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Introduction

0.0.1 Motivation. In this paper inspired by [Gai08] we study the twisted Whit-
taker categories for metaplectic groups (in the sense of [Lys]). This is a part of the
quantum geometric Langlands program [Sto], [Gai], ([Fre07], Section 6.3), [GL].
Let G be a connected reductive group over an algebraically closed field k of
characteristic p > 0. Let O = k[[t]] C F = k((t)), write Grg = G(F)/G(0O) for
the affine grassmannian of G. Let us briefly describe the aspect of the quantum
geometric Langlands program, which motivates our study. Assume given a central
extension 1 — G,, — E — G(F) — 1 in the category of group ind-schemes over k
together with a splitting over G(0). Let N > 1 be invertible in k, ¢ : puy (k) — Q}
an injective character. Here ¢ is invertible in k. Let (EI"G be the stack quotient of
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E/G(0) by the Gy,-action, where z € G,, acts as z/V. Let Perv ¢ be the category
of G(O)-equivariant perverse sheaves on Grg, on which p ~ (k) acts by (.

To get an extension of the Satake equivalence to this case (as well as, conjec-
turally, of the whole nonramified geometric Langlands program), one needs to impose
additional assumptions and structures on the gerbe (EI"G — Grg. We believe that
it should come from factorization gerbe over Grg ([GL]). Let us explain the idea of
what it is.

Let X be a smooth projective curve. Write Bung for the stack of G-torsors on X.
Let R(X) be the Ran space of X, Grg(x) the Beilinson-Drinfeld affine grassmannian
of G over R(X) (cf. [Gai]). Recall the factorization structure of Grg(x)

Gre(x) Xz(x)(R(X) x R(X))aisj
= (Grex) X Grex)) Xex)xr(x) (R(X) x R(X))disj, (1)

here (R(X) x R(X))qisj is the space classifying pairs of disjoint finite subsets in X.
A factorization uy-gerbe over Grg is a un-gerbe ]gLTng over Bung together with a
factorization structure of its restriction under Grgx) — Bung extending (1) and
satisfying some compatibility properties ([GL], 2.2.5).

There is an easier notion of a factorization line bundle on Grg(xy ([GL], 2.2.8
and 3.3). It can be seen as a line bundle £ on Bung together with a factorization
structure of its restriction to Grg(x). For such a line bundle the gerbe BTInG of its
N-th roots has the above factorization structure.

In [Lys] the following twisted version of Satake equivalence was proved. Our input
data was a factorization line bundle on Grg(x) of some special form (sufficient to
construct all the factorization uy-gerbes on Grg up to an isomorphism)’. These
data are described in Section 0.0.7.

Given such data for GG, we equipped Pervg ¢ with a structure of a tensor category
and established an equivalence of tensor categories ]P’ervha ¢ = Rep(ég), where G'C isa
connected reductive group, an analog of the Langlands dual group in the metaplectic
setting. Here }P’erqu’C is a symmetric monoidal category obtained from Pervg ¢ by
some modification of the commutativity constraint. -

Let D¢(Bung) be the derived category of Q-sheaves on Bung, on which (k)
acts by ¢. In Section 5.1 we define an action of Rep(G¢) on D¢ (B:l—;lg) by Hecke func-
tors. An extension of the geometric Langlands program to this case is the problem
of the spectral decomposition of D¢(Bung) under this action.

0.0.2  Gaitsgory’s conjecture.  Recall the Whittaker category from [FGVO01]. Let
U C G be a maximal unipotent subgroup, £, the Artin-Schreier sheaf on Al cor-
responding to an injective character ¢ : I, — Q}f Pick a non-degenerate character
X : U(F) — G, with zero conductor. Heuristically, the Whittaker category is the
category of (U(F'), x*Ly)-equivariant perverse sheaves on Grg.

L This allowed to completely avoid the higher category theory heavily used in [GL].
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Recall that the orbits of U(F') on Grg are infinite-dimensional, and there are two
equivalent ways to make sense of the above definition. The first (technically difficult)
local definition is found in [Ber|. The second one is via the Drinfeld compactification
denoted 991 and using a smooth projective curve X as an input datum. Let x € X
and Uy be the group-subscheme of U(F') of maps (X — z) — U. The character
X is trivial on Ugyt, so the objects of the Whittaker category ‘live’ on Uy, \ Grg.
Let 91, be the ind-stack classifying a G-torsor on X with a generalized reduction
to U over X — x. Then U\ Grg is included naturally into 9t,. The surrogate
Whittaker category Whit, is defined as the category of perverse sheaves on 9,
with a certain equivariance condition, which restores the (U(F'), x*Ly)-equivariance
property on Grg (cf. [FGVO01], [Gai08]). The main result of [FGVO01] established
an equivalence of categories Whit, — Rep(G). Here G is the Langlands dual to G.
Gaitsgory’s conjecture ([Gai08], Conjecture 0.4) is a quantum deformation of the
above equivalence.

The definition of the twisted Whittaker category for G from [GaiO8] extends
to our (a bit more general) setting of G equipped with a factorizable line bundle
on Grg(x) of our special form. Heuristically, the twisted Whittaker category is the

category of (U(F'), x*Ly)-equivariant perverse sheaves on évrg. This makes sense,
because a central extension of U(F') by G, splits canonically. In this paper we adopt
the second definition of the twisted Whittaker category denoted Whit”, here x refers
to our metaplectic data. Let 93? be the restriction of the gerbe Bung to M. Then
Whit? is defined as the category of perverse sheaves on 9, with some equivariance
condition (the same as in the untwisted case).

Gaitsgory’s conjecture attaches to our metaplectic data a big quantum group
U,(G) (Lusztig’s version with g-divided powers) such that one should have an e-
quivalence

Whit? = Rep(U,(G)) (2)
with the category of its finite-dimensional representations. This paper is a step
towards the proof of this conjecture in our setting.

Both categories are actually factorization categories in the sense of [Ras], and
the above equivalence should be compatible with these structures. This is the reason
for which in this paper (as in [Gai08]) we also consider the versions of the twisted
Whittaker category for n points of X denoted Whit!.

The group GC is expected to be the quantum Frobenius quotient of U,(G). So,
the category Rep(G¢) will act on both sides of (2), and the equivalence has to be
compatible with these actions. Besides, the action on the basic object of Whit}
realizes Rep(G¢) as its full subcategory.

0.0.3 Main results.  One of the main ideas of [Gai08] was the construction of the
functor G,, : Whit;, — FS¢ from the twisted Whittaker category of G to the category
of factorizable sheaves assuming that the quantum parameter denoted c¢ in loc.cit.
is irrational (i.e., ¢ = exp(mic) is not a root of unity). The main result of [BFS98]
identified the category of factorizable sheaves FS¢ with the category Rep(,(G)) of
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representations of the corresponding graded small quantum group &q((}'). When ¢
is not a root of unity, the latter coincides with the big quantum group Uq((v}')7 and
this has led to a proof of the above conjecture in that case ([Gai08]).

In the metaplectic case, corresponding to ¢ being a root of unity, Z.Lq(é) and
U,(G) are substantially different, and the construction of G, breaks down.

A possible strategy of the proof of (2) in the metaplectic case is to construct a
corrected version of the functor GG,,, and then upgrade this functor to the desired
equivalence.

One of our main results is a construction of a corrected version of the functor
G, in the metaplectic case. This is the purpose of Part I of this paper, in Part IT we

study properties of this functor.
0.0.4 The definitions of the twisted Whittaker category Whit!: and the catego-

ry FSZ of factorizable sheaves are given in Sections 2 and 3. Our Theorem 4.11.5
provides a functor
F : Whit® — FS,,

exact for the perverse t-structures and commuting with the Verdier duality. It is
constructed under the assumption that our metaplectic parameter, the quadratic
form p, satisfies what we call the subtop cohomology property. This is a local property
that we prove for all the simple simply-connected reductive groups and most of
parameters g in Theorem 1.1.6 (and Remark 1.1.7), which is one of our main results.
We formulate Conjecture 1.1.2 describing those quadratic forms p for which we
expect the subtop cohomology property to hold. These are precisely those ¢ for
which our construction of F makes sense.?

Let U~ C G be the opposite maximal unipotent subgroup. The functor G,, in
[Gai08] was defined, roughly, by taking cohomologies along U~ (F)-orbits on Grg.
More precisely, these cohomology complexes are put in families over the configura-
tion spaces X}, of divisors on X as direct images under Z), — X} giving rise to
perverse sheaves on (some gerbes over) these X},. The perverse sheaves so obtained
are moreover factorizable in a natural sense. Here Z), are Zastava spaces largely used
in the geometric Langlands program ([BFGMO02]).

To construct the functor F, we introduce natural compactifications of Zastava
spaces in Section 4.4. Our proof also essentially uses the description of the twisted
IC-sheaves of Drinfeld compactifications Bunp from [Lys].

As predicted by the above conjecture, an irreducible object of the twisted Whit-
taker category Whit} is of the form F, ) for some G-dominant coweight A. Assuming
the subtop cohomology property we show that

F(Fer) > @ Loy @V,
H<A

2 When this paper has been written, D. Gaitsgory has informed the author that the definition of
the functor F has been known to him at the time of working on [Gai08] around 2007, as well as some
version of Conjecture 1.1.2 of our paper. But since this conjecture was not proved, the definition of
F was not made public at that moment.
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where L, , are the irreducible objects of Fé;, and VMA are some multiplicity vector
spaces (cf. Corollary 4.9.3 and Proposition 4.11.4). One of our main results is a
description of the space Vu)\ in Theorem 4.12.2. We show that Vu)\ admits a canonical
base, which is naturally a subset of B(A). Here B(\) is the crystal of the canonical
base of the irreducible G-representation V* of highest weight .

The dominant weights of G’g form naturally a subset of the set AT of G-dominant
coweights. Our Theorem 4.12.6 shows that if A is a dominant weight of GC then Vu)\
identifies with the p-weight space in the irreducible representation V(\) of GC of
highest weight A.

0.0.5 Other results inspired by quantum groups.  In Section 5 we define the action
of the category Rep(G¢) of representations of G by Hecke functors on the twisted de-
rived category D¢ (]§1\1/ng) of Bung, and on the twisted Whittaker category D Whit?.
The main result of this Section is Theorem 5.3.1. It shows that the Hecke functors
are exact for the perverse t-structure on the twisted Whittaker category. It also
shows that acting on the basic object of Whit by the Hecke functor corresponding
to an irreducible representation of GQ one gets the corresponding irreducible object
of Whit%. This is an analog of ([FGV01], Theorem 4) in the metaplectic setting.

In Section 6 we introduce a notion of restricted dominant coweights A of G and
show that the corresponding irreducible objects F, » € Whit} remain irreducible
after applying F. This is an analog of the corresponding result for the restriction
functor Rep(U,(G)) — Rep(ty(G)), see ([ABBGMO5], Proposition 1.1.8).

We also prove an analog in our setting of the Lusztig-Steinberg tensor product
theorem for quantum groups ([ABBGMO05], Theorem 1.1.4). It describes the struc-
ture of the semi-simple part Whit}*® of the twisted Whittaker category Whit) as a
module over Rep(G¢) acting by Hecke functors. If [G¢, G¢] is simply-connected then
we show that this is a complete description.

Let T, ¢ C CVJC be the canonical maximal torus. In Section 10 we define the action of
Rep(TC) by Hecke functors on ﬁé; This corresponds to an action of representations

of the maximal torus of the quantum Frobenius quotient on Rep(t,(G)) defined in
([ABBGMO5], Section 1.1.6).

One of our main results is Theorem 10.1.2 showing that F : Whit? — FVSZ
commutes with the actions of Hecke functors with respect to the inclusion 7; ¢ GC'
This is an analog of the similar property of the restriction functor Rep(Uq(G)) —
Rep(i,(G)) (JABBGMO5], Proposition 1.1.11).

Further, we compute the Kazhdan-Lusztig’s type polynomials for Whit/ in some
special cases (cf. Section 9). Acting on the basic object of FS/, one gets a full
embedding Rep(T ¢) C FS5. We also show that, assuming the subtop cohomology
property, this full subcategory is closed under extensions (cf. Proposition 10.2.1).

In Section 11 we formulate a metaplectic analog of the Casselman-Shalika prob-
lem (and its analog for quantum groups). Then we calculate the top cohomology
group of the corresponding Casselman-Shalika complex in Proposition 11.2.1.
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In “Appendix B” we prove Proposition 2.7.1, which reformulates the subtop co-
homology property as some categorical property of Whit! saying that Ext! in Whit#
between some irreducible objects vanish. The corresponding property is known to

hold for Rep(U,(G)) ([Bez]). In Section 12 we compare our setting with that of

[ABBGMO5], where the quantum Frobenius quotient of Uy(G) identifies with G.

0.0.6 Notation. We work over an algebraically closed ground field k of char-
acteristic p > 0. Let X be a smooth projective connected curve of genus g. Let
) denote the canonical line bundle on X. We fix a square root Q= of Q. Set
O = Kk[[t]] ¢ F = k((t)). Let G be a connected reductive group over k with
[G, G] simply-connected. Let B C G be a Borel subgroup, B~ C G its opposite
and T'= BN B~ a maximal torus. Let U (resp., U~) denote the unipotent radi-
cal of B (resp., of B™). Let A denote the coweights of T, A the weights of T. The
canonical pairing between the two is denoted by (,). By AT (resp., A1) we denote
the semigroup of dominant coweights (resp., dominant weights) for G. Let p be the
half-sum of positive coroots of G. Let AP denote the Z-span of positive coroots
in A.

Set Gupy = G/[G, G, let Agy (vesp., Ayp) denote the coweights (resp., weights) of
Gap- Let J denote the set of connected components of the Dynkin diagram of G. For
J € J write J; for the set of vertices of the j-th connected component of the Dynkin
diagram, J = Uje;d;. For j € J let o (resp., ¢&;) denote the corresponding simple
coroot (resp., simple root). One has Gog = [[;c; G, where G; is a simple adjoint
group. Let g; = LieG. For j € J let x; : A® A — Z be the Killing form for G, so

Kj = E aQ a,
v.]‘

acRr

where Rj is the set of roots of G;. For a standard Levi subgroup M of G' we denote
by A" the Z,-span of simple coroots of M in A. Our notation pu <ps A for A, € A
means that A\ — pu € AIZ/([)S. For M = G we write < instead of <.

By a super line we mean a Z/2Z-graded line. As in [Lys|, we denote by £°(T")
the groupoid of pairs: a symmetric bilinear form « : A® A — Z, and a central super
extension 1 — k* — A% — A — 1 whose commutator is (y1,72)e = (—1)%(72),

Let Sch/k denote the category of k-schemes of finite type with Zarisky topology.
The n-th Quillen K-theory group of a scheme form a presheaf on Sch/k. As in
[BDO01], K,, will denote the associated sheaf on Sch/k for the Zariski topology.

Pick a prime ¢ invertible in k. We work with (perverse) Q-sheaves on k-stacks
for the étale topology. Pick an injective character ¢ : F, — @Z, let Ly be the
corresponding Artin-Schreier sheaf on A'. The trivial G-torsor over some base is
denoted "J"%

Denote by P(X, A) the Picard groupoid of f-data ([BD04], Section 3.10.3). Its
object is a triple 8 = (k, A, ¢), where kK : A ® A — Z is a symmetric bilinear form, A
is a rule that assigns to each v € A a super line bundle \Y on X, and ¢ is a rule that
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assigns to each pair 71,72 € A an isomorphism ¢ : A7 @ X2 5 A\ H12 @ Qr(172)
on X. They are subject to the conditions from ([BD04], Section 3.10.3).
For a reductive group H we denote by Bung the stack of H-torsors on X.

0.0.7 Input data. We fix the following data as in ([Lys], Section 2.3). Write
Grg = G(F)/G(0) for the affine grassmannian of G. For j € J let L; denote the
(Z/27Z-graded purely of parity zero) line bundle on Grg with fibre det(g;(0) : g;(0)¢)
at gG(0) (the definition of this relative determinant is found in [FL10]). Let E¥ be
the punctured total space of the pull-back of L; to G(F'). This is a central extension

1 — Gy — Ef — G(F) — 1,

it splits canonically over G(O).
Pick an even symmetric bilinear form 3 : Ay ® Ay — Z. Assume given a central
extension
1 -Gy —=Vg—=Ayp—1 (3)

over k whose commutator is (71,72)e = (—1)7#0172) Tt is given for each v € Agy by
a line €7 over k together with isomorphisms

L N S Nt

for v; € Agp subject to the conditions in the definition of £%(Gyp) ([Lysl5], Sec-
tion 3.2.1).

Let N > 1 be invertible in k. Let ¢ : uy(k) — Q) be an injective character,
we write Lo for the canonical rank one local system on B(upy) such that pn(k)
acts on it by (. We have a map sy : G, — B(uy) corresponding to the ppy-torsor
G — Gy, 2z — V. The local system syL¢ is sometimes also denoted by L.

For each j € J pick ¢; € Z. To these data we associate the even symmetric
bilinear form & : A ® A — Z given by

F=—8-) cK (4)
jeJ

and the quadratic form ¢ : A — Q given by o(u) = R(z!j{fu)-

0.0.8 Central extensions. 'To the above unput data we associate the following
objects. According to ([BDO01], Theorem 3.16), to the central exension (3) one canon-
ically attaches a central extension

1=Ky —Vg—Gg —1 (5)

of sheaf of groups on Sch/k with the following property. Write (-, )s : F* X F* — k*
for the tame symbol map ([Lys|, Section 2.3). Passing to F-points in (5) and further
taking the push-out by the tame symbol (-,-)s : Ko(F) — Gy, one gets a central
extension

1 =Gy — Eg— Ggp(F) — 1, (6)
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which is actually a central extension in the category of ind-schemes over k, and its
commutator (+,+)c : Gap(F) X Ggp(F) — Gy, satisfies

M@ J1, 20 © fo)e = (1 )

for \; € Agp, fi € F*. The pull-back of (6) under G(F') — G, (F') is also denoted by
Ejg by abuse of notation.

Recall that V3(0) — Gg(0) is surjective, and the composition of the tame
symbol with K3(0) — Kjy(F) is trivial. For this reason (6) is equipped with a
canonical section over G,(0). The Gy,-torsor Eg/Gap(0) — Grg,, over t7Ggp(0) is
constant with fibre €7 — {0}, the group G,(0) acts on it by the character

Gab(o) — Gap 5&)’) Gm

The sum of the extensions Eg and (E)%, j € J is the central extension denoted
1-G,—E—-GUF)—1. (7)

It is equipped with the induced section over G(0O). Let
1-Gp—-Ve—A—1 (8)

be the pull-back of (7) under A — G(F), A — t*. The commutator in (8) is given
by

()\17 )‘2>c = (—1)‘%()‘17)\2).

Set Grag = E/G(0). Let Grg be the stack quotient of Grag under the G-
action such that z € G,, acts as zV. Let Pervg ¢ be the category of G(O)-equivariant
perverse sheaves on Grg on which py (k) acts by (.

0.0.9 Line bundles.  Asin ([Lys], Section 2.6) we associate to the pair (V3, —f) €
E°(Gap) a line bundle Lz on Bung,,. This is done in two steps. First, (Vg, —3) yields
an object 0y € PY(X,Ay) as in ([Lysl5], Lemma 4.1). Second, 6y yields a super
line bundle on Bung,, as in ([Lys|, Section 2.6), it is actually of parity zero. The
restriction of Lg to the Ran version of Grg,, is a factrorization line bundle ([GL],
2.2.8).

For p € Ay consider the map iy, : X — Bung,,, © — O(—px). One has canoni-
cally

B, 1)

i;L[g;Q 2 ®6’u.

For j € J let £ Bun, be the line bundle on Bung whose fibre at F € Bung is

det RT'(X,, (g;)50,) ® det R['(X, (g;)7) "
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Denote by L" the line bundle L ®( ® LJ Bung) O1 Bung. Its restriction to the Ran

version of Grg is naturally a factorlzatlon line bundle.

For z € X let Grg, denote the affine grassmannian classifying a G-torsor F
on X with a trivialization ¥ = F% |x_,. The restriction of L* (with zero section
removed) under the forgetful map Grg, — Bung identifies with Grag (once we pick
an isomorphism D, = Spec O for the formal disk D, around z).

0.0.10  Metaplectic dual group.  In [Lys] we equipped Pervg ¢ with a structure of a

symmetric monoidal category, we introduced a symmetric monoidal category Perqu ¢

obtained from Pervg ¢ by some modification of the commutativity constraint.

Set A* = {\ € A | R(\) € NA}. Let T; = Spec k[A*] be the torus whose weights
lattice is A¥. Let G< be the reductive group over Qy defined in ([Lys] Theorem 2.1),
it is equlpped with canonical inclusions 7, ¢ C BC - Gg, where T, ¢ is a maximal torus,
and Bg is a Borel subgroup dual to T'C B C G.

To get a fibre functor on IP’ethG’ ¢ one needs to pick an additional input datum.
We make this choice as in [Lys]. Namely, let Vg be the stack quotient of Vg by the
G-action, where z € G,, acts as zV. It fits into an exact sequence of group stacks

1 — B(un) — Vg — A — 1. (9)

We pick a morphism of group stacks tg : A* — Vg, which is a section of (9)
over Af. This yields as in ([Lys|, Theorem 2.1) an equivalence of tensor categories
IF’ervG I = Rep(G¢).

Let GrT be obtained from GrG by the base change GrT — Grg. Write Pervr g ¢

for the category of T'(0)-equivariant perverse sheaves on Gry on which s ~(k) act-
s by ¢. As in ([Lys], Section 3.2), the datum of tg yields an equivalence Loc¢ :
Rep(TC) = PGTVT,G,C-

0.0.11 Let ° denote the T-torsor on X obtained from Q2 via the extension of
scalars for 2p : G,, — T. We denote by “L* the line bundle on Bung whose fibre at
F € Bung is L5 @ (L5,)~!. From ([Lys15], Proposition 4.1) one gets the following.

LEMMA 0.0.1. Let D = Y pzx be a A-valued divisor on X. The fibre of Ly at
QP(—D) identifies canonically with

(La)or ® (@rex (92) 0420 g ),
where [ig € Mgy is the image of piy.

0.0.12 Langlands program for metaplectic groups.  Let %G be the gerbe of N-th
roots of “L* over Bung. Its restriction to the Ran version of Grg is a factorization
gerbe ([GL], 2.3.2). Let D¢(Bung) denote the derived category of Q-sheaves on
BTl;lg, on which py (k) acts by (.

As in [Lys|, where the case of G simple simply-connected was considered, we
define an action of IP’erqu’C on DC(%G) by Hecke functors (see Section 5.1). The
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geometric Langlands program for metaplectic groups could be the problem of finding
a spectral decomposition of D¢(Bung) under this action. Our study of the twisted
Whittaker model in this setting is motivated by this problem.

Part I. Construction of the functor F
1 Local problem: subtop cohomology

1.1 In this section we formulate and partially prove Conjecture 1.1.2 that is
used in Proposition 4.11.2.

For a free O-module M write Mz = M ®¢ k. For € A let Grly (resp., Grly_)
denote the U(F')-orbit (resp., U~ (F)-orbit) in Grg through t#. For p in the coroot

lattice, the Gy,-torsor Grag Xar, Gry — Grfy is constant with fibre QE_E(“ ) _

0, and T(O) acts on it by the character T(0) — T Ry) G- The Gyy,-torsor
Grag X ar, Griy- — Gr'y_ is constant with fibre Q1) _ 0, and T(0O) acts on
it by T(0) » T "% G,

As in ([FGVO1], Section 7.1.4), for n € A we write x, : U(F) — Al for an
additive character of conductor 7, where 7 is the image of 1 in the coweights lattice
of Gyq. For n+v € A" we also write xj : Grp — Al for any (U(F), x,)-equivariant
function.

For pn € A let

— —
Grp = Grly X, Gre.

Pick xo : U(F) — Al and define xJ : Grfy — Al by x8(uG(0)) = xo(u) for
—~0
u € U(F). Set ev = x3. For the canonical trivialization Grg = Grl x B(uy), we
—~0
consider L := ev* Ly K L, as a local system on Grg.

For p in the coroot lattice any trivialization of QE_R(“ ) yields a section s, :
Gr’é, — Grg_. Recall that Gr% N Gr]_; is empty unless A > 0, and for A > 0 this
is a scheme of finite type and pure dimension (A, p) by ([BFGMO02], Section 6.3).
Recall the quadratic form p from Section 0.0.7.

DEFINITION 1.1.1. We say that the subtop cohomology property is satisfied for o if
for any X\ > 0, which is not a simple coroot,

RI(GrNGrgt, s* \La) (10)
is placed in degrees < top — 2, where top = (\,2p).

