Geometric Bessel Models for GSp_4 and Multiplicity One

Sergey Lysenko

1 Introduction

1.1 Classical Bessel models

In this paper, which is a sequel to [6], we study Bessel models of representations of GSp_4 in the framework of the geometric Langlands program. These models introduced by Novodvorsky and Piatetski-Shapiro, satisfy the following multiplicity one property (see [8]).

Set $k=\mathbb{F}_q$ and $\mathbb{O}=k[[t]]\subset F=k((t)).$ Let \widetilde{F} be an étale F-algebra with $dim_F(\widetilde{F})=2$ such that k is algebraically closed in $\widetilde{F}.$ Write $\widetilde{\mathbb{O}}$ for the integral closure of \mathbb{O} in $\widetilde{F}.$ We have two cases:

(i) $\widetilde{F} \xrightarrow{\sim} k((t^{1/2}))$ (nonsplit case),

(ii) $\widetilde{F} \xrightarrow{\sim} F \oplus F$ (split case).

Write L for $\widetilde{\mathbb{O}}$ viewed as O-module, it is equipped with a quadratic form $s : Sym^2 L \to \mathbb{O}$ given by the determinant. Write $\Omega_{\mathbb{O}}$ for the completed module of relative differentials of \mathbb{O} over k.

Set $\mathfrak{M} = L \oplus (L^* \otimes \Omega_{\mathbb{O}}^{-1})$. This O-module is equipped with a symplectic form $\wedge^2 \mathfrak{M} \to L \otimes L^* \otimes \Omega_{\mathbb{O}}^{-1} \to \Omega_{\mathbb{O}}^{-1}$. Set $G = G \mathbb{S}p(\mathfrak{M})$, this is a group scheme over Spec O. Write $P \subset G$ for the Siegel parabolic subgroup preserving the Lagrangian submodule L. Its unipotent radical U has a distinguished character

$$\operatorname{ev}: \operatorname{U} \widetilde{\longrightarrow} \Omega_{\mathcal{O}} \otimes \operatorname{Sym}^{2} \operatorname{L} \xrightarrow{s} \Omega_{\mathcal{O}}$$

$$(1.1)$$

Received 5 January 2005. Revision received 19 May 2005. Communicated by Edward Frenkel.

(here we view $\Omega_{\mathfrak{O}}$ as a commutative group scheme over $\text{Spec}\, \mathfrak{O}).$ Set

$$\widetilde{R} = \left\{ p \in P \mid ev(pup^{-1}) = ev(u) \text{ for } u \in U \right\}.$$
(1.2)

View GL(L) as a group scheme over Spec 0 and \widetilde{O}^* as its closed subgroup. Write α for the composition $\widetilde{O}^* \hookrightarrow GL(L) \xrightarrow{det} O^*$. Fix a section $\widetilde{O}^* \hookrightarrow \widetilde{R}$ given by $g \mapsto (g, \alpha(g)(g^*)^{-1})$. Then $R = \widetilde{O}^* U \subset \widetilde{R}$ is a closed subgroup, and the map $R \xrightarrow{\xi} \Omega_{\mathcal{O}} \times \widetilde{O}^*$ sending tu to (ev(u), t) is a homomorphism of group schemes over Spec 0.

Let ℓ be a prime invertible in k. Fix a character $\chi: \tilde{F}^*/\tilde{O}^* \to \bar{\mathbb{Q}}_{\ell}^*$ and a nontrivial additive character $\psi: k \to \bar{\mathbb{Q}}_{\ell}^*$. Write τ for the composition

$$R(F) \xrightarrow{\xi} \Omega_F \times \widetilde{F}^* \xrightarrow{\text{Res} \times \text{pr}} k \times \widetilde{F}^* / \widetilde{\mathbb{O}}^* \xrightarrow{\psi \times \chi} \bar{\mathbb{Q}}_{\ell}^*.$$
(1.3)

The Bessel module is the vector space

$$BM_{\tau} = \{f: G(F)/G(0) \longrightarrow \overline{\mathbb{Q}}_{\ell} \mid f(rg) = \tau(r)f(g) \text{ for } r \in R(F), \\f \text{ is of compact support modulo}R(F)\}.$$
(1.4)

Let $\chi_c:F^*/\mathbb{O}^*\to\bar{\mathbb{Q}}_\ell^*$ denote the restriction of $\chi.$ The Hecke algebra

$$\begin{split} \mathbf{H}_{\chi_{c}} &= \left\{ h: \mathbf{G}(\mathbb{O}) \backslash \mathbf{G}(\mathsf{F}) / \mathbf{G}(\mathbb{O}) \longrightarrow \bar{\mathbb{Q}}_{\ell} \mid h(zg) = \chi_{c}(z)h(g) \text{ for } z \in \mathsf{F}^{*}, \\ & \text{ h is of compact support modulo}\mathsf{F}^{*} \right\} \end{split}$$
(1.5)

acts on BM_{τ} by convolutions. Then BM_{τ} is *a free module of rank one* over H_{χ_c} . In this paper we prove a geometric version of this result.

Recall that the affine Grassmannian $Gr_G = G(F)/G(0)$ can be viewed as an indscheme over k. According to "fonctions-faisceaux" philosophy, the space BM_{τ} should have a geometric counterpart. A natural candidate for that would be the category of ℓ adic perverse sheaves on Gr_G that change under the action of R(F) by τ . However, the R(F)orbits on Gr_G are infinite-dimensional, and this naive definition does not make sense.

The same difficulty appears when one tries to define Whittaker categories for any reductive group. In [3] Frenkel, Gaitsgory, and Vilonen have overcome this by replacing the corresponding local statement by its globalization, which admits a geometric counterpart leading to a definition of Whittaker categories with expected properties. We follow the strategy of [3] replacing the above local statement by a global one, which we further geometrize.

1.2 Geometrization

Fix a smooth projective absolutely irreducible curve X over k. Let $\pi : \widetilde{X} \to X$ be a twosheeted covering ramified at some effective divisor D_{π} of X (we assume \widetilde{X} smooth over k). The vector bundle $L = \pi_* \mathcal{O}_{\widetilde{X}}$ is equipped with a quadratic form $s : \text{Sym}^2 L \to \mathcal{O}_X$.

Write Ω for the canonical line bundle on X. Set $\mathcal{M}=L\oplus(L^*\otimes\Omega^{-1}),$ it is equipped with a symplectic form

$$\wedge^2 \mathfrak{M} \longrightarrow \mathcal{L} \otimes \mathcal{L}^* \otimes \Omega^{-1} \longrightarrow \Omega^{-1}.$$
(1.6)

Let G be the group scheme (over X) of automorphisms of M preserving this symplectic form up to a multiple. Let $P \subset G$ denote the Siegel parabolic subgroup preserving L, $U \subset P$ its unipotent radical. Then U is equipped with a homomorphism of group schemes over X

$$\operatorname{ev}: U \xrightarrow{\sim} \Omega \otimes \operatorname{Sym}^2 L \xrightarrow{s} \Omega.$$
(1.7)

Let T be the functor sending a X-scheme S to the group $H^0(\widetilde{X} \times_X S, \mathbb{O}^*)$. Then T is a group scheme over X, a subgroup of GL(L). Write α for the composition $T \hookrightarrow GL(L) \stackrel{\text{det}}{\to} \mathbb{G}_m$. Set

$$\widetilde{R} = \left\{ p \in P \mid ev\left(pup^{-1}\right) = ev(u) \ \forall u \in U \right\}.$$
(1.8)

Fix a section $T \hookrightarrow \widetilde{R}$ given by $g \mapsto (g, \alpha(g)(g^*)^{-1})$. Then $R = TU \subset \widetilde{R}$ is a closed subgroup, and the map $R \stackrel{\xi}{\to} \Omega \times T$ sending tu to (ev(u), t) is a homomorphism of group schemes over X.

Let F = k(X), let \mathbb{A} be the adele ring of F, and $\mathbb{O} \subset \mathbb{A}$ the entire adeles. Write F_x for the completion of F at $x \in X$ and $\mathbb{O}_x \subset F_x$ for its ring of integers. Fix a nonramified character $\chi : T(F) \setminus T(\mathbb{A})/T(\mathbb{O}) \to \overline{\mathbb{Q}}_{\ell}^*$. Let τ be the composition

$$\mathsf{R}(\mathbb{A}) \xrightarrow{\xi} \Omega(\mathbb{A}) \times \mathsf{T}(\mathbb{A}) \xrightarrow{r \times \chi} \bar{\mathbb{Q}}_{\ell}^{*}, \tag{1.9}$$

where $r:\Omega(\mathbb{A})\to \bar{\mathbb{Q}}^*_\ell$ is given by

$$r(\omega_{x}) = \psi \left(\sum_{x \in X} \operatorname{tr}_{k(x)/k} \operatorname{Res} \omega_{x} \right).$$
(1.10)

Fix $x \in X(k)$. Let Y denote the restricted product $G(F_x)/G(\mathfrak{O}_x) \times \prod_{y \neq x}' R(F_y)/R(\mathfrak{O}_y)$. Let $\mathcal{Y}(k)$ be the quotient of Y by the diagonal action of R(F). Set

$$\begin{split} BM_{X,\tau} &= \big\{ f: Y \longrightarrow \bar{\mathbb{Q}}_{\ell} \mid f(rg) = \tau(r) f(g) \text{ for } r \in R(\mathbb{A}), \\ & \text{ f is of compact support modulo } R(\mathbb{A}) \big\}. \end{split} \tag{1.11}$$

View elements of $BM_{X,\tau}$ as functions on $\mathcal{Y}(k)$. Let $\chi_c : F_x^*/\mathcal{O}_x^* \to \overline{\mathbb{Q}}_\ell^*$ be the restriction of χ . As in Section 1.1, the Hecke algebra H_{χ_c} of the pair $(G(F_x), G(\mathcal{O}_x))$ acts on $BM_{X,\tau}$ by convolutions. The restriction under

$$G(F_x)/G(O_x) \hookrightarrow Y$$
 (1.12)

yields an isomorphism of H_{χ_c} -modules $BM_{\chi,\tau} \to BM_{\tau}$.

We introduce an ind-algebraic stack $_{x,\infty}\overline{\operatorname{Bun}}_{R_{\pi}}$ whose set of k-points contains $\mathfrak{Y}(k)$. We define the Bessel category $P^{\mathcal{L}}(_{x,\infty}\overline{\operatorname{Bun}}_{R_{\pi}})$, a category of perverse sheaves on $_{x,\infty}\overline{\operatorname{Bun}}_{R_{\pi}}$ with some equivariance property. This is a geometric version of $BM_{X,\tau}$.

Let Sph(Gr_G) denote the category of $G(\mathcal{O}_x)$ -equivariant perverse sheaves on the affine Grassmannian $G(F_x)/G(\mathcal{O}_x)$. By [7], this is a tensor category equivalent to the category of representations of the Langlands dual group $\check{G} \rightarrow G \mathbb{S}p_4$. The category Sph(Gr_G) acts on the derived category $D(_{x,\infty}\overline{Bun}_{R_{\pi}})$ by Hecke functors.

Our main result is Theorem 3.10 describing the action of Sph(Gr_G) on the irreducible objects of $P^{\mathcal{L}}(_{x,\infty}\overline{\operatorname{Bun}}_{R_{\pi}})$. It implies the above multiplicity one. It also implies that the action of Sph(Gr_G) on $D(_{x,\infty}\overline{\operatorname{Bun}}_{R_{\pi}})$ preserves $P^{\mathcal{L}}(_{x,\infty}\overline{\operatorname{Bun}}_{R_{\pi}})$. The same phenomenon takes place for Whittaker and Waldspurger models.

Compared to the case of Whittaker categories, the Bessel category $P^{\mathcal{L}}(_{x,\infty}\overline{Bun}_{R_{\pi}})$ is not semisimple (cf. Section 3.12).

The explicit Casselman-Shalika formula for the Bessel models has been established in [2, Corollaries 1.8 and 1.9], where it is presented in the base of BM_{τ} consisting of functions supported at a single R(F)-orbit on Gr_G . Our Theorem 3.10 yields a geometric version of this formula. At the level of functions it yields another base $\{B^{\lambda}\}$ of BM_{τ} (cf. Section 3.14). In this new base, the Casselman-Shalika formula writes in an essentially uniform way for Bessel, Waldspurger, and Whittaker models.

In Section 2 we propose a general framework that gives a uniform way to define Whittaker, Waldspurger, and Bessel categories (the case of Waldspurger models was studied in [6]).

2 Compactifications and equivariant categories

2.1 Notation

We keep the following notation from [6]. Let k denote an algebraically closed field of characteristic $p \ge 0$. All the schemes (or stacks) we consider are defined over k. Let X be a smooth projective connected curve. Fix a prime $\ell \ne p$. For a scheme (or stack) S write D(S) for the bounded derived category of ℓ -adic étale sheaves on S, and $P(S) \subset D(S)$ for the category of perverse sheaves.

