Geometric Bessel Models for GSp_{4} and Multiplicity One

Sergey Lysenko

1 Introduction

1.1 Classical Bessel models

In this paper, which is a sequel to [6], we study Bessel models of representations of GSp_{4} in the framework of the geometric Langlands program. These models introduced by Novodvorsky and Piatetski-Shapiro, satisfy the following multiplicity one property (see [8]).

Set $k=\mathbb{F}_{q}$ and $\mathcal{O}=k[[t]] \subset F=k((t))$. Let \widetilde{F} be an étale F-algebra with $\operatorname{dim}_{F}(\widetilde{F})=2$ such that k is algebraically closed in \widetilde{F}. Write $\widetilde{\mathcal{O}}$ for the integral closure of \mathcal{O} in \widetilde{F}. We have two cases:
(i) $\widetilde{\mathrm{F}} \rightrightarrows \mathrm{k}\left(\left(\mathrm{t}^{1 / 2}\right)\right)$ (nonsplit case),
(ii) $\widetilde{\mathrm{F}} \rightrightarrows \mathrm{F} \oplus \mathrm{F}$ (split case).

Write L for $\widetilde{\mathcal{O}}$ viewed as \mathcal{O}-module, it is equipped with a quadratic form $s: \operatorname{Sym}^{2} \mathrm{~L} \rightarrow \mathcal{O}$ given by the determinant. Write $\Omega_{\mathcal{O}}$ for the completed module of relative differentials of \mathcal{O} over k .

Set $\mathcal{M}=\mathrm{L} \oplus\left(\mathrm{L}^{*} \otimes \Omega_{\mathcal{O}}^{-1}\right)$. This \mathcal{O}-module is equipped with a symplectic form $\wedge^{2} \mathcal{M} \rightarrow$ $\mathrm{L} \otimes \mathrm{L}^{*} \otimes \Omega_{\mathcal{O}}^{-1} \rightarrow \Omega_{\mathcal{O}}^{-1}$. Set $\mathrm{G}=\mathrm{GSp}(\mathcal{M})$, this is a group scheme over Spec \mathcal{O}. Write $\mathrm{P} \subset G$ for the Siegel parabolic subgroup preserving the Lagrangian submodule L. Its unipotent radical U has a distinguished character

$$
\begin{equation*}
\mathrm{ev}: \mathrm{U} \underset{\longrightarrow}{\sim} \Omega_{\mathcal{O}} \otimes \operatorname{Sym}^{2} \mathrm{~L} \xrightarrow{s} \Omega_{\mathcal{O}} \tag{1.1}
\end{equation*}
$$

(here we view $\Omega_{\mathcal{O}}$ as a commutative group scheme over Spec (O). Set

$$
\begin{equation*}
\widetilde{R}=\left\{p \in P \mid \operatorname{ev}\left(\operatorname{pup}^{-1}\right)=e v(u) \text { for } u \in U\right\} . \tag{1.2}
\end{equation*}
$$

View $\operatorname{GL}(\mathrm{L})$ as a group scheme over $\operatorname{Spec} \mathcal{O}$ and $\widetilde{\mathcal{O}}^{*}$ as its closed subgroup. Write α for the composition $\widetilde{\mathcal{O}}^{*} \hookrightarrow \mathrm{GL}(\mathrm{L}) \xrightarrow{\text { det }} \mathcal{O}^{*}$. Fix a section $\widetilde{\mathcal{O}}^{*} \hookrightarrow \widetilde{\mathrm{R}}$ given by $\mathrm{g} \mapsto\left(\mathrm{g}, \alpha(\mathrm{g})\left(\mathrm{g}^{*}\right)^{-1}\right)$. Then $R=\widetilde{\mathcal{O}}^{*} \mathrm{U} \subset \widetilde{\mathrm{R}}$ is a closed subgroup, and the map $\mathrm{R} \xrightarrow{\xi} \Omega_{\mathcal{O}} \times \widetilde{\mathcal{O}}^{*}$ sending tu to $(\mathrm{ev}(\mathrm{u}), \mathrm{t})$ is a homomorphism of group schemes over Spec \mathcal{O}.

Let ℓ be a prime invertible in k. Fix a character $\chi: \widetilde{\mathrm{F}}^{*} / \widetilde{\mathcal{O}}^{*} \rightarrow \overline{\mathbb{Q}}_{\ell}^{*}$ and a nontrivial additive character $\psi: k \rightarrow \overline{\mathbb{Q}}_{\ell}^{*}$. Write τ for the composition

$$
\begin{equation*}
\mathrm{R}(\mathrm{~F}) \xrightarrow{\xi} \Omega_{\mathrm{F}} \times \widetilde{\mathrm{F}}^{*} \xrightarrow{\text { Res } \times \mathrm{pr}} \mathrm{k} \times \widetilde{\mathrm{F}}^{*} / \widetilde{\mathcal{O}}^{*} \xrightarrow{\psi \times \chi} \overline{\mathbb{Q}}_{\ell}^{*} . \tag{1.3}
\end{equation*}
$$

The Bessel module is the vector space

$$
\begin{align*}
\mathrm{BM}_{\tau}=\{ & f: G(F) / G(O) \longrightarrow \overline{\mathbb{Q}}_{\ell} \mid f(r g)=\tau(r) f(g) \text { for } r \in R(F), \tag{1.4}\\
& f \text { is of compact support moduloR(F)\}.}
\end{align*}
$$

Let $\chi_{c}: F^{*} / \mathcal{O}^{*} \rightarrow \overline{\mathbb{Q}}_{\ell}^{*}$ denote the restriction of χ. The Hecke algebra

$$
\begin{align*}
\mathrm{H}_{\mathrm{c}_{\mathrm{c}}}= & \left\{h: \mathrm{G}(\mathcal{O}) \backslash \mathrm{G}(\mathrm{~F}) / \mathrm{G}(\mathcal{O}) \longrightarrow \overline{\mathbb{Q}}_{\ell} \mid \mathrm{h}(z \mathrm{~g})=\chi_{\mathrm{c}}(z) h(\mathrm{~g}) \text { for } z \in \mathrm{~F}^{*},\right. \\
& h \text { is of compact support moduloF} * \tag{1.5}
\end{align*}
$$

acts on BM_{τ} by convolutions. Then BM_{τ} is a free module of rank one over $\mathrm{H}_{\mathrm{X}_{\mathrm{c}}}$. In this paper we prove a geometric version of this result.

Recall that the affine Grassmannian $\mathrm{Gr}_{\mathrm{G}}=\mathrm{G}(\mathrm{F}) / \mathrm{G}(\mathcal{O})$ can be viewed as an indscheme over k. According to "fonctions-faisceaux" philosophy, the space BM_{τ} should have a geometric counterpart. A natural candidate for that would be the category of ℓ adic perverse sheaves on Gr_{G} that change under the action of $\mathrm{R}(\mathrm{F})$ by τ. However, the $R(F)$ orbits on Gr_{G} are infinite-dimensional, and this naive definition does not make sense.

The same difficulty appears when one tries to define Whittaker categories for any reductive group. In [3] Frenkel, Gaitsgory, and Vilonen have overcome this by replacing the corresponding local statement by its globalization, which admits a geometric counterpart leading to a definition of Whittaker categories with expected properties. We follow the strategy of [3] replacing the above local statement by a global one, which we further geometrize.

1.2 Geometrization

Fix a smooth projective absolutely irreducible curve X over k . Let $\pi: \widetilde{\mathrm{X}} \rightarrow \mathrm{X}$ be a twosheeted covering ramified at some effective divisor D_{π} of X (we assume \widetilde{X} smooth over k). The vector bundle $L=\pi_{*} \mathcal{O}_{\tilde{X}}$ is equipped with a quadratic form $s: S y m^{2} L \rightarrow \mathcal{O}_{x}$.

Write Ω for the canonical line bundle on X. Set $\mathcal{M}=\mathrm{L} \oplus\left(\mathrm{L}^{*} \otimes \Omega^{-1}\right)$, it is equipped with a symplectic form

$$
\begin{equation*}
\wedge^{2} \mathcal{M} \longrightarrow \mathrm{~L} \otimes \mathrm{~L}^{*} \otimes \Omega^{-1} \longrightarrow \Omega^{-1} \tag{1.6}
\end{equation*}
$$

Let G be the group scheme (over X) of automorphisms of \mathcal{M} preserving this symplectic form up to a multiple. Let $P \subset G$ denote the Siegel parabolic subgroup preserving L, $\mathrm{U} \subset \mathrm{P}$ its unipotent radical. Then U is equipped with a homomorphism of group schemes over X

$$
\begin{equation*}
\mathrm{ev}: \mathrm{U} \leadsto \Omega \otimes \operatorname{Sym}^{2} \mathrm{~L} \xrightarrow{\mathrm{~s}} \Omega \tag{1.7}
\end{equation*}
$$

Let T be the functor sending a X-scheme S to the group $H^{0}\left(\widetilde{X} \times{ }_{x} S, \mathcal{O}^{*}\right)$. Then T is a group scheme over X, a subgroup of $G L(L)$. Write α for the composition $T \hookrightarrow G L(L) \xrightarrow{\text { det }} \mathbb{G}_{m}$. Set

$$
\begin{equation*}
\widetilde{\mathrm{R}}=\left\{p \in \mathrm{P} \mid \operatorname{ev}\left(\operatorname{pup}^{-1}\right)=\operatorname{ev}(u) \forall u \in \mathrm{u}\right\} . \tag{1.8}
\end{equation*}
$$

Fix a section $T \hookrightarrow \widetilde{R}$ given by $g \mapsto\left(\mathrm{~g}, \alpha(\mathrm{~g})\left(\mathrm{g}^{*}\right)^{-1}\right)$. Then $\mathrm{R}=\mathrm{TU} \subset \widetilde{\mathrm{R}}$ is a closed subgroup, and the map $R \xrightarrow{\xi} \Omega \times \mathrm{T}$ sending tu to $(\mathrm{ev}(\mathrm{u}), \mathrm{t})$ is a homomorphism of group schemes over X.

Let $F=k(X)$, let \mathbb{A} be the adele ring of F, and $\mathcal{O} \subset \mathbb{A}$ the entire adeles. Write F_{x} for the completion of F at $x \in X$ and $\mathcal{O}_{x} \subset F_{x}$ for its ring of integers. Fix a nonramified character $\chi: T(F) \backslash T(\mathbb{A}) / T(\mathcal{O}) \rightarrow \overline{\mathbb{Q}}_{l}^{*}$. Let τ be the composition

$$
\begin{equation*}
R(\mathbb{A}) \xrightarrow{\xi} \Omega(\mathbb{A}) \times T(\mathbb{A}) \xrightarrow{r \times x} \overline{\mathbb{Q}}_{l}^{*}, \tag{1.9}
\end{equation*}
$$

where $\mathrm{r}: \Omega(\mathbb{A}) \rightarrow \overline{\mathbb{Q}}_{\ell}^{*}$ is given by

$$
\begin{equation*}
\mathrm{r}\left(\omega_{x}\right)=\psi\left(\sum_{x \in X} \operatorname{tr}_{k(x) / \mathrm{k}} \operatorname{Res} \omega_{x}\right) \tag{1.10}
\end{equation*}
$$

Fix $x \in X(k)$. Let Y denote the restricted product $G\left(F_{x}\right) / G\left(\mathcal{O}_{x}\right) \times \prod_{y \neq x}^{\prime} R\left(F_{y}\right) / R\left(\mathcal{O}_{y}\right)$. Let $y(k)$ be the quotient of Y by the diagonal action of $R(F)$. Set

$$
\begin{equation*}
\operatorname{BM}_{X, \tau}=\left\{f: Y \longrightarrow \overline{\mathbb{Q}}_{\ell} \mid f(\mathrm{rg})=\tau(\mathrm{r}) f(\mathrm{~g}) \text { for } \mathrm{r} \in \mathrm{R}(\mathbb{A}),\right. \tag{1.11}
\end{equation*}
$$

f is of compact support modulo $R(\mathbb{A})\}$.

View elements of $\mathrm{BM}_{\mathrm{x}, \tau}$ as functions on $y(k)$. Let $\chi_{c}: \mathrm{F}_{x}^{*} / \mathcal{O}_{x}^{*} \rightarrow \overline{\mathbb{Q}}_{\ell}^{*}$ be the restriction of χ. As in Section 1.1, the Hecke algebra $H_{\chi_{c}}$ of the pair $\left(G\left(F_{x}\right), G\left(\mathcal{O}_{\chi}\right)\right)$ acts on $\mathrm{BM}_{\chi, \tau}$ by convolutions. The restriction under

$$
\begin{equation*}
G\left(F_{x}\right) / G\left(\mathcal{O}_{x}\right) \hookrightarrow Y \tag{1.12}
\end{equation*}
$$

yields an isomorphism of $\mathrm{H}_{\chi_{c}}$-modules $\mathrm{BM}_{\mathrm{X}, \tau} \rightarrow \mathrm{BM}_{\tau}$.
We introduce an ind-algebraic stack ${ }_{x, \infty} \overline{\operatorname{Bun}}_{\mathrm{R}_{\pi}}$ whose set of k-points contains $y(k)$. We define the Bessel category $\mathrm{P}^{\mathcal{L}}\left({ }_{x, \infty} \overline{\operatorname{Bun}}_{\mathrm{R}_{\pi}}\right)$, a category of perverse sheaves on ${ }_{x, \infty} \overline{\operatorname{Bun}}_{R_{\pi}}$ with some equivariance property. This is a geometric version of $\mathrm{BM}_{\mathrm{X}, \tau}$.

Let $\operatorname{Sph}\left(\mathrm{Gr}_{\mathrm{G}}\right)$ denote the category of $\mathrm{G}\left(\mathcal{O}_{\chi}\right)$-equivariant perverse sheaves on the affine Grassmannian $\mathrm{G}\left(\mathrm{F}_{x}\right) / \mathrm{G}\left(\mathcal{O}_{x}\right)$. By [7], this is a tensor category equivalent to the category of representations of the Langlands dual group ${ }^{\mathcal{G}} \xlongequal{\sim} \mathrm{GSp}_{4}$. The category $\operatorname{Sph}\left(\mathrm{Gr}_{\mathrm{G}}\right)$ acts on the derived category $\mathrm{D}\left({ }_{x, \infty} \overline{\operatorname{Bun}}_{\mathrm{R}_{\pi}}\right)$ by Hecke functors.

Our main result is Theorem 3.10 describing the action of $\operatorname{Sph}\left(\mathrm{Gr}_{\mathrm{G}}\right)$ on the irreducible objects of $\mathrm{P}^{\mathcal{L}}\left({ }_{x, \infty} \overline{\operatorname{Bun}}_{\mathrm{R}_{\pi}}\right)$. It implies the above multiplicity one. It also implies that the action of $\operatorname{Sph}\left(\mathrm{Gr}_{G}\right)$ on $\mathrm{D}\left(x_{, \infty} \overline{\operatorname{Bun}}_{\mathrm{R}_{\pi}}\right)$ preserves $\mathrm{P}^{\mathcal{L}}\left({ }_{(, \infty} \overline{\operatorname{Bun}}_{\mathrm{R}_{\pi}}\right)$. The same phenomenon takes place for Whittaker and Waldspurger models.

Compared to the case of Whittaker categories, the Bessel category $\mathrm{P}^{\mathcal{L}}\left({ }_{(x, \infty} \overline{\operatorname{Bun}}_{\mathrm{R}_{\pi}}\right)$ is not semisimple (cf. Section 3.12).

The explicit Casselman-Shalika formula for the Bessel models has been established in [2, Corollaries 1.8 and 1.9], where it is presented in the base of BM_{τ} consisting of functions supported at a single $R(F)$-orbit on Gr_{G}. Our Theorem 3.10 yields a geometric version of this formula. At the level of functions it yields another base $\left\{\mathrm{B}^{\lambda}\right\}$ of BM_{τ} (cf. Section 3.14). In this new base, the Casselman-Shalika formula writes in an essentially uniform way for Bessel, Waldspurger, and Whittaker models.

In Section 2 we propose a general framework that gives a uniform way to define Whittaker, Waldspurger, and Bessel categories (the case of Waldspurger models was studied in [6]).

2 Compactifications and equivariant categories

2.1 Notation

We keep the following notation from [6]. Let k denote an algebraically closed field of characteristic $p \geq 0$. All the schemes (or stacks) we consider are defined over k. Let X be a smooth projective connected curve. Fix a prime $\ell \neq p$. For a scheme (or stack) S write
$D(S)$ for the bounded derived category of ℓ-adic étale sheaves on S, and $P(S) \subset D(S)$ for the category of perverse sheaves.

Write Ω for the canonical line bundle on X. For a group scheme G on X write \mathcal{F}_{G}^{0} for the trivial G-torsor on X.

2.2 Generalized R-bundles

2.2.1. Let G^{\prime} be a connected reductive group over k. Given a G^{\prime}-torsor $\mathfrak{F}_{G^{\prime}}$ on X let G be the group scheme (over X) of automorphisms of $\mathfrak{F}_{G^{\prime}}$. Write Bun $_{G}$ for the stack of Gbundles on X. Note that $\mathfrak{F}_{G^{\prime}}$ can be viewed as a G-torsor as well as a G^{\prime}-torsor on X. We identify $\operatorname{Bun}_{\mathrm{G}}$ and $\mathrm{Bun}_{\mathrm{G}^{\prime}}$, via the isomorphism that sends a G -torsor \mathcal{F}_{G} to the G^{\prime}-torsor $\mathcal{F}_{G^{\prime}}=\mathfrak{F}_{G^{\prime}} \times{ }^{G} \mathcal{F}_{G}$.

Let $R \subset G$ be a closed group subscheme over X. Say that G / R is strongly quasiaffine over X if for the projection pr: $\mathrm{G} / \mathrm{R} \rightarrow \mathrm{X}$ the \mathcal{O}_{X}-algebra $\mathrm{pr}_{*} \mathcal{O}_{G / R}$ is finitely generated (locally in Zarisky topology), and the natural map $G / R \rightarrow \overline{G / R}$ is an open immersion. Here $\overline{G / R}=\operatorname{Spec}\left(\operatorname{pr}_{*} \mathcal{O}_{G / R}\right)$.

Let V be a vector bundle on X on which G acts, that is, we are given a homomorphism of group schemes $G \rightarrow \operatorname{Aut}(V)$ on X. Assume that R is obtained through the following procedure. There is a section $\mathcal{O}_{X} \stackrel{s}{\hookrightarrow} V$ such that V / \mathcal{O}_{X} is locally free and $R=\{g \in$ $G \mid g s=s\}$. Let Z be the closure of $G s$ in the total space of V, so $G / R \subset Z$. Let Z^{\prime} be the complement of Gs in Z. The following is a consequence of [5, Theorem 2].

Lemma 2.1. Assume that any fibre of the projection $\mathrm{pr}: \mathrm{Z}^{\prime} \rightarrow \mathrm{X}$ is of codimension ≥ 2 in the corresponding fibre of $\mathrm{pr}: Z \rightarrow X$. Then G / R is strongly quasi-affine over X, and Z is the affine closure $\overline{\mathrm{G} / \mathrm{R}}$ of G / R.

Assume that R satisfies the conditions of Lemma 2.1 (this holds in our examples below).

Definition 2.2. Let $\overline{\operatorname{Bun}}_{R}$ be the following stack. For a scheme S, an S-point of $\overline{B u n}_{R}$ is a pair $\left(\mathcal{F}_{G}, \beta\right)$, where \mathcal{F}_{G} is an $(S \times X) \times X$-torsor on $S \times X$, and β is a G-equivariant map $\beta: \mathcal{F}_{G} \rightarrow S \times \overline{G / R}$ over $S \times X$ with the following property. For any geometric point $s \in S$ there is a nonempty open subset $\mathrm{U}^{s} \subset s \times X$ such that

$$
\begin{equation*}
\beta:\left.\left.\mathcal{F}_{\mathrm{G}}\right|_{\mathrm{U}^{\mathrm{s}}} \longrightarrow(\mathrm{~s} \times \overline{\mathrm{G} / \mathrm{R}})\right|_{\mathrm{U}^{\mathrm{s}}} \tag{2.1}
\end{equation*}
$$

factors through $\left.\left.(s \times G / R)\right|_{u s} \subset(s \times \bar{G} / R)\right|_{u s}$.

An S-point of $\overline{\operatorname{Bun}}_{\mathrm{R}}$ can also be seen as a pair $\left(\mathcal{F}_{G}, \alpha\right)$, where \mathcal{F}_{G} is an $(S \times X) \times X$ Gtorsor on $S \times X$, and $\alpha: \mathcal{O}_{S \times X} \rightarrow V_{\mathcal{F}_{G}}$ is a section with the following property. First, $\alpha(1)$ lies in $\overline{G / R} \times{ }^{G} \mathcal{F}_{G}$. Secondly, for any geometric point $s \in S$ there is a nonempty open subset $\mathrm{U}^{s} \subset s \times X$ such that $\left.\alpha(1)\right|_{\mathrm{us}}$ lies in $\left.\left(\mathrm{G} / \mathrm{R} \times{ }^{\mathrm{G}} \mathcal{F}_{\mathrm{G}}\right)\right|_{\mathrm{us}}$. Here $V_{\mathcal{F}_{G}}$ is the vector bundle $\left(\mathrm{V} \otimes \mathcal{O}_{\mathrm{S} \times \mathrm{X}}\right) \times{ }^{\mathrm{G}} \mathcal{F}_{\mathrm{G}}$ on $\mathrm{S} \times \mathrm{X}$.

Let Bun ${ }_{R}$ denote the stack of R-bundles on X.
Lemma 2.3. The stack $\overline{\operatorname{Bun}}_{\mathrm{R}}$ is algebraic, locally of finite type, and $\mathrm{Bun}_{R} \subset \overline{\operatorname{Bun}}_{R}$ is an open substack.

Proof. Consider the stack X classifying pairs $\left(\mathcal{F}_{G}, \alpha\right)$, where \mathcal{F}_{G} is a G -torsor on X , and $\alpha: \mathcal{O}_{\mathrm{X}} \rightarrow \mathrm{V}_{\mathcal{F}_{\mathrm{G}}}$ is a section. It is well known that this stack is algebraic, locally of finite type. The condition that $\alpha(1)$ lies in $\overline{G / R} \times{ }^{G} \mathcal{F}_{G}$ defines a closed substack $X^{\prime} \subset X$. The condition that $\alpha(1)$ factors through $G / R \times{ }^{G} \mathcal{F}_{G}$ at the generic point of X is open in X^{\prime}. Finally, the condition that $\alpha(1)$ lies in $G / R \times{ }^{G} \mathcal{F}_{G}$ everywhere over X is also open.
2.2.2. Fix a closed point $x \in X$. Write \mathcal{O}_{χ} for the completed local ring of \mathcal{O}_{X} at x, and F_{x} for its fractions field.

