�

an injective character. Here � is invertible in k. Let ˜GrG be the stack quotient of
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E/G(O) by the Gm-action, where z ∈ Gm acts as zN . Let PervG,ζ be the category
of G(O)-equivariant perverse sheaves on ˜GrG, on which μN (k) acts by ζ.

To get an extension of the Satake equivalence to this case (as well as, conjec-
turally, of the whole nonramified geometric Langlands program), one needs to impose
additional assumptions and structures on the gerbe ˜GrG → GrG. We believe that
it should come from factorization gerbe over GrG ([GL]). Let us explain the idea of
what it is.

Let X be a smooth projective curve. Write BunG for the stack of G-torsors on X.
Let R(X) be the Ran space of X, GrR(X) the Beilinson-Drinfeld affine grassmannian
of G over R(X) (cf. [Gai]). Recall the factorization structure of GrR(X)

GrR(X) ×R(X)(R(X) × R(X))disj

→̃ (GrR(X) × GrR(X)) ×R(X)×R(X) (R(X) × R(X))disj, (1)

here (R(X) × R(X))disj is the space classifying pairs of disjoint finite subsets in X.
A factorization μN -gerbe over GrG is a μN -gerbe ˜BunG over BunG together with a
factorization structure of its restriction under GrR(X) → BunG extending (1) and
satisfying some compatibility properties ([GL], 2.2.5).

There is an easier notion of a factorization line bundle on GrR(X) ([GL], 2.2.8
and 3.3). It can be seen as a line bundle L on BunG together with a factorization
structure of its restriction to GrR(X). For such a line bundle the gerbe ˜BunG of its
N -th roots has the above factorization structure.

In [Lys] the following twisted version of Satake equivalence was proved. Our input
data was a factorization line bundle on GrR(X) of some special form (sufficient to
construct all the factorization μN -gerbes on GrG up to an isomorphism)1. These
data are described in Section 0.0.7.

Given such data for G, we equipped PervG,ζ with a structure of a tensor category
and established an equivalence of tensor categories Perv�

G,ζ →̃ Rep(Ǧζ), where Ǧζ is a
connected reductive group, an analog of the Langlands dual group in the metaplectic
setting. Here Perv�

G,ζ is a symmetric monoidal category obtained from PervG,ζ by
some modification of the commutativity constraint.

Let Dζ( ˜BunG) be the derived category of Q̄�-sheaves on ˜BunG, on which μN (k)
acts by ζ. In Section 5.1 we define an action of Rep(Ǧζ) on Dζ( ˜BunG) by Hecke func-
tors. An extension of the geometric Langlands program to this case is the problem
of the spectral decomposition of Dζ( ˜BunG) under this action.

0.0.2 Gaitsgory’s conjecture. Recall the Whittaker category from [FGV01]. Let
U ⊂ G be a maximal unipotent subgroup, Lψ the Artin-Schreier sheaf on A

1 cor-
responding to an injective character ψ : Fp → Q̄

∗
� . Pick a non-degenerate character

χ : U(F ) → Ga with zero conductor. Heuristically, the Whittaker category is the
category of (U(F ), χ∗Lψ)-equivariant perverse sheaves on GrG.

1 This allowed to completely avoid the higher category theory heavily used in [GL].

Author's personal copy



GAFA TWISTED WHITTAKER MODELS FOR METAPLECTIC GROUPS

Recall that the orbits of U(F ) on GrG are infinite-dimensional, and there are two
equivalent ways to make sense of the above definition. The first (technically difficult)
local definition is found in [Ber]. The second one is via the Drinfeld compactification
denoted M and using a smooth projective curve X as an input datum. Let x ∈ X
and Uout be the group-subscheme of U(F ) of maps (X − x) → U . The character
χ is trivial on Uout, so the objects of the Whittaker category ‘live’ on Uout\ GrG.
Let Mx be the ind-stack classifying a G-torsor on X with a generalized reduction
to U over X − x. Then Uout\ GrG is included naturally into Mx. The surrogate
Whittaker category Whitx is defined as the category of perverse sheaves on Mx

with a certain equivariance condition, which restores the (U(F ), χ∗Lψ)-equivariance
property on GrG (cf. [FGV01], [Gai08]). The main result of [FGV01] established
an equivalence of categories Whitx →̃ Rep(Ǧ). Here Ǧ is the Langlands dual to G.
Gaitsgory’s conjecture ([Gai08], Conjecture 0.4) is a quantum deformation of the
above equivalence.

The definition of the twisted Whittaker category for G from [Gai08] extends
to our (a bit more general) setting of G equipped with a factorizable line bundle
on GrR(X) of our special form. Heuristically, the twisted Whittaker category is the
category of (U(F ), χ∗Lψ)-equivariant perverse sheaves on ˜GrG. This makes sense,
because a central extension of U(F ) by Gm splits canonically. In this paper we adopt
the second definition of the twisted Whittaker category denoted Whitκx, here κ refers
to our metaplectic data. Let ˜Mx be the restriction of the gerbe ˜BunG to Mx. Then
Whitκ

x is defined as the category of perverse sheaves on ˜Mx with some equivariance
condition (the same as in the untwisted case).

Gaitsgory’s conjecture attaches to our metaplectic data a big quantum group
Uq(Ǧ) (Lusztig’s version with q-divided powers) such that one should have an e-
quivalence

Whitκ
x →̃ Rep(Uq(Ǧ)) (2)

with the category of its finite-dimensional representations. This paper is a step
towards the proof of this conjecture in our setting.

Both categories are actually factorization categories in the sense of [Ras], and
the above equivalence should be compatible with these structures. This is the reason
for which in this paper (as in [Gai08]) we also consider the versions of the twisted
Whittaker category for n points of X denoted Whitκ

n.
The group Ǧζ is expected to be the quantum Frobenius quotient of Uq(Ǧ). So,

the category Rep(Ǧζ) will act on both sides of (2), and the equivalence has to be
compatible with these actions. Besides, the action on the basic object of Whitκ

x

realizes Rep(Ǧζ) as its full subcategory.

0.0.3 Main results. One of the main ideas of [Gai08] was the construction of the
functor Gn : Whitc

n → FSc
n from the twisted Whittaker category of G to the category

of factorizable sheaves assuming that the quantum parameter denoted c in loc.cit.
is irrational (i.e., q = exp(πic) is not a root of unity). The main result of [BFS98]
identified the category of factorizable sheaves FSc

n with the category Rep(
•
uq(Ǧ)) of
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representations of the corresponding graded small quantum group
•
uq(Ǧ). When q

is not a root of unity, the latter coincides with the big quantum group Uq(Ǧ), and
this has led to a proof of the above conjecture in that case ([Gai08]).

In the metaplectic case, corresponding to q being a root of unity,
•
uq(Ǧ) and

Uq(Ǧ) are substantially different, and the construction of Gn breaks down.
A possible strategy of the proof of (2) in the metaplectic case is to construct a

corrected version of the functor Gn, and then upgrade this functor to the desired
equivalence.

One of our main results is a construction of a corrected version of the functor
Gn in the metaplectic case. This is the purpose of Part I of this paper, in Part II we
study properties of this functor.
0.0.4 The definitions of the twisted Whittaker category Whitκn and the catego-
ry ˜FS

κ

n of factorizable sheaves are given in Sections 2 and 3. Our Theorem 4.11.5
provides a functor

F : Whitκ
n → ˜FS

κ

n

exact for the perverse t-structures and commuting with the Verdier duality. It is
constructed under the assumption that our metaplectic parameter, the quadratic
form �, satisfies what we call the subtop cohomology property. This is a local property
that we prove for all the simple simply-connected reductive groups and most of
parameters � in Theorem 1.1.6 (and Remark 1.1.7), which is one of our main results.
We formulate Conjecture 1.1.2 describing those quadratic forms � for which we
expect the subtop cohomology property to hold. These are precisely those � for
which our construction of F makes sense.2

Let U− ⊂ G be the opposite maximal unipotent subgroup. The functor Gn in
[Gai08] was defined, roughly, by taking cohomologies along U−(F )-orbits on GrG.
More precisely, these cohomology complexes are put in families over the configura-
tion spaces Xμ

n of divisors on X as direct images under Z
μ
n → Xμ

n giving rise to
perverse sheaves on (some gerbes over) these Xμ

n . The perverse sheaves so obtained
are moreover factorizable in a natural sense. Here Z

μ
n are Zastava spaces largely used

in the geometric Langlands program ([BFGM02]).
To construct the functor F, we introduce natural compactifications of Zastava

spaces in Section 4.4. Our proof also essentially uses the description of the twisted
IC-sheaves of Drinfeld compactifications BunB from [Lys].

As predicted by the above conjecture, an irreducible object of the twisted Whit-
taker category Whitκ

x is of the form Fx,λ for some G-dominant coweight λ. Assuming
the subtop cohomology property we show that

F(Fx,λ) →̃ ⊕
μ≤λ

Lx,μ ⊗ V λ
μ ,

2 When this paper has been written, D. Gaitsgory has informed the author that the definition of
the functor F has been known to him at the time of working on [Gai08] around 2007, as well as some
version of Conjecture 1.1.2 of our paper. But since this conjecture was not proved, the definition of
F was not made public at that moment.
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where Lx,μ are the irreducible objects of ˜FS
κ

x, and V λ
μ are some multiplicity vector

spaces (cf. Corollary 4.9.3 and Proposition 4.11.4). One of our main results is a
description of the space V λ

μ in Theorem 4.12.2. We show that V λ
μ admits a canonical

base, which is naturally a subset of B(λ). Here B(λ) is the crystal of the canonical
base of the irreducible Ǧ-representation V

λ of highest weight λ.
The dominant weights of Ǧζ form naturally a subset of the set Λ+ of G-dominant

coweights. Our Theorem 4.12.6 shows that if λ is a dominant weight of Ǧζ then V λ
μ

identifies with the μ-weight space in the irreducible representation V (λ) of Ǧζ of
highest weight λ.

0.0.5 Other results inspired by quantum groups. In Section 5 we define the action
of the category Rep(Ǧζ) of representations of Ǧζ by Hecke functors on the twisted de-
rived category Dζ( ˜BunG) of BunG, and on the twisted Whittaker category DWhitκx.
The main result of this Section is Theorem 5.3.1. It shows that the Hecke functors
are exact for the perverse t-structure on the twisted Whittaker category. It also
shows that acting on the basic object of Whitκ

x by the Hecke functor corresponding
to an irreducible representation of Ǧζ , one gets the corresponding irreducible object
of Whitκ

x. This is an analog of ([FGV01], Theorem 4) in the metaplectic setting.
In Section 6 we introduce a notion of restricted dominant coweights λ of G and

show that the corresponding irreducible objects Fx,λ ∈ Whitκ
x remain irreducible

after applying F. This is an analog of the corresponding result for the restriction
functor Rep(Uq(Ǧ)) → Rep(

•
uq(Ǧ)), see ([ABBGM05], Proposition 1.1.8).

We also prove an analog in our setting of the Lusztig-Steinberg tensor product
theorem for quantum groups ([ABBGM05], Theorem 1.1.4). It describes the struc-
ture of the semi-simple part Whitκ,ss

x of the twisted Whittaker category Whitκ
x as a

module over Rep(Ǧζ) acting by Hecke functors. If [Ǧζ , Ǧζ ] is simply-connected then
we show that this is a complete description.

Let Ťζ ⊂ Ǧζ be the canonical maximal torus. In Section 10 we define the action of
Rep(Ťζ) by Hecke functors on ˜FS

κ

x. This corresponds to an action of representations
of the maximal torus of the quantum Frobenius quotient on Rep(

•
uq(Ǧ)) defined in

([ABBGM05], Section 1.1.6).
One of our main results is Theorem 10.1.2 showing that F : Whitκ

x → ˜FS
κ

x

commutes with the actions of Hecke functors with respect to the inclusion Ťζ ↪→ Ǧζ .
This is an analog of the similar property of the restriction functor Rep(Uq(Ǧ)) →
Rep(

•
uq(Ǧ)) ([ABBGM05], Proposition 1.1.11).

Further, we compute the Kazhdan–Lusztig’s type polynomials for Whitκx in some
special cases (cf. Section 9). Acting on the basic object of FSκ

x, one gets a full
embedding Rep(Ťζ) ⊂ FSκ

x. We also show that, assuming the subtop cohomology
property, this full subcategory is closed under extensions (cf. Proposition 10.2.1).

In Section 11 we formulate a metaplectic analog of the Casselman-Shalika prob-
lem (and its analog for quantum groups). Then we calculate the top cohomology
group of the corresponding Casselman-Shalika complex in Proposition 11.2.1.
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In “Appendix B” we prove Proposition 2.7.1, which reformulates the subtop co-
homology property as some categorical property of Whitκx saying that Ext1 in Whitκx
between some irreducible objects vanish. The corresponding property is known to
hold for Rep(Uq(Ǧ)) ([Bez]). In Section 12 we compare our setting with that of
[ABBGM05], where the quantum Frobenius quotient of Uq(Ǧ) identifies with G.

0.0.6 Notation. We work over an algebraically closed ground field k of char-
acteristic p > 0. Let X be a smooth projective connected curve of genus g. Let
Ω denote the canonical line bundle on X. We fix a square root Ω

1
2 of Ω. Set

O = k[[t]] ⊂ F = k((t)). Let G be a connected reductive group over k with
[G, G] simply-connected. Let B ⊂ G be a Borel subgroup, B− ⊂ G its opposite
and T = B ∩ B− a maximal torus. Let U (resp., U−) denote the unipotent radi-
cal of B (resp., of B−). Let Λ denote the coweights of T , Λ̌ the weights of T . The
canonical pairing between the two is denoted by 〈, 〉. By Λ+ (resp., Λ̌+) we denote
the semigroup of dominant coweights (resp., dominant weights) for G. Let ρ be the
half-sum of positive coroots of G. Let Λpos denote the Z+-span of positive coroots
in Λ.

Set Gab = G/[G, G], let Λab (resp., Λ̌ab) denote the coweights (resp., weights) of
Gab. Let J denote the set of connected components of the Dynkin diagram of G. For
j ∈ J write Jj for the set of vertices of the j-th connected component of the Dynkin
diagram, J = ∪j∈JJi. For j ∈ J let αj (resp., α̌j) denote the corresponding simple
coroot (resp., simple root). One has Gad =

∏

j∈J Gj , where Gj is a simple adjoint
group. Let gj = LieGj . For j ∈ J let κj : Λ ⊗ Λ → Z be the Killing form for Gj , so

κj =
∑

α̌∈Řj

α̌ ⊗ α̌,

where Řj is the set of roots of Gj . For a standard Levi subgroup M of G we denote
by Λpos

M the Z+-span of simple coroots of M in Λ. Our notation μ ≤M λ for λ, μ ∈ Λ
means that λ − μ ∈ Λpos

M . For M = G we write ≤ instead of ≤G.
By a super line we mean a Z/2Z-graded line. As in [Lys], we denote by Es(T )

the groupoid of pairs: a symmetric bilinear form κ : Λ ⊗ Λ → Z, and a central super
extension 1 → k∗ → Λ̃s → Λ → 1 whose commutator is (γ1, γ2)c = (−1)κ(γ1,γ2).

Let Sch/k denote the category of k-schemes of finite type with Zarisky topology.
The n-th Quillen K-theory group of a scheme form a presheaf on Sch/k. As in
[BD01], Kn will denote the associated sheaf on Sch/k for the Zariski topology.

Pick a prime � invertible in k. We work with (perverse) Q̄�-sheaves on k-stacks
for the étale topology. Pick an injective character ψ : Fp → Q̄

∗
� , let Lψ be the

corresponding Artin-Schreier sheaf on A
1. The trivial G-torsor over some base is

denoted F0
G.

Denote by Pθ(X, Λ) the Picard groupoid of θ-data ([BD04], Section 3.10.3). Its
object is a triple θ = (κ, λ, c), where κ : Λ ⊗ Λ → Z is a symmetric bilinear form, λ
is a rule that assigns to each γ ∈ Λ a super line bundle λγ on X, and c is a rule that
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assigns to each pair γ1, γ2 ∈ Λ an isomorphism cγ1,γ2 : λγ1 ⊗ λγ2 →̃λγ1+γ2 ⊗ Ωκ(γ1,γ2)

on X. They are subject to the conditions from ([BD04], Section 3.10.3).
For a reductive group H we denote by BunH the stack of H-torsors on X.

0.0.7 Input data. We fix the following data as in ([Lys], Section 2.3). Write
GrG = G(F )/G(O) for the affine grassmannian of G. For j ∈ J let Lj denote the
(Z/2Z-graded purely of parity zero) line bundle on GrG with fibre det(gj(O) : gj(O)g)
at gG(O) (the definition of this relative determinant is found in [FL10]). Let Ea

j be
the punctured total space of the pull-back of Lj to G(F ). This is a central extension

1 → Gm → Ea
j → G(F ) → 1,

it splits canonically over G(O).
Pick an even symmetric bilinear form β : Λab ⊗Λab → Z. Assume given a central

extension
1 → Gm → Vβ → Λab → 1 (3)

over k whose commutator is (γ1, γ2)c = (−1)−β(γ1,γ2). It is given for each γ ∈ Λab by
a line εγ over k together with isomorphisms

cγ1,γ2 : εγ1 ⊗ εγ2 →̃ εγ1+γ2

for γi ∈ Λab subject to the conditions in the definition of Es(Gab) ([Lys15], Sec-
tion 3.2.1).

Let N ≥ 1 be invertible in k. Let ζ : μN (k) → Q̄
∗
� be an injective character,

we write Lζ for the canonical rank one local system on B(μN ) such that μN (k)
acts on it by ζ. We have a map sN : Gm → B(μN ) corresponding to the μN -torsor
Gm → Gm, z 
→ zN . The local system s∗

NLζ is sometimes also denoted by Lζ .
For each j ∈ J pick cj ∈ Z. To these data we associate the even symmetric

bilinear form κ̄ : Λ ⊗ Λ → Z given by

κ̄ = −β −
∑

j∈J

cjκj (4)

and the quadratic form � : Λ → Q given by �(μ) = κ̄(μ,μ)
2N .

0.0.8 Central extensions. To the above unput data we associate the following
objects. According to ([BD01], Theorem 3.16), to the central exension (3) one canon-
ically attaches a central extension

1 → K2 → Vβ → Gab → 1 (5)

of sheaf of groups on Sch/k with the following property. Write (·, ·)st : F ∗ ×F ∗ → k∗

for the tame symbol map ([Lys], Section 2.3). Passing to F -points in (5) and further
taking the push-out by the tame symbol (·, ·)st : K2(F ) → Gm one gets a central
extension

1 → Gm → Eβ → Gab(F ) → 1, (6)
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which is actually a central extension in the category of ind-schemes over k, and its
commutator (·, ·)c : Gab(F ) × Gab(F ) → Gm satisfies

(λ1 ⊗ f1, λ2 ⊗ f2)c = (f1, f2)
−β(λ1,λ2)
st

for λi ∈ Λab, fi ∈ F ∗. The pull-back of (6) under G(F ) → Gab(F ) is also denoted by
Eβ by abuse of notation.

Recall that Vβ(O) → Gab(O) is surjective, and the composition of the tame
symbol with K2(O) → K2(F ) is trivial. For this reason (6) is equipped with a
canonical section over Gab(O). The Gm-torsor Eβ/Gab(O) → GrGab

over tγGab(O) is
constant with fibre εγ − {0}, the group Gab(O) acts on it by the character

Gab(O) → Gab
β(γ)→ Gm

The sum of the extensions Eβ and (Ea
j )cj , j ∈ J is the central extension denoted

1 → Gm → E → G(F ) → 1. (7)

It is equipped with the induced section over G(O). Let

1 → Gm → VE → Λ → 1 (8)

be the pull-back of (7) under Λ → G(F ), λ 
→ tλ. The commutator in (8) is given
by

(λ1, λ2)c = (−1)κ̄(λ1,λ2).

Set GraG = E/G(O). Let ˜GrG be the stack quotient of GraG under the Gm-
action such that z ∈ Gm acts as zN . Let PervG,ζ be the category of G(O)-equivariant
perverse sheaves on ˜GrG on which μN (k) acts by ζ.

0.0.9 Line bundles. As in ([Lys], Section 2.6) we associate to the pair (Vβ , −β) ∈
Es(Gab) a line bundle Lβ on BunGab

. This is done in two steps. First, (Vβ , −β) yields
an object θ0 ∈ Pθ(X, Λab) as in ([Lys15], Lemma 4.1). Second, θ0 yields a super
line bundle on BunGab

as in ([Lys], Section 2.6), it is actually of parity zero. The
restriction of Lβ to the Ran version of GrGab

is a factrorization line bundle ([GL],
2.2.8).

For μ ∈ Λab consider the map iμ : X → BunGab
, x 
→ O(−μx). One has canoni-

cally

i∗μLβ →̃ Ω
β(μ,μ)

2 ⊗ εμ.

For j ∈ J let Lj,BunG
be the line bundle on BunG whose fibre at F ∈ BunG is

det RΓ(X, (gj)F0
G
) ⊗ det RΓ(X, (gj)F)−1.
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Denote by Lκ̄ the line bundle Lβ ⊗ ( ⊗
j∈J

L
cj

j,BunG
) on BunG. Its restriction to the Ran

version of GrG is naturally a factorization line bundle.
For x ∈ X let GrG,x denote the affine grassmannian classifying a G-torsor F

on X with a trivialization F →̃F0
G |X−x. The restriction of Lκ̄ (with zero section

removed) under the forgetful map GrG,x → BunG identifies with GraG (once we pick
an isomorphism Dx →̃ SpecO for the formal disk Dx around x).

0.0.10 Metaplectic dual group. In [Lys] we equipped PervG,ζ with a structure of a
symmetric monoidal category, we introduced a symmetric monoidal category Perv�

G,ζ
obtained from PervG,ζ by some modification of the commutativity constraint.

Set Λ� = {λ ∈ Λ | κ̄(λ) ∈ N Λ̌}. Let Ťζ = Spec k[Λ�] be the torus whose weights
lattice is Λ�. Let Ǧζ be the reductive group over Q̄� defined in ([Lys], Theorem 2.1),
it is equipped with canonical inclusions Ťζ ⊂ B̌ζ ⊂ Ǧζ , where Ťζ is a maximal torus,
and B̌ζ is a Borel subgroup dual to T ⊂ B ⊂ G.

To get a fibre functor on Perv�
G,ζ one needs to pick an additional input datum.

We make this choice as in [Lys]. Namely, let V̄E be the stack quotient of VE by the
Gm-action, where z ∈ Gm acts as zN . It fits into an exact sequence of group stacks

1 → B(μN ) → V̄E → Λ → 1. (9)

We pick a morphism of group stacks tE : Λ� → V̄E, which is a section of (9)
over Λ�. This yields as in ([Lys], Theorem 2.1) an equivalence of tensor categories
Perv�

G,ζ →̃ Rep(Ǧζ).

Let ˜GrT be obtained from ˜GrG by the base change GrT → GrG. Write PervT,G,ζ

for the category of T (O)-equivariant perverse sheaves on ˜GrT on which μN (k) act-
s by ζ. As in ([Lys], Section 3.2), the datum of tE yields an equivalence Locζ :
Rep(Ťζ) →̃ PervT,G,ζ .

0.0.11 Let Ωρ denote the T -torsor on X obtained from Ω
1
2 via the extension of

scalars for 2ρ : Gm → T . We denote by ωLκ̄ the line bundle on BunG whose fibre at
F ∈ BunG is Lκ̄

F ⊗ (Lκ̄
Ωρ)−1. From ([Lys15], Proposition 4.1) one gets the following.

Lemma 0.0.1. Let D =
∑

x μxx be a Λ-valued divisor on X. The fibre of Lβ at
Ωρ(−D) identifies canonically with

(Lβ)Ωρ ⊗ (⊗x∈X(Ω
1
2
x )β(μx,μx+2ρ) ⊗ εμ̄x),

where μ̄x ∈ Λab is the image of μx.

0.0.12 Langlands program for metaplectic groups. Let ˜BunG be the gerbe of N -th
roots of ωLκ̄ over BunG. Its restriction to the Ran version of GrG is a factorization
gerbe ([GL], 2.3.2). Let Dζ( ˜BunG) denote the derived category of Q̄�-sheaves on
˜BunG, on which μN (k) acts by ζ.

As in [Lys], where the case of G simple simply-connected was considered, we
define an action of Perv�

G,ζ on Dζ( ˜BunG) by Hecke functors (see Section 5.1). The
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geometric Langlands program for metaplectic groups could be the problem of finding
a spectral decomposition of Dζ( ˜BunG) under this action. Our study of the twisted
Whittaker model in this setting is motivated by this problem.

Part I. Construction of the functor F

1 Local problem: subtop cohomology

1.1 In this section we formulate and partially prove Conjecture 1.1.2 that is
used in Proposition 4.11.2.

For a free O-module M write Mc̄ = M ⊗O k. For μ ∈ Λ let Grμ
B (resp., Grμ

B−)
denote the U(F )-orbit (resp., U−(F )-orbit) in GrG through tμ. For μ in the coroot
lattice, the Gm-torsor GraG ×GrG

Grμ
B → Grμ

B is constant with fibre Ω−κ̄(μ,μ)
c̄ −

0, and T (O) acts on it by the character T (O) → T
−κ̄(μ)→ Gm. The Gm-torsor

GraG ×GrG
Grμ

B− → Grμ
B− is constant with fibre Ω−κ̄(μ,μ)

c̄ − 0, and T (O) acts on

it by T (O) → T
−κ̄(μ)→ Gm.

As in ([FGV01], Section 7.1.4), for η ∈ Λ we write χη : U(F ) → A
1 for an

additive character of conductor η̄, where η̄ is the image of η in the coweights lattice
of Gad. For η + ν ∈ Λ+ we also write χν

η : Grν
B → A

1 for any (U(F ), χη)-equivariant
function.

For μ ∈ Λ let

˜Gr
μ

B = Grμ
B ×GrG

˜GrG.

Pick χ0 : U(F ) → A
1 and define χ0

0 : Gr0B → A
1 by χ0

0(uG(O)) = χ0(u) for

u ∈ U(F ). Set ev = χ0
0. For the canonical trivialization ˜Gr

0

B →̃ Gr0B ×B(μN ), we

consider LG := ev∗Lψ � Lζ as a local system on ˜Gr
0

B.
For μ in the coroot lattice any trivialization of Ω−κ̄(μ,μ)

c̄ yields a section sμ :
Grμ

B− → ˜Gr
μ

B− . Recall that Gr0B ∩Gr−λ
B− is empty unless λ ≥ 0, and for λ ≥ 0 this

is a scheme of finite type and pure dimension 〈λ, ρ̌〉 by ([BFGM02], Section 6.3).
Recall the quadratic form � from Section 0.0.7.

Definition 1.1.1. We say that the subtop cohomology property is satisfied for � if
for any λ > 0, which is not a simple coroot,

RΓc(Gr0B ∩Gr−λ
B− , s∗

−λLG) (10)

is placed in degrees ≤ top − 2, where top = 〈λ, 2ρ̌〉.

Conjecture 1.1.2. Assume that �(αi) /∈ Z for any simple coroot αi. Then the
subtop cohomology property is satisfied for �.
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This conjecture is motivated by our definition of the functor F in Section 4.6.1,
this is precisely the local property needed in Proposition 4.11.2. The assumption
�(αi) /∈ Z is used in the construction of F to get the correct answer over

◦
Xμ (see

Proposition 4.3.4).

Remark 1.1.3. (i) The input data of Section 0.0.7 are functorial in a suitable
sense. In particular, we may restrict them from G to [G, G]. Then κ̄ gets re-
placed by its restriction to the coroot lattice. The subtop cohomology property
holds for [G, G] (with the induced input data) if and only if it holds for G.

(ii) We may pick a torus T1 and an inlcusion Z([G, G]) ↪→ T1, where Z([G, G])
is the center of [G, G]. Then G1 := ([G, G] × T1)/Z([G, G]) has a connected
center, here Z([G, G]) is included diagonally in the product. One may also
extend the input data of Section 0.0.7 to G1 and assume, if necessary, that G
has a connected center.

Definition 1.1.4. If the center Z(G) of G is not connected, replace G by the group
G1 as in Remark 1.1.3, so we may assume Z(G) connected. Then pick fundamental
weights ωi ∈ Λ of Ǧ corresponding to α̌i for i ∈ J. Say that � satisfies the property
(C) if the following holds. If i ∈ J, λ > αi such that ωi − λ appears as a weight of
the fundamental representation V

ωi of Ǧ then κ̄(λ − αi) is not divisible by N in Λ̌.

Here is the main result of this section.

Theorem 1.1.5. If � satisfies the property (C) then the subtop cohomology property
is satisfied for �.

The proof of the following is given case by case in “Appendix A”.

Theorem 1.1.6. The quadratic form � satisfies the property (C), and hence the
subtop cohomology property, in the following cases:

• G is of type C2 or An for n ≥ 1, and �(αi) /∈ Z for any simple coroot αi.
• G is of type Bn, Cn, Dn for n ≥ 1 or G2, and �(αi) /∈ 1

2Z for any simple
coroot αi.

• G is of type F4, and �(αi) /∈ 1
2Z, �(αi) /∈ 1

3Z for any simple coroot αi.

Remark 1.1.7. Let G be of type En with 6 ≤ n ≤ 8. As in the proof of Theo-
rem 1.1.6, one shows that there is a collection of positive integers d1, . . . , dr (de-
pending on n) with the following property. If �(αi) /∈ 1

d1
Z, . . . , 1

dr
Z for any simple

coroot αi then the property (C) is satisfied for �. This collection can be found in
principle in a way similar to the one we use for other types, however, this requires a
lot of explicit calculations. They could certainly be done with a suitable computer
program (like [FK]).

In Section A.2 of “Appendix A”, we consider G of type E8 and establish a
necessary condition for the property (C). Namely, one needs at least that �(αi) /∈
1
10Z, 1

8Z, 1
6Z for the property (C) to hold for � in this case.
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1.2 Proof of Theorem 1.1.5.

1.2.1 Over Gr0B ∩Gr−λ
B− we get two different trivializations of the Gm-torsor

GraG → GrG, the first coming from Gr0B, the second one from that over Gr−λ
B− .

The discrepancy between the two trivializations is a map γG : Gr0B ∩Gr−λ
B− → Gm

that intertwines the natural T (O)-action on the source with the T (O)-action on Gm

by the character T (O) → T
κ̄(λ)→ Gm. To be precise, for the corresponding sections

s0
B : Gr0B → GraG and s−λ

B− : Gr−λ
B− → GraG one has s−λ

B− = γGs0
B. Note that

s∗
−λLG →̃ ev∗Lψ ⊗ γ∗

GLζ .
Recall that the restriction of ev : Gr0B ∩Gr−λ

B− → A
1 to each irreducible compo-

nent of Gr0B ∩Gr−λ
B− is dominant ([Gai08], Section 5.6). So, (10) is placed in degrees

≤ top − 1.

1.2.2 Recollections on crystals. As in [BFG06], write Bg(λ) for the set of irre-
ducible components of Gr0B ∩Gr−λ

B− . One has the structure of a crystal on Bg =
∪λ≥0 Bg(λ) defined in ([BFG06], Sections 13.3-13.4). We recall the part of this crys-
tal structure used in our proof.