Write Ω for the canonical line bundle on X. For a group scheme G on X write ${\mathfrak F}^0_G$ for the trivial G-torsor on X.

2.2 Generalized R-bundles

2.2.1. Let G' be a connected reductive group over k. Given a G'-torsor $\mathfrak{F}_{G'}$ on X let G be the group scheme (over X) of automorphisms of $\mathfrak{F}_{G'}$. Write Bun_G for the stack of G-bundles on X. Note that $\mathfrak{F}_{G'}$ can be viewed as a G-torsor as well as a G'-torsor on X. We identify Bun_G and $\operatorname{Bun}_{G'}$ via the isomorphism that sends a G-torsor \mathfrak{F}_G to the G'-torsor $\mathfrak{F}_{G'} = \mathfrak{F}_{G'} \times^G \mathfrak{F}_G$.

Let $R \subset G$ be a closed group subscheme over X. Say that G/R is *strongly quasi-affine over* X if for the projection $pr : G/R \to X$ the \mathcal{O}_X -algebra $pr_* \mathcal{O}_{G/R}$ is finitely generated (locally in Zarisky topology), and the natural map $G/R \to \overline{G/R}$ is an open immersion. Here $\overline{G/R} = \operatorname{Spec}(pr_* \mathcal{O}_{G/R})$.

Let V be a vector bundle on X on which G acts, that is, we are given a homomorphism of group schemes $G \to Aut(V)$ on X. Assume that R is obtained through the following procedure. There is a section $\mathcal{O}_X \xrightarrow{s} V$ such that V/\mathcal{O}_X is locally free and $R = \{g \in G \mid gs = s\}$. Let Z be the closure of Gs in the total space of V, so $G/R \subset Z$. Let Z' be the complement of Gs in Z. The following is a consequence of [5, Theorem 2].

Lemma 2.1. Assume that any fibre of the projection $pr : Z' \to X$ is of codimension ≥ 2 in the corresponding fibre of $pr : Z \to X$. Then G/R is strongly quasi-affine over X, and Z is the affine closure $\overline{G/R}$ of G/R.

Assume that R satisfies the conditions of Lemma 2.1 (this holds in our examples below).

Definition 2.2. Let $\overline{\operatorname{Bun}}_R$ be the following stack. For a scheme S, an S-point of $\overline{\operatorname{Bun}}_R$ is a pair (\mathfrak{F}_G, β) , where \mathfrak{F}_G is an $(S \times X) \times_X G$ -torsor on $S \times X$, and β is a G-equivariant map $\beta : \mathfrak{F}_G \to S \times \overline{G/R}$ over $S \times X$ with the following property. For any geometric point $s \in S$ there is a nonempty open subset $U^s \subset s \times X$ such that

$$\beta: \mathfrak{F}_{\mathsf{G}}\big|_{\mathsf{U}^{\mathsf{s}}} \longrightarrow (\mathsf{s} \times \overline{\mathsf{G}/\mathsf{R}})\big|_{\mathsf{U}^{\mathsf{s}}} \tag{2.1}$$

factors through $(s \times G/R) \mid_{U^s} \subset (s \times \overline{G/R}) \mid_{U^s}$.

An S-point of $\overline{\operatorname{Bun}}_R$ can also be seen as a pair (\mathfrak{F}_G, α) , where \mathfrak{F}_G is an $(S \times X) \times_X G$ torsor on $S \times X$, and $\alpha : \mathfrak{O}_{S \times X} \to V_{\mathfrak{F}_G}$ is a section with the following property. First, $\alpha(1)$ lies in $\overline{G/R} \times^G \mathfrak{F}_G$. Secondly, for any geometric point $s \in S$ there is a nonempty open subset $U^s \subset s \times X$ such that $\alpha(1) \mid_{U^s}$ lies in $(G/R \times^G \mathfrak{F}_G) \mid_{U^s}$. Here $V_{\mathfrak{F}_G}$ is the vector bundle $(V \otimes \mathfrak{O}_{S \times X}) \times^G \mathfrak{F}_G$ on $S \times X$.

Let Bun_R denote the stack of R-bundles on X.

Lemma 2.3. The stack $\overline{\text{Bun}}_R$ is algebraic, locally of finite type, and $\text{Bun}_R \subset \overline{\text{Bun}}_R$ is an open substack.

Proof. Consider the stack \mathfrak{X} classifying pairs (\mathfrak{F}_G, α) , where \mathfrak{F}_G is a G-torsor on X, and $\alpha : \mathfrak{O}_X \to V_{\mathfrak{F}_G}$ is a section. It is well known that this stack is algebraic, locally of finite type. The condition that $\alpha(1)$ lies in $\overline{G/R} \times^G \mathfrak{F}_G$ defines a closed substack $\mathfrak{X}' \subset \mathfrak{X}$. The condition that $\alpha(1)$ factors through $G/R \times^G \mathfrak{F}_G$ at the generic point of X is open in \mathfrak{X}' . Finally, the condition that $\alpha(1)$ lies in $G/R \times^G \mathfrak{F}_G$ everywhere over X is also open.

2.2.2. Fix a closed point $x \in X$. Write O_x for the completed local ring of O_X at x, and F_x for its fractions field.

Let $_{x,\infty}\overline{\text{Bun}}_R$ be the following stack. Its S-point is a pair (\mathfrak{F}_G, α) , where \mathfrak{F}_G is an $(S \times X) \times_X G$ -torsor on $S \times X$, and

$$\alpha: \mathcal{O}_{S \times X} \longrightarrow V_{\mathcal{F}_{G}}(\infty x) \tag{2.2}$$

is a section with the following property. First, $\alpha(1) \mid_{S \times (X-x)}$ lies in $\overline{G/R} \times^G \mathfrak{F}_G \mid_{S \times (X-x)}$. Secondly, for any geometric point $s \in S$ there is a nonempty open subset $U^s \subset s \times (X-x)$ such that $\alpha(1) \mid_{U^s}$ lies in $(G/R \times^G \mathfrak{F}_G) \mid_{U^s}$.

Let $\mathcal{Y}_i \subset _{x,\infty} \overline{\operatorname{Bun}}_R$ be the closed substack given by the condition that (2.2) factors through $V_{\mathcal{F}_G}(ix) \subset V_{\mathcal{F}_G}(\infty x)$. In particular, $\mathcal{Y}_0 = \overline{\operatorname{Bun}}_R$. As in Lemma 2.3, one shows that \mathcal{Y}_i is algebraic locally of finite type. Since $_{x,\infty} \overline{\operatorname{Bun}}_R$ is the direct limit of \mathcal{Y}_i , the stack $_{x,\infty} \overline{\operatorname{Bun}}_R$ is ind-algebraic.

Recall that if a stack \mathcal{Y} admits a presentation as a direct limit of algebraic stacks, locally of finite type \mathcal{Y}_i , then we have the derived category $D(\mathcal{Y})$, which is an inductive 2-limit of $D(\mathcal{Y}_i)$. In particular, any $K \in D(\mathcal{Y})$ is the extension by zero from some closed algebraic substack of \mathcal{Y} , and similarly for the category $P(\mathcal{Y})$ of perverse sheaves on \mathcal{Y} (cf. [4, Appendices A.1–A.2] and [1, Section 0.4.4] for details).

For a scheme S, one can also view an S-point of $_{x,\infty}\overline{\operatorname{Bun}}_R$ as a pair (\mathcal{F}_G,β) , where \mathcal{F}_G is an $(S \times X) \times_X G$ -torsor on $S \times X$, and β is a G-equivariant map $\beta : \mathcal{F}_G \mid_{S \times (X-x)} \to S \times (\overline{G/R} \mid_{X-x})$ with the following property. For any geometric point $s \in S$, there is a

nonempty open subset $U^s \subset s \times (X-x)$ such that

$$\beta: \mathfrak{F}_{\mathsf{G}} \mid_{\mathsf{U}^{\mathsf{s}}} \longrightarrow (\mathsf{s} \times \overline{\mathsf{G}/\mathsf{R}}) \mid_{\mathsf{U}^{\mathsf{s}}}$$

$$(2.3)$$

factors through $(s\times G/R)\mid_{U^s}\subset (s\times \overline{G/R})\mid_{U^s}.$

Let H be an abelian group scheme over X, and let $R \to H$ be a homomorphism of group schemes over X. Assume that the stack Bun_H of H-bundles on X is algebraic.

Fix a rank-one local system \mathcal{L} on Bun_H trivialized at the trivial H-torsor \mathcal{F}^0_H . Assume that for the tensor product map $m : \operatorname{Bun}_H \times \operatorname{Bun}_H \to \operatorname{Bun}_H$ there exists an isomorphism $\mathfrak{m}^*\mathcal{L} \xrightarrow{\sim} \mathcal{L} \boxtimes \mathcal{L}$ whose restriction to the k-point $(\mathcal{F}^0_H, \mathcal{F}^0_H)$ is the identity.

2.2.3. We would like to define a category $P^{\mathcal{L}}(x,\infty \overline{\operatorname{Bun}}_{R})$ of \mathcal{L} -equivariant perverse sheaves on $x,\infty \overline{\operatorname{Bun}}_{R}$, and similarly for $\overline{\operatorname{Bun}}_{R}$.

Let $_X \mathcal{Y} \subset (X-x) \times_{x,\infty} \overline{\operatorname{Bun}}_R$ be the open substack classifying collections $y \in X-x$, $(\mathfrak{F}_G, \beta) \in _{x,\infty} \overline{\operatorname{Bun}}_R$ such that the map $\beta : \mathfrak{F}_G \to \overline{G/R}$ factors through $G/R \subset \overline{G/R}$ in a neighbourhood of y.

$$\label{eq:set Dy} \begin{split} & \text{Set } D_y = \text{Spec } \mathcal{O}_y. \text{ By definition, for a point of }_X \mathcal{Y}, \text{ the } G\text{-torsor } \mathcal{F}_G \mid_{D_y} \text{ is equipped} \\ & \text{with a reduction to an } R\text{-torsor that we denote } \mathcal{F}_R. \end{split}$$

Let $_{X}X$ be the stack classifying $(y, \mathcal{F}_{G}, \beta) \in _{X}\mathcal{Y}, (y, \mathcal{F}_{G}', \beta') \in _{X}\mathcal{Y}$ and

$$\tau: \mathcal{F}_{\mathsf{G}} \mid_{\mathsf{X}-\mathsf{y}} \xrightarrow{\sim} \mathcal{F}_{\mathsf{G}}' \mid_{\mathsf{X}-\mathsf{y}} \tag{2.4}$$

such that the diagram commutes:

$$\begin{aligned} \mathcal{F}_{G} \mid_{X-y} & \xrightarrow{\beta} \overline{G/R} \mid_{X-y} \\ & \bigvee_{\tau} & & & \\ \mathcal{F}'_{G} \mid_{X-y} \end{aligned}$$
 (2.5)

Let pr (resp., act) denote the projection $_X \mathfrak{X} \to _X \mathfrak{Y}$ sending the above collection to $(\mathfrak{y}, \mathfrak{F}_G, \beta)$ (resp., to $(\mathfrak{y}, \mathfrak{F}'_G, \beta')$). They provide $_X \mathfrak{X}$ with a structure of a groupoid over $_X \mathfrak{Y}$.

$$\begin{split} & \text{Set}\,D_y^* = \text{Spec}\,F_y.\,\text{Let}\,_X \mathfrak{Gr}_R \text{ denote the stack classifying } (y \in X-x, \mathfrak{F}_R, \mathfrak{F}_R', \tau), \text{where} \\ & \mathfrak{F}_R \text{ and } \mathfrak{F}_R' \text{ are } R\text{-torsors on } D_y \text{ and} \end{split}$$

$$\tau: \mathcal{F}_{\mathsf{R}} \mid_{\mathsf{D}_{\mathfrak{Y}}^*} \longrightarrow \mathcal{F}_{\mathsf{R}}^\prime \mid_{\mathsf{D}_{\mathfrak{Y}}^*} \tag{2.6}$$

is an isomorphism.

We have a map $_X \mathfrak{X} \to _X \mathfrak{Gr}_R$ sending the above collection to $(\mathfrak{y}, \mathfrak{F}_R, \mathfrak{F}'_R, \tau)$, where \mathfrak{F}_R and \mathfrak{F}'_R are R-torsors on $D_\mathfrak{y}$ obtained from (\mathfrak{F}_G, β) and $(\mathfrak{F}'_G, \beta')$ and τ is the restriction of (2.4).