Let ${ }_{x, \infty} \overline{\operatorname{Bun}}_{\mathrm{R}}$ be the following stack. Its S-point is a pair $\left(\mathcal{F}_{G}, \alpha\right)$, where \mathcal{F}_{G} is an $(S \times X) \times x$ G-torsor on $S \times X$, and

$$
\begin{equation*}
\alpha: \mathcal{O}_{S \times x} \longrightarrow V_{\mathcal{F}_{G}}(\infty x) \tag{2.2}
\end{equation*}
$$

is a section with the following property. First, $\left.\alpha(1)\right|_{S \times(X-x)}$ lies in $\overline{G / R} \times\left.{ }^{G} \mathcal{F}_{G}\right|_{S \times(X-x)}$. Secondly, for any geometric point $s \in S$ there is a nonempty open subset $U^{s} \subset s \times(X-x)$ such that $\alpha(1) \mid{ }_{u s}$ lies in $\left.\left(G / R \times{ }^{G} \mathcal{F}_{G}\right)\right|_{u s}$.

Let $y_{i} \subset{ }_{x, \infty} \overline{\operatorname{Bun}}_{R}$ be the closed substack given by the condition that (2.2) factors through $V_{\mathcal{F}_{G}}(i x) \subset V_{\mathcal{F}_{G}}(\infty x)$. In particular, $y_{0}=\overline{\operatorname{Bun}}_{\mathrm{R}}$. As in Lemma 2.3, one shows that y_{i} is algebraic locally of finite type. Since ${ }_{x, \infty} \overline{\operatorname{Bun}}_{R}$ is the direct limit of y_{i}, the stack ${ }_{x, \infty} \overline{\mathrm{Bun}}_{\mathrm{R}}$ is ind-algebraic.

Recall that if a stack y admits a presentation as a direct limit of algebraic stacks, locally of finite type y_{i}, then we have the derived category $\mathrm{D}(y)$, which is an inductive 2-limit of $D\left(y_{i}\right)$. In particular, any $K \in D(y)$ is the extension by zero from some closed algebraic substack of y, and similarly for the category $P(y)$ of perverse sheaves on y (cf. [4, Appendices A.1-A.2] and [1, Section 0.4.4] for details).

For a scheme S, one can also view an S-point of ${ }_{x, \infty} \overline{\operatorname{Bun}}_{R}$ as a pair $\left(\mathcal{F}_{G}, \beta\right)$, where \mathcal{F}_{G} is an $(S \times X) \times_{X}$ G-torsor on $S \times X$, and β is a G-equivariant map $\beta:\left.\mathcal{F}_{G}\right|_{S \times(X-x)} \rightarrow$ $S \times(\bar{G} / \mathrm{R} \mid x-x)$ with the following property. For any geometric point $s \in S$, there is a
nonempty open subset $\mathrm{U}^{s} \subset s \times(X-x)$ such that

$$
\begin{equation*}
\beta:\left.\left.\mathcal{F}_{\mathrm{G}}\right|_{\mathrm{us}} \longrightarrow(s \times \overline{\mathrm{G} / \mathrm{R}})\right|_{\mathrm{us}} \tag{2.3}
\end{equation*}
$$

factors through $\left.\left.(s \times G / R)\right|_{u s} \subset(s \times \overline{G / R})\right|_{u s}$.
Let H be an abelian group scheme over X , and let $\mathrm{R} \rightarrow \mathrm{H}$ be a homomorphism of group schemes over X. Assume that the stack $\mathrm{Bun}_{\mathrm{H}}$ of H -bundles on X is algebraic.

Fix a rank-one local system \mathcal{L} on Bun $_{H}$ trivialized at the trivial H -torsor $\mathcal{F}_{\mathrm{H}}^{0}$. Assume that for the tensor product map $m: \operatorname{Bun}_{H} \times \operatorname{Bun}_{H} \rightarrow \operatorname{Bun}_{H}$ there exists an isomorphism $\mathfrak{m}^{*} \mathcal{L} \widetilde{\mathcal{G}} \mathbb{L} \boxtimes \mathcal{L}$ whose restriction to the k-point $\left(\mathcal{F}_{\mathrm{H}}^{\mathcal{O}}, \mathcal{F}_{\mathrm{H}}^{\mathcal{O}}\right)$ is the identity.
2.2.3. We would like to define a category $\mathrm{P}^{\mathcal{L}}\left({ }_{x, \infty} \overline{\mathrm{Bun}}_{\mathrm{R}}\right)$ of \mathcal{L}-equivariant perverse sheaves on $x_{, \infty} \overline{\operatorname{Bun}}_{\mathrm{R}}$, and similarly for $\overline{\mathrm{Bun}}_{\mathrm{R}}$.

Let $x y \subset(X-x) x_{x, \infty} \overline{\operatorname{Bun}}_{R}$ be the open substack classifying collections $y \in X-x$, $\left(\mathcal{F}_{G}, \beta\right) \in{ }_{x, \infty} \overline{\operatorname{Bun}}_{R}$ such that the map $\beta: \mathcal{F}_{G} \rightarrow \overline{\mathrm{G} / \mathrm{R}}$ factors through $\mathrm{G} / \mathrm{R} \subset \overline{\mathrm{G} / \mathrm{R}}$ in a neighbourhood of y.

Set $D_{y}=\operatorname{Spec} \mathcal{O}_{y}$. By definition, for a point of $x y$, the G-torsor $\left.\mathcal{F}_{G}\right|_{D_{y}}$ is equipped with a reduction to an R -torsor that we denote \mathcal{F}_{R}.

Let $x X$ be the stack classifying $\left(y, \mathcal{F}_{G}, \beta\right) \in x y,\left(y, \mathcal{F}_{G}^{\prime}, \beta^{\prime}\right) \in x^{y}$ and

$$
\begin{equation*}
\tau:\left.\left.\mathcal{F}_{\mathrm{G}}\right|_{\mathrm{x}_{-\mathrm{y}}} \widetilde{\mathcal{F}}_{\mathrm{G}}^{\prime}\right|_{\mathrm{x}_{-y}} \tag{2.4}
\end{equation*}
$$

such that the diagram commutes:

Let pr (resp., act) denote the projection $\mathrm{x} \mathcal{X} \rightarrow \mathrm{x}^{y}$ sending the above collection to $\left(y, \mathscr{F}_{G}, \beta\right)\left(\right.$ resp., to $\left.\left(y, \mathcal{F}_{G}^{\prime}, \beta^{\prime}\right)\right)$. They provide $x \mathcal{X}$ with a structure of a groupoid over $x y$.

Set $D_{y}^{*}=\operatorname{Spec} F_{y}$. Let $x \mathcal{S r}_{R}$ denote the stack classifying $\left(y \in X-x, \mathcal{F}_{R}, \mathcal{F}_{R}^{\prime}, \tau\right)$, where \mathcal{F}_{R} and $\mathcal{F}_{\mathrm{R}}^{\prime}$ are R -torsors on D_{y} and

$$
\begin{equation*}
\tau:\left.\left.\mathcal{F}_{\mathrm{R}}\right|_{\mathrm{D}_{\mathscr{y}}^{*}} 工 \mathcal{F}_{\mathrm{R}}^{\prime}\right|_{\mathrm{D}_{\mathrm{y}}^{*}} \tag{2.6}
\end{equation*}
$$

is an isomorphism.

We have a map $x^{\mathcal{X}} \rightarrow \operatorname{cGr}_{R}$ sending the above collection to $\left(y, \mathcal{F}_{R}, \mathcal{F}_{R}^{\prime}, \tau\right)$, where \mathcal{F}_{R} and \mathcal{F}_{R}^{\prime} are R-torsors on D_{y} obtained from $\left(\mathcal{F}_{G}, \beta\right)$ and $\left(\mathcal{F}_{G}^{\prime}, \beta^{\prime}\right)$ and τ is the restriction of (2.4).

Let $x \mathrm{Gr}_{\mathrm{H}}$ denote the affine Grassmannian of H over $\mathrm{X}-\mathrm{x}$, namely the ind-scheme classifying $y \in X-x$ and an H-torsor on D_{y} trivialized over D_{y}^{*}. We have a map $\times \mathcal{G r}_{R} \rightarrow$ $x \operatorname{Gr}_{H}$ sending $\left(y, \mathcal{F}_{R}, \mathcal{F}_{\mathrm{R}}^{\prime}, \tau\right)$ to $\left(y, \mathcal{F}_{H}, \tau\right)$, where

$$
\begin{equation*}
\mathcal{F}_{H}=\operatorname{Isom}\left(\mathcal{F}_{R} \times_{R} H, \mathcal{F}_{R}^{\prime} \times_{R} H\right), \tag{2.7}
\end{equation*}
$$

and $\tau: \mathcal{F}_{\mathrm{H}} \mathcal{\sim}_{\mathcal{F}}^{\mathrm{H}}{ }_{\mathrm{D}}^{*}{ }_{\mathrm{y}}^{*}$ is the induced trivialization.
We have a map $\times \mathrm{Gr}_{\mathrm{H}} \rightarrow \operatorname{Bun}_{\mathrm{H}}$ sending $\left(y, \mathcal{F}_{\mathrm{H}}, \tau\right)$ to $\widetilde{\mathcal{F}}_{\mathrm{H}}$, where $\widetilde{\mathcal{F}}_{\mathrm{H}}$ is the gluing of $\left.\mathcal{F}_{\mathrm{H}}^{\mathcal{O}}\right|_{\mathrm{X}-\mathrm{y}}$ and $\left.\mathcal{F}_{\mathrm{H}}\right|_{\mathrm{D}_{y}}$ via the isomorphism $\tau:\left.\mathcal{F}_{\mathrm{H}} \widetilde{\rightarrow} \mathcal{F}_{\mathrm{H}}^{0}\right|_{\mathrm{D}_{y}^{*}}$.

Define the evaluation map ev $x:{ }_{x} X \rightarrow \operatorname{Bun}_{H}$ as the composition

$$
\begin{equation*}
\mathrm{xX} \longrightarrow \mathrm{xGr} \mathrm{Ar}_{\mathrm{R}} \longrightarrow \mathrm{x} \mathrm{Gr}_{\mathrm{H}} \longrightarrow \mathrm{Bun}_{\mathrm{H}} . \tag{2.8}
\end{equation*}
$$

We would like $\mathrm{P}^{\mathcal{L}}\left({ }_{x, \infty} \overline{\operatorname{Bun}}_{R}\right)$ to be the category of perverse sheaves K on $x_{, \infty} \overline{\operatorname{Bun}}_{R}$ equipped with an isomorphism

$$
\begin{equation*}
\mathrm{act}^{*} \widetilde{\mathrm{~K}} \simeq \mathrm{pr}^{*} \widetilde{\mathrm{~K}} \otimes \mathrm{ev}_{x}^{*} \mathcal{L} \tag{2.9}
\end{equation*}
$$

satisfying the usual associativity condition, and such that its restriction to the unit section of $x \mathcal{X}$ is the identity. Here \widetilde{K} is the restriction of K under $x y \rightarrow{ }_{x, \infty} \overline{\operatorname{Bun}}_{R}$. However, this naive definition does not apply directly, because pr, act : $x \mathcal{X} \rightarrow \mathrm{x}^{y}$ are not smooth in general. (One more source of difficulties is that the affine Grassmannian $\mathrm{Gr}_{\mathrm{R}, \mathrm{y}}$ may be highly nonreduced, this happens, e.g., for R a torus.)

We remedy the difficulty under an additional assumption satisfied in our examples. Suppose that R fits into an exact sequence of group schemes $1 \rightarrow \mathrm{U} \rightarrow \mathrm{R} \rightarrow \mathrm{T} \rightarrow 1$ over X, where U is a unipotent group scheme, and T is as follows. There is an integer $b \geq 0$ and a (ramified) Galois covering $\pi: \widetilde{X} \rightarrow X$, where \widetilde{X} is a smooth projective curve, such that for an X-scheme S we have

$$
\begin{equation*}
T(S)=\operatorname{Hom}\left(\widetilde{X} \times{ }_{x} S, \mathbb{G}_{\mathfrak{m}}^{b}\right) . \tag{2.10}
\end{equation*}
$$

In this case $B_{n}{ }_{T}$ is nothing but the stack of \mathbb{G}_{m}^{b}-torsors on \widetilde{X}. For a divisor D on \widetilde{X} with
values in the coweight lattice of $\mathbb{G}_{\mathfrak{m}}^{b}$, and for a T-torsor \mathcal{F}_{\top} on X, we denote by $\mathcal{F}_{T}(D)$ the corresponding twisted T -torsor on X .

The stack $\chi_{x} X$ can be seen as the one classifying $\left(y, \mathcal{F}_{G}, \beta\right) \in x^{Y}$, an R-torsor \mathcal{F}_{R}^{\prime} on D_{y}, and an isomorphism $\tau:\left.\left.\mathcal{F}_{R}\right|_{D_{y}^{*}} \not \mathcal{F}_{R}^{\prime}\right|_{D_{y}^{*}}$, where \mathcal{F}_{R} is the R-torsor on D_{y} obtained from $\left(\mathcal{F}_{\mathcal{G}}, \beta\right)$. From this point of view the projection $\mathrm{pr}: x \mathcal{X} \rightarrow x y$ is the map forgetting $\mathcal{F}_{\mathbb{R}}^{\prime}$.

Modify the definition of $x \mathcal{X}$ and of $x y$ as follows. Let

$$
\begin{equation*}
\tilde{x} y \subset \tilde{X} x_{x, \infty} \overline{\operatorname{Bun}}_{R} \tag{2.11}
\end{equation*}
$$

be the open substack classifying $\widetilde{y} \in \widetilde{X}$ with π nonramified at \widetilde{y} and $y:=\pi(\widetilde{y}) \neq x$, $\left(\mathcal{F}_{G}, \beta\right) \in{ }_{x, \infty} \overline{\operatorname{Bun}}_{R}$ such that the map $\beta: \mathcal{F}_{G} \rightarrow \overline{\mathrm{G} / \mathrm{R}}$ factors through $\mathrm{G} / \mathrm{R} \subset \overline{\mathrm{G} / \mathrm{R}}$ in a neighbourhood of y.

Given for each $\sigma \in \Sigma=\operatorname{Gal}(\widetilde{X} / X)$ a coweight $\gamma_{\sigma}: \mathbb{G}_{\mathfrak{m}} \rightarrow \mathbb{G}_{\mathfrak{m}}^{\mathrm{b}}$, we set $\gamma=\left\{\gamma_{\sigma}\right\}$. Let

$$
\begin{equation*}
\text { pr }: \tilde{x}^{x_{\gamma}} \longrightarrow \tilde{x}^{y} \tag{2.12}
\end{equation*}
$$

be the stack whose fibre over $\left(\widetilde{\mathcal{Y}}, \mathcal{F}_{\mathcal{G}}, \beta\right) \in_{\tilde{\chi}} y$ is the ind-scheme classifying an R-torsor \mathcal{F}_{R}^{\prime} on D_{y}, an isomorphism $\left.\mathcal{F}_{R} \widetilde{f}_{\mathcal{R}}^{\prime}\right|_{D_{y}^{*}}$, and an extension of the induced isomorphism

$$
\begin{equation*}
\mathcal{F}_{R} \times_{R} T 工 \mathcal{F}_{R}^{\prime} \times\left._{R} T\right|_{D_{\mathcal{H}}^{*}} \tag{2.13}
\end{equation*}
$$

to an isomorphism over D_{y},

$$
\begin{equation*}
\mathcal{F}_{R} \times_{R} T \Longrightarrow\left(\mathcal{F}_{R}^{\prime} \times_{R} T\right)\left(\sum_{\sigma \in \Sigma} \gamma_{\sigma} \sigma(\widetilde{y})\right) . \tag{2.14}
\end{equation*}
$$

Here $y=\pi(\widetilde{y})$, and \mathcal{F}_{R} is the R-torsor on D_{y} obtained from $\left(\mathcal{F}_{G}, \beta\right)$.
As above, we have an action map act: $\tilde{x}_{\gamma} \rightarrow \tilde{x} y$. The advantage is that any fibre of each of the maps pr, act : $\tilde{x} X_{\gamma} \rightarrow \tilde{x} y$ is reduced (it identifies with the affine Grassmannian at y of a unipotent group scheme over X).

Now proceed as in [3]. Recall that $\mathrm{U}\left(\mathrm{F}_{y}\right)$ is an ind-group scheme, it can be written as a direct limit of some group schemes $\mathrm{U}^{-\mathrm{m}}, \mathrm{m} \geq 0$, such that $\mathrm{U}^{-\mathrm{m}} \hookrightarrow \mathrm{U}^{-\mathrm{m}-1}$ is a closed subgroup, $\mathrm{U}^{0}=\mathrm{U}\left(\mathrm{O}_{y}\right)$, and $\mathrm{U}^{-m} / \mathrm{U}^{0}$ are smooth of finite type [3, Section 3.1].

For this reason, for $m \geq 0$ there exist closed substacks

$$
\begin{equation*}
\tilde{x} x_{\gamma, m} \hookrightarrow_{\tilde{x}} x_{\gamma, m+1} \hookrightarrow \cdots \hookrightarrow \tilde{x}^{x_{\gamma}} \tag{2.15}
\end{equation*}
$$

such that both maps pr, act : $\tilde{x}^{X_{\gamma, m}} \rightarrow \tilde{x}^{y}$ are of finite type and smooth of the same relative dimension, and $\tilde{\chi} X_{\gamma}$ is a direct limit of the stacks $\tilde{\chi}^{X_{\gamma, m}}$.

As above, we have a map $\tilde{\chi}^{X_{\gamma}} \rightarrow \chi^{\mathcal{G} r_{R}}$, hence also the evaluation map ev $\tilde{\tilde{x}}_{, \gamma}$: $\tilde{x} X_{\gamma} \rightarrow$ Bun $_{H}$.

Definition 2.4. Let $\mathrm{P}^{\mathcal{L}}\left({ }_{x, \infty} \overline{\operatorname{Bun}}_{\mathcal{R}}\right)$ denote the category of perverse sheaves on ${ }_{x, \infty} \overline{\operatorname{Bun}}_{R}$ equipped for each γ and $m \geq 0$ with isomorphisms

$$
\begin{equation*}
\alpha_{\gamma, \mathrm{m}}: \operatorname{act}^{*} \widetilde{\mathrm{~K}} \Longrightarrow \operatorname{pr}^{*} \widetilde{\mathrm{~K}} \otimes \mathrm{ev}_{x, \gamma}^{*} \mathcal{L} \tag{2.16}
\end{equation*}
$$

over $\tilde{x}^{X_{\gamma, m}}$. Here \widetilde{K} denotes the restriction of K under $\tilde{x}^{y} \rightarrow_{x, \infty} \overline{\operatorname{Bun}}_{R}$. It is required that for $m_{1}<m_{2}$ the restriction of $\alpha_{\gamma, m_{2}}$ to $\tilde{x}_{\gamma, m_{1}}$ equals $\alpha_{\gamma, m_{1}}$, the restriction of $\alpha_{0, m}$ to the unit section of $\tilde{x}^{X_{0, m}}$ is the identity, and the usual associativity condition holds.

Denote by $\mathrm{P}^{\mathcal{L}}\left(\overline{\operatorname{Bun}}_{R}\right)$ the full subcategory of $\mathrm{P}^{\mathcal{L}}\left(\mathrm{x}, \infty \overline{\operatorname{Bun}}_{\mathrm{R}}\right)$ consisting of perverse sheaves, which are extensions by zero under $\overline{\operatorname{Bun}}_{R} \hookrightarrow{ }_{x, \infty} \overline{\operatorname{Bun}}_{\mathrm{R}}$.

2.3 Hecke functors

Let ${ }_{\chi} \mathcal{H}_{G}$ denote the Hecke stack classifying G-torsors $\mathcal{F}_{G}, \mathcal{F}_{G}^{\prime}$ on X together with an isomorphism $\tau: \mathcal{F}_{G} \underset{\rightarrow}{\sim} \mathcal{F}_{G}^{\prime} \mid x-x$. Let $\mathfrak{q}:{ }_{x} \mathcal{H}_{G} \rightarrow$ Bun $_{G}\left(\right.$ resp., $\mathfrak{p}:{ }_{x} \mathcal{H}_{G} \rightarrow$ Bun $\left._{G}\right)$ denote the map forgetting \mathcal{F}_{G} (resp., \mathcal{F}_{G}^{\prime}). Consider the diagram

$$
\begin{equation*}
x, \infty \overline{\mathrm{Bu}}_{\mathrm{R}} \stackrel{\mathrm{p}_{\mathrm{R}}}{\stackrel{1}{x, \infty} \overline{\mathrm{Bun}}_{\mathrm{R}} \times_{\text {Bun }_{\mathrm{G}} \times} \mathcal{H}_{\mathrm{G}} \xrightarrow{\mathrm{q}_{\mathrm{R}}}} x, \infty \overline{\mathrm{Bun}}_{\mathrm{R}}, \tag{2.17}
\end{equation*}
$$

where we used \mathfrak{p} to define the fibred product, $\mathfrak{p}_{\mathbb{R}}$ forgets \mathcal{F}_{G}^{\prime}, and $\mathfrak{q}_{\mathbb{R}}$ sends $\left(\mathcal{F}_{G}, \beta, \mathcal{F}_{G}^{\prime}, \tau\right)$ to $\left(\mathcal{F}_{G}^{\prime}, \beta^{\prime}\right)$, where β^{\prime} is the composition

$$
\begin{equation*}
\mathcal{F}_{\mathrm{G}}^{\prime} \xrightarrow{\tau^{-1}} \mathcal{F}_{\mathrm{G}} \xrightarrow{\beta} \overline{\mathrm{G} / \mathrm{R}} . \tag{2.18}
\end{equation*}
$$

In the same way one gets the diagram

$$
\begin{equation*}
\tilde{x} y \stackrel{{ }^{p y}}{\longleftrightarrow} \tilde{x}^{y} \times_{\text {Bun }_{G}} \times \mathcal{H}_{G} \xrightarrow{q y} \tilde{x} y . \tag{2.19}
\end{equation*}
$$

The action of the groupoid \tilde{x}^{X} on \tilde{x}^{y} lifts to an action on this diagram (in the sense of [6, Appendix A.1]). Namely, for each γ we have two diagrams, where the squares are
cartesian:

Write $\operatorname{Sph}\left(\operatorname{Gr}_{G^{\prime}, x}\right)$ for the category of $\mathrm{G}^{\prime}\left(\mathcal{O}_{x}\right)$-equivariant perverse sheaves on the affine Grassmannian $\mathrm{Gr}_{G^{\prime}, x}=\mathrm{G}^{\prime}\left(\mathrm{F}_{x}\right) / \mathrm{G}^{\prime}\left(\mathcal{O}_{\chi}\right)$. This is a tensor category equivalent to the category of representations of the Langlands dual group G^{\prime} over $\overline{\mathbb{Q}}_{\ell}[7]$.