For a standard parabolic P ⊂ G with Levi quotient M let qP : GrP → GrM be
the natural map. Write B(M) and B−(M) for the corresponding Borel subgroups
of M . For λ ≥ 0 the scheme Gr0B ∩Gr−λ

B− is stratified by locally closed subschemes
Gr0B ∩q−1

P (Gr−μ
B−(M)) ∩ Gr−λ

B− indexed by 0 ≤M μ ≤ λ. For such μ and any g ∈
Gr−μ

B−(M) one has an isomorphism

Gr0B ∩q−1
P (Gr−μ

B−(M)) ∩ Gr−λ
B− →̃ (Gr0B(M) ∩Gr−μ

B−(M)) × (q−1
P (g) ∩ Gr−λ

B−). (11)

Denote by Bm,∗
g (λ−μ) the set of irreducible components of q−1

P (g)∩Gr−λ
B− of (maximal

possible) dimension 〈λ − μ, ρ̌〉. This set is independent of g ∈ Gr−μ
B−(M) in a natural

sense (see loc.cit.). One gets the bijection

Bg(λ) →̃ ∪μ Bm,∗
g (λ − μ) × Bm(μ)

sending an irreducible component b of Gr0B ∩Gr−λ
B− to the pair (b1, b2) defined as

follows. First, there is a unique μ ∈ Λ with 0 ≤M μ ≤ λ such that b ∩ q−1
P (Gr−μ

B−(M))

is dense in b. Then b ∩ q−1
P (Gr−μ

B−(M)) corresponds via (11) to (b1, b2).
For i ∈ J the operation fi : Bg → Bg ∪ 0 is defined as follows. Let Pi be the

standard parabolic whose Levi Mi has a unique simple coroot αi. Our convention is
that fi : Bmi

→ Bmi
∪0 sends the unique element of Bmi

(ν) to the unique element of
Bmi

(ν−αi) for ν ≥Mi
αi (resp., to 0 for ν = 0). For the corresponding decomposition

Bg(λ) →̃ ∪μ Bmi,∗
g (λ − μ) × Bmi

(μ)

write b ∈ Bg(λ) as (b1, b2). Then fi(b1, b2) = (b1, fi(b2)) by definition.
For i ∈ J, b ∈ Bg(ν) set φi(b) = max{m ≥ 0 | fm

i b �= 0}.
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Let B(−∞) denote the standard crystal of the canonical base in U(ǔ), here ǔ is
the Lie algebra of the unipotent radical of the Borel B̌ ⊂ Ǧ. It coincides with the
crystal introduced in ([Kas95], Remark 8.3). A canonical isomorphism Bg →̃B(−∞)
is established in [BFG06]. For λ ∈ Λ denote by Tλ the crystal with the unique element
of weight λ, the notation from ([Kas95], Example 7.3) and ([BG08], Section 2.2).
For λ ∈ Λ+ denote by B(λ) the crystal of the canonical base of the irreducible
Ǧ-representation V

λ of highest weight λ. We identify it canonically with the crystal
denoted by BG(λ) in ([BG01], Section 3.1). So, an element of B(λ) is an irreducible
component of Grν

B ∩Grλ
G for some ν ∈ Λ appearing as a weight of Vλ. Recall from

([BG08], Section 2.2) that for λ ∈ Λ+ there is a canonical embedding B(λ) ↪→
Tw0(λ) ⊗ B(−∞) whose image is

{tw0(λ) ⊗ b | b ∈ B(−∞), φi(b∗) ≤ −〈w0(α̌i), λ〉 for all i ∈ J}. (12)

Here B(−∞) → B(−∞), b 
→ b∗ is the involution defined in ([Kas95], Section 8.3),
see also ([BG08], Section 2.2). This inclusion is described in the geometric terms in
([BG08], Proposition 4.3). The involution ∗ is also described in geometric terms as
the one coming from an automorphism of G in ([BG08], Section 4.1, p. 100).

1.2.3 Let μ̄ = {μi}i∈J with μi ∈ Λ, λ ≥ μi ≥Mi
0. We have the corresponding

maps qPi
: GrPi

→ GrMi
. Set

Y μ̄ = ( ∩
i∈J

q−1
Pi

(Gr−μi

B−(Mi)
)) ∩ Gr0B ∩Gr−λ

B− .

The scheme Gr0B ∩Gr−λ
B− is stratified by locally closed subshemes Y μ̄ for the collec-

tions μ̄ as above (some strata could be empty). Our strategy is to show that each
stratum Y μ̄ does not contribute to top − 1 cohomology in (10).

Set Z μ̄ =
∏

i∈J Gr0B(Mi)
∩Gr−μi

B−(Mi)
. Let

qμ̄ : Y μ̄ → Z μ̄

be the product of the maps qPi
. Write U(Mi) for the unipotent radical of B(Mi). For

each i ∈ J define ev i : Gr0B(Mi)
→ A

1 by ev i(uMi(O)) = χ0(u) for u ∈ U(Mi)(F ). We
have used here some section Mi ↪→ Pi. For ev μ̄ : Z μ̄ → A

1 given by ev μ̄ =
∑

i∈J ev i

the restriction ev |Y μ̄ equals ev μ̄qμ̄.
By Definition 1.1.4, we assume Z(G) connected and pick fundamental coweights

ωi of G. Note that γ∗
GLζ is equivariant under the action of Ker(T (O) → T ). If there is

i ∈ J such that μi ≥Mi
2αi then under the action of Ker(O∗ ωi→ T (O) → T ) the sheaf

ev∗
iLψ on Gr0B(Mi)

∩Gr−μi

B−(Mi)
changes by a nontrivial additive character. Therefore,

ev∗Lψ⊗γ∗
GLζ on Y μ̄ also changes by a nontrivial additive character under the action

of this group. So, the integral over this stratum vanishes by ([Ngo], Lemma 3.3).
Assume from now on that each μi is either αi or zero. The stratum Y μ̄, where

μi = 0 for all i, is of dimension < 〈λ, ρ̌〉 by ([Gai08], Section 5.6).
Consider a stratum Y μ̄ such that μi �= 0 for precisely m different elements i ∈ J

with m ≥ 2. Recall that Gr0B(Mi)
∩Gr−αi

B−(Mi)
→̃Gm. The group T acts transitively
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on Z μ̄. Since qμ̄ is T (O)-equivariant, the dimensions of the fibres of qμ are ≤ 〈λ, ρ̌〉−
m. Our claim in this case is reduced to the following. For any T (O)-equivariant
constructible sheaf F on Z μ̄, the complex RΓc(Z μ̄, F ⊗(ev μ̄)∗Lψ) is placed in degrees
≤ m. This is easy to check.

The only remaining case is the stratum Y μ̄ such that there is i ∈ J with μi = αi

and μj = 0 for j �= i. In particular, λ ≥ αi. We may assume that Y μ̄ contains
an irreducible component b of dimension 〈λ, ρ̌〉, otherwise this stratum does not
contribute to top − 1 cohomology in (10). The closure of b in Gr0B ∩Gr−λ

B− is an
element b̄ ∈ Bg(λ) such that fj b̄ = 0 for j �= i and f2

i b̄ = 0. The following is derived
from ([Kas95], Proposition 8.2, Section 8.3), see the formula (12).

Proposition 1.2.1. Pick i ∈ J. If ν > 0 and b̄ ∈ Bg(ν) such that fj b̄ = 0 for all
j �= i, and f2

i b̄ = 0 then ωi − ν appears in the fundamental representation V
ωi of Ǧ

with highest weight ωi. In other words, w(ωi − ν) ≤ ωi for all w ∈ W .

We conclude that ωi−λ appears in V
ωi (for other λ the proof is already finished).

For P = Pi and g = t−αi the isomorphism (11) becomes

Gr0B ∩q−1
Pi

(Gr−αi

B−(Mi)
) ∩ Gr−λ

B− →̃ (Gr0B(Mi)
∩Gr−αi

B−(Mi)
) × (q−1

Pi
(t−αi) ∩ Gr−λ

B−). (13)

We let T (O) act on the right hand side of (13) as the product of the natural actions
of T (O) on the two factors. Then (13) is T (O)-equivariant (see Section 1.2.4). The
Gm-torsor GraG → GrG is constant over q−1

Pi
(t−αi) with fibre Ω−κ̄(αi,αi)

c̄ − 0, and
T (O) acts on it by the character

T (O) → T
κ̄(αi)→ Gm.

Pick any trivialization of Ω−κ̄(αi,αi)
c̄ , let s̄i : q−1

Pi
(t−αi) → GraG be the corresponding

section of the Gm-torsor. We get the discrepancy function γi : q−1
Pi

(t−αi) ∩ Gr−λ
B− →

Gm such that s−λ
B− = γis̄i over q−1

Pi
(t−αi) ∩ Gr−λ

B− . The map γi interwines the natural

T (O)-action on q−1
Pi

(t−αi) ∩ Gr−λ
B− with the action on Gm by T (O) → T

κ̄(λ−αi)→ Gm.
Let GraMi

be the restriction of GraG under GrMi
→ GrG. As for G, one defines

the discrepancy function γMi
: Gr0B(Mi)

∩Gr−αi

B−(Mi)
→ Gm. The map

(Gr0B(Mi)
∩Gr−αi

B−(Mi)
) × (q−1

Pi
(t−αi) ∩ Gr−λ

B−)
γMi

γi→ Gm

coincides with the restriction of γG.
There is a T (O)-invariant subscheme Y ⊂ q−1

Pi
(t−αi)∩Gr−λ

B− such that (13) restricts
to an isomorphism

Y μ̄ →̃ (Gr0B(M) ∩Gr−αi

B−(M)) × Y.

The contribution of Y μ̄ becomes

RΓc(Gr0B(M) ∩Gr−αi

B−(M), ev
∗
iLψ ⊗ γ∗

Mi
Lζ) ⊗ RΓc(Y, γ∗

i Lζ).
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We have dim(Y) ≤ 〈λ, ρ̌〉 − 1. To finish the proof it suffices to show that γ∗
i Lζ is

nonconstant on each irreducible component of Y of dimension 〈λ, ρ̌〉 − 1. This is the
case, because the character κ̄(λ−αi) is not divisible by N in Λ̌, so that γ∗

i Lζ changes
under the T (O)-action by a nontrivial character. Theorem 1.1.5 is proved. ��
1.2.4 Equivariant decomposition. If G is a group scheme, and f : Y → Z is a
G-equivariant map such that G acts transitively on Z, assume that for any y ∈ Y ,
the inclusion StabG(y, Y ) ⊂ StabG(f(y), Z) is an equality. Then a choice of z ∈ Z
yields an isomorphism ξ : Z × f−1(z) →̃ Y . Namely, let S = StabG(z, Z). The map
(G/S) × f−1(z) → Y , (gS, y) 
→ gy is well defined and gives this isomorphism.

Assume in addition we have a semi-direct product 1 → G → G̃ → H → 1 with
a section H ↪→ G̃ as a subgroup. Assume f is in addition G̃-equivariant. Assume
z ∈ Z is fixed by H. Then SH is a subgroup of G̃ equal to StabG̃(z, Z). So, H acts
on S by conjugation. If we identify G/S →̃Z, gS 
→ gz then the action of h ∈ H on
gS ∈ G/S →̃ Z sends gS to hgh−1S. Now ξ : Z×f−1(z) →̃ Y becomes H-equivariant
if we let h ∈ H act on Z × f−1(z) as the product of the actions, that is, h ∈ H acts
on (z1, y) ∈ Z × f−1(z) as (hz1, hy).

2 The twisted Whittaker category

2.1 The definition of the twisted Whittaker category from ([Gai08], Section 2)
naturally extends to our setting, we give the detailed exposition. For λ ∈ Λ+ denote
by Vλ the corresponding Weyl module for G as in [Jan87,Jan03]. For n ≥ 0 let Mn

be the stack classifying:

• (x1, . . . , xn) ∈ Xn, a G-torsor F on X,
• for each λ̌ ∈ Λ̌+ a non-zero map

κλ̌ : Ω〈λ̌,ρ〉 → Vλ̌
F, (14)

which is allowed to have any poles at x1, . . . , xn. The maps κλ̌ are required
to satisfy the Plücker relations as in [BG02].

For n = 0 the stack Mn is rather denoted by M∅. Let p : Mn → BunG be the map
sending the above point to F.

Let Pκ̄ denote the line bundle p∗(ωLκ̄) on Mn. By ˜Mn we denote the gerbe of
N -th roots of Pκ̄ over Mn. Let Dζ(Mn) denote the derived category of Q̄�-sheaves on
˜Mn, on which μN (k) acts by ζ. This category does not change (up to an equivalence)
if κ̄ and N are multiplied by the same integer, so essentially depends only on �.

2.2 Pick y ∈ X. Write Dy (resp., D∗
y) for the formal disk (resp., punctured

formal disk) around y ∈ X. Let Ωρ
B be the B-torsor on X obtained from Ωρ via

extension of scalars T → B. Let ωN be the group scheme over X of automorphisms
of Ωρ

B acting trivially on the induced T -torsor. Let N
reg
y (resp., Nmer

y ) be the group
scheme (resp., group ind-scheme) of sections of ωN over Dy (resp., D∗

y). Recall that

Nmer
y /[Nmer

y ,Nmer
y ] →̃ Ω |D∗

y
× · · · × Ω |D∗

y
,
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the product taken over simple roots of G. Taking the sum of residues in this product,
one gets the character χy : Nmer

y → A
1.

As in ([Gai08], Section 2.3) for a collection of distinct points ȳ := y1, . . . , ym

let N
reg
ȳ (resp., Nmer

ȳ ) denote the product of the corresponding groups N
reg
yi (resp.,

Nmer
yi

). The sum of the corresponding characters gives the character χȳ : Nmer
ȳ → A

1.
Let (Mn)good at ȳ ⊂ Mn be the open substack given by the property that all xi

are different from the points of ȳ, and κλ̌ have no zeros at ȳ. A point of (Mn)good at ȳ

defines a B-torsor FB over Dȳ =
∏m

j=1 Dyj
equipped with a trivialization εB :

FB ×B T →̃ Ωρ over Dȳ.
Let ȳMn denote the N

reg
ȳ -torsor over (Mn)good at ȳ classifying a point of

(Mn)good at ȳ as above together with a trivialization FB →̃ Ωρ
B |Dȳ

compatible with
εB.

Now ȳMn can be seen as the stack classifying: (x1, . . . , xn) ∈ Xn different from
ȳ, a G-torsor F over X − ȳ with a trivialization εF : F →̃ Ωρ

B ×B G |D∗̄
y
, for λ̌ ∈ Λ̌+

non-zero maps (14) over X − ȳ − x̄ satisfying the Plücker relations and compatible
with the trivialization εF. Here we denoted D∗̄

y →̃ ∏m
j=1 D∗

yj
.

The group Nmer
ȳ acts on ȳMn by changing the trivialization εF via its action on

Ωρ
B |D∗̄

y
. The composition ȳMn → Mn

p→ BunG sends the above point to the gluing
of F |X−ȳ with Ωρ

B ×B G |Dȳ
via εF : F →̃ Ωρ

B ×B G |D∗̄
y
.

Denote by ȳP
κ̄ the restriction of Pκ̄ to ȳMn. As in ([Gai08], Lemma 2.4), the

action of Nmer
ȳ on ȳMn lifts naturally to an action on ȳP

κ̄.
Let ˜Mn (resp., ȳ

˜Mn, (˜Mn)good at ȳ) be the gerbe of N -th roots of the correspond-
ing line bundle Pκ̄ (resp., its restriction). We denote by Pervζ((˜Mn)good at ȳ) the
category of perverse sheaves on (˜Mn)good at ȳ, on which μN (k) acts by ζ. Write
(Whitκ

n)good at ȳ for the full subcategory of Pervζ(˜Mn)good at ȳ) consisting of perverse
sheaves, whose restriction to ȳ

˜Mn is (Nmer
ȳ , χ∗̄

yLψ)-equivariant (as in [Gai08], Sec-
tion 2.5).

If ȳ′ and ȳ′′ are two collections of points, set ȳ = ȳ′ ∪ ȳ′′. Over (˜Mn)good at ȳ one
gets the corresponding torsors with respect to each of the groups

N
reg
ȳ′ ,Nreg

ȳ′′ ,Nreg
ȳ .

As in ([Gai08], Section 2.5), the three full subcategories of Pervζ((˜Mn)good at ȳ) given
by the equivariance condition with respect to one of these groups are equal.

Let Whitκ
n ⊂ Pervζ(˜Mn) be the full subcategory of F ∈ Pervζ(˜Mn) such that

for any ȳ as above, the restriction of F to (˜Mn)good at ȳ lies in (Whitκ
n)good at ȳ. As

in ([Gai04], Lemma 4.8), the full subcategory Whitκ
n ⊂ Pervζ(˜Mn) is stable under

sub-quotients and extensions, and is therefore a Serre subcategory. So, we also define
the full triangulated subcategory DWhitκn ⊂ Dζ(˜Mn) of complexes with all perverse
cohomology lying in Whitκn.

The Verdier duality preserves Whitκn (up to replacing ψ by ψ−1 and ζ by ζ−1),
because the corresponding action maps are smooth (as in [Gai04], Section 4.7).
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2.3 For a n-tuple λ̄ = (λ1, . . . , λn) of dominant coweights of G let Mn,≤λ̄ ⊂ Mn

be the closed substack given by the property that for each λ̌ ∈ Λ̌+ the map

κλ̌ : Ω〈ρ,λ̌〉 → Vλ̌
F(

∑

i

〈λixi, λ̌〉) (15)

is regular over X. For x̄ = (x1, . . . , xn) ∈ Xn fixed let Mx̄ denote the fibre of Mn

over this point of Xn. Write Whitκ
x̄ for the corresponding version of the Whittaker

category of twisted perverse sheaves on Mx̄. (By a twisted perverse sheaf on a base
we mean a perverse sheaf on some gerbe over this base).

Assume (x1, . . . , xn) pairwise different. Define the closed substack Mx̄,≤λ̄ ⊂ Mx̄

as above. The irreducible objects of Whitκ
x̄ are as follows. Let Mx̄,λ̄ ⊂ Mx̄,≤λ̄ be the

open substack given by the property that for each λ̌ ∈ Λ̌+ the map (15) has no zeros
over X. Let

jx̄,λ̄ : Mx̄,λ̄ ↪→ Mx̄,≤λ̄

be the corresponding open immersion. Recall that jx̄,λ̄ is affine ([FGV01], Proposi-
tion 3.3.1).

In the same way, one defines the version of the Whittaker category of twist-
ed perverse sheaves on Mx̄,λ̄. As in ([Gai08], Lemma 2.7), this category is non-
canonically equivalent to that of vector spaces. Let F̄x̄,λ̄ denote the unique (up
to a non-canonical scalar automorphism) irreducible object of this category. As in
([FGV01], Section 4.2.1), one defines a canonical evaluation map ev x̄,λ̄ : Mx̄,λ̄ → A

1.
The restriction of the line bundle Pκ̄ to Mx̄,λ̄ is constant with fibre

ωLκ̄
Ωρ(− ∑

i λixi)
. (16)

Any trivialization of (16) yields a trivialization ˜Mx̄,λ̄ →̃Mx̄,λ̄ × B(μN ) of the gerbe
˜Mx̄,λ̄ → Mx̄,λ̄. There is an isomorphism

F̄x̄,λ̄ →̃ ev∗
x̄,λ̄Lψ � Lζ [dimMx̄,λ̄].

For λ̄ = 0 the line (16) is canonically trivialized. So, F̄x̄,0 is defined up to a canonical
isomorphism.

Let Fx̄,λ̄,! (resp., Fx̄,λ̄,∗, Fx̄,λ̄) denote the extension of F̄x̄,λ̄ by jx̄,λ̄,! (resp., jx̄,λ̄,∗,
jx̄,λ̄,!∗). Since jx̄,λ̄ is affine, these are perverse sheaves. As in ([FGV01], Proposi-
tion 6.2.1), one checks that all of three are objects of Whitκx̄, and the version of
([Gai08], Lemma 2.8) holds:

Lemma 2.3.1. (a) Every irreducible object in Whitκ
x̄ is of the form Fx̄,λ̄ for

some n-tuple of dominant coweights λ̄.
(b) The cones of the canonical maps

Fx̄,λ̄,! → Fx̄,λ̄ → Fx̄,λ̄,∗ (17)

are extensions of objects Fx̄,λ̄′ for λ̄′ < λ̄.
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Here the notation λ̄′ < λ̄ means that λ′
i ≤ λi for all 1 ≤ i ≤ n and for at least one

i the inequality is strict. Recall that the maps (17) are not isomorphisms in general.
Let DWhitκ

x̄ ⊂ Dζ(˜Mx̄) denote the full subcategory of objects whose all perverse
cohomologies lie in Whitκ

x̄.

2.4 The basic object of the category Whitκ
∅ is denoted F∅. Recall the open

substack M∅,0 ⊂ M∅ given by the property that the maps (14) have neither zeros
nor poles over X. Since there are no dominant weights <0, from Lemma 2.3.1 we
learn that the canonical maps

j∅,0,!(F∅,0) →̃ j∅,0,!∗(F∅,0) →̃ j∅,0,∗(F∅,0)

are isomorphisms.

2.5 For n ≥ 0 and μ ∈ Λ let Xμ
n be the ind-scheme classifying (x1, . . . , xn) ∈

Xn, and a Λ-valued divisor D on X of degree μ which is anti-effective away from
x1, . . . , xn. This means that for any λ̌ ∈ Λ̌+, 〈λ̌, D〉 is anti-effective away from
x1, . . . , xn.

For n = 0 we rather use the notation Xμ
∅ or Xμ instead of Xμ

0 . If μ = −∑

i∈J miαi

with mi ≥ 0 then Xμ =
∏

i X
(mi).

For a n-tuple λ̄ = (λ1, . . . , λn) of elements of Λ denote by Xμ

n,≤λ̄
⊂ Xμ

n the closed
subscheme classifying (x1, . . . , xn, D) ∈ Xμ

n such that

D −
n

∑

i=1

λixi

is anti-effective over X. We have an isomorphism Xn×Xμ−λ1−···−λn →̃Xμ

n,≤λ̄
sending

(x1, . . . , xn, D′) to D′ +
∑n

i=1 λixi. For another collection λ̄′ = (λ′
1, . . . , λ

′
n) with

λ′
i ≥ λi one has a natural closed embedding Xμ

n,≤λ̄
↪→ Xμ

n,≤λ̄′ , and

Xμ
n = lim−→

λ̄

Xμ

n,≤λ̄
.

2.5.1 By abuse of notation, the restriction of ωLκ̄ under BunT → BunG is
still denoted by ωLκ̄. Let AJ : Xμ

n → BunT be the Abel-Jacobi map sending
(x1, . . . , xn, D) to Ωρ(−D). The line bundle AJ∗(ωLκ̄) is denoted by Pκ̄ by abuse of
notations.

Denote by ωLj,BunG
the line bundle on BunG whose fibre at F ∈ BunG is

(Lj,BunG
)F ⊗ (Lj,BunG

)−1
Ωρ . For D =

∑

x μxx ∈ Xμ
n one has

(ωLj,BunG
)Ωρ(−D) →̃ ⊗x∈X (Ω

1
2
x )κj(μx,μx+2ρ).

This isomorphism uses a trivialization of all the positive root spaces of g that we fix
once and for all (they yield also trivializations of all the negative root spaces).
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Lemma 2.5.1. For D =
∑

x μxx ∈ Xμ
n one has

(ωLκ̄)Ωρ(−D) →̃ ⊗x∈X (Ω
1
2
x )−κ̄(μx,μx+2ρ) ⊗ εμ̄x →̃ (⊗x∈X(Ω

1
2
x )−κ̄(μx,μx+2ρ)) ⊗ (⊗n

i=1ε
μ̄xi )

where μ̄x ∈ Λab is the image of μx.

Proof. Use Lemma 0.0.1 and the fact that ε0 is trivialized. ��
Let ˜Xμ

n denote the gerbe of N -th roots of Pκ̄ over Xμ
n . Write Pervζ(X

μ
n ) for the

category of perverse sheaves on ˜Xμ
n , on which μN (k) acts by ζ. Similarly, one has

the derived category Dζ(X
μ
n ).

2.6 For μ ∈ Λ denote by μMn ⊂ Mn the ind-substack classifying (x1, . . . , xn, D)
∈ Xμ

n , a B-torsor FB on X with an isomorphism FB ×B T →̃ Ωρ(−D). As μ varies
in Λ these ind-stacks form a stratification of Mn. Let πM : μMn → Xμ

n be the map
sending the above point to (x1, . . . , xn, D).

For a collection λ̄ = (λ1, . . . , λn) ∈ Λn let μMn,≤λ̄ be obtained from μMn by
the base change Mn,≤λ̄ → Mn. The map πM restricts to a morphism still denoted
πM : μMn,≤λ̄ → Xμ

n,≤λ̄
.

By the same token, one defines the version of the Whittaker category Whitκ(μMn)
⊂ Pervζ(μ

˜Mn) and its derived version DWhitκ(μMn) ⊂ Dζ(μ
˜Mn).

Let +Xμ
n ↪→ Xμ

n be the closed subscheme given by the condition 〈D, α̌〉 ≥ 0 for
any simple root α̌ of G. Let +

μMn be the preimage of +Xμ
n in μMn. As above, we

have the natural evaluation map ev : +
μMn → A

1. The derived category Dζ(+Xμ
n ) is

defined as in Section 2.5.1. Since the map πM : μMn → Xμ
n has contractible fibres,

as in ([Gai04], Proposition 4.13), one gets the following.

Lemma 2.6.1. Each object of DWhitκ(μMn) is the extension by zero from +
μMn. The

functor Dζ(+Xμ
n ) → DWhitκ(μMn) sending K to π∗

MK ⊗ ev∗Lψ is an equivalence.

As in ([Gai04], Lemma 4.11), one gets the following.

Lemma 2.6.2. (i) Let μ ∈ Λ. The ∗ and ! restrictions send DWhitκ
n to

DWhitκ(μMn).

(ii) The ∗ and ! direct images send DWhitκ(μMn) to DWhitκ
n.

(iii) An object K ∈ Dζ(Mn) lies in DWhitκ
n if and only if its ∗-restrictions (or,

equivalently, !-restrictions) to all μMn belong to DWhitκ(μMn).

Remark 2.6.3. (i) Consider a point (x1, . . . , xn, D) ∈ +Xμ
n . Assume (y1, . . . ,

ym) ∈ Xm pairwise different such that {y1, . . . , ym} = {x1, . . . , xn}. Then there
is a collection of G-dominant coweights (μ1, . . . , μm) such that D =

∑m
i=1 μiyi

with
∑m

i=1 μi = μ. In particular, +Xμ
n is empty unless μ is G-dominant.
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(ii) Let x̄ = (x1, . . . , xn) ∈ Xn be a k-point with xi pairwise different. Define +Xμ
x̄

as the fibre of +Xμ
n over x̄ ∈ Xn. Let λ̄ ∈ Λn with μ ≤ ∑

i λi. Define the closed
subscheme +Xμ

x̄,≤λ̄
by the condition D ≤ ∑

i λixi. Then +Xμ

x̄,≤λ̄
is a discrete

finite set of points.

2.7 Let x ∈ X. In “Appendix B” we show that the subtop cohomology property
admits the following reformulation in terms of Whitκx.

Proposition 2.7.1. The following properties are equivalent.

(i) The subtop cohomology property is satisfied for �.
(ii) Let λ > 0, which is not a simple coroot. For μ ∈ Λ� deep enough in

the dominant chamber the complex j∗
x,μ−λFx,μ over ˜Mx,μ−λ is placed in

perverse degrees ≤ −2.
(iii) Let λ > 0, which is not a simple coroot. For μ ∈ Λ� deep enough in the

dominant chamber one has Ext1(Fx,μ−λ,Fx,μ) = 0 in Whitκ
x.

Based on this proposition, we propose the following.

Conjecture 2.7.2. Let μ < μ′ be dominant coweights such that μ′ − μ is not a
simple coroot. Then Ext1(Fx,μ,Fx,μ′) = 0 in Whitκ

x.

3 The FS category

3.1 The definition of the category of factorizable sheaves from ([Gai08], Sec-
tion 3) extends to our setting, we give a detailed exposition for the convenience of
the reader.

For a partition n = n1 + n2, μ = μ1 + μ2 with μi ∈ Λ, let

addμ1,μ2 : Xμ1
n1

× Xμ2
n2

→ Xμ
n

be the addition map. Given n1-tuple λ̄1, n2-tuple λ̄2 of coweights let

(Xμ1

n1,≤λ̄1
× Xμ2

n2,≤λ̄2
)disj

be the open part of the product given by the property that the supports of the two
divisors do not intersect. The restriction of addμ1,μ2 to the above scheme is an étale
map to Xμ

n,≤λ̄1∪λ̄2
.

Recall the line bundles Pκ̄ from Sections 2.1, 2.5.1. From Lemma 2.5.1 we obtain
the following factorization property

add∗
μ1,μ2

Pκ̄ |(Xμ1
n1,≤λ̄1

×X
μ2
n2,≤λ̄2

)disj
→̃Pκ̄ � Pκ̄ |(Xμ1

n1,≤λ̄1
×X

μ2
n2,≤λ̄2

)disj
(18)

compatible with refinements of partitions.
Let (Xμ1 × Xμ2

n )disj denote the ind-subscheme of Xμ1 × Xμ2
n consisting of points

(D1 ∈ Xμ1 , (x̄, D2) ∈ Xμ2
n )
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such that D1 is disjoint from both x̄ and D2. Let addμ1,μ2,disj : (Xμ1 ×Xμ2
n )disj → Xμ

n

denote the restriction of addμ1,μ2 . For a n-tuple λ̄ the restriction is étale

addμ1,μ2,disj : (Xμ1 × Xμ2

n,≤λ̄
)disj → Xμ

n,≤λ̄
.

Over (Xμ1 × Xμ2
n )disj we get an isomorphism

add∗
μ1,μ2,disj P

κ̄ →̃Pκ̄ � Pκ̄. (19)

3.2 For μ ∈ −Λpos let
◦
Xμ ⊂ Xμ be the open subscheme classifying divisors of

the form D =
∑

k μkyk with yk pairwise different and each μk being a minus simple

coroot. Denote by jdiag :
◦
Xμ ⊂ Xμ the open immersion.

If α is a simple coroot then κ̄(−α,−α+2ρ) = 0. Therefore, Pκ̄ | ◦
Xμ

is canonically
trivialized. We get a canonical equivalence

Perv(
◦
Xμ) →̃ Pervζ(

◦
Xμ)

Let
◦
L

μ
∅ ∈ Pervζ(

◦
Xμ) be the object corresponding via the above equivalence to the

sign local system on
◦
Xμ. If μ = −∑

miαi with mi ≥ 0 then the sign local system

on
◦
Xμ is by definition the product of sign local systems on

◦
X(mi) for all i. Set

L
μ
∅ = jdiag

!∗ (
◦
L

μ
∅ ),

the intermediate extension being taken in Pervζ(Xμ).
Note that for μ = μ1 + μ2 with μi ∈ −Λpos we have a canonical isomorphism

add∗
μ1,μ2,disj(L

μ
∅ ) →̃L

μ1

∅ � L
μ2

∅ . (20)

3.3 As in ([Gai08], Section 3.5), we first define ˜FS
κ

n as the category, whose ob-
jects are collections Lμ

n ∈ Pervζ(X
μ
n ) for each μ ∈ Λ equipped with the factorization

isomorphisms: for any partition μ = μ1 + μ2 with μ2 ∈ Λ, μ1 ∈ −Λpos for the map

addμ1,μ2,disj : (Xμ1 × Xμ2
n )disj → Xμ

n

we must be given an isomorphism

add∗
μ1,μ2,disj L

μ
n →̃L

μ1

∅ � Lμ2
n (21)

compatible with refinements of partitions with respect to (20).
For μ0, μ1 ∈ −Λpos, μ2 ∈ Λ let (Xμ0 × Xμ1 × Xμ2

n )disj be the open subscheme
classifying (D0, D1, x1, . . . , xn, D2) ∈ Xμ0×Xμ1×Xμ2

n such that D0, D1 are mutually
disjoint and disjoint with x̄, D2. Compatibility with refinements of partitions means
that for μ = μ1 + μ2 the diagram

(Xμ0 × Xμ1 × Xμ2
n )disj → (Xμ0+μ1 × Xμ2

n )disj

↓ ↓
(Xμ0 × Xμ

n )disj → Xμ0+μ
n

yields the commutative diagram of isomorphisms over (Xμ0 × Xμ1 × Xμ2
n )disj
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L
μ0+μ
n →̃ L

μ0

∅ � L
μ
n

↓ ↓
L

μ0+μ1

∅ � L
μ2
n

(20)→ L
μ0

∅ � L
μ1

∅ � L
μ2
n ,

where to simplify the notations we omited the corresponding functors add∗.
A morphism from a collection {1L

μ
n} to another collection {2L

μ
n} is a collection

of maps 1L
μ
n → 2L

μ
n in Pervζ(X

μ
n ) compatible with the isomorphisms (21).

Let jpoles : Ẋn ↪→ Xn be the complement to all the diagonals. For μ ∈ Λ set
Xμ

ṅ = Xμ
n ×Xn Ẋn. By the same token, one defines the category ˜FS

κ

ṅ consisting of
collections Lμ

n ∈ Pervζ(X
μ
ṅ ) with factorization isomorphisms. Both ˜FS

κ

n and ˜FS
κ

ṅ are
abelian categories.

We have the restriction functor (jpoles)∗ : ˜FS
κ

n → ˜FS
κ

ṅ and its left adjoint

jpoles
! : ˜FS

κ

ṅ → ˜FS
κ

n

well-defined because jpoles is an affine open embedding.
If n̄ = n1 + · · · + nk is a partition of n, let �n̄: Xk → Xn and �̇n̄ : Ẋk → Xn be

the corresponding diagonal and its open subscheme. We have the natural functors

(�n̄)! : ˜FS
κ

k → ˜FS
κ

n and (�̇n̄)! : ˜FS
κ

k̇ → ˜FS
κ

n.

The corresponding restriction functors are well-defined on the level of derived cat-
egories (the latter are understood as the derived categories of the corresponding
abelian categories):

(�n̄)∗ : D(˜FS
κ

n) → D(˜FS
κ

k) and (�̇n̄)∗ : D(˜FS
κ

n) → D(˜FS
κ

k̇).

They coincide with the same named functors on the level of derived categories of
Q̄�-sheaves on the corresponding gerbes.
3.4 For a k-scheme Y and F ∈ D(Y ) we denoted by SS(F ) the singular support
of F in the sense of Beilinson [Bei]. Define the full subcategory FSκ

n ⊂ ˜FS
κ

n as follows.
A collection Ln ∈ ˜FS

κ

n lies in FSκ
n if the following conditions are satisifed:

(i) L
μ
n may be nonzero only for μ belonging to finitely many cosets in

π1(G). For each τ ∈ π1(G) there is a collection ν̄ = (ν1, . . . , νn) ∈ Λn

with
∑

i νi = τ ∈ π1(G) such that for any μ ∈ Λ over τ the perverse
sheaf Lμ

n is the extension by zero from Xμ
n,≤ν̄ .