CONJECTURE 1.1.2. Assume that o(cy) ¢ Z for any simple coroot «;. Then the
subtop cohomology property is satisfied for o.
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This conjecture is motivated by our definition of the functor F in Section 4.6.1,
this is precisely the local property needed in Proposition 4.11.2. The assumption

o(a;) ¢ 7Z is used in the construction of F to get the correct answer over X* (see
Proposition 4.3.4).

REMARK 1.1.3. (i) The input data of Section 0.0.7 are functorial in a suitable
sense. In particular, we may restrict them from G to [G,G]. Then K gets re-
placed by its restriction to the coroot lattice. The subtop cohomology property
holds for [G, G] (with the induced input data) if and only if it holds for G.

(ii) We may pick a torus 7} and an inlcusion Z(|G,G]) — T1, where Z(|G,G])
is the center of [G,G]. Then G; := ([G,G]| x T1)/Z(|G,G]) has a connected
center, here Z([G,@]) is included diagonally in the product. One may also
extend the input data of Section 0.0.7 to G; and assume, if necessary, that G
has a connected center.

DEFINITION 1.1.4. If the center Z(G) of G is not connected, replace G by the group
Gy as in Remark 1.1.3, so we may assume Z(G) connected. Then pick fundamental
weights w; € A of G corresponding to &; for i € J. Say that o satisfies the property
(C) if the following holds. If i € 3, A > «; such that w; — \ appears as a weight of
the fundamental representation V¥ of G then R(A — ;) is not divisible by N in A.

Here is the main result of this section.

Theorem 1.1.5. If p satisfies the property (C) then the subtop cohomology property
1s satisfied for o.

The proof of the following is given case by case in “Appendix A”.

Theorem 1.1.6. The quadratic form o satisfies the property (C), and hence the
subtop cohomology property, in the following cases:

e G is of type Cy or Ay, forn > 1, and o(cy) ¢ Z for any simple coroot «;.

e G is of type By,Cpn, Dy for n > 1 or Ga, and o(«a;) ¢ %Z for any simple
coroot o;.

e G is of type Fy, and o(cy;) ¢ %Z, olay) ¢ %Z for any simple coroot «;.

REMARK 1.1.7. Let G be of type E, with 6 < n < 8. As in the proof of Theo-
rem 1.1.6, one shows that there is a collection of positive integers dy,...,d, (de-
pending on n) with the following property. If o(c;) ¢ d%Z7 e %Z for any simple
coroot «; then the property (C) is satisfied for p. This collection can be found in
principle in a way similar to the one we use for other types, however, this requires a
lot of explicit calculations. They could certainly be done with a suitable computer
program (like [FK]).

In Section A.2 of “Appendix A”, we consider G of type Eg and establish a
necessary condition for the property (C). Namely, one needs at least that o(a;) ¢
%Z, %Z, %Z for the property (C) to hold for g in this case.
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1.2 Proof of Theorem 1.1.5.

1.2.1 Over GrOBﬂGrE{,\ we get two different trivializations of the G,-torsor
Grag — Grg, the first coming from Gr%, the second one from that over Grgf.
The discrepancy between the two trivializations is a map ¢ : Gr% N Gr;ﬁ — Gy
that intertwines the natural 7'(0)-action on the source with the 7'(0)-action on G,
by the character T'(0) — T EB;) G,,,. To be precise, for the corresponding sections
5% : GrOB — Grag and sgﬁ : Grl}i — Grag one has sgé = 708%. Note that
s* \Lg = ev* Ly @ v&Le.

Recall that the restriction of ev : Gry N Grgé — Al to each irreducible compo-
nent of Gri N Grg} is dominant ([Gai08], Section 5.6). So, (10) is placed in degrees
<top—1.

1.2.2  Recollections on crystals.  As in [BFGO6], write Bg(\) for the set of irre-
ducible components of Gr% ﬂGrgé. One has the structure of a crystal on By =
Ux>0 Bg(A) defined in ([BFGO6], Sections 13.3-13.4). We recall the part of this crys-
tal structure used in our proof.

For a standard parabolic P C G with Levi quotient M let qp : Grp — Grys be
the natural map. Write B(M) and B~ (M) for the corresponding Borel subgroups
of M. For A > 0 the scheme Gr% N Grgé is stratified by locally closed subschemes

Gr% ﬂq;l(Gr;‘_‘(M)) N Grgé indexed by 0 <p; p < A. For such p and any g €

Gr;‘f( M) One has an isomorphism
Gr Nap' (Grg” ) N Gry = (G, N Grg” (1p) X (ap'(9) N Grgt).  (11)

Denote by By"*(A—pu) the set of irreducible components of g ' (g)ﬂGrgé of (maximal
possible) dimension (A — pu, p). This set is independent of g € Gr;‘_‘( M) in a natural
sense (see loc.cit.). One gets the bijection

By(N) = Uy BI* (A = ) % Bun(11)

sending an irreducible component b of Gr% ﬁGrE% to the pair (by,be) defined as
follows. First, there is a unique p € A with 0 <;; u < A such that bN q;l(GrB’f(M))
is dense in b. Then bN q;l(Gr];’f(M)) corresponds via (11) to (b1, b2).

For ¢ € J the operation f; : By — By U0 is defined as follows. Let P; be the
standard parabolic whose Levi M; has a unique simple coroot «;. Our convention is
that f; : Bm, — B, U0 sends the unique element of By, () to the unique element of
B, (v—ay) for v >, «; (resp., to 0 for v = 0). For the corresponding decomposition

Ba(A\) = Uy B (A = 1) B, (11)

write b € Bg()\) as (bl, bg) Then fi(bla bg) == (bl, fl(bg)) by definition.
For i € J, b € By(v) set ¢;(b) = max{m > 0| f/"b # 0}.
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Let B(—o0) denote the standard crystal of the canonical base in U(it), here 1 is
the Lie algebra of the unipotent radical of the Borel B C G. It coincides with the
crystal introduced in ([Kas95], Remark 8.3). A canonical isomorphism By = B(—00)
is established in [BFGO06]. For A\ € A denote by T) the crystal with the unique element
of weight A, the notation from ([Kas95], Example 7.3) and ([BGOS], Section 2.2).
For A € A" denote by B(\) the crystal of the canonical base of the irreducible
G-representation V* of highest weight A\. We identify it canonically with the crystal
denoted by B%()) in ([BGO1], Section 3.1). So, an element of B(\) is an irreducible
component of Gr'lz N Gr)c‘, for some v € A appearing as a weight of V*. Recall from
([BGO8], Section 2.2) that for A € AT there is a canonical embedding B(\) —
Too(r) @ B(—00) whose image is

{tun) @b | b€ B(—00), ¢s(b*) < —(wo(@;), A) for all i € J}. (12)

Here B(—o0) — B(—00),b +— b* is the involution defined in ([Kas95], Section 8.3),
see also ([BGO08], Section 2.2). This inclusion is described in the geometric terms in
([BGO8], Proposition 4.3). The involution * is also described in geometric terms as
the one coming from an automorphism of G in ([BGO08], Section 4.1, p. 100).

1.2.3 Let i = {p;}icg with p; € Ay X > p; >p7, 0. We have the corresponding
maps qp, : Grp, — Gryy,. Set

YH (ﬂ dp, (Gr ( )))ﬂGr%ﬂGrgé.

The scheme Gr% N Grg} is stratified by locally closed subshemes Y# for the collec-
tions i as above (some strata could be empty). Our strategy is to show that each
stratum Y# does not contribute to top — 1 cohomology in (10).

Set ZF = HegGrB( )ﬂGr “ oy Let

g YH — ZF

be the product of the maps qp,. Write U(M;) for the unipotent radical of B(M;). For
each i € J define ev; : GrB(Mi) — Al by ev;(uM;(0)) = xo(u) for u € U(M;)(F). We
have used here some section M; — P;. For evt : ZF — Al given by ev =34 ev;
the restriction ev |ys equals evig”.

By Definition 1.1.4, we assume Z(G) connected and pick fundamental coweights
w; of G. Note that v/ L. is equivariant under the action of Ker(7T'(0) — T'). If there is
i € J such that p; >y, 2aZ then under the action of Ker(9* 4 T(0) — T) the sheaf
ev; Ly on GrY B 1 Gr ! B- (M) changes by a nontrivial additive character. Therefore,
ev* Ly @75Le on Y also changes by a nontrivial additive character under the action
of this group. So, the integral over this stratum vanishes by ([Ngo], Lemma 3.3).

Assume from now on that each p; is either o; or zero. The stratum Y#, where
w; = 0 for all 4, is of dimension < (\, p) by ([Gai08], Section 5.6).

Consider a stratum Y# such that y; # 0 for precisely m different elements i € J
with m > 2. Recall that GrB( N Grg (M) = Gy, The group T acts transitively
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on Z". Since g* is T'(O)-equivariant, the dimensions of the fibres of g are < (\, p) —
m. Our claim in this case is reduced to the following. For any 7'(0)-equivariant
constructible sheaf F' on Z*, the complex RT'.(Z#, F®@ (ev”)*L,,) is placed in degrees
< m. This is easy to check.

The only remaining case is the stratum Y# such that there is i € J with p; = a;
and p; = 0 for j # i. In particular, A > «;. We may assume that Y* contains
an irreducible component b of dimension (), p), otherwise this stratum does not
contribute to top — 1 cohomology in (10). The closure of b in Gr% ﬂGrE_\ is an
element b € By(\) such that f;b=0 for j # 4 and f2b = 0. The following is derived
from ([Kas95], Proposition 8.2, Section 8.3), see the formula (12).

PROPOSITION 1.2.1. Pick i € J. If v > 0 and b € By(v) such that fib =0 for all
j#1i, and fzzb =0 then w; — v appears in the fundamental representation V¥ of G
with highest weight w;. In other words, w(w; — v) < w; for allw € W.

We conclude that w; — A appears in V¥ (for other A the proof is already finished).
For P = P, and g = t~% the isomorphism (11) becomes

Griy Nap! (G, N Grd = (Griy N Grg%a) X (ap! ()N Grgt). (13)

We let T'(O) act on the right hand side of (13) as the product of the natural actions
of T(O) on the two factors. Then (13) is T'(O)-equivariant (see Section 1.2.4). The
Gp-torsor Grag — Grg is constant over q;il (t~*) with fibre an(ai’ai) — 0, and
T(0O) acts on it by the character

T7(0) - T "% G,.

Pick any trivialization of Q. R(ai’ai), let 5; : q};il (t~*) — Grag be the corresponding
section of the G,,-torsor. We get the discrepancy function ~; : q;,il (t=*)nN Gr;ﬁ —

Gy, such that sg’} = 7,;5; over q;l_l (t=)n Grgi\. The map ~; interwines the natural

T'(0)-action on Cll_ai1 (t=)nN Gr]_ﬁ with the action on G, by T(0) — T RAZe) G

Let Grayy, be the restriction of Grag under Gry;,, — Grg. As for G, one defines
the discrepancy function vy, : Gr%( M) N Gr;?“( M) Gy, The map

[ _ —a; _ Y™, Yi
(Gr%(Mi) ﬂGrB,(Mi)) X (qPil(t )ﬁGrBi\) - Gpn

coincides with the restriction of vg.
There is a T'(O)-invariant subscheme Y C q;} (t_"”)ﬂGrgi\ such that (13) restricts
to an isomorphism

The contribution of Y# becomes

RFC(GrOB(M) N Grgf‘i(M), ev; Ly @ Vi L) @ RT(Y, v Le).
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We have dim(Y) < (A, p) — 1. To finish the proof it suffices to show that ;L. is
nonconstant on each irreducible component of Y of dimension (A, p) — 1. This is the
case, because the character (A —qy) is not divisible by N in A, so that ;i L¢ changes
under the 7°(0)-action by a nontrivial character. Theorem 1.1.5 is proved. O

1.2.4  Equivariant decomposition. If G is a group scheme, and f : Y — Z is a
G-equivariant map such that G acts transitively on Z, assume that for any y € Y,
the inclusion Stabg(y,Y) C Stabg(f(y), Z) is an equality. Then a choice of z € Z
yields an isomorphism & : Z x f~1(z) =Y. Namely, let S = Stabg(z, Z). The map
(G)S) x f~Y2) =Y, (95,y) — gy is well defined and gives this isomorphism.

Assume in addition we have a semi-direct product 1 — G — G — H — 1 with
a section H < G as a subgroup. Assume f is in addition G-equivariant. Assume
z € Z is fixed by H. Then SH is a subgroup of G equal to Staba(z,Z). So, H acts
on S by conjugation. If we identify G/S = Z, ¢S + gz then the action of h € H on
gS € G/S = Z sends ¢S to hgh™'S. Now & : Zx f~1(2) =Y becomes H-equivariant
if we let h € H act on Z x f~1(2) as the product of the actions, that is, h € H acts
on (z1,y) € Z x f~Y(2) as (hzy, hy).

2 The twisted Whittaker category

2.1 The definition of the twisted Whittaker category from ([Gai08], Section 2)
naturally extends to our setting, we give the detailed exposition. For A € AT denote
by V* the corresponding Weyl module for G as in [Jan87,Jan03]. For n > 0 let 9,
be the stack classifying:

o (r1,...,2y) € X" a G-torsor F on X,

e for each A € AT a non-zero map

kA Q) Vé‘t, (14)

which is allowed to have any poles at z1,...,2,. The maps KN are required
to satisfy the Pliicker relations as in [BG02].

For n = 0 the stack 9, is rather denoted by 1. Let p : M,, — Bung be the map
sending the above point to . .

Let P* denote the line bundle p*(“LF) on M,,. By M,, we denote the gerbe of
N-th roots of P* over M,,. Let D¢ (IM,,) denote the derived category of Qp-sheaves on
M., on which un (k) acts by €. This category does not change (up to an equivalence)
if K and N are multiplied by the same integer, so essentially depends only on g.

2.2 Pick y € X. Write Dy (resp., Dy) for the formal disk (resp., punctured
formal disk) around y € X. Let Q% be the B-torsor on X obtained from Q* via
extension of scalars T' — B. Let “N be the group scheme over X of automorphisms
of Qf acting trivially on the induced T-torsor. Let Ny® (resp., Nj'**") be the group
scheme (resp., group ind-scheme) of sections of “N over D, (resp., Dy). Recall that

NI/ [NIPE NPT 5 |pe - x Q| p,
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the product taken over simple roots of GG. Taking the sum of residues in this product,
one gets the character y, : Nj'*" — Al
As in ([Gai08], Section 2.3) for a collection of distinct points § := y1,...,Ym
lett N3 (resp., Ni**") denote the product of the corresponding groups Ny (resp.,
N3"). The sum of the corresponding characters gives the character xj : Nj'" — Al
Let (9M,)goodaty C M, be the open substack given by the property that all x;

are different from the points of 7, and #x* have no zeros at y. A point of (My,)goodaty
defines a B-torsor Fp over Dy = H;nzl Dy, equipped with a trivialization ep :
953 XB T = QP over Dg.

Let 39, denote the Nj®-torsor over (9M,)goodaty classifying a point of
(M})goodaty as above together with a trivialization Fp = Qf, |p, compatible with
€B.

Now 91, can be seen as the stack classifying: (z1,...,2,) € X" different from
y, a G-torsor F over X — ¢ with a trivialization ey : F = Qf xp G |D§, for A € AT
non-zero maps (14) over X — y — & satisfying the Pliicker relations and compatible
with the trivialization e. Here we denoted Dy = [[7L; Dy .

The group N7 acts on 39, by changing the trivialization es via its action on
Q% | D:- The composition 39, — M, >, Bung sends the above point to the gluing
of F |X—g with Q% xg G |D?7 via €5 : ?;Q% xg G |D5-

Denote by 3PF the restriction of P* to 39,,. As in ([Gai08], Lemma 2.4), the
action of N7 on 39, lifts naturally to an action on 3 PF.

Let My, (resp., 39y, (M) goodaty) be the gerbe of N-th roots of/ihe correspond-
ing line bundle P* (resp., its restriction). We denote by Perv¢((9,)goodaty) the
category of perverse sheaves on (9M,)g00daty, on which un(k) acts by ¢. Write
(Whit},)good at 7 for the full subcategory of Perve (9, )goodaty) consisting of perverse

*

sheaves, whose restriction to M, is (NG, X7

tion 2.5).
If 4 and §” are two collections of points, set y = 7' Uy”. Over (IM)goodaty ONE
gets the corresponding torsors with respect to each of the groups

reg reg Teg
N:ljl ) N:lj” 9 :N‘g .

Ly )-equivariant (as in [Gai08], Sec-

As in ([Gai08], Section 2.5), the three full subcategories of Perve((9M,)goodat y) given
by the equivariance condition with respect to one of these groups are equal.
Let Whity;, C Perv¢(9,) be the full subcategory of F' € Perv¢(9M,,) such that

for any y as above, the restriction of F' to (M, )goodaty lies in (Wit} )good aty- As

in ([Gai04], Lemma 4.8), the full subcategory Whity; C Perv¢(9,) is stable under
sub-quotients and extensions, and is therefore a Serre subcategory. So, we also define
the full triangulated subcategory DWhit;;, C D¢(90,,) of complexes with all perverse
cohomology lying in Whit.

The Verdier duality preserves Whit (up to replacing ¢ by ¢~! and ¢ by (1),
because the corresponding action maps are smooth (as in [Gai04], Section 4.7).
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2.3 For a n-tuple A = (\y,. .., \,) of dominant coweights of G let M, 5 CM,
be the closed substack given by the property that for each A € At the map

£ QPN VR () (N, A)) (15)
1
is regular over X. For z = (z1,...,2,) € X" fixed let Mz denote the fibre of M,
over this point of X". Write Whit% for the corresponding version of the Whittaker
category of twisted perverse sheaves on Mz. (By a twisted perverse sheaf on a base
we mean a perverse sheaf on some gerbe over this base).

Assume (71, ...,z,) pairwise different. Define the closed substack M, 5 C Mz
as above. The irreducible objects of Whit7 are as follows. Let 9, 5 C imi,;; be the
open substack given by the property that for each A\ € At the map (15) has no zeros
over X. Let

Jz s Mz 5 — My 5

be the corresponding open immersion. Recall that j; 5 is affine ([FGVO01], Proposi-
tion 3.3.1).

In the same way, one defines the version of the Whittaker category of twist-
ed perverse sheaves on M 5. As in ([Gai08], Lemma 2.7), this category is non-
canonically equivalent to that of vector spaces. Let 5’"27;\ denote the unique (up
to a non-canonical scalar automorphism) irreducible object of this category. As in
([FGV01], Section 4.2.1), one defines a canonical evaluation map ev, 5 : M, 5 — Al
The restriction of the line bundle P* to M 5 is constant with fibre

w 6”(—21')‘1'2”). (16)
Any trivialization of (16) yields a trivialization ﬁi,ﬁ =M 5 X B(un) of the gerbe

M 5 — M, 5. There is an isomorphism
g:j,j\ = e’l);;\.ﬁaw X Lc[dim mi‘,j\]'
For A = 0 the line (16) is canonically trivialized. So, Fz o is defined up to a canonical
isomorphism. -
Let F; 5, (resp., I 5., Tz 3) denote the extension of F; 5 by jz 5, (resp., jz 5 .
Jzxix)- Since jz 5 is affine, these are perverse sheaves. As in ([FGVO01], Proposi-
tion 6.2.1), one checks that all of three are objects of Whit%, and the version of

([Gai08], Lemma 2.8) holds:

LEMMA 2.3.1. (a)  Ewvery irreducible object in Whit is of the form F 5 for
some n-tuple of dominant coweights \.
(b)  The cones of the canonical maps

Foxr = a3 = Tanx (17)

are extensions of objects Iz 5, for N <
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Here the notation \' < \ means that )\2 < \; for all 1 < i < n and for at least one
i the inequality is strict. Recall that the maps (17) are not isomorphisms in general.
Let DWhit% C Dc(ﬁ@) denote the full subcategory of objects whose all perverse
cohomologies lie in WhitZ.

2.4 The basic object of the category Whity is denoted Fp. Recall the open
substack My o C My given by the property that the maps (14) have neither zeros
nor poles over X. Since there are no dominant weights <0, from Lemma 2.3.1 we
learn that the canonical maps

70,00(F0,0) = 70,01+ (Fo.0) = Jo.0.+(Fo,0)
are isomorphisms.

2.5 For n > 0 and u € A let X}/ be the ind-scheme classifying (z1,...,z,) €
X" and a A-valued divisor D on X of degree p which is anti-effective away from
Z1,...,Zn. This means that for any A € AT, (5\,D> is anti-effective away from
TlyeeyTp-

For n = 0 we rather use the notation X(SL or X* instead of X/ If p = — D icg Midy
with m; > 0 then X# = [, X (™).

For a n-tuple A = (A1, ..., \,) of elements of A denote by XZ,<X C X} the closed

subscheme classifying (z1,...,x,, D) € X} such that
n
D — Z )\il‘i
i=1
is anti-effective over X. We have an isomorphism X" x X#~M— = = Xg <y sending
(x1,...,2n, D) to D' + Y% Niw;. For another collection N = (\|,...,\,) with
/ .
A} > i one has a natural closed embedding X' aoX . <y and
Bo— Iz
XP = 11;11 Xn’ <
A
2.5.1 By abuse of notation, the restriction of “L* under Buny — Bung is

still denoted by “LF. Let AJ : X} — Bung be the Abel-Jacobi map sending
(1,...,2Zn, D) to QP(—D). The line bundle AJ*(“LF) is denoted by P* by abuse of
notations.

Denote by “L;Bun, the line bundle on Bung whose fibre at § € Bung is
(L Bune )5 ® (Lj7BunG)5,}. For D =3 p.x € X}, one has

(“LjBune s (— D) = Daex (QF ) Hettat20),

This isomorphism uses a trivialization of all the positive root spaces of g that we fix
once and for all (they yield also trivializations of all the negative root spaces).
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LEMMA 2.5.1. For D =% p,x € X}, one has

(L)) Sy (08) I @ e % (0, () K1) @ (116
where [ip, € Ngp is the image of piy.
Proof. Use Lemma 0.0.1 and the fact that €° is trivialized. O

Let X* denote the gerbe of N-th roots of P* over X},. Write Perv(X}) for the

category of perverse sheaves on X# , on which pyn(k) acts by (. Similarly, one has
the derived category D¢ (X7).

2.6 For y1 € A denote by ,9, C M, the ind-substack classifying (x1, ..., 2, D)
€ X}/, a B-torsor g on X with an isomorphism Fp xg T = Q°(—D). As u varies
in A these ind-stacks form a stratification of 9,,. Let moy : 9N, — X} be the map
sending the above point to (z1,...,zy,, D).

For a collection A = (A1,...,\,) € A" let pIM, <5 be obtained from ,9M, by
the base change MM, 5 — M,,. The map mon restricts to a morphism still denoted
Ton - umn,gi — X:i<5\.

By the same token, one defines the version of the Whittaker category Whit" ( M)
C Peer(Mﬁtn) and its derived version DWhit"(,90,) C DC(Hﬁn).

Let T X/ — X} be the closed subscheme given by the condition (D, &) > 0 for
any simple root & of G. Let 90, be the preimage of X} in ,M,. As above, we
have the natural evaluation map ev : f9, — A'. The derived category D¢ (T X}) is
defined as in Section 2.5.1. Since the map oy : , 9, — X} has contractible fibres,
as in ([Gai04], Proposition 4.13), one gets the following.

LEMMA 2.6.1. Each object of DWhit"(,90,,) is the extension by zero from :{E)ﬁn The
functor D¢ (T X}) — DWhit®(,9,) sending K to mjn K ® ev*Ly is an equivalence.

As in ([Gai04], Lemma 4.11), one gets the following.

LEMMA 2.6.2. (i) Let © € A. The *x and ! restrictions send DWHhit]} to
DWhit"(,M,).

(ii) The * and! direct images send DWhit"(,9,,) to DWhit;;.

(ili) An object K € D¢(9My,) lies in DWhity, if and only if its x-restrictions (or,
equivalently, -restrictions) to all ,9M,, belong to DWhit"(,9,,).

REMARK 2.6.3. (i) Consider a point (z1,...,7,, D) € TX}. Assume (yi,...,
Ym) € X™ pairwise different such that {yi1,...,ym} = {z1,...,2,}. Then there
is a collection of G-dominant coweights (j1, ..., fm) such that D =" py;
with Y7 p; = p. In particular, T X} is empty unless p is G-dominant.
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(ii) Let # = (x1,...,%,) € X" be a k-point with z; pairwise different. Define * X%
as the fibre of "X} over z € X™. Let A € A™ with < ", \;. Define the closed
subscheme +Xg7§\ by the condition D < Y. A\jz;. Then +X§7§\ is a discrete
finite set of points.