Let Bun ${ }_{G}^{\times}$be the stack classifying a G-bundle \mathcal{F}_{G} on X with an isomorphism of G torsors $\mathcal{F}_{\mathrm{G}} \widetilde{\mathcal{F}}_{\mathfrak{F}}{ }^{\prime},\left.\right|_{\mathrm{D}_{x}}$. In a way compatible with our identification $\mathrm{Bun}_{\mathrm{G}} \widetilde{\rightarrow} \mathrm{Bun}_{\mathrm{G}^{\prime}}$ one can view $\operatorname{Bun}_{\mathrm{G}}^{\chi}$ as the stack classifying a G^{\prime}-torsor $\mathcal{F}_{G^{\prime}}$ with a trivialization $\mathcal{F}_{G}, \widetilde{\sim} \mathcal{F}_{G}^{0},\left.\right|_{\mathrm{D}_{x}}$. So, the projection $\mathfrak{q}:{ }_{\chi} \mathcal{H}_{\mathrm{G}} \rightarrow$ Bun $_{\mathrm{G}}$ can be written as a fibration

$$
\begin{equation*}
\operatorname{Bun}_{G}^{x} \times{ }_{G^{\prime}\left(\mathcal{O}_{x}\right)} \mathrm{Gr}_{G^{\prime}, x} \longrightarrow \operatorname{Bun}_{G} . \tag{2.21}
\end{equation*}
$$

Now for $\mathcal{A} \in \operatorname{Sph}\left(\operatorname{Gr}_{G^{\prime}, x}\right)$ and $K \in \mathrm{D}\left(x, \infty \overline{\operatorname{Bun}}_{\mathrm{R}}\right)$ we can form their twisted exterior product

$$
\begin{equation*}
K \widetilde{\boxtimes} \mathcal{A} \in \mathrm{D}\left({ }_{x, \infty} \overline{\operatorname{Bun}}_{\mathrm{R}} \times_{\text {Bun }_{G} \times} \mathcal{H}_{G}\right) . \tag{2.22}
\end{equation*}
$$

It is normalized so that it is perverse for K perverse and $\mathbb{D}(K \widetilde{\boxtimes} \mathcal{A}) \rightrightarrows \mathbb{D}(\mathrm{K}) \widetilde{\boxtimes} \mathbb{D}(\mathcal{A})$.
Define the Hecke functor $\mathrm{H}(\mathcal{A}, \cdot): \mathrm{D}\left({ }_{\mathrm{x}, \infty} \overline{\mathrm{Bun}}_{\mathrm{R}}\right) \rightarrow \mathrm{D}\left(\mathrm{x}, \infty \overline{\mathrm{Bun}}_{\mathrm{R}}\right)$ by

$$
\begin{equation*}
\mathrm{H}(\mathcal{A}, \mathrm{~K})=\left(\mathfrak{p}_{\mathrm{R}}\right)!(\mathrm{K} \widetilde{\boxtimes} \mathcal{A}) \tag{2.23}
\end{equation*}
$$

These functors are compatible with the tensor structure on $\operatorname{Sph}\left(\mathrm{Gr}_{\mathrm{G}^{\prime}, x}\right)$. Namely, we have
canonically

$$
\begin{equation*}
\mathrm{H}\left(\mathcal{A}_{1}, \mathrm{H}\left(\mathcal{A}_{2}, \mathrm{~K}\right)\right) \simeq \mathrm{H}\left(\mathcal{A}_{1} * \mathcal{A}_{2}, \mathrm{~K}\right), \tag{2.24}
\end{equation*}
$$

where $\mathcal{A}_{1} * \mathcal{A}_{2} \in \operatorname{Sph}\left(\operatorname{Gr}_{G^{\prime}, x}\right)$ is the convolution [3, Section 5].
As in Section 2.2, one defines the category $\mathrm{P}^{\mathcal{L}}\left(\mathrm{x}, \infty \overline{\operatorname{Bun}}_{\mathrm{R}} \times_{\text {Bun }_{G}} x^{\mathcal{H}_{G}}\right)$. If $K \in$ $P^{\mathcal{L}}\left(x, \infty \overline{\operatorname{Bun}}_{R}\right)$, then

$$
\begin{equation*}
K \widetilde{\otimes} \mathcal{A} \in \mathrm{P}^{\mathcal{L}}\left({ }_{x, \infty} \overline{\operatorname{Bun}}_{\mathrm{R}} \times_{\mathrm{Bun}_{\mathrm{G}} \times} \mathcal{H}_{\mathrm{G}}\right), \tag{2.25}
\end{equation*}
$$

so the complex $\mathrm{H}(\mathcal{A}, \mathrm{K})$ inherits a \mathcal{L}-equivariant structure. Each perverse cohomology sheaf of $\mathrm{H}(\mathcal{A}, \mathrm{K})$ lies in $\mathrm{P}^{\mathcal{L}}\left({ }_{\mathrm{x}, \infty} \overline{\operatorname{Bun}}_{\mathrm{R}}\right)$.

2.4 Substacks of ${ }_{x, \infty} \overline{\operatorname{Bun}}_{R}$

Let Λ_{y} be the set of $R\left(F_{x}\right)$-orbits on the affine Grassmannian $\mathrm{Gr}_{G, x}=G\left(F_{x}\right) / G\left(\mathcal{O}_{x}\right)$. We are interested in the situations where Λ_{y} is discrete. Write $\operatorname{Orb}_{\mu} \subset \mathrm{Gr}_{G, x}$ for the $R\left(F_{x}\right)$-orbit corresponding to $\mu \in \Lambda_{y}$.

Let $y_{\text {loc }}$ be the stack classifying a G-torsor \mathcal{F}_{G} on D_{χ}, an R-torsor \mathcal{F}_{R} on D_{χ}^{*}, and
 by $R\left(F_{x}\right)$.

For $\mu \in \Lambda_{y}$, let $y_{\text {loc }}^{\mu}$ (resp., $\left.y y_{\text {loc }}^{\leq \mu}\right)$ denote the stack quotient of Orb_{μ} (resp., of $\overline{\operatorname{Orb}}_{\mu}$) by $R\left(F_{x}\right)$. (We do not precise for the moment the scheme structure on $\overline{\mathrm{Orb}}_{\mu}$.) We have an order on Λ_{y} given by $\mu^{\prime} \leq \mu$ if and only if $\operatorname{Orb}_{\mu^{\prime}} \subset \overline{\operatorname{Orb}}_{\mu}$.

We have a map ${ }_{x, \infty} \overline{\operatorname{Bun}}_{R} \rightarrow y_{\text {loc }}$ sending $\left(\mathcal{F}_{G}, \beta\right)$ to its restriction to D_{x}. For $\mu \in \Lambda_{y}$, set

$$
\begin{equation*}
{ }_{x, \mu} \overline{\operatorname{Bun}}_{R}={ }_{x, \infty} \overline{\operatorname{Bun}}_{R} x_{y_{\text {loc }}} y_{\text {loc }}^{\leq \mu}, \quad \underset{x, \mu}{\operatorname{Bun}_{R}}=x, \infty \overline{\operatorname{Bun}}_{R} \times y_{\text {loc }} y_{\text {loc }}^{\mu} . \tag{2.26}
\end{equation*}
$$

Let ${ }_{x, \mu}$ Bun $_{\boldsymbol{R}} C_{x, \mu} \widetilde{B u n}_{\boldsymbol{R}}$ be the open substack given by the condition that

$$
\begin{equation*}
\beta:\left.\left.\mathcal{F}_{\mathrm{G}}\right|_{\mathrm{X}-\mathrm{x}} \longrightarrow \overline{\mathrm{G} / \mathrm{R}}\right|_{\mathrm{X}-\mathrm{x}} \tag{2.27}
\end{equation*}
$$

factors through $G /\left.\left.R\right|_{x-x} \subset \overline{G / R}\right|_{X_{-x}}$.
To summarize, we have a sequence of embeddings,

$$
\begin{equation*}
{ }_{x, \mu} \operatorname{Bun}_{R} \hookrightarrow_{x, \mu} \widetilde{\operatorname{Bun}}_{R} \hookrightarrow_{x, \mu} \overline{\operatorname{Bun}}_{R} \hookrightarrow{ }_{x, \infty} \overline{\operatorname{Bun}}_{R} \tag{2.28}
\end{equation*}
$$

where the first two arrows are open embeddings and the last arrow is a closed one.

2.5 ¿-equivalent perverse sheaves

The stack ${ }_{x, \mu}$ Bun $_{R}$ classifies a G-torsor \mathcal{F}_{G} on X, a G-equivariant map $\beta: \mathcal{F}_{G} \rightarrow G /\left.R\right|_{X-x}$ such that the restriction of $\left(\mathcal{F}_{G}, \beta\right)$ to D_{x} lies in $y_{\text {loc }}^{\mu}$. Set

$$
\begin{equation*}
{ }_{\mu} X={ }_{x, \mu} \operatorname{Bun}_{R} \times y_{\text {loc }} x, \mu \text { Bun }_{R} ; \tag{2.29}
\end{equation*}
$$

this is a groupoid over ${ }_{x, \mu}$ Bun $_{R}$ for the two projections pr, act : ${ }_{\mu} X \rightarrow_{x, \mu}$ Bun $_{R}$.
View ${ }_{\mu} X$ as the stack classifying R-torsors $\mathcal{F}_{R}, \mathcal{F}_{R}^{\prime}$ on $\mathrm{X}-\mathrm{x}$ with an isomorphism $\tau:\left.\mathcal{F}_{R} \mathcal{\sim} \mathcal{F}_{R}^{\prime}\right|_{D_{x}^{*}}$, a G-torsor \mathcal{F}_{G} on X, and an R-equivariant map $\left.\mathcal{F}_{R} \rightarrow \mathcal{F}_{G}\right|_{X-x}$, whose restriction to D_{x} lies in $\mathcal{y}_{\text {loc }}^{\mu}$. The projection pr: ${ }_{\mu} X \rightarrow_{x, \mu} \operatorname{Bun}_{R}$ forgets \mathcal{F}_{R}^{\prime}.

Let ${ }_{\mu} \mathrm{ev}_{X}:{ }_{\mu} \mathcal{X} \rightarrow$ Bun $_{H}$ be the map sending the above collection to the H -torsor $\widetilde{\mathcal{F}}_{\mathrm{H}}$ on X obtained by the following gluing procedure. Let \mathcal{F}_{H} denote the H -torsor on $\mathrm{X}-\mathrm{X}$ of isomorphisms

$$
\begin{equation*}
\operatorname{Isom}\left(\mathcal{F}_{R} \times_{R} H, \mathcal{F}_{R}^{\prime} \times_{R} H\right) . \tag{2.30}
\end{equation*}
$$

Then $\widetilde{\mathcal{F}}_{\mathrm{H}}$ is the gluing of \mathcal{F}_{H} and of $\mathcal{F}_{\mathrm{H}}^{0} \mid \mathrm{D}_{\mathrm{x}}$ over D_{χ}^{*} via $\tau:\left.\mathcal{F}_{H} \widetilde{\mathcal{F}}_{\mathrm{H}}^{0}\right|_{D_{\chi}^{*}}$.
We say that $\mu \in \Lambda_{y}$ is relevant if there exists a morphism ev ${ }^{\mu}:{ }_{x, \mu} \operatorname{Bun}_{R} \rightarrow \operatorname{Bun}_{H}$ making the following diagram commutative:

If such ev^{μ} exists, it is unique up to a tensoring by a fixed H -torsor on X . Write Λ_{y}^{+}for the set of relevant $\mu \in \Lambda_{y}$.

Write $0 \in \Lambda_{y}$ for the $R\left(F_{x}\right)$-orbit on $\mathrm{Gr}_{G, x}$ passing by 1 . Then ${ }_{x, 0} \operatorname{Bun}_{R}$ is nothing but the stack B_{n} of R-bundles on X. The homomorphism $R \rightarrow$ H yields a map $\mathrm{ev}^{0}:{ }_{x, 0}$ Bun $_{R} \rightarrow$ Bun $_{H}$ such that (2.31) commutes, so $0 \in \Lambda_{y}^{+}$.

For $\mu \in \Lambda_{y}^{+}$we denote by \mathcal{B}^{μ} the Goresky-MacPherson extension of

$$
\begin{equation*}
\left(\mathrm{ev}^{\mu}\right)^{*} \mathcal{L} \otimes \overline{\mathbb{Q}}_{\ell}[1]\left(\frac{1}{2}\right)^{\otimes \operatorname{dim}_{x, \mu} \operatorname{Bun}_{R}} \tag{2.32}
\end{equation*}
$$

under ${ }_{x, \mu}$ Bun $_{R} \hookrightarrow{ }_{x, \mu} \overline{\operatorname{Bun}}_{R}$. By construction, $\mathcal{B}^{\mu} \in \mathrm{P}^{\mathcal{L}}\left({ }_{x, \infty} \overline{\operatorname{Bun}}_{\mathrm{R}}\right)$.

The examples of the above situation include Whittaker models, Waldspurger models for GL_{2}, and Bessel models for GSp_{4} (the latter is studied in Section 3).

2.6 Whittaker models

Let G^{\prime} be a connected reductive group over $k, B^{\prime} \subset G^{\prime}$ a Borel subgroup, $U^{\prime} \subset B^{\prime}$ its unipotent radical. Set $T^{\prime}=B^{\prime} / U^{\prime}$. Assume that $\left[G^{\prime}, G^{\prime}\right]$ is simply connected. Let \mathcal{J} denote the set of vertices of the Dynkin diagram, and $\left\{\check{\alpha}_{i}, i \in \mathcal{J}\right\}$ the simple roots corresponding to B^{\prime}. Fix a B^{\prime}-torsor $\mathfrak{F}_{B^{\prime}}$ on X and a conductor for the induced T^{\prime}-torsor $\mathfrak{F}_{T^{\prime}}$. That is, for each $i \in \mathcal{J}$ we fix an inclusion of coherent sheaves

$$
\begin{equation*}
\widetilde{\omega}_{i}: \mathcal{L}_{\tilde{\mathcal{F}}_{\mathrm{T}},}^{\check{i}^{\prime}} \hookrightarrow \Omega . \tag{2.33}
\end{equation*}
$$

Write \mathfrak{F}_{G}, for the G^{\prime}-torsor induced from $\mathfrak{F}_{\mathrm{B}}$. Now G is the group scheme of automorphisms of $\mathfrak{F}_{G^{\prime}}$. Let $R \subset G$ denote the group scheme of automorphisms of $\mathfrak{F}_{B^{\prime}}$ acting trivially on \mathfrak{F}^{T}.

To satisfy the assumptions of Lemma 2.1, take

$$
\begin{equation*}
V=\oplus_{i} \mathcal{H o m}\left(\mathcal{L}_{\mathfrak{F}_{T^{\prime}}}^{\check{\omega}_{i}}, V_{\mathfrak{F}_{\mathfrak{G}^{\prime}}}^{\check{\omega}_{i}}\right), \tag{2.34}
\end{equation*}
$$

the sum being taken over the set of fundamental weights $\check{\omega}_{i}$ of G^{\prime}. Here $V^{\check{\lambda}}$ is the Weil G^{\prime} module corresponding to $\check{\lambda}$. Then G acts on V, and V is equipped with a canonical section $\mathcal{O}_{X} \hookrightarrow \mathrm{~V} . \mathrm{By}[1$, Theorem 1.1.2], G / R is strongly quasi-affine over X.

The group scheme of automorphisms of $\mathfrak{F}_{\mathrm{B}^{\prime} /\left[\mathrm{u}^{\prime}, \mathrm{u}^{\prime}\right]}$ acting trivially on \mathfrak{F}_{\top}, is canonically

$$
\begin{equation*}
\oplus_{\mathrm{i} \in \mathcal{J}} \mathcal{L}_{\mathfrak{F}_{\mathrm{T}},}^{\check{\alpha}_{i}} . \tag{2.35}
\end{equation*}
$$

Set $H=\oplus_{i \in \mathcal{J}} \Omega$. Define a homomorphism of group schemes $R \rightarrow H$ over X as the composition

$$
\begin{equation*}
R \longrightarrow \oplus_{i \in \mathcal{J}} \mathcal{L}_{\tilde{F}_{T},}^{\check{\alpha}_{i}} \xrightarrow{\widetilde{\omega}} \mathrm{H} . \tag{2.36}
\end{equation*}
$$

The stack $\overline{\operatorname{Bun}}_{\mathrm{R}}$ identifies with the one classifying pairs $\left(\mathcal{F}_{G^{\prime}}, \mathrm{K}\right)$, where $\mathcal{F}_{G^{\prime}}$ is a G^{\prime}-torsor on X, and κ is a collection of maps

$$
\begin{equation*}
\kappa^{\check{\lambda}}: \mathcal{L}_{\mathfrak{F}_{T},}^{\check{\lambda}} \hookrightarrow V_{\mathcal{F}_{G}}^{\check{\lambda}} \tag{2.37}
\end{equation*}
$$

for each dominant weight $\check{\lambda}$ of G^{\prime}, satisfying Plücker relations ([3], Section 2.2.2).
The set Λ_{y} identifies in this case with the group $\operatorname{Hom}\left(\mathbb{G}_{m}, \mathrm{~T}^{\prime}\right)$ of coweights of T^{\prime}.

For $\lambda \in \Lambda_{y}$ the stack $x, \lambda \overline{\operatorname{Bun}}_{\mathrm{R}}$ classifies a G^{\prime}-torsor $\mathcal{F}_{G^{\prime}}$ on X, a collection of maps

$$
\begin{equation*}
\kappa^{\check{\lambda}}: \mathcal{L}_{\tilde{F}_{T},}^{\check{\lambda}} \hookrightarrow \mathcal{V}_{\mathfrak{F}_{G},}^{\check{\lambda}}(\langle\lambda, \check{\lambda}\rangle x) \tag{2.38}
\end{equation*}
$$

for each dominant weight $\check{\lambda}$ of G^{\prime}, satisfying Plücker relations.
Assume that the base field k is of characteristic $p>0$, and fix a nontrivial additive character $\psi: \mathbb{F}_{p} \rightarrow \overline{\mathbb{Q}}_{\ell}^{*}$. Write \mathcal{L}_{ψ} for the corresponding Artin-Shreier sheaf on \mathbb{A}_{k}^{1}. Take \mathcal{L} to be the restriction of \mathcal{L}_{ψ} under the map

$$
\begin{equation*}
\operatorname{Bun}_{H} \longrightarrow \prod_{i \in \mathcal{J}} \mathrm{H}^{1}(\mathrm{X}, \Omega) \xrightarrow{\text { sum }} \mathbb{A}_{k}^{1} \tag{2.39}
\end{equation*}
$$

The corresponding Whittaker category $\mathrm{P}^{\mathcal{L}}\left({ }_{x, \infty} \overline{\operatorname{Bun}}_{R}\right)$ has been described by Frenkel, Gaitsgory, and Vilonen in [3].

2.7 Waldspurger models

The ground field k is of characteristic $p \neq 2$. Let $\pi: \widetilde{X} \rightarrow X$ be a two-sheeted covering ramified over some divisor D_{π} on X, where \widetilde{X} is a smooth projective curve. Set $L_{\pi}=\pi_{*} \Theta_{\tilde{X}}$ and $G^{\prime}=\mathrm{GL}_{2}$. View L_{π} as a G^{\prime}-torsor $\mathfrak{F}_{G^{\prime}}$ on X. Let G be the group scheme of automorphisms of $\mathfrak{F}_{G^{\prime}}$. Let R be the group scheme over X such that for an X-scheme S we have $R(S)=\operatorname{Hom}\left(\widetilde{X} \times_{X} S, \mathbb{G}_{m}\right)$, so R is a closed group subscheme of G over X.

Let σ be the nontrivial automorphism of \widetilde{X} over X, so $L_{\pi} \widetilde{\rightarrow} \mathcal{O} \oplus \mathcal{E}$, where \mathcal{E} are σ -anti-invariants in L_{π}. It is equipped with $\mathcal{E}^{2} \underset{\rightarrow}{\sim} \mathcal{O}_{X}\left(-D_{\pi}\right)$. Take $V=\mathcal{E} n d_{0}\left(L_{\pi}\right) \otimes \mathcal{E}^{-1}$, where $\mathcal{E n} d_{0}\left(L_{\pi}\right)$ stands for the sheaf of traceless endomorphisms of L_{π}. The group scheme G acts on V via its action on L_{π} (the action of G on \mathcal{E} is trivial).

We have

$$
\begin{equation*}
\mathrm{V} 工 \mathcal{O}\left(\mathrm{D}_{\pi}\right) \oplus \mathcal{O} \oplus \mathcal{E}^{-1} \tag{2.40}
\end{equation*}
$$

Consider the section $\mathcal{O} \rightarrow \mathrm{V}$ given by $(-1,1,0)$. The assumptions of Lemma 2.1 are satisfied.

Set $H=R$. The stack Bun $_{H}$ classifies line bundles on \widetilde{X}. Pick a rank-one local system \widetilde{E} on \widetilde{X}. Take \mathcal{L} to be the automorphic local system on Bun $_{H}$ corresponding to \widetilde{E}. The stack ${ }_{x, \infty} \overline{\operatorname{Bun}}_{R}$ in this case is canonically isomorphic to the stack \mathcal{W} ald ${ }_{\pi}^{x}$ introduced in $[6$, Section 8.2$]$. The corresponding Waldspurger category $\mathrm{P}^{\mathcal{L}}\left(x, \infty \overline{\operatorname{Bun}}_{R}\right)$ has been studied in [6, Section 8.2].

3 Bessel categories

3.1 Notation

3.1.1 The group G. From now on, k is an algebraically closed field of characteristic $\mathfrak{p}>$ 2. We change the notation compared to Section 2. From now on $G=G \mathbb{R} p_{4}$, so G is the quotient of $\mathbb{G}_{m} \times \mathbb{S} p_{4}$ by the diagonally embedded $\{ \pm 1\}$. We realize G as the subgroup of $\mathrm{GL}\left(\mathrm{k}^{4}\right)$ preserving up to a scalar the bilinear form given by the matrix

$$
\left(\begin{array}{cc}
0 & E_{2} \tag{3.1}\\
-E_{2} & 0
\end{array}\right)
$$

where E_{2} is the unit matrix of GL_{2}.
Let T be the maximal torus of G given by $\left\{\left(y_{1}, \ldots, y_{4}\right) \mid y_{i} y_{2+i}\right.$ does not depend on $i\}$. Let Λ (resp., $\check{\Lambda}$) denote the coweight (resp., weight) lattice of T. Let $\check{\epsilon}_{i} \in \check{\Lambda}$ be the character that sends a point of T to y_{i}. We have $\Lambda=\left\{\left(a_{1}, \ldots, a_{4}\right) \in \mathbb{Z}^{4} \mid a_{i}+a_{2+i}\right.$ does not depend on $i\}$ and

$$
\begin{equation*}
\check{\Lambda}=\mathbb{Z}^{4} /\left\{\check{\epsilon}_{1}+\check{\epsilon}_{3}-\check{\epsilon}_{2}-\check{\epsilon}_{4}\right\} . \tag{3.2}
\end{equation*}
$$

Fix the Borel subgroup of G preserving the flag $k e_{1} \subset k e_{1} \oplus k e_{2}$ of isotropic subspaces in the standard representation. The corresponding positive roots are

$$
\begin{equation*}
\left\{\check{\alpha}_{12}, \check{\beta}_{i j}, 1 \leq i \leq j \leq 2\right\}, \tag{3.3}
\end{equation*}
$$

where $\check{\alpha}_{12}=\check{e}_{1}-\check{e}_{2}$ and $\check{\beta}_{i j}=\check{e}_{i}-\check{e}_{2+j}$. The simple roots are $\check{\alpha}_{12}$ and $\check{\beta}_{22}$. Write $V^{\check{\lambda}}$ for the irreducible representation of G of highest weight $\check{\lambda}$.