(ii) The second condition is first formulated over Ẋn, that is, we first define
the subcategory FSκ

ṅ ⊂ ˜FS
κ

ṅ. Let Lṅ ∈ ˜FS
κ

ṅ, μ ∈ Λ and ν̄ ∈ Λn with
∑

i νi = μ ∈ π1(G) such that L
μ
ṅ is the extension by zero from ˜Xμ

ṅ,≤ν̄ .
Then there are only finitely many collections (μ1, . . . , μn) ∈ Λn with
∑

i μi = μ such that SS(Lμ
ṅ) contains the conormal to the subscheme

Ẋn ↪→ Xμ
ṅ,≤ν̄ , (x1, . . . , xn) 
→ ∑

i μixi.
Now the condition (ii) over Xn is that for any partition n = n1 +

· · · + nk each of the cohomologies of (�̇n̄)∗(Ln), which is an object of
˜FS

κ

k̇ , belongs to FSκ
ṅ.
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3.5 For x̄ = (x1, . . . , xn) ∈ Xn fixed let Xμ
x̄ denote the fibre of Xμ

n over x̄ ∈ Xn.
In a similar way, one introduces the abelian category ˜FS

κ

x̄. We define FSκ
x̄ as the full

subcategory of objects of finite length in ˜FS
κ

x̄. As in Section 3.2, one defines the
category Pervζ(X

μ
x̄ ).

Pick x̄ ∈ Xn with xi pairwise distinct. Let λ̄ = (λ1, . . . , λn) be a n-tuple of
elements of Λ. For μ ∈ Λ with (

∑

i λi) − μ ∈ Λpos consider the closed subscheme
Xμ

x̄,≤λ̄
= Xμ

x̄ ∩Xμ

n,≤λ̄
. Let Xμ

x̄,=λ̄
⊂ Xμ

x̄,≤λ̄
be the open subscheme classifying divisors

of the form
(

n
∑

i=1

λixi

)

− D′,

where D′ is Λpos-valued divisor on X of degree (
∑

i λi) − μ, and xi is not in the
support of D′ for any 1 ≤ i ≤ n. One similarly defines the categories Pervζ(X

μ

x̄,≤λ̄
)

and Pervζ(X
μ

x̄,=λ̄
). Let

◦
Xμ

x̄,≤λ̄
⊂ Xμ

x̄,=λ̄

be the open subscheme given by requiring that D′ is of the form D′ =
∑

μkyk, where
yk are pairwise distinct, and each μk is a simple coroot of G. Here, of course, yi is
different from all the xi. Denote the corresponding open immersions by

◦
Xμ

x̄,≤λ̄

′jpoles

→ Xμ

x̄,=λ̄

′′jpoles

→ Xμ

x̄,≤λ̄
.

Lemma 3.5.1. The restriction of Pκ̄ to
◦
Xμ

x̄,≤λ̄
is trivial with fibre

⊗n
i=1 (Ω

1
2
x )−κ̄(λi,λi+2ρ) ⊗ ελ̄i , (22)

where λ̄i ∈ Λab is the image of λi.

Proof. If α is a simple coroot then κ̄(−α,−α + 2ρ) = 0. Now apply Lemma 2.5.1. ��
If (

∑

i λi) − μ =
∑

j∈J mjαj then
∏

j∈J X(mj) →̃Xμ−∑

i λi via the map sending
{Dj}j∈J to −∑

j∈J Djαj .
We have an open immersion jμ

λ̄
: Xμ

x̄,=λ̄
↪→ Xμ−∑

i λi sending D to D−∑n
i=1 λixi.

The line bundle Pκ̄ over Xμ

x̄,=λ̄
identifies with the tensor product of (jμ

λ̄
)∗Pκ̄ with

(22). So, for any trivialization of the line (22), we get the restriction functor

Pervζ(Xμ−∑

i λi) → Pervζ(X
μ

x̄,=λ̄
).

We denote by
◦
L

μ

x̄,λ̄
the image of Lμ−∑

i λi

∅ under the latter functor. So,
◦
L

μ

x̄,λ̄
is defined

up to a non-unique scalar automorphism. Set

L
μ

x̄,λ̄,!
= ′′jpoles

! (
◦
L

μ

x̄,λ̄
), L

μ

x̄,λ̄
= ′′jpoles

!∗ (
◦
L

μ

x̄,λ̄
), L

μ

x̄,λ̄,∗ = ′′jpoles
∗ (

◦
L

μ

x̄,λ̄
).
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Define the collection Lx̄,λ̄,! = {Lμ

x̄,λ̄,!
}μ∈Λ by the property

L
μ

x̄,λ̄,!
=

{

L
μ

x̄,λ̄,!
, μ ∈ (

∑

i λi) − Λpos

0, otherwise.

It is understood that we use the same trivialization of (22) for all μ in the above
formula. One similarly defines the collections Lx̄,λ̄,Lx̄,λ̄,∗. All the three are objects

of ˜FS
κ

x̄.

Lemma 3.5.2. (i) For any irreducible object F of ˜FS
κ

x̄ there is a collection λ̄ ∈ Λn

such that F is isomorphic to Lx̄,λ̄.
(ii) The kernels and cokernels of the natural maps

Lx̄,λ̄,! → Lx̄,λ̄ → Lx̄,λ̄,∗

in ˜FS
κ

x̄ are extensions of objects of the form Lx̄,λ̄′ for λ̄′ < λ̄.

Proof. i) Let λ̄ ∈ Λn be such that the ∗-fibre of F at
∑n

i=1 λixi ∈ Xμ
x̄ is nonzero for

some μ ∈ Λ. We may assume (changing λ̄ if necessary) that for any ν ∈ Λ with ν = μ
in π1(G) the twisted perverse sheaf F ν ∈ Pervζ(Xν

x̄) is the extension by zero from
Xν

x̄,≤λ. Then from the factorization property we see that we must have F →̃Lx̄,λ̄. ��
Lemma 3.5.3. Let x̄ = (x1, . . . , xn) with xi pairwise different, λ̄ ∈ Λn. Then the
objects Lx̄,λ̄,!, Lx̄,λ̄,∗ ∈ ˜FS

κ

x̄ are of finite length.

Proof. Set κ̃ = −∑

j∈J cjκj . Write D ∈ Xμ

x̄,≤λ̄
as D = (

∑

y∈X μyy)+
∑n

i=1 λixi with
μy ∈ −Λpos for all y ∈ X. Denote by Pκ̃ the line bundle on Xμ

x̄,≤λ̄
whose fibre at the

above point D is

⊗y∈X(Ω
1
2
y )−κ̃(μy,μy+2ρ).

The line bundle Pκ̄⊗(Pκ̃)−1 on the scheme Xμ

x̄,≤λ̄
is trivial. So, it suffices to prove our

claim under the assumption β = 0. The latter is done in ([Gai08], Lemma 3.8(b)). ��

4 Zastava spaces

4.1 Our purpose is to construct an exact functor Whitκn → ˜FS
κ

n. We first adopt
the approach from ([Gai08], Section 4) to our setting, it produces an approximation
of the desired functor. We will further correct it to get the desired one.

For μ ∈ Λ let Bunμ
B− denote the connected component of BunB− classifying B−-

torsors on X such that the induced T -torsor is of degree (2g − 2)ρ − μ. Recall that
a point of Bunμ

B− can be seen as a collection: a G-torsor F on X, a T -torsor FT on
X of degree (2g − 2)ρ − μ, a collection of surjective maps of coherent sheaves

κλ̌,− : Vλ̌
F → Lλ̌

FT
, λ̌ ∈ Λ̌+

satisfying the Plücker relations. Define p−, q− as the projections in the diagram
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BunG
p−
← Bunμ

B−
q−
→ BunT .

The line bundle (p−)∗(ωLκ̄) is denoted by Pκ̄ by abuse of notations. One has natu-
rally Pκ̄ →̃ (q−)∗(ωLκ̄).

Denote by Z
μ
n ⊂ Mn ×BunG

Bunμ
B− the open substack given by the property that

for each G-dominant weight λ̌ the composition

Ω〈λ̌,ρ〉 κλ̌→ Vλ̌
F

κλ̌,−→ Lλ̌
FT

, (23)

which is a map over X − ∪ixi, is not zero. Let ′p, ′pB denote the projections in the
diagram

Mn

′p← Zμ
n

′pB→ Bunμ
B− .

Let πμ : Zμ
n → Xμ

n be the map sending the above point to (x1, . . . , xn, D) such that
the maps (23) induce an isomorphism Ωρ(−D) →̃FT .

For any n-tuple λ̄ ∈ Λn define the closed substack Z
μ

n,≤λ̄
by the base change

Mn,≤λ̄ ↪→ Mn. The map πμ restricts to a map

πμ : Zμ

n,≤λ̄
→ Xμ

n,≤λ̄
.

However, the preimage of Xμ

n,≤λ̄
under πμ : Zμ

n → Xμ
n is not Z

μ

n,≤λ̄
.

Remark 4.1.1. For μ ∈ Λ let GrωN−,Xμ
n

be the ind-scheme classifying (x1, . . . , xn, D)
∈ Xμ

n , a B−-torsor F on X with compatible isomorphisms F ×B− T →̃ Ωρ(−D) over
X and F →̃ Ωρ×T B− |X−D−∪ixi

. We have a closed immersion Z
μ
n ↪→ GrωN−,Xμ

n
given

by the property that the corresponding maps

Ω〈ρ,λ̌〉 → Vλ̌
F

for λ̌ ∈ Λ̌+ are regular over X − ∪ixi. Since the projection GrωN−,Xμ
n

→ Xμ
n is

ind-affine, the map πμ : Zμ
n → Xμ

n is also ind-affine.

4.2 The ind-scheme Zμ
0 is rather denoted Zμ. Recall that for μ1 ∈ −Λpos, μ2 ∈ Λ

and μ = μ1 + μ2 we have the factorization property ([Gai08], Proposition 4.7)

(Xμ1 × Xμ2
n )disj ×Xμ

n
Zμ

n →̃ (Xμ1 × Xμ2
n )disj ×(Xμ1×X

μ2
n ) (Zμ1 × Zμ2

n ) (24)

Recall that the diagram commutes

Mn

′p← Z
μ
n

′pB→ Bunμ
B−

↓ πμ ↓ q−

Xμ
n

AJ→ BunT

(25)

and (′p)∗Pκ̄ →̃ (πμ)∗Pκ̄ canonically, this line bundle is also denoted Pκ̄. Let ˜Z
μ
n denote

the gerbe of N -th roots of Pκ̄ over Zμ
n, let Dζ(Z

μ
n) denote the corresponding derived

category of twisted Q̄�-sheaves.
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This allows to define the following functors. First, we have the functor Fμ :
Dζ(Mn) → Dζ(Z

μ
n) given by

Fμ(K) = (′p)∗K[dim. rel(′p)].

As in ([Gai08], Section 4.8), this functor commutes with the Verdier duality for μ
satisfying 〈μ, α̌〉 < 0 for any simple root α̌. Using the factorization property, we will
be able to assume that μ satisfies the latter inequality, so this functor essentially al-
ways commutes with the Verdier duality. We get the functor F : Dζ(Mn) → Dζ(X

μ
n )

given by

F(K) = πμ
! (′p)∗(K)[dim. rel(′p)].

4.3 The analog of ([Gai08], Proposition 4.13) holds in our setting:

Proposition 4.3.1. Let μ1 ∈ −Λpos, μ2 ∈ Λ, μ = μ1 + μ2 and F ∈ Whitκ
n. Under

the isomorphism (24), the complex

add∗
μ1,μ2,disj F

μ(F) ∈ Dζ((Xμ1 × Xμ2
n )disj ×Xμ

n
Zμ

n)

identifies with

Fμ1(F∅) � Fμ2(F) ∈ Dζ((Xμ1 × Xμ2
n )disj ×(Xμ1×X

μ2
n ) (Zμ1 × Zμ2

n )).

Proof. We write down the complete proof for the convenience of the reader and to
correct some misprints in ([Gai08], proof of Proposition 4.13). Set

◦
Zμ1 = Zμ1 ×M∅

M∅,0. Let (Mn)good at μ1 ⊂ Xμ1 × Mn be the open substack given by the property
that D ∈ Xμ1 does not contain pole points (x1, . . . , xn), and all κλ̌ are morphisms
of vector bundles in a neighbourhood of supp(D).

Let N
reg
μ1 (resp., Nmer

μ1
) be the group scheme (resp., group ind-scheme) over Xμ1 ,

whose fibre at D is the group scheme (resp., group ind-scheme) of sections of ωN

over the formal neighbourhood of D (resp., the punctured formal neighbourhood of
D). As in Section 2.2, we have the character χμ1 : Nmer

μ1
→ A

1.
For a point of (Mn)good at μ1 we get a B-torsor FB over the formal neighbourhood

D̄ of D with a trivialization εB : FB ×B T →̃ Ωρ over D̄. Let μ1Mn denote the
N

reg
μ1 -torsor over (Mn)good at μ1 classifying a point of (Mn)good at μ1 together with a

trivialization FB →̃ Ωρ
B |D̄ compatible with εB. The group ind-scheme Nmer

μ1
acts on

μ1Mn over Xμ1 , this action lifts naturally to an action on Pκ̄. Let

actμ1 : Nmer
μ1

×Nreg
μ1 (μ1Mn) → (Mn)good at μ1

be the action map. For each F ∈ Whitκ
n one has an isomorphism of twisted perverse

sheaves

act∗
μ1

(F) →̃χ∗
μ1
Lψ � F.
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As the fibre Nmer
μ1

/Nreg
μ1 at D ∈ Xμ1 can be written as an inductive system of affine

spaces, the above system of isomorphisms makes sense, see ([Gai04], Section 4).
The preimage of (Mn)good at μ1 under the map

(Xμ1 × Xμ2
n )disj ×Xμ

n
Zμ

n

′p→ Xμ1 × Mn

goes over under the isomorphism (24) to

(Xμ1 × Xμ2
n )disj ×(Xμ1×X

μ2
n ) (

◦
Zμ1 × Zμ2

n ). (26)

Note that Nmer
μ1

/Nreg
μ1 can be seen as the ind-scheme classifying D ∈ Xμ1 , a B-

torsor F on X with compatible isomorphisms F×BT →̃ Ωρ over X and F →̃ Ωρ
B |X−D.

The character χμ1 decomposes as

Nmer
μ1

/Nreg
μ1

→ M∅,0
ev∅,0→ A

1

We have a locally closed embedding over Xμ1

◦
Zμ1 ↪→ Nmer

μ1
/Nreg

μ1

given by the property that for each λ̌ ∈ Λ̌+ the map κλ̌,− : Vλ̌
F → Lλ̌

Ωρ(−D), initially
defined over X − D, is regular over X and surjective.

For F ∈ Whitκ
n its pull-back to

(Xμ1 × Mn) ×(Xμ1×Xn) (Xμ1 × Xn)disj

is the extension by ∗ and also by ! from (Mn)good at μ1 , because there are no dominant
coweight strictly smaller than 0 (see Section 2.4). So, it suffices to prove the desired
isomorphism over the open substack (26).

The composition

(Xμ1 × Xμ2
n )disj ×(Xμ1×X

μ2
n ) (

◦
Zμ1 × Zμ2

n ) → (Xμ1 × Xμ2
n )disj ×Xμ

n
Zμ

n → Xμ1 × Mn

factors as

(Xμ1 × Xμ2
n )disj ×(Xμ1×X

μ2
n ) (

◦
Zμ1 × Zμ2

n )
→ (Xμ1 × Xμ2

n )disj ×(Xμ1×X
μ2
n ) (Nmer

μ1
/Nreg

μ1
× Zμ2

n )

→̃ (Xμ1 × Xμ2
n )disj ×(Xμ1×X

μ2
n ) (Nmer

μ1
×Nreg

μ1 (μ1Mn ×Mn
Zμ2

n ))

→ Nmer
μ1

×Nreg
μ1 μ1Mn

actμ1→ (Mn)good at μ1 ↪→ Xμ1 × Mn,

where the second arrow used the trivialization of the N
reg
μ1 -torsor

(μ1Mn ×Mn
Zμ2

n ) ×(Xμ1×X
μ2
n ) (Xμ1 × Xμ2

n )disj

(see Remark 4.1.1). ��
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Corollary 4.3.2. For F ∈ Whitκ
n, μ1 ∈ −Λpos, μ2 ∈ Λ and μ = μ1 + μ2 one has

add∗
μ1,μ2,disj F(F) →̃F(F∅) � F(F)

in Dζ((Xμ1 ×Xμ2
n )disj). These isomorphisms are compatible with refinements of par-

titions.

We will use the following.

Remark 4.3.3. Let M ⊂ G be a standard Levi, Λpos
M the Z+-span of M -positive

coroots in Λ. For μ ∈ −Λpos let Zμ
G denote the Zastava space classifying D ∈ Xμ,

U−-torsor F on X, a trivialization F →̃F0
U− |X−D that gives rise to a generalized

B-structure on FG := F×U− G over X with the corresponding T -torsor F0
T (D). That

is, for each λ̌ ∈ Λ̌+ the natural map

κλ̌ : O(〈D, λ̌〉) → Vλ̌
F

is regular over X. Assume in addtion μ ∈ −Λpos
M . Then we have the similarly defined

ind-scheme Zμ
M for M . The natural map Zμ

M → Zμ
G is an isomorphism over Xμ.

Proposition 4.3.4. Assume �(αi) /∈ Z for any simple coroot αi. Then for μ ∈
−Λpos we have a (non-canonical) isomorphism L

μ
∅ →̃F(F∅) in Dζ(

◦
Xμ).

Proof. Consider first the case μ = −α, where α is a simple coroot of G. Then
Xμ = X. Applying Remark 4.3.3 for the corresponding subminimal Levi, we get
Z−α →̃X × A

1, and
◦
Z−α →̃X × Gm is the complement to the zero section. The

line bundle Pκ̄ over Xμ is trivialized canonically. However, over
◦
Z−α we get another

trivialization of Pκ̄ inherited from the trivialization of Pκ̄ |M∅,0 . The discrepancy
between the two trivializations is the map

◦
Z−α →̃X × Gm

pr→ Gm
z 
→zd→ Gm,

where d = −κ̄(α,α)
2 . Since our answer here is different from that of ([Gai08], Sec-

tion 5.1), we give more details. Let M be the standard subminimal Levi correspond-
ing to the coroot α, M0 be the derived group of M , so M0 →̃ SL2. Pick x ∈ X. Let
P denote the projective line classifying lattices M included into

Ω− 1
2 (−x) ⊕ Ω

1
2 ⊂ M ⊂ Ω− 1

2 ⊕ Ω
1
2 (x) (27)

such that M/(Ω− 1
2 (−x) ⊕ Ω

1
2 ) is 1-dimensional. This defines a map P → BunM0

sending M to M viewed as a M0-torsor on X. Let L denote the line bundle on P

with fibre

det RΓ(X, Ω
1
2 ) ⊗ det RΓ(X, Ω− 1

2 )
det RΓ(X,M)

at M. The restriction of ωLκ̄ under the composition P → BunM0 → BunG identifies
with L

−κ̄(α,α)
2 . The fibre Z−α over D = −αx is the open subscheme of P given by
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the property that Ω− 1
2 (−x) ⊂ M is a subbundle. The formula for d follows from the

fact that L →̃O(1) on P.
So, if �(α) /∈ Z then F(F∅) →̃ Q̄�[1] non-canonically in Dζ(X−α).
Let now μ = −∑

miαi ∈ −Λpos with mi ≥ 0. Applying Corollary 4.3.2 and
the above computation, one gets the desired isomorphism after the pull-back to
∏

i X
mi− �, where � is the diagonal divisor. From the Künneth formula one sees

that the product of the corresponding symmetric groups
∏

i Smi
acts by the sign

character because the Gauss sum RΓc(Gm,Lψ ⊗Ld
ζ) is concentrated in the degree 1

for d /∈ NZ. ��
The isomorphism of Proposition 4.3.4 does not hold in Dζ(Xμ). This is already

seen in the following special case.

Lemma 4.3.5. Assume G = SL2 and �(α) /∈ Z for the simple coroot α. Then for

μ ∈ −Λpos, F(F∅) ∈ Dζ(Xμ) is the extension by zero from
◦
Xμ.

Proof. Take μ = −mα, m ≥ 0. So, X(m) →̃Xμ via the map D 
→ −Dα. The scheme
Zμ is a vector bundle over Xμ with fibre

Ext1(Ω
1
2 (D)/Ω

1
2 , Ω− 1

2 (−D)) = Ω−1(−D)/Ω−1(−2D)

at −Dα. A point of Zμ is given by D ∈ X(m) and a diagram

0 → Ω− 1
2 (−D) → M → Ω

1
2 (D) → 0

↖ ↑
Ω

1
2

The line bundle Pκ̄ over X(m) identifies canonically with O(−4cj �), where �⊂ X(m)

is the divisor of the diagonals. Here cj is a part of our input data from (Section 0.0.7,
formula (4)).

For a line bundle L on X and an D ∈ X(m) let (L(D)/L)max ⊂ L(D)/L be the
open subscheme consisting of those v ∈ L(D)/L such that for any 0 ≤ D′ < D, v /∈
L(D′)/L. Note that (L(D)/L)max identifies canonically with
(L−1(−D)/L−1(−2D)max.

The fibre of
◦
Zμ over D ∈ X(m) is (Ω−1(−D)/Ω−1(−2D))max →̃ (Ω(D)/Ω)max.

Let D =
∑

k mkxk ∈ X(m). Then (Ω(D)/Ω)max →̃ ∏

k(Ω(mkxk)/Ω)max. The fibre of
Pκ̄ at −Dα ∈ Xμ is

(⊗k Ωm2
k−mk

xk
)4cj .

Write a point of
∏

k(Ω(mkxk)/Ω)max as v = (vk), vk ∈ (Ω(mkxk)/Ω)max. Let v̄k be
the image of vk in the geometric fibre (Ω(mkxk))xk

= Ω1−mk
xk

. The canonical section

of πμ∗Pκ̄ over
◦
Zμ sends v to (⊗k v̄−mk

k )4cj . So, the ∗-fibre of F(F∅) at −Dα ∈ Xμ

identifies (up to a shift) with the tensor product over k of the complexes

RΓc((Ω(mkxk)/Ω)max, ev∗Lψ ⊗ η∗
kLζ4cjmk ), (28)
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where ηk is the map

ηk : (Ω(mkxk)/Ω)max → (Ω(mkxk))xk

τk→ Gm

for some isomorphisms τk. Calculate (28) via the composition (Ω(mkxk)/Ω)max →
(Ω(mkxk))xk

→ Spec k. If mk > 1 for some k then the sheaf ev∗Lψ on
(Ω(mkxk)/Ω)max changes under the action of the vector space Ω((mk − 1)xk)/Ω
by the Artin-Schreier character, so (28) vanishes for this k. Our claim follows. ��
Remark 4.3.6. Assume that �(αi) /∈ Z for any simple coroot αi. For G = SL2

the fibres of L
μ
∅ are calculated in [BFS98], it is not the extension by zero from

◦
Xμ. As in ([Gai08], Proposition 4.10), one may show that for any K ∈ Whitκ

n the
object F(K) is placed in perverse cohomological degree zero (this is essentially done
in Proposition 4.11.4). However, Lemma 4.3.5 shows that the functor F does not
produce an object of ˜FS

κ

n, and should be corrected.

4.4 Compactified Zastava. For μ ∈ Λ let Bunμ
B− be the Drinfeld compactifi-

cation of Bunμ
B− . Namely, this is the stack classifying a G-torsor F on X, a T -torsor

FT on X of degree (2g−2)ρ−μ, and a collection of nonzero maps of coherent sheaves
for λ̌ ∈ Λ̌+

κλ̌,− : Vλ̌
F → Lλ̌

FT

satisfying the Plücker relations. This means that for any λ̌, μ̌ ∈ Λ̌+ the composition

V
λ̌+μ̌
F → (Vλ̌ ⊗ Vμ̌)F

κλ̌,−⊗κμ̌,−−→ L
λ̌+μ̌
FT

coincides with κλ̌+μ̌,−, and κ0,− : O → O is the identity map. Let q̄− : Bunμ
B− →

BunT be the map sending the above point to FT .
For θ ∈ Λpos denote by ≤θ Bunμ

B− ⊂ Bunμ
B− the open substack given by the

property that for any λ̌ ∈ Λ̌+ the cokernel of κλ̌,− is a torsion sheaf of length
≤ 〈θ, λ̌〉.

For n ≥ 0 denote by Z
μ
n the open substack of Mn ×BunG

Bunμ
B− given by the

property that for each λ̌ ∈ Λ̌+ the composition

Ω〈λ̌,ρ〉 κλ̌→ Vλ̌
F

κλ̌,−→ Lλ̌
FT

, (29)

which is regular over X − ∪ixi, is not zero. Define the projections by the diagram

Mn

′p̄← Z
μ
n

′p̄B→ Bunμ
B− .

Let π̄μ : Z
μ
n → Xμ

n be the map sending the above point to (x1, . . . , xn, D) such that
the maps (29) induce an isomorphism Ωρ(−D) →̃FT . Note that Z

μ
n ⊂ Z

μ
n is open.

For a n-tuple λ̄ ∈ Λn define the closed substack Z
μ

n,≤λ̄ by the base change
Mn,≤λ̄ → Mn. The map π̄μ restricts to a map

π̄μ : Z
μ

n,≤λ̄ → Xμ

n,≤λ̄
. (30)
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The stack Z
μ
0 is rather denoted Z

μ
. As in ([Gai08], Proposition 4.5), one gets the

following.

Lemma 4.4.1. Let (x̄,F,FT , (κλ̌), (κλ̌,−)) be a point of Z
μ
n, whose image under π̄μ is

(x̄, D). Then the restriction of F to X − D − ∪ixi is equipped with an isomorphism
F →̃ Ωρ ×T G with the tautological maps κλ̌, κλ̌,−. In particular, Z

μ
n is an ind-scheme

over k.

Let GrωG,Xμ
n

denote the ind-scheme classifying (x1, . . . , xn, D) ∈ Xμ
n , a G-torsor F

on X, a trivialization F →̃ Ωρ×T G over X−D−∪ixi. The projection GrωG,Xμ
n

→ Xμ
n

is ind-proper.
We have a closed immersion Z

μ
n ↪→ GrωG,Xμ

n
given by the property that for each

λ̌ ∈ Λ̌+ the natural map κλ̌,− : Vλ̌
F → Ω〈ρ,λ̌〉(−〈D, λ̌〉) is regular over X, and

κλ̌ : Ω〈ρ,λ̌〉 → Vλ̌
F

is regular over X − ∪ixi. So, π̄μ : Z
μ
n → Xμ

n is ind-proper.

Lemma 4.4.2. For μ1 ∈ −Λpos, μ2 ∈ Λ and μ = μ1 + μ2 we have the following
factorization property

(Xμ1 × Xμ2
n )disj ×Xμ

n
Z

μ
n →̃ (Xμ1 × Xμ2

n )disj ×(Xμ1×X
μ2
n ) (Z

μ1 × Z
μ2

n ) (31)

compatible with (24).

Proof. The argument follows ([BFGM02], Proposition 2.4). Consider a point of the
LHS given by D1 ∈ Xμ1 , (x̄, D2) ∈ Xμ2

n ,F ∈ BunG. By Lemma 4.4.1, F is equipped
with an isomorphism

β : F →̃ Ωρ ×T G |X−D1−D2−∪ixi
.

Let F1 denote the gluing of the G-torsors Ωρ ×T G |X−D1 with F |X−D2−∪ixi
via

β over the intersection X −D1 −D2 −∪ixi of these open subsets of X. It is equipped
with the induced isomorphism β1 : F1 →̃ Ωρ ×T G |X−D1 .

Let F2 denote the gluing of the G-torsors Ωρ ×T G |X−D2−∪ixi
with F |X−D1 via

β over the intersection X −D1 −D2 −∪ixi of these open subsets of X. It is equipped
with the induced isomorphism β2 : F2 →̃ Ωρ ×T G |X−D2−∪ixi

.
The map (31) sends the above point to

D1 ∈ Xμ1 , (x̄, D2) ∈ Xμ2
n , (F1, D1, β

1) ∈ Z
μ1

, (F2, β2, x̄, D2) ∈ Z
μ2

n . ��

The diagram (25) extends to the diagram

Mn

′p̄← Z
μ
n

′p̄B→ Bunμ
B−

↓ π̄μ ↓ q̄−

Xμ
n

AJ→ BunT

(32)

Now we face the difficulty that the line bundles ′p̄∗Pκ̄ and (π̄μ)∗Pκ̄ are not iso-
morphic over Z

μ
n, but only over its open part Z

μ
n.
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4.5 Description of fibres. Let Ox denote the completed local ring of X at
x, Fx its fraction field. For μ ∈ Λ we have the point tμ ∈ GrG,x = G(Fx)/G(Ox).
Recall that Grμ

B is the U(Fx)-orbit in GrG,x through tμ. We also have the closed ind-
subscheme Grμ

B ⊂ GrG,x defined in ([FGV01], Section 7.1.1). It classifies a G-torsor
F on X with a trivialization F →̃F0

G |X−x such that for each λ̌ ∈ Λ̌+ the map

κλ̌ : O(−〈μ, λ̌〉) → Vλ̌
F

is regular over X. This is a scheme-theoretical version of the closure of Grμ
B.

Recall that Grμ
B− is the U−(Fx)-orbit through tμ in GrG,x. Similarly, one defines

Grμ
B− ⊂ GrG,x. To be precise, Grμ

B− classifies a G-torsor F on X with a trivialization
F →̃F0

G |X−x such that for any λ̌ ∈ Λ̌+ the map

κλ̌,− : Vλ̌
F → O(−〈μ, λ̌〉)

is regular over X. Note that if Grν
B− ⊂ Grμ

B− for some ν ∈ Λ then ν ≥ μ. If
Grν

B ⊂ Grμ
B then ν ≤ μ.

Let μ ∈ −Λpos. The fibre Z
μ
loc,x of Z

μ
over μx ∈ Xμ identifies naturally with

(Gr0B ∩ Grμ
B−) ×T (Ox) Ωρ |Dx

, (33)

where Ωρ |Dx
denotes the corresponding T (Ox)-torsor.

Lemma 4.5.1. If μ ∈ −Λpos then (33) is a projective scheme of finite type and of
dimension ≤ −〈μ, ρ̌〉 (and not just an ind-scheme).

Proof. Let ν ∈ Λ be such that Grν
B− ⊂ Grμ

B− , so ν ≥ μ. We know from ([BFGM02],
Section 6.3) that Gr0B ∩ Grν

B− can be nonempty only for ν ≤ 0, and in this case it is
a scheme of finite type and of dimension ≤ −〈ν, ρ̌〉. Since the set of ν ∈ Λ satisfying
μ ≤ ν ≤ 0 is finite, we are done. ��

Lemma 4.5.1 implies that π̄μ : Z
μ → Xμ is proper, its fibres are projective

schemes of finite type of dimension ≤ −〈μ, ρ̌〉.
Let μ ∈ Λ. The fibre of Z

μ
1 over μx1 identifies naturally with Grμ

B− ×T (Ox) Ωρ |Dx
.

For n ≥ 1 the fibre of π̄μ : Z
μ
n → Xμ

n over (x̄, D) is only an ind-scheme (not a
scheme). Let also λ ∈ Λ. Then the fibre of Z

μ
1,≤λ over μx1 identifies naturally with

(Grλ
B ∩ Grμ

B−) ×T (Ox) Ωρ |Dx
.

This could be non-empty only for μ ≤ λ, and in that case this is a projective scheme
of dimension ≤ 〈λ − μ, ρ̌〉.

Now if λ̄ ∈ Λn from the factorization property we see that the map (30) is proper,
its fibres are projective schemes of finite type.
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4.6 In Section 0.0.12 we defined ˜BunG as the gerbe of N -th roots of ωLκ̄ over
BunG, similarly for ˜BunT .

Let BunB−,G̃ = BunB− ×BunG
˜BunG and BunB̃− = BunB−,G̃ ×BunT

˜BunT . Set al-

so BunB−,G̃ = BunB− ×BunG
˜BunG. Let BunB̃− be the preimage of BunB− in BunB̃− .

A point of BunB̃− is given by (F,FT , κλ̌,−) and lines U,UG equipped with iso-
morphisms

UN →̃ (ωLκ̄)FT
, UN

G →̃ (ωLκ̄)F.

Let Dζ−1,ζ(BunB−) denote the derived category of Q̄�-sheaves on BunB̃− on which
μN (k) ⊂ Aut(U) acts by ζ, and μN (k) ⊂ Aut(UG) acts by ζ−1. We define the irre-
ducible perverse sheaf ICζ ∈ Pervζ−1,ζ(BunB−) as follows (see [Lys], Definition 3.1).
One has the isomorphism

B(μN ) × BunB−,G̃ →̃ BunB̃− (34)

sending (FB− ,UG,U0 ∈ B(μN )) with UN
0 →̃ k to (FB− ,UG,U) with U = UG ⊗ U0.