2.7 Let x € X. In “Appendix B” we show that the subtop cohomology property
admits the following reformulation in terms of Whit?.

PROPOSITION 2.7.1. The following properties are equivalent.

(i)  The subtop cohomology property is satisfied for p.
ii) Let A\ > 0, which is not a simple coroot. For yu € A¥ deep enough in
, P H P g
the dominant chamber the complex j;#_)\ffx,u over My ,,—x is placed in
perverse degrees < —2.
(iii) Let A > 0, which is not a simple coroot. For u € A* deep enough in the
dominant chamber one has Ext'(Fy - x, Fz.u) = 0 in Whit?.

Based on this proposition, we propose the following.

CONJECTURE 2.7.2. Let u < p' be dominant coweights such that p/ — u is not a
simple coroot. Then Ext'(F, 1, Fp ) =0 in Whit”.

3 The FS category

3.1 The definition of the category of factorizable sheaves from ([Gai08], Sec-
tion 3) extends to our setting, we give a detailed exposition for the convenience of
the reader.

For a partition n = ny + ng, p = pu1 + po with pg; € A, let

. M1 H2 1
addy, ., : Xh x X2 — X))

be the addition map. Given ni-tuple A;, na-tuple Ao of coweights let
(X X X2 Vs

n1,<\1 na,<As
be the open part of the product given by the property that the supports of the two
divisors do not intersect. The restriction of add,, ,, to the above scheme is an étale
map to Xﬁ,g?\luiz‘ )
Recall the line bundles P* from Sections 2.1, 2.5.1. From Lemma 2.5.1 we obtain
the following factorization property
add* ?R ’(X“l _ox X M2

Ha,p2 n1, <X ”/zvﬁxz)disj

;fPR &?R |(X:11,§X1><X“2 (18)

ng, <Ay )disj

compatible with refinements of partitions.
Let (X*1 x X}?)4isj denote the ind-subscheme of X#* x X},* consisting of points

(Dl S X‘ul,(i’,Dg) € Xﬁz)
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such that Dy is disjoint from both  and Dy. Let addy,, ,, disj : (XM % X5 )aisj — Xh
denote the restriction of add,, ,,. For a n-tuple A the restriction is étale

. 1% M2 L. 14
addﬂlaﬂzvdlsJ ' (X R Xn,gf\)dlsJ - XTL,SS\'

Over (X* x X}*)aisj we get an isomorphism

addy, . qisi PR PR PR (19)
3.2 For pp € —AP° let X" C X" be the open subscheme classifying divisors of

the form D = )", py, with y; pairwise different and each p, being a minus simple

coroot. Denote by jdiae : Xn C X* the open immersion.
If «v is a simple coroot then &(—a, —a+2p) = 0. Therefore, P*

o is canonically
Xnw
trivialized. We get a canonical equivalence

Perv(X*) = Perv, (X")

Let Lg € Pervc()of ") be the object corresponding via the above equivalence to the
sign local system on XHTf = —> mja; with m; > 0 then the sign local system

on X* is by definition the product of sign local systems on X0m) for all 7. Set
,d. o
Ly = gr (L),
the intermediate extension being taken in Perv (X*#).
Note that for u = 1 + pe with p; € —AP% we have a canonical isomorphism

addy, ., disi (Lg) = Lgl X L‘Of. (20)

3.3 As in ([Gai08], Section 3.5), we first define ﬁé: as the category, whose ob-
jects are collections Lf; € Perv¢(X},) for each 1 € A equipped with the factorization

isomorphisms: for any partition g = 1 + po with po € A, u1 € —APS for the map
addul’#Q’diSj : (X'LLI X Xﬁz)disj — Xﬁ
we must be given an isomorphism
add;hu%dis‘j LZ = L'gl X LZQ (21)

compatible with refinements of partitions with respect to (20).

For po, 1 € —APS, puy € A let (X0 x XM x X}?)gis; be the open subscheme
classifying (Do, D1, 1, . .., Ty, D) € X*0 x X x Xh? such that Dy, D are mutually
disjoint and disjoint with z, Ds. Compatibility with refinements of partitions means
that for p = p1 + po the diagram

(XHo x XM x XK )gis) — (XHFoFH X XB?) gigg
| |

(XHo x X)) aisj — Xpotr

yields the commutative diagram of isomorphisms over (X#° x X x Xﬁz)disj
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Lt = L RLR
! !
ot g e (5 20) L0 R L0 R L

where to simplify the notations we omited the corresponding functors add*.

A morphism from a collection {1£}} to another collection {?L4} is a collection
of maps 'L}, — 2L% in Perv¢ (X)) compatible with the isomorphisms (21).

Let jP°es : X < X" be the complement to all the diagonals. For w € A set
X! = X} xx» X™. By the same token, one defines the category FS, con81st1ng of
collections Lf, € Perv(X~') with factorization isomorphisms. Both FS, and FS,, are
abelian categories.

We have the restriction functor (jPes)* : FVSK — 1:;@2 and its left adjoint

jPO L FS; — FS,,

well-defined because jP°! is an affine open embedding.

If 2 =n1 + -+ ny is a partition of n, let An: X* — X™ and Ap : X¥ — X" be
the corresponding diagonal and its open subscheme. We have the natural functors
(Ap) 1 FS, —» FS, and (An) Ef‘\éz — ﬁ:

The corresponding restriction functors are well-defined on the level of derived cat-

egories (the latter are understood as the derived categories of the corresponding
abelian categories):

(47)" : D(FS,) — D(FS;) and  (4n)": D(FS,) — D(FS}).
They coincide with the same named functors on the level of derived categories of
Qg-sheaves on the corresponding gerbes.
3.4 For a k-scheme Y and F' € D(Y') we denoted by SS(F') the smgular support
of F in the sense of Beﬂlnson [Bei]. Define the full subcategory FSF C FS as follows.
A collection L,, € FS lies in F'S}; if the following conditions are satisifed:

(i) L& may be nonzero only for u belonging to finitely many cosets in
m1(G). For each 7 € m(G) there is a collection v = (v1,...,v,) € A™
with > . v; = 7 € m(G) such that for any p € A over 7 the perverse
sheaf L, is the extension by zero from X,/ _,

(ii)  The second condition is first formulated over X™, that is, we first define
the subcategory FS; C FNSZ Let L, € l?éz, i€ Aand v € A" with
> vi = p € mi(G) such that L is the extension by zero from )?fj <

Then there are only finitely many collections (u1,...,u,) € A" with

>_iHi = 1 such that SS(LE) contains the conormal to the subscheme
Xn — Xn < (1’1, . ,:L’n) — Zl iy

Now the condition (ii) over X" is that for any partition n = nj +

-+ + ny, each of the cohomologies of (Az)*(L,,), which is an object of

Ef‘\éz, belongs to FS7.
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3.5 For 7 = (x1,...,2,) € X" fixed let X£ denote the fibre of X}, over € X".
In a similar way, one introduces the abelian category ﬁ; We define FS% as the full
subcategory of objects of finite length in ]_?‘é; As in Section 3.2, one defines the
category Perv.(XZ).

Pick # € X" with x; pairwise distinct. Let A = (A1,...,\,) be a n-tuple of
elements of A. For u € A with (3, \;) — pu € AP consider the closed subscheme

XK P<i = =XNX 7’1‘ <5 Let X ;‘ c Xt 2 <3 be the open subscheme classifying divisors

of the form
(Z )\sz> — D/
i=1

where D’ is AP%-valued divisor on X of degree (3, A\;) — p, and x; is not in the
support of D’ for any 1 <4 < n. One similarly defines the categories Perve (XY _.)

Z,<\
and Peer(X;:/-\). Let

o

I
XH ch 5

be the open subscheme given by requiring that D’ is of the form D' = > ugyx, where
Y are pairwise distinct, and each g is a simple coroot of GG. Here, of course, y; is
different from all the x;. Denote the corresponding open immersions by

11 spoles
J

I 7
< Xi 7 Xoaxw

LEMMA 3.5.1. The restriction of P¥ to X" <X is trivial with fibre

@y (7)) @ A (22)
where \; € Ay is the image of \;.
Proof. If « is a simple coroot then &(—a, —a+ 2p) = 0. Now apply Lemma 2.5.1. O

I (30, N) — =32 cgmja; then [];4 X (M) = X#=30: A via the map sending
{Dj}jes to — Z]EHD Q.

We have an open immersion j{' : X“ 5 < X#=2iNi sending D to D—3"1 | N
The line bundle P* over X/ ro 1dent1ﬁes with the tensor product of (j% )*fPR with
(22). So, for any tr1v1ahzat10n of the line (22), we get the restriction functor

Peer(X”’_Ei Ay — Peer(Xg:X).

We denote by L” | the image of Lg 22 under the latter functor. So, L+ is defined
up to a non-unique scalar automorphism. Set

o

L;S\,! _ //j!})oleS(ﬁ;;\)’ L‘g,; I poles(ﬁ ) L%X _ lljfoleS(Lg )
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Define the collection £ 5, = {L, X, |}uea by the property

oH Lg)\u He (Zz )‘i) — AP®
Al 0, otherwise.

It is understood that we use the same trivialization of ( 2) for all p in the above
formula. One similarly defines the collections L 5, L 5 . All the three are objects
of ﬁ;

LEMMA 3.5.2. (i) For any irreducible object F' of FA‘S; there is a collection A\ € A"

such that F' is isomorphic to L:@Z\'
(ii) The kernels and cokernels of the natural maps

La‘:,f\,! - £‘a‘c,?\ - La‘:,X,*
in 1::82 are extensions of objects of the form L 5, for N <

Proof. i) Let A € A™ be such that the *-fibre of F' at > I | \jz; € XL is nonzero for
some p1 € A. We may assume (changing ) if necessary) that for any v € A with v = u
in 71(G) the twisted perverse sheaf I € Perv¢(XY) is the extension by zero from
X7 <»- Then from the factorization property we see that we must have F'= L; 5. O

LEMMA 3.5.3. Let & = (x1,...,7,) with x; pairwise different, A\ € A™. Then the

objects Lz 5, L € FA‘SQ are of finite length.

i,j\,*
Proof. Set k= =3, ycjkj. Write D € Xf‘<X as D = (3, cx Hyy) + i) Aixi with
piy € —AP% for all y € X. Denote by P* the line bundle on X* <X whose fibre at the

above point D is

®y€X(Q )R Ry 1y +2P)

The line bundle P*®(P*)~! on the scheme Xf‘<)\ is trivial. So, it suffices to prove our

claim under the assumption § = 0. The latter is done in ([Gai08], Lemma 3.8(b)). O

4 Zastava spaces

4.1 Our purpose is to construct an exact functor Whit]: — 1*:92 We first adopt
the approach from ([Gai08], Section 4) to our setting, it produces an approximation
of the desired functor. We will further correct it to get the desired one.

For p € A let Bun/;_ denote the connected component of Bung- classifying B~ -
torsors on X such that the induced T-torsor is of degree (29 — 2)p — u. Recall that
a point of Bun;_ can be seen as a collection: a G-torsor ¥ on X, a T-torsor Fr on
X of degree (29 — 2)p — p, a collection of surjective maps of coherent sheaves

MVy - L), Ae At

satisfying the Pliicker relations. Define p~, q~ as the projections in the diagram
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Bung £ Bun’é_ i Bunyp.

The line bundle (p~)*(“LF) is denoted by P* by abuse of notations. One has natu-
rally P = (g7 )*(“LF).

Denote by 2}, € M, X Bung Bun’é, the open substack given by the property that
for each G-dominant weight A the composition

Qe = ph ek (23)

which is a map over X — U;z;, is not zero. Let 'p, 'pp denote the projections in the
diagram

m,, il Zzh 2 Bunf;_ .
Let 7 : Z}, — X}, be the map sending the above point to (z1,...,x,, D) such that
the maps (23) induce an isomorphism Q°(—D) = .
For any n-tuple A € A™ define the closed substack ZZ <y by the base change
M, <5 — My, The map 7 restricts to a map -

wo.oon no
T 'Z’n,gA_)Xn,gA'

However, the preimage of X* - under 7# : Z), — X} is not Z" ..
n n

7SX 7SA

REMARK 4.1.1. For p1 € Alet Gron- x# be the ind-scheme classifying (21, ..., 2y, D)
€ X}, a B~ -torsor ¥ on X with compatible isomorphisms F x g- T'= Q°(—D) over
X and F 5O xp B~ |x—p—u,a,- We have a closed immersion 2 < Gron- x# given
by the property that the corresponding maps

Qe ph

for A € At are regular over X — U;z;. Since the projection Gron- x# — X} is
ind-affine, the map 7* : Z}, — X} is also ind-affine.

4.2 The ind-scheme 2/ is rather denoted Z#. Recall that for 11 € —AP, s € A
and p = p1 + pe we have the factorization property ([Gai0O8], Proposition 4.7)

(XP > X0 )aisy X Zgy = (XH X XR)aisy X (xm xxpzy (B X 202) - (24)
Recall that the diagram commutes
m,, )] pé Pe Bun';_

Lo La- (25)

AJ
XE = Bung

and ('p)*PF = (71)*PF canonically, this line bundle is also denoted P¥. Let Z¥ denote
the gerbe of N-th roots of P* over Zj, let D¢(Z7,) denote the corresponding derived
category of twisted Qy-sheaves.
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This allows to define the following functors. First, we have the functor F* :
D¢(9M,,) — D¢(Zh) given by

FMK) = ('"p)*K[dim.rel('p)].

As in ([Gai08], Section 4.8), this functor commutes with the Verdier duality for u
satisfying (u, &) < 0 for any simple root ¢&. Using the factorization property, we will
be able to assume that u satisfies the latter inequality, so this functor essentially al-
ways commutes with the Verdier duality. We get the functor F : D¢(91,) — D¢ (XF)
given by

F(K) = nf'(p)" (K)[dim. rel('p)].

4.3 The analog of ([Gai08], Proposition 4.13) holds in our setting:

PROPOSITION 4.3.1. Let p; € —AP iy € A, p = 1 + p2 and F € Whity. Under
the isomorphism (24), the complex

add”*

L, p2,disj FM(EF) S DC((Xul X X#Q)disj XXk Z’g)

identifies with
I (Fp) BF(F) € De((XH X X0 )aisj X (x0m xxsz) (21 X Z?)).

Proof. We write down the complete proof for the convenience of the reader and to

correct some misprints in ([Gai08], proof of Proposition 4.13). Set 2 = Zm X o,
MNy.o- Let (Mn)goodatp, € XH* x M, be the open substack given by the property
that D € X* does not contain pole points (z1,...,2,), and all K* are morphisms
of vector bundles in a neighbourhood of supp(D).

Let fo’lg (resp., Ng‘ler) be the group scheme (resp., group ind-scheme) over X#1,
whose fibre at D is the group scheme (resp., group ind-scheme) of sections of “N
over the formal neighbourhood of D (resp., the punctured formal neighbourhood of
D). As in Section 2.2, we have the character x,, : N;* — Al

For a point of (M,)good at u; We get a B-torsor Fp over the formal neighbourhood
D of D with a trivialization eg : Fg xg T = QP over D. Let M, denote the
NyE-torsor over (My)goodat u, Classifying a point of (9M,)goodaty, together with a
trivialization ¥ = Qf |5 compatible with ep. The group ind-scheme N acts on
My, over X#1, this action lifts naturally to an action on P*. Let

acty, : N,Ifler w N (mm”) — (mn)goodat ™

be the action map. For each & € Whit! one has an isomorphism of twisted perverse
sheaves

act), (F) = x}, Ly KT
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As the fibre Njj\"/ N2 at D € X# can be written as an inductive system of affine
spaces, the above system of isomorphisms makes sense, see ([Gai04], Section 4).
The preimage of (9M,)g00d at x, Under the map

(XH1 x XE?)aisy X xm Zh Boxm m,,
goes over under the isomorphism (24) to
(XH 5 X0 )aisg X (xmsexszy (BH X 202). (26)

Note that N}* /N8 can be seen as the ind-scheme classifying D € X#1, a B-
torsor F on X with compatible isomorphisms Fx gT = Qf over X and F = Q% |x—-D-
The character x,, decomposes as

evp,o

N INGE — My g — Al
We have a locally closed embedding over X
2 o N 0

given by the property that for each A € AT the map KN Vé — Lép(_D), initially
defined over X — D, is regular over X and surjective.
For & € Whit its pull-back to

(Xul X SXnn) X(Xr1xXn) (Xul X Xn)disj

is the extension by * and also by ! from (smn)good at i, » because there are no dominant
coweight strictly smaller than 0 (see Section 2.4). So, it suffices to prove the desired
isomorphism over the open substack (26).

The composition

(XHE X XE2 )digj X (xm s xctizy (ZF1 X Z02) — (X 5 XJ2 ) aigj X xpe Zfy — XH X DMy,
factors as
(X'ul X Xff)disj X(Xul x X5?) (Z’ul X Zgz)
— (X X XB2)aisj X (xm xxizy (N /NGE X Z02)

= (X XE)disg X (o xnzy (NG 5700 (D X am,, Z47))

reg acty,,

mer , N’
NN, "D (M )goodat < X X My,

where the second arrow used the trivialization of the N, *-torsor
(1 D, X o, 207) X (X1 xXE?) (X X2 ais

(see Remark 4.1.1). 0
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COROLLARY 4.3.2. For & € Whitl, uy € —AP* s € A and p = p1 + p2 one has

add;17u27disj F(EF) = ]F(g'q)) X ]F(gj)

in De((XH x X[?)gisj). These isomorphisms are compatible with refinements of par-
titions.

We will use the following.

REMARK 4.3.3. Let M C G be a standard Levi, AIX/C[’S the Z-span of M-positive
coroots in A. For p € —AP® let Z7, denote the Zastava space classifying D € X,
U~ -torsor F on X, a trivialization F = ?OU_ |x—p that gives rise to a generalized
B-structure on ¥ := Fx /- G over X with the corresponding T-torsor (D). That
is, for each A € AT the natural map

K O(D,\)) — Vér
is regular over X. Assume in addtion g € —A%}®. Then we have the similarly defined
ind-scheme Z]’f/[ for M. The natural map Zf\‘/[ — Zg is an isomorphism over X*.
PROPOSITION 4.3.4. Assume o(a;) ¢ 7Z for any simple coroot «;. Then for u €
—AP% we have a (non-canonical) isomorphism Ly = F(Fy) in D¢ (X*).
Proof. Consider first the case 4 = —a, where « is a simple coroot of G. Then
X* = X. Applying Remark 4.3.3 for the corresponding subminimal Levi, we get

275X x A, and 275 X x G,, is the complement to the zero section. The

line bundle P over X* is trivialized canonically. However, over Z~% we get another
trivialization of P inherited from the trivialization of P% |gn,,. The discrepancy
between the two trivializations is the map

275X X Gy B G *2F Gy,
where d = w Since our answer here is different from that of ([Gai08], Sec-
tion 5.1), we give more details. Let M be the standard subminimal Levi correspond-
ing to the coroot «, My be the derived group of M, so My — SLs. Pick x € X. Let
P denote the projective line classifying lattices M included into

QO i (—2) @ CMC Q@0 (a) (27)

such that M/(Q "z (—xz) @ Q2) is 1-dimensional. This defines a map P — Bunjy,
sending M to M viewed as a My-torsor on X. Let £ denote the line bundle on P
with fibre

det RT(X,Q2) ® det RT'(X, Q" 2)
det RI'(X, M)

at M. The restriction of “LF under the composition P — Buny,, — Bung identifies
—R(a,a)

with L7 2 . The fibre 27 over D = —ax is the open subscheme of P given by
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the property that Q2 (—z) € M is a subbundle. The formula for d follows from the
fact that L= O(1) on P.

So, if o() ¢ Z then F(Fy) = Q[1] non-canonically in D¢ (X ™).

Let now u = —> myo; € —AP% with m; > 0. Applying Corollary 4.3.2 and
the above computation, one gets the desired isomorphism after the pull-back to
[[; X™ — A, where A is the diagonal divisor. From the Kiinneth formula one sees
that the product of the corresponding symmetric groups [[, Sp, acts by the sign
character because the Gauss sum RI'¢(Gyy,, Ly ® Lg) is concentrated in the degree 1
for d ¢ NZ. 0

The isomorphism of Proposition 4.3.4 does not hold in D¢(X*). This is already
seen in the following special case.

LEMMA 4.3.5. Assume G = SLg and o(a) ¢ 7Z for the simple coroot o. Then for
pe —AP® F(Fy) € De(XH) is the extension by zero from X*.

Proof. Take p = —ma, m > 0. So, X(™ = X# via the map D — —Da. The scheme
ZH is a vector bundle over X* with fibre

1

Ext!(Q:(D)/Q:,072(~D)) = Q7 (~D)/Q"}(-2D)
at —Da. A point of Z* is given by D € X(™) and a diagram

0—Q :(-D)— M —Q3(D)—0
AN
Oz

The line bundle P* over X (™) identifies canonically with O(—4c;j p), where AC X (m)
is the divisor of the diagonals. Here ¢; is a part of our input data from (Section 0.0.7,
formula (4)).

For a line bundle L on X and an D € X(™) let (L(D)/L)max C L(D)/L be the
open subscheme consisting of those v € L(D)/L such that for any 0 < D' < D, v ¢
L(D")/L. Note  that (L(D)/L)max identifies ~ canonically  with
(Lil(_D)/Lil (_QD)max-

The fibre of Z# over D € X is (Q~'(=D)/Q " (—2D))max = (D) /) max.
Let D =", mpzp € X™. Then (Q(D)/Q)max — [14(Q(mzr)/Q)max. The fibre of
Prat —Da € XH is

(®k Q;’”:‘i*mk )4Cj ]

Write a point of [[, (Q(mgzr)/Q)max as v = (vk), vk € (Qmpx)/Q)max. Let Uy be
the image of vy, in the geometric fibre (Q(mixk))s, = Qi ™. The canonical section
of THPR over Z# sends v to (®k v, ™)1, So, the xfibre of F(Fy) at —Da € X*
identifies (up to a shift) with the tensor product over k of the complexes

RTc((Qmixr) /Q)max, ev™ Ly @ mplpac;mi ), (28)
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where 7y, is the map

M (QUmear) /Dmax — (Qmpar))e, = G

for some isomorphisms 7. Calculate (28) via the composition (Q(mgzg)/Q)max —
(Q(mpxy))z, — Speck. If mp > 1 for some k then the sheaf ev*L, on
(Qmixr)/Q)max changes under the action of the vector space Q((my — 1)xy)/Q
by the Artin-Schreier character, so (28) vanishes for this k. Our claim follows. O

REMARK 4.3.6. Assume that o(o;) ¢ Z for any simple coroot «;. For G = SLo
the fibres of Lj are calculated in [BFS98], it is not the extension by zero from

X" As in ([Gai08], Proposition 4.10), one may show that for any K € Whit the
object F(K) is placed in perverse cohomological degree zero (this is essentially done
in Proposition 4.11.4). However, Lemma 4.3.5 shows that the functor F does not

produce an object of FEZ, and should be corrected.

4.4 Compactified Zastava. For p € A let Bun%, be the Drinfeld compactifi-
cation of Bun’é,. Namely, this is the stack classifying a G-torsor ¥ on X, a T-torsor
Fr on X of degree (2g—2)p— i, and a collection of nonzero maps of coherent sheaves

for A € A+
TV — LY,
satisfying the Pliicker relations. This means that for any X,z € At the composition
i N . Nk 3r
VI (Vo vy T Lt

coincides with /f;\ﬂv"*, and K%~ : O — O is the identity map. Let g~ : Bun%_ —
Buny be the map sending the above point to Frp.
For § € AP° denote by <y Bun’]g_ C Bun’é_ the open substack given by the

property that for any A € AT the cokernel of k™~ is a torsion sheaf of length
<(0,X).

For n > 0 denote by ZZ the open substack of 9T, XBun, m%, given by the
property that for each A € At the composition

© X . X, -
Q(AW) K_} vé :‘f_> L)\T7 (29)
which is regular over X — U;x;, is not zero. Define the projections by the diagram
m, il z L2 Bun's- .

Let 7 : ZZ — X} be the map sending the above point to (x1,...,2,, D) such that
the maps (29) induce an isomorphism Q°(—D) = Fr. Note that 2/ C Z! is open.

For a n-tuple A € A" define the closed substack ZZ,C\ by the base change
M, -5 — My The map 7 restricts to a map -

aal ZZ,SX — XZ,S/—\. (30)
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The stack Zg is rather denoted Z". As in ([Gai08], Proposition 4.5), one gets the
following.