Fix fundamental weights $\check{\omega}_{1}=(1,0,0,0)$ and $\check{\omega}_{2}=(1,1,0,0)$ of G. So, V $\check{\omega}_{1}$ is the standard representation of G. The orthogonal to the coroot lattice is $\mathbb{Z} \check{\omega}_{0}$ with $\check{\omega}_{0}=$ $(1,0,1,0)$. The orthogonal to the root lattice is $\mathbb{Z} \omega$ with $\omega=(1,1,1,1)$.

Let $\mathrm{P} \subset G$ be the Siegel parabolic subgroup preserving the Lagrangian subspace $k e_{1} \oplus k e_{2} \subset k^{4}$. Write U for the unipotent radical of P, set $M=P / U$.

Let \check{G} (resp., M) denote the Langlands dual group over $\overline{\mathbb{Q}}_{\ell}$. Write V^{λ} (resp., U^{λ}) for the irreducible representation of \check{G} (resp., of \check{M}) with the highest weight λ.

Let w_{0} be the longest element of the Weil group of G. Write Λ^{+}for the set of dominant coweights of G. The half sum of positive roots of G is denoted by $\check{\rho}$. The corresponding objects for M are denoted by $\Lambda_{M}^{+}, w_{0}^{M}, \check{\rho}_{M}$.

Set $G_{\text {ad }}=G / Z$, where $Z \subset G$ is the center. Set $\check{v}_{1}=\check{\omega}_{2}-\check{\omega}_{0}$ and $\check{v}_{2}=2 \check{\omega}_{1}-\check{\omega}_{0}$. So, $V^{\check{v}_{1}}$ is the standard representation of $G_{\text {ad }}$ and $\Lambda^{2} V^{\check{v_{1}}} \xlongequal[\rightarrow]{ } V^{\check{v}_{2}}$. Let $\Lambda_{G_{\text {ad }}}$ be the coweights lattice of $G_{\text {ad }}$. Write $\Lambda_{G_{\text {ad }}}^{\text {pos }}$ for the \mathbb{Z}_{+}-span of positive coroots in $\Lambda_{G_{\text {ad }}}$.
3.1.2. For $\mathrm{d} \geq 0$ write $X^{(d)}$ for the dth symmetric power of X and view it as the scheme of effective divisors of degree d on X. Let ${ }^{\text {rss }} X^{(d)} \subset X^{(d)}$ denote the open subscheme of divisors of the form $x_{1}+\cdots+x_{d}$ with x_{i} pairwise distinct. Write Bun ${ }_{i}$ for the stack of rank-i vector bundles on X. Set

$$
\begin{equation*}
\operatorname{RCov}^{\mathrm{d}}=\operatorname{Bun}_{1} \times_{\text {Bun }_{1}}{ }^{\text {rss }} X^{(\mathrm{d})}, \tag{3.4}
\end{equation*}
$$

where the map ${ }^{\text {rss }} \mathrm{X}^{(\mathrm{d})} \rightarrow \mathrm{Bun}_{1}$ sends D to $\mathcal{O}_{\mathrm{X}}(-\mathrm{D})$, and the map Bun ${ }_{1} \rightarrow \mathrm{Bun}_{1}$ takes a line bundle to its tensor square. It is understood that ${ }^{\text {rss }} X^{(0)}=$ Speck and the point ${ }^{\text {rss }} X^{(0)} \rightarrow \operatorname{Bun}_{1}$ is \mathcal{O}_{X}. Then RCov ${ }^{\text {d }}$ is the stack classifying two-sheeted coverings $\pi: \widetilde{X} \rightarrow X$ ramified exactly at $\mathrm{D} \in{ }^{\text {rss }} X^{(d)}$ with \widetilde{X} smooth [6, Section 7.7.2].

Fix a character $\psi: \mathbb{F}_{\mathfrak{p}} \rightarrow \overline{\mathbb{Q}}_{\ell}^{*}$ and write \mathcal{L}_{ψ} for the corresponding Artin-Shreier sheaf on \mathbb{A}^{1}.

3.2 Group schemes over X

3.2.1. Fix a k-point of $R \operatorname{Cov}^{d}$ given by $D_{\pi} \in{ }^{\mathrm{rss}} X^{(d)}$ and $\pi: \widetilde{X} \rightarrow X$ ramified exactly at D_{π}. Let σ denote the nontrivial automorphism of \widetilde{X} over X and let \mathcal{E} be the σ-anti-invariants in $L_{\pi}:=\pi_{*} \Theta_{\tilde{x}}$. It is equipped with an isomorphism

$$
\begin{equation*}
\mathrm{k}: \mathcal{E}^{\otimes 2} \simeq \mathcal{O}\left(-\mathrm{D}_{\pi}\right) \tag{3.5}
\end{equation*}
$$

Recall that L_{π} is equipped with a symmetric form $\operatorname{Sym}^{2} L_{\pi} \xrightarrow{s} \mathcal{O}$ such that $\operatorname{div}\left(\mathrm{L}_{\pi}^{*} / \mathrm{L}_{\pi}\right)=\mathrm{D}_{\pi}$ for the induced map $\mathrm{L}_{\pi} \hookrightarrow \mathrm{L}_{\pi}^{*}[6$, Proposition 14$]$. Set $\mathcal{M}_{\pi}=\mathrm{L}_{\pi} \oplus\left(\mathrm{L}_{\pi}^{*} \otimes\right.$ $\left.\Omega^{-1}\right)$. It is equipped with a symplectic form

$$
\begin{equation*}
\wedge^{2} \mathcal{M}_{\pi} \longrightarrow \mathrm{L}_{\pi} \otimes\left(\mathrm{L}_{\pi}^{*} \otimes \Omega^{-1}\right) \longrightarrow \Omega^{-1} \tag{3.6}
\end{equation*}
$$

Write \mathfrak{F}_{G} for the G-torsor $\left(\mathcal{M}_{\pi}, \Omega^{-1}\right)$ on X. Let G_{π} be the group scheme (over X) of automorphisms of \mathfrak{F}_{G}. Write \mathcal{A}_{π} for the line bundle Ω^{-1} on X equipped with the corresponding action of G_{π}.

Let $P_{\pi} \subset G_{\pi}$ denote the Siegel parabolic subgroup preserving L_{π}, and $U_{\pi} \subset P_{\pi}$ its unipotent radical. Then U_{π} is equipped with a homomorphism of group schemes on X :

$$
\begin{equation*}
\mathrm{ev}_{\pi}: \mathrm{U}_{\pi} \simeq \Omega \otimes \mathrm{Sym}^{2} \mathrm{~L}_{\pi} \xrightarrow{\mathrm{s}} \Omega . \tag{3.7}
\end{equation*}
$$

Denote by $\widetilde{\mathrm{R}}_{\pi} \subset \mathrm{P}_{\pi}$ the subgroup stabilizing ev_{π}, that is,

$$
\begin{equation*}
\widetilde{\mathrm{R}}_{\pi}=\left\{p \in \mathrm{P}_{\pi} \mid \mathrm{ev}_{\pi}\left(\operatorname{pup}^{-1}\right)=\mathrm{ev}_{\pi}(\mathrm{u}) \forall \mathrm{u} \in \mathrm{U}_{\pi}\right\} . \tag{3.8}
\end{equation*}
$$

Let $\mathrm{GL}\left(\mathrm{L}_{\pi}\right)$ denote the group scheme (over X) of automorphisms of the \mathcal{O}_{X}-module L_{π}. Let T_{π} denote the functor associating to an X-scheme V the group $H^{0}\left(\widetilde{X} \times x V, \mathcal{O}^{*}\right)$. Then T_{π} is a group scheme over X , a subgroup of $\mathrm{GL}\left(\mathrm{L}_{\pi}\right)$.

Write Bun T_{π} for the stack of T_{π}-bundles on X, that is, for a scheme S, the S-points of Bun $_{T_{\pi}}$ constitute the category of $(S \times X) \times x T_{\pi}$-torsors on $S \times X$. Given a $\mathbb{G}_{\mathfrak{m}}$-torsor on $S \times \widetilde{X}$, its direct image under id $\times \pi: S \times \widetilde{X} \rightarrow S \times X$ is as $(S \times X) \times X T_{\pi}$-torsor. In this way one identifies $\mathrm{Bun}_{\mathrm{T}_{\pi}}$ with the Picard stack Pic $\widetilde{\mathrm{X}}$.

Let $\alpha: T_{\pi} \rightarrow \mathbb{G}_{m}$ be the character by which T_{π} acts on $\operatorname{det}\left(L_{\pi}\right)$. Fix an inclusion $T_{\pi} \hookrightarrow \widetilde{R}_{\pi}$ by making $t \in T_{\pi}$ act on $L_{\pi} \oplus\left(L_{\pi}^{*} \otimes \Omega^{-1}\right)$ as $\left(t, \alpha(t)\left(t^{*}\right)^{-1}\right)$, where $t^{*} \in \operatorname{Aut}\left(L_{\pi}^{*}\right)$ is the adjoint operator. Set $R_{\pi}=T_{\pi} U_{\pi}$, so $R_{\pi} \subset \widetilde{R}_{\pi}$ is a subgroup. Actually, $\widetilde{R}_{\pi} / U_{\pi}$ identifies with the group of those $g \in G L\left(L_{\pi}\right)$ for which there exists $\widetilde{\alpha}(g) \in \mathbb{G}_{m}$ such that the following diagram commutes:

So, $\widetilde{R}_{\pi} / \mathrm{U}_{\pi}$ is equipped with a character $\widetilde{\alpha}: \widetilde{\mathrm{R}}_{\pi} / \mathrm{U}_{\pi} \rightarrow \mathbb{G}_{m}$ whose restriction to R_{π} equals α. For $g \in \widetilde{R}_{\pi} / \mathrm{U}_{\pi}$ the following diagram commutes:

so $(\operatorname{detg})^{2}=\widetilde{\alpha}(g)^{2}$. We see that R_{π} is the connected component of \widetilde{R}_{π} given by the additional condition $\operatorname{det} \mathrm{g}=\widetilde{\alpha}(\mathrm{g})$.

Lemma 3.1. The conditions of Lemma 2.1 are satisfied, so G_{π} / R_{π} is strongly quasi-affine over X.

Proof. Define a G_{π}-module W_{π} by the exact sequence $0 \rightarrow W_{\pi} \rightarrow \mathcal{A}_{\pi}^{-1} \otimes \Lambda^{2} \mathcal{N}_{\pi} \rightarrow \mathcal{O}_{\mathrm{X}} \rightarrow 0$ of \mathcal{O}_{x}-modules. So, W_{π} is equipped with a nondegenerate symmetric form $\mathrm{Sym}^{2} W_{\pi} \rightarrow \mathcal{O}$, and the center of G_{π} acts trivially on W_{π}.

We have a subbundle $W_{\pi, 1}:=\mathcal{A}_{\pi}^{-1} \otimes \operatorname{det} \mathrm{~L}_{\pi} \widetilde{\rightarrow} \Omega \otimes \mathcal{E}$ in W_{π}. Let $W_{\pi,-1}$ denote the orthogonal complement to $W_{\pi, 1}$ in W_{π}. Then $W_{\pi,-1} / W_{\pi, 1} \widetilde{\rightarrow} \mathcal{E} \mathrm{C}_{0}\left(\mathrm{~L}_{\pi}\right)$. As in Section 2.7, we have a subbundle $\mathcal{E} \hookrightarrow \mathcal{E}$ nd $_{0}\left(\mathrm{~L}_{\pi}\right)$. It gives rise to a subbundle

$$
\begin{equation*}
\Omega\left(-D_{\pi}\right) \hookrightarrow W_{\pi, 1} \otimes\left(W_{\pi,-1} / W_{\pi, 1}\right) \hookrightarrow \wedge^{2} W_{\pi} . \tag{3.11}
\end{equation*}
$$

Set

$$
\begin{equation*}
V=\left(\Omega^{-1} \otimes \mathcal{E}^{-1} \otimes W_{\pi}\right) \oplus\left(\Omega^{-1}\left(D_{\pi}\right) \otimes \wedge^{2} W_{\pi}\right) \tag{3.12}
\end{equation*}
$$

with the action of G_{π} coming from its action on W_{π}. We get a subbundle $\mathcal{O}_{x} \stackrel{s}{\hookrightarrow} \mathrm{~V}$, which is the sum of the above two sections. One checks that $R=\{g \in G \mid g s=s\}$, and the pair (V, s) satisfies the assumptions of Lemma 2.1.
3.2.2. Fix a k-point $x \in X$ and write \mathcal{O}_{x} for the completed local ring of X at x and F_{x} for its fraction field. Set $D_{x}=\operatorname{Spec} \mathcal{O}_{x}$ and $D_{x}^{*}=\operatorname{Spec} F_{x}$.

Write \widetilde{F}_{x} for the étale F_{x}-algebra of regular functions on $\widetilde{X} \times x D_{x}^{*}$. If $x \in D_{\pi}$, then \widetilde{F}_{x} is nonsplit; otherwise it splits over F_{x}. Denote by $\widetilde{\mathcal{O}}_{x}$ the ring of regular functions on $\widetilde{x}{ }_{x} D_{x}$.

Write $\mathrm{Gr}_{\mathrm{G}_{\pi}, \mathrm{x}}$ for the affine Grassmannian $\mathrm{G}_{\pi}\left(\mathrm{F}_{\mathrm{x}}\right) / \mathrm{G}_{\pi}\left(\mathcal{O}_{\chi}\right)$. This is an ind-scheme over k that can be seen as the moduli scheme of pairs $\left(\mathcal{F}_{G_{\pi}}, \beta\right)$, where $\mathcal{F}_{G_{\pi}}$ is a G_{π}-torsor over D_{x} and $\beta: \mathcal{F}_{G_{\pi}} \sim \mathcal{F}_{G_{\pi}}^{0}$ is an isomorphism over D_{x}^{*}.

In concrete terms, $\mathrm{Gr}_{\mathrm{G}_{\pi}, \chi}$ classifies the pairs \mathcal{O}_{χ}-lattices $\mathcal{M} \subset \mathcal{M}_{\pi} \otimes \mathrm{F}_{\chi}$ and $\mathcal{A} \subset$ $\Omega^{-1} \otimes F_{x}$ such that the following diagram commutes:

$$
\begin{array}{ccc}
\wedge^{2} \mathcal{M}_{\pi} \otimes F_{x} & \longrightarrow & \Omega^{-1} \otimes F_{x} \tag{3.13}\\
\cup & & \cup \\
\wedge^{2} \mathcal{N} & \longrightarrow & \mathcal{A}
\end{array}
$$

and induces an isomorphism $\mathcal{N} \leftrightarrows \mathcal{N}^{*} \otimes \mathcal{A}$ of \mathcal{O}_{x}-modules.
Definition 3.2. Let $y_{\text {loc }}$ denote the stack classifying
(i) a free \widetilde{F}_{χ}-module \mathcal{B} of rank one; then write L for \mathcal{B} viewed as F_{χ}-module; it is equipped with the nondegenerate form $S y m^{2} L \rightarrow \mathcal{C}$, where $\mathcal{C}=\left(\mathcal{E} \otimes F_{x}\right) \otimes$ det L [6, Proposition 14];
(ii) a G-bundle $(\mathcal{M}, \mathcal{A})$ on $\operatorname{Spec} \mathcal{O}_{x}$; here \mathcal{M} is a free \mathcal{O}_{χ}-module of rank 4 and \mathcal{A} is a free \mathcal{O}_{x}-module of rank 1 with a symplectic form $\wedge^{2} \mathcal{N} \rightarrow \mathcal{A}$ (it induces $\left.\mathcal{M} \rightarrow \mathcal{N}^{*} \otimes \mathcal{A}\right) ;$
(iii) an inclusion $L \hookrightarrow \mathcal{M} \otimes_{\mathcal{O}_{x}} F_{x}$ of F_{x}-vector spaces, whose image is an isotropic subspace;
(iv) an isomorphism $\Omega \otimes \mathcal{A} \otimes \mathrm{F}_{\chi} \subsetneq \mathcal{C}$ of F_{x}-vector spaces.

Lemma 3.3. The stack $y_{\text {loc }}$ identifies with the stack quotient of $\mathrm{Gr}_{G_{\pi}, x}$ by $\mathrm{R}_{\pi}\left(\mathrm{F}_{\mathrm{x}}\right)$.
Proof. Given a point of $y_{\text {loc }}$, it defines a P_{π}-torsor over Spec F_{x}. Fix a splitting of the corresponding exact sequence $0 \rightarrow \mathrm{Sym}^{2} \mathrm{~L} \otimes \mathrm{~F}_{\chi} \rightarrow$? $\rightarrow \mathcal{A} \otimes \mathrm{F}_{\chi} \rightarrow 0$. Fix also a trivialization
$\mathcal{B} \rightrightarrows \widetilde{\mathrm{F}}_{x}$. Then our data becomes just a point of $\mathrm{Gr}_{\mathrm{G}_{\pi}, \mathrm{x}}$. Changing the two trivializations above corresponds to the action of $\mathrm{R}_{\pi}\left(\mathrm{F}_{\chi}\right)$ on $\mathrm{Gr}_{\mathrm{G}_{\pi}, \chi}$. So, $y_{\text {loc }}$ classifies a G_{π}-torsor $\mathcal{F}_{\mathrm{G}_{\pi}}$ on D_{χ} equipped with an R_{π}-structure over D_{χ}^{*}.

The $R_{\pi}\left(F_{x}\right)$-orbits on $\mathrm{Gr}_{G_{\pi}, \mathrm{x}}$ are described in [2, Section 1]. Set $\Lambda_{\mathcal{B}}=\left\{\left(a_{1}, a_{2}\right) \in\right.$ $\left.\mathbb{Z}^{2} \mid a_{2} \geq 0\right\}$.

Lemma 3.4. The k-points of $y_{\text {loc }}$ are indexed by $\wedge_{\mathcal{B}}$.
Proof. Given a k-point of $y_{\text {loc }}$, set $L_{2}=\mathcal{M} \cap L$. We get a P_{π}-torsor over D_{x} given by an exact sequence $0 \rightarrow \operatorname{Sym}^{2} \mathrm{~L}_{2} \rightarrow ? \rightarrow \mathcal{A} \rightarrow 0$ of \mathcal{O}_{x}-modules. There is a unique $\mathrm{a}_{1} \in \mathbb{Z}$ such that the isomorphism over F_{x} extends to an isomorphism $\Omega \otimes \mathcal{A} \rightrightarrows\left(\mathcal{E} \otimes \operatorname{det} L_{2}\right)\left(D_{\pi}+a_{1} \chi\right)$ of \mathcal{O}_{χ}-modules.

Further, $\left(L_{2}, \mathcal{B}, L \leadsto \rightarrow L_{2} \otimes F_{x}\right)$ is a k-point of \mathcal{W} ald ${ }_{\pi}^{x, \text { loc }}$ given by some $a_{2} \geq 0$. Namely, if $\mathcal{B}_{\text {ex }} \subset \mathcal{B}$ is the smallest $\widetilde{\mathcal{O}}_{x}$-lattice such that $L_{2} \subset \mathcal{B}_{\text {ex }}$, then $a_{2}=\operatorname{dim}\left(\mathcal{B}_{\text {ex }} / L_{2}\right)[6$, Section 8.1].

We realize $\Lambda_{\mathcal{B}}$ as a subsemigroup of $\Lambda_{G_{a d}}$ via the map sending $\left(a_{1}, a_{2}\right)$ to $\lambda \in \Lambda_{G_{a d}}$ given by $\left\langle\lambda, \check{v}_{1}\right\rangle=a_{1}$ and $\left\langle\lambda, \check{v}_{2}\right\rangle=a_{1}+a_{2}$. Then $\Lambda_{\mathcal{B}}=\left\{\lambda \in \Lambda_{G_{a d}} \mid\left\langle\lambda, \check{\alpha}_{12}\right\rangle \geq 0\right\}$.

The image of α_{12} in $\Lambda_{G_{\text {ad }}}$ is divisible by two. Define the subsemigroup $\Lambda_{\mathcal{B}}^{\text {pos }} \subset \Lambda_{G_{a d}}$ as the \mathbb{Z}_{+}-span of $(1 / 2) \alpha_{12}, \beta_{22}$. Then

$$
\begin{equation*}
\Lambda_{\mathcal{B}}^{\text {pos }}=\left\{\lambda \in \Lambda_{G_{\text {ad }}} \mid\left\langle\lambda, \check{v}_{i}\right\rangle \geq 0 \text { for } i=1,2\right\} . \tag{3.14}
\end{equation*}
$$

We introduce an order on $\Lambda_{\mathcal{B}}$ as follows. For $\lambda, \mu \in \Lambda_{\mathcal{B}}$ write $\lambda \geq \mu$ if and only if $\lambda-\mu \in \Lambda_{\mathcal{B}}^{\text {pos }}$. The reader should be cautioned that this is not the order induced from $\Lambda_{G_{a d}}$ (the latter order is never used in this paper).

3.3 Generalized R_{π}-bundles

3.3.1. The stack $\operatorname{Bun}_{\mathbb{R}_{\pi}}$ classifies the following collections: a line bundle $\mathcal{B}_{\text {ex }}$ on \widetilde{X}, for which we set $\mathrm{L}_{\mathrm{ex}}=\pi_{*} \mathcal{B}_{\text {ex }}$, and an exact sequence of \mathcal{O}_{x}-modules

$$
\begin{equation*}
0 \longrightarrow \operatorname{Sym}^{2} \mathrm{~L}_{\mathrm{ex}} \longrightarrow ? \longrightarrow \Omega^{-1} \otimes \mathcal{E}^{-1} \otimes \operatorname{det} \mathrm{~L}_{\mathrm{ex}} \longrightarrow 0 \tag{3.15}
\end{equation*}
$$

By [6, Proposition 14], Lex $_{\text {ex }}$ is equipped with a symmetric form

$$
\begin{equation*}
\operatorname{Sym}^{2} \mathrm{~L}_{\mathrm{ex}} \longrightarrow \mathcal{E}^{-1} \otimes \operatorname{det} \mathrm{~L}_{\mathrm{ex}} . \tag{3.16}
\end{equation*}
$$

It admits a canonical section $\mathcal{E} \otimes \operatorname{det} \mathrm{L}_{\text {ex }} \stackrel{\text { s }}{\hookrightarrow}$ Sym $^{2} \mathrm{~L}_{\text {ex }}$.