Let $_X \operatorname{Gr}_H$ denote the affine Grassmannian of H over X - x, namely the ind-scheme classifying $y \in X - x$ and an H-torsor on D_y trivialized over D_y^* . We have a map $_X \operatorname{Gr}_R \to _X \operatorname{Gr}_H$ sending $(y, \mathcal{F}_R, \mathcal{F}'_R, \tau)$ to (y, \mathcal{F}_H, τ) , where

$$\mathcal{F}_{H} = \text{Isom}\left(\mathcal{F}_{R} \times_{R} H, \mathcal{F}'_{R} \times_{R} H\right), \tag{2.7}$$

and $\tau : \mathfrak{F}_{H} \xrightarrow{\sim} \mathfrak{F}_{H}^{0} \mid_{D_{u}^{*}}$ is the induced trivialization.

We have a map $_X \operatorname{Gr}_H \to \operatorname{Bun}_H$ sending (y, \mathcal{F}_H, τ) to $\widetilde{\mathcal{F}}_H$, where $\widetilde{\mathcal{F}}_H$ is the gluing of $\mathcal{F}_H^0|_{X-y}$ and $\mathcal{F}_H|_{D_u}$ via the isomorphism $\tau : \mathcal{F}_H \widetilde{\to} \mathcal{F}_H^0|_{D_u^*}$.

Define the evaluation map $ev_{\mathfrak{X}}:{}_X\mathfrak{X}\to Bun_H$ as the composition

$$_{\chi} \mathfrak{X} \longrightarrow {}_{\chi} \mathfrak{Gr}_{\mathsf{R}} \longrightarrow {}_{\chi} \mathfrak{Gr}_{\mathsf{H}} \longrightarrow \mathfrak{Bun}_{\mathsf{H}} .$$
 (2.8)

We would like $P^{\mathcal{L}}(x,\infty \overline{Bun}_R)$ to be the category of perverse sheaves K on $x,\infty \overline{Bun}_R$ equipped with an isomorphism

$$\operatorname{act}^* \widetilde{\mathsf{K}} \xrightarrow{\sim} \operatorname{pr}^* \widetilde{\mathsf{K}} \otimes \operatorname{ev}_{\mathfrak{X}}^* \mathcal{L}$$

$$\tag{2.9}$$

satisfying the usual associativity condition, and such that its restriction to the unit section of $_X \mathfrak{X}$ is the identity. Here \widetilde{K} is the restriction of K under $_X \mathfrak{Y} \to _{x,\infty} \overline{\operatorname{Bun}}_R$. However, this naive definition does not apply directly, because pr, act : $_X \mathfrak{X} \to _X \mathfrak{Y}$ are not smooth in general. (One more source of difficulties is that the affine Grassmannian $\operatorname{Gr}_{R,\mathfrak{Y}}$ may be highly nonreduced, this happens, e.g., for R a torus.)

We remedy the difficulty under an additional assumption satisfied in our examples. Suppose that R fits into an exact sequence of group schemes $1 \rightarrow U \rightarrow R \rightarrow T \rightarrow 1$ over X, where U is a unipotent group scheme, and T is as follows. There is an integer $b \ge 0$ and a (ramified) Galois covering $\pi : \widetilde{X} \rightarrow X$, where \widetilde{X} is a smooth projective curve, such that for an X-scheme S we have

$$\mathsf{T}(\mathsf{S}) = \operatorname{Hom}\left(\widetilde{\mathsf{X}} \times_{\mathsf{X}} \mathsf{S}, \mathbb{G}^{\mathsf{b}}_{\mathfrak{m}}\right). \tag{2.10}$$

In this case Bun_T is nothing but the stack of \mathbb{G}_m^b -torsors on \widetilde{X} . For a divisor D on \widetilde{X} with

values in the coweight lattice of $\mathbb{G}_{\mathfrak{m}}^{\mathfrak{b}}$, and for a T-torsor \mathcal{F}_T on X, we denote by $\mathcal{F}_T(D)$ the corresponding twisted T-torsor on X.

The stack $_X X$ can be seen as the one classifying $(y, \mathcal{F}_G, \beta) \in _X \mathcal{Y}$, an R-torsor \mathcal{F}'_R on D_y , and an isomorphism $\tau : \mathcal{F}_R \mid_{D_y^*} \widetilde{\to} \mathcal{F}'_R \mid_{D_y^*}$, where \mathcal{F}_R is the R-torsor on D_y obtained from (\mathcal{F}_G, β) . From this point of view the projection $pr : _X \mathcal{X} \to _X \mathcal{Y}$ is the map forgetting \mathcal{F}'_R .

Modify the definition of ${}_X\mathfrak{X}$ and of ${}_X\mathfrak{Y}$ as follows. Let

$$_{\widetilde{X}}\mathcal{Y} \subset \widetilde{X} \times_{\mathbf{x},\infty} \overline{\mathrm{Bun}}_{\mathsf{R}} \tag{2.11}$$

be the open substack classifying $\tilde{y} \in \widetilde{X}$ with π nonramified at \tilde{y} and $y := \pi(\tilde{y}) \neq x$, $(\mathfrak{F}_G, \beta) \in {}_{x,\infty}\overline{\operatorname{Bun}}_R$ such that the map $\beta : \mathfrak{F}_G \to \overline{G/R}$ factors through $G/R \subset \overline{G/R}$ in a neighbourhood of y.

Given for each $\sigma \in \Sigma = \text{Gal}(\widetilde{X}/X)$ a coweight $\gamma_{\sigma} : \mathbb{G}_{\mathfrak{m}} \to \mathbb{G}_{\mathfrak{m}}^{\mathfrak{b}}$, we set $\gamma = \{\gamma_{\sigma}\}$. Let

$$\mathrm{pr}:_{\widetilde{X}} \mathfrak{X}_{\gamma} \longrightarrow {}_{\widetilde{X}} \mathfrak{Y} \tag{2.12}$$

be the stack whose fibre over $(\widetilde{y}, \mathcal{F}_G, \beta) \in {}_{\widetilde{X}} \mathcal{Y}$ is the ind-scheme classifying an R-torsor \mathcal{F}'_R on D_y , an isomorphism $\mathcal{F}_R \xrightarrow{\sim} \mathcal{F}'_R |_{D^*_y}$, and an extension of the induced isomorphism

$$\mathcal{F}_{\mathsf{R}} \times_{\mathsf{R}} \mathsf{T} \xrightarrow{\sim} \mathcal{F}_{\mathsf{R}}' \times_{\mathsf{R}} \mathsf{T} \mid_{\mathsf{D}_{\mathfrak{P}}^*} \tag{2.13}$$

to an isomorphism over D_y ,

$$\mathfrak{F}_{\mathsf{R}} \times_{\mathsf{R}} \mathsf{T} \xrightarrow{\sim} \bigl(\mathfrak{F}_{\mathsf{R}}' \times_{\mathsf{R}} \mathsf{T} \bigr) \Biggl(\sum_{\sigma \in \Sigma} \gamma_{\sigma} \sigma(\widetilde{\mathfrak{y}}) \Biggr).$$
(2.14)

Here $y = \pi(\tilde{y})$, and \mathfrak{F}_{R} is the R-torsor on D_{y} obtained from $(\mathfrak{F}_{G}, \beta)$.

As above, we have an action map act : $_{\widetilde{X}} \mathcal{X}_{\gamma} \to _{\widetilde{X}} \mathcal{Y}$. The advantage is that any fibre of each of the maps pr, act : $_{\widetilde{X}} \mathcal{X}_{\gamma} \to _{\widetilde{X}} \mathcal{Y}$ is reduced (it identifies with the affine Grassmannian at y of a unipotent group scheme over X).

Now proceed as in [3]. Recall that $U(F_y)$ is an ind-group scheme, it can be written as a direct limit of some group schemes $U^{-m}, m \geq 0$, such that $U^{-m} \hookrightarrow U^{-m-1}$ is a closed subgroup, $U^0 = U(\mathbb{O}_y)$, and U^{-m}/U^0 are smooth of finite type [3, Section 3.1].

For this reason, for $m \geq 0$ there exist closed substacks

$$_{\widetilde{\chi}}\mathfrak{X}_{\gamma,\mathfrak{m}} \hookrightarrow_{\widetilde{\chi}}\mathfrak{X}_{\gamma,\mathfrak{m}+1} \hookrightarrow \cdots \hookrightarrow_{\widetilde{\chi}}\mathfrak{X}_{\gamma}$$

$$(2.15)$$

such that both maps pr, act : $_{\widetilde{X}} \mathcal{X}_{\gamma,\mathfrak{m}} \to _{\widetilde{X}} \mathcal{Y}$ are of finite type and smooth of the same relative dimension, and $_{\widetilde{X}} \mathcal{X}_{\gamma}$ is a direct limit of the stacks $_{\widetilde{X}} \mathcal{X}_{\gamma,\mathfrak{m}}$.

As above, we have a map $_{\widetilde{X}}\mathfrak{X}_{\gamma} \to {}_{X}\mathfrak{Gr}_{R}$, hence also the evaluation map $ev_{\widetilde{X},\gamma}$: $_{\widetilde{X}}\mathfrak{X}_{\gamma} \to Bun_{H}$.

Definition 2.4. Let $P^{\mathcal{L}}(x,\infty \overline{Bun}_R)$ denote the category of perverse sheaves on $x,\infty \overline{Bun}_R$ equipped for each γ and $m \ge 0$ with isomorphisms

$$\alpha_{\gamma,\mathfrak{m}}:\operatorname{act}^{*}\widetilde{\mathsf{K}} \xrightarrow{\longrightarrow} \operatorname{pr}^{*}\widetilde{\mathsf{K}} \otimes \operatorname{ev}_{\mathcal{X},\gamma}^{*}\mathcal{L}$$

$$(2.16)$$

over $_{\widetilde{X}} \mathcal{X}_{\gamma,\mathfrak{m}}$. Here \widetilde{K} denotes the restriction of K under $_{\widetilde{X}} \mathcal{Y} \to _{x,\infty} \overline{\operatorname{Bun}}_{\mathsf{R}}$. It is required that for $\mathfrak{m}_1 < \mathfrak{m}_2$ the restriction of $\alpha_{\gamma,\mathfrak{m}_2}$ to $_{\widetilde{X}} \mathcal{X}_{\gamma,\mathfrak{m}_1}$ equals $\alpha_{\gamma,\mathfrak{m}_1}$, the restriction of $\alpha_{0,\mathfrak{m}}$ to the unit section of $_{\widetilde{X}} \mathcal{X}_{0,\mathfrak{m}}$ is the identity, and the usual associativity condition holds.

Denote by $P^{\mathcal{L}}(\overline{Bun}_R)$ the full subcategory of $P^{\mathcal{L}}(_{x,\infty}\overline{Bun}_R)$ consisting of perverse sheaves, which are extensions by zero under $\overline{Bun}_R \hookrightarrow _{x,\infty}\overline{Bun}_R$.

2.3 Hecke functors

Let ${}_{x}\mathcal{H}_{G}$ denote the Hecke stack classifying G-torsors $\mathcal{F}_{G}, \mathcal{F}'_{G}$ on X together with an isomorphism $\tau : \mathcal{F}_{G} \xrightarrow{\sim} \mathcal{F}'_{G} |_{X-x}$. Let $\mathfrak{q} : {}_{x}\mathcal{H}_{G} \to Bun_{G}$ (resp., $\mathfrak{p} : {}_{x}\mathcal{H}_{G} \to Bun_{G}$) denote the map forgetting \mathcal{F}_{G} (resp., \mathcal{F}'_{G}). Consider the diagram

$$_{x,\infty}\overline{\operatorname{Bun}}_{\mathsf{R}} \xleftarrow{\mathfrak{p}_{\mathsf{R}}}{}_{x,\infty}\overline{\operatorname{Bun}}_{\mathsf{R}} \times_{\operatorname{Bun}_{\mathsf{G}}} {}_{x}\mathfrak{H}_{\mathsf{G}} \xrightarrow{\mathfrak{q}_{\mathsf{R}}}{}_{x,\infty}\overline{\operatorname{Bun}}_{\mathsf{R}},$$
(2.17)

where we used p to define the fibred product, p_R forgets \mathcal{F}'_G , and q_R sends $(\mathcal{F}_G, \beta, \mathcal{F}'_G, \tau)$ to (\mathcal{F}'_G, β') , where β' is the composition

$$\mathfrak{F}_{G}^{\prime} \xrightarrow{\tau^{-1}} \mathfrak{F}_{G} \xrightarrow{\beta} \overline{G/R}.$$
(2.18)

In the same way one gets the diagram

$$_{\widetilde{X}} \mathcal{Y} \xleftarrow{\mathfrak{P}_{\mathscr{Y}}}_{\widetilde{X}} \mathcal{Y} \times_{\operatorname{Bun}_{G}} {}_{\mathcal{X}} \mathcal{H}_{G} \xrightarrow{\mathfrak{q}_{\mathscr{Y}}}_{\widetilde{X}} \mathcal{Y}.$$

$$(2.19)$$

The action of the groupoid $_{\tilde{X}} \mathcal{X}$ on $_{\tilde{X}} \mathcal{Y}$ lifts to an action on this diagram (in the sense of [6, Appendix A.1]). Namely, for each γ we have two diagrams, where the squares are

cartesian:

Write Sph(Gr_{G',x}) for the category of G'(\mathcal{O}_x)-equivariant perverse sheaves on the affine Grassmannian Gr_{G',x} = G'(F_x)/G'(\mathcal{O}_x). This is a tensor category equivalent to the category of representations of the Langlands dual group \check{G}' over $\bar{\mathbb{Q}}_\ell$ [7].