LEMMA 4.4.1. Let (z,5,F7, (K 5‘) ( ")) be a point of Z.,, whose image under T is
(z, D). Then the restriction of F to X — D Ui is equipped with an isomorphism

T = O xp G with the tautological maps k>, k™~ . In particular, Z is an ind-scheme
over k.
Let Grog, xx denote the ind-scheme classifying (21, ..., 2, D) € X}, a G-torsor

on X, a trivialization I = Q” x7 G over X —D —U;x;. The projection Grog xx — Xh
is ind-proper.

We have a closed immersion ZZ — Grog, x# given by the property that for each
A € AT the natural map £~ : V3 — QPN (—(D, ))) is regular over X, and

kYN Véw
is regular over X — U;x;. So, 7 : ZZ — X} is ind-proper.

LEMMA 4.4.2. For puy € —AP uo € A and p = 1 + p we have the following
factorization property

(XM X XA )aig X xn Ly = (X X XE)aig X (xmxxiey (27 X Z,7) (31)
compatible with (24).

Proof. The argument follows ([BFGMO02], Proposition 2.4). Consider a point of the
LHS given by Dy € X* (%, Ds) € X},?,F € Bung. By Lemma 4.4.1, F is equipped
with an isomorphism

B:FS5Q xp G |x—D,—Do—Usz, -

Let 31 denote the gluing of the G-torsors O x1 G |x_p, with F |x_p, U,z via
[ over the intersection X — Dj — Do — U;x; of these open subsets of X. It is equipped
with the induced isomorphism 3' : ' = QF x7 G |x_p,.

Let 32 denote the gluing of the G-torsors Q° x7 G |x_p, U,z with F |x_p, via
(G over the intersection X — D1 — Dy —U;x; of these open subsets of X. It is equipped
with the induced isomorphism 32 : 72 = QF x7 G |x_p, U,z

The map (31) sends the above point to

D, € X'ula(jaDQ) € X7{LL2’ (?laDlaﬁl) ez“l’ (3:’27627:?71)2) € Zi’f u

The diagram (25) extends to the diagram

m, 2 2 by 2 Bun’-
Lan La- (32)
Xk el Bunp
Now we face the difficulty that the line bundles 'p*P* and (7#)*P" are not iso-
morphic over Zﬁ, but only over its open part Z},.
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4.5 Description of fibres. Let O, denote the completed local ring of X at
x, F, its fraction field. For p € A we have the point t* € Grg, = G(F;)/G(0y).
Recall that Gr’ is the U(F})-orbit in Grg,, through t#. We also have the closed ind-
subscheme Grp C Grg, defined in ([FGVO01], Section 7.1.1). It classifies a G-torsor
F on X with a trivialization ¥ = ?% |x—» such that for each A € At the map

K O(—(w, 5\>) — \75}

is regular over X. This is a scheme-theoretical version of the closure of Grl.

Recall that Grly_ is the U~ (Fy)-orbit through ¢* in Grg 5. Similarly, one defines
@%7 C Grg,,. To be precise, @’é, classifies a G-torsor F on X with a trivialization
F = FY | x—, such that for any A € A* the map

KTV = 0(=( X))

is regular over X. Note that if Grp- C Grly_ for some v € A then v > pu. If
GrY% ¢ Grly then v < p.
Let pn € —AP°. The fibre Zﬁmw of Z" over pz € X* identifies naturally with

(Grp NGy ) <"1 0 | (33)
where Q7 |p, denotes the corresponding 7'(O,)-torsor.

LEMMA 4.5.1. If u € —AP then (33) is a projective scheme of finite type and of
dimension < —(u, p) (and not just an ind-scheme).

Proof. Let v € A be such that Grl;_- C Gr'y_, so v > p. We know from ([BFGMO02],

Section 6.3) that @OB N Gr’;_ can be nonempty only for ¥ < 0, and in this case it is
a scheme of finite type and of dimension < —(v, p). Since the set of v € A satisfying
1 < v <0 is finite, we are done. O

Lemma 4.5.1 implies that 7 : " XK s proper, its fibres are projective
schemes of finite type of dimension < —(u, p).

Let 1 € A. The fibre of Z} over pz; identifies naturally with Grg- x7(©=) Q7 | .
For n > 1 the fibre of ## : 2" — X} over (z,D) is only an ind-scheme (not a
scheme). Let also A € A. Then the fibre of ZTK \ over pzq identifies naturally with

(Gry NGy ) xTOD Qe |,

This could be non-empty only for ;x < A, and in that case this is a projective scheme
of dimension < (A — pu, p).

Now if A € A" from the factorization property we see that the map (30) is proper,
its fibres are projective schemes of finite type.
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4.6 In Section 0.0.12 we defined éﬁ/ng as the gerbe of N-th roots of “L* over
Bung, similarly for Bunyp. - -
Let BunB_7G~ = Bung- XBun, Bung and Bung_ = BunB_’Gv X Bun, Bung. Set al-

SO BunB,’G = Bung- XBung BITnG Let Bung_ be the preimage of Bung- in Bung_.

A point of Bung_ is given by (F, I, n;\’_) and lines U, Ug equipped with iso-
morphisms

U = (“LF)g,, UN S (L)

Let D¢-1 ¢(Bunp-) denote the derived category of Qg-sheaves on mé, on which
pn (k) C Aut(U) acts by ¢, and uy(k) C Aut(Ug) acts by (~1. We define the irre-
ducible perverse sheaf IC; € Perve—: ((Bung-) as follows (see [Lys|, Definition 3.1).
One has the isomorphism

B(pn) x Bung_ 5 = Bung_ (34)

sending (Fp-,Ug, Up € B(pn)) with Uy =k to (Fp-,Ug, U) with U = Ug @ Up.
View L W IC(Bung_ 5) as a perverse sheaf on Bung_ via (34). Let IC¢ be its

intermediate extension to Bun B

4.6.1 Let 24 denote the gerbe of N-th roots of (7#)*PF, D¢(Z}) denote the

derived category of Q-sheaves on 24, on which py(k) acts by ¢. For i € A define
the functor F* : D¢(M,,) — DC(ZZ) by

FHK) ="p*K ® ('pp)* IC;[— dim Bung].

We write Fé‘ := F* if we need to express the dependence on (. Define the functor
F . D((gﬁn) — Dc(X#) by

F(K) = (7). F"(K).

We will see below that the functor F* : Whit" — DC(ZZ) commutes with the Verdier
duality (up to replacing ¢ by ¢71).

4.7 For j1 € —AP% set ZH = ZF xan, My .

PROPOSITION 4.7.1. Let pp € —AP® us € Ay = 1 + po and F € Whitlr. Under
the isomorphism (31) the complex

add*

41, pb2,dis] Fﬂ(&") € DC((Xlul X X/J&)disj XXh eri)

identifies with

Fi (Fg) R FF2(F) € De((XH % XF2)aigg X (xmxxtey (27 % 2,7)).
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Proof. The preimage of (9M},)goodat u, under the map
()(M1 X Xuz)disj XXﬁf ZZ —ﬁ> XM x E):nn

goes over under the isomorphism (31) to

(X 5 XH2)aigj X (e xtey (B X Z3,0). (35)

Recall that N JN,¢ is the ind-scheme classifying D € X1, a B-torsor ¥ on
X with compatible isomorphisms F x g T = Q” over X and F = Q% |x_p. We have
the closed embedding over X!

54750 mer Teg
i — N /Nu1

given by the property that for each A € AT the map KN Vé — Lg‘)p(_D), initially
defined over X — D, is regular over X.

The two complexes we want to identify are extensions by zero from the open
substack (35), so, it sufiices to establish the desired isomorphism over (35). By
([Lys], Thjeorem 4.12, the complex add;, ,, 4i;('P51C¢) goes over under (31) to the
complex 'p5; IC: X("pp)* IC, up to a shift.

The composition

= ~H ~H
(X X0 )aisj X (xm xexctz) (B % Zy,") = (XH X X2 )aisg X xpe Zp — XM x Oy,
factors as

(X1 % X8 )aig X (o xin) (B % Z27) —
(XX X )aisg X (xm xxtzy (NI /N8 X Z37)
(X XEaig X ey N 5 (0 o, Z7))
NI N 9, T () wood e — XX My,
where the second arrow used the trivialization of the N, *-torsor
(e M X, Zy') X (xn e xczy (XH X XE2) gigg
as in Proposition 4.3.1. One finishes the proof as in Proposition 4.3.1. O

4.8 Generalizing the ULA property. Let 57 be a smooth equidimensional
stack. Let p; : Y7 — S; and ¢; : S — S; be morphisms of stacks locally of finite
type. Let Y =Y xg, S. Let p: Y — S and ¢ : Y — Yj denote the projections.
Denote by g : Y — Y; x S the map (¢,p). For L € D(Y1) consider the functor
Fr : D(S) — D(Y) given by

di
S:L(K):p*K®q*L<— 111’2151>’

where (d) = [2d](d).
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LEMMA 4.8.1. (i) For K € D(Y; x S) there is a canonical morphism functorial in

g*K<_din2151>_>g!K<dim51>. 36)

2
(ii) There is a canonical morphism functorial in K € D(S), L € D(Y1)

Ipr(DK) — D(FL(K)). (37)
Proof. (i) We have a diagram, where the squares are cartesian

SliSlel

T T id xq
S — S xS

Tr T pixid
Yi Y1><S

One has A' Q= Qg(—dim Sy), because S; is smooth. By ([AGV72], XVII 2.1.3),
one has the base change morphism p*q} A'— ¢ (p1 % ¢1)*. Applying it to the previous
isomorphism, one gets a canonical map can : Qp(— dim S7) — g'Qy.

According to ([BG02], Section 5.1.1), there is a canonical morphism ¢* K®g¢' K’ —
¢'(K ® K') functorial in K, K’ € D(Y; x S). Taking K’ = Q we define (36) as the
composition

g K (—dim5;) €5 ¢ K © ¢'Q — ¢'K.
(ii) Apply (36) to DL X DK. 0
DEFINITION 4.8.2. Let Y C Y be an open substack. Say that L € D(Y1) is locally
acyclic with respect to the diagram S &Y %Y if for any K € D(S) the map (37)

is an isomorphism over Y. Say that L € D(Y1) is universally locally acyclic with

respect to the diagram S Ly Ly if the same property holds after any smooth
base change S7 — Si.

4.8.1 Here are some properties of the above ULA condition:
(1) If Sy = Speck then any L € D(Y;) is ULA with respect to the diagram
Sy Ly,

(2) Ifr : Vi — Y) is smooth of fixed relative dimension, and L € D(Y7) is
ULA with respect to S & y 4 Y then r]L is ULA with respect to the
diagram S « 10/ — V1. Here we defined r : V' — Y as the base change of
ri:Vi—=Y1byq:Y — Y, and V is the preimage of Y in V. Conversely,
if r1 : V1 — Y7 is smooth and surjective, and rjL is ULA with respect
to the diagram S « V- Vi, then L € D(Y;) is ULA with respect to
SLy Ly
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(3) Assume given a diagram as above S £ v % ¥; such that both S and
S are smooth and equidimensional. Assume L € D(Y7), and the natural
map ¢*L{dim S —dim S;) — ¢'L is an isomorphism. Then D(¢*L) is locally
acyclic with respect to p: Y — S if and only if L is locally acyclic with

respect to the diagram S Ly Ly,

Proof. (3) Let p:Y — Y x S be the graph of p: Y — S. By ([BG02], Section 5.1.1),
we have a canonical morphism, say « : 5*(-)(—dim S) — p'. Since S and S; are
smooth, q!l@g = Qy{dim S —dim S1). As in Section 4.8, since the map ¢ xid : Y xS —
Y1 x S is obtained from ¢; by base change, the above isomorphism yields a canonical
map can : Qy(dim S — dim S;) — (¢ x id)'Q,. For K € D(Y; x S) we get a canonical
map

B: (g xid)*K(dim S — dim S;) — (¢ x id)'K

defined as the composition (¢ x id)*K(dim S — dim S7) id@gan (¢ x id)*K ® (g x

id)'Q; — (¢ x id)'K. The composition Y Py x5 Y1 x S equals g. For K €
D(Y; x S) the map (36) equals the composition

7(q x id)* K (— dim $1) 2 5*(¢ x id)' K (— dim §) % 5'(¢ x id)'K.
Let now K € D(S). By our assumptions, the map (3 : (¢ xid)*(DLXDK)(dim S —
dim S1) = (¢ x id)' (DL R DK) is an isomorphism. The map D(¢*L) is locally acyclic

with respect to p: Y — S if and only if the map a : p*(D(¢*L) K DK )(—dim S) —
p'(D(¢* L) XDK) is an isomorphism over Y for any K € D(S). Our claim follows. O

4.8.2 We say that for a morphism p; : Y7 — S7 an object L € D(Y7) is ULA
with respect to p; if it satisfies ([Del77], Definition 2.12). One may check that this
definition is equivalent to ([BG02], Definition 5.1). In the latter one requires that lo-
cal acyclicity holds after any smooth base change, whence in the former one requires
it to hold after any base change ¢ : S — 5.

Assume given a cartesian square as in Section 4.8

Yy Ly
lp lpl (38)
S 4 g

with 57 smooth equidimensional.

PROPOSITION 4.8.3. Assume q representable. Let L € D(Y1) be ULA with respect
to p1. Then L is ULA with respect to the diagram S Ly Ly,

To establish Proposition 4.8.3 we need the following.
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LEMMA 4.8.4. Assume given a diagram (38), where S, Sy are smooth of dimensions
d,d; respectively, and q1 is representable. If L € D(Y1) is ULA with respect to p;
then the natural map n : ¢*L{%52) — ¢' {74 is an isomorphism.

Proof. One has canonical maps p*q’l@g — ¢'Qy and ¢*L ® ¢'Q; — ¢'L, the second
one is defined in ([BG02], Section 5.1.1). One has ¢}Q; = Q(d — d;) canonically.
Recall that 7 is defined as the composition ¢*L{d — di) — ¢*L ® ¢'Q; — ¢'L.

If g1 is smooth then our claim is well known. If ¢; is a closed immersion then
this follows from ([BG02], Lemma B.3). In general, write ¢; as the composition

id .. . .
R R T Localizing on S; in smooth topology, we may assume S is a
smooth affine scheme. Then id x¢; is a closed immersion. O

Proof of Proposition 4.8.3. Let K € D(S). Localizing on S in smooth topology we
may assume S is a smooth affine scheme of dimension d;. Let i1 : S5 — S be a locally
closed smooth subscheme with dim Sy = dp, E a local system on Sp. Decomposing
K in the derived category, it is enough to treat the case of K = (i1).E. We must
show that for this K the map (37) is an isomorphism over Y. Let i : Yj — Y be
obtained from 41 by the base change p: Y — S. Let pg : Yo — Sp be the projection.
By Lemma 4.8.4,

i*q* L{dy — d1) =i'q'L.
Since i*¢*L is ULA over Sy, by 3) of Section 4.8.1, L is locally acyclic with respect

to the diagram Sy 2y, 'y, That is, one has an isomorphism over Yj

DB @ i*q"L) = pi(DE) @ i*q"(DL) (—dy). (39)
We must show that the natural map
¢*(DL) @ p*(i1)«E*){(do — d1) — D(¢*L @ p*(i1)+F) (40)

is an isomorphism over Y. By ([Full], Theorem 7.6.9), ¢*L @ p*(i1)+F = i, (i*"¢*L ®
pyE). So, both sides of (40) are extensions by zero under 7, and over Yj the desired
isomorphism reduces to (39). O

4.9 The above notion of ULA was introduced, because we hoped that for 1 € A,
A € A" the perverse sheaf IC; € Pervc—l,c(Bun’é,) is ULA with respect to the
diagram

/

P _
mn7§)\ i ZZ7§)\ p—'; Bun%_ .

Unfortunately, this claim is not literally true. However, it is used in the proof of
following result. For pn € A, K € D¢(9,,) the map (37) defines a canonical morphism

FY,(DK) — D(F*(K)). (41)

PROPOSITION 4.9.1. For any K € Whit}, the map (41) is an isomorphism.
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For 6 € AP® denote by <y Buné_ the preimage of <y Bun%_ in Bun%_. Our proof

of Proposition 4.9.1 uses the following result of Campbell.

PROPOSITION 4.9.2 ([CAM]|, 4.2.1). Let 0 € AP, u € A. Assume that for any
0 < ¢ <6 and any positive root & one has (&, (2g —2)p — p+ 60"y > 2g — 2. Then
the perverse sheaf 1C; is ULA with respect to the projection <g Bun = — BunG

In the untwisted case the latter result becomes ([Cam)], 4.1.1.1).

Proof of Proposition 4.9.1. Pick a collection of dominant coweights A = (A1, ..., )
and p € A with u <37, A;. We assume K is the extension by zero from M, 5. We

must show that (41) is an isomorphism over ZZ <X

For # > 0 we denote by <gZ the prelmage of <¢ BunB under 'pp : Z — Buan
Set 0 = (3 \;) — i € AP%. Note that Z) n.<) is contained in <0Z.
For n < 0 denote by W# the scheme

(X x XE)aisy X (xnxext) (27 X <oZ,)-

By the factorization property, the natural map Wh#* — SQZZ+# is étale.
By Proposition 4.7.1, it suffices to show that the canonical map

FIA(DK) — DF(K)

is an isomorphism over SQZZ—HJ. If » < 0 is small enough then IC; is ULA with

respect to <g BunB—tu — %G by Proposition 4.9.2. Our claim now follows from
Proposition 4.8.3. u

Let ZNA c 28 (resp., Zu <2 C Z1) be the substack obtained from Z., by the base
change M, 5 — M, (vesp., M 5 — My,). Let Zg be the preimage of Bun’;_ in
7“ 7
2z 5
COROLLARY 4.9.3. (i) If u € —AP® then F*(Fy) is an irreducible perverse sheaf,

the extension by zero from ZH. B

(ii) Let & = (21,...,2,) € X™ be pairwise different, X = (A1, ..., \n) with A; € AT,
p € N with p < 37N Then F*(F5,) is perverse, and DF#(?@,S\,!):}FZLA
(D?@X,!)' _

(iii) The complex F*(F;5) is an irreducible perverse sheaf, the intermediate ex-

tension from ng. So, F(S’}c’;\) is a direct sum of (shifted) irreducible perverse

sheaves.
Proof. (i) and (ii). The fact that F”(S’@;\J) is an irreducible perverse sheaf over Zg’;
is essentially explained in [BFGMO02] (see also [Lys]). Our claim follows now from
Proposition 4.9.1 and the fact that F is self-dual (up to replacing ¢ by 1~1).

(iii) For each collection of dominant coweights A’ < A the -restriction of I A to

,‘Jﬁx s is placed in perverse degrees < 0. Therefore, the *-restriction of F* (Fzx) to
Za‘:, 3 is placed in perverse degrees < 0 by (ii). Our claim follows. O
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REMARK 4.9.4. Let us list the dimensions of stacks mentioned in Corollary 4.9.3.
As in ([BFGMO02], Section 5.2) one checks that Z. & Is irreducible of dimension
(=p+ 25 A, 2p). The stack 9, 5 is smooth 1rredu(:1ble of dimension

(9—1)dimU — ((2g — 2)p Z)\Z,Qp

and dim Bun's. = (g — 1) dim B + (25, (29 — 2)p — p1). The *-restriction of F*(F, )

m7
to Z’g,j\ is a local system placed in the usual degree (v — >, Ai, 2p).

4.10 The *-restrictions of IC; to a natural stratification have been calculated
n ([Lys|, Theorem 4.1) under the additional assumption that G is simple, simply-
connected, but the answer and the argument hold also in our case of [G, G| simply-
connected. This way one gets the following description.

Let ﬁg denote the Lie algebra of the unipotent radical of the Borel subgroup

B c G corresponding to B~. For v € A* and V € Rep(T;) write V,, for the direct

summand of V', on which TC acts by v.
Let 6§ € —AP%. We write H(f) for an element of the free abelian semigroup
generated by —AP® — (. In other words, {(f) is a way to write

0= Z N Om,s (42)

where 6, € —AP% — 0 are pairwise different, and n,, > 0. Set | &(8) |= >, nm.
We denote by X¥(?) the corresponding partially symmetrized power of the curve
X0 = 1L, X)), Let XH®) ¢ X40) be the complement to all the diagonals in
X4 We view XHO) as a locally closed subscheme of X via the map XHO) X0
(D) — >, Dinm.

Set g9 Bung- = Bung- x X H(O). We get locally closed immersions g )mg —
Bung- xX? < Bunp-, the second one sending (F,Fr,x~, D) to (F,Fp(—D), 7).
Let g9 Bung_ be obtained from g )BunB by the base Change BunB, — Bung-.

Let .‘H;’u(e) be the stack classifying Fr € Bunp, D € XUO) viewed as a point of
X9 Let %;’u(e) be the stack classifying a point of J—C;’u(a) as above, and lines U, Ug
equipped with

UN S (L) g mpyy UG (ULF)g,

As in ([Lys], Section 4.4.1), we have an isomorphism

+,40(0)
¥

€(0) BunB_ = Bung- XBung ) (43)

where to define the fibred product we used the map H;’M(e) — Buny sending the
above point to Fr.



S. LYSENKO GAFA

Consider the line bundle on )O( %40 whose fibre at D is L’:}OT (—D)’ here we view

° -~ 7L[ 0 . .
XU < X% as a subscheme. Let GrrJTr @ be the gerbe of N-th roots of this line
bundle. Call V' € Rep(T¢) negative if each T-weight appearing in V' lies in —AP,

Actually, such a weight is in —A»P%_ where A#PoS = A# 0 APOS,

3 (0
For V' € Rep(T¢) negative we get a perverse sheaf Loc?(e)(V) on Gr; @ on

which pn (k) acts by ¢, and such that for D =), Oy, € X0 jts restriction to
H Ger’xk
k

is (X, Loce (Vg,))[| LU(P) |]. Here Gr%x is the connected component of Grr, contain-
ing t7(0), in other words, corresponding to F%.(—0x) with the evident trivialization
off z. The functor Loc; was defined in Section 0.0.10. Note that Loc?(e)(V) vanishes
unless in the decomposition (42) each term lies in —A#Pos,

For V € Rep(T;) negative define a perverse sheaf Locg(e) (V) on 9—(;’“(0)

unr,¢
as follows. Let Bunpgg) denote the stack classifying Fr € Bunp, D € XUO)
and a trivialization of Fpr over the formal neighbourhood of D. Let ]§I1/I1T7u(9) =

Bunr g9) XBuny %T. Let Ty g) be the scheme classifying D € X4 and a sec-

tion of T" over the formal neighbourhood of D, this is a group scheme over X o),

For (Fr, D) € Buny gy we have a natural isomorphism (“L")g, @ (L%)g0 (_p) =
(“L7) g, (—p)- So, as in ([Lys], Section 4.4.2), we get a Tyg)-torsor

(©)

~ 4
Bunp yg) % Gr;pL — U—C;’u(e).

XU
—— . . ~+7‘u(e)

For T € D(Bunr) and a Ty g)-equivariant perverse sheaf S on Gry we may form

their twisted product TXS on j{;,u(e) using the above torsor. The perverse sheaf

—~ 1+ $5(0 .
Loc?(e)(V) on Gr; O is naturally Ty(g)-equivariant. For V' € Rep(7;) negative
define

Locpe) (V) =IC(Bunr)M Locg @ (V).
For the map q~ : Bung- — Buny on (43) we get the perverse sheaf denoted

Loca? (V) = (q7)* Locs? . (V)[dim.rel(q7)).

unpg,( uny,(

Theorem 4.10.1 ([Lys], Theorem 4.1). The x-restriction of IC; to g Bung_

vanishes unless in the decomposition (42) each term lies in —A*P°. In the latter
case it is isomorphic to

LoChun, ¢ (@ Sym' (i) [24) © Q[ | 4(0) [)

unp,(
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where @ Symi(ﬁg)[Qi] is viewed as a cohomologically graded T;-module.
i>0

4.11 Our purpose now is to improve Proposition 4.3.4 as follows.

PROPOSITION 4.11.1. (i) Assume o(a) ¢ Z for any simple coroot «. Then for
€ —AP% we have a (non-canonical) isomorphism Lj STF(Fy) in De(XH).

(ii) The complex F(Fy) is perverse. If in addition the subtop cohomology property

is satisfied for o then we have a (non-canonical) isomorphism Ly =TF(Fy) in

D¢ (XH).

Proof. (i) If —p is a simple coroot of G' then, by Theorem 4.10.1, F*(JFy) is the

extension by zero under Z# — 2" Therefore, over X" the desired isomorphism
follows from the factorization property combined with Proposition 4.3.4.