Here is a Plücker-type description of $\operatorname{Bun}_{R_{\pi}}$. It is the stack classifying
(i) a G-bundle $(\mathcal{M}, \mathcal{A})$ on X ; here $\mathcal{M} \in \mathrm{Bun}_{4}, \mathcal{A} \in \mathrm{Bun}_{1}$ with a symplectic form $\wedge^{2} \mathcal{M} \rightarrow \mathcal{A}$, for which we set $W=\operatorname{Ker}\left(\mathcal{A}^{-1} \otimes \wedge^{2} \mathcal{M} \rightarrow \mathcal{O}_{\mathrm{X}}\right) ;$
(ii) two subbundles

$$
\begin{align*}
& \kappa_{1}: \Omega \otimes \mathcal{E} \hookrightarrow W, \\
& \kappa_{2}: \Omega\left(-D_{\pi}\right) \hookrightarrow \wedge^{2} W . \tag{3.17}
\end{align*}
$$

It is required that there is a Lagrangian subbundle $\mathrm{L}_{\mathrm{ex}} \hookrightarrow \mathcal{M}$, a line bundle $\mathcal{B}_{\text {ex }}$ on \widetilde{X}, and an isomorphism $\mathrm{L}_{\text {ex }} \subsetneq \pi_{*} \mathcal{B}_{\text {ex }}$ with the following properties. Let W_{-1} denote the orthogonal complement to $W_{1}=\mathcal{A}^{-1} \otimes \operatorname{det} \mathrm{~L}_{\text {ex }}$ in W, so that $W_{-1} / W_{1} \subsetneq \mathcal{E} \operatorname{nd}_{0}\left(\mathrm{~L}_{\text {ex }}\right)$ is equipped with $\mathcal{E} \stackrel{s}{\hookrightarrow} \mathcal{E n d}_{0}\left(\mathrm{~L}_{\text {ex }}\right)$. Then
(a) κ_{1} factors as $\Omega \otimes \mathcal{E} \rightrightarrows W_{1} \hookrightarrow W$;
(b) K_{2} factors as $\Omega\left(-\mathrm{D}_{\pi}\right) \stackrel{\mathrm{s}}{\hookrightarrow} W_{1} \otimes W_{-1} / W_{1} \hookrightarrow \wedge^{2} W$.
3.3.2. As in Section 2.2, we have the stacks $\overline{\operatorname{Bun}}_{\mathrm{R}_{\pi}} \hookrightarrow_{x, \infty} \overline{\operatorname{Bun}}_{\mathrm{R}_{\pi}}$. By definition, $x_{, \infty} \overline{\operatorname{Bun}}_{\mathrm{R}_{\pi}}$ classifies pairs $\left(\mathcal{F}_{G_{\pi}}, \beta\right)$, where $\mathcal{F}_{G_{\pi}}$ is a G_{π}-torsor on X, and $\beta:\left.\mathcal{F}_{G_{\pi}} \rightarrow \overline{G_{\pi} / R_{\pi}}\right|_{X-x}$ is a G_{π}-equivariant map such that β factors through G_{π} / R_{π} over some nonempty open subset of $X-x$.

Here is a Plücker-type description. The stack $x_{, \infty} \overline{\operatorname{Bun}}_{\mathrm{R}_{\pi}}$ classifies
(i) a G-bundle $(\mathcal{M}, \mathcal{A})$ on X ; here $\mathcal{M} \in \mathrm{Bun}_{4}, \mathcal{A} \in \mathrm{Bun}_{1}$ with a symplectic form $\wedge^{2} \mathcal{N} \rightarrow \mathcal{A}$, for which we set $W=\operatorname{Ker}\left(\mathcal{A}^{-1} \otimes \wedge^{2} \mathcal{M} \rightarrow \mathcal{O}_{\mathrm{X}}\right)$;
(ii) nonzero sections

$$
\begin{align*}
& \kappa_{1}: \Omega \otimes \mathcal{E} \hookrightarrow W(\infty x), \\
& \kappa_{2}: \Omega\left(-D_{\pi}\right) \hookrightarrow \Lambda^{2} W(\infty x) . \tag{3.18}
\end{align*}
$$

It is required that for some nonempty open subset $X^{0} \subset X-x$ there be a Lagrangian subbundle $\left.L \hookrightarrow \mathcal{M}\right|_{x^{0}}$, a line bundle \mathcal{B} on $\pi^{-1}\left(X^{0}\right)$, and an isomorphism $\left.\mathrm{L} \leftrightharpoons \pi_{*} \mathcal{B}\right|_{\chi} \circ$ with the following properties. Let W_{-1} denote the orthogonal complement to $W_{1}=\mathcal{A}^{-1} \otimes \operatorname{det} L$ in $\left.W\right|_{\mathrm{xo}}$, so $\mathrm{W}_{-1} / \mathrm{W}_{1} \rightrightarrows \mathcal{G} \operatorname{Ed}_{0} \mathrm{~L}$ is equipped with $\varepsilon \stackrel{s}{\hookrightarrow} \varepsilon n d_{0} \mathrm{~L}$. Then
(a) $\left.\mathrm{K}_{1}\right|_{X^{0}}$ factors as $\left.\Omega \otimes \mathcal{E} \rightrightarrows W_{1} \hookrightarrow W\right|_{X^{0}}$;
(b) $\left.\kappa_{2}\right|_{X^{0}}$ factors as $\Omega\left(-D_{\pi}\right) \stackrel{s}{\hookrightarrow} W_{1} \otimes W_{-1} /\left.W_{1} \hookrightarrow \Lambda^{2} W\right|_{X^{0}}$.

Definition 3.5. For $\lambda \in \Lambda_{\mathcal{B}}$ denote by ${ }_{x, \lambda} \overline{\operatorname{Bun}}_{R_{\pi}} \hookrightarrow_{x, \infty} \overline{\operatorname{Bun}}_{R_{\pi}}$ the closed substack given by the condition that the maps

$$
\begin{align*}
& \kappa_{1}: \Omega \otimes \mathcal{E}\left(-\left\langle\lambda, \check{v}_{1}\right\rangle x\right) \hookrightarrow W, \\
& \kappa_{2}: \Omega\left(-D_{\pi}-\left\langle\lambda, \check{v}_{2}\right\rangle x\right) \hookrightarrow \Lambda^{2} W \tag{3.19}
\end{align*}
$$

initially defined over $X-x$ are regular over X.
For $\lambda, \mu \in \Lambda_{\mathcal{B}}$ we have ${ }_{x, \mu} \overline{\operatorname{Bun}}_{R_{\pi}} \subset{ }_{x, \lambda} \overline{\mathrm{Bun}}_{\mathrm{R}_{\pi}}$ if and only if $\mu \leq \lambda$.
As in Section 2.4, we have the open substacks

$$
\begin{equation*}
x_{x, \lambda} \operatorname{Bun}_{R_{\pi}} \subset x, \lambda \widetilde{\operatorname{Bun}}_{\mathrm{R}_{\pi}} \subset{ }_{x, \lambda} \overline{\operatorname{Bun}}_{\mathrm{R}_{\pi}} \tag{3.20}
\end{equation*}
$$

given by requiring that κ_{1}, κ_{2} are maximal everywhere on X (resp., in a neighbourhood of x).

3.4 Stratifications

The following lemma is straightforward.
Lemma 3.6. Let $\lambda \in \Lambda_{\mathcal{B}}$. For any k-point of $x_{x, \lambda} \overline{\operatorname{Bun}}_{R_{\pi}}$ there is a unique divisor D on X with values in $-\Lambda_{\mathcal{B}}^{\text {pos }}$ such that the maps

$$
\begin{align*}
& \kappa_{1}: \Omega \otimes \mathcal{E}\left(-\left\langle\lambda x+D, \check{v}_{1}\right\rangle\right) \hookrightarrow W, \\
& \kappa_{2}: \Omega\left(-D_{\pi}-\left\langle\lambda x+D, \check{v}_{2}\right\rangle\right) \hookrightarrow \wedge^{2} W \tag{3.21}
\end{align*}
$$

are regular and maximal everywhere on X, and $D+\lambda x$ is a divisor with values in $\Lambda_{\mathcal{B}}$.
Consider a $\Lambda_{\mathcal{B}}$-valued divisor D on X with $D=\lambda x+\sum_{y \neq x} \lambda_{y} y$ such that $\lambda_{y} \in-\Lambda_{\mathcal{B}}^{\text {pos }}$ for $y \neq x$. Denote by $\mathrm{D}_{\mathrm{Bun}}^{\mathrm{R}_{\pi}} \subset_{x, \lambda} \overline{\mathrm{Bun}}_{\mathrm{R}_{\pi}}$ the substack given by the condition that the maps

$$
\begin{align*}
& \kappa_{1}: \Omega \otimes \mathcal{E}\left(-\left\langle D, \check{v}_{1}\right\rangle\right) \hookrightarrow W \\
& \kappa_{2}: \Omega\left(-D_{\pi}-\left\langle D, \check{v}_{2}\right\rangle\right) \hookrightarrow \Lambda^{2} W \tag{3.22}
\end{align*}
$$

are regular and maximal everywhere on X. In particular, for $D=\lambda x$ we get ${ }_{D}$ Bun $_{R_{\pi}} \widetilde{\rightarrow}$ ${ }_{x, \lambda} \operatorname{Bun}_{R_{\pi}}$.

Actually, ${ }_{D} \operatorname{Bun}_{R_{\pi}}$ is the stack classifying a line bundle $\mathcal{B}_{\text {ex }}$ on \widetilde{X}, for which we set $\mathrm{L}_{\mathrm{ex}}=\pi_{*} \mathcal{B}_{\mathrm{ex}}$, a modification $\mathrm{L}_{2} \subset \mathrm{~L}_{\text {ex }}$ of rank- 2 vector bundles on X such that the
composition is surjective:

$$
\begin{equation*}
\operatorname{Sym}^{2} \mathrm{~L}_{2} \longrightarrow \operatorname{Sym}^{2} \mathrm{~L}_{\mathrm{ex}} \longrightarrow \mathcal{E}^{-1} \otimes \operatorname{det} \mathrm{~L}_{\mathrm{ex}} \tag{3.23}
\end{equation*}
$$

and $\operatorname{div}\left(\mathrm{L}_{\mathrm{ex}} / \mathrm{L}_{2}\right)=\left\langle\mathrm{D}, \check{v}_{2}-\check{v}_{1}\right\rangle$, and an exact sequence of \mathcal{O}_{X}-modules

$$
\begin{equation*}
0 \longrightarrow \operatorname{Sym}^{2} \mathrm{~L}_{2} \longrightarrow ? \longrightarrow \mathcal{A} \longrightarrow 0 \tag{3.24}
\end{equation*}
$$

where $\mathcal{A}=\left(\Omega^{-1} \otimes \mathcal{E}^{-1} \otimes \operatorname{det} \mathrm{~L}_{2}\right)\left(\left\langle\mathrm{D}, \check{v}_{1}\right\rangle\right)$. We have used here the description of $\mathcal{W} \operatorname{ald}_{\pi}^{x, a}$ from [6, Section 8.2].

Remark 3.7. For $a_{1} \in \mathbb{Z}$ denote by ${ }_{x}^{a_{1}} \overline{\operatorname{Bun}}_{R_{\pi}} \subset{ }_{x, \infty} \overline{\operatorname{Bun}}_{R_{\pi}}$ the substack given by the condition that the map

$$
\begin{equation*}
\mathrm{k}_{1}: \Omega \otimes \mathcal{E}\left(-\mathrm{a}_{1} x\right) \hookrightarrow W \tag{3.25}
\end{equation*}
$$

is regular and maximal everywhere on X. This is the stack classifying the following collections: $\mathrm{L}_{2} \in$ Bun $_{2}$, an exact sequence $0 \rightarrow$ Sym $^{2} \mathrm{~L}_{2} \rightarrow ? \rightarrow \mathcal{A} \rightarrow 0$ on X with $\mathcal{A}=$ $\left(\Omega^{-1} \otimes \mathcal{E}^{-1} \otimes \operatorname{det} L_{2}\right)\left(a_{1} x\right)$, a line bundle \mathcal{B} on $\pi^{-1}(X-x)$, and an isomorphism $\left.\pi_{*} \mathcal{B} \rightarrow L_{2}\right|_{x-x}$. We have the projection

$$
\begin{equation*}
{ }_{\chi}^{a_{1}} \overline{\operatorname{Bun}}_{\mathrm{R}_{\pi}} \longrightarrow \mathcal{W} \operatorname{ald}_{\pi}^{\chi} \tag{3.26}
\end{equation*}
$$

sending the above point to $\left(\mathrm{L}_{2}, \mathcal{B}, \pi_{*} \mathcal{B} \mathcal{\rightarrow} \mathrm{~L}_{2} \mid x-x\right)$ (cf. [6, Section 8.2]).
For $\lambda=\left(a_{1}, a_{2}\right) \in \Lambda_{\mathcal{B}}$ write ${ }_{x, \lambda}^{a_{1}} \overline{B u n}_{R_{\pi}}$ for the preimage of \mathcal{W} ald ${\underset{\pi}{\pi}}_{x_{,} \leq a_{2}}$ under this map. The preimage of $\mathcal{W} \operatorname{ald}_{\pi}^{\chi, a_{2}}$ under the same map identifies with ${ }_{x, \lambda} \operatorname{Bun}_{\mathrm{R}_{\pi}}$. Note that

$$
\begin{equation*}
{ }_{x_{, \lambda}, ~}^{a_{1} \overline{\operatorname{Mnn}}_{\mathrm{R}_{\pi}} \subset{ }_{x, \lambda} \overline{\operatorname{Bun}}_{\mathrm{R}_{\pi}}} \tag{3.27}
\end{equation*}
$$

is an open substack. This will be used in Section 3.12.

3.5 Bessel category

Set $H=\Omega \times T_{\pi}$. Denote by $\chi_{\pi}: R_{\pi} \rightarrow H$ the homomorphism of group schemes over X given by $\chi_{\pi}(t u)=\left(e_{\pi}(u), t\right), t \in T_{\pi}, u \in U_{\pi}$. Let

$$
\begin{equation*}
\mathrm{ev}^{0}: \operatorname{Bun}_{\mathbb{R}_{\pi}} \longrightarrow \mathbb{A}^{1} \times \operatorname{Pic} \tilde{\mathrm{X}} \tag{3.28}
\end{equation*}
$$

be the map sending a point of $\operatorname{Bun}_{R_{\pi}}$ to the pair $\left(\epsilon, \mathcal{B}_{\text {ex }}\right)$, where ϵ is the class of the pushforward of (3.15) by (3.16).

Fix a rank-one local system \widetilde{E} on $\widetilde{\mathrm{X}}$. Write $A \widetilde{E}$ for the automorphic local system on $\operatorname{Pic} \widetilde{\mathrm{X}}$ corresponding to \widetilde{E}. For $d \geq 0$ its inverse image under $\widetilde{X}^{(d)} \rightarrow \operatorname{Pic}^{d} \widetilde{X}$ identifies with the symmetric power $\widetilde{\mathrm{E}}^{(\mathrm{d})}$ of $\widetilde{\mathrm{E}}$.

Let \mathcal{L} denote the restriction of $\mathcal{L}_{\psi} \boxtimes A \widetilde{E}$ under the natural map $\operatorname{Bun}_{H} \rightarrow \mathbb{A}^{1} \times \operatorname{Pic} \widetilde{X}$. As in Section 2.2, our data give rise to the Bessel category $\mathrm{P}^{\mathcal{L}}\left({ }_{x, \infty} \overline{\operatorname{Bun}}_{\mathcal{R}_{\pi}}\right)$.

One checks that $\lambda=\left(a_{1}, a_{2}\right) \in \Lambda_{\mathcal{B}}$ is relevant (in the sense of Section 2.4) if and only if $a_{1} \geq a_{2}$. Write $\Lambda_{\mathcal{B}}^{+}$for the set of relevant $\lambda \in \Lambda_{\mathcal{B}}$.

3.6 Perverse sheaves \mathcal{B}^{λ}

Consider a stratum $D_{D} \operatorname{Bun}_{R_{\pi}}$ of ${ }_{x, \infty} \overline{\operatorname{Bun}}_{R_{\pi}}$ as in Section 3.4, so D is a $\Lambda_{\mathcal{B}}$-valued divisor on X. Arguing as in Section 2.2.3 (with the difference that now $\widetilde{y} \in \widetilde{X}$ satisfies an additional assumption: $\pi(\widetilde{\mathfrak{y}})$ does not lie in the support of D$)$, one defines the category $\mathrm{P}^{\mathcal{L}}\left({ }_{\mathrm{D}} \mathrm{Bun}_{\mathrm{R}_{\pi}}\right)$. We say that the stratum $D_{D B_{R_{\pi}}}$ is relevant if $P^{\mathcal{L}}\left(D_{D u R_{R_{\pi}}}\right)$ contains a nonzero object. As in [3, Lemma 6.2.8], one shows that the stratum ${ }_{D}$ Bun $_{R_{\pi}}$ is relevant if and only if $\mathrm{D}=\lambda x$ with $\lambda \in \Lambda_{\mathcal{B}}^{+}$.

For $\lambda \in \Lambda_{\mathcal{B}}^{+}$denote by

$$
\begin{equation*}
\mathrm{ev}^{\lambda}: x_{x, \lambda} \operatorname{Bun}_{\mathbb{R}_{\pi}} \longrightarrow \mathbb{A}^{1} \times \operatorname{Pic} \tilde{\mathrm{X}} \tag{3.29}
\end{equation*}
$$

the following map. Given a point of ${ }_{x, \lambda} \operatorname{Bun}_{R_{\pi}}$ as in Section 3.4, ev^{λ} sends it to the pair $\left(\epsilon, \mathcal{B}_{\text {ex }}\right)$, where ϵ is the class of the push-forward of (3.24) under the map Sym ${ }^{2} \mathrm{~L}_{2} \rightarrow \mathcal{A} \otimes$ Ω, obtained from the symmetric form on $L_{\text {ex }}$.

For $\lambda \in \Lambda_{\mathcal{B}}^{+}$let \mathcal{B}^{λ} be the Goresky-MacPherson extension of

$$
\begin{equation*}
\left(\mathrm{ev}^{\lambda}\right)^{*}\left(\mathcal{L}_{\psi} \boxtimes A \widetilde{\mathrm{E}}\right) \otimes \overline{\mathbb{Q}}_{\ell}[1]\left(\frac{1}{2}\right)^{\otimes \operatorname{dim}_{x, \lambda} \operatorname{Bun}_{\mathrm{R}_{\pi}}} \tag{3.30}
\end{equation*}
$$

under ${ }_{x, \lambda} \operatorname{Bun}_{R_{\pi}} \hookrightarrow{ }_{x, \lambda} \overline{\operatorname{Bun}}_{\mathrm{R}_{\pi}}$. The irreducible objects of $\mathrm{P}^{\mathcal{L}}\left({ }_{(, \infty} \overline{\operatorname{Bun}}_{\mathrm{R}_{\pi}}\right)$ are (up to isomorphism) exactly $\mathcal{B}^{\lambda}, \lambda \in \Lambda_{\mathcal{B}}^{+}$.

Let us underline that for $0 \in \Lambda_{\mathcal{B}}^{+}$the only relevant stratum of $x, 0 \overline{\mathrm{Bun}}_{R_{\pi}}=\overline{\operatorname{Bun}}_{R_{\pi}}$ is ${ }_{x, 0}$ Bun $_{R_{\pi}}$. So, \mathcal{B}^{0} is the extension by zero from ${ }_{x, 0}$ Bun $_{\boldsymbol{R}_{\pi}}$. As in [3], we say that \mathcal{B}^{0} is clean with respect to the open immersion $x, 0 \operatorname{Bun}_{\mathbb{R}_{\pi}} \hookrightarrow \overline{\operatorname{Bun}}_{\mathrm{R}_{\pi}}$. The same argument proves the following.

Lemma 3.8. For $\lambda \in \Lambda_{\mathcal{B}}^{+}$the $*$-restriction of \mathcal{B}^{λ} to $\widetilde{x, \lambda}^{\operatorname{Bun}_{R_{\pi}}}-{ }_{x, \lambda} \operatorname{Bun}_{R_{\pi}}$ vanishes.

3.7 Semigroups

The natural projection $\Lambda \rightarrow \Lambda_{G_{\text {ad }}}$ induces a map i: $\Lambda^{+} \rightarrow \Lambda_{\mathcal{B}}^{+}$. Actually, we get an isomorphism of semigroups

$$
\begin{equation*}
\Lambda^{+} / \mathbb{Z} \omega \simeq \Lambda_{\mathcal{B}}^{+} \tag{3.31}
\end{equation*}
$$

The map i preserves the order, that is, if $\lambda \leq \mu$ for $\lambda, \mu \in \Lambda^{+}$, then $\mathfrak{i}(\lambda) \leq \mathfrak{i}(\mu)$. Besides, $\mathfrak{i}\left(-\mathcal{w}_{0}(\lambda)\right)=\mathfrak{i}(\lambda)$. For $\mu \in \Lambda_{\mathcal{B}}^{+}$an easy calculation shows that

$$
\begin{equation*}
\operatorname{dim}_{x, \mu} \operatorname{Bun}_{R_{\pi}}=\langle\mu, 2 \check{\rho}\rangle+\operatorname{dim} \operatorname{Bun}_{R_{\pi}} . \tag{3.32}
\end{equation*}
$$

Remark 3.9. Let $\lambda \in \Lambda^{+}$. The map $\lambda^{\prime} \mapsto i\left(\lambda^{\prime}\right)$ provides a bijection between $\left\{\lambda^{\prime} \in \Lambda^{+} \mid \lambda^{\prime} \leq\right.$ $\lambda\}$ and $\left\{\mu \in \Lambda_{\mathcal{B}}^{+} \mid \mu \leq \mathfrak{i}(\lambda) ; \mathfrak{i}(\lambda)-\mu=0\right.$ in $\left.\pi_{1}\left(\mathrm{G}_{\text {ad }}\right)\right\}$.

3.8 Main result

Recall that $\mathrm{G}=\mathrm{GSp} p_{4}$ and for each $\mathcal{A} \in \operatorname{Sph}\left(\operatorname{Gr}_{\mathrm{G}, \chi}\right)$ we have the Hecke functor $\mathrm{H}(\mathcal{A}, \cdot)$: $\mathrm{D}\left({ }_{x, \infty} \overline{\mathrm{Bun}}_{\mathrm{R}_{\pi}}\right) \rightarrow \mathrm{D}\left({ }_{x, \infty} \overline{\mathrm{Bun}}_{\mathrm{R}_{\pi}}\right)$ introduced in Section 2.3.