Let Bun_G^x be the stack classifying a G-bundle \mathfrak{F}_G on X with an isomorphism of Gtorsors $\mathfrak{F}_G \xrightarrow{\sim} \mathfrak{F}_{G'} |_{D_x}$. In a way compatible with our identification $\operatorname{Bun}_G \xrightarrow{\sim} \operatorname{Bun}_{G'}$ one can view Bun_G^x as the stack classifying a G'-torsor $\mathfrak{F}_{G'}$ with a trivialization $\mathfrak{F}_{G'} \xrightarrow{\sim} \mathfrak{F}_{G'}^0 |_{D_x}$. So, the projection $\mathfrak{q} : {}_x \mathfrak{H}_G \rightarrow \operatorname{Bun}_G$ can be written as a fibration

$$\operatorname{Bun}_{\mathsf{G}}^{\mathsf{x}} \times_{\operatorname{G}'(\mathbb{O}_{\mathsf{x}})} \operatorname{Gr}_{\mathsf{G}',\mathsf{x}} \longrightarrow \operatorname{Bun}_{\mathsf{G}}.$$

$$(2.21)$$

Now for $\mathcal{A} \in \text{Sph}(\text{Gr}_{G',x})$ and $K \in D(_{x,\infty} \overline{\text{Bun}}_R)$ we can form their twisted exterior product

$$\widetilde{\mathsf{KA}} \in \mathsf{D}(_{\mathfrak{x},\infty}\overline{\mathsf{Bun}}_{\mathsf{R}} \times_{\mathsf{Bun}_{\mathsf{G}}} {}_{\mathfrak{x}} \mathcal{H}_{\mathsf{G}}). \tag{2.22}$$

It is normalized so that it is perverse for K perverse and $\mathbb{D}(K\widetilde{\boxtimes}\mathcal{A})\widetilde{\rightarrow}\mathbb{D}(K)\widetilde{\boxtimes}\mathbb{D}(\mathcal{A})$. Define the Hecke functor $H(\mathcal{A},\cdot): D(x,\infty\overline{Bun}_R) \to D(x,\infty\overline{Bun}_R)$ by

$$\mathbf{H}(\mathcal{A},\mathsf{K}) = (\mathfrak{p}_{\mathsf{R}})_{!}(\mathsf{K}\widetilde{\boxtimes}\mathcal{A}). \tag{2.23}$$

These functors are compatible with the tensor structure on Sph($Gr_{G',x}$). Namely, we have

canonically

$$H(\mathcal{A}_1, H(\mathcal{A}_2, K)) \xrightarrow{\sim} H(\mathcal{A}_1 * \mathcal{A}_2, K),$$
(2.24)

where $\mathcal{A}_1 * \mathcal{A}_2 \in \text{Sph}(\text{Gr}_{G',x})$ is the convolution [3, Section 5].

As in Section 2.2, one defines the category $P^{\mathcal{L}}(_{x,\infty}\overline{\operatorname{Bun}}_R \times_{\operatorname{Bun}_G x} \mathcal{H}_G)$. If $K \in P^{\mathcal{L}}(_{x,\infty}\overline{\operatorname{Bun}}_R)$, then

$$\mathsf{K}\widetilde{\boxtimes}\mathcal{A} \in \mathsf{P}^{\mathcal{L}}\left(\underset{x \ \infty}{\operatorname{\overline{Bun}}}_{\mathsf{R}} \times_{\operatorname{Bun}_{\mathsf{G}}} {}_{x}\mathcal{H}_{\mathsf{G}}\right),\tag{2.25}$$

so the complex $H(\mathcal{A}, K)$ inherits a \mathcal{L} -equivariant structure. Each perverse cohomology sheaf of $H(\mathcal{A}, K)$ lies in $P^{\mathcal{L}}(_{x,\infty}\overline{Bun}_R)$.

2.4 Substacks of $x_{,\infty} \overline{Bun}_R$

Let $\Lambda_{\mathcal{Y}}$ be the set of $R(F_x)$ -orbits on the affine Grassmannian $Gr_{G,x} = G(F_x)/G(\mathcal{O}_x)$. We are interested in the situations where $\Lambda_{\mathcal{Y}}$ is *discrete*. Write $Orb_{\mu} \subset Gr_{G,x}$ for the $R(F_x)$ -orbit corresponding to $\mu \in \Lambda_{\mathcal{Y}}$.

Let \mathcal{Y}_{loc} be the stack classifying a G-torsor \mathcal{F}_G on D_x , an R-torsor \mathcal{F}_R on D_x^* , and an R-equivariant map $\mathcal{F}_R \to \mathcal{F}_G \mid_{D_x^*}$. Then \mathcal{Y}_{loc} identifies with the stack quotient of $Gr_{G,x}$ by $R(F_x)$.

For $\mu \in \Lambda_{\vartheta}$, let ϑ_{loc}^{μ} (resp., $\vartheta_{loc}^{\leq \mu}$) denote the stack quotient of Orb_{μ} (resp., of \overline{Orb}_{μ}) by $R(F_x)$. (We do not precise for the moment the scheme structure on \overline{Orb}_{μ} .) We have an order on Λ_{ϑ} given by $\mu' \leq \mu$ if and only if $Orb_{\mu'} \subset \overline{Orb}_{\mu}$.

We have a map $_{x,\infty}\overline{\text{Bun}}_R \to \mathcal{Y}_{\text{loc}}$ sending (\mathfrak{F}_G,β) to its restriction to D_x . For $\mu \in \Lambda_{\mathcal{Y}}$, set

$$_{x,\mu}\overline{\operatorname{Bun}}_{\mathsf{R}} = {}_{x,\infty}\overline{\operatorname{Bun}}_{\mathsf{R}} \times {}_{\mathcal{Y}_{\text{loc}}} \mathcal{Y}_{\text{loc}}^{\leq \mu}, \qquad {}_{x,\mu}\widetilde{\operatorname{Bun}}_{\mathsf{R}} = {}_{x,\infty}\overline{\operatorname{Bun}}_{\mathsf{R}} \times {}_{\mathcal{Y}_{\text{loc}}} \mathcal{Y}_{\text{loc}}^{\mu}.$$
(2.26)

Let $_{x,\mu} Bun_R \subset _{x,\mu} Bun_R$ be the open substack given by the condition that

$$\beta: \mathfrak{F}_{G}\big|_{X-x} \longrightarrow \overline{G/R}\big|_{X-x}$$
(2.27)

factors through $G/R \mid_{X-x} \subset \overline{G/R} \mid_{X-x}$.

To summarize, we have a sequence of embeddings,

$$_{x,\mu}\operatorname{Bun}_{\mathsf{R}} \hookrightarrow _{x,\mu} \widetilde{\operatorname{Bun}}_{\mathsf{R}} \hookrightarrow _{x,\mu} \overline{\operatorname{Bun}}_{\mathsf{R}} \hookrightarrow _{x,\infty} \overline{\operatorname{Bun}}_{\mathsf{R}}, \tag{2.28}$$

where the first two arrows are open embeddings and the last arrow is a closed one.

2.5 \mathcal{L} -equivalent perverse sheaves

The stack $_{x,\mu}$ Bun_R classifies a G-torsor \mathfrak{F}_G on X, a G-equivariant map $\beta : \mathfrak{F}_G \to G/R \mid_{X-x}$ such that the restriction of (\mathfrak{F}_G, β) to D_x lies in \mathfrak{Y}_{loc}^{μ} . Set

$${}_{\mu}\mathfrak{X} = {}_{x,\mu}\operatorname{Bun}_{\mathsf{R}} \times {}_{\mathcal{Y}_{\operatorname{loc}} x,\mu}\operatorname{Bun}_{\mathsf{R}};$$
(2.29)

this is a groupoid over {_{x,\mu}} Bun_R for the two projections pr, act : ${_{\mu}}X \rightarrow {_{x,\mu}}Bun_R$.

View $_{\mu}\mathfrak{X}$ as the stack classifying R-torsors $\mathfrak{F}_{R}, \mathfrak{F}_{R}'$ on X - x with an isomorphism $\tau : \mathfrak{F}_{R} \widetilde{\rightarrow} \mathfrak{F}_{R}' \mid_{D_{x}^{*}}$, a G-torsor \mathfrak{F}_{G} on X, and an R-equivariant map $\mathfrak{F}_{R} \to \mathfrak{F}_{G} \mid_{X-x}$, whose restriction to D_{x} lies in \mathfrak{Y}_{loc}^{μ} . The projection $pr : {}_{\mu}\mathfrak{X} \to {}_{x,\mu}\mathsf{Bun}_{R}$ forgets \mathfrak{F}_{R}' .

Let $_{\mu} ev_{\mathfrak{X}} : {}_{\mu}\mathfrak{X} \to Bun_{H}$ be the map sending the above collection to the H-torsor $\widetilde{\mathfrak{F}}_{H}$ on X obtained by the following gluing procedure. Let \mathfrak{F}_{H} denote the H-torsor on X - x of isomorphisms

Isom
$$(\mathfrak{F}_{\mathsf{R}} \times_{\mathsf{R}} \mathsf{H}, \mathfrak{F}'_{\mathsf{R}} \times_{\mathsf{R}} \mathsf{H}).$$
 (2.30)

Then $\widetilde{\mathfrak{F}}_{H}$ is the gluing of \mathfrak{F}_{H} and of $\mathfrak{F}_{H}^{0}|_{D_{x}}$ over D_{x}^{*} via $\tau : \mathfrak{F}_{H} \xrightarrow{\sim} \mathfrak{F}_{H}^{0}|_{D_{x}^{*}}$.

We say that $\mu \in \Lambda_{\mathfrak{Y}}$ is *relevant* if there exists a morphism $ev^{\mu} : {}_{x,\mu} \operatorname{Bun}_{R} \to \operatorname{Bun}_{H}$ making the following diagram commutative:

If such ev^{μ} exists, it is unique up to a tensoring by a fixed H-torsor on X. Write Λ_{y}^{+} for the set of relevant $\mu \in \Lambda_{y}$.

Write $0 \in \Lambda_{\mathcal{Y}}$ for the $R(F_x)$ -orbit on $\operatorname{Gr}_{G,x}$ passing by 1. Then $_{x,0} \operatorname{Bun}_R$ is nothing but the stack Bun_R of R-bundles on X. The homomorphism $R \to H$ yields a map ev^0 : $_{x,0} \operatorname{Bun}_R \to \operatorname{Bun}_H$ such that (2.31) commutes, so $0 \in \Lambda_{\mathcal{Y}}^+$.

For $\mu \in \Lambda^+_{\mu}$ we denote by ${\mathcal B}^{\mu}$ the Goresky-MacPherson extension of

$$\left(ev^{\mu} \right)^{*} \mathcal{L} \otimes \bar{\mathbb{Q}}_{\ell}[1] \left(\frac{1}{2} \right)^{\otimes \dim_{x,\mu} Bun_{R}}$$
 (2.32)

under $_{x,\mu}$ Bun $_R \hookrightarrow _{x,\mu}\overline{\text{Bun}}_R$. By construction, $\mathcal{B}^{\mu} \in P^{\mathcal{L}}(_{x,\infty}\overline{\text{Bun}}_R)$.

The examples of the above situation include Whittaker models, Waldspurger models for GL_2 , and Bessel models for GSp_4 (the latter is studied in Section 3).

2.6 Whittaker models

Let G' be a connected reductive group over k, B' \subset G' a Borel subgroup, U' \subset B' its unipotent radical. Set T' = B'/U'. Assume that [G', G'] is simply connected. Let I denote the set of vertices of the Dynkin diagram, and { $\check{\alpha}_i, i \in I$ } the simple roots corresponding to B'. Fix a B'-torsor $\mathfrak{F}_{B'}$ on X and a conductor for the induced T'-torsor $\mathfrak{F}_{T'}$. That is, for each $i \in J$ we fix an inclusion of coherent sheaves

$$\widetilde{\omega}_{i}: \mathcal{L}_{\mathfrak{F}_{T}}^{\widetilde{\alpha}_{i}} \hookrightarrow \Omega.$$
(2.33)

Write $\mathfrak{F}_{G'}$ for the G'-torsor induced from $\mathfrak{F}_{B'}$. Now G is the group scheme of automorphisms of $\mathfrak{F}_{G'}$. Let $R \subset G$ denote the group scheme of automorphisms of $\mathfrak{F}_{B'}$ acting trivially on $\mathfrak{F}_{T'}$.