View Lζ � IC(BunB−,G̃) as a perverse sheaf on BunB̃− via (34). Let ICζ be its
intermediate extension to BunB̃− .

4.6.1 Let ˜

Z
μ
n denote the gerbe of N -th roots of (π̄μ)∗Pκ̄, Dζ(Z

μ
n) denote the

derived category of Q̄�-sheaves on ˜

Z
μ
n, on which μN (k) acts by ζ. For μ ∈ Λ define

the functor F̄μ : Dζ(Mn) → Dζ(Z
μ
n) by

F̄μ(K) = ′p̄∗K ⊗ (′p̄B)∗ ICζ [− dim BunG].

We write F̄μ
ζ := F̄μ if we need to express the dependence on ζ. Define the functor

F : Dζ(Mn) → Dζ(X
μ
n ) by

F(K) = (π̄μ)!F̄μ(K).

We will see below that the functor F̄μ : Whitκ
n → Dζ(Z

μ
n) commutes with the Verdier

duality (up to replacing ζ by ζ−1).

4.7 For μ ∈ −Λpos set
◦

Zμ = Zμ ×M∅ M∅,0.

Proposition 4.7.1. Let μ1 ∈ −Λpos, μ2 ∈ Λ, μ = μ1 + μ2 and F ∈ Whitκ
n. Under

the isomorphism (31) the complex

add∗
μ1,μ2,disj F̄

μ(F) ∈ Dζ((Xμ1 × Xμ2)disj ×Xμ
n
Z

μ
n)

identifies with

F̄μ1(F∅) � F̄μ2(F) ∈ Dζ((Xμ1 × Xμ2)disj ×(Xμ1×X
μ2
n ) (Z

μ1 × Z
μ2

n )).
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Proof. The preimage of (Mn)good at μ1 under the map

(Xμ1 × Xμ2)disj ×Xμ
n
Z

μ
n

′p̄→ Xμ1 × Mn

goes over under the isomorphism (31) to

(Xμ1 × Xμ2)disj ×(Xμ1×X
μ2
n ) (

◦

Zμ1 × Z
μ2

n ). (35)

Recall that Nmer
μ1

/Nreg
μ1 is the ind-scheme classifying D ∈ Xμ1 , a B-torsor F on

X with compatible isomorphisms F ×B T →̃ Ωρ over X and F →̃ Ωρ
B |X−D. We have

the closed embedding over Xμ1

◦

Zμ1 ↪→ Nmer
μ1

/Nreg
μ1

given by the property that for each λ̌ ∈ Λ̌+ the map κλ̌,− : Vλ̌
F → Lλ̌

Ωρ(−D), initially
defined over X − D, is regular over X.

The two complexes we want to identify are extensions by zero from the open
substack (35), so, it sufiices to establish the desired isomorphism over (35). By
([Lys], Theorem 4.1), the complex add∗

μ1,μ2,disj(
′p̄∗

B ICζ) goes over under (31) to the
complex ′p̄∗

B ICζ �(′p̄B)∗ ICζ up to a shift.
The composition

(Xμ1 × Xμ2
n )disj ×(Xμ1×X

μ2
n ) (

◦

Zμ1 × Z
μ2

n ) → (Xμ1 × Xμ2
n )disj ×Xμ

n
Z

μ
n → Xμ1 × Mn

factors as

(Xμ1 × Xμ2
n )disj ×(Xμ1×X

μ2
n ) (

◦

Zμ1 × Z
μ2

n ) →
(Xμ1 × Xμ2

n )disj ×(Xμ1×X
μ2
n ) (Nmer

μ1
/Nreg

μ1
× Z

μ2

n )

→̃ (Xμ1 × Xμ2
n )disj ×(Xμ1×X

μ2
n ) (Nmer

μ1
×Nreg

μ1 (μ1Mn ×Mn
Z

μ2

n ))

→ Nmer
μ1

×Nreg
μ1 μ1Mn

actμ1→ (Mn)good at μ1 ↪→ Xμ1 × Mn,

where the second arrow used the trivialization of the N
reg
μ1 -torsor

(μ1Mn ×Mn
Z

μ2

n ) ×(Xμ1×X
μ2
n ) (Xμ1 × Xμ2

n )disj

as in Proposition 4.3.1. One finishes the proof as in Proposition 4.3.1. ��
4.8 Generalizing the ULA property. Let S1 be a smooth equidimensional
stack. Let p1 : Y1 → S1 and q1 : S → S1 be morphisms of stacks locally of finite
type. Let Y = Y1 ×S1 S. Let p : Y → S and q : Y → Y1 denote the projections.
Denote by g : Y → Y1 × S the map (q, p). For L ∈ D(Y1) consider the functor
FL : D(S) → D(Y ) given by

FL(K) = p∗K ⊗ q∗L
〈

−dim S1

2

〉

,

where 〈d〉 = [2d](d).
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Lemma 4.8.1. (i) For K ∈ D(Y1 × S) there is a canonical morphism functorial in
K

g∗K
〈

−dimS1

2

〉

→ g!K

〈

dim S1

2

〉

. (36)

(ii) There is a canonical morphism functorial in K ∈ D(S), L ∈ D(Y1)

FDL(DK) → D(FL(K)). (37)

Proof. (i) We have a diagram, where the squares are cartesian

S1
�→ S1 × S1

↑ q1 ↑ id ×q1

S → S1 × S
↑ p ↑ p1×id

Y
g→ Y1 × S

One has �!
Q̄� →̃ Q̄�〈− dim S1〉, because S1 is smooth. By ([AGV72], XVII 2.1.3),

one has the base change morphism p∗q∗
1 �!→ g!(p1×q1)∗. Applying it to the previous

isomorphism, one gets a canonical map can : Q̄�〈− dim S1〉 → g!
Q̄�.

According to ([BG02], Section 5.1.1), there is a canonical morphism g∗K⊗g!K ′ →
g!(K ⊗ K ′) functorial in K, K ′ ∈ D(Y1 × S). Taking K ′ = Q̄� we define (36) as the
composition

g∗K〈− dim S1〉 id ⊗ can→ g∗K ⊗ g!
Q̄� → g!K.

(ii) Apply (36) to DL � DK. ��

Definition 4.8.2. Let
◦
Y ⊂ Y be an open substack. Say that L ∈ D(Y1) is locally

acyclic with respect to the diagram S
p←

◦
Y

q→ Y1 if for any K ∈ D(S) the map (37)

is an isomorphism over
◦
Y . Say that L ∈ D(Y1) is universally locally acyclic with

respect to the diagram S
p←

◦
Y

q→ Y1 if the same property holds after any smooth
base change S′

1 → S1.

4.8.1 Here are some properties of the above ULA condition:

(1) If S1 = Spec k then any L ∈ D(Y1) is ULA with respect to the diagram

S
p←

◦
Y

q→ Y1.
(2) If r1 : V1 → Y1 is smooth of fixed relative dimension, and L ∈ D(Y1) is

ULA with respect to S
p←

◦
Y

q→ Y1 then r∗
1L is ULA with respect to the

diagram S ←
◦
V → V1. Here we defined r : V → Y as the base change of

r1 : V1 → Y1 by q : Y → Y1, and
◦
V is the preimage of

◦
Y in V . Conversely,

if r1 : V1 → Y1 is smooth and surjective, and r∗
1L is ULA with respect

to the diagram S ←
◦
V → V1, then L ∈ D(Y1) is ULA with respect to

S
p←

◦
Y

q→ Y1.
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(3) Assume given a diagram as above S
p← Y

q→ Y1 such that both S1 and
S are smooth and equidimensional. Assume L ∈ D(Y1), and the natural
map q∗L〈dim S−dim S1〉 → q!L is an isomorphism. Then D(q∗L) is locally

acyclic with respect to p :
◦
Y → S if and only if L is locally acyclic with

respect to the diagram S
p←

◦
Y

q→ Y1.

Proof. (3) Let p̄ : Y → Y ×S be the graph of p : Y → S. By ([BG02], Section 5.1.1),
we have a canonical morphism, say α : p̄∗(·)〈− dim S〉 → p̄!. Since S and S1 are
smooth, q!

1Q̄� →̃ Q̄�〈dim S−dim S1〉. As in Section 4.8, since the map q×id : Y ×S →
Y1 ×S is obtained from q1 by base change, the above isomorphism yields a canonical
map can : Q̄�〈dim S − dim S1〉 → (q × id)!Q̄�. For K ∈ D(Y1 × S) we get a canonical
map

β : (q × id)∗K〈dim S − dim S1〉 → (q × id)!K

defined as the composition (q × id)∗K〈dim S − dim S1〉 id ⊗ can→ (q × id)∗K ⊗ (q ×
id)!Q̄� → (q × id)!K. The composition Y

p̄→ Y × S
q×id→ Y1 × S equals g. For K ∈

D(Y1 × S) the map (36) equals the composition

p̄∗(q × id)∗K〈− dim S1〉 β→ p̄∗(q × id)!K〈− dim S〉 α→ p̄!(q × id)!K.

Let now K ∈ D(S). By our assumptions, the map β : (q×id)∗(DL�DK)〈dim S−
dim S1〉 →̃ (q × id)!(DL�DK) is an isomorphism. The map D(q∗L) is locally acyclic

with respect to p :
◦
Y → S if and only if the map α : p̄∗(D(q∗L) � DK)〈− dim S〉 →

p̄!(D(q∗L) �DK) is an isomorphism over
◦
Y for any K ∈ D(S). Our claim follows. ��

4.8.2 We say that for a morphism p1 : Y1 → S1 an object L ∈ D(Y1) is ULA
with respect to p1 if it satisfies ([Del77], Definition 2.12). One may check that this
definition is equivalent to ([BG02], Definition 5.1). In the latter one requires that lo-
cal acyclicity holds after any smooth base change, whence in the former one requires
it to hold after any base change q1 : S → S1.

Assume given a cartesian square as in Section 4.8

Y
q→ Y1

↓ p ↓ p1

S
q1→ S1

(38)

with S1 smooth equidimensional.

Proposition 4.8.3. Assume q1 representable. Let L ∈ D(Y1) be ULA with respect
to p1. Then L is ULA with respect to the diagram S

p← Y
q→ Y1.

To establish Proposition 4.8.3 we need the following.
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Lemma 4.8.4. Assume given a diagram (38), where S, S1 are smooth of dimensions
d, d1 respectively, and q1 is representable. If L ∈ D(Y1) is ULA with respect to p1

then the natural map η : q∗L〈d−d1
2 〉 → q!L〈d1−d

2 〉 is an isomorphism.

Proof. One has canonical maps p∗q!
1Q̄� → q!

Q̄� and q∗L ⊗ q!
Q̄� → q!L, the second

one is defined in ([BG02], Section 5.1.1). One has q!
1Q̄� →̃ Q̄�〈d − d1〉 canonically.

Recall that η is defined as the composition q∗L〈d − d1〉 → q∗L ⊗ q!
Q̄� → q!L.

If q1 is smooth then our claim is well known. If q1 is a closed immersion then
this follows from ([BG02], Lemma B.3). In general, write q1 as the composition

S
id ×q1→ S × S1

pr2→ S1. Localizing on S1 in smooth topology, we may assume S1 is a
smooth affine scheme. Then id ×q1 is a closed immersion. ��
Proof of Proposition 4.8.3. Let K ∈ D(S). Localizing on S1 in smooth topology we
may assume S1 is a smooth affine scheme of dimension d1. Let i1 : S0 → S be a locally
closed smooth subscheme with dim S0 = d0, E a local system on S0. Decomposing
K in the derived category, it is enough to treat the case of K = (i1)∗E. We must
show that for this K the map (37) is an isomorphism over Y . Let i : Y0 ↪→ Y be
obtained from i1 by the base change p : Y → S. Let p0 : Y0 → S0 be the projection.
By Lemma 4.8.4,

i∗q∗L〈d0 − d1〉 →̃ i!q!L.

Since i∗q∗L is ULA over S0, by 3) of Section 4.8.1, L is locally acyclic with respect

to the diagram S0
p0← Y0

q◦i→ Y1. That is, one has an isomorphism over Y0

D(p∗
0E ⊗ i∗q∗L) →̃ p∗

0(DE) ⊗ i∗q∗(DL)〈−d1〉. (39)

We must show that the natural map

q∗(DL) ⊗ p∗(i1)∗E∗)〈d0 − d1〉 → D(q∗L ⊗ p∗(i1)∗E) (40)

is an isomorphism over Y . By ([Fu11], Theorem 7.6.9), q∗L ⊗ p∗(i1)∗E →̃ i∗(i∗q∗L ⊗
p∗
0E). So, both sides of (40) are extensions by zero under i, and over Y0 the desired

isomorphism reduces to (39). ��
4.9 The above notion of ULA was introduced, because we hoped that for μ ∈ Λ,
λ̄ ∈ Λn the perverse sheaf ICζ ∈ Pervζ−1,ζ(Bunμ

B−) is ULA with respect to the
diagram

Mn,≤λ

′p̄← Z
μ
n,≤λ

′p̄B→ Bunμ
B− .

Unfortunately, this claim is not literally true. However, it is used in the proof of
following result. For μ ∈ Λ, K ∈ Dζ(Mn) the map (37) defines a canonical morphism

F̄μ
ζ−1(DK) → D(F̄μ(K)). (41)

Proposition 4.9.1. For any K ∈ Whitκ
n the map (41) is an isomorphism.
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For θ ∈ Λpos denote by ≤θ Bunμ

B̃− the preimage of ≤θ Bunμ
B− in Bunμ

B̃− . Our proof
of Proposition 4.9.1 uses the following result of Campbell.

Proposition 4.9.2 ([Cam], 4.2.1). Let θ ∈ Λpos, μ ∈ Λ. Assume that for any
0 ≤ θ′ ≤ θ and any positive root α̌ one has 〈α̌, (2g − 2)ρ − μ + θ′〉 > 2g − 2. Then
the perverse sheaf ICζ is ULA with respect to the projection ≤θ Bunμ

B̃− → ˜BunG.

In the untwisted case the latter result becomes ([Cam], 4.1.1.1).

Proof of Proposition 4.9.1. Pick a collection of dominant coweights λ̄ = (λ1, . . . , λn)
and μ ∈ Λ with μ ≤ ∑

i λi. We assume K is the extension by zero from Mn,≤λ̄. We
must show that (41) is an isomorphism over Z

μ

n,≤λ̄.
For θ ≥ 0 we denote by ≤θZ

μ
n the preimage of ≤θ Bunμ

B− under ′p̄B : Z
μ
n → Bunμ

B− .
Set θ = (

∑

λi) − μ ∈ Λpos. Note that Z
μ

n,≤λ̄ is contained in ≤θZ
μ
n.

For η ≤ 0 denote by Wη,μ the scheme

(
◦
Xη × Xμ

n )disj ×(Xη×Xμ
n) (Zη × ≤θZ

μ
n).

By the factorization property, the natural map Wη,μ → ≤θZ
η+μ
n is étale.

By Proposition 4.7.1, it suffices to show that the canonical map

F̄μ+η
ζ−1 (DK) → DF̄μ+η(K)

is an isomorphism over ≤θZ
η+μ
n . If η ≤ 0 is small enough then ICζ is ULA with

respect to ≤θ Bunη+μ

B̃− → ˜BunG by Proposition 4.9.2. Our claim now follows from
Proposition 4.8.3. ��

Let Z
μ

x̄,λ̄ ⊂ Z
μ
n (resp., Z

μ

x̄,≤λ̄ ⊂ Z
μ
n) be the substack obtained from Z

μ
n by the base

change Mx̄,λ̄ → Mn (resp., Mx̄,≤λ̄ → Mn). Let Z
μ

x̄,λ̄
be the preimage of Bunμ

B− in

Z
μ

x̄,λ̄.

Corollary 4.9.3. (i) If μ ∈ −Λpos then F̄μ(F∅) is an irreducible perverse sheaf,

the extension by zero from
◦

Zμ.
(ii) Let x̄ = (x1, . . . , xn) ∈ Xn be pairwise different, λ̄ = (λ1, . . . , λn) with λi ∈ Λ+,

μ ∈ Λ with μ ≤ ∑

i λi. Then F̄μ(Fx̄,λ̄,!) is perverse, and DF̄μ(Fx̄,λ̄,!) →̃ F̄μ
ζ−1

(DFx̄,λ̄,!).
(iii) The complex F̄μ(Fx̄,λ̄) is an irreducible perverse sheaf, the intermediate ex-

tension from Z
μ

x̄,λ̄. So, F(Fx̄,λ̄) is a direct sum of (shifted) irreducible perverse
sheaves.

Proof. (i) and (ii). The fact that F̄μ(Fx̄,λ̄,!) is an irreducible perverse sheaf over Z
μ

x̄,λ̄

is essentially explained in [BFGM02] (see also [Lys]). Our claim follows now from
Proposition 4.9.1 and the fact that F∅ is self-dual (up to replacing ψ by ψ−1).

(iii) For each collection of dominant coweights λ̄′ < λ̄ the ∗-restriction of Fx̄,λ̄ to
˜Mx̄,λ̄′ is placed in perverse degrees < 0. Therefore, the ∗-restriction of F̄μ(Fx̄,λ̄) to
Z

μ

x̄,λ̄′ is placed in perverse degrees < 0 by (ii). Our claim follows. ��
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Remark 4.9.4. Let us list the dimensions of stacks mentioned in Corollary 4.9.3.
As in ([BFGM02], Section 5.2) one checks that Z

μ

x̄,λ̄ is irreducible of dimension
〈−μ +

∑

i λi, 2ρ̌〉. The stack Mx̄,λ̄ is smooth irreducible of dimension

(g − 1) dim U − 〈(2g − 2)ρ −
∑

i

λi, 2ρ̌〉,

and dimBunμ
B− = (g − 1) dim B + 〈2ρ̌, (2g − 2)ρ−μ〉. The ∗-restriction of F̄μ(Fx̄,λ̄,!)

to Z
μ

x̄,λ̄
is a local system placed in the usual degree 〈μ − ∑

i λi, 2ρ̌〉.
4.10 The ∗-restrictions of ICζ to a natural stratification have been calculated
in ([Lys], Theorem 4.1) under the additional assumption that G is simple, simply-
connected, but the answer and the argument hold also in our case of [G, G] simply-
connected. This way one gets the following description.

Let ǔ−
ζ denote the Lie algebra of the unipotent radical of the Borel subgroup

B̌−
ζ ⊂ Ǧζ corresponding to B−. For ν ∈ Λ� and V ∈ Rep(Ťζ) write Vν for the direct

summand of V , on which Ťζ acts by ν.
Let θ ∈ −Λpos. We write U(θ) for an element of the free abelian semigroup

generated by −Λpos − 0. In other words, U(θ) is a way to write

θ =
∑

m

nmθm, (42)

where θm ∈ −Λpos − 0 are pairwise different, and nm ≥ 0. Set | U(θ) |= ∑

m nm.
We denote by XU(θ) the corresponding partially symmetrized power of the curve
XU(θ) =

∏

m X(nm). Let
◦
XU(θ) ⊂ XU(θ) be the complement to all the diagonals in

XU(θ). We view
◦
XU(θ) as a locally closed subscheme of Xθ via the map

◦
XU(θ) → Xθ,

(Dm) 
→ ∑

m Dmθm.

Set U(θ) BunB− = BunB− ×
◦
XU(θ). We get locally closed immersions U(θ) BunB− ↪→

BunB− ×Xθ ↪→ BunB− , the second one sending (F,FT , κ−, D) to (F,FT (−D), κ−).
Let U(θ) BunB̃− be obtained from U(θ) BunB− by the base change BunB̃− → BunB− .

Let H
+,U(θ)
T be the stack classifying FT ∈ BunT , D ∈

◦
XU(θ) viewed as a point of

Xθ. Let H+,U(θ)

T̃
be the stack classifying a point of H+,U(θ)

T as above, and lines U,UG

equipped with

UN →̃ (ωLκ̄)FT (−D), UN
G →̃ (ωLκ̄)FT

.

As in ([Lys], Section 4.4.1), we have an isomorphism

U(θ) BunB̃− →̃ BunB− ×BunT
H

+,U(θ)

T̃
, (43)

where to define the fibred product we used the map H
+,U(θ)

T̃
→ BunT sending the

above point to FT .
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Consider the line bundle on
◦
XU(θ), whose fibre at D is Lκ̄

F0
T (−D), here we view

◦
XU(θ) ⊂ Xθ as a subscheme. Let ˜Gr

+,U(θ)

T be the gerbe of N -th roots of this line
bundle. Call V ∈ Rep(Ťζ) negative if each Ťζ-weight appearing in V lies in −Λpos.
Actually, such a weight is in −Λ�,pos, where Λ�,pos = Λ� ∩ Λpos.

For V ∈ Rep(Ťζ) negative we get a perverse sheaf LocU(θ)
ζ (V ) on ˜Gr

+,U(θ)

T on

which μN (k) acts by ζ, and such that for D =
∑

k θkxk ∈
◦
XU(θ) its restriction to

∏

k

˜Gr
θk

T,xk

is (�k Locζ(Vθk
))[| U(θ) |]. Here Grθ

T,x is the connected component of GrT,x contain-
ing tθxT (O), in other words, corresponding to F0

T (−θx) with the evident trivialization
off x. The functor Locζ was defined in Section 0.0.10. Note that LocU(θ)

ζ (V ) vanishes
unless in the decomposition (42) each term lies in −Λ�,pos.

For V ∈ Rep(Ťζ) negative define a perverse sheaf LocU(θ)
BunT ,ζ(V ) on H

+,U(θ)

T̃

as follows. Let BunT,U(θ) denote the stack classifying FT ∈ BunT , D ∈
◦
XU(θ),

and a trivialization of FT over the formal neighbourhood of D. Let ˜BunT,U(θ) =

BunT,U(θ) ×BunT
˜BunT . Let TU(θ) be the scheme classifying D ∈

◦
XU(θ) and a sec-

tion of T over the formal neighbourhood of D, this is a group scheme over
◦
XU(θ).

For (FT , D) ∈ BunT,U(θ) we have a natural isomorphism (ωLκ̄)FT
⊗ (Lκ̄)F0

T (−D) →̃
(ωLκ̄)FT (−D). So, as in ([Lys], Section 4.4.2), we get a TU(θ)-torsor

˜BunT,U(θ) × ◦
XU(θ)

˜Gr
+,U(θ)

T → H
+,U(θ)

T̃
.

For T ∈ D( ˜BunT ) and a TU(θ)-equivariant perverse sheaf S on ˜Gr
+,U(θ)

T we may form

their twisted product T˜�S on H
+,U(θ)

T̃
using the above torsor. The perverse sheaf

LocU(θ)
ζ (V ) on ˜Gr

+,U(θ)

T is naturally TU(θ)-equivariant. For V ∈ Rep(Ťζ) negative
define

LocU(θ)
BunT ,ζ(V ) = IC( ˜BunT )˜�LocU(θ)

ζ (V ).

For the map q− : BunB− → BunT on (43) we get the perverse sheaf denoted

LocU(θ)
BunB ,ζ(V ) = (q−)∗ LocU(θ)

BunT ,ζ(V )[dim. rel(q−)].

Theorem 4.10.1 ([Lys], Theorem 4.1). The ∗-restriction of ICζ to U(θ) BunB̃−

vanishes unless in the decomposition (42) each term lies in −Λ�,pos. In the latter
case it is isomorphic to

LocU(θ)
BunB ,ζ( ⊕

i≥0
Symi(ǔ−

ζ )[2i]) ⊗ Q̄�[− | U(θ) |],
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where ⊕
i≥0

Symi(ǔ−
ζ )[2i] is viewed as a cohomologically graded Ťζ-module.

4.11 Our purpose now is to improve Proposition 4.3.4 as follows.

Proposition 4.11.1. (i) Assume �(α) /∈ Z for any simple coroot α. Then for

μ ∈ −Λpos we have a (non-canonical) isomorphism L
μ
∅ →̃F(F∅) in Dζ(

◦
Xμ).

(ii) The complex F(F∅) is perverse. If in addition the subtop cohomology property
is satisfied for � then we have a (non-canonical) isomorphism L

μ
∅ →̃F(F∅) in

Dζ(Xμ).

Proof. (i) If −μ is a simple coroot of G then, by Theorem 4.10.1, F̄μ(F∅) is the

extension by zero under Zμ ↪→ Z
μ
. Therefore, over

◦
Xμ the desired isomorphism

follows from the factorization property combined with Proposition 4.3.4.
(ii) Denote by F(F∅)μx the ∗-fibre of F(F∅) at μx ∈ Xμ. If D =

∑

k μkxk ∈ Xμ

with xk pairwise different, the ∗-fibre of F(F∅) at D, by factorization property,
identifies with

�k F(F∅)μkxk
.

Our claim is reduced to the following Proposition 4.11.2. ��
Proposition 4.11.2. Let x ∈ X and μ < 0.

(i) The complex F(F∅)μx is placed in degree ≤ −1.
(ii) Assume in addition that the subtop cohomology property is satisfied for �. Then

F(F∅)μx is placed in degree < −1 unless −μ is a simple coroot.

Proof. We are integrating over the fibre, say Y , of
◦

Zμ over μx. From (33), Y identifies
with (Gr0B ∩Grμ

B−) ×T (Ox) Ωρ |Dx
. The restriction of F̄μ(F∅) to the stratum

(Gr0B ∩Grμ
B−) ×T (Ox) Ωρ |Dx

is a local system placed in usual degree 〈μ, 2ρ̌〉.
Denote by evx : Gr0B ×T (Ox)Ωρ |Dx

→ A
1 the restriction of the canonical map

ev : M∅,0 → A
1. As is explained in ([Gai08], Section 5.6), the local system ev∗

xLψ

is nonconstant on each irreducible component of (Gr0B ∩Grμ
B−) ×T (Ox) Ωρ |Dx

of
dimension −〈μ, ρ̌〉. So, the restriction of F̄μ(F∅) to each such irreducible component
is also nonconstant. Thus, the contribution of the stratum Gr0B ∩Grμ

B− is placed in
the usual degree ≤ −1.

For μ = ν + θ with ν, θ < 0 consider the stratum Yν := (Gr0B ∩Grν
B−) ×T (Ox)

Ωρ |Dx
of Y . Let U(θ) be the trivial decomposition θ = θ, so

◦
XU(θ) = X. Pick some

trivialization of the line Lκ̄
F0

T (−θx). This allows for V ∈ Rep(Ťζ) to see Locζ(Vθ) as a
complex over Spec k. Then the ∗-restriction of F̄μ(F∅) to Yν identifies with

Locζ(( ⊕
i≥0

Symi(ǔ−
ζ )[2i])θ) ⊗ ev∗

xLψ ⊗ E[−〈2ρ̌, ν〉],
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where E is a rank one tame local system. If ν �= 0 then ev∗
xLψ⊗E is nontrivial on each

irreducible component of Yν of dimension −〈ρ̌, ν〉. Since Locζ(( ⊕
i≥0

Symi(ǔ−
ζ )[2i])θ) is

placed in degrees < 0, for ν �= 0 the contribution of Yν is placed in degrees ≤ −2.
For ν = 0 we get Yν = Spec k. The ∗-restriction of F̄μ(F∅) to this point identifies

with

Locζ(( ⊕
i≥0

Symi(ǔ−
ζ )[2i])μ),

the latter is placed in degrees ≤ −2. So, F(F∅)μx is placed in degree ≤ −1, and only
the open stratum Yμ may contribute to the cohomology group H−1(F(F∅)μx).

(ii) By definition of the subtop cohomology property, the open stratum Yμ does
not contribute to H−1(F(F∅)μx). ��
Remark 4.11.3. Conjecture 1.1.2 would imply the following. Assume �(α) /∈ Z for
any simple coroot α. Then L

μ
∅ →̃ F(F∅) in Dζ(Xμ).

Proposition 4.11.4. The functor F : DWhitκ
n → Dζ(X

μ
n ) is exact for the perverse

t-structures.

Proof. Pick K ∈ Whitκ
n. Let η : {1, . . . , n} → A be a surjection. Pick μa ∈ Λ for

a ∈ A with
∑

a μa = μ. Let V ⊂ Xμ
n be the subscheme classifying disjoint points

{ya ∈ X}a∈A such that xi = yη(i) for each i, and D =
∑

a∈A μaya. In view of the
factorization property and Propositions 4.9.1, 4.11.1, it suffices to show that the
∗-restriction of F(K) to V is placed in perverse degrees ≤ 0. Let Z

μ
V be the preimage

of V under π̄μ : Z
μ
n → Xμ

n . The fibre of Z
μ
V over {ya} is

∏

a

Grμa

B−,ya
×T (Oya) Ωρ |Dya

.

Pick a collection λ̄ = {λa}a∈A with λa ∈ Λ+, μa ≤ λa. Let Mη,λ̄ ⊂ Mn be the
substack classifying a point of V as above (this defines xi), and such that for each
λ̌ ∈ Λ̌+ the map

κλ̌ : Ω〈ρ,λ̌〉 → Vλ̌
F(

∑

a

〈λaya, λ̌〉)

is regular over X and has no zeros over X. Let Z
μ

V,λ̄ be obtained from Z
μ
V by the

base change Mη,λ̄ → Mn. Let πη : Mη,λ̄ → V be the projection, ev λ̄ : Mη,λ̄ → A
1

the corresponding evaluation map (as in Section 2.3). Let K λ̄ be a complex on V
placed in perverse degrees ≤ 0 such that the ∗-restriction K |Mη,λ̄

identifies with

π∗
ηK

λ̄ ⊗ ev ∗̄
λLψ[dim],

where dim = (g − 1) dim U − 〈(2g − 2)ρ − ∑

a λa, 2ρ̌〉. This is the relative dimension
of πη.
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Only finite number of the strata Z
μ

V,λ̄ of Z
μ
V contribute to F(K) |V . Let Kλ̄ denote

the !-direct image under π̄μ : Z
μ

V,λ̄ → V of the ∗-restriction F̄μ(K) |Zμ

V,λ̄
. It suffices to

show that Kλ̄ is placed in perverse degrees ≤ 0. From Theorem 4.10.1 we conclude
that Kλ̄ →̃K λ̄ ⊗ M , where M is a complex on V with locally constant cohomology
sheaves. It remains to show that M is placed in degrees ≤ 0.

The problem being local, we may and do assume that A is the one element set.
Write μ = μa, λa = λ, ya = y. Then the fibre Y of Z

μ
V,λ over y is

(Grλ
B,y ∩Grμ

B−,y) ×T (Oy) Ωρ |Dy
.

For μ ≤ ν ≤ λ let Yν = (Grλ
B,y ∩Grν

B−,y) ×T (Oy) Ωρ |Dy
, they form a stratification

of Y . For μ = ν + θ with ν ≤ λ, θ ≤ 0 let U(θ) be the trivial decomposition

θ = θ, so
◦
XU(θ) = X. Pick some trivialization of the line Lκ̄

F0
T (−θx). This allows for

V ∈ Rep(Ťζ) to see Locζ(Vθ) as a complex over Spec k (as in Proposition 4.11.2).
The ∗-restriction F̄μ(K) |Yν

identifies with

Locζ(( ⊕
i≥0

Symi(ǔ−
ζ )[2i])θ) ⊗ ev ∗̄

λLψ ⊗ E ⊗ K λ̄
y [〈λ − ν, 2ρ̌〉],

where E is some rank one local system. Since dim Yν ≤ 〈λ − ν, ρ̌〉, we see that the
contribution of Yν to the complex My is placed in degrees ≤ 0. We are done. ��

Combining Propositions 4.7.1, 4.11.4, one gets the following.

Theorem 4.11.5. Assume that � satisfies the subtop cohomology property. Then
F gives rise to the functor F : Whitκ

n → ˜FS
κ

n, which is exact for the perverse t-
structures and commutes with the Verdier duality (up to replacing ψ by ψ−1 and ζ
by ζ−1).

4.12 Multiplicity spaces.

4.12.1 For a topological space X write Irr(X) for the set of irreducible compo-
nents of X. Recall for ν ≥ 0 the notation Bg(ν) and the functions φi on this crystal
from Section 1.2.1.

Let μ ∈ Λ, λ ∈ Λ+ with μ ≤ λ. Let b ⊂ Grλ
B ∩Grμ

B− be an irreducible component.
Denote by b̄ ⊂ Gr0B ∩Grμ−λ

B− the component t−λb, so b̄ ∈ Bg(λ − μ). By Anderson’s
theorem ([And03], Proposition 3) we have a bijection

{a ∈ Irr(Grμ
B− ∩Grλ

B) | a ⊂ Grλ
G} →̃ Irr(Grλ

G ∩Grμ
B−) (44)

sending a to the closure of a ∩ Grλ
G.

Lemma 4.12.1. Under the above assumptions the following are equivalent.