Here is our main result.
Theorem 3.10. (1) Set $\check{v}=(1 / 2) w_{0}\left(\check{\omega}_{0}-\check{\beta}_{22}\right)$, so $\check{v} \in \check{\Lambda}$. For $\lambda \in \Lambda^{+}$there is a canonical isomorphism

$$
H\left(\mathcal{A}_{\lambda}, \mathcal{B}^{0}\right) \simeq \begin{cases}\mathcal{B}^{i(\lambda)} \otimes\left(\widetilde{\mathrm{E}}_{\widetilde{x}}\right)^{\otimes\langle\lambda, 2 \tilde{v}\rangle}, & \text { the nonsplit case, } \pi(\widetilde{\mathrm{x}})=x, \tag{3.33}\\ \mathcal{B}^{i(\lambda)} \otimes\left(\widetilde{\mathrm{E}}_{\widetilde{x}_{1}} \otimes \widetilde{\mathrm{E}}_{\tilde{x}_{2}}\right)^{\otimes\langle\lambda, \tilde{v}\rangle}, & \text { the split case, } \pi^{-1}(x)=\left\{\widetilde{x}_{1}, \widetilde{x}_{2}\right\} .\end{cases}
$$

(2) For $\omega=(1,1,1,1) \in \Lambda^{+}$and $\mu \in \Lambda_{\mathcal{B}}^{+}$there is a canonical isomorphism

$$
\mathrm{H}\left(\mathcal{A}_{\omega}, \mathcal{B}^{\mu}\right) \subsetneq \begin{cases}\mathcal{B}^{\mu} \otimes \widetilde{\mathrm{E}}_{\stackrel{\otimes}{x}}^{\otimes 2}, & \text { the nonsplit case, } \pi(\widetilde{\mathrm{x}})=x, \tag{3.34}\\ \mathcal{B}^{\mu} \otimes \widetilde{\mathrm{E}}_{\tilde{x}_{1}} \otimes \widetilde{\mathrm{E}}_{\tilde{\mathrm{x}}_{2}}, & \text { the split case, } \pi^{-1}(x)=\left\{\widetilde{\mathrm{x}}_{1}, \widetilde{x}_{2}\right\} .\end{cases}
$$

3.9 Dimensions estimates

Given a G -torsor \mathcal{F}_{G} over D_{χ}, denote by $\mathrm{Gr}_{\mathrm{G}, \mathrm{x}}\left(\mathcal{F}_{\mathrm{G}}\right)$ the affine Grassmannian classifying pairs $\left(\mathcal{F}_{G}^{\prime}, \beta\right)$, where \mathcal{F}_{G}^{\prime} is a G-torsor over D_{x} and $\beta:\left.\mathcal{F}_{G}^{\prime} \widetilde{\neg}_{\mathcal{F}}^{G}\right|_{D_{x}^{*}}$ an isomorphism.

For $\lambda \in \Lambda^{+}$we have the subschemes (cf. [1, Section 3.2.1])

$$
\begin{equation*}
\operatorname{Gr}_{G, x}^{\lambda}\left(\mathcal{F}_{G}\right) \subset \overline{\operatorname{Gr}}_{G, x}^{\lambda}\left(\mathcal{F}_{G}\right) \subset \operatorname{Gr}_{G, x}\left(\mathcal{F}_{G}\right) . \tag{3.35}
\end{equation*}
$$

A point $\left(\mathcal{F}_{G}^{\prime}, \beta\right) \in \operatorname{Gr}_{G, x}\left(\mathcal{F}_{G}\right)$ lies in $\overline{\mathrm{Gr}}_{\mathrm{G}, \mathrm{x}}^{\lambda}\left(\mathcal{F}_{\mathrm{G}}\right)$ if for any G -module V , whose weights are $\leq \check{\lambda}$, we have

$$
\begin{equation*}
V_{\mathcal{F}_{G}}(-\langle\lambda, \tilde{\lambda}\rangle x) \subset V_{\mathcal{F}_{G}^{\prime}} . \tag{3.36}
\end{equation*}
$$

Recall that we identify $\mathrm{Gr}_{\mathrm{G}_{\pi}, \mathrm{x}}$ with the ind-scheme $\mathrm{Gr}_{G, x}\left(\mathfrak{F}_{G}\right)$ classifying pairs $\left(\mathcal{F}_{G}, \widetilde{\beta}\right)$, where \mathcal{F}_{G} is a G-torsor on D_{x} and

$$
\begin{equation*}
\widetilde{\beta}:\left.\mathcal{F}_{G} \widetilde{工}_{\mathcal{F}}\right|_{D_{x}^{*}} \tag{3.37}
\end{equation*}
$$

is an isomorphism of G-torsors. A k-point $\left(\mathcal{F}_{G}, \widetilde{\beta}\right)$ of $\mathrm{Gr}_{\mathrm{G}_{\pi}, x}$ yields an inclusion $\overline{\operatorname{Gr}}_{\mathrm{G}, \chi}^{\lambda}\left(\mathcal{F}_{G}\right) \hookrightarrow \operatorname{Gr}_{G_{\pi}, x}$ sending $\left(\mathcal{F}_{G}^{\prime}, \beta\right)$ to $\left(\mathcal{F}_{G}^{\prime}, \widetilde{\beta} \circ \beta\right)$. For $\mu \in \Lambda_{\mathcal{B}}$ we denote by $S_{R_{\pi}}^{\mu} \subset \operatorname{Gr}_{G_{\pi}, x}$ the $\mathrm{R}_{\pi}\left(\mathrm{F}_{\chi}\right)$-orbit on $\mathrm{Gr}_{\mathrm{G}_{\pi}, \chi}$ corresponding to μ.

As in [3] and [6, Proposition 17], the following is a key point of our proof of Theorem 3.10.

Proposition 3.11. Let $\mu \in \Lambda_{\mathcal{B}}^{+}$. Let $\left(\mathcal{F}_{G}, \widetilde{\beta}\right)$ be a k-point of $S_{R_{\pi}}^{\mu}$, where \mathcal{F}_{G} is a G-torsor on D_{x} and $\widetilde{\beta}:\left.\mathcal{F}_{\mathrm{G}} \widetilde{ד}_{\mathcal{F}_{\mathrm{G}}}\right|_{\mathrm{D}_{x}^{*}}$ is an isomorphism of G-torsors. For any $\lambda \in \Lambda^{+}$the scheme

$$
\begin{equation*}
\overline{\mathrm{Gr}}_{\mathrm{G}, \mathrm{x}}^{\lambda}\left(\mathcal{F}_{\mathrm{G}}\right) \cap S_{\mathrm{R}_{\pi}}^{0} \tag{3.38}
\end{equation*}
$$

is empty unless $\mu \leq \mathfrak{i}(\lambda)$ in the sense of the order on $\Lambda_{\mathcal{B}}^{+}$. If $\mu \leq \mathfrak{i}(\lambda)$, then

$$
\begin{equation*}
\operatorname{Gr}_{\mathrm{G}, \chi}^{\lambda}\left(\mathcal{F}_{\mathrm{G}}\right) \cap S_{\mathrm{R}_{\pi}}^{0} \tag{3.39}
\end{equation*}
$$

is of dimension $\leq\langle\lambda, \check{\rho}\rangle-\langle\mu, \check{\rho}\rangle$. The equality holds if and only if there exists $\lambda^{\prime} \in \Lambda^{+}, \lambda^{\prime} \leq$ λ, such that $\mu=\mathfrak{i}\left(\lambda^{\prime}\right)$, and in this case the irreducible components of (3.39) of maximal dimension form a base of

$$
\begin{equation*}
\operatorname{Hom}_{\check{M}}\left(\mathrm{U}^{w_{0}^{M} w_{0}\left(\lambda^{\prime}\right)}, V^{\lambda}\right) \tag{3.40}
\end{equation*}
$$

If $\mu=\mathfrak{i}(\lambda)$, then (3.39) is a point scheme.
Remark 3.12. Consider the scheme (3.39) in the case $\lambda, \lambda^{\prime} \in \Lambda^{+}$with $\lambda^{\prime}<\lambda$ and $\mu=$ $\mathfrak{i}\left(\lambda^{\prime}\right)$. Our proof of Proposition 3.11 will also show that for such λ and μ in the nonsplit case, all the irreducible components of (3.39) are of the same dimension. In the split case, (3.39) may have irreducible components of different dimensions (e.g., this happens for $\lambda=(a, a, 0,0) \in \Lambda^{+}$and $\left.\mu=0\right)$.

3.10 Proofs

For a P-torsor \mathcal{F}_{P} over D_{x} let $\mathcal{F}_{G}=\mathcal{F}_{\mathrm{P}} \times_{\mathrm{P}}$ G. For a coweight $v \in \Lambda_{M}^{+}$denote by $S_{P}^{v}\left(\mathcal{F}_{P}\right)$ the ind-scheme classifying pairs $\left(\mathcal{F}_{P}^{\prime}, \beta\right)$, where \mathcal{F}_{P}^{\prime} is a P-torsor on D_{x} and

$$
\begin{equation*}
\beta:\left.\mathcal{F}_{\mathrm{P}}^{\prime} \simeq \mathcal{F}_{\mathrm{P}}\right|_{\mathrm{D}_{\mathrm{x}}^{*}} \tag{3.41}
\end{equation*}
$$

is an isomorphism such that the pair $\left(\mathcal{F}_{M}^{\prime}, \beta\right)$ lies in $\mathrm{Gr}_{M, x}^{v}\left(\mathcal{F}_{M}\right)$. Here \mathcal{F}_{M} and \mathcal{F}_{M}^{\prime} are the M-torsors induced from \mathcal{F}_{P} and $\mathcal{F}_{\mathrm{P}}^{\prime}$, respectively. For $\lambda \in \Lambda^{+}$denote by

$$
\begin{equation*}
\mathfrak{t}_{P}^{\nu}: S_{P}^{\nu}\left(\mathcal{F}_{P}\right) \cap \operatorname{Gr}_{G, x}^{\lambda}\left(\mathcal{F}_{G}\right) \longrightarrow \mathrm{Gr}_{M, x}^{\nu}\left(\mathcal{F}_{M}\right) \tag{3.42}
\end{equation*}
$$

the natural projection. Our Proposition 3.11 is based on the following result established in [1, Proposition 4.3.3 and Section 5.3.7].

Proposition 3.13. All the irreducible components of any fibre of \mathfrak{t}_{p}^{v} are of dimension $\langle v+$ $\lambda, \check{\rho}\rangle-\left\langle\nu, 2 \check{\rho}_{M}\right\rangle$. These components form a base of

$$
\begin{equation*}
\operatorname{Hom}_{\check{M}}\left(U^{\nu}, V^{\lambda}\right) \tag{3.43}
\end{equation*}
$$

For $v=w_{0}^{M} w_{0}(\lambda)$ the map (3.42) is an isomorphism.
Proof of Proposition 3.11. Write $\mu=\left(a_{1}, a_{2}\right)$. The pair $\left(\mathcal{F}_{G}, \widetilde{\beta}\right)$ is given by \mathcal{O}_{x}-lattices $\mathcal{M} \subset$ $\mathcal{M}_{\pi} \otimes \mathrm{F}_{x}$ and $\mathcal{A} \subset \Omega^{-1} \otimes \mathrm{~F}_{x}$ such that $(\mathcal{M}, \mathcal{A})$ is a G-bundle over Spec \mathcal{O}_{x}. Note that

$$
\begin{equation*}
\langle\mu, \check{\rho}\rangle=\frac{1}{2}\left(3 a_{1}+a_{2}\right) . \tag{3.44}
\end{equation*}
$$

(1) The nonsplit case.

Step 1. Acting by $R_{\pi}\left(F_{x}\right)$, we may assume that $(\mathcal{M}, \mathcal{A})$ has the standard form $\mathcal{M}=L_{2} \oplus$ $\left(\mathrm{L}_{2}^{*} \otimes \mathcal{A}\right)$, where $\mathcal{A}=\Omega^{-1}\left(\left(a_{1}-a_{2}\right) x\right) \otimes \mathcal{O}_{x}$ and $\mathrm{L}_{2}=\mathcal{O}_{x} \oplus \mathcal{O}_{x} \mathrm{t}^{\mathrm{a}_{2}+1 / 2} \subset \widetilde{F}_{x}$; here $\mathrm{t} \in \mathcal{O}_{x}$ is a local parameter [6, Section 8.1].

Any k-point of $S_{R_{\pi}}^{0}$ is given by a collection $\left(a \in \mathbb{Z}, L_{2}^{\prime} \subset \mathcal{M}^{\prime}, \mathcal{A}^{\prime}\right)$, where $\mathcal{M}^{\prime} \subset$ $\mathcal{M}_{\pi} \otimes F_{x}$ is an \mathcal{O}_{x}-lattice, $\mathcal{A}^{\prime}=\Omega^{-1}(-a x) \otimes \mathcal{O}_{x}$, and $L_{2}^{\prime}=\widetilde{\mathcal{O}}_{x}(-a \widetilde{x})=\mathcal{M}^{\prime} \cap\left(L_{\pi} \otimes F_{x}\right)$. Here $\pi(\widetilde{x})=x$ and L_{2}^{\prime} is viewed as an \mathcal{O}_{x}-module, so

$$
\begin{equation*}
\mathrm{L}_{2}^{\prime}=\mathrm{t}^{\mathrm{a} / 2} \mathcal{O}_{x} \oplus \mathrm{t}^{(\mathrm{a}+1) / 2} \mathcal{O}_{\chi} \tag{3.45}
\end{equation*}
$$

Set $\mathcal{W}=\operatorname{Ker}\left(\wedge^{2} \mathcal{M} \rightarrow \mathcal{A}\right)$ and $\mathcal{W}^{\prime}=\operatorname{Ker}\left(\wedge^{2} \mathcal{M}^{\prime} \rightarrow \mathcal{A}^{\prime}\right)$.

The condition that $\left(\mathcal{F}_{G}^{\prime}, \beta\right)=\left(\mathcal{M}^{\prime}, \mathcal{A}^{\prime}\right)$ lies in $\overline{\mathrm{Gr}}_{\mathrm{G}, \mathrm{x}}\left(\mathcal{F}_{\mathrm{G}}\right)$ implies that $\mathcal{A}^{\prime} \widetilde{\rightarrow} \mathcal{A}(-\langle\lambda$, $\left.\check{\omega}_{0}\right\rangle x$), hence

$$
\begin{equation*}
a=\left\langle\lambda, \check{\omega}_{0}\right\rangle-\left(a_{1}-a_{2}\right) . \tag{3.46}
\end{equation*}
$$

It also implies that

$$
\begin{align*}
& \mathcal{M}\left(-\left\langle\lambda, \check{\omega}_{1}\right\rangle x\right) \subset \mathcal{N}^{\prime}, \tag{3.47}\\
& \mathcal{W}\left(-\left\langle\lambda, \check{\omega}_{2}\right\rangle x\right) \subset \mathcal{W}^{\prime} . \tag{3.48}
\end{align*}
$$

The inclusion (3.47) fits into a commutative diagram

$$
\begin{gather*}
0 \longrightarrow \mathrm{~L}_{2}^{\prime} \longrightarrow \mathcal{M}^{\prime} \longrightarrow \mathrm{L}_{2}^{\prime *} \otimes \mathcal{A}^{\prime} \longrightarrow 0 \\
\cup \cup \mathrm{~L}_{2}\left(-\left\langle\lambda, \check{\omega}_{1}\right\rangle x\right) \longrightarrow \mathcal{M}\left(-\left\langle\lambda, \check{\omega}_{1}\right\rangle x\right) \longrightarrow \mathrm{L}_{2}^{*} \otimes \mathcal{A}\left(-\left\langle\lambda, \check{\omega}_{1}\right\rangle x\right) \longrightarrow 0 \tag{3.49}
\end{gather*}
$$

This yields an inclusion $L_{2}^{*} \subset L_{2}^{\prime *}\left(\left\langle\lambda, \check{\omega}_{1}-\check{\omega}_{0}\right\rangle\right)$, which implies $\left\langle\lambda, 2 \check{\omega}_{1}-\check{\omega}_{0}\right\rangle \geq a_{1}+a_{2}$. Note that $2 \check{\omega}_{1}-\check{\omega}_{0}=\check{\beta}_{12}+\check{\alpha}_{12}$.

Further, the inclusion (3.48) shows that $\left(\wedge^{2} \mathrm{~L}_{2}^{*}\right) \otimes \mathcal{A}^{2}\left(-\left\langle\lambda, \check{\omega}_{2}\right\rangle x\right) \subset\left(\wedge^{2} \mathrm{~L}^{\prime *}\right) \otimes \mathcal{A}^{\prime 2}$, that is,

$$
\begin{equation*}
\left\langle\lambda, \check{\omega}_{2}-\check{\omega}_{0}\right\rangle \geq a_{1} . \tag{3.50}
\end{equation*}
$$

Since $\check{\omega}_{2}-\check{\omega}_{0}=\check{\beta}_{12}$, we get $\mu \leq \mathfrak{i}(\lambda)$.
Step 2. The above M-torsor $\left(L_{2}^{\prime}, \mathcal{A}^{\prime}\right)$ is in a position v with respect to $\left(L_{2}, \mathcal{A}\right)$, where $v \in$ Λ_{M}^{+}is a dominant coweight for M that we are going to determine.

Clearly, $\left\langle v-\lambda, \check{\omega}_{0}\right\rangle=0$. Further, $\left(\wedge^{2} L_{2}\right)\left(-\left\langle v, \check{\omega}_{2}\right\rangle x\right) \rightrightarrows \wedge^{2} L_{2}^{\prime}$, so $a_{1}=\left\langle v, \check{\omega}_{0}-\check{\omega}_{2}\right\rangle$. From $L_{2}\left(-\left\langle\nu, \check{\omega}_{1}\right\rangle x\right) \subset L_{2}^{\prime}$ we get

$$
\left\langle v, \check{\omega}_{1}\right\rangle= \begin{cases}\frac{a}{2}, & a \text { is even } \tag{3.51}\\ \frac{a+1}{2}, & a \text { is odd }\end{cases}
$$

Now (3.39) identifies with the fibre of (3.42) over $\left(L_{2}^{\prime}, \mathcal{A}^{\prime}\right) \in \operatorname{Gr}_{M, x}^{v}\left(\mathcal{F}_{M}\right)$. Here the M-torsor $\mathcal{F}_{\mathcal{M}}$ is given by $\left(\mathrm{L}_{2}, \mathcal{A}\right)$.

By Remark 3.9, for a even, there exists a unique $\lambda^{\prime} \in \Lambda^{+}$with $\lambda^{\prime} \leq \lambda$ such that $\mu=\mathfrak{i}\left(\lambda^{\prime}\right)$. In this case the above formulas imply $v=w_{0}^{M} w_{0}\left(\lambda^{\prime}\right)$.

If $\mu=\mathfrak{i}(\lambda)$, then $a=\left\langle\lambda, \check{\omega}_{0}-\check{\beta}_{22}\right\rangle$ is even, because $\check{\omega}_{0}-\check{\beta}_{22}$ is divisible by 2 in $\check{\Lambda}$. For $\mu=\mathfrak{i}(\lambda)$ we get $\nu=w_{0}^{M} w_{0}(\lambda)$.

Let us show that $\langle\mu, \check{\rho}\rangle+\left\langle v, \check{\rho}-2 \check{\rho}_{M}\right\rangle \leq 0$. Indeed, since $2 \check{\omega}_{1}-\check{\omega}_{2}=\check{\alpha}_{12}$, we get

$$
\left\langle v, \check{\alpha}_{12}\right\rangle= \begin{cases}a_{2}, & a \text { is even } \tag{3.52}\\ a_{2}+1, & a \text { is odd }\end{cases}
$$

and $\left\langle v, \check{\alpha}_{12}+\check{\beta}_{22}\right\rangle=-a_{1}$. We have $\check{\rho}-2 \check{\rho}_{M}=\check{\alpha}_{12}+(3 / 2) \check{\beta}_{22}$ and $\check{\rho}=2 \check{\alpha}_{12}+(3 / 2) \check{\beta}_{22}$. So,

$$
\left\langle v, \check{\rho}-2 \check{\rho}_{M}\right\rangle= \begin{cases}\frac{1}{2}\left(-3 a_{1}-a_{2}\right), & a \text { is even, } \tag{3.53}\\ \frac{1}{2}\left(-3 a_{1}-a_{2}-1\right), & a \text { is odd. }\end{cases}
$$

The desired inequality follows now from (3.44), and it is an equality if and only if a is even, that is, $\mathfrak{i}(\lambda)-\mu$ vanishes in $\pi_{1}\left(G_{a d}\right)$. Our assertion follows now from Proposition 3.13.
(2) The split case.

Step 1. Acting by $R_{\pi}\left(F_{x}\right)$, we may assume that $(\mathcal{M}, \mathcal{A})$ has the following standard form $\mathcal{M}=\mathrm{L}_{2} \oplus \mathrm{~L}_{2}^{*} \otimes \mathcal{A}$, where

$$
\begin{equation*}
\mathrm{L}_{2}=\mathcal{O}_{x} \mathrm{t}^{\mathrm{a}_{2}} e_{1} \oplus \mathcal{O}_{x}\left(e_{1}+e_{2}\right) \tag{3.54}
\end{equation*}
$$

and $\mathcal{A}=\Omega^{-1}\left(\left(a_{1}-a_{2}\right) x\right) \otimes \mathcal{O}_{\chi}$. Here $\left\{e_{i}\right\}$ is a base of $\widetilde{\mathcal{O}}_{\chi}$ over \mathcal{O}_{χ} consisting of isotropic vectors [6, Section 8.1].

Any k-point of $S_{R_{\pi}}^{0}$ is given by a collection ($b_{1}, b_{2} \in \mathbb{Z}$, $L_{2}^{\prime} \subset \mathcal{M}^{\prime}, \mathcal{A}^{\prime}$), where $\mathcal{M}^{\prime} \subset$ $\mathcal{M}_{\pi} \otimes F_{x}$ is an \mathcal{O}_{χ}-lattice, $\mathcal{A}^{\prime}=\Omega^{-1}\left(-\left(b_{1}+b_{2}\right) x\right) \otimes \mathcal{O}_{x}$, and

$$
\begin{equation*}
L_{2}^{\prime}=\widetilde{\mathcal{O}}_{x}\left(-b_{1} \tilde{x}_{1}-b_{2} \widetilde{x}_{2}\right)=\mathcal{M}^{\prime} \cap\left(L_{\pi} \otimes F_{x}\right) . \tag{3.55}
\end{equation*}
$$

Here $\pi^{-1}(x)=\left\{\widetilde{x}_{1}, \widetilde{x}_{2}\right\}$ and L_{2}^{\prime} is viewed as an \mathcal{O}_{x}-module, so

$$
\begin{equation*}
\mathrm{L}_{2}^{\prime}=\mathcal{O}_{x} \mathrm{t}^{\mathrm{b}_{1}} e_{1} \oplus \mathcal{O}_{x} \mathrm{t}^{\mathrm{b}_{2}} e_{2} . \tag{3.56}
\end{equation*}
$$

If $\left(\mathcal{F}_{\mathrm{G}}^{\prime}, \beta\right)=\left(\mathcal{M}^{\prime}, \mathcal{A}^{\prime}\right)$ lies in $\overline{\operatorname{Gr}}_{\mathrm{G}, x}^{\lambda}\left(\mathcal{F}_{\mathrm{G}}\right)$, then $\mathcal{A}^{\prime} \underset{\rightarrow}{\mathcal{A}}\left(-\left\langle\lambda, \check{\omega}_{0}\right\rangle x\right)$, so

$$
\begin{equation*}
\mathrm{b}_{1}+\mathrm{b}_{2}=\left\langle\lambda, \check{\omega}_{0}\right\rangle-\mathrm{a}_{1}+\mathrm{a}_{2} . \tag{3.57}
\end{equation*}
$$

As in the nonsplit case, the inclusion $L_{2}^{\prime}\left(-\left\langle\lambda, \check{\omega}_{1}-\check{\omega}_{0}\right\rangle x\right) \subset L_{2}$ yields

$$
\begin{equation*}
b_{i}+\left\langle\lambda, \check{\omega}_{1}-\check{\omega}_{0}\right\rangle \geq a_{2} \tag{3.58}
\end{equation*}
$$

for $i=1,2$. This implies $\left\langle\lambda, 2 \check{\omega}_{1}-\check{\omega}_{0}\right\rangle \geq a_{1}+a_{2}$. As in the nonsplit case, $\left(\Lambda^{2} L_{2}^{\prime}\right)\left(\left\langle\lambda, 2 \check{\omega}_{0}-\right.\right.$ $\left.\left.\check{\omega}_{2}\right\rangle x\right) \subset \wedge^{2} L_{2}$ implies $\left\langle\lambda, \check{\omega}_{2}-\check{\omega}_{0}\right\rangle \geq a_{1}$. We have shown that $\mu \leq i(\lambda)$.