To satisfy the assumptions of Lemma 2.1, take

$$V = \oplus_{i} \mathcal{H}om\left(\mathcal{L}_{\mathfrak{F}_{T'}}^{\check{\omega}_{i}}, \mathcal{V}_{\mathfrak{F}_{G'}}^{\check{\omega}_{i}}\right), \tag{2.34}$$

the sum being taken over the set of fundamental weights $\check{\omega}_i$ of G'. Here $\mathcal{V}^{\check{\lambda}}$ is the Weil G'module corresponding to $\check{\lambda}$. Then G acts on V, and V is equipped with a canonical section $\mathcal{O}_X \hookrightarrow V$. By [1, Theorem 1.1.2], G/R is strongly quasi-affine over X.

The group scheme of automorphisms of $\mathfrak{F}_{B'/[u',u']}$ acting trivially on $\mathfrak{F}_{T'}$ is canonically

$$\oplus_{i\in \mathfrak{I}}\mathcal{L}^{\check{\alpha}_{i}}_{\check{\mathfrak{I}}_{\tau'}}.$$
(2.35)

Set $H=\oplus_{i\in \mathbb{J}}\Omega.$ Define a homomorphism of group schemes $R\to H$ over X as the composition

$$\mathsf{R} \longrightarrow \oplus_{i \in \mathcal{I}} \mathcal{L}^{\check{\alpha}_{i}}_{\mathfrak{F}_{\tau'}} \xrightarrow{\omega} \mathsf{H}.$$

$$(2.36)$$

The stack $\overline{\text{Bun}}_R$ identifies with the one classifying pairs $(\mathcal{F}_{G'}, \kappa)$, where $\mathcal{F}_{G'}$ is a G'-torsor on X, and κ is a collection of maps

$$\kappa^{\check{\lambda}}: \mathcal{L}^{\check{\lambda}}_{\mathfrak{F}_{\mathsf{T}'}} \hookrightarrow \mathcal{V}^{\check{\lambda}}_{\mathfrak{F}_{\mathsf{G}'}}$$

$$(2.37)$$

for each dominant weight $\dot{\lambda}$ of G', satisfying Plücker relations ([3], Section 2.2.2).

The set Λ_y identifies in this case with the group $Hom(\mathbb{G}_m, T')$ of coweights of T'.

For $\lambda \in \Lambda_{\mathcal{Y}}$ the stack $_{x,\lambda}\overline{\text{Bun}}_{R}$ classifies a G'-torsor $\mathfrak{F}_{G'}$ on X, a collection of maps

$$\kappa^{\tilde{\lambda}} : \mathcal{L}^{\tilde{\lambda}}_{\mathfrak{F}_{\mathsf{T}'}} \hookrightarrow \mathcal{V}^{\tilde{\lambda}}_{\mathfrak{F}_{\mathsf{G}'}}(\langle \lambda, \check{\lambda} \rangle \mathbf{x}) \tag{2.38}$$

for each dominant weight $\hat{\lambda}$ of G', satisfying Plücker relations.

Assume that the base field k is of characteristic p>0, and fix a nontrivial additive character $\psi:\mathbb{F}_p\to \bar{\mathbb{Q}}_\ell^*$. Write \mathcal{L}_ψ for the corresponding Artin-Shreier sheaf on \mathbb{A}^1_k . Take \mathcal{L} to be the restriction of \mathcal{L}_ψ under the map

$$\operatorname{Bun}_{\operatorname{H}} \longrightarrow \prod_{i \in \mathcal{I}} \operatorname{H}^{1}(X, \Omega) \xrightarrow{\operatorname{sum}} \mathbb{A}^{1}_{k}.$$
(2.39)

The corresponding Whittaker category $P^{\mathcal{L}}(_{x,\infty}\overline{Bun}_R)$ has been described by Frenkel, Gaitsgory, and Vilonen in [3].

2.7 Waldspurger models

The ground field k is of characteristic $p \neq 2$. Let $\pi : \widetilde{X} \to X$ be a two-sheeted covering ramified over some divisor D_{π} on X, where \widetilde{X} is a smooth projective curve. Set $L_{\pi} = \pi_* \mathcal{O}_{\widetilde{X}}$ and $G' = GL_2$. View L_{π} as a G'-torsor $\mathfrak{F}_{G'}$ on X. Let G be the group scheme of automorphisms of $\mathfrak{F}_{G'}$. Let R be the group scheme over X such that for an X-scheme S we have $R(S) = \text{Hom}(\widetilde{X} \times_X S, \mathbb{G}_m)$, so R is a closed group subscheme of G over X.

Let σ be the nontrivial automorphism of \widetilde{X} over X, so $L_{\pi} \xrightarrow{\longrightarrow} 0 \oplus \mathcal{E}$, where \mathcal{E} are σ anti-invariants in L_{π} . It is equipped with $\mathcal{E}^2 \xrightarrow{\longrightarrow} 0_X (-D_{\pi})$. Take $V = \mathcal{E}nd_0(L_{\pi}) \otimes \mathcal{E}^{-1}$, where $\mathcal{E}nd_0(L_{\pi})$ stands for the sheaf of traceless endomorphisms of L_{π} . The group scheme G acts on V via its action on L_{π} (the action of G on \mathcal{E} is trivial).

We have

$$V \longrightarrow \mathcal{O}(\mathsf{D}_{\pi}) \oplus \mathcal{O} \oplus \mathcal{E}^{-1}. \tag{2.40}$$

Consider the section ${\tt O} \to V$ given by (-1,1,0). The assumptions of Lemma 2.1 are satisfied.

Set H = R. The stack Bun_H classifies line bundles on \widetilde{X} . Pick a rank-one local system \widetilde{E} on \widetilde{X} . Take \mathcal{L} to be the automorphic local system on Bun_H corresponding to \widetilde{E} . The stack $_{x,\infty}\overline{Bun}_R$ in this case is canonically isomorphic to the stack $\mathcal{W} \operatorname{ald}_{\pi}^{x}$ introduced in [6, Section 8.2]. The corresponding Waldspurger category $P^{\mathcal{L}}(_{x,\infty}\overline{Bun}_R)$ has been studied in [6, Section 8.2].

3 Bessel categories

3.1 Notation

3.1.1 The group G. From now on, k is an algebraically closed field of characteristic p > 2. We change the notation compared to Section 2. From now on $G = GSp_4$, so G is the quotient of $\mathbb{G}_m \times Sp_4$ by the diagonally embedded $\{\pm 1\}$. We realize G as the subgroup of $GL(k^4)$ preserving up to a scalar the bilinear form given by the matrix

$$\begin{pmatrix} 0 & E_2 \\ -E_2 & 0 \end{pmatrix}, \tag{3.1}$$

where E_2 is the unit matrix of GL_2 .

Let T be the maximal torus of G given by $\{(y_1, \ldots, y_4) \mid y_i y_{2+i} \text{ does not depend} \text{ on } i\}$. Let Λ (resp., $\check{\Lambda}$) denote the coweight (resp., weight) lattice of T. Let $\check{\varepsilon}_i \in \check{\Lambda}$ be the character that sends a point of T to y_i . We have $\Lambda = \{(a_1, \ldots, a_4) \in \mathbb{Z}^4 \mid a_i + a_{2+i} \text{ does not} \text{ depend on } i\}$ and

$$\check{\Lambda} = \mathbb{Z}^4 / \{ \check{\varepsilon}_1 + \check{\varepsilon}_3 - \check{\varepsilon}_2 - \check{\varepsilon}_4 \}.$$
(3.2)

Fix the Borel subgroup of G preserving the flag $ke_1 \subset ke_1 \oplus ke_2$ of isotropic subspaces in the standard representation. The corresponding positive roots are

$$\left\{\check{\alpha}_{12},\check{\beta}_{ij},1\leq i\leq j\leq 2\right\},\tag{3.3}$$

where $\check{\alpha}_{12} = \check{e}_1 - \check{e}_2$ and $\check{\beta}_{ij} = \check{e}_i - \check{e}_{2+j}$. The simple roots are $\check{\alpha}_{12}$ and $\check{\beta}_{22}$. Write $V^{\check{\lambda}}$ for the irreducible representation of G of highest weight $\check{\lambda}$.

Fix fundamental weights $\check{\omega}_1 = (1,0,0,0)$ and $\check{\omega}_2 = (1,1,0,0)$ of G. So, $V^{\check{\omega}_1}$ is the standard representation of G. The orthogonal to the coroot lattice is $\mathbb{Z}\check{\omega}_0$ with $\check{\omega}_0 = (1,0,1,0)$. The orthogonal to the root lattice is $\mathbb{Z}\omega$ with $\omega = (1,1,1,1)$.

Let $P \subset G$ be the Siegel parabolic subgroup preserving the Lagrangian subspace $ke_1 \oplus ke_2 \subset k^4$. Write U for the unipotent radical of P, set M = P/U.

Let \check{G} (resp., \check{M}) denote the Langlands dual group over $\bar{\mathbb{Q}}_{\ell}$. Write V^{λ} (resp., U^{λ}) for the irreducible representation of \check{G} (resp., of \check{M}) with the highest weight λ .

Let w_0 be the longest element of the Weil group of G. Write Λ^+ for the set of dominant coweights of G. The half sum of positive roots of G is denoted by $\check{\rho}$. The corresponding objects for M are denoted by Λ_M^+ , w_0^M , $\check{\rho}_M$.

Set $G_{ad} = G/Z$, where $Z \subset G$ is the center. Set $\check{\nu}_1 = \check{\omega}_2 - \check{\omega}_0$ and $\check{\nu}_2 = 2\check{\omega}_1 - \check{\omega}_0$. So, $V^{\check{\nu}_1}$ is the standard representation of G_{ad} and $\wedge^2 V^{\check{\nu}_1} \xrightarrow{\sim} V^{\check{\nu}_2}$. Let $\Lambda_{G_{ad}}$ be the coweights lattice of G_{ad} . Write $\Lambda_{G_{ad}}^{pos}$ for the \mathbb{Z}_+ -span of positive coroots in $\Lambda_{G_{ad}}$. 3.1.2. For $d \ge 0$ write $X^{(d)}$ for the dth symmetric power of X and view it as the scheme of effective divisors of degree d on X. Let $^{rss}X^{(d)} \subset X^{(d)}$ denote the open subscheme of divisors of the form $x_1 + \cdots + x_d$ with x_i pairwise distinct. Write Bun_i for the stack of rank-i vector bundles on X. Set

$$\operatorname{RCov}^{d} = \operatorname{Bun}_{1} \times_{\operatorname{Bun}_{1}} \operatorname{rss} X^{(d)}, \tag{3.4}$$

where the map $^{rss}X^{(d)} \to Bun_1$ sends D to $\mathcal{O}_X(-D)$, and the map $Bun_1 \to Bun_1$ takes a line bundle to its tensor square. It is understood that $^{rss}X^{(0)} = Spec k$ and the point $^{rss}X^{(0)} \to Bun_1$ is \mathcal{O}_X . Then $RCov^d$ is the stack classifying two-sheeted coverings $\pi : \widetilde{X} \to X$ ramified exactly at $D \in ^{rss}X^{(d)}$ with \widetilde{X} smooth [6, Section 7.7.2].

Fix a character $\psi : \mathbb{F}_p \to \bar{\mathbb{Q}}_{\ell}^*$ and write \mathcal{L}_{ψ} for the corresponding Artin-Shreier sheaf on \mathbb{A}^1 .

3.2 Group schemes over X

3.2.1. Fix a k-point of $RCov^d$ given by $D_{\pi} \in {}^{rss}X^{(d)}$ and $\pi : \widetilde{X} \to X$ ramified exactly at D_{π} . Let σ denote the nontrivial automorphism of \widetilde{X} over X and let \mathcal{E} be the σ -anti-invariants in $L_{\pi} := \pi_* \mathfrak{O}_{\widetilde{X}}$. It is equipped with an isomorphism

$$\kappa: \mathcal{E}^{\otimes 2} \longrightarrow \mathcal{O}(-\mathsf{D}_{\pi}). \tag{3.5}$$

Recall that L_{π} is equipped with a symmetric form $\text{Sym}^2 L_{\pi} \xrightarrow{s} 0$ such that $\text{div}(L_{\pi}^*/L_{\pi}) = D_{\pi}$ for the induced map $L_{\pi} \hookrightarrow L_{\pi}^*$ [6, Proposition 14]. Set $\mathcal{M}_{\pi} = L_{\pi} \oplus (L_{\pi}^* \otimes \Omega^{-1})$. It is equipped with a symplectic form

$$\wedge^{2} \mathfrak{M}_{\pi} \longrightarrow \mathcal{L}_{\pi} \otimes \left(\mathcal{L}_{\pi}^{*} \otimes \Omega^{-1} \right) \longrightarrow \Omega^{-1}.$$

$$(3.6)$$

Write \mathfrak{F}_G for the G-torsor $(\mathfrak{M}_{\pi}, \Omega^{-1})$ on X. Let G_{π} be the group scheme (over X) of automorphisms of \mathfrak{F}_G . Write \mathcal{A}_{π} for the line bundle Ω^{-1} on X equipped with the corresponding action of G_{π} .