(i) For all i ∈ J, φi(b̄) ≤ 〈λ, α̌i〉,

(ii) b ⊂ Grλ
G.
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Proof. Recall the canonical inclusion B(−w0(λ)) ↪→ T−λ ⊗B(−∞) from ([BG08], p.
87), see also Section 1.2.2. Its image is the set of t−λ ⊗ a such that a ∈ B(−∞), and
for each i ∈ J, φi(a∗) ≤ 〈α̌i, λ〉. So, i) is equivalent to t−λ ⊗ b̄∗ ∈ B(−w0(λ)). By
([And03], Proposition 3), we have a canonical bijection of irreducible components
(up to passing to the closure)

Irr(tμ Gr−w0(λ)
G ∩Gr0B) →̃ {a ∈ Irr(Gr0B ∩Grμ−λ

B− ) | a ⊂ tμGr−w0(λ)
G }.

So, (i) is equivalent to the property that t−μb̄∗ ∈ Irr(Gr−w0(λ)
G ∩Gr−μ

B ). Our claim
follows now from the properties of the bijection ∗ : B(−∞) → B(−∞) and (44). ��
4.12.2 Additional input data. Recall that the pull-back of the central extension
(8) to Λ� is abelian. Pick a splitting t0

E
: Λ� → VE of the exact sequence (8) over Λ�.

We assume t0
E

is compatible with the section tE from Section 0.0.10.
For each λ̄ ∈ Λ/Λ� we make the following choice. Pick compatible trivializations

δλ : (VE)λ →̃Gm of the fibre of GraG → GrG at tλG(O) for all λ ∈ Λ over λ̄. Here
compatible means equivariant under the action of Λ� via t0

E
.

4.12.3 For λ, μ ∈ Λ the above trivializations δλ yield sections sλ
B : Grλ

B → GraG,
sμ
B− : Grμ

B− → GraG of the Gm-torsor GraG → GrG. The discrepancy between them
is a map that we denote by

γμ
λ : Grλ

B ∩Grμ
B− → Gm

and define by sμ
B− = γμ

λsλ
B. Note that if λ − μ ∈ Λ� then γμ

λ does not depend of the
choice of δ (so depends only on t0

E
).

Theorem 4.12.2. Assume that � satisfies the subtop cohomology property. Pick λ ∈
Λ+ and x ∈ X. There is a decomposition

F(Fx,λ) →̃ ⊕
μ≤λ, λ−μ∈Λ�

Lx,μ ⊗ V λ
μ (45)

in ˜FS
κ

x, where V λ
μ is the Q̄�-vector space with a canonical base indexed by those

b ∈ Irr(Grλ
B,x ∩Grμ

B−,x) that satisfy the following two properties:

• b ⊂ Grλ
G,x,

• the local system (γμ
λ)∗Lζ is trivial on b.

In particular, we have V λ
λ = Q̄�.

4.12.4 Proof of Theorem 4.12.2. Recall that Fx,λ is the extension by zero from
˜Mx,≤λ. Since π̄μ factors through π̄μ : Z

μ
x,≤λ → Xμ

x,≤λ, F(Fx,λ) is the extension by
zero from Xμ

x,≤λ. The latter scheme is empty unless μ ≤ λ. So, the μ-component of
F(Fx,λ) vanishes unless μ ≤ λ.

By Corollary 4.9.3, since π̄μ is proper for each μ, there is a decomposition

F(Fx,λ) →̃ ⊕
μ≤λ

Lx,μ ⊗ V λ
μ . (46)
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It remains to determine the spaces V λ
μ . Pick μ ≤ λ. Set for brevity γ = γμ

λ . Recall
the notation χλ

0 : Grλ
B,x → A

1 from Section 1.1.

Lemma 4.12.3. The space V λ
μ in (46) has a canonical base consiting of those irre-

ducible components of Grλ
B,x ∩Grμ

B−,x over which the local system (χλ
0)∗Lψ ⊗ γ∗Lζ

is constant.

Proof. Since F(Fx,λ) ∈ ˜FS
κ

x, it suffices to determine the fibre K := F(Fx,λ)μx. By
Proposition 4.11.4, K is placed in degrees ≤ 0. Pick a trivialization of Pκ̄ at μx ∈
Xμ

x,≤λ. This allows to see K as a complex over Spec k, it also determines Lx,μ up to
a unique isomorphism, so yields an isomorphism

V λ
μ →̃ H0(F(Fx,λ)μx).

The fibre of π̄μ : Z
μ
x,≤λ → Xμ

x,≤λ over μx is

Y := (Grλ
B,x ∩ Grμ

B−,x) ×T (Ox) Ωρ |Dx
.

For η ∈ Λ+, η ≤ λ let

Yη = (Grη
B,x ∩Grμ

B−,x) ×T (Ox) Ωρ |Dx
.

Denote by Kη the constant complex over Spec k such that j∗
x,ηFx,λ →̃Kη ⊗ Fx,η.

Here Kη is placed in degrees < 0 for η < λ, and Kλ = Q̄�.
Let Kη be the contribution of the ∗-restriction Fx,λ |

˜Mx,η
to K. In other words,

Kη = RΓc(Yη, F̄
μ(Fx,λ) |Yη

),

where we used the ∗-restriction to Yη, and the above trivialization of Pκ̄ at μx ∈
Xμ

x,≤λ to get rid of the corresponding gerbe. By Proposition 4.11.4, if η < λ then
Kη is placed in degrees < 0. So, it suffices to analyze Kλ.

For μ ≤ ν ≤ λ let

Yλ,ν = (Grλ
B,x ∩Grν

B−,x) ×T (Ox) Ωρ |Dx
.

The schemes Yλ,ν with μ ≤ ν ≤ λ form a stratification of Yλ.
For μ = ν + θ with ν ≤ λ, θ ≤ 0 let U(θ) be the trivial decomposition θ = θ.

Pick a trivialization of the line Lκ̄
F0

T (−θx). As in the proof of Proposition 4.11.4 this
allows for V ∈ Rep(Ťζ) to see Locζ(Vθ) as a complex over Spec k. The ∗-restriction
F̄μ(Fx,λ) |Yλ,ν

identifies with

Locζ(( ⊕
i≥0

Symi(ǔ−
ζ )[2i])θ) ⊗ ev∗

x,λLψ ⊗ E[〈λ − ν, 2ρ̌〉],

where E is some rank one local system. Recall that Yλ,ν is of pure dimension 〈λ−ν, ρ̌〉.
So, the contribution Kλ,ν of Yλ,ν to Kλ is

Locζ(( ⊕
i≥0

Symi(ǔ−
ζ )[2i])θ) ⊗ RΓc(Yλ,ν , ev∗

x,λLψ ⊗ E)[〈λ − ν, 2ρ̌〉].
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It is placed in degrees ≤ 0, and the inequality is strict unless θ = 0. There remains
to analyze the complex

Kλ,μ = RΓc(Yλ,μ, ev∗
x,λLψ ⊗ E)[〈λ − μ, 2ρ̌〉]

We see that only the open part Z
μ
x,λ ⊂ Z

μ
x,≤λ contributes to the 0-th cohomology of

K. This allows to describe the local system E over Yλ,μ. From the definitions we get
γ∗Lζ →̃E. So, Kλ,μ identifies with

RΓc(Grλ
B,x ∩Grμ

B−,x, (χλ
0)∗Lψ ⊗ γ∗Lζ)[〈λ − μ, 2ρ̌〉]

for some character χ0 : U(Fx) → A
1 of conductor zero. Our claim follows. ��

Lemma 4.12.4. Let μ ≤ λ, λ ∈ Λ+. Let b ⊂ Grλ
B ∩Grμ

B− be an irreducible com-
ponent. Denote by b̄ ⊂ Gr0B ∩Grμ−λ

B− the component t−λb, so b̄ ∈ Bg(λ − μ). The
restriction χλ

0 : b → A
1 of χλ

0 is dominant if and only if there is i ∈ J such that
φi(b̄) > 〈λ, α̌i〉.
Proof. For i ∈ J recall the maps qPi

: GrPi
→ GrMi

. For i ∈ J let μi ≤ λ be the
unique element such that q−1

Pi
(Grμi

B−(Mi)
)∩b is dense in b. Note that b ⊂ Grλ

B ∩Grμ
B−

is a T (O)-invariant subscheme. Let

b0 = b ∩ ( ∩
i∈J

q−1
Pi

(Grμi

B−(Mi)
),

it is a dense T (O)-invariant subscheme of b. Set μ̄ = {μi}i∈J and

Z μ̄ =
∏

i∈J

Grλ
B(Mi)

∩Grμi

B−(Mi)
.

Let qμ̄ : b0 → Z μ̄ be the product of the maps qPi
. This map is T (O)-equivariant.

Since T (O) acts transitively on Z μ̄, the map qμ̄ is surjective. For i ∈ J let ev i be the
composition

Grλ
B(Mi)

∩Grμi

B−(Mi)
↪→ Grλ

B(Mi)
→ Grλ

B
χλ

0→ A
1.

Denote by ev μ̄ : Z μ̄ → A
1 the map ev μ̄ =

∑

i∈J ev i. The restriction χλ
0 |b0 equals

ev μ̄qμ̄.
Clearly, ev μ̄ : Z μ̄ → A

1 is dominant if and only if there is i ∈ J such that
ev i : Grλ

B(Mi)
∩Grμi

B−(Mi)
→ A

1 is dominant. The latter condition is equivalent to

φi(b̄) = 〈λ − μi,
α̌i

2
〉 > 〈λ, α̌i〉.

Indeed, the multiplication by tλ identifies Gr0B(Mi)
∩Grμi−λ

B−(Mi)
→̃ Grλ

B(Mi)
∩Grμi

B−(Mi)
.

Under the latter isomorphism ev i identifies with some map χ0
λ : Gr0B(Mi)

∩Grμi−λ
B−(Mi)

→ A
1 for the group Mi. Our claim follows. ��
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The local system (χλ
0)∗Lψ ⊗ γ∗Lζ is constant on b if and only if χλ

0 : b → A
1 is

not dominant and the local system γ∗Lζ is constant on b. The map γ intertwines the
natural T (O)-action on Grλ

B ∩Grμ
B− with the T (O)-action on Gm by the character

T (O) → T
κ̄(λ−μ)→ Gm. So, the condition λ − μ ∈ Λ� is necessary (but not sufficient)

for γ∗Lζ to be trivial. Theorem 4.12.2 follows now from Lemmas 4.12.4 and 4.12.1.
��

4.12.5 Special case. Our purpose now is to understand the spaces V λ
μ under the

additional assumption λ ∈ Λ�,+.

Lemma 4.12.5. Let μ ≤ λ with μ ∈ Λ, λ ∈ Λ�,+. Then over Grλ
G ∩Grλ

B ∩Grμ
B− there

is an isomorphism (sμ
B−)∗Aλ

E →̃ (γμ
λ)∗Lζ up to a shift.

Proof. Recall that for any λ ∈ Λ+ we have a section sλ : Grλ
G,x → ˜Gr

λ

G,x defined
in ([Lys], Section 2.4.2) and associated to a square root Ω

1
2 (Ox) of Ω(Ox) picked in

Section 0.0.6. In turn, sλ
B : Grλ

B → GraG yields a section denoted sλ
B : Grλ

B → ˜Gr
λ

B

by abuse of notation. Since Grλ
B ∩Grλ

G is an affine space, the local system (sλ
B)∗Aλ

E

is trivial on Grλ
B ∩Grλ

G. Our claim follows. ��
For λ ∈ Λ�,+ write V (λ) for the irreducible represenation of Ǧζ of highest weight

λ. For μ ∈ Λ� let V (λ)μ ⊂ V (λ) denote the subspace of Ťζ-weight μ.

Theorem 4.12.6. Let μ ∈ Λ�, λ ∈ Λ�,+ with μ ≤ λ. Then the vector space V λ
μ in

the formula (45) of Theorem 4.12.2 identifies canonically with V (λ)μ.

Proof. By ([Lys], Lemma 3.2) applied to B− instead of B, the space V (λ)μ admits
a canonical base indexed by those b ∈ Irr(Grλ

G ∩Grμ
B−) over which the shifted local

system (sμ
B−)∗Aλ

E is trivial. The space V λ
μ has a canonical base of b ∈ Irr(Grλ

G ∩Grμ
B−)

such that (γμ
λ)∗Lζ is trivial at the generic point of b. Our claim follows now from

Lemma 4.12.5. ��

Part II: Properties of the functor F

5 Hecke functors

5.1 Action on Dζ( ˜BunG). In the case of G simple simply-connected the Hecke
functors on Dζ( ˜BunG) are defined in ([Lys], Section 3.2). Let us first define their
analogs in our setting.

Write HG for the Hecke stack classifying F,F′ ∈ BunG, x ∈ X and an isomor-
phism F →̃F′ |X−x. We have a diagram

BunG ×X
h←

G ×π← HG
h→

G→ BunG,

where h←
G (resp., h→

G ) sends the above point to F (resp., to F′). Here π(F,F′, x) = x.
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Let GrG,X be the ind-scheme classifying x ∈ X and a G-torsor F on X with a
trivialization F →̃F0

G |X−x. Let GX be the group scheme over X classifying x ∈ X
and an automorphism of F0

G over Dx. The restriction of Lκ̄ under GrG,X → BunG

is also denoted Lκ̄. Let ˜GrG,X denote the gerbe of N -th roots of Lκ̄ over GrG,X .
Write BunG,X for the stack classifying (F ∈ BunG, x ∈ X, ν), where ν : F →̃F0

G |Dx

is a trivialization over Dx. Let ˜BunG,X = BunG,X ×BunG
˜BunG. Denote by γ← (resp.,

γ→) the isomorphism

BunG,X ×GX
GrG,X →̃HG

such that the projection to the first term corresponds to h←
G (resp., h→

G ). The line
bundle ωLκ̄ � Lκ̄ on BunG,X × GrG,X is GX -equivariant, we denote by ωLκ̄

˜�Lκ̄ its
descent to BunG,X ×GX

GrG,X . We have canonically

(γ→)∗(h←
G )∗(ωLκ̄) →̃ ωLκ̄

˜�Lκ̄. (47)

Let HG̃ be the stack obtained from ˜BunG × ˜BunG by the base change h←
G ×h→

G :
HG → BunG × BunG. A point of HG̃ is given by (F,F′, x) ∈ HG and lines U,U′

equipped with
UN →̃ (ωLκ̄)F, U′N →̃ (ωLκ̄)F′ . (48)

We get the diagram of projections

˜BunG
h̃←

G← HG̃

h̃→
G→ ˜BunG .

As in ([Lys], Section 3.2), the isomorphism (47) yields a GX -torsor

γ̃→ : ˜BunG,X ×X
˜GrG,X → HG̃

extending the GX -torsor BunG,X ×X GrG,X → BunG,X ×GX
GrG,X

γ→
→ HG. Namely,

it sends

(x, ν′ : F′ →̃F0
G |Dx

, ν1 : F1 →̃F0
G |X−x,U′N →̃ (ωLκ̄)F′ ,UN

1 →̃Lκ̄
(F1,ν1,x))

to

(F,F′, ν : F →̃F′ |X−x,U,U′),

where F is obtained as the gluing of F′ |X−x with F1 |Dx
via ν−1

1 ◦ ν ′ : F′ →̃F1 |D∗
x
.

We have canonically (ωLκ̄)F′ ⊗ Lκ̄
(F1,ν1,x) →̃ (ωLκ̄)F, and U = U′ ⊗ U1 is equipped

with the induced isomorphism UN →̃ (ωLκ̄)F.
Given an object S of the GX -equivariant derived category on ˜GrG,X and T ∈

D( ˜BunG) we can form their twisted external product (T˜�S)r, which is the descent
of T � S via γ̃→. Similarly, one may define γ̃← and the complex (T˜�S)l on HG̃. If
μN (k) acts on S by ζ, and T ∈ Dζ( ˜BunG) then (h̃←

G × π)!(T˜�S)r ∈ Dζ( ˜BunG ×X).
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In ([Lys], Remark 2.2) we introduced a covariant functor PervG,ζ → PervG,ζ−1 ,
K 
→ ∗K. It is induced by the map E → E, z 
→ z−1.

Our choice of Ω
1
2 gives rise to the fully faithful functor τ0 : PervG,ζ → PervG,ζ,X

defined in ([Lys], Section 2.6). The abelian category PervG,ζ,X , defined in loc.cit., is
the category of GX -equivariant perverse sheaves (cohomologically shifted by 1 to the
right) on ˜GrG,X on which μN (k) acts by ζ. Now for S ∈ PervG,ζ we define following
[FGV01]

H←
G : PervG,ζ−1 × Dζ( ˜BunG) → Dζ( ˜BunG ×X),

H→
G : PervG,ζ × Dζ( ˜BunG) → Dζ( ˜BunG ×X)

by

H→
G (S, K) = (h̃←

G × π)!(K ˜�τ0(S))r and H←
G (S, K) = (h̃→

G × π)!(K ˜�τ0(∗S))l.

Set Λ�,+ = Λ� ∩ Λ+. For ν ∈ Λ�,+ we have the associated irreducible object
Aν

E ∈ PervG,ζ defined in ([Lys], Section 2.4.2). Note that ∗Aν
E →̃A

−w0(ν)
E .

5.2 Action on Dζ(Mx). Pick x ∈ X. Let xHG̃ denote the fibre of HG̃ over
x ∈ X. Set Z = xHG̃ ×

˜BunG

˜Mx, where we used the map h̃→
G : xHG̃ → ˜BunG in the

fibred product.

Lemma 5.2.1. There is a map ′h← : Z → ˜Mx that renders the diagram

˜Mx

′h←← Z
′h→→ ˜Mx

↓ p̃ ↓ pZ ↓ p̃

˜BunG
h̃←

G← xHG̃

h̃→
G→ ˜BunG

commutative. The left square in the above diagram is also cartesian.

Proof. The stack Z classifies (F,F′, ν : F →̃F′ |X−x,U,U′) with isomorphisms (48),
and inclusions for λ̌ ∈ Λ̌+

κλ̌ : Ω〈ρ,λ̌〉 → Vλ̌
F′(∞x)

subject to the Plücker relations. From κ and ν we get a system of maps

κ′λ̌ : Ω〈ρ,λ̌〉 → Vλ̌
F(∞x)

satisfying the Plücker relations ([FGV01], Proposition 5.3.4). Let the map ′h← send
the above point to (F, κ′,U). ��

Author's personal copy



S. LYSENKO GAFA

As in Section 5.1, given S ∈ PervG,ζ and K ∈ Dζ(Mx), we may form their
twisted external product (K ˜�S)r ∈ D(Z) using the fibration ′h→ : Z → ˜Mx with
fibre ˜GrG,x. Analogously, the map ′h← gives rise to (K ˜�S)l ∈ D(Z). We define

H←
G : PervG,ζ−1 × Dζ(Mx) → Dζ(Mx) and H→

G : PervG,ζ × Dζ(Mx) → Dζ(Mx)

by

H→
G (S, K) = (′h←)!(K ˜�S)r and H←

G (S, K) = (′h→)!(K ˜�(∗S))l.

We have functorial isomorphisms

H←
G (S1, H←

G (S2, K)) →̃ H←
G (S1 ∗ S2, K) and H→

G (S1, H→
G (S2, K)) →̃ H→

G (S2 ∗ S1, K).

Lemma 5.2.2. The functors H←
G , H→

G preserve the subcategory D Whitκ
x ⊂ Dζ(Mx).

Proof. This is analogous to ([Gai04], Proposition 7.3). For a collection of points ȳ

the action of the Hecke groupoid on ˜Mx yields an action on (˜Mx)good at ȳ, which in
turn lifts to an action on the torsor ȳ

˜Mx. ��
5.3 Write Whitκ,ss

x ⊂ Whitκ
x for the full subcategory consisting of objects,

which are finite direct sums of irreducible ones.

Theorem 5.3.1. (i) The functor H→
G : PervG,ζ × D Whitκ

x → D Whitκ
x is exact for

the perverse t-structures, so induces a functor

H→
G : PervG,ζ × Whitκ

x → Whitκ
x .

(ii) For γ ∈ Λ�,+ we have H→
G (Aγ

E,F∅) →̃Fx,γ.
(iii) The functor H→

G preserves the subcatgeory Whitκ,ss
x .

The point (ii) of the above theorem is an analog of ([FGV01], Theorem 4) in our
setting.

5.4 Proof of Theorem 5.3.1.

5.4.1 Pick λ ∈ Λ+, γ ∈ Λ�,+. First, we show that

H→
G (A−w0(γ)

E ,Fx,λ) →̃ (′h←)!(Fx,λ
˜�A

−w0(γ)
E )r (49)

is perverse. To simplify the notation, from now on we suppress the upper index r in
the latter formula.

For ν ∈ Λ write Mx,≤ν ⊂ Mx for the substack given by the property that for
any λ̌ the map

Ω〈ρ,λ̌〉 → Vλ̌
F(〈ν, λ̌〉x) (50)

is regular over X. Let Mx̃,≤ν ⊂ Mx,≤ν be the open substack given by the property
that (50) has no zeros in a neighbourhood of x. Let Mx,ν ⊂ Mx̃,≤ν be the open
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substack given by requiring that (50) has no zeros over X. Write ˜Mx,ν , ˜Mx̃,ν and so
on for the restriction of the gerbe ˜Mx to the corresponding stack.

Denote by Kν
x̃ (resp., Kν) the ∗-restriction of (49) to ˜Mx̃,ν (resp., to ˜Mx,ν). Since

(49) is Verdier self-dual (up to replacing ψ by ψ−1 and ζ by ζ−1), it suffices to prove
the following.

Lemma 5.4.1. If ν ∈ Λ then Kν
x̃ is placed in perverse degrees ≤ 0.

5.4.2 For ν, ν ′ ∈ Λ define the locally closed substacks of Z

Zν,?
x̃ = (′h←)−1(˜Mx̃,≤ν), Zν,? = (′h←)−1(˜Mx,ν),

Z?,ν′

x̃ = (′h→)−1(˜Mx̃,≤ν′), Z?,ν′
= (′h→)−1(˜Mx,ν′),

Zν,ν′

x̃ = Zν,?
x̃ ∩ Z?,ν′

x̃ , Zν,ν′
= Zν,? ∩ Z?,ν′

.

For μ ∈ Λ+ let xH
μ be the locally closed substack γ←(BunG,x ×G(Ox) Grμ

G,x) ⊂
xHG. Let xH

μ

G̃
be its preimage in xHG̃. Set

Zν,?,μ
x̃ = Zν,?

x̃ ∩ p−1
Z (xH

μ

G̃
), Z?,ν′,μ

x̃ = Z?,ν′

x̃ ∩ p−1
Z (xH

μ

G̃
),

Zν,ν′,μ
x̃ = Zν,ν′

x̃ ∩ p−1
Z (xH

μ

G̃
), Zν,ν′,μ = Zν,ν′ ∩ p−1

Z (xH
μ

G̃
).

Denote by Kν,ν′,μ
x̃ the !-direct image under ′h← : Zν,ν′,μ

x̃ → ˜Mx̃,≤ν of the ∗-restriction
of Fx,λ

˜�A
−w0(γ)
E to Zν,ν′,μ

x̃ . Denote by Kν,ν′,μ the restriction of Kν,ν′,μ
x̃ to the open

substack ˜Mx,ν . Lemma 5.4.1 is reduced to the following.

Lemma 5.4.2. (1) The complex Kν,ν′,μ
x̃ is placed in perverse degrees ≤ 0, and the

inequality is strict unless μ = γ and ν ′ = λ.
(2) The ∗-restriction of Kν,λ,γ

x̃ to the closed substack ˜Mx̃,≤ν − ˜Mx,ν vanishes.

Choose for each ν ∈ Λ a trivialization εν : Ωρ(−νx) →̃F0
T |Dx

. They yield a
U(Ox)-torsor Uεν

x̃ (resp., Uεν ) over ˜Mx̃,≤ν (resp., over ˜Mx,ν) classifying a point of
the latter stack together with a trivialization of the corresponding U -torsor over Dx.
The projection ′h← identifies Zν,?

x̃ (resp., ′h→ identifies Z?,ν′

x̃ ) with the fibration

Uεν

x̃ ×U(Ox)
˜GrG,x → ˜Mx̃,≤ν

(resp., with the fibration U
εν′
x̃ ×U(Ox)

˜GrG,x → ˜Mx̃,≤ν′). As in ([FGV01], Lem-
ma 7.2.4), one has the following.

Lemma 5.4.3. (1) The stacks Zν,ν′

x̃ and Zν,?,μ
x̃ , when viewed as substack of

Zν,?
x̃ , are identified with

Uεν

x̃ ×U(Ox)
˜Gr

ν′−ν

B,x

′h←→ ˜Mx̃,≤ν and Uεν

x̃ ×U(Ox)
˜Gr

μ

G,x

′h←→ ˜Mx̃,≤ν

respectively.
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(2) The stacks Zν,ν′

x̃ and Z?,ν′,μ
x̃ , when viewed as substacks of Z?,ν′

x̃ , are iden-
tified with

U
εν′
x̃ ×U(Ox)

˜Gr
ν−ν′

B,x

′h→→ ˜Mx̃,≤ν′ and U
εν′
x̃ ×U(Ox)

˜Gr
−w0(μ)

G,x

′h→→ ˜Mx̃,≤ν′

respectively. ��
Proof of Lemma 5.4.2. (1) By Lemma 5.4.3, the ∗-restriction of Fx,λ

˜�A
−w0(γ)
E to

Z?,ν′,μ
x̃ is the twisted external product of complexes

(Fx,λ |
˜Mx̃,≤ν′ )

˜�(A−w0(γ)
E |

˜Gr
−w0(μ)
G,x

).

It lives in perverse degrees ≤ 0, and the inequality is strict unless μ = γ and

ν ′ = λ. Recall also that the ∗-restriction of A−w0(γ)
E to ˜Gr

−w0(μ)

G,x vanishes unless
μ ∈ Λ�,+.
Since A−w0(γ)

E |
˜Gr

−w0(μ)
G,x

has locally constant cohomology sheaves, its ∗-restriction

to Zν,ν′,μ
x̃ by Lemma 5.4.3 is placed in perverse degrees

≤ − codim(Grν−ν′

B ∩Gr−w0(μ)
G , Gr−w0(μ)

G ) ≤ −〈μ − ν + ν ′, ρ̌〉,
we have used here ([FGV01], Proposition 7.1.3). From Lemma 5.4.3(1) we now
learn that the fibres of ′h← : Zν,ν′,μ

x̃ → ˜Mx̃,≤ν are of dimension ≤ dim(Grν′−ν
B

∩Grμ
G) ≤ 〈ν ′ − ν +μ, ρ̌〉. If f : Y → W is a morphism of schemes of finite type,

each fibre of f is of dimension ≤ d, K is a perverse sheaf on Y then f!K is
placed in perverse degrees ≤ d. We are done.

(2) the ∗-restriction of Fx,λ to ˜Mx̃,≤λ − ˜Mx,λ vanishes, because there are no dom-
inant coweights < 0. ��

Theorem 5.3.1 (i) is proved. Theorem 5.3.1 (iii) follows from the decomposition
theorem of [BBD82].

To establish Theorem 5.3.1 (ii), keep the above notation taking λ = 0. We want
to show that (49) identifies with Fx,−w0(γ). It remains to analyse the complex Kν,0,γ

on ˜Mx,ν placed in perverse degrees ≤ 0. We are reduced to the following.

Lemma 5.4.4. (i) The 0-th perverse cohomology sheaf of Kν,0,γ vanishes unless
ν = −w0(γ).

(ii) The 0-th perverse cohomology sheaf of K−w0(γ),0,γ identifies with the restriction
of Fx,−w0(γ) to ˜Mx,−w0(γ).

Proof. The situation with the additive characters is exactly the same as in ([FGV01],
Sections 7.2.6-7.2.8). Let U(Fx)

εν be ind-group scheme over ˜Mx,ν , the Uεν -twist of
U(Fx) with respect to the adjoint action of U(Ox) on U(Fx). Then Zν,ν′

carries a
natural U(Fx)

εν -action preserving ′h← : Zν,ν′ → ˜Mx,ν and defined via the identifi-
cation of Lemma 5.4.3(1).
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The ind-group U(Fx)
εν classifies a point (F, κ,U) ∈ ˜Mx,ν giving rise to the cor-

responding B-torsor FB on Dx equipped with FB ×B T →̃ Ωρ(−νx), and an auto-
morphism g : FB →̃FB over D∗

x inducing the identity on FB ×B T .
The trivialization εν : Ωρ(−νx) →̃F0

T |Dx
gives for i ∈ J the character

U/[U, U ](Fx) α̌i→ Fx
ε−1

ν→ Lα̌i

Ωρ(−νx) |D∗
x

→̃ Ω(Fx) Res→ A
1.

Their sum over i ∈ J is the character of conductor ν̄ denoted χν : U(Fx) → A
1.

Here ν̄ is the image of ν in the coweights lattice of Gad. Twisting U(Fx) by the
U(Ox)-torsor Uεν , one gets the character denoted χ̄ν : U(Fx)

εν → A
1.

For ν, ν ′ ∈ Λ+ a (U(Fx), χν)-equivariant function χν′−ν
ν : Grν′−ν

B → A
1 gives rise

to a (U(Fx)
εν

, χ̄ν)-equivariant function χ̄ν′−ν
ν : Zν,ν′ → A

1. For the convenience of
the reader we recall the following.

Lemma 5.4.5 ([FGV01], Lemma 7.2.7). Assume ν ′ ∈ Λ+. Then

(1) The map evx,ν′ ◦ ′h→ : Zν,ν′ → A
1 is (U(Fx)

εν
, χ̄ν)-equivariant.

(2) If in addition ν ∈ Λ+ then evx,ν′ ◦ ′h→ coincides with the composition

Zν,ν′ χ̄ν′−ν
ν ×′h→

→ A
1 × ˜Mx,ν

id ×evx,ν→ A
1 × A

1 sum→ A
1

for some χν′−ν
ν . ��

The fibration ′h← : Zν,0,γ → ˜Mx,ν identifes with Uεν ×U(Ox) (˜Gr
−ν

B,x ∩ ˜Gr
γ

G,x) →
˜Mx,ν . After a smooth localization V → ˜Mx,ν the latter fibration becomes a direct

product V × (˜Gr
−ν

B,x ∩ ˜Gr
γ

G,x). The ∗-restriction of F∅ ˜�A
−w0(γ)
E to Zν,0,γ decends to

V × (Gr−ν
B,x ∩Grγ

G,x), and there becomes of the form

EV � ((χ−ν
ν )∗Lψ ⊗ δ∗Lζ)[〈γ − ν, 2ρ̌〉],

for a suitable discrepancy map δ : Gr−ν
B,x ∩Grγ

G,x → Gm. Here EV is a perverse sheaf
on V .

The local system (χ−ν
ν )∗Lψ ⊗ δ∗Lζ is nonconstant on any irreducible component

by ([FGV01], Proposition 7.1.7). This proves i). Since Grw0(γ)
B ∩Grγ

G is the point
scheme, part (ii) follows from Lemma 5.4.5 and 5.4.3. ��

Theorem 5.3.1 is proved.

6 Objects that remain irreducible

In this section we describe the irreducible objects Fx,λ of Whitκ
x such that F(Fx,λ) ∈

˜FS
κ

x remain irreducible. As for quantum groups, we introduce the corresponding
notion of restricted dominant coweights.
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6.1 Special elements in crystals. Let λ, μ ∈ Λ, μ ≤ λ. Recall the map γμ
λ :

Grλ
B ∩Grμ

B− → Gm defined in Section 4.12.3 via the equality sμ
B− = γμ

λsλ
B.

Lemma 6.1.1. Let ν ∈ Λ. Then there is ε ∈ k∗ depending on λ, μ, ν such that the

composition Grλ
B ∩Grμ

B−
tν→ Grλ+ν

B ∩Grμ+ν
B−

γμ+ν
λ+ν→ Gm equals εγμ

λ .

Proof. Pick any g ∈ E over tν ∈ G(F ). The composition Grλ
B

tν→ Grλ+ν
B

sλ+ν
B→ GraG

g−1

→
GraG equals asλ

B for some a ∈ k∗. Indeed, any map Grλ
B → Gm is constant. Similarly,

the composition Grμ
B−

tν→ Grμ+ν
B−

sμ+ν

B−→ GraG
g−1

→ GraG equals bsμ
B− for some b ∈ k∗.

Our claim follows. ��
Our notations and conventions about the crystals are those of Section 1.2.2.

Corollary 6.1.2. Let λ, μ, ν ∈ Λ, b ∈ Irr(Grλ
B ∩Grμ

B−). Then tνb ∈ Irr(Grλ+ν
B

∩Grμ+ν
B− ). The local system (γμ

λ)∗Lζ is trivial on b if and only if (γμ+ν
λ+ν )∗Lζ is trivial

on tνb. So, the latter property is actually a property of t−λb ∈ Bg(λ − μ).

Definition 6.1.3. For ν ∈ Λpos we call an element b̄ ∈ Bg(ν) special if the local
system (γ−ν

0 )∗Lζ is constant on b̄. Denote by Bsp
g (ν) the set of special elements of

Bg(ν).