Step 2. Let us determine $v \in \Lambda_{M}^{+}$such that $\left(L_{2}^{\prime}, \mathcal{A}^{\prime}\right) \in \operatorname{Gr}_{M, x}^{v}\left(\mathcal{F}_{M}\right)$. Here \mathcal{F}_{M} is given by ($\mathrm{L}_{2}, \mathcal{A}$).

As in the nonsplit case, $\left\langle v-\lambda, \check{\omega}_{0}\right\rangle=0$ and $\left(\Lambda^{2} L_{2}\right)\left(-\left\langle v, \check{\omega}_{2}\right\rangle x\right) \leadsto \wedge^{2} L_{2}^{\prime}$. So, $a_{1}=$ $\left\langle v, \check{\omega}_{0}-\check{\omega}_{2}\right\rangle$. From $L_{2}\left(-\left\langle v, \check{\omega}_{1}\right\rangle x\right) \subset L_{2}^{\prime}$ we get

$$
\begin{equation*}
\left\langle v, \check{\omega}_{1}\right\rangle=\max \left\{b_{1}, b_{2}\right\} . \tag{3.59}
\end{equation*}
$$

In particular, for $\mu=\mathfrak{i}(\lambda)$ we get from (3.57) and (3.58)

$$
\begin{align*}
& b_{1}+b_{2}=\left\langle\lambda, \check{\omega}_{0}-\check{\beta}_{22}\right\rangle, \tag{3.60}\\
& b_{i} \geq\left\langle\lambda, \check{\alpha}_{12}-\check{\omega}_{1}+\check{\omega}_{0}\right\rangle .
\end{align*}
$$

But $2\left(\check{\alpha}_{12}-\check{\omega}_{1}+\check{\omega}_{0}\right)=\check{\omega}_{0}-\check{\beta}_{22}$, so in this case $b_{i}=\left\langle\lambda, \check{\alpha}_{12}-\check{\omega}_{1}+\check{\omega}_{0}\right\rangle$ for $i=1,2$. It easily follows that for $\mu=\mathfrak{i}(\lambda)$ we get $\nu=w_{0}^{M} w_{0}(\lambda)$.

As in the nonsplit case, it remains to show that $\langle\mu, \check{\rho}\rangle+\left\langle\nu, \check{\rho}-2 \check{\rho}_{M}\right\rangle \leq 0$. We have $\left\langle v, \check{\alpha}_{12}+\check{\beta}_{22}\right\rangle=-a_{1}$ and $\left\langle v, \check{\alpha}_{12}\right\rangle=2 \max \left\{b_{i}\right\}-\left\langle\lambda, \check{\omega}_{0}\right\rangle+a_{1}$. So,

$$
\begin{equation*}
\left\langle v, \check{\rho}-2 \check{\rho}_{M}\right\rangle=-2 a_{1}-\max \left\{b_{i}\right\}+\frac{1}{2}\left\langle\lambda, \check{\omega}_{0}\right\rangle . \tag{3.61}
\end{equation*}
$$

The desired inequality follows now from (3.44), because $\max \left\{b_{i}\right\} \geq(1 / 2)\left(a_{2}-a_{1}+\langle\lambda\right.$, $\left.\left.\check{\omega}_{0}\right\rangle\right)=(1 / 2)\left(b_{1}+b_{2}\right)$. It is an equality if and only if $b_{1}=b_{2}$, and this implies that $2 b_{i}=$ $\left\langle\lambda, \check{\omega}_{0}\right\rangle-\left(a_{1}-a_{2}\right)$ is even.

If $b_{1}=b_{2}$, then, as in the nonsplit case, we get $\left\langle v, \check{\alpha}_{12}\right\rangle=a_{2}$, so that $v=w_{0}^{M} w_{0}\left(\lambda^{\prime}\right)$ for $\lambda^{\prime} \in \Lambda^{+}$such that $\lambda^{\prime} \leq \lambda$ and $i\left(\lambda^{\prime}\right)=\mu$.

Remark 3.14. Write $\check{B} \subset G \check{G}$ for the dual Borel subgroup in G. The set of double-cosets $\check{M} \backslash \check{G} / \check{B}$ is finite, that is, $\check{M} \subset G \check{G}$ is a Gelfand pair. So, for any character $v \in \Lambda$ with $\left\langle v, \check{\alpha}_{12}\right\rangle=0$ and any $\lambda \in \Lambda^{+}$, the space $\operatorname{Hom}_{\check{M}^{\prime}}\left(U^{v}, V^{\lambda}\right)$ is at most 1-dimensional [9, Theorem 1]. This implies that for $\lambda^{\prime}, \lambda \in \Lambda^{+}$with $\lambda^{\prime} \leq \lambda$ and $\left\langle\lambda^{\prime}, \check{\alpha}_{12}\right\rangle=0$ for $\mu=\mathfrak{i}\left(\lambda^{\prime}\right)$, the scheme (3.39) is irreducible.

Remark 3.15. Let \mathcal{F}_{G} be a G-torsor on D_{χ}. For a k-point $\left(\mathcal{F}_{G}^{\prime}, \beta\right)$ of $\mathrm{Gr}_{G, x}\left(\mathcal{F}_{G}\right)$ we have $\left(\mathcal{F}_{G}^{\prime}, \beta\right) \in{\overline{\operatorname{Gr}_{G}}}^{\lambda},\left(\mathcal{F}_{G}\right)$ if and only if

$$
\begin{equation*}
V_{\mathcal{F}_{G}^{\prime}}^{\check{\omega}_{i}} \subset V_{\mathcal{F}_{G}}^{\check{\omega}_{i}}\left(\left\langle\lambda,-w_{0}\left(\check{\omega}_{i}\right)\right\rangle x\right) \tag{3.62}
\end{equation*}
$$

for $i=0,1,2$, and for $i=0$, this is an isomorphism.

3.11 End of the proof

Recall the map $\chi_{\pi}: R_{\pi} \rightarrow \Omega \times T_{\pi}$ (cf. Section 3.5). Write $\chi_{\pi, x}: R_{\pi}\left(F_{x}\right) \rightarrow \mathbb{A}^{1} \times \operatorname{Pic} \widetilde{X}$ for the composition

$$
\begin{equation*}
\mathrm{R}_{\pi}\left(\mathrm{F}_{x}\right) \xrightarrow{x_{\pi}} \Omega\left(\mathrm{F}_{x}\right) \times \mathrm{T}_{\pi}\left(\mathrm{F}_{x}\right) \Longrightarrow \Omega\left(\mathrm{F}_{x}\right) \times \widetilde{\mathrm{F}}_{x}^{*} \xrightarrow{\text { Res } \times \tau_{x}} \mathbb{A}^{1} \times \operatorname{Pic} \widetilde{\mathrm{X}}, \tag{3.63}
\end{equation*}
$$

where τ_{x} is the natural map $\widetilde{F}_{x}^{*} \rightarrow \widetilde{F}_{x}^{*} / \widetilde{\mathcal{O}}_{x}^{*} \rightarrow \operatorname{Pic} \widetilde{X}$. It is easy to see that for $\mu \in \Lambda_{\mathcal{B}}^{+}$there exists an $\left(R_{\pi}\left(F_{\chi}\right), \chi_{\pi, x}\right)$-equivariant map $\chi^{\mu}: S_{R_{\pi}}^{\mu} \rightarrow \mathbb{A}^{1} \times \operatorname{Pic} \tilde{X}$, and such a map is unique up to an additive constant (with respect to the structure of an abelian group on $\mathbb{A}^{1} \times$ $\operatorname{Pic} \widetilde{\mathrm{X}}$).

We need the following analog of [3, Proposition 7.1.7].
Lemma 3.16. Let $\lambda, \lambda^{\prime} \in \Lambda^{+}$with $\lambda^{\prime}<\lambda$. Set $\mu=\mathfrak{i}\left(\lambda^{\prime}\right)$. Let $\left(\mathcal{F}_{G}, \widetilde{\beta}\right)$ be a k-point of $S_{R_{\pi}}^{\mu}$. Let $\chi^{0}: S_{R_{\pi}}^{0} \rightarrow \mathbb{A}^{1} \times \operatorname{Pic} \tilde{X}$ be an $\left(R_{\pi}\left(F_{x}\right), \chi_{\pi, x}\right)$-equivariant map. Then the composition

$$
\begin{equation*}
\operatorname{Gr}_{\mathrm{G}, \mathrm{x}}^{\lambda}\left(\mathcal{F}_{\mathrm{G}}\right) \cap \mathrm{S}_{\mathrm{R}_{\pi}}^{0} \xrightarrow{\chi^{0}} \mathbb{A}^{1} \times \operatorname{Pic} \widetilde{\mathrm{X}} \xrightarrow{\mathrm{pr}_{1}} \mathbb{A}^{1} \tag{3.64}
\end{equation*}
$$

maps each irreducible component of (3.39) of dimension $\langle\lambda, \check{\rho}\rangle-\langle\mu, \check{\rho}\rangle$ dominantly to \mathbb{A}^{1}.

Proof. We may assume that $\left(\mathcal{F}_{\mathcal{G}}, \widetilde{\beta}\right)$ is given by the pair $(\mathcal{M}, \mathcal{A})$ in its standard form as in the proof of Proposition 3.11; in particular, it is reduced to a M-torsor. Write $\mu=\left(a_{1}, a_{2}\right)$. Set $v=w_{0}^{M} w_{0}\left(\lambda^{\prime}\right)$.

Let $z \in \mathbb{G}_{\mathrm{m}}$ act on L_{π} as a multiplication by z and trivially on Ω^{-1}. The corresponding action of \mathbb{G}_{m} on $\mathcal{M}_{\pi}=\mathrm{L}_{\pi} \oplus \mathrm{L}_{\pi}^{*} \otimes \Omega^{-1}$ defines a map $\mathbb{G}_{\mathrm{m}} \rightarrow \mathrm{G}_{\pi}$ whose image lies
in the center of $\mathrm{P}_{\pi} / \mathrm{U}_{\pi}$. The corresponding action of $\mathbb{G}_{\mathrm{m}}\left(\mathcal{O}_{\chi}\right)=\mathcal{O}_{\chi}^{*}$ on $\mathrm{Gr}_{\mathrm{G}_{\pi}, x}$ fixes $\left(\mathcal{F}_{G}, \widetilde{\beta}\right)$ and preserves the scheme (3.39).

The dimension estimates in Proposition 3.11 also show that the irreducible components of dimension $\langle\lambda, \check{\rho}\rangle-\langle\mu, \check{\rho}\rangle$ of the schemes $\mathrm{Gr}_{\mathrm{G}, \chi}^{\lambda}\left(\mathcal{F}_{\mathrm{G}}\right) \cap \mathrm{S}_{\mathrm{R}_{\pi}}^{0}$ and $\overline{\mathrm{Gr}}_{\mathrm{G}, \chi}^{\lambda}\left(\mathcal{F}_{G}\right) \cap S_{\mathrm{R}_{\pi}}^{0}$ are the same. We are going to describe the latter scheme explicitly.
(1) The split case. We have $\mathcal{M}=\mathrm{L}_{2} \oplus \mathrm{~L}_{2}^{*} \otimes \mathcal{A}$ with $\mathrm{L}_{2}=\mathcal{O}_{\chi} \mathrm{t}^{\mathrm{a}_{2}} e_{1} \oplus \mathcal{O}_{\chi}\left(e_{1}+e_{2}\right)$ and $\mathcal{A}=$ $\Omega^{-1}\left(\left(a_{1}-a_{2}\right) x\right) \otimes \mathcal{O}_{x}$, where $\left\{e_{i}\right\}$ is a base of $\widetilde{\mathcal{O}}_{x}$ over \mathcal{O}_{x} consisting of isotropic vectors, and $t \in \mathcal{O}_{x}$ is a local parameter. Let \mathcal{F}_{M} be the M-torsor on $\operatorname{Spec} \mathcal{O}_{x}$ given by $\left(L_{2}, \mathcal{A}\right)$.

Set $\mathrm{b}=(1 / 2)\left(\mathrm{a}_{2}-\mathrm{a}_{1}+\left\langle\lambda, \check{\omega}_{0}\right\rangle\right)$. Consider the k-point of $\mathrm{Gr}_{\mathrm{M}, \mathrm{x}}\left(\mathcal{F}_{\mathrm{M}}\right)$ given by $\left(\mathrm{L}_{2}^{\prime}, \mathcal{A}^{\prime}\right)$ with $\mathcal{A}^{\prime}=\Omega^{-1}(-2 b x) \otimes \mathcal{O}_{x}$ and $L_{2}^{\prime}=\widetilde{\mathcal{O}}_{x}\left(-b \widetilde{x}_{1}-b \widetilde{x}_{2}\right)$, where $\pi^{-1}(x)=\left\{\widetilde{x}_{1}, \widetilde{x}_{2}\right\}$. Under our assumptions the scheme (3.38) identifies with the fibre, say Y, of

$$
\begin{equation*}
\mathfrak{t}_{P}^{v}: \mathrm{S}^{v}\left(\mathcal{F}_{\mathrm{P}}\right) \cap \overline{\mathrm{Gr}}_{\mathrm{G}, x}^{\lambda}\left(\mathcal{F}_{\mathrm{G}}\right) \longrightarrow \mathrm{Gr}_{M, x}^{v}\left(\mathcal{F}_{M}\right) \tag{3.65}
\end{equation*}
$$

over $\left(\mathrm{L}_{2}^{\prime}, \mathcal{A}^{\prime}\right)$. In matrix terms, Y is the scheme of those $u \in \mathrm{Gr}_{u, x}$ for which $\mathrm{gu} \in \overline{\mathrm{Gr}}_{\mathrm{G}, \mathrm{x}}^{\lambda}$. Here

$$
g=\left(\begin{array}{cccc}
t^{b-a_{2}} & -t^{b-a_{2}} & 0 & 0 \tag{3.66}\\
0 & t^{b} & 0 & 0 \\
0 & 0 & t^{a_{1}+b} & 0 \\
0 & 0 & t^{a_{1}-a_{2}+b} & t^{a_{1}-a_{2}+b}
\end{array}\right)
$$

Write

$$
u=\left(\begin{array}{cccc}
1 & 0 & u_{1} & u_{2} \tag{3.67}\\
0 & 1 & u_{2} & u_{3} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

with $\mathfrak{u}_{i} \in \Omega\left(\mathrm{~F}_{\chi}\right) / \Omega\left(\mathcal{O}_{\chi}\right)$. By Remark 3.15, Y inside of $\mathrm{Gr}_{\mathrm{u}, \mathrm{x}}$ is given by the equations

$$
\begin{align*}
& u_{i} \in \mathrm{t}^{-\mathrm{b}+\left\langle\lambda, w_{0}\left(\check{\omega}_{1}\right)\right\rangle} \Omega\left(\mathcal{O}_{x}\right), \\
& \mathbf{u}_{i}-\mathfrak{u}_{\mathrm{j}} \in \mathrm{t}^{\alpha} \Omega\left(\mathcal{O}_{x}\right), \\
& \mathbf{u}_{1} u_{3}-\mathfrak{u}_{2}^{2} \in \mathrm{t}^{\delta} \Omega^{\otimes 2}\left(\mathcal{O}_{x}\right), \tag{3.68}\\
& \mathbf{u}_{i} \in \mathfrak{t}^{\delta} \Omega\left(\mathcal{O}_{x}\right),
\end{align*}
$$

where we have set for brevity $\delta=-2 \mathrm{~b}+\mathrm{a}_{2}+\left\langle\lambda, w_{0}\left(\check{\omega}_{2}\right)\right\rangle$ and $\alpha=-\mathrm{b}+\mathrm{a}_{2}+\left\langle\lambda, w_{0}\left(\check{\omega}_{1}\right)\right\rangle$.

We may assume that (3.64) sends (3.67) to Res u_{2}. Let $Y^{\prime} \subset Y$ be the closed subscheme given by $u_{2}=0$. The above \mathcal{O}_{χ}^{*}-action on Y multiplies each u_{i} in (3.67) by the same scalar. So, it suffices to show that $\operatorname{dim} Y^{\prime}<\langle\lambda, \check{\rho}\rangle-\langle\mu, \check{\rho}\rangle$.

The scheme Y^{\prime} is contained in the scheme of pairs

$$
\begin{equation*}
\left\{\mathfrak{u}_{1}, u_{3} \in \mathfrak{t}^{\delta} \Omega\left(\mathcal{O}_{x}\right) / \Omega\left(\mathcal{O}_{x}\right) \mid u_{1} u_{3} \in t^{\delta} \Omega\left(\mathcal{O}_{x}\right) / \Omega\left(\mathcal{O}_{x}\right)\right\} \tag{3.69}
\end{equation*}
$$

The dimension of the latter scheme is at most $-\delta$. We have $-\delta \leq\langle\lambda, \check{\rho}\rangle-\langle\mu, \check{\rho}\rangle$, and the equality holds if and only if $\alpha=0$. But if $\alpha=0$, then Y^{\prime} is a point scheme. Since $\langle\lambda, \check{\rho}\rangle-$ $\langle\mu, \check{\rho}\rangle$ is strictly positive, we are done.
(2) The nonsplit case. We have $\mathcal{M}=\mathrm{L}_{2} \oplus \mathrm{~L}_{2}^{*} \otimes \mathcal{A}$ with $\mathrm{L}_{2} \widetilde{\rightarrow} \mathcal{O}_{x} \oplus \mathcal{O}_{x} \mathrm{t}^{\mathrm{a}_{2}+(1 / 2)}$ and $\mathcal{A} \rightrightarrows \Omega^{-1}$ $\left(\left(a_{1}-a_{2}\right) x\right) \otimes \mathcal{O}_{x}$, where $t \in \mathcal{O}_{x}$ is a local parameter. Let \mathcal{F}_{M} be the M-torsor on $\operatorname{Spec} \mathcal{O}_{x}$ given by $\left(\mathrm{L}_{2}, \mathcal{A}\right)$.

Set $L_{2}^{\prime}=t^{a / 2} \mathcal{O}_{x} \oplus t^{(a+1) / 2} \mathcal{O}_{x}$ and $\mathcal{A}^{\prime}=\Omega^{-1}(-a x) \otimes \mathcal{O}_{x}$ with $a=\left\langle\lambda, \check{\omega}_{0}\right\rangle-a_{1}+a_{2}$ and recall that a is even. The scheme (3.38) identifies with the fibre, say Y, of (3.65) over ($\mathrm{L}_{2}^{\prime}, \mathcal{A}^{\prime}$).

Consider the base $\left\{1, t^{1 / 2}\right\}$ in $L_{\pi} \otimes \mathcal{O}_{x}$ and the dual base in $L_{\pi}^{*} \otimes \mathcal{O}_{x}$. Then in matrix terms, Y becomes the scheme of those $u \in G r_{u, x}$ for which $g u \in \overline{\mathrm{Gr}}_{G, x}^{\lambda}$. Here $g=$ $t^{a / 2} \operatorname{diag}\left(1, t^{a_{2}}, t^{a_{1}-a_{2}}, t^{a_{1}}\right)$. For $u \in \mathrm{Gr}_{u, x}$ written as in (3.67), the scheme Y is given by the equations

$$
\begin{align*}
& u_{1} \in \mathfrak{t}^{-(a / 2)+\left\langle\lambda, w_{0}\left(\check{w}_{1}\right)\right\rangle} \Omega\left(\mathcal{O}_{x}\right), \\
& u_{2}, u_{3} \in \mathfrak{t}^{\alpha} \Omega\left(\mathcal{O}_{x}\right), \\
& u_{1} u_{3}-u_{2}^{2} \in \mathfrak{t}^{\delta} \Omega^{\otimes 2}\left(\mathcal{O}_{x}\right), \tag{3.70}\\
& u_{i} \in \mathfrak{t}^{\delta} \Omega\left(\mathcal{O}_{x}\right),
\end{align*}
$$

where we have set $\alpha=a_{2}-(a / 2)+\left\langle\lambda, w_{0}\left(\check{\omega}_{1}\right)\right\rangle$ and $\delta=a_{2}-a+\left\langle\lambda, w_{0}\left(\check{\omega}_{2}\right)\right\rangle$.
We may assume that (3.64) sends (3.67) to $\operatorname{Res}\left(u_{1}-t u_{3}\right)$. Let $Y^{\prime} \subset Y$ be the closed subscheme given by $\mathfrak{u}_{1}=\mathfrak{t} \mathfrak{u}_{3}$. Since we have an action of $\mathcal{O}_{\dot{x}}^{*}$, it suffices to show that $\operatorname{dim} Y^{\prime}<\langle\lambda, \check{\rho}\rangle-\langle\mu, \check{\rho}\rangle$.

The scheme γ^{\prime} is contained in the scheme

$$
\begin{equation*}
\left\{u_{2}, u_{3} \in t^{\delta} \Omega\left(\mathcal{O}_{x}\right) / \Omega\left(\mathcal{O}_{x}\right) \mid t u_{3}^{2}-u_{2}^{2} \in t^{\delta} \Omega^{\otimes 2}\left(\mathcal{O}_{x}\right)\right\} . \tag{3.71}
\end{equation*}
$$

The latter scheme is included into $\mathrm{Y}^{\prime \prime}$ given by

$$
\mathcal{Y}^{\prime \prime}= \begin{cases}\left\{\mathfrak{u}_{2}, \mathfrak{u}_{3} \in \mathfrak{t}^{\delta / 2} \Omega\left(\mathcal{O}_{x}\right) / \Omega\left(\mathcal{O}_{x}\right)\right\}, & \text { for } \delta \text { even, } \tag{3.72}\\ \left\{\mathfrak{u}_{2} \in \mathfrak{t}^{(1+\delta) / 2} \Omega\left(\mathcal{O}_{x}\right) / \Omega\left(\mathcal{O}_{x}\right), \mathfrak{u}_{3} \in \mathfrak{t}^{(\delta-1) / 2} \Omega\left(\mathcal{O}_{x}\right) / \Omega\left(\mathcal{O}_{x}\right)\right\}, & \text { for } \delta \text { odd }\end{cases}
$$

This implies $\operatorname{dim} \gamma^{\prime} \leq \operatorname{dim} \gamma^{\prime \prime} \leq-\delta$. As in the split case, $-\delta \leq\langle\lambda, \check{\rho}\rangle-\langle\mu, \check{\rho}\rangle$ and the equality implies $\alpha=0$. But for $\alpha=0$ we get $Y^{\prime} \rightrightarrows$ Spec k. This concludes the proof.