Let $P_{\pi} \subset G_{\pi}$ denote the Siegel parabolic subgroup preserving L_{π} , and $U_{\pi} \subset P_{\pi}$ its unipotent radical. Then U_{π} is equipped with a homomorphism of group schemes on X:

$$\operatorname{ev}_{\pi}: \operatorname{U}_{\pi} \xrightarrow{\sim} \Omega \otimes \operatorname{Sym}^{2} \operatorname{L}_{\pi} \xrightarrow{s} \Omega.$$

$$(3.7)$$

Denote by $\widetilde{R}_{\pi} \subset P_{\pi}$ the subgroup stabilizing ev_{π} , that is,

$$\widetilde{\mathsf{R}}_{\pi} = \big\{ \mathsf{p} \in \mathsf{P}_{\pi} \mid \mathsf{ev}_{\pi} \left(\mathsf{pup}^{-1} \right) = \mathsf{ev}_{\pi}(\mathsf{u}) \ \forall \mathsf{u} \in \mathsf{U}_{\pi} \big\}.$$

$$(3.8)$$

Let $GL(L_{\pi})$ denote the group scheme (over X) of automorphisms of the \mathcal{O}_X -module L_{π} . Let T_{π} denote the functor associating to an X-scheme V the group $H^0(\widetilde{X} \times_X V, \mathcal{O}^*)$. Then T_{π} is a group scheme over X, a subgroup of $GL(L_{\pi})$.

Write $\operatorname{Bun}_{T_{\pi}}$ for the stack of T_{π} -bundles on X, that is, for a scheme S, the S-points of $\operatorname{Bun}_{T_{\pi}}$ constitute the category of $(S \times X) \times_X T_{\pi}$ -torsors on $S \times X$. Given a \mathbb{G}_m -torsor on $S \times \widetilde{X}$, its direct image under id $\times \pi : S \times \widetilde{X} \to S \times X$ is as $(S \times X) \times_X T_{\pi}$ -torsor. In this way one identifies $\operatorname{Bun}_{T_{\pi}}$ with the Picard stack Pic \widetilde{X} .

Let $\alpha : T_{\pi} \to \mathbb{G}_m$ be the character by which T_{π} acts on $det(L_{\pi})$. Fix an inclusion $T_{\pi} \hookrightarrow \widetilde{R}_{\pi}$ by making $t \in T_{\pi}$ act on $L_{\pi} \oplus (L_{\pi}^* \otimes \Omega^{-1})$ as $(t, \alpha(t)(t^*)^{-1})$, where $t^* \in Aut(L_{\pi}^*)$ is the adjoint operator. Set $R_{\pi} = T_{\pi}U_{\pi}$, so $R_{\pi} \subset \widetilde{R}_{\pi}$ is a subgroup. Actually, $\widetilde{R}_{\pi}/U_{\pi}$ identifies with the group of those $g \in GL(L_{\pi})$ for which there exists $\widetilde{\alpha}(g) \in \mathbb{G}_m$ such that the following diagram commutes:

$$\begin{aligned}
\operatorname{Sym}^{2} L_{\pi} & \xrightarrow{s} \mathcal{O} \\
& \uparrow^{g} & \uparrow^{\tilde{\alpha}(g)} \\
\operatorname{Sym}^{2} L_{\pi} & \xrightarrow{s} \mathcal{O}
\end{aligned} \tag{3.9}$$

So, $\widetilde{R}_{\pi}/U_{\pi}$ is equipped with a character $\widetilde{\alpha} : \widetilde{R}_{\pi}/U_{\pi} \to \mathbb{G}_{m}$ whose restriction to R_{π} equals α . For $g \in \widetilde{R}_{\pi}/U_{\pi}$ the following diagram commutes:

so $(\det g)^2 = \widetilde{\alpha}(g)^2$. We see that R_{π} is the connected component of \widetilde{R}_{π} given by the additional condition det $g = \widetilde{\alpha}(g)$.

Lemma 3.1. The conditions of Lemma 2.1 are satisfied, so G_{π}/R_{π} is strongly quasi-affine over X.

Proof. Define a G_{π} -module W_{π} by the exact sequence $0 \to W_{\pi} \to A_{\pi}^{-1} \otimes \wedge^2 \mathcal{M}_{\pi} \to \mathcal{O}_X \to 0$ of \mathcal{O}_X -modules. So, W_{π} is equipped with a nondegenerate symmetric form $\operatorname{Sym}^2 W_{\pi} \to \mathcal{O}$, and the center of G_{π} acts trivially on W_{π} .

We have a subbundle $W_{\pi,1} := \mathcal{A}_{\pi}^{-1} \otimes \det L_{\pi} \xrightarrow{\sim} \Omega \otimes \mathcal{E}$ in W_{π} . Let $W_{\pi,-1}$ denote the orthogonal complement to $W_{\pi,1}$ in W_{π} . Then $W_{\pi,-1}/W_{\pi,1} \xrightarrow{\sim} \mathcal{E}nd_0(L_{\pi})$. As in Section 2.7, we have a subbundle $\mathcal{E} \hookrightarrow \mathcal{E}nd_0(L_{\pi})$. It gives rise to a subbundle

$$\Omega(-\mathsf{D}_{\pi}) \hookrightarrow W_{\pi,1} \otimes (W_{\pi,-1}/W_{\pi,1}) \hookrightarrow \wedge^2 W_{\pi}.$$
(3.11)

Set

$$\mathbf{V} = \left(\Omega^{-1} \otimes \mathcal{E}^{-1} \otimes W_{\pi}\right) \oplus \left(\Omega^{-1} \left(\mathsf{D}_{\pi}\right) \otimes \wedge^{2} W_{\pi}\right),\tag{3.12}$$

with the action of G_{π} coming from its action on W_{π} . We get a subbundle $\mathcal{O}_X \xrightarrow{s} V$, which is the sum of the above two sections. One checks that $R = \{g \in G \mid gs = s\}$, and the pair (V, s) satisfies the assumptions of Lemma 2.1.

3.2.2. Fix a k-point $x \in X$ and write \mathcal{O}_x for the completed local ring of X at x and F_x for its fraction field. Set $D_x = \operatorname{Spec} \mathcal{O}_x$ and $D_x^* = \operatorname{Spec} F_x$.

Write \widetilde{F}_x for the étale F_x -algebra of regular functions on $\widetilde{X} \times_X D_x^*$. If $x \in D_\pi$, then \widetilde{F}_x is nonsplit; otherwise it splits over F_x . Denote by \widetilde{O}_x the ring of regular functions on $\widetilde{X} \times_X D_x$.

Write $\operatorname{Gr}_{G_{\pi,x}}$ for the affine Grassmannian $G_{\pi}(F_x)/G_{\pi}(\mathcal{O}_x)$. This is an ind-scheme over k that can be seen as the moduli scheme of pairs $(\mathcal{F}_{G_{\pi}},\beta)$, where $\mathcal{F}_{G_{\pi}}$ is a G_{π} -torsor over D_x and $\beta : \mathcal{F}_{G_{\pi}} \xrightarrow{\sim} \mathcal{F}_{G_{\pi}}^0$ is an isomorphism over D_x^* .

In concrete terms, $Gr_{G_{\pi,X}}$ classifies the pairs \mathfrak{O}_x -lattices $\mathfrak{M} \subset \mathfrak{M}_\pi \otimes F_x$ and $\mathcal{A} \subset \Omega^{-1} \otimes F_x$ such that the following diagram commutes:

and induces an isomorphism $\mathcal{M} \widetilde{\rightarrow} \mathcal{M}^* \otimes \mathcal{A}$ of \mathcal{O}_x -modules.

Definition 3.2. Let \mathcal{Y}_{loc} denote the stack classifying

- (i) a free F_x -module \mathcal{B} of rank one; then write L for \mathcal{B} viewed as F_x -module; it is equipped with the nondegenerate form $\operatorname{Sym}^2 L \to \mathbb{C}$, where $\mathbb{C} = (\mathcal{E} \otimes F_x) \otimes$ det L [6, Proposition 14];
- (ii) a G-bundle $(\mathcal{M}, \mathcal{A})$ on Spec \mathcal{O}_x ; here \mathcal{M} is a free \mathcal{O}_x -module of rank 4 and \mathcal{A} is a free \mathcal{O}_x -module of rank 1 with a symplectic form $\wedge^2 \mathcal{M} \to \mathcal{A}$ (it induces $\mathcal{M} \xrightarrow{\sim} \mathcal{M}^* \otimes \mathcal{A}$);
- $\label{eq:relation} \mbox{(iii)} \mbox{ an inclusion } L \hookrightarrow \mathcal{M} \otimes_{\mathbb{O}_x} F_x \mbox{ of } F_x\mbox{-vector spaces, whose image is an isotropic subspace;}$
- (iv) an isomorphism $\Omega \otimes \mathcal{A} \otimes F_x \widetilde{\rightarrow} \mathcal{C}$ of F_x -vector spaces.

Lemma 3.3. The stack \mathcal{Y}_{loc} identifies with the stack quotient of $Gr_{G_{\pi},x}$ by $R_{\pi}(F_x)$.

Proof. Given a point of \mathcal{Y}_{loc} , it defines a P_{π} -torsor over Spec F_x . Fix a splitting of the corresponding exact sequence $0 \rightarrow Sym^2 L \otimes F_x \rightarrow ? \rightarrow \mathcal{A} \otimes F_x \rightarrow 0$. Fix also a trivialization

 $\mathfrak{B} \rightarrow \widetilde{F}_x$. Then our data becomes just a point of $\operatorname{Gr}_{G_{\pi},x}$. Changing the two trivializations above corresponds to the action of $R_{\pi}(F_x)$ on $\operatorname{Gr}_{G_{\pi},x}$. So, \mathcal{Y}_{loc} classifies a G_{π} -torsor $\mathcal{F}_{G_{\pi}}$ on D_x equipped with an R_{π} -structure over D_x^* .

The $R_{\pi}(F_x)$ -orbits on $Gr_{G_{\pi,x}}$ are described in [2, Section 1]. Set $\Lambda_{\mathcal{B}} = \{(a_1, a_2) \in \mathbb{Z}^2 \mid a_2 \geq 0\}.$

Lemma 3.4. The k-points of \mathcal{Y}_{loc} are indexed by $\Lambda_{\mathcal{B}}$.

Proof. Given a k-point of \mathcal{Y}_{loc} , set $L_2 = \mathcal{M} \cap L$. We get a P_{π} -torsor over D_x given by an exact sequence $0 \to Sym^2 L_2 \to ? \to \mathcal{A} \to 0$ of \mathcal{O}_x -modules. There is a unique $a_1 \in \mathbb{Z}$ such that the isomorphism over F_x extends to an isomorphism $\Omega \otimes \mathcal{A} \xrightarrow{\sim} (\mathcal{E} \otimes \det L_2)(D_{\pi} + a_1x)$ of \mathcal{O}_x -modules.

Further, $(L_2, \mathcal{B}, L \xrightarrow{\rightarrow} L_2 \otimes F_x)$ is a k-point of \mathcal{W} ald $_{\pi}^{x, loc}$ given by some $a_2 \ge 0$. Namely, if $\mathcal{B}_{ex} \subset \mathcal{B}$ is the smallest $\widetilde{\mathcal{O}}_x$ -lattice such that $L_2 \subset \mathcal{B}_{ex}$, then $a_2 = \dim(\mathcal{B}_{ex}/L_2)$ [6, Section 8.1].

We realize $\Lambda_{\mathfrak{B}}$ as a subsemigroup of $\Lambda_{G_{ad}}$ via the map sending $(\mathfrak{a}_1, \mathfrak{a}_2)$ to $\lambda \in \Lambda_{G_{ad}}$ given by $\langle \lambda, \check{\nu}_1 \rangle = \mathfrak{a}_1$ and $\langle \lambda, \check{\nu}_2 \rangle = \mathfrak{a}_1 + \mathfrak{a}_2$. Then $\Lambda_{\mathfrak{B}} = \{\lambda \in \Lambda_{G_{ad}} \mid \langle \lambda, \check{\alpha}_{12} \rangle \ge 0\}$.

The image of α_{12} in $\Lambda_{G_{ad}}$ is divisible by two. Define the subsemigroup $\Lambda_{\mathcal{B}}^{pos} \subset \Lambda_{G_{ad}}$ as the \mathbb{Z}_+ -span of $(1/2)\alpha_{12}, \beta_{22}$. Then

$$\Lambda_{\mathcal{B}}^{\text{pos}} = \left\{ \lambda \in \Lambda_{G_{ad}} \mid \left\langle \lambda, \check{\nu}_i \right\rangle \ge 0 \text{ for } i = 1, 2 \right\}.$$
(3.14)

We introduce an order on $\Lambda_{\mathcal{B}}$ as follows. For $\lambda, \mu \in \Lambda_{\mathcal{B}}$ write $\lambda \geq \mu$ if and only if $\lambda - \mu \in \Lambda_{\mathcal{B}}^{pos}$. The reader should be cautioned that this is *not* the order induced from $\Lambda_{G_{ad}}$ (the latter order is never used in this paper).