For i ∈ J denote by δi the denominator of κ̄(αi,αi)
2N . Recall that α̌i

δi
(resp., δiαi)

are the coroots (resp., roots) of Ǧζ .

Remark 6.1.4. (i) If b̄ ∈ Bg(ν) is special then ν ∈ ⊕i∈J Z+(δiαi).
(ii) Let λ ∈ Λ+, x ∈ X, μ ∈ Λ. Assume that the subtop cohomology property

holds for �. If the multiplicity space V λ
μ in the decomposition of F(Fx,λ)

from (45) is nonzero then λ − μ ∈ ⊕i∈J Z+(δiαi).

Proof. (i) Pick λ ∈ Λ�,+ such that φi(b̄) ≤ 〈λ, α̌i〉 for all i ∈ J. Let b = tλb̄ ∈
Irr(Grλ

B ∩Grλ−ν
B− ). Then b ⊂ Grλ

G by Lemma 4.12.1. So, b gives a base vector
in the weight space V (λ)λ−ν of the irreducible Ǧ-representation V (λ) by ([Lys],
Lemma 3.2). Thus, ν is in the Z+-span of the simple roots of Ǧζ .

(ii) Follows from (i). ��
For a standard Levi M ⊂ G recall that GraM = GrM ×GrG

GraG. The trivial-
izations δλ picked in Section 4.12.2 yield for any λ ∈ Λ sections sλ

B(M) : Grλ
B(M) →

GraM , sλ
B−(M) : Grλ

B−(M) → GraM of the Gm-torsor GraM → GrM . The discrepancy
between sμ

B−(M) and sλ
B(M) is a map that we denote by

Mγμ
λ : Grλ

B(M) ∩Grμ
B−(M) → Gm

and define by sμ
B−(M) = (Mγμ

λ)sλ
B(M). If λ − μ ∈ Λ� then Mγμ

λ does not depend on
the choice of δ (so depends only on t0

E
).
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Lemma 6.1.1 and Corollary 6.1.2 are immediately generalized for each standard
Levi subgroup M of G. Recall from Section 1.2.2 that for λ ≥M 0 we denote

Bm(λ) = Irr(Gr0B(M) ∩Gr−λ
B−(M))

and Bm = ∪λ≥M0 Bm(λ), and for λ ∈ Λpos we have the bijection

Bg(λ) →̃ ∪μ Bm,∗
g (λ − μ) × Bm(μ). (51)

Here the union is over μ ∈ Λ satisfying 0 ≤M μ ≤ λ.
For μ ∈ Λ the trivialization δ−μ from Section 4.12.2 yields a section s−μ

P :
q−1

P (t−μ) → GraG of the Gm-torsor GraG → GrG. Let

P γ−λ
−μ : q−1

P (t−μ) ∩ Gr−λ
B− → Gm

be the map defined by the equation s−λ
B− = (P γ−λ

−μ)s−μ
P .

Definition 6.1.5. (i) Let M be a standard Levi of G. For ν ∈ Λpos
M we call an

element b ∈ Bm(ν) special if the local system (Mγ−ν
0 )∗Lζ is constant on b.

(ii) We call b ∈ Bm,∗
g (λ−μ) special if the local system (P γ−λ

−μ)∗Lζ is constant on b.

Lemma 6.1.6. Let λ ∈ Λpos, b ∈ Bg(λ). Let 0 ≤M μ ≤ λ be such that
b ∩ q−1

P (Gr−μ
B−(M)) is dense in b. Let

(b1, b2) ∈ Bm,∗
g (λ − μ) × Bm(μ)

correspond to b via (51). Then b is special if and only if both b1, b2 are special. In
the latter case μ is in the Z+-span of the simple roots of M̌ζ .

Proof. As in Section 1.2.1 we have a T (O)-equivariant isomorphism

Gr0B ∩q−1
P (Gr−μ

B−(M)) ∩ Gr−λ
B− →̃ (Gr0B(M) ∩Gr−μ

B−(M)) × (q−1
P (t−μ) ∩ Gr−λ

B−),

where T (O) acts on the right hand side as the product of the natural actions on the
two factors. For brevity denote by γ : q−1

P (t−μ) ∩ Gr−λ
B− → Gm the map P γ−λ

−μ . Then
the map

(Mγ−μ
0 )γ : (Gr0B(M) ∩Gr−μ

B−(M)) × (q−1
P (t−μ) ∩ Gr−λ

B−) → Gm

coincides with the restriction of γ−λ
0 . Our first claim follows. The second follows now

from Remark 6.1.4. ��

Corollary 6.1.7. Let ν ∈ Λpos, i ∈ J. If b ∈ Bg(ν) is special then φi(b) ∈ Z+δi. �
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6.2 Pick x ∈ X. Our purpose now is to describe some irreducible objects Fx,λ

of Whitκ
x such that F(Fx,λ) ∈ ˜FS

κ

x remains irreducible.
For a ∈ Λ/Λ� let Λ+

a denote the set of those λ ∈ Λ+ whose image in Λ/Λ� equals
a. Set Λ�

0 = {μ ∈ Λ� | 〈μ, α̌i〉 = 0 for any i ∈ J}. Set

M̄ = {λ ∈ Λ+ | for any i ∈ J, 〈λ, α̌i〉 < δi}.

As in ([ABBGM05], Section 1.1.3), we call the elements of M̄ restricted dominant
coweights. Note that Λ�

0 acts on M̄ by translations.
The following is an analog of ([ABBGM05], Proposition 1.1.8).

Theorem 6.2.1. Assume that the subtop cohomology property is satisfied for �. For
any λ ∈ M̄ one has F(Fx,λ) →̃Lx,λ.

Proof. Let μ ∈ Λ with w0(λ) ≤ μ < λ. We must show that the multiplicity space
V λ

μ in (45) vanishes. By Remark 6.1.4, we may assume

λ − μ ∈ ⊕i∈J Z+(δiαi).

Let b ∈ Irr(Grλ
B ∩Grμ

B−) with b ⊂ Grλ
G. For b̄ = t−λb ∈ Bg(λ−μ) from Lemma 4.12.1

we get φi(b̄) ≤ 〈λ, α̌i〉 < δi for all i ∈ J. Assume b̄ special. Then, by Corollary 6.1.7,
φi(b̄) ∈ Z+δi. So, φi(b̄) = 0 for all i. The only element of Bg with this property is
the unique element of Bg(0), a contradiction. So, V λ

μ = 0. ��

7 Analog of the Lusztig-Steinberg tensor product theorem

7.1 The purpose of this section is to prove Theorem 7.1.1, which is an analog
in our setting of the Lusztig-Steinberg theorem for quantum groups. We use the
notations of Section 5. Pick x ∈ X. Recall that Λ�,+ = Λ� ∩ Λ+.

Theorem 7.1.1. Let λ ∈ M̄ and γ ∈ Λ�,+. Then there is an isomorphism

H→
G (Aγ

E,Fx,λ) →̃Fx,λ+γ . (52)

7.1.1 Proof of Theorem 7.1.1. Let a denote the image of λ in Λ/Λ�. Recall
that the Weyl groups for Ǧ and Ǧζ are equal. It is convenient for us to replace
γ by −w0(γ), so we must establish for γ ∈ Λ�,+ the isomorphism H→

G (A−w0(γ),
Fx,λ) →̃Fx,λ−w0(γ). By definition,

H→
G (A−w0(γ),Fx,λ) →̃ (′h←)!(Fx,λ

˜�A
−w0(γ)
E )r. (53)

To simplify the notation, from now on we suppress the upper index r in the above
formula.

As in Section 5.4.1, define the complex Kν
x̃ (resp., Kν) as the ∗-restriction of (53)

to ˜Mx̃,ν (resp., to ˜Mx,ν). Since (53) is Verdier self-dual (up to replacing ψ by ψ−1

and ζ by ζ−1), it suffices to prove the following.
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Lemma 7.1.2. (i) The complex Kν
x̃ is placed in perverse degrees ≤ 0.

(ii) The ∗-restriction of Kν
x̃ to the closed substack ˜Mx̃,≤ν − ˜Mx,ν ⊂ ˜Mx̃,ν vanishes.

(iii) The 0-th perverse cohomology sheaf of Kν vanishes unless ν = λ − w0(γ) and
in the latter case it identifies with the restriction Fx,λ−w0(γ) |

˜Mx,λ−w0(γ)
.

Lemma 7.1.2 (i) is a particular case of Lemma 5.4.1. Recall the substacks of Z

Zν,?
x̃ , Zν,?, Z?,ν′

x̃ , Z?,ν′
, Zν,ν′

x̃ , Zν,ν′
,

Zν,?,μ
x̃ , Z?,ν′,μ

x̃ , Zν,ν′,μ
x̃ , Zν,ν′,μ

defined in Section 5.4.2 for ν, ν ′ ∈ Λ, μ ∈ Λ+. Denote by Kν,ν′,μ
x̃ the !-direct image

under

′h← : Zν,ν′,μ
x̃ → ˜Mx̃,≤ν

of the ∗-restriction of Fx,λ
˜�A

−w0(γ)
E to Zν,ν′,μ

x̃ . Let Kν,ν′,μ be the restriction of Kν,ν′,μ
x̃

to the open substack ˜Mx,ν .
Using the standard spectral sequence, Lemma 7.1.2 is reduced to the following.

Lemma 7.1.3. (1) The complex Kν,ν′,μ
x̃ is placed in perverse degrees ≤ 0, and the

inequality is strict unless μ = γ and λ = ν ′.
(2) The ∗-restriction of Kν,ν′,μ

x̃ to ˜Mx̃,≤ν − ˜Mx,ν vanishes.
1. The 0-th perverse cohomology of Kν,λ,γ vanishes unless ν = λ − w0(γ).

(2) The 0-th perverse cohomology of Kλ−w0(γ),λ,γ identifies with Fx,λ−w0(γ).

The points (1) and (2) of Lemma 7.1.3 follow from Lemma 5.4.2. It remains to
analyse the complex Kν,λ,γ on ˜Mx,ν placed in perverse degrees ≤ 0.

As in Section 5.4.2, for each ν ∈ Λ we pick a trivialization εν : Ωρ(−νx) →̃F0
T |Dx

.
It yields a U(Ox)-torsor Uεν over ˜Mx,ν classifying a point of ˜Mx,ν together with a
trivialization of the corresponding U -torsor over Dx.

Recall that for each ν ∈ Λ we fixed the section sν
B : Grν

B → GraG of the Gm-torsor
GraG → GrG in Section 4.12.3. By Lemma 5.4.3, the fibration ′h← : Zν,λ,γ → ˜Mx,ν

identifies with

Uεν ×U(Ox) (˜Gr
λ−ν

B,x ∩ ˜Gr
γ

G,x) → ˜Mx,ν .

After a smooth localization V → ˜Mx,ν the latter fibration becomes a direct

product V × (˜Gr
λ−ν

B,x ∩ ˜Gr
γ

G,x). The ∗-restriction of Fx,λ
˜�A

−w0(γ)
E to Zν,λ,γ descends

to V × (Grλ−ν
B,x ∩Grγ

G,x), and there becomes of the form

EV � ((χλ−ν
ν )∗Lψ ⊗ (sλ−ν

B )∗Aγ
E)[〈γ + λ − ν, 2ρ̌〉].
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Here EV is a locally constant perverse sheaf on V . So, Kν,λ,γ vanishes unless ν ∈ Λ+,
and in the latter case it identifies over ˜Mx,ν with

Fx,ν ⊗ RΓc(Grλ−ν
B,x ∩Grγ

G,x, (χλ−ν
ν )∗Lψ ⊗ (sλ−ν

B )∗Aγ
E)[〈γ + λ − ν, 2ρ̌〉].

Recall that Grλ−ν
B ∩Grγ

G is of pure dimension 〈γ + λ − ν, ρ̌〉. Consider the open
subscheme

Grλ−ν
B ∩Grw0(γ)

B− ∩Grγ
G ⊂ Grλ−ν

B ∩Grγ
G . (54)

Anderson’s theorem ([And03], Proposition 3) implies that this open embedding in-
duces a bijection on the set of irreducible components. The following is a version of
Lemma 4.12.5 obtained by exchaning the roles of B and B−.

Lemma 7.1.4. Let μ ≤ γ with μ ∈ Λ, γ ∈ Λ�,+. Then over Grγ
G ∩Grw0(γ)

B− ∩Grμ
B

there is an isomorphism (sμ
B)∗Aγ

E →̃ (γw0(γ)
μ )∗Lζ−1 up to a shift.

Proof. By definition, γ
w0(γ)
μ sμ

B = s
w0(γ)
B− over Grw0(γ)

B− ∩Grμ
B. Our claim follows. ��

So, we are analyzing the top cohomology of

RΓc(Grλ−ν
B ∩Grw0(γ)

B− ∩Grγ
G, (χλ−ν

ν )∗Lψ ⊗ (γw0(γ)
λ−ν )∗Lζ−1). (55)

Assume that ν �= λ − w0(γ) and (54) is not empty. Then the dimension of (54)
is > 0. In this case the local system

(χλ−ν
ν )∗Lψ ⊗ (γw0(γ)

λ−ν )∗Lζ−1

is constant on an irreducible component b of (54) if and only if both (χλ−ν
ν )∗Lψ

and (γw0(γ)
λ−ν )∗Lζ are constant on b. So, the 0-th perverse cohomology sheaf of Kν,λ,γ

vanishes unless

b̄ = tν−λb ∈ Bg(λ − ν − w0(γ))

is special. By Remark 6.1.4, this implies λ−ν−w0(γ) ∈ ⊕i∈JZ+(δiαi). In particular,
ν ∈ Λ+

a .

Lemma 7.1.5. Let γ ∈ Λ+, μ, ν ∈ Λ satisfy μ + ν ∈ Λ+, μ ≥ w0(γ). Let b ⊂
Grw0(γ)

B− ∩Grμ
B be an irreducible component. Let χμ

ν : Grμ
B → A

1 be a (U(F ), χν)-
equivariant function, where χν : U(F ) → A

1 is an additive character of conductor
ν̄. Here ν̄ is the image of ν in the coweights lattice of Gad. Denote by

b̄ ⊂ Gr0B ∩Grw0(γ)−μ
B−

the component t−μb, so b̄ ∈ Bg(μ − w0(γ)). Then χμ
ν : b → A

1 is dominant if and
only if there exists i ∈ J such that φi(b̄) > 〈μ + ν, α̌i〉.
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Proof. The proof is very close to that of Lemma 4.12.4. For i ∈ J recall the maps
qPi

: GrPi
→ GrMi

from Section 1.2.2. For i ∈ J let μi ≤Mi
μ be the unique element

such that q−1
Pi

(Grμi

B−(Mi)
) ∩ b is dense in b. Set

b0 = b ∩ ( ∩
i∈J

q−1
Pi

(Grμi

B−(Mi)
).

The subschemes b0 ⊂ b ⊂ Grw0(γ)
B− ∩Grμ

B are T (O)-invariant. Set μ̄ = {μi}i∈J and

Z μ̄ =
∏

i∈J

Grμ
B(Mi)

∩Grμi

B−(Mi)
.

Let qμ̄ : b0 → Z μ̄ be the product of the maps qPi
. Then qμ̄ is T (O)-equivariant.

Since T (O) acts transitively on Z μ̄, qμ̄ is surjective. For i ∈ J denote by ev i the
composition

Grμ
B(Mi)

∩Grμi

B−(Mi)
↪→ Grμ

B(Mi)
→ Grμ

B

χμ
ν→ A

1.

Denote by ev μ̄ : Z μ̄ → A
1 the map ev μ̄ =

∑

i∈J ev i. We may assume that the
restriction χμ

ν : b0 → A
1 equals ev μ̄qμ̄.

Now the morphism χμ
ν : b0 → A

1 is dominant if and only if there is i ∈ J such
that ev i : Grμ

B(Mi)
∩Grμi

B−(Mi)
→ A

1 is dominant. The latter condition is equivalent
to

φi(b̄) = 〈μ − μi,
α̌i

2
〉 > 〈μ + ν, α̌i〉.

Indeed, the multiplication by tμ gives an isomorphism

Gr0B(Mi)
∩Grμi−μ

B−(Mi)
→̃ Grμ

B(Mi)
∩Grμi

B−(Mi)
.

Under this isomorphism ev i identifies with some map χ0
μ+ν : Gr0B(Mi)

∩Grμi−μ
B−(Mi)

→
A

1 for the group Mi. Our claim follows. ��
By Lemma 7.1.5, (χλ−ν

ν )∗Lψ is constant on a given irreducible component b of
(54) if and only if φi(b̄) ≤ 〈λ, α̌i〉 for all i ∈ J. Since b̄ is special, by Corollary 6.1.7
we get φi(b̄) ∈ Z+δi. Since 〈λ, α̌i〉 < δi, we conclude that φi(b̄) = 0 for any i ∈ J.
This implies λ = ν + w0(γ), a contradiction. Thus, Lemma 7.1.3(3) is proved.

Let now ν = λ − w0(γ). Then Grλ−ν
B ∩Grγ

G is a point, Lemma 7.1.3(4) follows.
Theorem 7.1.1 is proved. ��

8 Simply-connectedness assumption

8.1 The purpose of this section is to identify the additional assumptions un-
der which Theorem 7.1.1 provides a complete decsription of the semi-simple part
Whitκ,ss

x of Whitκ
x as a Rep(Ǧζ)-module.

In general, the natural map M̄ → Λ/Λ� is not surjective. Here is an example.
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8.1.1 Example. Take G = SL2, so Λ = Zα, where α = αi is the simple coroot.
Set n = δi. Recall that δi was defined as the denominator of κ̄(αi,αi)

2N . Assume n
odd. Then Ǧζ →̃ PSL2. The unique simple root of Ǧζ is nα, and Λ� = nΛ. We get
M̄ = {aα | 0 ≤ a < n/2}. So, for n ≥ 3 the map M̄ → Λ/Λ� is not surjective.

8.1.2 For a ∈ Λ/Λ� recall that the set Λ+
a defined in Section 6.2 consists of

those λ ∈ Λ+ whose image in Λ/Λ� equals a.

Definition 8.1.1. For a ∈ Λ/Λ� say that Λ+
a is a free module of rank one over Λ�,+

if and only if there is λa ∈ Λ+
a such that each λ ∈ Λ+

a can be written uniquely as
λ = λa + μ with μ ∈ Λ�,+.

Lemma 8.1.2. (i) For λ ∈ Λ�, i ∈ J one has 〈λ, α̌i〉 ∈ δiZ.
(ii) Pick λa ∈ M̄ over a ∈ Λ/Λ�. Then each λ ∈ Λ+

a admits a unique decomposition
λ = λa + μ with μ ∈ Λ�,+. So, Λ+

a is a free module of rank one over Λ�,+.

Proof. (i) Our claim follows from the fact that λ is a weight of Ǧζ , and α̌i

δi
is a

coroot of Ǧζ .
(ii) Let λ ∈ Λ+

a . Since λ−λa ∈ Λ�, we get 〈λ−λa, α̌i〉 ∈ δiZ by i). Since 〈λ, α̌i〉 ≥ 0,
we get 〈λ − λa, α̌i〉 ≥ 0. ��

Remark 8.1.3. (i) If G is semi-simple then we define an order on Λ+
a as follows.

For λ1, λ2 ∈ Λ+
a write λ1 ≺ λ2 if and only if λ2 − λ1 ∈ Λ+ (the latter is also

equivalent to λ2 − λ1 ∈ Λ�,+). Then Λ+
a is a free module of rank one over Λ�,+

if and only if there is a unique minimal element λa in Λ+
a with respect to ≺.

In general, Λ+
a is not a free module of rank one over Λ�,+.

(ii) If G is not semi-simple and Λ+
a is a free module of rank one over Λ�,+ then λa

in Definition 8.1.1 is defined uniquely up to adding an element of Λ�
0.

8.2 Additional assumption. For the rest of Section 8 assume [Ǧζ , Ǧζ ] simply-
connected. Under this assumption we can completely understand the structure of
Whitκ,ss

x as a module over Rep(Ǧζ). Here, as in Section 5.3, Whitκ,ss
x ⊂ Whitκ

x

denotes the full subcategory consisting of objects, which are finite direct sums of
irreducible ones.

For i ∈ J pick a fundamental weight ωi ∈ Λ�,+ of Ǧζ corresponding to the coroot
α̌i

δi
. Note that 〈ωi, α̌i〉 = δi. We get

Λ� = Λ�
0 ⊕ (⊕i∈J Zωi) and Λ�,+ = Λ�

0 ⊕ (⊕i∈J Z+ωi).

Lemma 8.2.1. The map pr : M̄ → Λ/Λ�, λ 
→ λ + Λ� is surjective. If λ ∈ M̄, and
a = pr(λ) then the fibre of pr over a is λ + Λ�

0.
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Proof. Note that Λ = Λ+ + Λ�. Let a ∈ Λ/Λ�. Pick λ ∈ Λ+ over a. If there is i ∈ J

with 〈λ, α̌i〉 ≥ δi then replace λ by λ − ωi. We get λ − ωi ∈ Λ+ and pr(λ − ωi) = a.
Continuing this procedure, one gets λ ∈ M̄ with pr(λ) = a.

If λ, λ′ ∈ M̄ with λ − λ′ ∈ Λ� then for any i ∈ J, 〈λ − λ′, α̌i〉 ∈ δiZ. So, for any
i ∈ J, 〈λ − λ′, α̌i〉 = 0 and λ − λ′ ∈ Λ�

0. ��

Using Lemma 8.2.1, we pick for each a ∈ Λ/Λ� an element λa ∈ M̄ with a = pr(λ).
Set M = {λa | a ∈ Λ/Λ�} ⊂ M̄. The projection M → Λ/Λ� is bijective. From
Theorem 7.1.1 we now derive the following.

Corollary 8.2.2. Assume [Ǧζ , Ǧζ ] simply-connected. Then Whitκ,ss
x is a free mod-

ule over Rep(Ǧ) with base {Fx,λ | λ ∈ M}. ��

9 Examples of Kazhdan–Lusztig’s type polynomials

9.1 Inductive structure. Pick x ∈ X. Recall for μ ∈ Λ the locally closed
immersion jx,μ : ˜Mx,μ ↪→ ˜Mx. Since the version of the twisted Whittaker category
on ˜Mx,μ is semi-simple (cf. Section 2.3), for each μ ≤ λ with μ, λ ∈ Λ+ we get

j∗
x,μFx,λ →̃Fx,μ ⊗ Kλ

μ ,

where Kλ
μ is a cohomologically graded Q̄�-vector space.

We think of Kλ
μ as a version of Kazhdan–Lusztig’s polynomials expressing the re-

lation between the two bases in the Grothendieck group of Whitκx, the first constings
of Fx,λ,!, the second constings of the irreducible objects.

Let M ⊂ G be a standard Levi subgroup. Then M is equipped with the meta-
plectic data induced from those for G, so that we have the corresponding twisted
Whittaker category M Whitκ

x for M , and its irreducible objects MFx,λ for all λ ∈ Λ+
M .

Now for μ ≤M λ with μ, λ ∈ Λ+
M one has

j∗
x,μ(MFx,λ) →̃ MFx,μ ⊗ (MKλ

μ)

as above. The multiplicity spaces Kλ
μ have the following inductive structure when

passing from G to M .

Proposition 9.1.1. Let μ, λ ∈ Λ+ with μ ≤M λ. Then Kλ
μ →̃ MKλ

μ canonically.

Proof. Consider the Zastava space Z
μ
x,≤λ from Section 4.1 and its version MZ

μ
x,≤λ

for the Levi M . The natural map MZ
μ
x,≤λ → Z

μ
x,≤λ is an isomorphism. From the

factorization property it follows that the functor Fμ commutes with the Verdier
duality. So, Fμ(Fx,λ) is an irreducible perverse sheaf on ˜Z

μ
x,≤λ. So, it suffices to

calculate the ∗-restriction of Fμ(Fx,λ) to ˜Z
μ
x,μ := ˜Z

μ
x ×Mx

Mx,μ. ��
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9.2 Let i ∈ J and λ ∈ Λ+ with λ − αi ∈ Λ+.

Proposition 9.2.1. Assume the subtop cohomology property is satisfied for �. If
〈λ, α̌i〉 /∈ δiZ then Kλ

λ−αi
= 0.

Proof. By Proposition 9.1.1, we may and will assume G of semi-simple rank one.
Since J consists of one element, we suppress the index i from the notation αi, δi and
so on.

Consider the diagram

Mx,≤λ

′p← Zλ−α
x,≤λ

πλ−α→ Xλ−α
x,≤λ.

We have an isomorphism X →̃ Xλ−α
x,≤λ sending y to λx − αy. Pick a fundamental

weight ω̌ corresponding to α. Then

πλ−α : Zλ−α
x,≤λ → Xλ−α

x,≤λ (56)

is a line bundle over X whose fibre over y is Ω−1(2〈λ, ω̌〉 − y)y. This is the total
space of the line bundle O(2〈λ, ω̌〉x) over X.

For ν ∈ Λ set

Zμ
x,ν = Zμ

x ×Mx
Mx,ν .

The open subscheme Zλ−α
x,λ ⊂ Zλ−α

x,≤λ is the complement to the zero section of the
above line bundle.

From Theorem 4.10.1 we see that F̄ λ−α(Fx,λ) is the extension by zero under
Zλ−α

x,≤λ ↪→ Z
λ−α
x,≤λ. From Theorem 6.2.1 we now derive (πλ−α)!F λ−α(Fx,λ) →̃Lx,λ. By

Lemma 2.5.1, the line bundle Pκ̄ is constant over X − x ⊂ X →̃Xλ−α
x,≤λ with fibre

(Ω
1
2
x )−κ̄(λ,λ+2ρ) ⊗ ελ̄.

A trivialization of the latter line identifies Pκ̄ over X →̃Xλ−α
x,≤λ with O(−mx), where

m = κ̄(α, λ).
We have m /∈ NZ. Indeed, let a ∈ Z be such that (a, δ) = 1 and κ̄(α,α)

2N = a
δ .

From the formula (4) it follows that m
N = a

δ 〈α̌, λ〉 /∈ Z, because of our assumption
〈λ, α̌〉 /∈ δZ. It follows that the (λ − α)-component Lλ−α

x,λ of Lx,λ ∈ ˜FS
κ

x is the
extension by zero under X − x ↪→ X.

The fibre of (56) over x ∈ X is O(2〈λ, ω̌〉)x. The restriction of

Zλ−α
x,λ

′p→ Mx,λ
evx,λ→ A

1

to O(2〈λ, ω̌〉)x − {0} is constant with value 0. Write f : Zλ−α
x,λ → Xλ−α

x,≤λ for the
restriction of (56). The fibre of f!F

λ−α(Fx,λ) at x ∈ X also vanishes, because m /∈
NZ. Thus, the ∗-fibre of F λ−α(Fx,λ) at 0 ∈ O(2〈λ, ω̌〉)x vanishes. ��
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Remark 9.2.2. Let λ ∈ Λ�,+, μ ∈ Λ+ with μ ≤ λ. In the notations of Section 11.2
related to the Casselman-Shalika formula, we get

Kλ
μ →̃ RΓc(Gr−μ

B ∩Gr−w0(λ)
G , (χ−μ

μ )∗Lψ ⊗ (s−μ
B )∗A−w0(λ)

E )[−〈μ, 2ρ̌〉] . (57)

For example, if αi is a simple coroot and μ = λ − αi then Grαi−λ
B ∩Gr−w0(λ)

G →̃A
1

and (57) becomes the Gauss sum. So, Kλ
λ−αi

→̃ Q̄�[1] noncanonically and

Ext1(Fx,λ−αi
,Fx,λ) →̃ Q̄�.

Thus, we may think of (57) as a generalization of the Gauss sum. We also see that
Whitκ

x is not semi-simple.

10 Hecke functors on ˜FS
κ

x

10.1 In this section we define an action of Rep(Ťζ) on ˜FS
κ

x by Hecke functors.
The main result of this section is Theorem 10.1.2 showing that F : Whitκ

x → FSκ
x

commutes with the actions of Hecke functors.
Pick x ∈ X. Define an action of Rep(Ťζ) on ˜FS

κ

x by Hecke functors as follows.
The definition is analogous to that of ([Lys15], Section 5.2.3).

By ([Lys15], Proposition 4.1), for μ ∈ Λ, F ∈ BunT we have canonically

(ωLκ̄)F(μx) →̃ (ωLκ̄)F ⊗ (Lκ̄(μ)
F )x ⊗ Lκ̄

O(μx). (58)

The section t0
E

: Λ� → VE picked in Section 4.12.2 yields for each μ ∈ Λ� a trivializa-
tion of Lκ̄

O(μx).

For μ ∈ Λ�, λ ∈ Λ let mμ : ˜Xλ
x → ˜Xλ+μ

x be the map sending (D,U) together
with UN →̃Pκ̄

D to (D + μx,U′), where

U′ = U ⊗ ((L−κ̄(μ)/N )Ωρ(−D))x

with the isomorphism U′N →̃Pκ̄
D+μx induced by (58) and t0

E
. The map mμ is an

isomorphism.
For μ ∈ Λ� write Q̄

μ
� ∈ Rep(Ťζ) for Q̄� on which Ťζ acts by μ. Let

H→ : Rep(Ťζ) × ˜FS
κ

x → ˜FS
κ

x

be the functor commuting with direct sums in Rep(Ťζ) and such that H→(Q̄μ
� , ·) :

˜FS
κ

x → ˜FS
κ

x is the functor (mμ)∗.
An object L ∈ ˜FS

κ

x is a collection L = {Lν}ν∈Λ. Then (mμ)∗L is understood as
the collection such that for any ν ∈ Λ, its ν-th component is (mμ)∗Lν−μ.

For μ ∈ Λ�, λ ∈ Λ one has

H→(Q̄μ
� ,Lx,λ) →̃Lx,λ+μ and H→(Q̄μ

� ,Lx,λ,∗) →̃Lx,λ+μ,∗. (59)
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As in ([ABBGM05], Section 1.1.7), we may call Lx,λ,∗ ∈ ˜FS
κ

x the baby co-Verma
module of highest weight λ.

Recall that FSκ
x ⊂ ˜FS

κ

x is the full subcategory of objects of finite length. For
V ∈ Rep(Ťζ) the functor H→(V, ·) preserves the subcategory FSκ

x.

Lemma 10.1.1. Assume � satisfies the subtop cohomology property. Then F sends
Whitκ

x to FSκ
x.

Proof. This follows from Theorem 4.12.2, since a perverse sheaf is of finite length. ��

Write ResǦζ

Ťζ
for the restriction functor Rep(Ǧζ) → Rep(Ťζ). Recall the twist-

ed Satake equivalence Rep(Ǧζ) →̃ Perv�
G,ζ from Section 0.0.10. The following is an

analog of ([ABBGM05], Proposition 1.1.11).

Theorem 10.1.2. Assume � satisfies the subtop cohomology property. There is an
isomorphism in FSκ

x functorial in V ∈ Rep(Ǧζ) and K ∈ Whitκ
x

F(H→
G (V, K)) →̃ H→(ResǦζ

Ťζ
(V ),F(K)).

The proof is given in Sections 10.1.1–10.1.4.

10.1.1 For μ ∈ Λ denote by x,∞ Bunμ
B− the stack classifying F ∈ BunG, FT ∈

BunT with degFT = (2g − 2)ρ − μ, and a collection of nonzero maps of coherent
sheaves for λ̌ ∈ Λ̌+

κλ̌,− : Vλ̌
F → Lλ̌

FT

over X − x satisfying the Plücker relations. For ν ∈ Λ we define the diagram

x,ν Bunμ
B− ↪→ x,≥ν Bunμ

B− ↪→ x,∞ Bunμ
B− ,

where x,≥ν Bunμ
B− is the closed substack given by the property that for each λ̌ ∈ Λ̌+

the map
κλ̌,− : Vλ̌

F(〈ν, λ̌〉x) → Lλ̌
FT

(60)

is regular over X. Further, x,ν Bunμ
B− is the open substack of x,≥ν Bunμ

B− given by
the property that for λ̌ ∈ Λ̌+ the map (60) has no zeros on X.

10.1.2 We derive Theorem 10.1.2 essentially from the fact that the formation of
the principal geometric Eisenstein series in the twisted setting commutes with Hecke
functors, more precisely, from the following reformulation of ([Lys], Proposition 3.2)
with B replaced by B−.