(ii) Denote by F(Fy),s the #-fibre of F(Fy) at puzx € X*. If D = >, ppxy, € XH
with x;, pairwise different, the *-fibre of F(Fy) at D, by factorization property,
identifies with

Our claim is reduced to the following Proposition 4.11.2. O

ProrosSITION 4.11.2. Let x € X and p < 0.

(i) The complex F(Fy) s is placed in degree < —1.
(ii) Assume in addition that the subtop cohomology property is satisfied for o. Then
F(Fg)uz is placed in degree < —1 unless —pu is a simple coroot.

Proof. We are integrating over the fibre, say Y, of Zm over px. From (33), Y identifies
with (Gr% NGrlg-) xT(©=) QF | . The restriction of F*(Fy) to the stratum

(Gl NGrly) xTODQF |,

is a local system placed in usual degree (u,2p).

Denote by ev, : Gr% xTO=)Qr |p — Al the restriction of the canonical map
ev : My — Al As is explained in ([Gai08], Section 5.6), the local system eviLy
is nonconstant on each irreducible component of (GrNGrf ) xT(=) Qr | of
dimension —(u, p). So, the restriction of F*(Fy) to each such irreducible component
is also nonconstant. Thus, the contribution of the stratum Gr% N Gr’é, is placed in
the usual degree < —1.

For y = v 4 6 with v,0 < 0 consider the stratum Y, := (GryNGr%_) x7(0=)

0 |p, of Y. Let $(f) be the trivial decomposition 6 = 6, so X40) = X. Pick some
trivialization of the line L’;OT (—g)- This allows fcir V € Rep(T;) to see Loc¢(Vp) as a
complex over Spec k. Then the x-restriction of F*(Fy) to Y, identifies with

Locg(( @ Sym' () [2i))0) © eviy @ E1-(25.v)]
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where € is a rank one tame local system. If v # 0 then ev} L, ®¢& is nontrivial on each
irreducible component of Y,, of dimension —(p, v). Since Locc(( @ Sym’ (it . )[2d])e) is

placed in degrees < 0, for v # 0 the contribution of Y, is placed in degrees < —2.
For v = 0 we get Y,, = Spec k. The *-restriction of F*(Fy) to this point identifies
with

LOCC ( (16290 S}fmi (ﬁg ) [22] )H) s

the latter is placed in degrees < —2. So, F(Fp) uz 18 placed in degree < —1, and only
the open stratum Y,, may contribute to the cohomology group H_I(F(S'"@)M).

(ii) By definition of the subtop cohomology property, the open stratum Y, does
not contribute to H™(F(Fp) z)- O

REMARK 4.11.3. Conjecture 1.1.2 would imply the following. Assume go(a) ¢ Z for
any simple coroot a. Then Ly = F(Fp) in D¢ (XH).

PROPOSITION 4.11.4. The functor F : D Whit? — D¢(X}) is exact for the perverse
t-structures.

Proof. Pick K € Whitl. Let n : {1,...,n} — A be a surjection. Pick p, € A for
a € A with > pq = p. Let V' C X} be the subscheme classifying disjoint points
{¥a € X}aeca such that x; = y, ;) for each 4, and D = 4 pta¥Ya- In view of the
factorization property and Propositions 4.9.1, 4.11.1, it suffices to show that the

x-restriction of ?LK ) to V' is placed in perverse degrees < (. Let Zﬁj be the preimage
of V under 7# : Z)' — X}, The fibre of Z,I(/ over {y,} is

HGrB " (Oya) QP b,

Pick a collection A = {\,}aea with A\, € AT, g < A,. Let M, 5 C M, be the
substack classifying a point of V' as above (this defines z;), and such that for each
A € AT the map

PN S VAT ey, V)

a

is regular over X and has no zeros over X. Let ZI‘L,,;\ be obtained from Z’(/ by the
base change M, 5 — M, Let m,; : M, 1 — V' be the projection, evs : M, 5 — Al
the corresponding evaluation map (as in Section 2.3). Let K* be a complex on V
placed in perverse degrees < 0 such that the *-restriction K |on, | identifies with

W;K;\ ® evyLy[dim],

where dim = (¢ — 1) dimU — ((2g — 2)p — >_, Aa, 2p). This is the relative dimension
of .
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Only finite number of the strata ZV 5 of Zy, contribute to F(K) |y. Let K5 denote
the !-direct image under 7 : ZV7 5 — V of the s-restriction F*(K) |z - It suffices to
show that K7 is placed in perverse degrees < 0. From Theorem 4.10.1 we conclude
that K5 — K Ao M , where M is a complex on V with locally constant cohomology
sheaves. It remains to show that M is placed in degrees < 0.

The problem being local, we may and do assume that A is the one element set.
Write p = pq, A\a = A, Yo = y. Then the fibre Y of Zl{/,)\ over y is

(Gry, NGl ) xTO) Qr |p .

For py <v<AletY, = (Grgyﬂ(}r%,’y) xT(0v) Qp |p,, they form a stratification
of Y. For H= v 0 with v < X\, 0 < 0 let U(f) be the trivial decomposition
0 =80, so X 4(0) — X. Pick some trivialization of the line L:T"O( 0z)" This allows for

V € Rep(T;) to see Locs(Vy) as a complex over Speck (as in Proposition 4.11.2).
The x-restriction F#(K) |y, identifies with

LOC<(< S Sym’ (57)[20])0) ® eviLy ® € @ K (A — v, 2p)],

where € is some rank one local system. Since dimY, < (A — v, p), we see that the
contribution of Y, to the complex M, is placed in degrees < 0. We are done. O

Combining Propositions 4.7.1, 4.11.4, one gets the following.

Theorem 4.11.5. Assume that o satisfies tl the subtop cohomology property. Then
F gives rise to the functor F : Whit® — FS, ns Which is exact for the perverse t-
structures and commutes with the Verdier duality (up to replacing ¥ by ="' and ¢

by ¢F).
4.12 Multiplicity spaces.

4.12.1 For a topological space X write Irr(X) for the set of irreducible compo-
nents of X. Recall for v > 0 the notation By(v) and the functions ¢; on this crystal
from Section 1.2.1.

Let p € A, € AT with p < \. Let b C Gr)é N Gr'y_ be an irreducible component.

Denote by b € Gr%n Gr%_f‘ the component ¢~*b, so b € Bg(A — ). By Anderson’s
theorem ([And03], Proposition 3) we have a bijection

{a € rr(Grfy,_NGry) |aC @g} = Tir(Grg, N Grly ) (44)
sending a to the closure of a N Grg.
LEMMA 4.12.1. Under the above assumptions the following are equivalent.

(i) Forallicd, ¢;(b) < (\ &),

(i) bc Gry.
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Proof. Recall the canonical inclusion B(—wy(A)) < T_) @ B(—o0) from ([BGO8], p.
87), see also Section 1.2.2. Its image is the set of t_) ® a such that a € B(—oc0), and
for each i € J, ¢;(a*) < {(&;, \). So, i) is equivalent to t_, ® b* € B(—wp()\)). By
([And03], Proposition 3), we have a canonical bijection of irreducible components
(up to passing to the closure)

Tre(t" Gr ™ 0 GrY) = {a € Tre(Gry N GrsY) | a € 9 G "™

}.

So, (i) is equivalent to the property that t=#b* € Irr(Gréwo()‘) NGrg"). Our claim
follows now from the properties of the bijection % : B(—o0) — B(—o00) and (44). O

4.12.2  Additional input data.  Recall that the pull-back of the central extension
(8) to A® is abelian. Pick a splitting ) : A' — Vg of the exact sequence (8) over Af.
We assume t% is compatible with the section tg from Section 0.0.10.

For each A € A/A* we make the following choice. Pick compatible trivializations
Sx : (Vi)x = G,, of the fibre of Grag — Grg at t*G(0O) for all A € A over ). Here
compatible means equivariant under the action of A? via tl%.

4.12.3 For A, u € A the above trivializations §y yield sections s)é : Gr)E‘; — Grag,
5%, : Gr‘é, — Grag of the G,,-torsor Grag — Grg. The discrepancy between them
is a map that we denote by

'yf\L : Grg N Gr%, — G,
and define by s = vﬁ\‘s}é. Note that if A\ — p € A¥ then vX does not depend of the

choice of § (so depends only on t2).

Theorem 4.12.2. Assume that o satisfies the subtop cohomology property. Pick \ €
AT and x € X. There is a decomposition

F(F.0)> @ Loy @ V) 45

Fn)> 0 L8V (45)

m Ia\é:, where VH)‘ is the Qp-vector space with a canonical base indexed by those
be Irr(Gr)é’x ﬂGr’é_ ) that satisfy the following two properties:

e bC @g@,

o the local system (7\)*L¢ is trivial on b.
In particular, we have V/\’\ = Qy.
4.12.4  Proof of Theorem 4.12.2.  Recall that F, ) is the extension by zero from
M, <x. Since 7 factors through 7+ : ZZ,Q\ - XP ), F(F,,) is the extension by
zero from X:’;</\. The latter scheme is empty unless p < A. So, the p-component of

F(F,) vanishes unless y < .
By Corollary 4.9.3, since 7 is proper for each p, there is a decomposition

P
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It remains to determine the spaces Vu/\' Pick p < A. Set for brevity v = ~4. Recall
the notation ;) : Gr%x — A! from Section 1.1.

LEMMA 4.12.3. The space Vu/\ in (46) has a canonical base consiting of those irre-

ducible components of Grgm N Gr’é,@ over which the local system (XS)*[%ZJ ® v L
18 constant.

Proof. Since F(F, ) € la\éz, it suffices to determine the fibre K := F(F, ) e By
Proposition 4.11.4, K is placed in degrees < 0. Pick a trivialization of P* at px €
X 5 <y This allows to see K as a complex over Speck, it also determines L, up to

a unique isomorphism, so yields an isomorphism

Vu)\ = Ho(ﬁ(?x,)\)uz)'

The fibre of 7 : 2l -, — X! _, over px is

Y = (Gry, NGriy,) xTO) 02 |p
Forne AT, n < \let
Y, = (Grly ,nGrlp ) xTO) Qe |p

Denote by K" the constant complex over Speck such that j; F.\— K" @ Fy .
Here K" is placed in degrees < 0 for n < A, and K* = Q.

Let K, be the contribution of the *-restriction F to K. In other words,

A ‘;ﬁrn
K, = RTc(Yy, F*(Fu0) ly,),

where we used the #-restriction to Y;, and the above trivialization of PF at pz €
X 5 <) to get rid of the corresponding gerbe. By Proposition 4.11.4, if n < A then
K, is placed in degrees < 0. So, it suffices to analyze K.

For p <v < )\ let

Yyy = (Gry,NGr ) xTO) e |

The schemes Y) , with © < v < X form a stratification of Y).

For p = v+ 6 with v < X\,0 < 0 let 4(f) be the trivial decomposition 6 = 6.
Pick a trivialization of the line L’;’}% (—02)" As in the proof of Proposition 4.11.4 this
allows for V' € Rep(T;) to see Loc¢(Vp) as a complex over Spec k. The *-restriction
FH (T ) |y, identifies with

Locc(( ) Sym'(i7)[2])g) ® ev} 3Ly ® E[(A — 1, 27)],

i
where € is some rank one local system. Recall that Y} , is of pure dimension (A—v, p).
So, the contribution K, of Y) , to K} is

Locc((iego Sym’ (6i7)[2i])g) @ RTe(Ya,u, ev; \Lyy © E)[(A — v,2p)].
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It is placed in degrees < 0, and the inequality is strict unless 8 = 0. There remains
to analyze the complex

Ky = REe(Ya s evy 3Ly @ E)[(A = 11, 27)]

We see that only the open part 2!\ C Zﬁé y contributes to the 0-th cohomology of
K. This allows to describe the local system & over Y), ,,. From the definitions we get
v*L¢e = E. So, K, identifies with

RT(Grly, NG () Lo @7 LA — 1 27)]
for some character xo : U(F,) — Al of conductor zero. Our claim follows. O

LEMMA 4.12.4. Let p < A\, X € A*. Let b € GryNGrl_ be an irreducible com-

ponent. Denote by b C Gr%ﬂGr‘é__)‘ the component t=*b, so b € Bg(\ — ). The
restriction Xé :b— Al of X(/} 1s dominant if and only if there is © € J such that

Proof. For i € J recall the maps qp, : Grp, — Grpy,. For ¢ € J let p; < X be the
unique element such that q;il(Gr’g,( ar,)) N is dense in b. Note that b C GriyNGrly.
is a T'(Q)-invariant subscheme. Let

bo = b (Z,QH ap, (G5 ()

it is a dense T'(O)-invariant subscheme of b. Set i = {;}ieg and

o A o
2" = 1] Gryany N Grls 4y, -
i€d
Let g : by — ZF be the product of the maps qp,. This map is 7'(0)-equivariant.
Since T'(O) acts transitively on Z#, the map g* is surjective. For i € J let ev; be the
composition

Gri&;(Mi) ﬂGr‘g’_(Mi) — Gr%(Mi) — Gr}y X AL

Denote by ev” : ZF — Al the map ev = 3, _; ev;. The restriction xg |5, equals
evhgh.
Clearly, ev” : ZF — Al is dominant if and only if there is i € §J such that
ev; Gr)é( )" Gr’g,( My Al is dominant. The latter condition is equivalent to
_ &

(bz(b) = <A — M, ?> > <)\,dz>

Indeed, the multiplication by ¢* identifies Gr%( Mi)ﬂGr%Z_(’}V[i) = Grg( ALk Grly- (M)

Under the latter isomorphism ewv; identifies with some map XR : GrOB( )N Gr’g‘f (/1\\41:)
— A for the group M;. Our claim follows. O
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The local system (XS‘)*L¢ ® v*L¢ is constant on b if and only if Xp:b— Alis
not dominant and the local system v*L is constant on b. The map v intertwines the
natural 7'(0)-action on Gryy N Gr%_ with the T(O)-action on G,, by the character

=
T(O)—T Rasw) G- So, the condition A\ — p € A¥ is necessary (but not sufficient)
for v*L. to be trivial. Theorem 4.12.2 follows now from Lemmas 4.12.4 and 4.12.1.

O

4.12.5 Special case.  Our purpose now is to understand the spaces V/f‘ under the
additional assumption A € Abt.

LEMMA 4.12.5. Let up < X\ with p € A, A € A%, Then over Gr’c\; NGryN Grly_ there
is an isomorphism (s )*A2 = ()*L¢ up to a shift.

A
Proof. Recall that for any A € AT we have a section s) : Grg\;w — Grg, defined
in ([Lys|, Section 2.4.2) and associated to a square root Q2 (0,) of Q(0O,) picked in
—~ A\
Section 0.0.6. In turn, s} : Gry — Grag yields a section denoted s} : Gryy — Grp

by abuse of notation. Since Gryy N Grp, is an affine space, the local system (s7)*A2
is trivial on Gry N Gry. Our claim follows. 0

For A € AbT write V()) for the irreducible represenation of GC of highest weight
A. For pn € Af let V()\),, C V()\) denote the subspace of T;-weight .

Theorem 4.12.6. Let 1 € A', N € AbF with u < \. Then the vector space Vu)\ m
the formula (45) of Theorem 4.12.2 identifies canonically with V (X),.

Proof. By ([Lys], Lemma 3.2) applied to B~ instead of B, the space V' (), admits
a canonical base indexed by those b € Irr(Grg, N Gr*;,_) over which the shifted local
system (sh,_)*A3 is trivial. The space Vlf‘ has a canonical base of b € Trr(Grg, N Grly )
such that (74)*L¢ is trivial at the generic point of b. Our claim follows now from
Lemma 4.12.5. O

Part II: Properties of the functor F
5 Hecke functors

5.1 Action on Dg(]?:a/ng). In the case of G simple simply-connected the Hecke
functors on Dc(BH;lg) are defined in ([Lys|, Section 3.2). Let us first define their
analogs in our setting.

Write Hg for the Hecke stack classifying F,F € Bung,z € X and an isomor-
phism F 5 F |x_,. We have a diagram

o X

h hg
Bung xX & Hg =2 Bung,

where hg; (resp., hg ) sends the above point to F (resp., to F’). Here n(F,F, z) = .
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Let Grg x be the ind-scheme classifying # € X and a G-torsor 3 on X with a
trivialization ¥ = ff'"% |x—z. Let Gx be the group scheme over X classifying x € X
and an automorphism of C-F% over D,. The restriction of LF under Grg x — Bung

is also denoted LF. Let @G,X denote the gerbe of N-th roots of LF over Grg x.
Write Bung, x for the stack classifying (¥ € Bung, z € X,v), wherev : F > F |p

x

is a trivialization over D,. Let Bung x = Bung x XBun, Bung. Denote by v~ (resp.,
~7) the isomorphism

BunG’X XGx GI"G,X = U‘CG

such that the projection to the first term corresponds to hg (resp., hg). The line
bundle “LF K L" on Bung x x Grg, x is Gx-equivariant, we denote by “LFRLF its
descent to Bung x X, Grg,x. We have canonically

(77)"(hg )" (PL7) S “LIRLE. (47)

Let H 5 be the stack obtained from ]/3—1;16; X Eﬁ;l(; by the base change hg X hg :
Hg — Bung x Bung. A point of Hg is given by (F,3,2) € Hg and lines U, W
equipped with

U S (LR, WN S (WLR) 4. (48)

We get the diagram of projections
Bung £ 5z "% Bung .
As in ([Lys|, Section 3.2), the isomorphism (47) yields a G x-torsor
77 Bung,x xxGra x — Hg

extending the G x-torsor Bung x X x Grg x — Bung x xg, Grg, x L, Hg. Namely,
it sends

(l’,l/l : 34:)3"% |D17V1 1 F ;9% |X—$>u/N = (WLR)§,7UJ1V:>L?§17V17I))
to
(F,F v:F>F | x o, UU),
where F is obtained as the gluing of ¥ |x_, with F |p, via yfl ov : F =T |p-.

We have canonically (YL")g ® L’(%’fl ) = (“LR)g, and U = W ® Uy is equipped

with the induced isomorphism UYN = (“LF)g.
Given an object 8 of the G x-equivariant derived category on Grg x and T €

D(ﬁlg) we can form their twisted external product (TXS)", which is the descent
of TX 8 via 4. Similarly, one may define ¥~ and the complex (TXS8)! on He If

pun (k) acts on 8 by ¢, and T € D¢(Bung) then (hg x 7)1(TXS)" € D¢(Bung x X).
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In ([Lys], Remark 2.2) we introduced a covariant functor Pervg ¢ — Pervg -1,
K +— %K. It is induced by the map E — E, z — 2z~ L.

Our choice of Q2 gives rise to the fully faithful functor 79 : Pervg e — Pervg e x
defined in ([Lys], Section 2.6). The abelian category Perve ¢ x, defined in loc.cit., is
the category of G x-equivariant perverse sheaves (cohomologically shifted by 1 to the

right) on Grg,x on which py (k) acts by (. Now for 8§ € Pervg - we define following
[FGVO01]

HE : Pervg e x De(Bung) — D¢ (Bung x X),

Hg : Perve ¢ x De(Bung) — D¢ (Bung x X)
by

H (8, K) = (hg x m)i(KX¥7(8))" and Hg (S, K) = (hg x )1 (KR (x8))".

Set ABT = Af N A*. For v € A%t we have the associated irreducible object
A% € Pervg ¢ defined in ([Lys], Section 2.4.2). Note that A% ;Agwo(y).

5.2 Action on D¢(9MM;). Pick x € X. Let ,Hs denote the fibre of H s over

reX. Set Z=,Hg X Bune IN.,., where we used the map ﬁg : 2 Hg — Bung in the
fibred product.

LEMMA 5.2.1. There is a map 'h™ : Z — §JVT$ that renders the diagram

m, = oz " oo,
lla J,PZ J,fl
_— fL<— 7

h—)
Bung < ;Hs = Bung

commutative. The left square in the above diagram is also cartesian.

Proof. The stack Z classifies (F,F,v: FSF |x_p, L, W) with isomorphisms (48),
and inclusions for A € At

kAN Vj‘/(oow)
subject to the Pliicker relations. From x and v we get a system of maps
KA Qe Vf\;(oox)

satisfying the Pliicker relations ([FGVO01], Proposition 5.3.4). Let the map ‘A send
the above point to (F, /', U). O
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As in Section 5.1, given § € Pervg¢ and K € D¢(9,), we may form their
twisted external product (KXS8)" € D(Z) using the fibration '~ : Z — M, with
fibre Grg .. Analogously, the map 'h™ gives rise to (KX8)! € D(Z). We define

Hg :Pervg -1 x De(9,) — De(My) and Hg : Pervg ¢ x De(MMy) — De(91,)
by
H; (8, K) = (h )(KXS)" and Hg (S,K) = (h~)(KK(x8))".
We have functorial isomorphisms
He (81, Hg (82, K)) = Hg (81 % 82, K) and Hg (81, Hg (82, K)) = Hy (82 % 81, K).
LEMMA 5.2.2. The functors Hg ,Hg preserve the subcategory D Whit]; C D¢(9,).

Proof. This is analogous to ([Gai04], Proposition 7.3). For a collection of points y
the action of the Hecke groupoid on 9, yields an action on (i)ﬁx)good aty, which in
turn lifts to an action on the torsor y9,. O

5.3 Write Whit>*®* C Whit? for the full subcategory consisting of objects,
which are finite direct sums of irreducible ones.

Theorem 5.3.1. (i) The functor Hg : Pervg ¢ x D Whit], — D Whit} is exact for
the perverse t-structures, so induces a functor

Hg : Pervg ¢ x Whit;, — Whit} .

(i) For v € At we have Hg (A, Fp) = Fun-
(iii) The functor Hy preserves the subcatgeory Whit}*°.

The point (ii) of the above theorem is an analog of ([FGV01], Theorem 4) in our
setting.

5.4 Proof of Theorem 5.3.1.
5.4.1 Pick A € AT, v € Abt. First, we show that

Ha» (Agwo(ﬂ’ ?x7A) ~ (/h<—)!(3fx7>\gﬂgwo(7))r (49)

is perverse. To simplify the notation, from now on we suppress the upper index r in
the latter formula.
For v € A write M, <, C M, for the substack given by the property that for
any A the map
QPN — Vv, \)x) (50)

is regular over X. Let Mz <, C M, <, be the open substack given by the property
that (50) has no zeros in a neighbourhood of z. Let M, , C Mz <, be the open
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substack given by requiring that (50) has no zeros over X. Write 537%1,, 53?567,, and so
on for the restriction of the gerbe E)ﬁ to the corresponding stack.
Denote by K% (resp., K) the s-restriction of (49) to Mz ., (resp to M, v)- Since

(49) is Verdier self dual (up to replacing 1 by ¢~ and ¢ by (1), it suffices to prove
the following.

LEMMA 5.4.1. If v € A then K% is placed in perverse degrees < 0.
5.4.2 For v,/ € A define the locally closed substacks of Z
Zy' = (h ) W), 207 = ()7 (),

Z;,w _ (/h_)>_1(ﬁj,§y/)7 Z?"/ _ (/h—>)—1<ﬁ171/)7
) ! — 7? ?7 ! V,V’ — l/,? ?7Vl
70 = 7 g v = 7t g

For o € A let ,H* be the locally closed substack v~ (Bung, X@(0,) Grf ) C
+Hea. Let mf}f’é be its preimage in ;H 5. Set

ZZ’?’“ Z ﬂp (xg_cué% Z",V N Z‘ZV ﬂp}l(x%g),
790 = 28 pg W), 20 = 2 0yt (W),

Denote by Kg’”,’“ the !-direct image under 'h*™ : Z;f’”l’“ — ﬁj7gy of the *-restriction
of ?w,Ag.Agwo(V) to Zg’”l’“. Denote by K" the restriction of Kg’”/’“ to the open
substack 9, ,. Lemma 5.4.1 is reduced to the following.

LEMMA 5.4.2. (1) The complex KVV *is placed in perverse degrees < 0, and the
inequality is strict unless p =y and v/ = \. . .
(2) The x-restriction of Kg”\” to the closed substack Mz <, — My, vanishes.

Choose for each v € A a trivialization €, : Q°(—vz) >F% |p,. They yield a
U(O,)-torsor UL (resp., U™) over Mz <, (resp., over M, ,) classifying a point of
the latter stack together with a trivialization of the corresponding U-torsor over D, .

L . . ? . . 20N .
The projection 'h* identifies Z_'" (resp., 'h™ identifies Z_" ) with the fibration

u;’ XU(OI) GI"G’I — Dﬁf,gy

(resp., with the fibration U Xg(e,) (}vr(;@ — 51715;79/). As in ([FGVO01], Lem-
ma 7.2.4), one has the following.