3.3 Generalized R_{π} -bundles

3.3.1. The stack $\operatorname{Bun}_{R_{\pi}}$ classifies the following collections: a line bundle \mathcal{B}_{ex} on \widetilde{X} , for which we set $L_{ex} = \pi_* \mathcal{B}_{ex}$, and an exact sequence of \mathcal{O}_X -modules

$$0 \longrightarrow Sym^2 L_{ex} \longrightarrow ? \longrightarrow \Omega^{-1} \otimes \mathcal{E}^{-1} \otimes det L_{ex} \longrightarrow 0. \tag{3.15}$$

By [6, Proposition 14], L_{ex} is equipped with a symmetric form

$$\operatorname{Sym}^{2} L_{\operatorname{ex}} \longrightarrow \mathcal{E}^{-1} \otimes \det L_{\operatorname{ex}}.$$
(3.16)

It admits a canonical section $\boldsymbol{\mathcal{E}}\otimes det\, L_{ex} \stackrel{s}{\hookrightarrow} Sym^2\, L_{ex}.$

Here is a Plücker-type description of $\operatorname{Bun}_{R_{\pi}}$. It is the stack classifying

- (i) a G-bundle $(\mathcal{M}, \mathcal{A})$ on X; here $\mathcal{M} \in Bun_4$, $\mathcal{A} \in Bun_1$ with a symplectic form $\wedge^2 \mathcal{M} \to \mathcal{A}$, for which we set $W = \text{Ker}(\mathcal{A}^{-1} \otimes \wedge^2 \mathcal{M} \to \mathcal{O}_X)$;
- (ii) two subbundles

$$\begin{aligned} \kappa_{1}: \Omega \otimes \mathcal{E} \hookrightarrow W, \\ \kappa_{2}: \Omega(-D_{\pi}) \hookrightarrow \wedge^{2} W. \end{aligned} \tag{3.17}$$

It is required that there is a Lagrangian subbundle $L_{ex} \hookrightarrow \mathcal{M}$, a line bundle \mathcal{B}_{ex} on \widetilde{X} , and an isomorphism $L_{ex} \xrightarrow{\sim} \pi_* \mathcal{B}_{ex}$ with the following properties. Let W_{-1} denote the orthogonal complement to $W_1 = \mathcal{A}^{-1} \otimes \det L_{ex}$ in W, so that $W_{-1}/W_1 \xrightarrow{\sim} \mathcal{E}nd_0(L_{ex})$ is equipped with $\mathcal{E} \xrightarrow{s} \mathcal{E}nd_0(L_{ex})$. Then

- (a) κ_1 factors as $\Omega \otimes \mathcal{E} \xrightarrow{\sim} W_1 \hookrightarrow W$;
- (b) κ_2 factors as $\Omega(-D_{\pi}) \stackrel{s}{\hookrightarrow} W_1 \otimes W_{-1}/W_1 \hookrightarrow \wedge^2 W$.

3.3.2. As in Section 2.2, we have the stacks $\overline{\operatorname{Bun}}_{R_{\pi}} \hookrightarrow {}_{x,\infty}\overline{\operatorname{Bun}}_{R_{\pi}}$. By definition, ${}_{x,\infty}\overline{\operatorname{Bun}}_{R_{\pi}}$ classifies pairs $(\mathcal{F}_{G_{\pi}},\beta)$, where $\mathcal{F}_{G_{\pi}}$ is a G_{π} -torsor on X, and $\beta : \mathcal{F}_{G_{\pi}} \to \overline{G_{\pi}/R_{\pi}} |_{X-x}$ is a G_{π} -equivariant map such that β factors through G_{π}/R_{π} over some nonempty open subset of X-x.

Here is a Plücker-type description. The stack $_{\chi,\infty}\overline{\text{Bun}}_{R_{\pi}}$ classifies

- (i) a G-bundle $(\mathcal{M}, \mathcal{A})$ on X; here $\mathcal{M} \in Bun_4$, $\mathcal{A} \in Bun_1$ with a symplectic form $\wedge^2 \mathcal{M} \to \mathcal{A}$, for which we set $W = \text{Ker}(\mathcal{A}^{-1} \otimes \wedge^2 \mathcal{M} \to \mathfrak{O}_X)$;
- (ii) nonzero sections

$$\begin{aligned} \kappa_{1}: \Omega \otimes \mathcal{E} \hookrightarrow W(\infty x), \\ \kappa_{2}: \Omega(-D_{\pi}) \hookrightarrow \wedge^{2} W(\infty x). \end{aligned} \tag{3.18}$$

It is required that for some nonempty open subset $X^0 \subset X - x$ there be a Lagrangian subbundle $L \hookrightarrow \mathcal{M} \mid_{X^0}$, a line bundle \mathcal{B} on $\pi^{-1}(X^0)$, and an isomorphism $L \xrightarrow{\rightarrow} \pi_* \mathcal{B} \mid_{X^0}$ with the following properties. Let W_{-1} denote the orthogonal complement to $W_1 = \mathcal{A}^{-1} \otimes \det L$ in $W \mid_{X^0}$, so $W_{-1}/W_1 \xrightarrow{\rightarrow} \mathcal{E}nd_0L$ is equipped with $\mathcal{E} \stackrel{s}{\to} \mathcal{E}nd_0L$. Then

- (a) $\kappa_1 \mid_{X^0}$ factors as $\Omega \otimes \mathcal{E} \xrightarrow{\sim} W_1 \hookrightarrow W \mid_{X^0}$;
- (b) $\kappa_2 \mid_{X^0}$ factors as $\Omega(-D_{\pi}) \stackrel{s}{\hookrightarrow} W_1 \otimes W_{-1}/W_1 \hookrightarrow \wedge^2 W \mid_{X^0}$.

Definition 3.5. For $\lambda \in \Lambda_{\mathcal{B}}$ denote by $_{x,\lambda}\overline{\operatorname{Bun}}_{R_{\pi}} \hookrightarrow _{x,\infty}\overline{\operatorname{Bun}}_{R_{\pi}}$ the closed substack given by the condition that the maps

$$\begin{aligned} \kappa_{1} : \Omega \otimes \mathcal{E} \left(- \langle \lambda, \check{\nu}_{1} \rangle \mathbf{x} \right) &\hookrightarrow W, \\ \kappa_{2} : \Omega \left(- \mathsf{D}_{\pi} - \langle \lambda, \check{\nu}_{2} \rangle \mathbf{x} \right) &\hookrightarrow \wedge^{2} W \end{aligned} \tag{3.19}$$

initially defined over X - x are regular over X.

For $\lambda, \mu \in \Lambda_{\mathfrak{B}}$ we have $_{x,\mu}\overline{\operatorname{Bun}}_{R_{\pi}} \subset _{x,\lambda}\overline{\operatorname{Bun}}_{R_{\pi}}$ if and only if $\mu \leq \lambda$. As in Section 2.4, we have the open substacks

$$_{\chi,\lambda}\operatorname{Bun}_{\mathsf{R}_{\pi}}\subset_{\chi,\lambda}\operatorname{Bun}_{\mathsf{R}_{\pi}}\subset_{\chi,\lambda}\overline{\operatorname{Bun}}_{\mathsf{R}_{\pi}},\tag{3.20}$$

given by requiring that κ_1, κ_2 are maximal everywhere on X (resp., in a neighbourhood of x).

3.4 Stratifications

The following lemma is straightforward.

Lemma 3.6. Let $\lambda \in \Lambda_{\mathcal{B}}$. For any k-point of $_{x,\lambda}\overline{\operatorname{Bun}}_{R_{\pi}}$ there is a unique divisor D on X with values in $-\Lambda_{\mathcal{B}}^{\operatorname{pos}}$ such that the maps

$$\begin{aligned} \kappa_{1} : \Omega \otimes \mathcal{E} \big(- \big\langle \lambda x + D, \check{\nu}_{1} \big\rangle \big) &\hookrightarrow W, \\ \kappa_{2} : \Omega \big(- D_{\pi} - \big\langle \lambda x + D, \check{\nu}_{2} \big\rangle \big) &\hookrightarrow \wedge^{2} W \end{aligned} \tag{3.21}$$

are regular and maximal everywhere on X, and $D + \lambda x$ is a divisor with values in $\Lambda_{\mathcal{B}}$. \Box

Consider a $\Lambda_{\mathcal{B}}$ -valued divisor D on X with $D = \lambda x + \sum_{y \neq x} \lambda_y y$ such that $\lambda_y \in -\Lambda_{\mathcal{B}}^{\text{pos}}$ for $y \neq x$. Denote by $_D \text{Bun}_{R_{\pi}} \subset _{x,\lambda} \overline{\text{Bun}}_{R_{\pi}}$ the substack given by the condition that the maps

$$\kappa_{1}: \Omega \otimes \mathcal{E}(-\langle \mathbf{D}, \check{\mathbf{v}}_{1} \rangle) \hookrightarrow W,$$

$$\kappa_{2}: \Omega(-\mathbf{D}_{\pi} - \langle \mathbf{D}, \check{\mathbf{v}}_{2} \rangle) \hookrightarrow \wedge^{2} W$$
(3.22)

are regular and maximal everywhere on X. In particular, for $D = \lambda x$ we get $_D Bun_{R_{\pi}} \xrightarrow{\sim} x_{\lambda\lambda} Bun_{R_{\pi}}$.

Actually, $_{D}$ Bun_{R_{π}} is the stack classifying a line bundle \mathcal{B}_{ex} on \widetilde{X} , for which we set L_{ex} = $\pi_*\mathcal{B}_{ex}$, a modification L₂ \subset L_{ex} of rank-2 vector bundles on X such that the

composition is surjective:

$$Sym^2 L_2 \longrightarrow Sym^2 L_{ex} \longrightarrow \mathcal{E}^{-1} \otimes \det L_{ex}$$

$$(3.23)$$

and $div(L_{ex}/L_2)=\langle D,\check{\nu}_2-\check{\nu}_1\rangle,$ and an exact sequence of $\mathfrak{O}_X\text{-modules}$

$$0 \longrightarrow \operatorname{Sym}^2 L_2 \longrightarrow ? \longrightarrow \mathcal{A} \longrightarrow 0, \tag{3.24}$$

where $\mathcal{A} = (\Omega^{-1} \otimes \mathcal{E}^{-1} \otimes \det L_2)(\langle D, \check{v}_1 \rangle)$. We have used here the description of $\mathcal{W} ald_{\pi}^{x, \alpha}$ from [6, Section 8.2].

Remark 3.7. For $a_1 \in \mathbb{Z}$ denote by ${}_{x^1}^{\alpha_1}\overline{\operatorname{Bun}}_{R_{\pi}} \subset {}_{x,\infty}\overline{\operatorname{Bun}}_{R_{\pi}}$ the substack given by the condition that the map

$$\kappa_1: \Omega \otimes \mathcal{E}\big(-\mathfrak{a}_1 x\big) \hookrightarrow W \tag{3.25}$$

is regular and maximal everywhere on X. This is the stack classifying the following collections: $L_2 \in Bun_2$, an exact sequence $0 \rightarrow Sym^2 L_2 \rightarrow ? \rightarrow A \rightarrow 0$ on X with $A = (\Omega^{-1} \otimes \mathcal{E}^{-1} \otimes \det L_2)(\mathfrak{a}_1 x)$, a line bundle \mathcal{B} on $\pi^{-1}(X-x)$, and an isomorphism $\pi_* \mathcal{B} \xrightarrow{\sim} L_2 |_{X-x}$. We have the projection

$${}^{a_1}_{\chi} \overline{\operatorname{Bun}}_{R_{\pi}} \longrightarrow \mathcal{W} \operatorname{ald}_{\pi}^{\chi} \tag{3.26}$$

sending the above point to $(L_2, \mathcal{B}, \pi_* \mathcal{B} \xrightarrow{\sim} L_2 |_{X-x})$ (cf. [6, Section 8.2]).

For $\lambda = (a_1, a_2) \in \Lambda_{\mathfrak{B}}$ write $a_{x,\lambda}^{\alpha_1} \overline{\operatorname{Bun}}_{R_{\pi}}$ for the preimage of $\operatorname{W} \operatorname{ald}_{\pi}^{x, \leq a_2}$ under this map. The preimage of $\operatorname{W} \operatorname{ald}_{\pi}^{x, a_2}$ under the same map identifies with $_{x,\lambda} \operatorname{Bun}_{R_{\pi}}$. Note that

$$\underset{\mathbf{x},\lambda}{^{a_1}}\overline{\mathrm{Bun}}_{\mathbf{R}_{\pi}} \subset _{\mathbf{x},\lambda}\overline{\mathrm{Bun}}_{\mathbf{R}_{\pi}}$$
(3.27)

is an open substack. This will be used in Section 3.12.