Recall the stack BunB̃− defined in Section 4.6. The stack x,∞ BunB̃− is defined
similarly. Write a point of x,∞ BunB̃− as a collection (F,FT , κ−,U,UT ), where U,UT

are the lines equipped with isomorphisms

UN →̃ (ωLκ̄)F, UN
T →̃ (ωLκ̄)FT

.
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For λ ∈ Λ+ the stack xH
λ
G̃

defined in Section 5.4.2 classifies (F,F′,F→̃F′

|X−x,U,U′) with F′ at the position ≤ λ with respect to F at x. Here U,U′ are
lines equipped with

UN →̃ (ωLκ̄)F, U′N →̃ (ωLκ̄)F′ . (61)

Assume λ ∈ Λ�,+. Let Y −w0(λ) = xH
−w0(λ)

G̃
×

˜BunG
BunB̃− , where we used the map

h̃←
G : xH

−w0(λ)

G̃
→ ˜BunG to define the fibred product. As in Section 5.2, the fibration

h← : Y −w0(λ) → BunB̃− yields the twisted exterior product K := (A−w0(λ)
E

˜� ICζ)l

on Y −w0(λ). Here ICζ is the perverse sheaf on BunB̃− defined in Section 4.6.
Denote by

φ : Y −w0(λ) → x,≥−λ BunB̃−

the map sending (F,F′,F →̃F′ |X−x,U,U′) ∈ xH
−w0(λ)

G̃
, (F,FT , κ−,U,UT ) ∈ BunB̃−

to

(F′,FT , κ−,U′,UT ).

For ν ∈ Λ� define the isomorphism ĩν : BunB̃− →̃ x,≥ν BunB̃− sending (F,FT , κ−,
U,UT ) to (F,FT (νx),U, ŪT ), where

ŪT = UT ⊗ (Lκ̄(ν)/N
FT

)x

is equipped with the isomorphism ŪN
T →̃ (ωLκ̄)FT (νx) obtained from (58) and t0

E
.

Recall that V (λ) denotes the irreducible Ǧζ-representation with highest weight
λ, and V (λ)ν its Ťζ-weight space corresponding to ν.

Proposition 10.1.3 ([Lys], Proposition 3.2). For λ ∈ Λ�,+ there is an isomor-
phism

φ!((A
−w0(λ)
E

˜� ICζ)l) →̃ ⊕
ν≥−λ

(̃iν)! ICζ ⊗V (λ)−ν .

10.1.3 Let

Zμ
x ⊂ Mx ×BunG x,∞ Bunμ

B−

be the open substack given by the property that for each λ̌ ∈ Λ̌+ the composition

Ω〈ρ,λ̌〉 κλ̌→ Vλ̌
F

κλ̌,−→ Lλ̌
FT

,

which is regular over X − x, is not zero. So, Z
μ
x ↪→ Zμ

x is a closed ind-substack. We
get the diagram

Mx

′p← Zμ
x

′p
B→ x,∞ Bunμ

B−

↓ πμ ↓ q̄−

Xμ
x

AJ→ BunT ,
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where ′p and ′p
B

are the projections. Here πμ sends (F, κ, κ−,FT ) ∈ Zμ
x to D such

that κ− ◦ κ induces an isomorphism Ωρ(−D) →̃FT .
Let Zμ

G̃,x
be the stack obtained from Zμ

x by the base change ˜Mx× ˜Xμ
x → Mx×Xμ

x .

Let Z
μ

G̃,x be the restriction of the gerbe Z
μ

G̃,x
to the closed substack Z

μ
x ↪→ Zμ

x.

10.1.4 Proof of Theorem 10.1.2. Let λ ∈ Λ�,+ and μ ∈ Λ. We calculate
FH→

G (Aλ
E, K) over ˜Xμ

x . Recall the stack Z defined in Section 5.2. Set Yμ = Z ×
˜Mx

Z
μ

G̃,x, where we used the maps Z
μ

G̃,x

′p̄→ ˜Mx

′h←← Z to define the fibred product.
The stack Yμ classifies (F,F′,F →̃F′ |X−x,U,U′) ∈ xHG̃, (F, κ, κ−,FT ,UT ,U) ∈

Z
μ

G̃,x. Let Yμ,−w0(λ) ⊂ Yμ be the closed substack given by the property that

(F,F′,F →̃F′ |X−x,U,U′) ∈ xH
−w0(λ)

G̃
.

Let q : Yμ,−w0(λ) → Z
μ

G̃,x
be the map sending the above collection to (F′, κ, κ−,FT ,

U′,UT ).
The following diagram commutes

˜Mx

′h→← Z
a← Yμ,−w0(λ) q→ Z

μ

G̃,x

↓ ′h← ↓ b ↓ πμ

˜Mx

′p̄← Z
μ

G̃,x

πμ→ Xμ
x

Here a, b are the natural maps. Recall that H→
G (Aλ

E, K) = (′h←)!(K ˜�Aλ
E)r. We get

FH→
G (Aλ

E, K) →̃ (πμ)!q!((a∗(K ˜�Aλ
E)r) ⊗ b∗(′p̄B)∗ ICζ)[− dim BunG].

We have the following cartesian square

Y −w0(λ) φ→ x,∞ BunB̃−

↑ α ↑ β

Yμ,−w0(λ) q→ Z
μ

G̃,x
,

where the maps α, β forget the generalized B-structure κ. Further

(a∗(K ˜�Aλ
E)r) ⊗ b∗(′p̄B)∗ ICζ →̃ q∗(′p)∗K ⊗ α∗K.

The complex q!α
∗K →̃β∗φ!K is calculated in Proposition 10.1.3. Plugging it into

the above expression, we get from definitions an isomorphism

FH→
G (Aλ

E, K) →̃ ⊕
ν≥−λ

((mν)∗
F(K)) ⊗ V (λ)−ν

over ˜Xμ
x . Since m∗

ν = (m−ν)∗, the latter identifies with H→(ResǦζ

Ťζ
(V (λ)),F(K)).

Theorem 10.1.2 is proved. ��
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10.2 A subcategory of FSκ
x. Here is another application of the Hecke functors

on FSκ
x. Recall the quadratic form � : Λ → Q defined in Section 0.0.7.

Proposition 10.2.1. Assume that �(αi) /∈ Z for any simple coroot αi, and the
subtop cohomology property holds. Then the functor Rep(Ťζ) → FSκ

x, V 
→ H→(V,L∅)
is fully faithful, and its image is a subcategory of FSκ

x closed under extensions.

Proof. We only have to check the last property. It is clear that Exti(L∅,L∅) = 0 for
i > 0. So, it suffices to check the following. If λ ∈ Λ� with 0 < λ then the ∗-fibre
(L∅)−λx is placed in degrees ≤ −2. By Propositions 4.11.1 and 4.11.2, this is true
unless λ is a simple coroot. However, any simple coroot αi is not in Λ� because of
our assumption �(αi) /∈ Z. ��

11 Casselman-Shalika formula: basic observations

11.1 In this section we formulate and discuss the metaplectic analog of the
Casselman-Shalika formula of [FGV01].

Let us introduce some general notation. For a subset B of ∪λ,μ∈Λ Irr(Grλ
B ∩Grμ

B−)
we set B = {b ∈ B | b̄ is special}. Here for b ∈ Irr(Grλ

B ∩Grμ
B−) we let b̄ = t−λb ∈

Bg. The notation Bg is that of Section 1.2.2, and special elements in crystals were
introduced in Definition 6.1.3. Given V ∈ Rep(Ǧζ), K ∈ Whitκ

x set for brevity
K ∗ V = H→

G (V, K).

11.2 The Casselman-Shalika formula in the non-twisted case is ([FGV01], The-
orem 1). The following could be thought of as the metaplectic Casselman-Shalika
problem.

Recall that in Section 4.12.2 we picked a trivialization δλ of the fibre of GraG →
GrG over tλG(O) for each λ ∈ Λ (compatible with the action of Λ�). This provided
the sections sλ

B : Grλ
B → ˜GrG of the gerbe ˜GrG → GrG (cf. Section 4.12.3).

As in [FGV01], for η ∈ Λ we write χη : U(F ) → A
1 for the additive character of

conductor η̄, where η̄ is the image of η in the coweights lattice of Gad. For η + ν ∈
Λ+ we also write χν

η : Grν
B → A

1 for any (U(F ), χη)-equivariant function. The
isomorphism Gr0B →̃ Grη

B, v 
→ tηv transforms χ0
0 : Gr0B → A

1 to χη
−η : Grη

B → A
1.

For ν ∈ Λ�,+ we denote by ˜Grν
G the restriction of the gerbe ˜GrG → GrG to Grν

G.
Recall the irreducible objects Aν

E of PervG,ζ defined in ([Lys], Section 2.4.2), we are
using for their definition the choice of Ω

1
2 from Section 0.0.6. The perverse sheaf Aν

E

is defined only up to a scalar automorphism (but up to a unique isomorphism for ν
in the coroot lattice of G).

The metaplectic Casselman-Shalika problem is the following. Given γ ∈ Λ�,+ and
μ, ν ∈ Λ with μ + ν ∈ Λ+, calculate

CShγ,μ
μ+ν := RΓc(Grν

B ∩Grγ
G, (χν

μ)∗Lψ ⊗ (sν
B)∗Aγ

E)[〈ν, 2ρ̌〉] (62)

and describe the answer in terms of the corresponding quantum group.
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Pick x ∈ X. Let jx,μ : ˜Mx,μ ↪→ ˜Mx be the inclusion of this stratum. As in
([FGV01], Section 8.2.4) for μ + ν ∈ Λ+, γ ∈ Λ�,+ we can calculate the complex
j∗
x,μ(Fx,μ+ν,! ∗ V (γ)∗) over ˜Mx,μ. It vanishes unless μ ∈ Λ+, and in the latter case

we get

j∗
x,μ(Fx,μ+ν,! ∗ V (γ)∗) →̃Fx,μ,! ⊗ CShγ,μ

μ+ν .

By Theorem 5.3.1, (62) is placed in degrees ≤ 0. Note that

CShγ,μ
μ+ν →̃DRHom(Fx,μ+ν,!, Fx,μ,∗ ∗ V (γ)).

The complexes (62) describe the action of the Hecke functors on the objects Fx,η,!

for η ∈ Λ+.

11.2.1 For γ ∈ Λ�,+, μ + ν ∈ Λ+, μ ∈ Λ+ set

B
γ,μ
μ+ν := {a ∈ Irr(Grν

B ∩Grw0(γ)
B− ) | a ⊂ Grγ

G, tμa ⊂ Grμ+ν
G } →̃

{b ∈ Irr(Grμ+ν
B ∩Grμ+w0(γ)

B− ) | t−μb ⊂ Grγ
G, b ⊂ Grμ+ν

G },

the latter map sends a to b = tμa.

Proposition 11.2.1. The space H0 of the complex (62) admits a canonical base
B

γ,μ
μ+ν .

Proof. Denote for brevity by K the complex (62). For τ ≤ γ, τ ∈ Λ+ let Kτ be
the contribution of the stratum Grν

B ∩Grτ
G in K. First consider A

γ
E |

˜Gr
τ

G
, which has

constant cohomology sheaves because of G(O)-equivariance, it is placed in perverse
degrees ≤ 0, and the inequality is strict unless τ = γ. So, the ∗-restriction of Aγ

E |
˜Gr

τ

G

to Grν
B ∩Grτ

G is placed in perverse degrees

≤ − codim(Grν
B ∩Grτ

G, Grτ
G) = 〈ν − τ, ρ̌〉,

(and the inequality is strict unless τ = γ). Since dim Grν
B ∩Grτ

G = 〈ν + τ, ρ̌〉, we
conclude that Kτ is placed in degrees ≤ 0, and the inequality is strict unless τ = γ.
So, only Kγ contributes to

H0(K) →̃ Htop
c (Grν

B ∩Grγ
G, (χν

μ)∗Lψ ⊗ (sν
B)∗Aγ

E)[〈ν, 2ρ̌〉].
So, H0(K) has a base consisting of those b ∈ Irr(Grν

B ∩Grγ
G) over which the shifted

local system (χν
μ)∗Lψ ⊗ (sν

B)∗Aγ
E is constant. By formula (44), we have a bijection

{a ∈ Irr(Grν
B ∩Grw0(γ)

B− ) | a ⊂ Grγ
G} →̃ Irr(Grν

B ∩Grγ
G)

sending a to the closure of a ∩ Grγ
G. Our claim is now reduced to Lemma 11.2.2

below. ��
Lemma 11.2.2. Let γ ∈ Λ�,+, μ + ν ∈ Λ+, μ ∈ Λ+. Let b ∈ Irr(Grν

B ∩Grγ
G). The

local system (χν
μ)∗Lψ ⊗ (sν

B)∗Aγ
E is constant on b if and only if two conditions hold:
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• for a = b ∩ Grw0(γ)
B− the component ā ∈ Bg is special;

• tμa ⊂ Grμ+ν
G .

Proof. Let a ∈ Irr(Grν
B ∩Grw0(γ)

B− ) with a ⊂ Grγ
G. The local system (χν

μ)∗Lψ ⊗
(sν

B)∗Aγ
E is constant on a if and only if χν

μ : a → A
1 is not dominant, and (sν

B)∗Aγ
E

is constant on a.
By Lemma 7.1.4, over Grν

B ∩Grw0(γ)
B− ∩Grγ

G one gets (sν
B)∗Aγ

E →̃ (γw0(γ)
ν )∗L−1

ζ up

to a shift. The notation γ
w0(γ)
ν is that of Section 4.12.3. Now, (γw0(γ)

ν )∗Lζ is constant
on a if and only if ā ∈ Bg(ν − w0(γ)) is special.

By Lemma 7.1.5, the map χν
μ : a → A

1 is not dominant iff φi(ā) ≤ 〈μ + ν, α̌i〉 for
all i ∈ J. By Lemma 4.12.1, the latter property is equivalent to tμa ⊂ Grμ+ν

G . ��
11.2.2 Non-twisted case. For simplicity, we do not distinguish between V and
(ι
V)∗ for an irreducible Ǧ-representation V, where ι is the Chevalley automorphism

of Ǧ. Recall our notation V
γ for the irreducible Ǧ-module with highest weight γ ∈

Λ+. For ν ∈ Λ write V
γ
ν for the ν-weight space of Vγ . Set

Bγ
ν = Irr(Grν

B ∩Grγ
G), −Bγ

ν = Irr(Grν
B− ∩Grγ

G).

Recall that Vγ
ν has two canonical bases Bγ

ν and −Bγ
ν . Combining Lemma 11.2.2 for the

trivial metaplectic parameters with ([FGV01], Theorem 1), we see that Hom(Vγ ⊗
V

μ,Vμ+ν) admits a canonical base B
γ,μ
μ+ν .

Here are two special (limiting) cases.
CASE (i) The canonical inclusion B

γ,μ
μ+ν ↪→ −Bμ+ν

μ+w0(γ), b 
→ b ∩ Grμ+ν
G induces

Hom(Vγ ⊗ V
μ,Vμ+ν) ↪→ V

μ+ν
μ+w0(γ). (63)

If for any weight τ of Vμ+ν one has −w0(γ) + τ ∈ Λ+ then

V
μ+ν ⊗ (Vγ)∗ →̃ ⊕τ V

τ−w0(γ) ⊗ V
μ+ν
τ ,

so (63) is an isomorphism, and B
γ,μ
μ+ν = −Bμ+ν

μ+w0(γ).
CASE (ii) The canonical inclusion B

γ,μ
μ+ν ↪→ B

γ
ν , a 
→ a ∩ Grγ

G induces

Hom(Vγ ⊗ V
μ,Vμ+ν) ↪→ V

γ
ν . (64)

If for any weight τ of Vγ one has τ +μ ∈ Λ+ then V
γ ⊗V

μ →̃ ⊕τ V
μ+τ ⊗V

γ
τ , so (64)

is an isomorphism, and B
γ,μ
μ+ν = B

γ
ν .

11.2.3 Assume that � satisfies the subtop cohomology property. Recall that
for λ ∈ Λ+, μ ∈ Λ with μ ≤ λ we have the vector spaces V λ

μ introduced in Theo-
rem 4.12.2. It provides a decomposition

F(Fx,λ) →̃ ⊕
μ≤λ, λ−μ∈Λ�

Lx,μ ⊗ V λ
μ ,

and realizes −Bλ
μ as a canonical base of V λ

μ .
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Corollary 11.2.3. Let γ ∈ Λ�,+, μ + ν ∈ Λ+, μ ∈ Λ+ and K denote the complex
(62).

(i) There is a canonical inclusion B
γ,μ
μ+ν ↪→ −Bμ+ν

μ+w0(γ), hence also

H0(K) ↪→ V μ+ν
μ+w0(γ).

If for any weight τ of V
μ+ν one has −w0(γ) + τ ∈ Λ+ then the above

inclusions are a bijection and an isomorphism respectively.
(ii) There is a canonical inclusion B

γ,μ
μ+ν ↪→ Bγ

ν , hence also

H0(K) ↪→ V (γ)ν = V γ
ν .

If for any weight τ of Vγ the coweight τ + μ is dominant then the above
inclusions are a bijection and an isomorphism respectively.

Proof. By ([Lys], Lemma 3.2), Bγ
ν is canonically a base of V (γ)ν . By Theorem 4.12.6,

V (γ)ν →̃V γ
ν canonically. Both inclusions are those of Section 11.2.2 restricted to

special elements. Both claims follow from Section 11.2.2 and Proposition 11.2.1. ��

11.2.4 Metaplectic Casselman-Shalika formula. According to Gaitsgory’s con-
jecture ([Gai04], Conjecture 0.4), to our metaplectic data one may associate the
category C of finite-dimensional representations of the corresponding3 big quantum
group Uq(Ǧ) over Q̄�, and Whitκx →̃C naturally.

For λ ∈ Λ+ denote by W λ,!, W λ,∗ the corresponding standard and costandard
objects of C, W λ,! should be thought of as a Verma module in C. Write D(C) for
the derived category of C. Then C is equipped with a fully faithful functor Fr :
Rep(Ǧζ) → C. So, Ǧζ should be thought of as the quantum Frobenius quotient of
Uq(Ǧ). The notation Fr is taken from [ABBGM05].

Conjecture 11.2.4. Given γ ∈ Λ�,+ and μ, ν ∈ Λ with μ + ν ∈ Λ+ the complex
(62) vanishes unless μ ∈ Λ+. In the latter case there is an isomorphism

RΓc(Grν
B ∩Grγ

G, (χν
μ)∗Lψ ⊗ (sν

B)∗Aγ
E)[〈ν, 2ρ̌〉]

→̃DRHomD(C)(W
μ+ν,!, Wμ,∗ ⊗ Fr(V (γ))).

Remark 11.2.5. If the metaplectic data is trivial then C is semisimple. In this
case Λ� = Λ and Ǧζ = Ǧ. In this case Fr : Rep(Ǧζ) → C is an equivalence. The
right hand side becomes Hom(Vμ ⊗ V

γ ,Vμ+ν), and the above conjecture becomes
([FGV01], Theorem 1), so it is true.

3 This will not be a quantum group in the usual sense in general, but rather a Hopf algebra in a
suitable braided monoidal category.
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12 Comparison with [ABBGM05]

12.1 In this section we don’t need �-adic numbers, and we reserve the notation
� for another integer introduced below and referring to [ABBGM05].

Let Q ⊂ Λ be the coroot lattice. Let (·, ·) : Q ⊗ Q → Z be the canonical W -
invariant symmetric bilinear even form. So, (αi, αi) = 2di, where di ∈ {1, 2, 3} is the
minimal set of integers such that the matrix di〈αi, α̌j〉 is symmetric.

To fall into the setting in [ABBGM05] we must assume that the restriction of
κ̄ to Q is a multiple of the canonical form. Assume there is m ∈ Z such that
κ̄(a, b) = m(a, b) for any a, b ∈ Q. Assume also that N = m�, where � is an integer.
Assume also that di divides � for any i and set δi = �

di
. Then κ̄(αi, αi) = 2mdi. So,

κ̄(αi,αi)
2N = 1

δi
, and δi is the denominator of κ̄(αi,αi)

2N .
Assume also given a symmetric W -invariant form (·, ·)� : Λ̌ ⊗ Λ̌ → Z such that

for any λ̌ ∈ Λ̌, i ∈ J,

(α̌i, λ̌)� = δi〈αi, λ̌〉.
Let φ� : Λ̌ → Λ be the map induced by (·, ·)�. So, φ�(α̌i) = δiαi. Since κ̄(αi) = mdiα̌i,
we get κ̄φ�(α̌i) = Nα̌i.

Assume in addition that the composition κ̄ ◦ φ� equals the multiplication by N .
Then φ� : Λ̌ ↪→ Λ and κ̄ : Λ ↪→ Λ̌ are inclusions with finite cokernels.

Lemma 12.1.1. (1) The map φ� takes values in Λ�, and φ� : Λ̌ →̃ Λ� is an
isomorphism.

(2) The map φ� gives an isomorphism of root data of (G, T ) with that of
(Ǧζ , Ťζ). So, it induces an isomorphism G →̃ Ǧζ identifying T with Ťζ .

Proof. (1) If λ̌ ∈ Λ̌ then κ̄φ�(λ̌) ∈ Nλ̌, so φ� : λ̌ → Λ�. Let now λ ∈ Λ
with κ̄(λ) ∈ N Λ̌. Then κ̄φ�(

κ̄(λ)
N ) = κ̄(λ). So, λ = φ�(

κ̄(λ)
N ), because κ̄ is

injective. So, φ� is surjective.
(2) The roots of (Ǧζ , Ťζ) are δiαi. One has φ�(α̌i) = δiαi, and the dual map

(φ�)̌ : (Λ�)̌ →̃ Λ sends α̌i

δi
to αi. ��

Remark 12.1.2. In [ABBGM05] one moreover assumes � even. We did not need
this assumption.
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A Appendix A: Property (C)

A.1 In some cases we use the following observation. Let i ∈ J, λ > αi such that ωi −λ
appears as a weight of Vωi . Then there is μ ∈ Λ+ with μ ≤ ωi, w ∈ W such that λ = ωi−wμ.
Then the property κ̄(ωi − wμ − αi) ∈ N Λ̌ is equivalent to κ̄(w−1si(ωi) − μ) ∈ N Λ̌, where si

is the reflection corresponding to αi. So, one may first find the W -orbit of each ωi. Second,
find for each i all the dominant coweights satisfying μ ≤ ωi. Third, check for each i ∈ J,
μ ≤ ωi dominant with μ �= ν ∈ Wωi the property κ̄(ν − μ) /∈ N Λ̌.
Type An−1. We may assume G = GLn, B ⊂ G is the group of upper triangular matrices,
T is the group of diagonal matrices. So, Λ = Z

n. We may assume κ̄ : Λ ⊗ Λ → Z given by
κ̄ = mκ, where m ∈ Z and κ(a, b) =

∑n
i=1 aibi. Then our assumption is m /∈ NZ. Since λ is

not a simple coroot, we have n ≥ 3. We assume J = {1, . . . , n−1} and ωi = (1, . . . , 1, 0, . . . , 0),
where 1 appears i times. The representation V

ωi is minuscule, for any μ ≤ ωi with μ ∈ Λ+

we have μ = ωi. Any ν ∈ Wωi is of the form ν = ej1 + · · · + eji
for 1 ≤ j1 < · · · < ji ≤ n.

Let 1 ≤ k ≤ n be the smallest such that αk = ek − ek+1 appears in the decomposition of
ωi − ν �= 0 into a sum of simple coroots. Then k ≤ i and m = κ̄(λ, ek) /∈ NZ. We are done.
Type Cn. We may assume G = GSp2n, the quotient of Gm × Sp2n by the diagonally
embedded μ2. Realize G ⊂ GL2n as the subgroup preserving up to scalar the bilinear form
given by the matrix

(

0 En

−En 0

)

,

where En is the unit matrix of GLn. The maximal torus T of G is {(y1, . . . , y2n) | yiyn+i

does not depend on i}. Let ε̌i ∈ Λ̌ be the caracter that sends a point of T to yi. The roots
are

Ř = {±α̌ij (i < j ∈ 1, . . . , n), ±β̌ij (i ≤ j ∈ 1, . . . , n)},

where α̌ij = ε̌i − ε̌j and β̌ij = ε̌i − ε̌n+j .
We have Λ = {(a1, . . . , a2n) | ai + an+i does not depend on i}. The weight latice is

Λ̌ = Z
2n/{ε̌i + ε̌n+i − ε̌j − ε̌n+j , i < j}.

Let ei denote the standard basis of Z2n. The coroots are

R = {±αij (i < j ∈ 1, . . . , n), ±βij (i ≤ j ∈ 1, . . . , n)},

where βij = ei + ej − en+i − en+j for i < j and βii = ei − en+i. Besides, αij = ei + en+j −
ej − en+i.
Fix positive roots

Ř+ = {α̌ij (i < j ∈ 1, . . . , n), β̌ij (i ≤ j ∈ 1, . . . , n)}.

Then the simple roots are α̌1 := α̌12, . . . , α̌n−1 := α̌n−1,n and α̌n := β̌n,n.
For 1 ≤ i < n set ωi = (1, . . . , 1, 0, . . . , 0;−1, . . . ,−1, 0 . . . , 0), where 1 appears i times
then 0 appears n − i times then −1 appears i times, and 0 appears n − i times. Set ωn =
(1, . . . , 1; 0, . . . , 0), where 1 appears n times, and 0 appears n times. This is our choice of the
fundamental coweights corresponding to α̌i.
For b ∈ Λ write b̄ = bi + bn+i, this is independent of i. The map Λab →̃Z, a 
→ ā is an
isomorphism. Let κ : Λ ⊗ Λ → Z be given by κ(a, b) =

∑2n
i=1 aibi. Then κ is W -invariant
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symmetric bilinear form. We have κ(αij , αij) = κ(βij , βij) = 4 for i �= j, and κ(βii, βii) = 2.
We may assume κ̄ = mκ for some m ∈ Z.
Note that V

ωn is the spinor representation of Ǧ →̃ GSpin2n+1 of dimension 2n, Vω1 is the
standard representation of the quotient SO2n+1, and V

ωi = ∧i(Vω1) for 1 ≤ i < n. We have
0 ≤ ω1 ≤ · · · ≤ ωn−1, and if μ ∈ Λ is dominant and μ ≤ ωn−1 then μ is in this list.
The assumption �(αi) /∈ Z for any simple coroots reads 2m /∈ NZ. Assume n = 2. In this
case it is easy to check the desired property (C).
Assume now n ≥ 3. Then the assumption �(αi) /∈ 1

2Z for any simple coroots reads 4m /∈ NZ.
First, let 1 ≤ i < n. Suppose ωi −λ appears in V

ωi . Then ωi −λ is of the form
∑j

k=1 εkβik,ik
,

where εk = ±1, 0 ≤ j ≤ i, and 1 ≤ i1 < · · · < ij ≤ n. Let λ−αi = (a1, . . . , a2n). If j < i then
there is 1 ≤ k ≤ n such that ak = 1, and κ(λ−αi, βk,k) = 2. If j = i and there is no 1 ≤ k ≤ n
with this property then there is 1 ≤ k ≤ n such that ak = 2, and κ(λ − αi, βk,k) = 4. The
case i < n is done.
Let now i = n. The representation V

ωn is minuscule, its weights are the W -orbit of ωn.
The coweight λ is of the form λ =

∑

k∈S βk,k, where S ⊂ {1, . . . , n} is a subset, and
λ > αn = βn,n. So, there is k ∈ S with k < n. We have κ(λ − αn, βk,k) = 2. We are done.
Type Bn. Assume n ≥ 3, let G = Spin2n+1. We take Λ = {(a1, . . . , an) ∈ Z

n | ∑

k ak = 0
mod 2}, so Z

n ⊂ Λ̌. The coroots are

R = {±αij(1 ≤ i < j ≤ n),±βij(1 ≤ i ≤ j ≤ n)},

where αij = ei − ej , βij = ei + ej . The corresponding roots are α̌ij = ei − ej , β̌ij = ei + ej

for 1 ≤ i < j ≤ n, and β̌ii = ei. Here α̌ij , β̌ij ∈ Z
n ⊂ Λ̌. The simple roots are α̌1 =

α̌12, . . . , α̌n−1 = α̌n−1,n, α̌n = β̌n,n.
Write Ǧsc for the simply-connected cover of Ǧ. The fundamental weights of Ǧsc, which we
refer to as the fundamental coweights of Gad, are ωi = e1 + · · · + ei ∈ Z

n for 1 ≤ i ≤ n. We
use here the canonical inclusion Λ ⊂ Z

n = Λad as a sublattice of index 2. Here Λad is the
coweights lattice of Gad = SO2n+1. The Weyl group acts on Λad by any permutations and any
sign changes. That is, it contains the maps Λad → Λad, μ = (a1, . . . , an) 
→ (ε1a1, . . . , εnan)
for any εk = ±1.
Let κ : Λ⊗Λ → Z be the unique W -invariant symmetric bilinear form such that κ(α, α) = 2
for a short coroot. Then κ extends uniquely to κ : Λad ⊗ Λad → Z as κ(a, b) =

∑n
k=1 akbk.

We get κ(βii, βii) = 4 for any 1 ≤ i ≤ n, and all the other coroots are short. We may assume
κ̄ = mκ, m ∈ Z. Then the assumption of Conjecture 1.1.2 reads 2m /∈ NZ.
Let Λ+

ad be the dominant coweigts of Gad then Λ+
ad = {(a1, . . . , an) ∈ Z

n | a1 ≥ · · · ≥ an ≥
0}. If μ ∈ Λ+

ad and μ ≤ ωi then μ = (1, . . . , 1, 0, . . . , 0), where 1 appears k times with k ≤ i
and k = i mod 2. Any weight of Vωi is of the form wμ, w ∈ W , where μ ∈ Λ+

ad and μ ≤ ωi.
So, the weights of Vωi are of the form ωi − λ =

∑k
r=1 εrejr

, where 0 ≤ k ≤ i, k = i mod 2,
and 1 ≤ j1 < · · · < jk ≤ n, here εr = ±1.
If 1 ≤ i < n then ωi −αi = (1, . . . , 1, 0, 1, 0, . . . , 0), where 1 appears first i− 1 times. If k < i
then λ−αi contains an entry 1 on some m-th place and κ(λ−αi, βm,m) = 2, so κ̄(λ−αi) is
not divisible by N in this case. If k = i and λ − αi does not contain the entry 1 then λ − αi

is of the form
∑

j∈S βjj for some subset S ⊂ {1, . . . , n} that contains at most i elements.
Since i < n there is a couple j1 ∈ S, j2 /∈ S. Then κ(λ − αi, βj1,j2) = 2, so κ̄(λ − αi) is not
divisible by N in this case.
Let i = n then ωn −αn = (1, . . . , 1,−1). Let ωi −λ be as above. If k < n then k ≤ n−2, and
λ−αn contains an entry 1 at some place. As above this implies that κ̄(λ−αi) is not divisible
by N in this case. If k = n then λ−αn =

∑

j∈S βjj+aen, where S ⊂ {1, . . . , n−1} is a subset,
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and a = 0 or a = −2. If λ − αn contains a entry 0 then as above one shows that κ̄(λ − αi) is
not divisible by N . The only remaning case is λ − αn = (2, . . . , 2,−2) = −βnn +

∑n−1
j=1 βjj .

Recall that for any coroot α one has κ(α) = κ(α,α)
2 α̌. We get κ(βjj) = 2β̌jj for any j. So,

κ(λ − αn) = −2β̌nn + 2
∑n−1

j=1 β̌jj . The root lattice of G is Z
n ⊂ Λ̌, and −β̌nn +

∑n−1
j=1 β̌jj

is divisible in Λ̌, namely 1
2 (−β̌nn +

∑n−1
j=1 β̌jj) ∈ Λ̌. So, we must require that 4m /∈ NZ to

guarantee that κ̄(λ − αi) is not divisible by N . We are done.
Type G2. Let G be of type G2. Let Λ = {a ∈ Z

3 | ∑

i ai = 0} with the bilinear form
κ : Λ ⊗ Λ → Z given by κ(a, b) =

∑

i aibi for a, b ∈ Λ. The coroots are the vectors μ ∈ Λ
such that κ(μ, μ) = 2 or 6. The coroots are

±{e1 − e2, e1 − e3, e2 − e3, 2e1 − e2 − e3, 2e2 − e1 − e3, 2e3 − e1 − e2}.

The form κ induces an inclusion κ : Λ ↪→ Λ̌ such that Λ̌/κ(Λ) →̃Z/3Z. The roots can be
found from the property that for any coroot α one has κ(α) = κ(α,α)

2 α̌. For a short coroot
α one gets κ(α) = α̌, and for a long coroot α one gets κ(α) = 3α̌. We get the roots

±{e1 − e2, e1 − e3, e2 − e3, e1, e2, e3} ⊂ Z
3/(e1 + e2 + e3) = Λ̌.

The center of G is trivial. Pick positive roots α̌1 = e1 − e2 and α̌2 = −e1. They correspond
to simple coroots α1 = e1 − e2, α2 = −2e1 + e2 + e3. The dominant coweights are Λ+ =
{a ∈ Λ | a2 ≤ a1 ≤ 0}. The fundamental coweights are ω1 = (0,−1, 1) = 2α1 + α2 and
ω2 = (−1,−1, 2) = 3α1 + 2α2. The positive coroots are {α1, α2, α2 + α1, α2 + 2α1, α2 +
3α1, 3α1 + 2α2}. The representation V

ω2 is the adjoint representation of Ǧ, dimV
ω2 = 14

and dimV
ω1 = 7. We have ω1 ≤ ω2. We assume κ̄ = mκ for some m ∈ Z.