LEMMA 5.4.3. (1) The stacks Zg’yl and Zg’?’“, when viewed as substack of
Zlf’?, are identified with

xT

—~v —v 'The o= —~ The =

u XU(o, )Ger — mj’g,/ and u;” XU(0,) GI“G733 — imjé,,

respectively.
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(2)  The stacks Zg’yl and Z;’V/’”, when viewed as substacks of Z;’V', are iden-
tified with

: SV e —wo(k) h= o

u;" XU(0,) GI‘B’x — miéy/ and u;”/ XU(0,) GrG,x — Dﬁi,gw
respectively. O

Proof of Lemma 5.4.2. (1) By Lemma 5.4.3, the x-restriction of S"myxgﬂgw(’h) to
Z;’V/’“ is the twisted external product of complexes

(Fzn Igﬁi,sy,)ﬁ(ﬂgw‘)”) |gr;;o<w)-

It lives in perverse degrees < 0, and the inequality is strict unless u = v and

' = A. Recall also that the s-restriction of Agwo(v) to (Tr;fi‘)(“) vanishes unless
e ABT

Since ﬂgw"m | ) has locally constant cohomology sheaves, its x-restriction
G,z

to Zi,"’”/’“ by Lemma 5.4.3 is placed in perverse degrees
< —codim(Gri; ™' N Grawo(“), Gréwo(“)) < —(u—v+v,p),

we have used here ([FGVO01], Proposition 7.1.3). From Lemma 5.4.3(1) we now
learn that the fibres of 'h™ : Zg’yl’” — iva?in,g,, are of dimension < dim(Grgﬂ'
NGre) < (V' —v+p,p). If f: Y — W is a morphism of schemes of finite type,
each fibre of f is of dimension < d, K is a perverse sheaf on Y then f K is
placed in perverse degrees < d. We are done.

(2) the s-restriction of F, ) to Mz <y — M, ) vanishes, because there are no dom-
inant coweights < 0. O

Theorem 5.3.1 (i) is proved. Theorem 5.3.1 (iii) follows from the decomposition
theorem of [BBDS82].

To establish Theorem 5.3.1 (ii), keep the above notation taking A = 0. We want
to show that (49) identifies with F, _,, (,). It remains to analyse the complex K v,0,y

on M, , placed in perverse degrees < 0. We are reduced to the following.

LEMMA 5.4.4. (i) The 0-th perverse cohomology sheaf of K" wanishes unless
v =—wp (7).
(ii) The 0-th perverse cohomology sheaf of K20 jdentifies with the restriction

0f Fa—wa(7) 10 Ma—wo(y)-

Proof. The situation with the additive characters is exactly the same as in ([FGV01],
Sections 7.2.6-7.2.8). Let U(F,) " be ind-group scheme over M, the Uv-twist of
U(F,) with respect to the adjoint action of U(O,) on U(F,). Then Z*"" carries a

natural U(F,) -action preserving 'h™ : Z* — M, and defined via the identifi-
cation of Lemma 5.4.3(1).
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The ind-group U(F,)" classifies a point (F, s, U) € ﬁx,,, giving rise to the cor-
responding B-torsor Fp on D, equipped with Fp xp T = QP(—vz), and an auto-
morphism g : Fp — Fp over D} inducing the identity on Fp xp T

The trivialization €, : Q°(—vx) = F9. | p, gives for i € J the character

Res

p: = Q(F,) =5 AL

U/UU|(F) & F, = Lg;(%)
Their sum over ¢ € J is the character of conductor v denoted x, : U(F,) — Al
Here v is the image of v in the coweights lattice of G,4. Twisting U(F}) by the
U(0,)-torsor U, one gets the character denoted Y, : U(Fy) "~ — AL

For v,/ € A* a (U(F), x»)-equivariant function x4 =% : Gr's ™" — Al gives rise

to a (U(Fy)", Xv)-equivariant function v~ : Z** — Al. For the convenience of
the reader we recall the following.

LEMMA 5.4.5 ([FGVO01], LEMMA 7.2.7). Assume v/ € AT. Then
(1) The map evy, o'h™ : 2" — A is (U(Fy)™, Xv)-equivariant.

(2)  If in addition v € AT then ev,, o'h™ coincides with the composition

id X evg .

Al x O, ST AL x AT AL

’
Xy “vxX'h™
—

VAL
!
for some X1, V. O

The fibration ‘A~ : Z¥%7 — ﬁ%y identifes with U™ Xg;(o,) (&;VI N CEZ;I) —
M,.,. After a smooth localization V' — I, , the latter fibration becomes a direct
product V' x ((E‘E;Vx N (TrZ;x) The *-restriction of ?@gﬂgw‘)m to Z»07 decends to
V x (Grg”, NGr} ), and there becomes of the form

Ev B ((x, ") Ly @ "L [(y — v, 2p)],

for a suitable discrepancy map ¢ : Gr]_g’j N Grg',x — Gyy,. Here €y is a perverse sheaf
on V.
The local system (x,")*Ly ® 6*L¢ is nonconstant on any irreducible component

by ([FGVO01], Proposition 7.1.7). This proves i). Since Gr}gom NGrl, is the point
scheme, part (ii) follows from Lemma 5.4.5 and 5.4.3. 0

Theorem 5.3.1 is proved.

6 Objects that remain irreducible

In this section we describe the irreducible objects F, » of Whit? such that F(F, ) €

ﬁé; remain irreducible. As for quantum groups, we introduce the corresponding
notion of restricted dominant coweights.
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6.1 Special elements in crystals. Let A\, € A, p < A. Recall the map 4’ :

GriyNGrly — G,y defined in Section 4.12.3 via the equality sh, = ~4's).

LEMMA 6.1.1. Let v € A. Then there is € € k* depending on A, u,v such that the

composition Gr)é N Gr‘é, LR Gr)gr” N Gr’f;ﬁ” vgﬁ G, equals e’yf\b.

Proof. Pick any g € E over t¥ € G(F). The composition Gr?), iR Gr%ﬁ” Sgu Grag AN

Grag equals as)E‘; for some a € k*. Indeed, any map Gr)é — G, is constant. Similarly,
by

B—

v —1
the composition Gr%, iR Gr‘gfu % Grag & Grag equals bs’é, for some b € k*.
Our claim follows. a

Our notations and conventions about the crystals are those of Section 1.2.2.

COROLLARY 6.1.2. Let A\, pu,v € Ab € Irr(GryNGrh_ ). Then t'b € Trr(Gry
N Gr%f”). The local system (7§)*L¢ is trivial on b if and only if (yﬁ\‘is)*ﬁzg is trivial
on t'b. So, the latter property is actually a property of t—b € Bg(A —p).

DEFINITION 6.1.3. For v € AP* we call an element b € By(v) special if the local

system (5 ¥)*L¢ is constant on b. Denote by By’ (v) the set of special elements of
By(v).

For ¢ € J denote by d; the d(?nominator of % Recall that g‘— (resp., ;)
are the coroots (resp., roots) of G¢.

REMARK 6.1.4. (i) If b€ By(v) is special then v € @ieg Z(5;v;).
(i) Let A€ AT,z € X, u € A. Assume that the subtop cohomology property
holds for p. If the multiplicity space VMA in the decomposition of F(F,. )
from (45) is nonzero then A — p € @icg Z4 (6;0).
Proof.(i) Pick A € A% such that ¢;(b) < (A, ;) for all i € J. Let b = t*b €
Irr(Gry NGry™”). Then b C @g by Lemma 4.12.1. So, b gives a base vector
in the weight space V' (\)x_, of the irreducible G-representation V' (\) by ([Lys],

Lemma 3.2). Thus, v is in the Z-span of the simple roots of G¢.
(ii) Follows from (i). 0

For a standard Levi M C G recall that Gray; = Gry Xgr, Grag. The trivial-
izations §y picked in Section 4.12.2 yield for any A € A sections SE(M) : Grg(M) —
Grayy, S%*(M) : Gr)]‘g_(M) — Grayy of the G,,,-torsor Gray; — Grys. The discrepancy
between 3‘1‘3_( M) and sg( M) is a map that we denote by

M'yﬁf : Grg(M) N Gr%_(M) — Gy,

KM —

and define by s /) = (Myf\l)s)é(M). If A — p € A¥ then /74 does not depend on

the choice of § (so depends only on t3).
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Lemma 6.1.1 and Corollary 6.1.2 are immediately generalized for each standard
Levi subgroup M of G. Recall from Section 1.2.2 that for A >, 0 we denote

Bn(\) = Irr(Gr%(M) N Gr;ﬁ(M))
and Bp = Uy>,,0 Bm(\), and for A € AP we have the bijection
By(\) = Uy B (A= 1) X Bl (51)

Here the union is over pu € A satisfying 0 <p7 p < A.
For p € A the trivialization _, from Section 4.12.2 yields a section s," :
ql_)1 (t™*) — Grag of the G,,-torsor Grag — Grg. Let

PY ) tap () NGt — Gy,
be the map defined by the equation sgé = (pw:;‘)s;”.

DEFINITION 6.1.5. (i) Let M be a standard Levi of G. For v € AY}° we call an
element b € Bn(v) special if the local system (a7 ") L¢ is constant on b.
(ii) We call b € Bg"* (A — p) special if the local system (p’y:;‘)*ﬁc is constant on b.

LEMMA 6.1.6. Let A € AP b € Bg(\). Let 0 <y p < X be such that
bN q;l(GrB’f(M)) is dense in b. Let

(b1,b2) € Bg""(A = p) X B (1)

correspond to b via (51). Then b is special if and only if both by,bs are special. In
the latter case p is in the Z -span of the simple roots of M.

Proof. As in Section 1.2.1 we have a T(0)-equivariant isomorphism
Gr Nap' (Grg” 1) N Gry? = (G, N Grg” o) % (ap' () N Grgt),

where T'(O) acts on the right hand side as the product of the natural actions on the
two factors. For brevity denote by ~ : q;l(t*“) N Gréi\ — G, the map p’ﬁﬁ. Then
the map

(a0 ")7 = (Grpan NGrg” 1) X (ap' (E7#) N Grpt) — G

coincides with the restriction of 7y . Our first claim follows. The second follows now
from Remark 6.1.4. O

COROLLARY 6.1.7. Let v € AP, i€ J. If b € By(v) is special then ¢;(b) € Z9;. O
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6.2 Pick = € X. Our purpose now is to describe some irreducible objects J, »

of Whit! such that F(F,,) € ﬁz remains irreducible.
For a € A/A* let A} denote the set of those A € At whose image in A/A* equals
a. Set Ag = {p € A*| {u,é;) = 0 for anyi € J}. Set

M={\e AT |for anyi € J, (A, &) < &}

As in ([ABBGMO5], Section 1.1.3), we call the elements of M restricted dominant

coweights. Note that Ag acts on M by translations.
The following is an analog of ([ABBGMO5], Proposition 1.1.8).

Theorem 6.2.1. Assume that the subtop cohomology property is satisfied for o. For
any X € M one has F(F; \) = L, 5.

Proof. Let p € A with wo(A\) < p < A. We must show that the multiplicity space
VuA in (45) vanishes. By Remark 6.1.4, we may assume

A — i € Bieg L+ (6iav;).

Let b € Irr(Gry N Grly_ ) with b C @)G\ For b =t=*b € By(\—pu) from Lemma 4.12.1
we get ¢;(b) < (A, &;) < 0; for all ¢ € J. Assume b special. Then, by Corollary 6.1.7,
$i(b) € Z46;. So, ¢i(b) = 0 for all 5. The only element of B, with this property is
the unique element of By(0), a contradiction. So, VHA =0. 0

7 Analog of the Lusztig-Steinberg tensor product theorem

7.1 The purpose of this section is to prove Theorem 7.1.1, which is an analog
in our setting of the Lusztig-Steinberg theorem for quantum groups. We use the
notations of Section 5. Pick # € X. Recall that AbT = Af 0 AT,

Theorem 7.1.1. Let A € M and v € AbT. Then there is an isomorphism
Hg (A2, Fon) = Foasq- (52)

7.1.1 Proof of Theorem 7.1.1. Let a denote the image of A in A/A¥. Recall
that the Weyl groups for G and GC are equal. It is convenient for us to replace
v by —wo(y), so we must establish for v € A»T the isomorphism HE(.A_“’“(V),
Fen) = Fax—wo(v)- By definition,

Hc? (‘Afwo(ﬁ’)v 3‘17’)\) i (IhH)!(gyr)\g‘Agwo(’Y))r‘ (53)

To simplify the notation, from now on we suppress the upper index r in the above
formula.

As in Section 5.4.1, define the complex K (resp., K¥) as the x-restriction of (53)
to ﬁi,y (resp., to él)v?;w) Since (53) is Verdier self-dual (up to replacing ¢ by ¢!
and ¢ by (1), it suffices to prove the following.
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LEMMA 7.1.2. (i) The complex KY is placed in perverse degrees <0.

(ii) The x-restriction of KY to the closed substack ‘JﬁxKV Sﬁx v C im 7,0 vanishes.
(iii) The 0-th perverse cohomology sheaf of K vanishes unless v =\ — wy(7y) and

in the latter case it identifies with the restriction Iy \_w(y) |5 N
@, A—wo (v

Lemma 7.1.2 (i) is a particular case of Lemma 5.4.1. Recall the substacks of Z

v,? ? 74 .0 v, /
VAL A AN P A
g gV g g

T T T

defined in Section 5.4.2 for v,/ € A, € AT. Denote by Kg’y/’“ the !-direct image
under

, —
'he Z;’V L Sﬁié,,

of the s-restriction of er’AgAgwo('y) to Zg’y/’“. Let K%V * be the restriction of Kg”/’”

to the open substack I, ,.
Using the standard spectral sequence, Lemma 7.1.2 is reduced to the following.

LEMMA 7.1.3. (1) The complex KVV s placed in perverse degrees < 0, and the
wnequality is strict unless =y a and X =v'.
(2) The *-restriction of Klfy Hto Mz <) — ZI)Tz,,, vanishes.
1. The 0-th perverse cohomology of K7 wanishes unless v = \ — wo (7).
(2) The 0-th perverse cohomology of KA~ MAY identifies with T A—wo() -

The points (1) and (2) of Lemma 7.1.3 follow from Lemma 5.4.2. It remains to
analyse the complex K" on M, placed in perverse degrees < 0.
As in Section 5.4.2, for each v € A we pick a trivialization €, : Qp( z) > F% |p,.

It yields a U(O,)-torsor U over EITI:C v classifying a point of zmm » together w1th a
trivialization of the corresponding U-torsor over D,.
Recall that for each v € A we fixed the section s'; : Gr’z — Grag of the G,-torsor

Grag — Grg in Section 4.12.3. By Lemma 5.4.3, the fibration ‘A= : Z¥*Y — ﬁxﬂ,
identifies with

~ v~ —
U™ xyo,) (Grg, NGrg,) — M.
After a smooth localization V' — ﬁxw the latter fibration becomes a direct

~A— —~ ~
product V' x (Grp ; N Gré,m). The *-restriction of 3"967,\®A8w0(7) to Z¥M descends
to V x (Grrfy_‘3 N GrG ), and there becomes of the form

Ev B (") Ly @ (s ANy + A — v, 29)].
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Here €y is a locally constant perverse sheaf on V. So, K* A7 vanishes unless v € AT,
and in the latter case it identifies over 9, , with

Fros ® RTL(Crly ¥ NG (™) L @ (53570 AD) (7 + A — 1,20)]

Recall that Gr)f‘;_” N Gr/ is of pure dimension (y + XA — v, p). Consider the open
subscheme

Gry N Grgﬂ(v) NGr} c Gry“NGry,. (54)

Anderson’s theorem ([And03], Proposition 3) implies that this open embedding in-
duces a bijection on the set of irreducible components. The following is a version of
Lemma 4.12.5 obtained by exchaning the roles of B and B~.

LEMMA 7.1.4. Let u < v with p € A,y € AbF. Then over Gr'éﬂGr?_(V)ﬂGr’é
there is an isomorphism (s'y)* A} = (’y}f"w))*ﬁgfl up to a shift.

Proof. By definition, ﬁfo(v) sy = sg‘l(v) over Grg‘l(v) N Grlg. Our claim follows. O

So, we are analyzing the top cohomology of
RI.(Gr) ” nGre™ nGrl, (60 ) Ly @ (700N Lemn). (55)

Assume that v # XA — wo(7y) and (54) is not empty. Then the dimension of (54)
is > 0. In this case the local system

O™ Ly @ (DY Lo

v

is constant on an irreducible component b of (54) if and only if both (x)™)*Ly

and (’yf\uﬂ(yv))*ﬁc are constant on b. So, the 0-th perverse cohomology sheaf of K"
vanishes unless

b=1t""b€ By(\—v —wo(7))

is special. By Remark 6.1.4, this implies A\—v —wg(7y) € ®icgZ+(0;;). In particular,
veAM.

LEMMA 7.1.5. Let v € AT, u,v € A satisfy p+v € AT u > wo(y). Let b C

Grlgi(ﬂ NGrly be an irreducible component. Let x4 : Grly — Al be a (U(F),x,)-
equivariant function, where x,, : U(F) — Al is an additive character of conductor
v. Here v is the image of v in the coweights lattice of G,q. Denote by

bc CGryn Grq"]g,o_m*“

the component t™b, so b € By(u — wo(y)). Then xi : b — Al is dominant if and
only if there exists i € J such that ¢;(b) > (u + v, &;).
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Proof. The proof is very close to that of Lemma 4.12.4. For i € J recall the maps
qp, : Grp, — Gryy, from Section 1.2.2. For i € g let pu; <ps, p be the unique element
such that q;il(Grlg,(M‘)) N b is dense in b. Set

bop=00N (ng ql_%l(Gr%i*(Mi))'
The subschemes by C b C Grz",(w N Grly are T'(O)-invariant. Set i1 = {y;}icy and

T M i
7" =1 Gl N Ol ) -
ic€d
Let g : by — ZF be the product of the maps qp,. Then ¢” is T(0)-equivariant.
Since T(0) acts transitively on Z#, g/ is surjective. For i € J denote by ev; the
composition

Gr* Gr, X% Xy AL

B(M;)

Denote by ev’ : ZF — Al the map ev” = ), ;5 ev;. We may assume that the
restriction x4 : by — A! equals ev”q”.
Now the morphism x4 : by — A! is dominant if and only if there is i € J such

that ev; : Gr%( pYALL Gr’g, — A is dominant. The latter condition is equivalent
to /

N Grt

— Gr#

B— (M) B(M,)

(M)

6i8) = {1 = i, )

Indeed, the multiplication by t* gives an isomorphism

> <,u+ v, dz>

GTOB(Mi) N Grlgj(lztvfi) = Gr%(Mi) N Grlg—(Mi) :

Under this isomorphism ev; identifies with some map X“ NI : Gr¥ B(My) 1 Grty B ( M)
A for the group M;. Our claim follows. O

By Lemma 7.1.5, (Xﬁ_”)*ﬁd, is constant on a given irreducible component b of
(54) if and only if ¢;(b) < (A, &;) for all i € J. Since b is special, by Corollary 6.1.7
we get ¢;(b) € Zy6;. Since (), &;) < J;, we conclude that ¢;(b) = 0 for any i € J.
This implies A = v + wp(7), a contradiction. Thus, Lemma 7.1.3(3) is proved.

Let now v = A — wo(y). Then Gry ¥ N Gr/, is a point, Lemma 7.1.3(4) follows.

Theorem 7.1.1 is proved. O

8 Simply-connectedness assumption

8.1 The purpose of this section is to identify the additional assumptions un-
der which Theorem 7.1.1 provides a complete decsription of the semi-simple part
Whit®** of Whit” as a Rep(G¢)-module.

In general, the natural map M — A/ AF is not surjective. Here is an example.
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8.1.1 Ezample. Take G = SLg, so A = Za, where a = «; is the simple coroot.
Set n = 0;. Recall that §; was defined as the denominator of % Assume n
odd. Then G¢ = PSLy. The unique simple root of G¢ is na, and AF = nA. We get

M = {aa | 0 < a < n/2}. So, for n > 3 the map M — A/AF is not surjective.

8.1.2 For a € A/A? recall that the set A defined in Section 6.2 consists of
those A € A* whose image in A/A* equals a.

DEFINITION 8.1.1. For a € A/A¥ say that A} is a free module of rank one over Ab+
if and only if there is A, € A} such that each X\ € A} can be written uniquely as
A=Ay + p with p € ABT,

LEMMA 8.1.2. (i) For A € A%, i€ J one has (N, &) € 6,Z.
(ii) Pick Ao € M over a € AJA*. Then each X € A} admits a unique decomposition
A=Ay + p with p € AR, So, A is a free module of rank one over AbT.

Proof. (i) Our claim follows from the fact that A is a weight of GC, and ‘g‘— is a
coroot of GC-

(ii) Let A € AJ. Since A— )\, € AF, we get (A\— A4, &) € 8Z by i). Since (), &;) > 0,

we get (A — Ag, ;) > 0. 0

REMARK 8.1.3. (i) If G is semi-simple then we define an order on A} as follows.
For A1, A2 € A write A\; < Ay if and only if Ao — A\; € AT (the latter is also
equivalent to Ay — A\; € A*). Then AJ is a free module of rank one over A%+
if and only if there is a unique minimal element )\, in A} with respect to <.
In general, AT is not a free module of rank one over AbT.

(ii) If G is not semi-simple and A is a free module of rank one over A»* then ),
in Definition 8.1.1 is defined uniquely up to adding an element of Ag.

8.2 Additional assumption.  For the rest of Section 8 assume [G¢, G¢] simply-
connected. Under this assumption we can completely understand the structure of
Whit®** as a module over Rep(G¢). Here, as in Section 5.3, Whit** C Whit
denotes the full subcategory consisting of objects, which are finite direct sums of
irreducible ones.

For i € J pick a fundamental weight w; € Abt of GC corresponding to the coroot
%‘— Note that (w;, d;) = d;. We get

A= A(ﬁ) S (@ieﬂ Zw,) and ART = Ag S (@ieﬂ Z+wi).

LEMMA 8.2.1. The map pr : M — A/AP, X — X + A is surjective. If X € M, and
a = pr(A) then the fibre of pr over a is A + Auo.
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Proof. Note that A = A" + A Let a e A/Aﬁ. Pick A € AT over a. If there is i € J
with (), &;) > §; then replace A by A —w;. We get A —w; € AT and pr(A — w;) = a.
Continuing this procedure, one gets A € M with pr()\) = a.

If A\, € M with A — X € Af then for any i € J, (A — X, &) € &Z. So, for any
i€d, A=XN,d)=0and A— N € Al O

Using Lemma 8.2.1, we pick for each a € A/A¥ an element \, € M with a = pr()\).
Set M = {)\, | a € A/A*} € M. The projection M — A/A? is bijective. From
Theorem 7.1.1 we now derive the following.

COROLLARY 8.2.2. Assume [GC’ Gg] simply-connected. Then Whit}** is a free mod-

ule over Rep(G) with base {F » | A € M}. 0

9 Examples of Kazhdan—Lusztig’s type polynomials

9.1 Inductive structure. Pick € X. Recall for u € A the locally closed
immersion j; , : M, ,, — M. Since the version of the twisted Whittaker category

on %%u is semi-simple (cf. Section 2.3), for each p < A with p, A € AT we get
JapFar = Fopu ® K,
where K 2‘ is a cohomologically graded Qg-vector space.

We think of K ;‘ as a version of Kazhdan—-Lusztig’s polynomials expressing the re-
lation between the two bases in the Grothendieck group of Whit, the first constings
of JF; x,1, the second constings of the irreducible objects.

Let M C G be a standard Levi subgroup. Then M is equipped with the meta-
plectic data induced from those for G, so that we have the corresponding twisted

Whittaker category »s Whit!; for M, and its irreducible objects 1/ F » for all X € AJ\JF/[.
Now for pn <ps A with p, A € A}, one has

o Fan) = uFopu @ (1K)

as above. The multiplicity spaces K ,;\ have the following inductive structure when
passing from G to M.

PROPOSITION 9.1.1. Let p, A € AT with p <p; X\. Then Kﬁ‘ = MK/i‘ canonically.

Proof. Consider the Zastava space Z! _, from Section 4.1 and its version 2k |

for the Levi M. The natural map MZ,;L < Z’; <y is an isomorphism. From the
factorization property it follows that the functor F'* commutes with the Verdier
duality. So, F*(F, ) is an irreducible perverse sheaf on Z‘; <)+ S0, it suffices to

calculate the x-restriction of F*(F, ) to Zféu — Xon, M - O
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9.2 Leti€Jand A\ € AT with A —a; € AT.

PROPOSITION 9.2.1. Assume the subtop cohomology property is satisfied for o. If
<)\,Ové7,> ¢ (512 then K){\—ai =0.