Proof of Theorem 3.10. (2) Let $\mathfrak{q}_{\omega}: x, \infty \overline{\operatorname{Bun}}_{\mathcal{R}_{\pi}} \widetilde{\dashv}_{x, \infty} \overline{\mathrm{Bun}}_{\mathrm{R}_{\pi}}$ denote the isomorphism send$\operatorname{ing}\left(\mathcal{M}, \mathcal{A}, \kappa_{1}, \kappa_{2}\right)$ to

$$
\begin{equation*}
\left(\mathcal{M}(x), \mathcal{A}(2 x), \kappa_{1}, \kappa_{2}\right) . \tag{3.73}
\end{equation*}
$$

It preserves the stratification of ${ }_{x, \infty} \overline{\operatorname{Bun}}_{R_{\pi}}$ by ${ }_{\mathrm{D}} \mathrm{Bun}_{R_{\pi}}$ introduced in Section 3.4, and we have a commutative diagram

where $\widetilde{\mathfrak{q}}_{\omega}$ sends $\mathcal{B}_{\text {ex }}$ to $\mathcal{B}_{\text {ex }}(2 \widetilde{x})$ (resp., to $\left.\mathcal{B}_{\text {ex }}\left(\widetilde{x}_{1}+\widetilde{x}_{2}\right)\right)$ in the nonsplit (resp., split) case. Our assertion follows from the automorphic property of $\lambda \widetilde{E}$.
(1) We change the notation replacing λ by $-w_{0}(\lambda)$. In other words, we will establish a canonical isomorphism $H\left(\mathcal{A}_{-w_{0}(\lambda)}, \mathcal{B}^{0}\right) 工 \mathcal{B}^{i}(\lambda) \otimes \mathcal{N}$ with

$$
\mathcal{N} \simeq \begin{cases}\left(\widetilde{\mathrm{E}}_{\tilde{x}}\right)^{\otimes\langle\lambda, 2 \check{\gamma}\rangle}, & \text { the nonsplit case }, \pi(\widetilde{\mathrm{x}})=x, \tag{3.75}\\ \left(\widetilde{\mathrm{E}}_{\tilde{x}_{1}} \otimes \widetilde{\mathrm{E}}_{\tilde{x}_{2}}\right)^{\otimes\langle\lambda, \tilde{\gamma}\rangle}, & \text { the split case }, \pi^{-1}(x)=\left\{\widetilde{x}_{1}, \widetilde{\mathrm{x}}_{2}\right\} .\end{cases}
$$

Denote by $\widetilde{\mathrm{K}}_{\mu}$ (resp., by $\mathrm{K}_{\mu}, \mathrm{D}_{\mathrm{D}} \mathrm{K}$) the $*$-restriction of $\mathrm{H}\left(\mathcal{A}_{-w_{0}(\lambda)}, \mathcal{B}^{0}\right)$ to ${ }_{x, \mu} \widetilde{\operatorname{Bun}}_{\mathcal{R}_{\pi}}$ (resp., to ${ }_{x, \mu}$ Bun $_{R_{\pi}}$, D Bun $_{R_{\pi}}$). Here D is $\Lambda_{\mathcal{B}}$-valued divisor on X as in Section 3.4.

By Section 2.3, we know that each perverse cohomology sheaf of ${ }_{D} \mathrm{~K}$ is \mathcal{L}-equivariant. So, ${ }_{\mathrm{D}} \mathrm{K}=0$ unless $\mathrm{D}=\mu x$ with μ relevant. In particular, $\widetilde{\mathrm{K}}_{\mu}$ is the extension by zero under ${ }_{x, \mu} \operatorname{Bun}_{R_{\pi}} \hookrightarrow x, \mu \widetilde{\operatorname{Bun}}_{\mathrm{R}_{\pi}}$.

Since \mathcal{B}^{0} is self-dual (up to replacing \widetilde{E} by $\widetilde{\mathrm{E}}^{*}$ and ψ by ψ^{-1}), our assertion is reduced to the following lemma.

Lemma 3.17. One has $\widetilde{\mathrm{K}}_{\mu}=0$ unless $\mu \leq \mathfrak{i}(\lambda)$. The complex $\widetilde{\mathrm{K}}_{\mu}$ lives in nonpositive (resp., strictly negative) perverse degrees for $\mu=\mathfrak{i}(\lambda)$ (resp., for $\mu<\mathfrak{i}(\lambda)$). One has canonically

$$
\begin{equation*}
K_{i(\lambda)} 工\left(\mathrm{ev}^{i(\lambda)}\right)^{*}\left(\mathcal{L}_{\psi} \boxtimes A \widetilde{E}\right) \otimes \mathcal{N} \otimes \overline{\mathbb{Q}}_{\ell}[1]\left(\frac{1}{2}\right)^{\otimes \operatorname{dim}_{x, i(\lambda)} \operatorname{Bun}_{R_{\pi}}} \tag{3.76}
\end{equation*}
$$

Proof. Write ${ }_{\chi} \overline{\mathcal{H}}_{\mathrm{G}}^{\lambda}$ for the substack of ${ }_{\chi} \mathcal{H}_{\mathrm{G}}$ that under the projection $\mathfrak{q}_{\mathrm{G}}:{ }_{\chi} \mathcal{H}_{\mathrm{G}} \rightarrow \operatorname{Bun}_{\mathrm{G}}$ identifies with

$$
\begin{equation*}
\operatorname{Bun}_{G}^{x} \times_{G\left(\mathcal{O}_{x}\right)} \overline{\operatorname{Gr}}_{\mathrm{G}, \mathrm{x}}^{\lambda} \longrightarrow \operatorname{Bun}_{\mathrm{G}} . \tag{3.77}
\end{equation*}
$$

For the diagram

$$
\begin{equation*}
x_{x, \infty} \overline{\operatorname{Bun}}_{\mathrm{R}_{\pi}} \stackrel{\mathrm{p}_{\mathrm{R}}}{x, \infty} \overline{\operatorname{Bun}}_{\mathrm{R}_{\pi}} \times{ }_{\mathrm{Bun}_{\mathrm{G}} \times} \times \overline{\mathcal{H}}_{\mathrm{G}}^{-w_{0}(\lambda)} \xrightarrow{\mathrm{q}_{\mathrm{R}}}{ }_{x, \infty} \overline{\mathrm{Bun}}_{\mathrm{R}_{\pi}}, \tag{3.78}
\end{equation*}
$$

we have

$$
\begin{equation*}
\mathrm{H}\left(\mathcal{A}_{-w_{0}(\lambda)} \cdot \cdot\right)=\left(\mathfrak{p}_{\mathrm{R}}\right)_{!}\left(\mathfrak{q}_{R}^{*}(\cdot) \widetilde{\boxtimes} \mathcal{A}_{-w_{0}(\lambda)}\right) . \tag{3.79}
\end{equation*}
$$

Let $\mu=\left(a_{1}, a_{2}\right) \in \Lambda_{\mathcal{B}}^{+}$. Pick a k-point $\eta \in{ }_{x, \mu} \operatorname{Bun}_{R_{\pi}}$ given by the following collection: a line bundle $\mathcal{B}_{\text {ex }}$ on \widetilde{X}, for which we set $\mathrm{L}_{\text {ex }}=\pi_{*} \mathcal{B}_{\text {ex }}$, a modification $\mathrm{L}_{2} \subset \mathrm{~L}_{\text {ex }}$ of rank-2 vector bundles on X such that the composition is surjective:

$$
\begin{equation*}
\operatorname{Sym}^{2} \mathrm{~L}_{2} \longrightarrow \operatorname{Sym}^{2} \mathrm{~L}_{\mathrm{ex}} \longrightarrow\left(\varepsilon \otimes \operatorname{det} \mathrm{~L}_{\mathrm{ex}}\right)\left(\mathrm{D}_{\pi}\right) \tag{3.80}
\end{equation*}
$$

and $a_{2} x=\operatorname{div}\left(L_{\text {ex }} / L_{2}\right)$, and an exact sequence

$$
\begin{equation*}
0 \longrightarrow \operatorname{Sym}^{2} \mathrm{~L}_{2} \longrightarrow ? \longrightarrow \mathcal{A} \longrightarrow 0 \tag{3.81}
\end{equation*}
$$

on X, where we have set $\mathcal{A}=\left(\Omega^{-1} \otimes \mathcal{E} \otimes \operatorname{det} \mathrm{~L}_{2}\right)\left(\mathrm{D}_{\pi}+\mathrm{a}_{1} \mathrm{x}\right)$.
The fibre of

$$
\begin{equation*}
\mathfrak{p}_{\mathrm{R}}: x, \infty \overline{\operatorname{Bun}}_{\mathrm{R}_{\pi}} \times{ }_{\operatorname{Bun}_{\mathrm{G}} x} \overline{\mathcal{H}}_{\mathrm{G}}^{-w_{0}(\lambda)} \longrightarrow x, \infty \overline{\operatorname{Bun}}_{\mathrm{R}_{\pi}} \tag{3.82}
\end{equation*}
$$

over η identifies with $\overline{\operatorname{Gr}}_{\mathrm{G}, \mathrm{x}}\left(\mathcal{F}_{\mathrm{G}}\right)$, where $\mathcal{F}_{G}=(\mathcal{M}, \mathcal{A}) \in \operatorname{Bun}_{G}$ is given by the P-torsor (3.81).

Fix a trivialization $\mathcal{B}_{\text {ex }} \otimes \widetilde{\mathcal{O}}_{x} \xlongequal[\rightarrow]{\boldsymbol{\mathcal { O }}}{ }_{x}$ and a splitting of (3.81) over Spec \mathcal{O}_{x}. They yield isomorphisms $\left.\mathcal{M} \rightrightarrows\left(\mathrm{L}_{2} \oplus \mathrm{~L}_{2}^{*} \otimes \mathcal{A}\right)\right|_{\text {spec }} ^{\mathcal{O}_{x}}$ and $\left.\mathcal{A} 工 \Omega^{-1}\left(\left(a_{1}-a_{2}\right) x\right)\right|_{\text {spec }} ^{\mathcal{O}_{x}}$. So, the pair

$$
\begin{align*}
& \mathcal{M} \otimes \mathcal{O}_{x} \subset \mathcal{M}_{\pi} \otimes F_{x}, \\
& \mathcal{A} \otimes \mathcal{O}_{x} \subset \Omega^{-1} \otimes F_{x} \tag{3.83}
\end{align*}
$$

becomes a point of $\mathrm{Gr}_{\mathrm{G}_{\pi}, \chi}$ lying in $\mathrm{S}_{\mathrm{R}_{\pi}}^{\mu}$.
Recall that \mathcal{B}^{0} is clean with respect to the open immersion $x_{x, 0} \operatorname{Bun}_{R_{\pi}} \subset{ }_{x, 0} \operatorname{Bun}_{R_{\pi}}$. So, only the stratum (3.38) contributes to K_{μ}. By Proposition 3.11, $K_{\mu}=0$ unless $\mu \leq i(\lambda)$.

Assume that $\mu \leq i(\lambda)$. Stratify (3.38) by locally closed subschemes $\operatorname{Gr}_{G, x}^{\lambda^{\prime}}\left(\mathcal{F}_{G}\right) \cap S_{R_{\pi}}^{\infty}$ with $\lambda^{\prime} \leq \lambda$, where $\lambda^{\prime} \in \Lambda^{+}$. The $*$-restriction of $\mathcal{A}_{-w_{0}(\lambda)}$ under

$$
\begin{equation*}
\operatorname{Gr}_{\mathrm{G}, \mathrm{x}}^{\lambda^{\prime}}\left(\mathcal{F}_{\mathrm{G}}\right) \hookrightarrow \overline{\mathrm{Gr}}_{\mathrm{G}, \mathrm{x}}^{\lambda}\left(\mathcal{F}_{\mathrm{G}}\right) \tag{3.84}
\end{equation*}
$$

is a constant complex placed in usual degree $\leq-\operatorname{dim} \operatorname{Gr}_{G}^{\lambda^{\prime}, x}\left(\mathcal{F}_{G}\right)=-\left\langle\lambda^{\prime}, 2 \check{\rho}\right\rangle$, the inequality is strict unless $\lambda^{\prime}=\lambda$. From (3.32) and Proposition 3.11, we get

$$
\begin{equation*}
-\operatorname{dim}_{x, 0} \operatorname{Bun}_{\mathrm{R}_{\pi}}-\left\langle\lambda^{\prime}, 2 \check{\rho}\right\rangle+2 \operatorname{dim}\left(\operatorname{Gr}_{\mathrm{G}_{, x}}^{\lambda^{\prime}}\left(\mathcal{F}_{G}\right) \cap \mathrm{S}_{\mathrm{R}_{\pi}}^{0}\right) \leq-\operatorname{dim} x_{x, \mu} \operatorname{Bun}_{\mathrm{R}_{\pi}} . \tag{3.85}
\end{equation*}
$$

So, K_{μ} is placed in perverse degrees ≤ 0. If $\mu-i(\lambda)$ does not vanish in $\pi_{1}\left(G_{a d}\right)$, then, by Proposition 3.11, K_{μ} is placed in strictly negative perverse degrees.

If $\mathfrak{i}(\lambda)-\mu$ vanishes in $\pi_{1}\left(G_{\text {ad }}\right)$, let $\lambda^{\prime} \in \Lambda^{+}$be such that $\lambda^{\prime} \leq \lambda$ and $\mu=\mathfrak{i}\left(\lambda^{\prime}\right)$. Then only the stratum (3.39) could contribute to the 0th perverse cohomology sheaf of K_{μ}. For $\mu<\mathfrak{i}(\lambda)$ it does not contribute, because the restriction of $\mathfrak{q}_{\mathbb{R}}^{*}\left(\mathcal{B}^{0}\right) \widetilde{\boxtimes} \mathcal{A}_{-w_{0}(\lambda)}$ to (3.39) is a nonconstant local system by Lemma 3.16.

If $\mu=\mathfrak{i}(\lambda)$, then (3.39) is a point scheme by Proposition 3.11, and the description of $K_{i(\lambda)}$ follows from the automorphic property of $A \widetilde{E}$.

3.12 Properties of the Bessel category

For $\lambda \in \Lambda_{\mathcal{B}}^{+}$the perverse sheaf \mathcal{B}^{λ} is not always the extension by zero from ${ }_{x, \lambda}$ Bun $_{R_{\pi}}$. For example, take $\lambda=(1,1)$ and $\mu=(1,0)$. An easy calculation shows that, over $x_{x, \lambda}$ Bun $_{R_{\pi}}$ $U_{\chi, \mu}$ Bun $_{R_{\pi}}, \mathcal{B}^{\lambda}$ is a usual sheaf placed in cohomological degree - $\operatorname{dim}_{x, \lambda} \operatorname{Bun}_{R_{\pi}}$.

Now we can show that the category $\mathrm{P}^{\mathcal{L}}\left({ }_{(x, \infty} \overline{\operatorname{Bun}}_{\mathrm{R}_{\pi}}\right)$ is not semisimple. Recall the stack ${ }_{\chi}^{a_{1}} \overline{\operatorname{Bun}}_{\mathrm{R}_{\pi}}$ (cf. Remark 3.7). Let $\lambda=(1,1)$ and $\mu=(1,0)$. We have a sequence of open embeddings

$$
\begin{equation*}
x, \lambda \operatorname{Bun}_{\mathbb{R}_{\pi}} \stackrel{j}{\hookrightarrow}{ }_{x, \lambda}^{1} \overline{\operatorname{Bun}}_{\mathrm{R}_{\pi}} \stackrel{\tilde{j}}{\hookrightarrow} x, \lambda \overline{\operatorname{Bun}}_{R_{\pi}}, \tag{3.86}
\end{equation*}
$$

where j is obtained from the affine open embedding \mathcal{W} ald $\pi_{\pi}^{x, 1} \hookrightarrow \mathcal{W}$ ald $_{\pi}^{x, \leq 1}$ by the base change

$$
\begin{equation*}
{ }_{x, \lambda}^{1} \overline{\operatorname{Bun}}_{\mathrm{R}_{\pi}} \longrightarrow \mathcal{W} \operatorname{ald}_{\pi}^{x, \leq 1} \tag{3.87}
\end{equation*}
$$

Set $\left.\mathcal{B}^{\lambda, \mu}=\left.\tilde{j}_{!* *} j^{\left(\mathcal{B}^{\lambda}\right.}\right|_{x_{, \lambda} \operatorname{Bun}_{R_{\pi}}}\right)$. We get an exact sequence in $\mathrm{P}^{\mathcal{L}}\left({ }_{(x, \infty} \overline{\operatorname{Bun}}_{\mathcal{R}_{\pi}}\right)$:

$$
\begin{equation*}
0 \longrightarrow \mathrm{~K} \longrightarrow \mathcal{B}^{\lambda, \mu} \longrightarrow \mathcal{B}^{\lambda} \longrightarrow 0 . \tag{3.88}
\end{equation*}
$$

If $\mathrm{P}^{\mathcal{L}}\left({ }_{x, \infty} \overline{\mathrm{Bun}}_{\mathcal{R}_{\pi}}\right)$ was semisimple, it would split; this contradicts the fact that the $*$-restriction of \mathcal{B}^{λ} to $x_{x, \mu} \operatorname{Bun}_{\mathbb{R}_{\pi}}$ is not zero.

3.13 Geometric Casselman-Shalika formula

Recall that we write V^{μ} for the irreducible representation of G of highest weight μ. Let E be a Ǧ-local system on Spec k equipped with an isomorphism

$$
V_{\mathrm{E}}^{\omega} \simeq \begin{cases}\widetilde{\mathrm{E}}_{\stackrel{\otimes}{\otimes}}^{\otimes 2}, & \text { the nonsplit case, } \pi(\widetilde{\mathrm{x}})=x, \tag{3.89}\\ \widetilde{\mathrm{E}}_{\tilde{\mathrm{x}}_{1}} \otimes \widetilde{\mathrm{E}}_{\tilde{x}_{2}}, & \text { the split case, } \pi^{-1}(x)=\left\{\widetilde{\mathrm{x}}_{1}, \widetilde{\mathrm{x}}_{2}\right\} .\end{cases}
$$

We assign to E the ind-object K_{E} of $P^{\mathcal{L}}\left({ }_{x, \infty} \overline{\operatorname{Bun}}_{R_{\pi}}\right)$ given by

$$
\begin{equation*}
\mathrm{K}_{\mathrm{E}}=\oplus \underset{\substack{\lambda \in \mathcal{N}^{+}+\\\langle\lambda, \hat{\nu}=0}}{ } \mathcal{B}^{\mathrm{i}(\lambda)} \otimes\left(\mathrm{V}^{\lambda}\right)_{\mathrm{E}}^{*}, \tag{3.90}
\end{equation*}
$$

where $\check{v} \in \check{\Lambda}$ is that of Theorem 3.10. For a representation V of \check{G} write \mathcal{A}_{V} for the object of $\operatorname{Sph}\left(\operatorname{Gr}_{G, x}\right)$ corresponding to V via the Satake equivalence $\operatorname{Rep}(\check{\mathrm{G}}) \widetilde{\rightrightarrows} \mathrm{Sph}\left(\mathrm{Gr}_{\mathrm{G}, \mathrm{x}}\right)$.

One formally derives from Theorem 3.10 the following.
Corollary 3.18. For any $V \in \operatorname{Rep}(\check{G})$, there is an isomorphism $\alpha_{V}: H\left(\mathcal{A}_{V}, K_{E}\right) \widetilde{\rightarrow} K_{E} \otimes V_{E}$. For $\mathrm{V}, \mathrm{V}^{\prime} \in \operatorname{Rep}(\mathrm{G})$ the following diagram commutes:

where η is the isomorphism (2.24).

3.14 Multiplicity one

One may view $\mathrm{Gr}_{\mathrm{G}_{\pi}, \mathrm{x}}$ as the ind-scheme classifying a G_{π}-bundle $\mathcal{F}_{\mathrm{G}_{\pi}}$ on X together with a trivialization $\left.\mathcal{F}_{G_{\pi}} \not \mathcal{F}_{\mathcal{F}_{G_{\pi}}^{0}}\right|_{X-x}$. This yields a map $\operatorname{Gr}_{G_{\pi}, x} \rightarrow{ }_{x, \infty} \overline{\operatorname{Bun}}_{R_{\pi}}$.

Theorem 3.10 holds also in the case of a finite base field $k=\mathbb{F}_{\mathbf{q}}$. In this case we have the Bessel module BM_{τ} introduced in Section 1.1, which we now view as the space of functions on $G_{\pi}\left(F_{x}\right) / G_{\pi}\left(O_{x}\right)$ that change by τ under the action of $R_{\pi}\left(F_{x}\right)$. Let B^{λ} denote the restriction under

$$
\begin{equation*}
\mathrm{G}_{\pi}\left(\mathrm{F}_{x}\right) / \mathrm{G}_{\pi}\left(O_{x}\right) \longrightarrow x, \infty \overline{\operatorname{Bun}}_{\mathrm{R}_{\pi}}(\mathrm{k}) \tag{3.92}
\end{equation*}
$$

of the trace of Frobenius function of \mathcal{B}^{λ}. Then $\left\{\mathrm{B}^{\lambda}, \lambda \in \Lambda_{\mathcal{B}}^{+}\right\}$is a base of BM_{τ}. From Theorem 1 it follows that BM_{τ} is a free module of rank one over the Hecke algebra $\mathrm{H}_{\chi_{c}}$.

References

[1] A. Braverman and D. Gaitsgory, Geometric Eisenstein series, Invent. Math. 150 (2002), no. 2, 287-384.
[2] D. Bump, S. Friedberg, and M. Furusawa, Explicit formulas for the Waldspurger and Bessel models, Israel J. Math. 102 (1997), 125-177.
[3] E. Frenkel, D. Gaitsgory, and K. Vilonen, Whittaker patterns in the geometry of moduli spaces of bundles on curves, Ann. of Math. (2) 153 (2001), no. 3, 699-748.
[4] D. Gaitsgory, Construction of central elements in the affine Hecke algebra via nearby cycles, Invent. Math. 144 (2001), no. 2, 253-280.
[5] F. Grosshans, Observable groups and Hilbert's fourteenth problem, Amer. J. Math. 95 (1973), 229-253.
[6] S. Lysenko, Whittaker and Bessel functors for GSp_{4}, to appear in Ann. de l'Institut Fourier, http://www.arxiv.org/abs/math.AG/0310361.
[7] I. Mirkovic and K. Vilonen, Geometric Langlands duality and representations of algebraic groups over commutative rings, to appear in Ann. of Math., http://www.arxiv.org/abs/ math.RT/0401222.
[8] M. E. Novodvorskiĭ and I. I. Pjateckiĭ-Šapiro, Generalized Bessel models for the symplectic group of rank 2, Mat. Sb. (N.S.) 90 (132) (1973), 246-256, 326 (Russian).
[9] É. A. Vinberg and B. N. Kimel'fel'd, Homogeneous domains on flag manifolds and spherical subsets of semisimple Lie groups, Funktsional. Anal. i Prilozhen. 12 (1978), no. 3, 12-19, 96 (Russian), translated in Funct. Anal. Appl. 12 (1978), no. 3, 168-174 (1979).

Sergey Lysenko: Analyse Algébrique, Institut de Mathématiques (UMR 7586), Université Paris 6, 175 rue du Chevaleret, 75013 Paris, France
E-mail address: lysenko@math.jussieu.fr