The weights of Vω2 are coroots and zero. So, for i = 2 the coweight λ is one of the following

{α1 + α2, 2α1 + α2, 3α1 + α2, 2α1 + 2α2, 3α1 + 2α2, 4α1 + 2α2,

3α1 + 3α2, 4α1 + 3α2, 5α1 + 3α2, 6α1 + 3α2, 6α1 + 4α2}.

Since κ(α1) = α̌1 and κ(α̌2) = 3α̌2, we get in this case that κ(λ − α2) is an element of the
set

{α̌1, 2α̌1, 3α̌1, 2α̌1 + 3α̌2, 3α̌1 + 3α̌2, 4α̌1 + 3α̌2, 3α̌1 + 6α̌2,

4α̌1 + 3α̌2, 5α̌1 + 6α̌2, 6α̌1 + 6α̌2, 6α̌1 + 9α̌2}.

An element of this set may be divisible in Λ̌ by 2, 3, 6. So, in order to guarantee that
m
N κ(λ − α2) /∈ Λ̌ = Zα̌1 ⊕ Zα̌2, we must assume 6m /∈ NZ. In terms of � this assumption
reads �(αi) /∈ 1

2Z for any simple coroot αi.
Let now i = 1. Then κ(λ − α1) is an element of the set

{3α̌2, α̌1 + 3α̌2, 2α̌1 + 3α̌2, 2α̌1 + 6α̌2, 3α̌1 + 6α̌2}.

An element of this set may be divisible in Λ̌ by 2, 3. So, we must assume 2m, 3m /∈ NZ.
Finally, it suffices to assume 6m /∈ NZ. We are done.
Type Dn. Let G = Spin2n with n ≥ 4. We take Λ = {(a1, . . . , an) ∈ Z

n | ∑

j aj = 0 mod 2},
so Z

n ⊂ Λ̌. The group Λ̌ is generated by Z
n and the element 1

2 (1, . . . , 1). The roots are

Ř = {±α̌ij = ei − ej(1 ≤ i < j ≤ n),±β̌ij = ei + ej(1 ≤ i < j ≤ n)}.

The simple roots are α̌1 = α̌12, . . . , α̌n−1 = α̌n−1,n, α̌n = β̌n−1,n. The coroots are αij =
ei − ej , βij = ei + ej . The Weyl group acting on Λ contains all the permutations, and also
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all the sign changes with the even number of sign changes. Let κ : Λ ⊗ Λ → Z be given by
κ(a, b) =

∑n
k=1 akbk. Then κ is the unique W -invariant symmetric bilinear form such that

κ(α, α) = 2 for any coroot. Let κ̄ = mκ, m ∈ Z. The assumption of Conjecture 1.1.2 reads
m /∈ NZ.
The center of G is Z/2Z × Z/2Z for n even (resp., Z/4Z for n odd). The group Λad is
generated by Z

n and the vector 1
2 (1, . . . , 1). The fundamental coweights of Gad in Λad are

ωi = (1, . . . , 1, 0, . . . , 0) ∈ Z
n, where 1 appears i times for 1 ≤ i ≤ n − 2, and

ωn =
1
2
(1, . . . , 1), ωn−1 =

1
2
(1, . . . , 1,−1).

Here V
ωn−1 , Vωn are half-spin representations of Ǧsc →̃ Spin2n. The representation V

ω1 is
the standard representation of SO2n, and V

ωi →̃ ∧i
V

ω1 for 1 ≤ i ≤ n − 2. Both half-spin
representations are minuscule of dimension 2n−1.
The weights of Vωn (resp., of Vωn−1) are 1

2 (ε1, . . . , εn), where εk = ±1, and the number of
negative signs is even (resp., odd).
If i = n then λ is of the form λ =

∑

k∈S ek, where S ⊂ {1, . . . , n}, and the number of elements
of S is even. For n odd one checks that for any such λ, κ(λ − αn) is not divisible in Λ̌, so
κ̄(λ − αn) /∈ NZ. For n even taking λ = (1, . . . , 1, 0, 0) we get λ − αn = (1, . . . , 1,−1,−1).
For any μ ∈ Λ, κ(λ−αn, μ) is even. So, we have to assume 2m /∈ NZ for n even. Under this
assumption one checks that κ̄(λ − αn) /∈ N Λ̌.
If i = n − 1 then λ − αn−1 is of the form (ε1, . . . , εn−2, 0, εn), where εk = 0 or 1, and the
number of 1’s is even; or of the form (ε1, . . . , εn−2,−1, εn), where εk = 0 or 1, and the number
of 1’s is odd (and the element λ = 0 is excluded here). In the first case κ̄(λ−αn) /∈ N Λ̌, and
in the second case the only difficulty comes from λ − αn−1 = (1, . . . , 1,−1, 1) for n even. In
this case our assumption 2m /∈ NZ for n even guarantees that κ̄(λ − αn) /∈ N Λ̌.
Let now i ≤ n−2. Note that for any a = (a1, . . . , an) ∈ Λ, κ(a) = (a1, . . . , an) ∈ Λ̌. If μ ∈ Λ+

is a weight of Vωi then μ is of the form (1, . . . , 1, 0, . . . , 0), where 1 appears m ≤ i times with
i−m even. So, any weight of Vωi is of the form

∑

k∈S εk with εk = ±1, where S ⊂ {1, . . . , n}
is a subset of order m ≤ i with i−m even. We have ωi −αi = (1, . . . , 1, 0, 1, 0, . . . , 0), where
1 first appears i− 1 times. If λ −αi contains the entry 0 then its other entries could be only
0, 1,−1, 2. So, κ(λ−αi) may be divisible at most by 2 in Λ̌. Since 2m /∈ NZ, κ̄(λ−αi) /∈ N Λ̌
in this case. If λ − αi does not contains the entry 0 and contains the entry 2 then κ(λ − αi)
may be divisible at most by 2. If λ − αi does not contains the entries 0, 2 then i = n/2, n is
even and λ − αi = (1, . . . , 1, εi, 1, εi+2, . . . , εn) with εk = ±1. Then κ(λ − αi) is divisible at
most by 2. We are done.

Remark A.1.1. Our result for the type Dn could possibly be improved by replacing Spin2n

with the corresponding group with connected center as in Remark 1.1.3.

Type F4. Let I = Z
4, e = 1

2 (e1 + e2 + e3 + e4) ∈ ( 12Z)4 and Λ = I ∪ I ′, where I ′ = e+ I. So,
Λ ⊂ (12Z)4. Let κ : Λ ⊗ Λ → Z be the symmetric bilinear form given by κ(a, b) = 2

∑

k akbk.
Let R be the set of μ ∈ Λ with κ(μ, μ) = 2 or 4. The coroots are

R = {±ei(1 ≤ i ≤ 4),±(ei − ej),±(ei + ej)(1 ≤ i < j ≤ 4),
1
2
(±1, . . . ,±1)}.

Pick α1 = 1
2 (1,−1,−1,−1), α2 = e4, α3 = e3 − e4, α4 = e2 − e3. These are simple coroots

(notations from [VO90]), and Λ is freely generated by αi. The map κ : Λ ↪→ Λ̌ is an inclusion.
The center of G is trivial.
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We identify Λ̌ with a sublattice of Q
4 such that the pairing 〈, 〉 : Λ ⊗ Λ̌ → Z is the map

sending (a, b) to
∑

k akbk. The fundamental weights are ω̌1 = 2e1, ω̌2 = 3e1 + e2 + e3 + e4,
ω̌3 = 2e1 + e2 + e3, ω̌4 = e1 + e2 in Λ̌. Then Λ̌ is freely generated by ω̌i. So, Λ̌ = {a ∈ Z

4 |
∑

i ai = 0 mod 2}. The map κ : Λ → Λ̌ sends any a to 2a. We recover the roots in Λ̌ from
the property that κ(α) = κ(α,α)

2 α̌ for any coroot α. The roots are

Ř = {±2ei(1 ≤ i ≤ 4),±(ei − ej),±(ei + ej)(1 ≤ i < j ≤ 4), (±1, . . . ,±1)}.

The simple roots are α̌1 = (1,−1,−1,−1), α̌2 = 2e4, α̌3 = e3 − e4, α̌4 = e2 − e3. The
fundamental coweights are ω1 = e1, ω2 = 1

2 (3e1 + e2 + e3 + e4), ω3 = 2e1 + e2 + e3,
ω4 = e1 + e2. The Weyl group acting on Λ is generated by all the permutations, all the sign
changes, and the element s1 given by

s1(a1, . . . , a4) =
1
2
(a1 + · · · + a4, a1 + a2 − a3 − a4, a1 − a2 + a3 − a4, a1 − a2 − a3 + a4).

The element −w0 acts trivially on Λ. The group W acts transitively on long (resp., short)
coroots. We have 0 ≤ ω1 ≤ ω4 ≤ ω2 ≤ ω3. The representation V

ω4 is the adjoint one,
dimV

ω2 = 273,dimV
ω3 = 1274. The 24 positive coroots are

R+ = {αi(1 ≤ i ≤ 4), α2 + α3 + α4, α2 + α3, 2α1 + 3α2 + 2α3 + α4,

2α1 + 2α2 + α3, 2α1 + 2α2 + α3 + α4, 2α1 + 2α2 + 2α3 + α4, α3 + α4,

2α1 + 4α2 + 3α3 + 2α4, 2α1 + 4α2 + 3α3 + α4, 2α1 + 4α2 + 2α3 + α4,

2α2 + 2α3 + α4, 2α2 + α3 + α4, 2α2 + α3,

α1 + α2 + α3 + α4, α1 + α2 + α3, α1 + α2, α1 + 2α2 + 2α3 + α4,

α1 + 3α2 + 2α3 + α4, α1 + 2α2 + α3 + α4, α1 + 2α2 + α3}.

Let i = 1. The weights of Vω1 are known from [VO90], they are ±ej , 1
2 (±1, . . . ,±1), 0. We

have ω1 −α1 = e. So, λ−α1 may be 1
2 (a1, . . . , a4), where all aj = 1 except one, which is −1

or 3; it also may be (a1, . . . , a4) �= 0, where each ak is 0 or 1; it also maybe e. We see that
κ(λ − α1) may be divisible at most by 2. Assume κ̄ = mκ with m ∈ Z. The assumption of
Conjecture 1.1.2 says 2m /∈ NZ. So, in this case κ̄(λ − αi) is not divisible by N .
Let i = 4. The weights of Vω4 are the coroots and 0. We have ω4 = 2α1 +4α2 +3α3 +2α4. If
ω4 − λ is a weight of Vω4 then λ ≤ 2ω4. Under our assumptions, we get 0 < λ − α4 ≤ 2ω4 −
α4 = 4α1+8α2+6α3+3α4. Since γ := 2α1+4α2+3α3+α4 is a coroot, λ−α4 may take value
ω4+γ−α4 = 4α1+8α2+6α3+2α4. For this λ we see that κ(λ−α4) = 4α̌1+8α̌2+12α̌3+4α̌4

is divisible by 4. So, the assumption of Conjecture 1.1.2 is not sufficient for our method to
work in this case. We need to assume at least that 4m /∈ NZ.
Use the method from Section A.1. The dominant coweights μ ∈ Λ+ such that μ ≤ ω4 are
{0, ω1, ω4}. For μ = 0 we need to check that κ̄(ω4) /∈ N Λ̌. Since κ(ω4) = 2(e1 + e2) is only
divisible by 2, and 2m /∈ NZ, we see that κ̄(ω4) /∈ N Λ̌. For μ = ω1 this property is easy. The
W -orbit through ω4 is the set of long coroots. For μ = ω4 and a long coroot α, κ(α−μ) may
be divisible at most by 4 in the case α = −e1 − e2. The assumption 4m /∈ NZ guarantees in
this case that κ̄(λ − αi) /∈ N Λ̌.
Let i = 2. The dominant coweights μ such that μ ≤ ω2 form the set {0, ω1, ω4, ω2}. The
W -orbit through ω2 is the set

X2 =
{

1
2
(±3,±1,±1,±1),

1
2
(±1,±3,±1,±1),

1
2
(±1,±1,±3,±1),

1
2
(±1,±1,±1,±3),

(±1,±1,±1, 0), (±1,±1, 0,±1), (±1, 0,±1,±1), (0,±1,±1,±1)
}

,
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these are all the coweights of length 6. The element κ(ω2) is not divisible. For τ ∈ X2,
κ(τ −ω1) is divisible at most by 2. For τ ∈ X2, κ(τ −ω4) is divisible at most by 2. For τ ∈ X2,
κ(τ − ω2) may be divisible by 2 or 3. Namely, if τ = 1

2 (−3, 1, 1, 1) then κ(τ − ω2) = −6e1 is
divisible in Λ̌ by 3. So, we must assume 3m /∈ NZ.
Let i = 3. The set of μ ∈ Λ+ such that μ ≤ ω3 is the set {0, ω1, ω4, ω2, 2ω1, ω1 + ω4, ω3}.
The W -orbit through ω3 is the set X3 of all the coweights of length 12, it consists of
(±2,±1,±1, 0) and all their permutations. The element κ(ω3) is divisible by 2. For τ ∈ X3,
κ(τ −ω1) is not divisible. For τ ∈ X3, κ(τ −ω4) may be divisible at most by 4. In this case our
condition 4m /∈ NZ guarantees that κ̄(λ−αi) /∈ N Λ̌. For τ ∈ X3, κ(τ −ω2) may be divisible
at most by 3. For τ ∈ X3, κ(τ − 2ω1) is divisible at most by 2. For τ ∈ X3, κ(τ −ω1 −ω4) is
not divisible. For τ ∈ X3, κ(τ − ω3) may be divisible by 4 and by 6 (it is not divisible by 5
or by r with r ≥ 7). For example, if τ = (−1,−2, 1, 0) then κ(τ −ω3) = 6(−1,−1, 0, 0) ∈ 6Λ̌.
Our condition 4m, 6m /∈ NZ guarantees that κ̄(λ − αi) /∈ N Λ̌. We are done.

Remark A.1.2. The notation from Bourbaki ([Bou68], chapter 6, Section 4.9) for this root
system are obtained from the above by passing to the opposite order in the linearly ordered
set {1, 2, 3, 4}.

A.2 Assume G is of type E8. We follow the notations for the corresponding root system
from Bourbaki ([Bou68], chapter 6, Section 4.10). So, Λ = Λ1 + Z( 12

∑8
i=1 ei), where ei is

the canonical (orthonormal) base in Z
8. Here Λ1 = {(a1, . . . , a8) ∈ Z

8 | ∑

ai = 0 mod 2}.
The bilinear form κ : Λ ⊗ Λ → Z is induced from the scalar product on R

8, where ei is the
orthonormal base. Then κ : Λ → Λ̌ is an isomorphism. The element w0 acts on Λ as −1.
The structure of W is described in ([Bou68], exercise 1, paragraph 4, p. 228). It contains
all the permutations of ei and all the even number of sign changes (of the base elements).
Our notations for ωi and αi is as in ([Bou68], Section 4.10, p. 213). In particular, ω8 is
the biggest coroot, so V

ω8 is the (quasi-minuscule) adjoint representation. We may assume
κ̄ = mκ. The assumption of Conjecture 1.1.2 reads m /∈ NZ. The condition κ̄(λ−αi) ∈ N Λ̌
is equivalent to m(λ − αi) ∈ NΛ.
We have the following inequalities

0 ≤ ω8 ≤ ω1 ≤ ω7 ≤ ω2 ≤ ω6 ≤ ω3 ≤ ω5 ≤ ω4.

For i = 8 we have ω8 = e7 + e8 and α8 = e7 − e6. So, ω8 − α8 = e6 + e8, and ω8 − λ is either
zero or a coroot. Taking ωi − λ = −e6 − e8 we get λ − αi = 2(e6 + e8) ∈ 2Λ. So, we have to
assume 2m /∈ NZ at least. Clearly, for ωi −λ = ±ek ± ej with k �= j the element λ−αi may
be divisible at most by 2 in Λ. For ωi − λ = 1

2 (a1 + · · · + a8) with ak = ±1,
∑

k ak even, the
element λ − α8 is not divisible. So, for i = 8 we are done.
In the case i = 4 consider ω4 − α4 = e2 + e4 + e5 + e6 + e7 + 5e8. Its W -orbit contains the
element ω4 − λ = e2 + e4 + e5 + e6 + e7 − 5e8, for such λ we get λ − α4 = 10e8. So, we must
assume 10m /∈ NZ.
In the case i = 5 we get ω5 − α5 = e3 + e5 + e6 + e7 + 4e8. The W -orbit of this element
contains ω5 −λ = e3 +e5 +e6 +e7 −4e8. For this λ we get λ−α5 = 8e8. So, we must assume
8m /∈ NZ.
In the case i = 6 we get ω6 − α6 = e4 + e6 + e7 + 3e8. The W -orbit of this element
contains ω6 − λ = e4 + e6 + e7 − 3e8. For this λ we get λ − α6 = 6e8. So, we must assume
6m /∈ NZ. The above assumptions are equivalent to the property that for a simple coroot
αi, �(αi) /∈ 1

10Z, 1
8Z, 1

6Z.
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B Appendix B: Proof of Proposition 2.7.1

B.1 We use the notations as in Section 11.2 for the Casselman-Shalika problem.
Properties (ii) and (iii) are clearly equivalent. For η ∈ Λ one has

Gr0B ∩Gr
−λ

B− →̃ Grη
B ∩Gr

η−λ

B− .

By ([Ras], Proposition 3.5.1), if −η is deep enough in the dominant chamber then

Grη
B ∩Gr

η−λ

B− = Grη
B ∩Gr

w0(η−λ)

G .

Here we assume that for each −λ ≤ μ ≤ 0 the coweight η+μ is anti-dominant, and η−λ ∈ Λ�.
Consider the complex

RΓc(Grη
B ∩Gr

w0(η−λ)

G , (sη
B)∗Aw0(η−λ)

E ⊗ (χη
−η)∗Lψ)[〈η, 2ρ̌〉]. (65)

This complex is what should be the limiting case of the metaplectic Casselman-Shalika for-
mula (62) as in ([Ras], Section 3). As in ([FGV01], Section 8.2.4), the tensor product of Fx,−η

by (65) is isomorphic over ˜Mx,−η to j∗
x,−ηH→

G (Aλ−η
E ,F∅). Recall that H→

G (Aλ−η
E ,F∅) →̃Fx,λ−η

by Theorem 5.3.1.
The contribution of the open stratum Grη

B ∩Grw0(η−λ)
G to (65) is

RΓc(Grη
B ∩Grw0(η−λ)

G , (sη
B)∗Aw0(η−λ)

E ⊗ (χη
−η)∗Lψ)[〈η, 2ρ̌〉]. (66)

Lemma B.1.1. The complex (66) identifies with the complex (10) shifted to the left by 〈λ, 2ρ̌〉.

Proof. Recall the local system Ww0(η−λ) on ˜Gr
w0(η−λ)

G defined in ([Lys], Section 2.4.2). The
perverse sheaf Aw0(η−λ)

E is the intermediate extension of this (shifted) local system. The Gm-

torsor GraG ×GrG
Grη

B → Grη
B is constant with fibre Ω− κ̄(η,η)

2
x −0, and T (O) acts on it by the

character T (O) → T
−κ̄(η)→ Gm. So, the local system (sη)∗Ww0(η−λ) over Grη

B ∩Grw0(η−λ)
G

changes under the action of T (O) by the inverse image of Lζ under T (O) → T
−κ̄(η)→ Gm.

Since κ̄(η − λ) ∈ N Λ̌, it coincides with the inverse image of Lζ under T (O) → T
−κ̄(λ)→ Gm.

Since the isomorphism Gr0B ∩Gr−λ
B− →̃ Grη

B ∩Grw0(η−λ)
G , z 
→ tηz is T (O)-equivariant, we

are done. ��
Lemma B.1.2. For each −λ < μ ≤ 0 the stratum Grη

B ∩Grw0(μ+η)
G does not contribute to

the cohomology group of (65) in degrees ≥ −1.

Proof. The ∗-restriction Aw0(η−λ) to ˜Gr
w0(μ+η)

G is placed in perverse degrees < 0, that is, in
usual degrees ≤ 〈μ + η, 2ρ̌〉 − 1. Recall that dim Grη

B ∩Grw0(μ+η)
G = −〈μ, ρ̌〉.

If μ �= 0 then, by ([FGV01], Proposition 7.1.7), (χη
−η)∗Lψ is nonconstant on each irreducible

component of Grη
B ∩Grw0(μ+η)

G . So, in this case

RΓc(Grη
B ∩Grw0(μ+η)

G , (sη
B)∗Aw0(η−λ)

E ⊗ (χη
−η)∗Lψ)[〈η, 2ρ̌〉] (67)

lives in degrees ≤ −2.
If μ = 0 then Grη

B ∩Grw0(η)
G is a point, the ∗-restriction of (sη

B)∗Aw0(η−λ) to this point lives
in degrees ≤ 〈η, 2ρ̌〉−1. Besides, it lives only in usual degrees of the same parity as 〈η−λ, 2ρ̌〉
by ([Lys], Lemma 2.2). Since 〈λ, 2ρ̌〉 ∈ 2Z, it is of the same parity as 〈η, 2ρ̌〉. So, it lives in
degrees ≤ 〈η, 2ρ̌〉 − 2. ��
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We conclude that the subtop cohomology property is equivalent to requiring that for any
λ > 0, which is not a simple coroot, (65) is placed in degrees ≤ −2. Proposition 2.7.1 is
proved.

Index of notations

(L(D)/L)max, Sect. 4.3.5
(Xμ0 × Xμ1 × Xμ2

n )disj, Sect. 3.3
(Xμ1 × Xμ2

n )disj, Sect. 3.1
(Xμ1

n1,≤λ̄1
× Xμ2

n2,≤λ̄2
)disj, Sect. 3.1

(Whitκ
n)good at ȳ, Sect. 2.2

(T˜�S)r, (T˜�S)l,K 
→ ∗K, Sect. 5.1
(·, ·)
, φ
, Sect. 12
(Mn)good at ȳ, ȳMn, Sect. 2.2
(Mn)good atμ1 , Sect. 4.3
AJ, ωLj,BunG

, Sect. 2.5.1
B(−∞), ǔ, Tλ, B(λ), Sect. 1.2.2
B(M), B−(M), γG, Sect. 1.2.2
Bm,∗

g (λ − μ), Bm(μ), Sect. 1.2.2
Bg(λ), Bg, qP , Sect. 1.2.2
CShγ,μ

μ+ν , Sect. 11.2
Fμ,F, Sect. 4.2
G,B,B−, T, U, U−, Sect. 0.0.6
Gj , gj , κj , Řj , Sect. 0.0.6
Gab,Λab, Λ̌ab, Sect. 0.0.6
J, Jj , J, αj , α̌j , Sect. 0.0.6
Kλ

μ , Sect. 9.1
Mc̄,Grμ

B,Grμ
B− , Sect. 1.1

N, ζ,Lζ , Sect. 0.0.7
Q, (·, ·), di, Sect. 12
V (λ), V (λ)μ, Sect. 4.12.5
VE,GraG, Sect. 0.0.8

XU(θ),
◦
XU(θ), U(θ) BunB− , Sect. 4.10

Xμ
n ,Xμ,Xμ

n,≤λ̄
, Sect. 2.5

Xμ

x̄,≤λ̄
,Xμ

x̄,=λ̄
, Sect. 3.5

Xμ
x̄ , Sect. 3.5

Z(G), ωi,V
ωi , Sect. 1.1.4

Zμ
G, Zμ

M , Sect. 4.3.3
BunB−,G̃, BunB̃− , Sect. 4.6
Bunμ

B− , p−, q−, Pκ̄, Sect. 4.1
BunG,X , ˜BunG,X , γ←, γ→, Sect. 5.1
BunT,U(θ), Sect. 4.10
Bun

μ

B− , q̄−, Sect. 4.4
BunB−,G̃, BunB̃− , Sect. 4.6
˜BunG,Dζ( ˜BunG), Sect. 0.0.12
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˜BunT,U(θ), TU(θ), Sect. 4.10
D Whitκ

n, Sect. 2.2
D Whitκ

x̄, Sect. 2.4
Dζ−1,ζ(BunB−), Sect. 4.6
Dζ(Xμ

n ), Sect. 2.5.1
Dζ(+Xμ

n ), Sect. 2.6
FSκ

x̄,Pervζ(X
μ
x̄ ), Sect. 3.5

GrG,Lj , E
a
j , Sect. 0.0.7

GrG,X , GX , ˜GrG,X , Sect. 5.1
Grθ

T,x, Sect. 4.10
H←

G ,H→
G , Sect. 5.1

ICζ , Sect. 4.6
Irr(X), Sect. 4.12.1
Λ, Λ̌, 〈, 〉, Sect. 0.0.6
Λ+, Λ̌+, ρ,Λpos, Sect. 0.0.6
Λ�,+,Aν

E, Sect. 5.1
Λ�, Sect. 0.0.10
Λpos

M ,≤M , Sect. 0.0.6
LocU(θ)

BunB ,ζ(V ), Sect. 4.10

LocU(θ)
BunT ,ζ(V ), Sect. 4.10

LocU(θ)
ζ (V ), Sect. 4.10

Ωρ, ωLκ̄, Sect. 0.0.11
Ωρ

B , ωN,Nreg
y ,Nmer

y , χy, Sect. 2.2
Pervζ((˜Mn)good at ȳ), ȳP

κ̄, Sect. 2.2
Pervζ(Xμ

n ), Sect. 2.5.1
Pervζ(X

μ

x̄,≤λ̄
),Pervζ(X

μ

x̄,=λ̄
), Sect. 3.5

Pervζ(
◦
Xμ), Sect. 3.2

ResǦζ

Ťζ
, Sect. 10.1.1

Sch/k,Kn, �, Q̄
, Sect. 0.0.6
SS(F ),FSκ

n, Sect. 3.4
Whitκ,ss

x , Sect. 8
Whitκ(μMn),D Whitκ(μMn), Sect. 2.6
Whitκ

n, Sect. 2.2
Whitκ

x̄, Sect. 2.3
addμ1,μ2,disj, Sect. 3.1
addμ1,μ2 , Sect. 3.1
F̄μ, F̄μ

ζ ,F, Sect. 4.6.1
V̄E, tE, Sect. 0.0.10
F̄x̄,λ̄, ev x̄,λ̄, Sect. 2.3
π̄μ, Z

μ

n,≤λ̄, Sect. 4.4
β, Vβ , Sect. 0.0.7
B

γ,μ
μ+ν , Sect. 11.2.1

Bγ
ν , −Bγ

ν , Sect. 11.2.2
Es(T ), Sect. 0.0.6
Fx̄,λ̄,!,Fx̄,λ̄,∗,Fx̄,λ̄, Sect. 2.3
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F∅,M∅,0, Sect. 2.4
Fx,λ,Λ+

a ,Λ�
0, M̄, Sect. 6.2

H
+,U(θ)
T , Sect. 4.10

HG, h←
G , h→

G , π, Sect. 5.1
Lκ̄,GrG,x, Sect. 0.0.9
Lμ

n, Sect. 3.3
L

μ

x̄,λ̄,!
, L

μ

x̄,λ̄
, L

μ

x̄,λ̄,∗, Sect. 3.5.1
LG, sμ, Sect. 1.1
Lx̄,λ̄,!, Lx̄,λ̄, Lx̄,λ̄,∗, Sect. 3.5.1
Lβ , iμ, Sect. 0.0.9
Lj,BunG

, Sect. 0.0.9
M, ωi, Sect. 8.2.1
N

reg
ȳ ,Nmer

ȳ , χȳ, Sect. 2.2
Nreg

μ1
,Nmer

μ1
, actμ1 , Sect. 4.3

O, F,Ω
1
2 , Sect. 0.0.6

Ox, Fx,Gr
μ

B ,Gr
μ

B− , Sect. 4.5
Pκ̄,Dζ(Mn), Sect. 2.1
Pθ(X,Λ),BunH , Sect. 0.0.6
Vλ,Mn, κλ̌, Sect. 2.1
Vβ , (·, ·)st, Eβ ,E, Sect. 0.0.8
Zμ,Pκ̄, Sect. 4.2
Zμ

n, ′p, ′pB , Sect. 4.1
B̌ζ ,Perv�

G,ζ , Sect. 0.0.10
Ťζ , Ǧζ , Sect. 0.0.10
ǔ−

ζ , Vν ,U(θ), | U(θ) |, Sect. 4.10

χη, χν
η , ˜Gr

μ

B , ev , Sect. 1.1
δi, Sect. 6.1.3
evx, Sect. 4.11.2
Mx̄,≤λ̄,Mx̄,λ̄, jx̄,λ̄, Sect. 2.3
M∅, p, Sect. 2.1
Mn,≤λ̄,Mx̄, Sect. 2.3
Mx,≤ν ,Mx̃,≤ν ,Mx,ν , Sect. 5.4.1
qPi

: GrPi
→ GrMi

, Sect. 1.2.3
t0
E
, δλ, Sect. 4.12.2

ι, ι
V,Vγ

ν , Sect. 11.2.2
◦
Xμ, jdiag, Sect. 3.2
◦
Xμ

x̄,≤λ̄
, ′jpoles, ′′jpoles, Sect. 3.5

◦
L

μ
∅ ,Lμ

∅ , Sect. 3.2
◦
Zμ1 , Sect. 4.3
◦

Zμ, Sect. 4.7.1
Z

μ
,GrωG,Xμ

n
, Sect. 4.4.1

Z
μ

n, ′p̄, ′p̄B , Sect. 4.4
Z

μ

x̄,λ̄,Z
μ

x̄,≤λ̄,Zμ

x̄,λ̄
, Sect. 4.9.2

Z
μ

loc,x, Sect. 4.5
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πμ,Zμ

n,≤λ̄
, Sect. 4.1

ψ,Lψ,F0
G, Sect. 0.0.6

τ0,PervG,ζ,X

h̃←
G , h̃→

G , γ̃→, Sect. 5.1
ĩν , Sect. 10.1.2
Zμ

x, ′p, ′p
B

, πμ, Sect. 10.1.3
Z

μ

G̃,x
,Z

μ

G̃,x, Sect. 10.1.3
B,K ∗ V , Sect. 11
B

γ,μ
μ+ν , Sect. 11.2.1

˜Xμ
n , Sect. 2.5.1

˜FS
κ

n, Sect. 3.3
˜FS

κ

x̄, Sect. 3.5
˜FS

κ

ṅ, �n̄, �̇n̄, Sect. 3.3
˜GrG,PervG,ζ , Sect. 0.0.8
˜GrT ,PervT,G,ζ ,Locζ , Sect. 0.0.10
˜Gr

+,U(θ)

T ,Λ�,pos, Sect. 4.10
˜Zμ

n,Dζ(Zμ
n), Sect. 4.2

˜Mn, ȳ
˜Mn, (˜Mn)good at ȳ, Sect. 2.2

˜Mx,ν , ˜Mx̃,ν , Sect. 5.4.1
˜Grν

G, Sect. 11.2
˜

Zμ
n, Dζ(Z

μ

n), Sect. 4.6.1
−Bλ

μ, Sect. 11.2.3
+Xμ

n , +
μMn, Sect. 2.6

+Xμ
x̄ , +Xμ

x̄,≤λ̄
, Sect. 2.6.3

M Whitκ
x, MFx,λ, MKλ

μ , Sect. 9.1

U(θ) BunB̃− , Sect. 4.10

≤θ Bun
μ

B̃− , Sect. 4.9.1
≤θZ

μ

n, Sect. 4.9.2
μMn, πM, μMn,≤λ̄, Sect. 2.6

x,∞ Bun
μ

B− , Sect. 10.1.1
x,∞ BunB̃− , Sect. 10.1.2
cj , κ̄, �, Sect. 0.0.7

jμ

λ̄
,

◦
L

μ

x̄,λ̄
, Sect. 3.5.1

jpoles : Ẋn ↪→ Xn, Xμ
ṅ , Sect. 3.3

k, p,X, g,Ω, Sect. 0.0.6
mμ,H→, Sect. 10.1
sλ

B , sμ
B− , γμ

λ ,Lx,μ, Sect. 4.12.3
sλ

B(M), s
λ
B−(M), Mγμ

λ , Sect. 6.1.4
s−μ

P , P γ−λ
−μ , Sect. 6.1.4

ωLκ̄
˜�Lκ̄,HG̃, Sect. 5.1

xHG̃, Z, Sect. 5.2
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≤θ Bun
μ

B− , Sect. 4.4
x,≥ν Bun

μ

B− , Sect. 10.1.1
x,ν Bun

μ

B− , Sect. 10.1.1
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cohomology of Drinfeld’s compactifications, Selecta Math., New ser. 8 (2002),
p. 381–418, Erratum in: Selecta Math., New ser. 10 (2004), p. 429–430.

[BG01] A. Braverman, D. Gaitsgory, Crystals via the affine grassmannian, Duke
Math. J., vol. 107 (3) (2001), p. 561–575.

[BG02] A. Braverman, D. Gaitsgory, Geometric Eisenstein series, Inv. Math. 150
(2002), 287–384.

[Cam] J. Campbell, A resolution of singularities for Drinfeld’s compactification by
stable maps, arXiv:1606.01518.
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