Proof. By Proposition 9.1.1, we may and will assume G of semi-simple rank one.
Since J consists of one element, we suppress the index ¢ from the notation «;, §; and
SO on.
Consider the diagram
m 'p Z)x-a L X)\—a
z, <\ z, <A - z,<\”

We have an isomorphism X = X ;\20/‘\ sending y to Az — ay. Pick a fundamental
weight & corresponding to a. Then

LR o S st (56)

is a line bundle over X whose fibre over y is Q71(2(\, &) — y),. This is the total
space of the line bundle O(2(\, w)x) over X.

For v € A set
Zgjy = Zg XM, gﬁm’,,.

The open subscheme Z;\;\a C Z;;Oj\ is the complement to the zero section of the
above line bundle. -

From Theorem 4.10.1 we see that FA~%(J, ) is the extension by zero under
Zi;oj\ — Zi_;;\ From Theorem 6.2.1 we now derive (7*~%) FA~%(F, ) = L,.x. By
Lemma 2.5.1, the line bundle P* is constant over X — 2 C X = X 3’5\_<°/( with fibre

(Q%)fk()\,)\+2p) ® 65\.

A trivialization of the latter line identifies P* over X = X ;\_<°‘/\ with O(—maz), where
m = Rk(a, A).

We have m ¢ NZ. Indeed, let a € Z be such that (a,d) = 1 and R(;‘Na) = 5.
From the formula (4) it follows that 5 = §(&, \) ¢ Z, because of our assumption
(\,@) ¢ OZ. It follows that the (A — a)-component L3¢ of L,y € Fﬁ’éz is the
extension by zero under X —x — X. 7

The fibre of (56) over x € X is O(2(\,w)),. The restriction of

2 B o, )
to O(2(\,w))r — {0} is constant with value 0. Write f : Zij\a — X;‘;i for the
restriction of (56). The fibre of fiFA~%(F, ) at = € X also vanishes, because m ¢
NZ. Thus, the *-fibre of FA~%(F, ) at 0 € O(2()\,)), vanishes. 0
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REMARK 9.2.2. Let A € AB* ;€ At with ¢ < A. In the notations of Section 11.2
related to the Casselman-Shalika formula, we get

~ — o —wo(A — e\ * —\* g —Wo -
K= RT(Gry nGrg ™™, () Ly @ (55 A= 2p)]. (57)

For example, if «; is a simple coroot and © = A — «; then GrOBﬁ"’*A ﬂ@awo(/\) S AL

and (57) becomes the Gauss sum. So, K3 @ Q¢[1] noncanonically and
Eth(?x,)\fai ) EFx,)\) = @Z-

Thus, we may think of (57) as a generalization of the Gauss sum. We also see that
Whit? is not semi-simple.

10 Hecke functors on PA‘QZ

10.1 In this section we define an action of Rep(7;) on I?é; by Hecke functors.
The main result of this section is Theorem 10.1.2 showing that F : Whitf — FS¥
commutes with the actions of Hecke functors.

Pick x € X. Define an action of Rep(TC) on FSZ by Hecke functors as follows.
The definition is analogous to that of ([Lys15], Section 5.2.3).

By ([Lys15], Proposition 4.1), for 1 € A, ¥ € Buny we have canonically

(“LF) gy = (“L5)5 @ (L5)0 @ L5 0)- (58)

The section tJ : Af — Vi picked in Section 4.12.2 yields for each p € Af a trivializa-

tion of L% .
O(ux) _ _

For € A®, A € Alet m, : X — X2 be the map sending (D,U) together

with U = P% to (D + pz, W), where
W =U® (L) p))a

with the isomorphism U = P¥ o
isomorphism. B B
For pu € Af write Q' € Rep(T¢) for Q; on which T acts by p. Let

induced by (58) and t%. The map m, is an

H™ : Rep(T;) x ];;éz — ];;éz

be the functor commuting with direct sums in Rep(7;) and such that H~(Q}, ") :
FS; — FSS is the functor (my,)s.
An object L € FSZ is a collection L = {L"},cp. Then (m,),L is understood as

the collection such that for any v € A, its v-th component is (m,).L"7H.
For ;1 € A¥,\ € A one has

HH(@% Lx,)\) — Lm,)\—l—u and H™ (an Lm,)\,*) — Lx,)\—i—u,*‘ (59)
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As in ([ABBGMO5]|, Section 1.1.7), we may call L, ). € ﬁ; the baby co-Verma
module of highest weight A.

Recall that FS§ C FSI is the full subcategory of objects of finite length. For
V € Rep(T;) the functor H™(V, ) preserves the subcategory FS~.

LEMMA 10.1.1. Assume o satisfies the subtop cohomology property. Then F sends
Whit! to FSE.

Proof. This follows from Theorem 4.12.2, since a perverse sheaf is of finite length. O

Write Res?:< for the restriction functor Rep(G¢) — Rep(T;). Recall the twist-
<

ed Satake equivalence Rep(GC) - ]P’erva ¢ from Section 0.0.10. The following is an
analog of ([ABBGMO5], Proposition 1.1.11).

Theorem 10.1.2. Assume o satisfies the subtop cohomology property. There is an
isomorphism in FS} functorial in V € Rep(G¢) and K € Whit},

F(HG (V, K)) = H (Res( (V), F(K)).

The proof is given in Sections 10.1.1-10.1.4.

10.1.1 For i € A denote by ; Bun‘éf the stack classifying ¥ € Bung, Fr €
Buny with degFr = (29 — 2)p — p, and a collection of nonzero maps of coherent
sheaves for A € AT

R v L;T
over X — x satisfying the Pliicker relations. For v € A we define the diagram
z,v Bun’fg_ — > Bun’é_ 200 Bun%_,

where ; >, Bun‘é, is the closed substack given by the property that for each A € A+
the map

KN V?}((V, Nz) — Lﬁ}T (60)

is regular over X. Further, ., Bun’fg, is the open substack of ; >, Bun’é, given by
the property that for A € AT the map (60) has no zeros on X.

10.1.2 We derive Theorem 10.1.2 essentially from the fact that the formation of
the principal geometric Eisenstein series in the twisted setting commutes with Hecke
functors, more precisely, from the following reformulation of ([Lys]|, Proposition 3.2)
with B replaced by B~.

Recall the stack mg, defined in Section 4.6. The stack ; oo mé, is defined
similarly. Write a point of , o Buny_ as a collection (F, I, 7, U, Ur), where U, Ur
are the lines equipped with isomorphisms

UY S (L), UF S (VL) g,
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For A € AT the stack J;i}{g defined in Section 5.4.2 classifies (F,5,F=F
|x—z, W, W) with F at the position < X\ with respect to F at x. Here U, U are

lines equipped with i i
uN = (wLn)g:7 u/N = (wLn)g:/. (61)
Assume \ € Ab+. Let YoM = széwo(A) X Bine Bung_, where we used the map

B‘G_ : xj_%wo(/\) — ]§1§1G to define the fibred product. As in Section 5.2, the fibration

h= : Y~w®) — Bunj  yields the twisted exterior product X := (Agwo()‘)gl(?()l
on YO Here IC¢ is the perverse sheaf on Bung_ defined in Section 4.6.
Denote by

¢ YN o Bung.

the map sending (F, ¥, F > F |x_., U, W) € m%(—?wo(k)’ (F,Fr,x7,U,Ur) € Bung_
to

(34, ffT, /6_, u,, uT)
For v € A define the isomorphism iy Bung. =, >, Bung_ sending (F, 7, k",
U, Up) to (F,Fr(vx), U, Ur), where
Ur = Ur @ (L5,

is equipped with the isomorphism UYN = (“’LE)%(W) obtained from (58) and t3.
Recall that V' (\) denotes the irreducible G’C—representation with highest weight
A, and V(X), its T-weight space corresponding to v.

PROPOSITION 10.1.3 ([Lys], PROPOSITION 3.2). For A\ € Ab* there is an isomor-
phism

(A" VRICH) S @ (@) IC@V (N

10.1.5 Let
;5 c M, XBung ,00 BUD%—

be the open substack given by the property that for each A € AT the composition
- X . X,— -
ard = vh o

which is regular over X — z, is not zero. So, Z;‘ — 2% is a closed ind-substack. We
get the diagram

,E /EB DM
M, — 2 — 40 Bunpg-
.G la

AJ
XE =  Bunrp,
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where ’E and ’EB are the projections. Here ©# sends (¥, k,x~,Fr) € Z% to D such
that K~ o k induces an isomorphism Q°(—D) = Fr.
Let ;‘é . be the stack obtained from Z% by the base change 9, x X5 — 9, x X%

Let Zg , be the restriction of the gerbe g“é , to the closed substack ZZ — ZH.

10.1.4 Proof of Theorem 10.1.2. Let X\ € A%t and p € A. We calculate
FH¢ (A}, K) over X% Recall the stack Z deﬁned in Section 5.2. Set Y = Z x5

ZC;, , where we used the maps Z, G A EIR "7 7 to define the fibred product.
The stack Y# class1ﬁes (7,9, =7 |x 2, LWW) € ;Hg, (T, 8,67, T, Up, U) €
Z” G Let Y wo(A) « Yk he the closed substack given by the property that

(F,9,75F |x_o, L, U) € gcafg"“(”.

Let g : Yr—woAN) ;’éz be the map sending the above collection to (¥, k, s, Fr,
u, Uy).
The following diagram commutes

M, & 7 &Lyp—w®) 4 gn
—Gx

1= Lo - .
M, ZM@J iR XH
Here a, b are the natural maps. Recall that Hg (A}, K) = (’h‘_)!(KﬁAé)r. We get
FHG (A2, K) = (x")q((a* (KRAR)™) @ b*('p)* IC¢)[— dim Bung].

We have the following cartesian square

y —wo(A) i» z,00 Bung_

Ta T8

where the maps «, 8 forget the generalized B-structure k. Further
(a*(KRAR)") @ b*('pp)* IC: = ¢*(p)* K @ oK.

The complex ga*K = 3*$ K is calculated in Proposition 10.1.3. Plugging it into
the above expression, we get from definitions an isomorphism

FHG (A2, K) S @ ((m,) F(K) @ VN,

v>—A\

over XK. Since m* = (m_,)., the latter identifies with HH(Resg‘(V(A)),F(K)).
<
Theorem 10.1.2 is proved. O
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10.2 A subcategory of FS?;.  Here is another application of the Hecke functors
on FSY. Recall the quadratic form p : A — Q defined in Section 0.0.7.

PROPOSITION 10.2.1. Assume that o(c;) ¢ Z for any simple coroot «;, and the
subtop cohomology property holds. Then the functor Rep(T¢) — FS, V — H7(V, Ly)
is fully faithful, and its image is a subcategory of FSY closed under extensions.

Proof. We only have to check the last property. It is clear that Ext’(Lg,Lg) = 0 for
i > 0. So, it suffices to check the following. If A\ € A* with 0 < A then the xfibre
(Lg)-xe is placed in degrees < —2. By Propositions 4.11.1 and 4.11.2, this is true
unless \ is a simple coroot. However, any simple coroot ; is not in A* because of
our assumption o(«;) ¢ Z. 0

11 Casselman-Shalika formula: basic observations

11.1 In this section we formulate and discuss the metaplectic analog of the
Casselman-Shalika formula of [FGV01].

Let us introduce some general notation. For a subset B of Uy ,ep Irr(Gryy N Grly )
we set B = {b € B | bis special}. Here for b € Irr(Gry NGty ) we let b=t €
Bg. The notation By is that of Section 1.2.2, and special elements in crystals were
introduced in Definition 6.1.3. Given V € Rep(ég),K € Whit] set for brevity
K«V =Hg(V,K).

11.2 The Casselman-Shalika formula in the non-twisted case is ([FGVO01], The-
orem 1). The following could be thought of as the metaplectic Casselman-Shalika
problem.

Recall that in Section 4.12.2 we picked a trivialization d of the fibre of Grag —
Grg over t*G(0) for each A € A (compatible with the action of A*). This provided
the sections sg : Gr% — a}g of the gerbe GEG — Grg (cf. Section 4.12.3).

As in [FGVO01], for n € A we write x,, : U(F) — A! for the additive character of
conductor 7, where 7 is the image of 1 in the coweights lattice of G,4. For n +v €
AT we also write X, ¢ Grg — Al for any (U(F), x,)-equivariant function. The
isomorphism Gr% = Grl, v+ tTv transforms X9 Gr% — Al to Xrln : Grh — AL

For v € A»t we denote by @VG the restriction of the gerbe évr(; — Grg to @é
Recall the irreducible objects A% of Pervg ¢ defined in ([Lys], Section 2.4.2), we are
using for their definition the choice of Q> from Section 0.0.6. The perverse sheaf A%
is defined only up to a scalar automorphism (but up to a unique isomorphism for v
in the coroot lattice of G).

The metaplectic Casselman-Shalika problem is the following. Given v € AT and
w,v € A with p+v € AT, calculate

OSht, = RTe(Grls NGrg, (X)) Ly ® (s5) AL) (v, 25)] (62)

and describe the answer in terms of the corresponding quantum group.
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Pick x € X. Let j,, : i)AfT/II,u — {)JVTI be the inclusion of this stratum. As in
([FGVO01], Section 8.2.4) for u + v € AT, v € ABT we can calculate the complex
o (Fa i) ¥ V(7)*) over M, ;. It vanishes unless 4 € A*, and in the latter case
we get

j;,u(grz,p—l—u,! * V(’Y)*) = z,u,! X OShZﬁy'

By Theorem 5.3.1, (62) is placed in degrees < 0. Note that

CShqu =D RHom(:}‘x,u—&-I/,!y :}'x,u,* * V(’}/))

The complexes (62) describe the action of the Hecke functors on the objects Fy 1
for n € AT.

11.2.1 For v € Ab* p+v e At e At set

B = {a € Ir(Gry N Gr ™) | a € Grg, ta € Grly "} =

{b € Irr(Gr/5™ NGt Oy | 4=y © Gy b € Gy Y,
the latter map sends a to b = t*a.

PROPOSITION 11.2.1. The space H° of the complex (62) admits a canonical base

B

Proof. Denote for brevity by K the complex (62). For 7 < 7, 7 € AT let K, be

the contribution of the stratum Grp N Gry, in K. First consider A} |5~ , which has
G

constant cohomology sheaves because of G(O)-equivariance, it is placed in perverse
degrees < 0, and the inequality is strict unless 7 = 4. So, the *-restriction of A7 | Gl

G
to Gr’z N Grg is placed in perverse degrees

< — codim(Gr's N Grg, Gri) = (v — 7, p),

(and the inequality is strict unless 7 = 7). Since dim GrlzNGrg, = (v + 7, p), we
conclude that K is placed in degrees < 0, and the inequality is strict unless 7 = 7.
So, only K, contributes to

HY(K) = HZP (Grg N Grgy, (x) "Ly @ (si5) " AZ)[(v, 27)]-

So, H’(K) has a base consisting of those b € Irr(Gr% N GrY,) over which the shifted
local system (x/)*Ly @ (s%)* A} is constant. By formula (44), we have a bijection

{a € Irr(Gr'z N Grzgg(v)) |a C Grg} = Irr(Grg N Gry,)

sending a to the closure of a N Gr},. Our claim is now reduced to Lemma 11.2.2
below. 0

LEMMA 11.2.2. Let v € A»T, p+v € A, p € AT. Let b € Irr(Grly N Gr},). The
local system (x,)*Ly ® (s'%)*A} is constant on b if and only if two conditions hold:
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e fora=0bnN Grljg,“_(w the component a € By is special;
o tha C @/&‘H’.

Proof. Let a € Irr(GrVBﬂGrgo_(V)) with @ C Grs. The local system (X)"Ly ®
(s';)*A} is constant on a if and only if X% : @ — A' is not dominant, and (s%)*A}
is constant on a.

By Lemma 7.1.4, over Gr'; N Grjg’_(v) N Grl, one gets (s%)* AL = (’yf,””w))*ﬂgl up

to a shift. The notation 7},”0(7) is that of Section 4.12.3. Now, (7,7,”0(7))*L§ is constant
on a if and only if a € Bg(v — wo(7)) is special.
By Lemma 7.1.5, the map xj, : @ — Al is not dominant iff ¢;(a) < (u+ v, é&;) for
jitv

all i € J. By Lemma 4.12.1, the latter property is equivalent to t“a C Grg; . O
11.2.2 Non-twisted case.  For simplicity, we do not distinguish between V and
(*“V)* for an irreducible G-representation V, where ¢ is the Chevalley automorphism
of G. Recall our notation V7 for the irreducible G-module with highest weight v &
AT. For v € A write V) for the v-weight space of V7. Set

B) =Iir(GrsNGr)), ~B) =Ir(Grs- NGr)).

Recall that V}, has two canonical bases B} and ~B}. Combining Lemma 11.2.2 for the
trivial metaplectic parameters with ([FGV01], Theorem 1), we see that Hom(V? ®
VH, VAT) admits a canonical base B

v
Here are two special (limiting) cases.
CASE (i) The canonical inclusion B Y, — *BZ IZ}O () 0= b0 Gr?;” induces
Hom (V7 @ VH, VHH) s VIV (63)

If for any weight 7 of VA" one has —wq(y) +7 € AT then
\V/nd ® (V'y)* = o, VT—H}O("}/) ® Vg-‘rl/’

so (63) is an isomorphism, and BZ’J’:V = _BZIZOM‘

CASE (ii) The canonical inclusion B}, < BJ, a — a N Gr{, induces

Hom(V? @ V#, VAH) < V7, (64)

If for any weight 7 of V7 one has 7+p € At then VY @ V£ 5 &, VAT @ V]| so (64)

: . ~ Tl _ @Y
is an isomorphism, and B\, = BJ.

11.2.3 Assume that p satisfies the subtop cohomology property. Recall that
for A € AT u € A with p < X\ we have the vector spaces VMA introduced in Theo-
rem 4.12.2. It provides a decomposition

F(Ton) > @ Lpu@ VD
U<, A—pEAT

and realizes _ﬁﬁ as a canonical base of V:‘.
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COROLLARY 11.2.3. Let v € A, p+v € At u € At and K denote the complex
(62).

(i)  There is a canonical inclusion B{, — —BHY | hence also
HTV ptwo ()

0 ptv
HO(K) s VI
If for any weight 7 of VATV one has —wo(y) + 7 € AT then the above
inclusions are a bijection and an isomorphism respectively.
(ii)  There is a canonical inclusion B, — B, hence also

HY(K) = V(y), =V
If for any weight T of V7 the coweight T+ u is dominant then the above
inclusions are a bijection and an isomorphism respectively.

Proof. By ([Lys], Lemma 3.2), B is canonically a base of V' (y),. By Theorem 4.12.6,
V (), =V, canonically. Both inclusions are those of Section 11.2.2 restricted to
special elements. Both claims follow from Section 11.2.2 and Proposition 11.2.1. O

11.2.4 Metaplectic Casselman-Shalika formula.  According to Gaitsgory’s con-
jecture ([Gai04], Conjecture 0.4), to our metaplectic data one may associate the
category € of finite-dimensional representations of the corresponding® big quantum
group Uq(é) over Qg, and Whit® = € naturally.

For A € At denote by W™ W** the corresponding standard and costandard
objects of €, W™ should be thought of as a Verma module in €. Write D(C) for
the derived category of C. Then € is equipped with a fully faithful functor Fr :
Rep(ég) — C. So, G’g should be thought of as the quantum Frobenius quotient of

Uq(G). The notation Fr is taken from [ABBGMO5].

CONJECTURE 11.2.4. Given v € AT and p,v € A with u + v € A the complex
(62) vanishes unless p € A*. In the latter case there is an isomorphism

RT(Gr's NGrey, (X4)* Ly ® () AL) (v, 25)]
= D RHomp ) (WH, WH* @ Fr(V(y)))-

REMARK 11.2.5. If the metaplectic data is trivial then € is semisimple. In this
case A' = A and G = G. In this case Fr : Rep(G¢) — € is an equivalence. The
right hand side becomes Hom(V# @ V7, V#*¥) and the above conjecture becomes
([FGVO01], Theorem 1), so it is true.

3 This will not be a quantum group in the usual sense in general, but rather a Hopf algebra in a
suitable braided monoidal category.
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12 Comparison with [ABBGMO5]

12.1 In this section we don’t need /-adic numbers, and we reserve the notation
¢ for another integer introduced below and referring to [ABBGMO5].

Let @ C A be the coroot lattice. Let (-,-) : Q ® Q — Z be the canonical W-
invariant symmetric bilinear even form. So, (o, o;) = 2d;, where d; € {1,2,3} is the
minimal set of integers such that the matrix d;(o, &;) is symmetric.

To fall into the setting in [ABBGMO05] we must assume that the restriction of
K to @ is a multiple of the canonical form. Assume there is m € 7Z such that
k(a,b) = m(a,b) for any a,b € Q). Assume also that N = m/, where ¢ is an integer.
Assume also that d; divides ¢ for any 7 and set §; = d%' Then (o, i) = 2md,;. So,

Rlag,aq) 1 s : R(cvi,a)
SN = and 9; is the denominator of =53~

Assume also given a symmetric W-invariant form (-,-), : A ® A — Z such that
for any A € A,i €7,
(Ovél', 5\)4 = 5i<ai, 5\>
Let ¢y : A — A be the map induced by (-, -)¢. So, ¢¢(c;) = d;c;. Since &(cy) = md;dy;,
we get Roy(dy) = Ndy.
Assume in addition that the composition & o ¢y equals the multiplication by V.
Then ¢y : A — A and 5 : A — A are inclusions with finite cokernels.

LEMMA 12.1.1. (1)  The map ¢y takes values in A¥, and ¢ : A= AF is an
isomorphism.
(2) The map ¢y gives an isomorphism of root data of (G,T) with that of
(Ge,T¢). So, it induces an isomorphism G = G identifying T with T;.
Proof. (1) If X € A then Rpe(A) € N, so ¢ : A — AP Let now A € A
with #(A) € NA. Then rge(53)) = &(A). So, A = ¢p(EX), because & is
injective. So, ¢y is surjective.
(2)  The roots of (G¢,T¢) are ;c;. One has ¢y(c;) = 6;c;, and the dual map
(¢0) = (M%) = A sends §* to a;. O

REMARK 12.1.2. In [ABBGMO05] one moreover assumes ¢ even. We did not need
this assumption.
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A Appendix A: Property (C)

Al In some cases we use the following observation. Let i € J, A > «; such that w; — A
appears as a weight of V¥, Then there is p € AT with p < w;, w € W such that A = w; —wp.
Then the property &(w; —wp — ;) € NA is equivalent to &(w ™' s;(w;) — u) € NA, where s;
is the reflection corresponding to «;. So, one may first find the W-orbit of each w;. Second,
find for each ¢ all the dominant coweights satisfying p < w;. Third, check for each ¢ € g,
i < w; dominant with p # v € Ww; the property &(v — p) ¢ NA.

Type A, _1. We may assume G = GL,,, B C G is the group of upper triangular matrices,
T is the group of diagonal matrices. So, A = Z". We may assume % : A ® A — Z given by
k = mk, where m € Z and (a,b) = >_""_, a;b;. Then our assumption is m ¢ NZ. Since X is
not a simple coroot, we have n > 3. We assume J = {1,...,n—1} andw; = (1,...,1,0,...,0),
where 1 appears i times. The representation V*i is minuscule, for any p < w; with g € A"
we have 1 = w;. Any v € Ww; is of the form v =¢;, +--- +¢; for 1 <j; <--- < j; < n.
Let 1 < k < n be the smallest such that a; = e, — ex41 appears in the decomposition of
w; — v # 0 into a sum of simple coroots. Then k < ¢ and m = R(\, e;) ¢ NZ. We are done.
Type C,. We may assume G = GSp,,, the quotient of G,, x Spy, by the diagonally
embedded ps. Realize G C GLsg,, as the subgroup preserving up to scalar the bilinear form

given by the matrix
0 E,
-E, 0 )’

where FE,, is the unit matrix of QLn. The maximal torus T of G is {(y1,---,Y2n) | YiYnti
does not depend on i}. Let ¢; € A be the caracter that sends a point of T to y;. The roots
are

R={+a;(i<j€l,....,n), +3; (i<je€l,....,n)},

where dij = éz’ — éj and Bij = éi — én-i-j-
We have A = {(a1,...,a2,) | a; + ans; does not depend on i}. The weight latice is

AN=72"){& 4 Enri— & — énvyy i <3}
Let e; denote the standard basis of Z?". The coroots are
R:{:l:()éij (Z<] S ].,...711), :tﬂ” (ZS]G 1,...,n)},

where ﬂij =e€;+€j —enti— Enytj for i < j and (;; = e; — e, 4. Besides, Qij = €; + eptj —
€j — Enti-
Fix positive roots

R+:{dij (i<j€1,...,n), Bij (ZS]EI,,H)}

Then the simple roots are &y := du2,...,0p—1 1= Gp_1,, and &, := Bnn

For 1 <i < nsetw, = (1,...,1,0,...,0;—1,...,—=1,0...,0), where 1 appears 7 times
then 0 appears n — i times then —1 appears i times, and 0 appears n — i times. Set w,, =
(1,...,1;0,...,0), where 1 appears n times, and 0 appears n times. This is our choice of the
fundamental coweights corresponding to ;.

For b € A write b = b; + by, this is independent of i. The map Aq, —Z, a +— a is an

isomorphism. Let k : A® A — Z be given by k(a,b) = 2?21 a;b;. Then x is W-invariant
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symmetric bilinear form. We have r(oj, ;) = K(8ij, Bi;) = 4 for i # j, and k(B Bii) = 2.
We may assume k = mx for some m € Z.

Note that V¥» is the spinor representation of GG = GSpin,,, 11 of dimension 2", V“1 is the
standard representation of the quotient SO,,,,,, and V¥ = A*(V“1) for 1 < ¢ < n. We have
0<w; <---<wp_1, and if g € A is dominant and p < w,_1 then p is in this list.

The assumption o(a;) ¢ Z for any simple coroots reads 2m ¢ NZ. Assume n = 2. In this
case it is easy to check the desired property (C).

Assume now n > 3. Then the assumption o(«;) ¢ %Z for any simple coroots reads 4m ¢ NZ.
First, let 1 < i < n. Suppose w; — A appears in V¥i. Then w; — A is of the form > 7 _, €x3i, i,
where e, =+1,0<j <id,and 1 <i; <--- <ij <n.Let \—oy = (a1,...,a2,). If j < i then
thereis 1 < k < nsuch that ay, = 1, and k(A—a, Bk k) = 2. If j =i and thereisno1 <k <n
with this property then there is 1 < k < n such that a; = 2, and (X — a;, Bxx) = 4. The
case 7 < n is done.

Let now ¢ = n. The representation V¥~ is minuscule, its weights are the W-orbit of w,.
The coweight A is of the form A = >, ¢ Bk r, where S C {1,...,n} is a subset, and
A > ay = Byn. So, there is k € S with k < n. We have k(A — o, Bk,x) = 2. We are done.
Type B,. Assume n > 3, let G = Spiny,, ;. We take A = {(a1,...,a,) € Z" | >, ar =0
mod 2}, so Z™ C A. The coroots are

R={+a;j(1<i<j<n),+0;(1<i<j<n)},

where aj; = e; — €j, Bij = e; + e;. The corresponding roots are d&;; = e; — ¢;, Bij =e; +ej
for 1 < i < j < mn, and Bii = €. Here &, Bij € Z" c A. The simple roots are dq =
de""J Qp—1 = OVén—l,ny (a%% :6n,n- . .

Write G*¢ for the simply-connected cover of GG. The fundamental weights of G*¢, which we
refer to as the fundamental coweights of G.q, are w; =e; +---+¢; € Z™ for 1 <i < n. We
use here the canonical inclusion A C Z™ = A,q as a sublattice of index 2. Here A,q is the
coweights lattice of Gyq = SOy, 1. The Weyl group acts on A4 by any permutations and any
sign changes. That is, it contains the maps Ayg — Aga, p = (a1,...,a,) — (€101, .., €n0a,)
for any €, = +1.

Let k : A® A — Z be the unique W-invariant symmetric bilinear form such that x(a, o) = 2
for a short coroot. Then x extends uniquely to £ : Agqg @ Agg — Z as k(a,b) = >, _, agby.
We get k(8i;, Bii) = 4 for any 1 < i < n, and all the other coroots are short. We may assume
R = mk, m € Z. Then the assumption of Conjecture 1.1.2 reads 2m ¢ NZ.

Let A:d be the dominant coweigts of Guq then A:d ={(at,...,an) €EZ" a1 > -+ > ap >
0}. If p € Af, and p < w; then p = (1,...,1,0,...,0), where 1 appears k times with k < i
and k =7 mod 2. Any weight of V¥ is of the form wu, w € W, where p € A(jd and p < w;.
So, the weights of V¥ are of the form w; — A = Z:f:l €rej,., where 0 <k <4, k=1 mod 2,
and 1 < j; <--- < jr <n, here ¢, = +£1.

Ifl1 <i<nthenw;, —«a; =(1,...,1,0,1,0,...,0), where 1 appears first i — 1 times. If k <4
then A — oy contains an entry 1 on some m-th place and k(A — a;, Bimm) = 2, 80 R(A — ;) is
not divisible by N in this case. If kK = 7 and A\ — «; does not contain the entry 1 then A\ — «;
is of the form >, 5 3;; for some subset S C {1,...,n} that contains at most i elements.
Since i < n there is a couple j; € S,j2 ¢ S. Then k(A — a4, 5, j,) = 2, s0 K(A — ;) is not
divisible by N in this case.

Let ¢ = n then w, —ay, = (1,...,1,—1). Let w; — A be as above. If k < n then kK < n—2, and
A—qy, contains an entry 1 at some place. As above this implies that &(A—«;) is not divisible
by N in this case. If kK = n then A—ay,, = ZjES Bj;j+aen, where S C {1,...,n—1} is a subset,
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and a = 0 or a = —2. If A — v, contains a entry 0 then as above one shows that &(A — «;) is
not divisible by N. The only remaning case is A — a, = (2,...,2,-2) = =B + Z?;ll Bij-
Recall that for any coroot a one has k(o) = @d. We get k(8;;) = QB]-]- for any j. So,
k(A — an) = =280 + 22;.:11 f3j;. The root lattice of G is Z" C A, and —f,, + Z;:ll Bi;
is divisible in A, namely %(—Bnn + Z;L;ll Bj;) € A. So, we must require that 4m ¢ NZ to
guarantee that £(A — a;) is not divisible by N. We are done.

Type Gs. Let G be of type Go. Let A = {a € Z* | 3", a; = 0} with the bilinear form
k:A®AN — Z given by k(a,b) = >, a;b; for a,b € A. The coroots are the vectors u € A
such that x(u, 1) = 2 or 6. The coroots are

+{e1 —es,e1 —e3,e0 — 3,261 — €3 —€3,2e2 — €1 —e3,2e3 — e — ea}.

The form & induces an inclusion & : A < A such that A/x(A)= Z/37Z. The roots can be
found from the property that for any coroot « one has k(o) = ®@:9) 5 For a short coroot

a one gets k(o) = @&, and for a long coroot « one gets k(«) = 3&. We get the roots
+{e; —en,e1 —e3,e0 —e3,€1,60,e3} CZ3/(e1 +ea+e3) = A.

The center of G is trivial. Pick positive roots &v; = e; — e3 and & = —ey. They correspond
to simple coroots a; = e; — €3, ag = —2e; + ey + e3. The dominant coweights are AT =
{a € A | az < a; < 0}. The fundamental coweights are w; = (0,—1,1) = 2a; + as and
we = (—1,-1,2) = 3ay + 2as. The positive coroots are {ay,as,as + a1, as + 207, s +
3aq,3a1 + 2as}. The representation V*2 is the adjoint representation of G, dimV¥2 = 14
and dim V¥t = 7. We have w; < wy. We assume & = mk for some m € Z.

The weights of V¥2 are coroots and zero. So, for i = 2 the coweight A is one of the following

{a1 + a2, 201 + ag,3a1 + a9, 201 + 202, 3a + 202,40y + 200,

3aq + 3ag, 4oy + 3ag, by + 3ae, 6y + 3ag, 6ag + dan}.
Since k(1) = @1 and k(de) = 3cve, we get in this case that k(A — ) is an element of the
set

{1, 261, 361, 26, + 3di2, 361 + 3di2, 4Gy + 32, 3G + Géia,

4éy 4 3ag, By + 6cvg, 61 + 6cg, 60 + 9@2}.

An element of this set may be divisible in A by 2,3,6. So, in order to guarantee that
TN —a2) € A = Zday @ Za, we must assume 6m ¢ NZ. In terms of o this assumption

reads o(c;) ¢ 37 for any simple coroot «;.
Let now ¢ = 1. Then k(A — 1) is an element of the set

{3642, &1 + 3d9, 207 + 3dg, 201 + 6avg, 3cv + 66&2}

An element of this set may be divisible in A by 2,3. So, we must assume 2m, 3m ¢ NZ.
Finally, it suffices to assume 6m ¢ NZ. We are done.

Type Dy. Let G = Spin,,, with n > 4. We take A = {(a1,...,a,) € Z" | 3_; a; = 0 mod 2},
so Z™ C A. The group A is generated by Z" and the element %(17 ..., 1). The roots are

R={4da;=e —ej(1<i<j<n), 40 =e +ej(1<i<j<n)}.

The simple roots are &y = di2,...,0n—1 = Gn—1,n, 0 = Bn-1,n. The coroots are o;; =
e; — €j, Bij = e; + ¢;. The Weyl group acting on A contains all the permutations, and also
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all the sign changes with the even number of sign changes. Let x : A ® A — Z be given by
k(a,b) = Y_7_, axby. Then k is the unique W-invariant symmetric bilinear form such that
k(a, ) = 2 for any coroot. Let & = mk, m € Z. The assumption of Conjecture 1.1.2 reads
m ¢ NZ.
The center of G is Z/2Z x Z/27Z for n even (resp., Z/4Z for n odd). The group A,q is
generated by Z™ and the vector %(17 ..., 1). The fundamental coweights of G,q in Ayq are
wi=(1,...,1,0,...,0) € Z™, where 1 appears i times for 1 <i <n —2, and

Wy = 1(1, ey l)y wpor = %(1,...,1,—1).
Here V¥»—1, V¥» are half-spin representations of G*¢ = Spin,,,. The representation V«! is
the standard representation of SQ,,,, and V¥i = APV for 1 <4 < n — 2. Both half-spin
representations are minuscule of dimension 2771,
The weights of V¥ (resp., of V¥n-1) are %(61, ...,€n), where €, = +1, and the number of
negative signs is even (resp., odd).
If i = n then Ais of the form A = 7, _¢ ey, where S C {1,...,n}, and the number of elements
of S is even. For n odd one checks that for any such A, k(A — a,) is not divisible in A, so
R(A — ap) ¢ NZ. For n even taking A = (1,...,1,0,0) we get A — «a,, = (1,...,1,—1,—1).
For any pu € A, (A — an, i) is even. So, we have to assume 2m ¢ NZ for n even. Under this
assumption one checks that &(\ — a,,) ¢ NA.
If i = n—1 then A — ay,—1 is of the form (ey,...,€,-2,0,¢€,), where ¢, = 0 or 1, and the
number of 1’s is even; or of the form (eq, ..., €,-2,—1,¢€,), where ¢, = 0 or 1, and the number
of 1’s is odd (and the element A\ = 0 is excluded here). In the first case #(\ —a,,) ¢ NA, and
in the second case the only difficulty comes from A — a1 = (1,...,1,—1,1) for n even. In
this case our assumption 2m ¢ N7 for n even guarantees that &(\ — o) ¢ NA.
Let now i < n—2. Note that for any a = (a1,...,a,) € A, k(a) = (a1,...,a,) € A. If p € AT
is a weight of V¥i then p is of the form (1,...,1,0,...,0), where 1 appears m < i times with
i—m even. So, any weight of V¢ is of the form ), ¢ ex with ¢, = £1, where S C {1,...,n}
is a subset of order m < ¢ with ¢ —m even. We have w; —a; = (1,...,1,0,1,0,...,0), where
1 first appears ¢ — 1 times. If A — «; contains the entry 0 then its other entries could be only
0,1,—1,2. So, (A —a;) may be divisible at most by 2 in A. Since 2m ¢ NZ, &(A— ;) ¢ NA
in this case. If A — ; does not contains the entry 0 and contains the entry 2 then k(A — o)
may be divisible at most by 2. If A — «; does not contains the entries 0,2 then i = n/2, n is
even and A —a; = (1,...,1,€¢;,1,€i42,...,€6,) with ¢, = £1. Then k(A — «;) is divisible at
most by 2. We are done.

REMARK A.1.1. Our result for the type D,, could possibly be improved by replacing Spin,,,
with the corresponding group with connected center as in Remark 1.1.3.

Type Fy. Let I = 7% e = %(61 +estegtey) € (%Z)4 and A = TUI’, where I’ = e+ 1. So,
A C (3Z)*. Let £ : A® A — Z be the symmetric bilinear form given by r(a,b) = 23", ayby.
Let R be the set of u € A with x(u, u) = 2 or 4. The coroots are

1

R = {:l:ei(l <3< 4),i(€i - ej),:I:(ei +6j)(1 <i<g< 4), g(il,. . .,ﬂ:l)}.

Pick oy = %(1, —1,—1,-1), ag = eq, 3 = €3 — €4, ctqy = €3 — e3. These are simple coroots
(notations from [VO90]), and A is freely generated by a;. The map & : A < A is an inclusion.

The center of G is trivial.
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We identify A with a sublattice of Q* such that the pairing (,) : A ® A — Z is the map

sending (a,b) to >, arby. The fundamental weights are @y = 2e1, Wy = 3e1 + €2 + €3 + ey,

W3 = 2€1 + €3 + €3, @4 = e1 + ez in A. Then A is freely generated by w;. So, A = {a € Z* |

> ;a; =0 mod2}. The map k: A — A sends any a to 2a. We recover the roots in A from
_ K(oya) <

the property that (o) = =5~ ¢ for any coroot a. The roots are

R={+2e;(1<i<4),+(e; —e;),£(e; +e;)(1 <i<j<4),(£l,...,£1)}

The Simple roots are dl = (1,71,71,71), dz = 2647 613 = €3 — 64,6[4 = €9 — €3. The
fundamental coweights are wy, = ey, wy = %(361 +e2+e3+eq), ws = 2e1 + ea + e3,
w4 = e1 + ea. The Weyl group acting on A is generated by all the permutations, all the sign
changes, and the element s; given by

81(alv~-~,a4):§(CL1+"‘+a4,01+02*a3*a4,al*02+a3*a47a1*02*a3+a4)-

The element —wy acts trivially on A. The group W acts transitively on long (resp., short)
coroots. We have 0 < w; < wy < wy < ws. The representation V¥4 is the adjoint one,
dim V*2 = 273, dim V¥ = 1274. The 24 positive coroots are

R ={a;(1<i<4), a0+ a3+ ag,as + az, 2a1 + 3as + 2a3 + oy,
201 + 2ai9 + a3z, 201 + 2000 + a3 + g, 200 + 2000 + 203 + g, i + Qi
2011 + 4ag + 3az + 204, 201 + dag 4+ 3ag + ayg, 200 4+ dag + 2a3 + ay,
200 + 203 4+ ay, 200 + a3 + ay, 200 + ag,
a1+ ag + as + ag, 01 + ao + as, o + @, a1 + 200 4 203 + g,
a1 + 3as + 203 + g, a1 + 200 + as + aq, a1 + 200 + as}.

Let ¢ = 1. The weights of V¥ are known from [VO90], they are +e;, %(il, ..., £1), 0. We
have w; — a1 = e. So, A —a; may be %(al, ...,a4), where all a; = 1 except one, which is —1
or 3; it also may be (a1, ...,a4) # 0, where each ay is 0 or 1; it also maybe e. We see that
k(A — a1) may be divisible at most by 2. Assume k& = mk with m € Z. The assumption of
Conjecture 1.1.2 says 2m ¢ NZ. So, in this case K(A — «;) is not divisible by N.

Let ¢ = 4. The weights of V¥4 are the coroots and 0. We have wy = 21 +4as + 3as +2ay. If
wyq — A is a weight of V¥4 then A < 2w,. Under our assumptions, we get 0 < A — oy < 2wy —
g = 4dag +8as+6aiz+ 3. Since v 1= 2a1 +4as+3a3+ay is a coroot, A—ay may take value
wa+y—ag = 4oy +8as+6as+2ay. For this A we see that k(A—ay) = 4d1 +8cde+12d3+4dy
is divisible by 4. So, the assumption of Conjecture 1.1.2 is not sufficient for our method to
work in this case. We need to assume at least that 4m ¢ NZ.

Use the method from Section A.1. The dominant coweights u € AT such that p < w4 are
{0, w1, ws}. For = 0 we need to check that &(ws) ¢ NA. Since x(wy) = 2(e1 + e2) is only
divisible by 2, and 2m ¢ NZ, we see that &(ws) ¢ NA. For y = w; this property is easy. The
W-orbit through wy is the set of long coroots. For u = wy and a long coroot «, k(o — u) may
be divisible at most by 4 in the case @« = —e; — es. The assumption 4m ¢ NZ guarantees in
this case that £(\ — a;) ¢ NA.

Let i = 2. The dominant coweights p such that p < we form the set {0,w1,ws,ws}. The
W-orbit through ws is the set

1 1 1 1
Xs = {Q(iS,il,ﬁ:l,il), 5 (L E3, £ ED), S (1, £1,£3,£1), 5 (1, 51,51, %3),

(£1, 41, +1,0), (£1, +1,0, +1), (£1,0, +1, +1), (O,il,il,il)} ,
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these are all the coweights of length 6. The element x(ws) is not divisible. For 7 € X,
k(T —wy) is divisible at most by 2. For 7 € Xs, k(7 —wy) is divisible at most by 2. For 7 € X,
K(T — w2) may be divisible by 2 or 3. Namely, if 7 = 1(—3,1,1,1) then (T — ws) = —6e; is
divisible in A by 3. So, we must assume 3m ¢ NZ.

Let ¢ = 3. The set of u € AT such that p < ws is the set {0, w1, wy, wa, 2wy, w1y + Wy, w3}
The W-orbit through ws is the set X3 of all the coweights of length 12, it consists of
(£2,4+1,+1,0) and all their permutations. The element x(ws) is divisible by 2. For 7 € X3,
k(T —w1) is not divisible. For 7 € X3, k(7 —w4) may be divisible at most by 4. In this case our
condition 4m ¢ N7 guarantees that (XA — ;) ¢ NA. For 7 € X3, k(7 —wsy) may be divisible
at most by 3. For 7 € X3, k(7 —2wy) is divisible at most by 2. For 7 € X3, k(7 —w1 —wy) is
not divisible. For 7 € X3, k(7 — w3) may be divisible by 4 and by 6 (it is not divisible by 5
or by 7 with r > 7). For example, if 7 = (—1,—2,1,0) then s(7 —w3) = 6(—1,—1,0,0) € 6A.
Our condition 4m, 6m ¢ NZ guarantees that £(\ — ;) ¢ NA. We are done.

REMARK A.1.2. The notation from Bourbaki ([Bou68], chapter 6, Section 4.9) for this root
system are obtained from the above by passing to the opposite order in the linearly ordered
set {1,2,3,4}.

A.2 Assume G is of type Eg. We follow the notations for the corresponding root system
from Bourbaki ([Bou68], chapter 6, Section 4.10). So, A = Ay + Z(3 Zf:l e;), where e; is
the canonical (orthonormal) base in Z8. Here Ay = {(a1,...,as) € Z% | Y. a; = 0 mod 2}.
The bilinear form x : A ® A — Z is induced from the scalar product on R®, where e; is the
orthonormal base. Then & : A — A is an isomorphism. The element wg acts on A as —1.
The structure of W is described in ([Bou68], exercise 1, paragraph 4, p. 228). It contains
all the permutations of e; and all the even number of sign changes (of the base elements).
Our notations for w; and «a; is as in ([Bou68|, Section 4.10, p. 213). In particular, ws is
the biggest coroot, so V¥# is the (quasi-minuscule) adjoint representation. We may assume
% = ms. The assumption of Conjecture 1.1.2 reads m ¢ NZ. The condition #(A — ;) € NA
is equivalent to m(\ — ;) € NA.

We have the following inequalities

0<fwsg<wy Swr Swy <we Sw3 Sws < wy.

For i = 8 we have wg = e7 + eg and ag = e7 — eg. S0, wg — ag = eg + €5, and wg — A is either
zero or a coroot. Taking w; — A = —eg — eg we get A — a; = 2(eg + eg) € 2A. So, we have to
assume 2m ¢ NZ at least. Clearly, for w; — A = +ey, *e; with k # j the element A — «; may
be divisible at most by 2 in A. For w; — A\ = %(a1 +---+ag) with a = £1, >, aj even, the
element \ — ag is not divisible. So, for i = 8 we are done.

In the case ¢ = 4 consider wy — ayq = es + €4 + €5 + eg + e7 + beg. Its W-orbit contains the
element wy — \ = ey +e4 + e5 + g + e7 — Heg, for such A we get A — ay = 10eg. So, we must
assume 10m ¢ NZ.

In the case i = 5 we get ws — a5 = ez + e5 + e + e7 + 4es. The W-orbit of this element
contains ws — A = ez +e5+eg+ ey —4eg. For this A we get A — a5 = 8eg. So, we must assume
8m ¢ NZ.

In the case i = 6 we get wg — ag = e4 + eg + e7r + 3eg. The W-orbit of this element
contains wg — A = e4 + eg + ey — 3eg. For this A we get A\ — ag = Geg. So, we must assume
6m ¢ NZ. The above assumptions are equivalent to the property that for a simple coroot
a;, o(a;) ¢ 1—1027 %Z, %Z.
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B Appendix B: Proof of Proposition 2.7.1

B.1 We use the notations as in Section 11.2 for the Casselman-Shalika problem.
Properties (ii) and (iii) are clearly equivalent. For € A one has

Gt NGry" = Grl, NGry .
By ([Ras], Proposition 3.5.1), if —n is deep enough in the dominant chamber then

Grl NGl = G NGV,

Here we assume that for each —\ < p < 0 the coweight 7+ is anti-dominant, and n—\ € AF.
Consider the complex

R (Gry nGrg” "™, () A2 @ (1) ") [(0.27) (65)
This complex is what should be the limiting case of the metaplectic Casselman-Shalika for-
mula (62) as in ([Ras], Section 3). As in ([FGVO01], Section 8.2.4), the tensor product of F, _,,
by (65) is isomorphic over ﬁw’_n to gy _,Hg (.Aé_"7 Fu). Recall that HE’(AQ_”, Fo) = Farn
by Theorem 5.3.1.
The contribution of the open stratum Gr'; N ero = o (65) is

w. - ® W —A * .
RL(Gr N Grg "™, (s) A" @ () L) [(n. 27)]. (66)
LEMMA B.1.1. The complex (66) identifies with the complex (10) shifted to the left by (A, 2p).

Proof. Recall the local system W®o(=*) on ero(ﬂ )

wo(n—=A)

defined in ([Lys], Section 2.4.2). The

perverse sheaf A, is the intermediate extension of this (shifted) local system. The G,,-
_ &)

torsor Grag Xarg Gr% — Gr% is constant with fibre Q, 2 —0, and T'(O) acts on it by the

character T(0) — T ~E() G- So, the local system (s7)*Wwo(1=A) over Gr}, ﬂGrg‘)(n_)‘)

changes under the action of T(O) by the inverse image of L, under T(0) — T ga G-

Since &(n — A) € NA, it coincides with the inverse image of £ under T(0) — T —E G-
Since the isomorphism Gr ﬂGrg/} = Gr}, ﬂGrgg(nf)‘xz — t"z is T(0)-equivariant, we

are done. 0

LEMMA B.1.2. For each =\ < p < 0 the stratum Gr’} ﬂGrZO(“+n) does not contribute to
the cohomology group of (65) in degrees > —1.

C . wo(n—2X) ~wo(p+n) . . ..
Proof. The s-restriction A"~ to Grg is placed in perverse degrees < 0, that is, in

usual degrees < (u+ n,2p) — 1. Recall that dim Gr’; N Grgo(“+”) = (i, p).
If pu # 0 then, by ([FGVO01], Proposition 7.1.7), (x”,)* L., is nonconstant on each irreducible

component of Gr', N Grgo(“+n). So, in this case

RL(Gry N Gre? W (1) Age "N @ ()" L) [(n, 26)] (67)

lives in degrees < —2.

If © =0 then Gr', N Grg, wo() s a point, the #restriction of (s)*Awo(1=A) to this point lives
in degrees < (n,2p) —1. Be&des it lives only in usual degrees of the same parity as (n—\, 2p)
by ([Lys|, Lemma 2.2). Since <)\, 2p) € 2Z, it is of the same parity as (n,2p). So, it lives in
degrees < (n,2p) — 2. O
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We conclude that the subtop cohomology property is equivalent to requiring that for any
A > 0, which is not a simple coroot, (65) is placed in degrees < —2. Proposition 2.7.1 is
proved.
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