3.5 Bessel category

Set $H = \Omega \times T_{\pi}$. Denote by $\chi_{\pi} : R_{\pi} \to H$ the homomorphism of group schemes over X given by $\chi_{\pi}(tu) = (ev_{\pi}(u), t), t \in T_{\pi}, u \in U_{\pi}$. Let

$$\operatorname{ev}^{0}:\operatorname{Bun}_{R_{\pi}}\longrightarrow \mathbb{A}^{1}\times\operatorname{Pic}\widetilde{X}$$

$$(3.28)$$

be the map sending a point of $Bun_{R_{\pi}}$ to the pair $(\varepsilon, \mathcal{B}_{ex})$, where ε is the class of the push-forward of (3.15) by (3.16).

Fix a rank-one local system \widetilde{E} on \widetilde{X} . Write $A\widetilde{E}$ for the automorphic local system on Pic \widetilde{X} corresponding to \widetilde{E} . For $d \ge 0$ its inverse image under $\widetilde{X}^{(d)} \to \text{Pic}^d \widetilde{X}$ identifies with the symmetric power $\widetilde{E}^{(d)}$ of \widetilde{E} .

Let \mathcal{L} denote the restriction of $\mathcal{L}_{\psi} \boxtimes A\widetilde{E}$ under the natural map $\operatorname{Bun}_{H} \to \mathbb{A}^{1} \times \operatorname{Pic} \widetilde{X}$. As in Section 2.2, our data give rise to *the Bessel category* $\mathbb{P}^{\mathcal{L}}(x, \infty \overline{\operatorname{Bun}}_{R_{\pi}})$.

One checks that $\lambda = (a_1, a_2) \in \Lambda_{\mathcal{B}}$ is *relevant* (in the sense of Section 2.4) if and only if $a_1 \ge a_2$. Write $\Lambda_{\mathcal{B}}^+$ for the set of relevant $\lambda \in \Lambda_{\mathcal{B}}$.

3.6 Perverse sheaves \mathcal{B}^{λ}

Consider a stratum $_{D}$ Bun_{R_{$\pi}} of <math>_{\chi,\infty}$ Bun_{R_{$\pi}} as in Section 3.4, so D is a <math>\Lambda_{\mathfrak{B}}$ -valued divisor on X. Arguing as in Section 2.2.3 (with the difference that now $\widetilde{y} \in \widetilde{X}$ satisfies an additional assumption: $\pi(\widetilde{y})$ does not lie in the support of D), one defines the category $\mathbb{P}^{\mathcal{L}}(_{D} \operatorname{Bun}_{R_{\pi}})$.</sub></sub></sub></sub>

We say that the stratum $_{D} \operatorname{Bun}_{R_{\pi}}$ is *relevant* if $P^{\mathcal{L}}(_{D}\operatorname{Bun}_{R_{\pi}})$ contains a nonzero object. As in [3, Lemma 6.2.8], one shows that the stratum $_{D} \operatorname{Bun}_{R_{\pi}}$ is relevant if and only if $D = \lambda x$ with $\lambda \in \Lambda_{\mathcal{B}}^{+}$.

For $\lambda \in \Lambda_{\mathcal{B}}^+$ denote by

$$\operatorname{ev}^{\lambda}:_{x,\lambda}\operatorname{Bun}_{R_{\pi}}\longrightarrow \mathbb{A}^{1}\times\operatorname{Pic}\widetilde{X}$$

$$(3.29)$$

the following map. Given a point of $_{x,\lambda} \operatorname{Bun}_{R_{\pi}}$ as in Section 3.4, ev^{λ} sends it to the pair $(\varepsilon, \mathcal{B}_{ex})$, where ε is the class of the push-forward of (3.24) under the map Sym² $L_2 \to \mathcal{A} \otimes \Omega$, obtained from the symmetric form on L_{ex} .

For $\lambda \in \Lambda_{\mathfrak{B}}^+$ let \mathfrak{B}^{λ} be the Goresky-MacPherson extension of

$$\left(ev^{\lambda}\right)^{*}\left(\mathcal{L}_{\psi}\boxtimes A\widetilde{E}\right)\otimes \bar{\mathbb{Q}}_{\ell}[1]\left(\frac{1}{2}\right)^{\otimes \dim_{\kappa,\lambda}\operatorname{Bun}_{\mathsf{R}_{\pi}}}$$
(3.30)

under $_{x,\lambda} \operatorname{Bun}_{R_{\pi}} \hookrightarrow _{x,\lambda} \overline{\operatorname{Bun}}_{R_{\pi}}$. The irreducible objects of $P^{\mathcal{L}}(_{x,\infty} \overline{\operatorname{Bun}}_{R_{\pi}})$ are (up to isomorphism) exactly $\mathcal{B}^{\lambda}, \lambda \in \Lambda_{\mathcal{B}}^{+}$.

Let us underline that for $0 \in \Lambda_{\mathcal{B}}^+$ the only relevant stratum of $_{x,0}\overline{\operatorname{Bun}}_{R_{\pi}} = \overline{\operatorname{Bun}}_{R_{\pi}}$ is $_{x,0}\operatorname{Bun}_{R_{\pi}}$. So, \mathcal{B}^0 is the extension by zero from $_{x,0}\operatorname{Bun}_{R_{\pi}}$. As in [3], we say that \mathcal{B}^0 is *clean* with respect to the open immersion $_{x,0}\operatorname{Bun}_{R_{\pi}} \hookrightarrow \overline{\operatorname{Bun}}_{R_{\pi}}$. The same argument proves the following.

Lemma 3.8. For $\lambda \in \Lambda_{\mathcal{B}}^+$ the *-restriction of \mathcal{B}^{λ} to $_{x,\lambda} \widetilde{\text{Bun}}_{R_{\pi}} - _{x,\lambda} \text{Bun}_{R_{\pi}}$ vanishes.

3.7 Semigroups

The natural projection $\Lambda \to \Lambda_{G_{ad}}$ induces a map $i : \Lambda^+ \to \Lambda^+_{\mathcal{B}}$. Actually, we get an isomorphism of semigroups

$$\Lambda^{+}/\mathbb{Z}\omega \xrightarrow{\sim} \Lambda_{\mathcal{B}}^{+}. \tag{3.31}$$

The map i preserves the order, that is, if $\lambda \leq \mu$ for $\lambda, \mu \in \Lambda^+$, then $i(\lambda) \leq i(\mu)$. Besides, $i(-w_0(\lambda)) = i(\lambda)$. For $\mu \in \Lambda_B^+$ an easy calculation shows that

$$\dim_{\mathbf{x},\mu}\operatorname{Bun}_{\mathsf{R}_{\pi}} = \langle \mu, 2\check{\rho} \rangle + \dim\operatorname{Bun}_{\mathsf{R}_{\pi}}.$$
(3.32)

Remark 3.9. Let $\lambda \in \Lambda^+$. The map $\lambda' \mapsto i(\lambda')$ provides a bijection between $\{\lambda' \in \Lambda^+ \mid \lambda' \leq \lambda\}$ and $\{\mu \in \Lambda_{\mathcal{B}}^+ \mid \mu \leq i(\lambda); i(\lambda) - \mu = 0 \text{ in } \pi_1(G_{ad})\}.$

3.8 Main result

Recall that $G = GSp_4$ and for each $\mathcal{A} \in Sph(Gr_{G,x})$ we have the Hecke functor $H(\mathcal{A}, \cdot) : D(x, \infty \overline{Bun}_{R_{\pi}}) \to D(x, \infty \overline{Bun}_{R_{\pi}})$ introduced in Section 2.3.

Here is our main result.

Theorem 3.10. (1) Set $\check{\nu} = (1/2)w_0(\check{\omega}_0 - \check{\beta}_{22})$, so $\check{\nu} \in \check{\Lambda}$. For $\lambda \in \Lambda^+$ there is a canonical isomorphism

$$H\left(\mathcal{A}_{\lambda}, \mathcal{B}^{0}\right) \xrightarrow{\sim} \begin{cases} \mathcal{B}^{\mathfrak{i}(\lambda)} \otimes \left(\widetilde{\mathsf{E}}_{\widetilde{\mathfrak{x}}}\right)^{\otimes \langle \lambda, 2\widetilde{\mathfrak{v}} \rangle}, & \text{the nonsplit case, } \pi(\widetilde{\mathfrak{x}}) = \mathfrak{x}, \\ \mathcal{B}^{\mathfrak{i}(\lambda)} \otimes \left(\widetilde{\mathsf{E}}_{\widetilde{\mathfrak{x}}_{1}} \otimes \widetilde{\mathsf{E}}_{\widetilde{\mathfrak{x}}_{2}}\right)^{\otimes \langle \lambda, \widetilde{\mathfrak{v}} \rangle}, & \text{the split case, } \pi^{-1}(\mathfrak{x}) = \{\widetilde{\mathfrak{x}}_{1}, \widetilde{\mathfrak{x}}_{2}\}. \end{cases}$$

$$(3.33)$$

(2) For $\omega=(1,1,1,1)\in\Lambda^+$ and $\mu\in\Lambda_{\mathfrak{B}}^+$ there is a canonical isomorphism

$$H(\mathcal{A}_{\omega}, \mathcal{B}^{\mu}) \xrightarrow{\sim} \begin{cases} \mathcal{B}^{\mu} \otimes \widetilde{E}_{\widetilde{x}}^{\otimes 2}, & \text{the nonsplit case, } \pi(\widetilde{x}) = x, \\ \mathcal{B}^{\mu} \otimes \widetilde{E}_{\widetilde{x}_{1}} \otimes \widetilde{E}_{\widetilde{x}_{2}}, & \text{the split case, } \pi^{-1}(x) = \{\widetilde{x}_{1}, \widetilde{x}_{2}\}. \end{cases}$$

$$(3.34)$$

3.9 Dimensions estimates

Given a G-torsor \mathfrak{F}_G over D_x , denote by $Gr_{G,x}(\mathfrak{F}_G)$ the affine Grassmannian classifying pairs (\mathfrak{F}'_G, β) , where \mathfrak{F}'_G is a G-torsor over D_x and $\beta : \mathfrak{F}'_G \widetilde{\to} \mathfrak{F}_G \mid_{D^*_x}$ an isomorphism.

For $\lambda \in \Lambda^+$ we have the subschemes (cf. [1, Section 3.2.1])

$$\operatorname{Gr}_{G,x}^{\lambda}\left(\mathfrak{F}_{G}\right) \subset \overline{\operatorname{Gr}}_{G,x}^{\lambda}\left(\mathfrak{F}_{G}\right) \subset \operatorname{Gr}_{G,x}\left(\mathfrak{F}_{G}\right). \tag{3.35}$$

A point $(\mathfrak{F}'_{G}, \beta) \in Gr_{G,x}(\mathfrak{F}_{G})$ lies in $\overline{Gr}^{\lambda}_{G,x}(\mathfrak{F}_{G})$ if for any G-module V, whose weights are $\leq \check{\lambda}$, we have

$$V_{\mathcal{F}_{G}}\left(-\langle\lambda,\check{\lambda}\rangle x\right) \subset V_{\mathcal{F}_{G}'}.$$
(3.36)

Recall that we identify $Gr_{G_{\pi},x}$ with the ind-scheme $Gr_{G,x}(\mathfrak{F}_G)$ classifying pairs $(\mathfrak{F}_G,\widetilde{\beta})$, where \mathfrak{F}_G is a G-torsor on D_x and

$$\widetilde{\beta}: \mathfrak{F}_{\mathsf{G}} \longrightarrow \mathfrak{F}_{\mathsf{G}} \mid_{\mathsf{D}_{\mathsf{x}}^{*}} \tag{3.37}$$

is an isomorphism of G-torsors. A k-point $(\mathfrak{F}_G, \widetilde{\beta})$ of $\operatorname{Gr}_{G_{\pi}, x}$ yields an inclusion $\overline{\operatorname{Gr}}_{G, x}^{\lambda}(\mathfrak{F}_G) \hookrightarrow \operatorname{Gr}_{G_{\pi}, x}$ sending (\mathfrak{F}'_G, β) to $(\mathfrak{F}'_G, \widetilde{\beta} \circ \beta)$. For $\mu \in \Lambda_{\mathfrak{B}}$ we denote by $S^{\mu}_{R_{\pi}} \subset \operatorname{Gr}_{G_{\pi}, x}$ the $R_{\pi}(F_x)$ -orbit on $\operatorname{Gr}_{G_{\pi}, x}$ corresponding to μ .

As in [3] and [6, Proposition 17], the following is a key point of our proof of Theorem 3.10.

Proposition 3.11. Let $\mu \in \Lambda_{\mathcal{B}}^+$. Let $(\mathfrak{F}_G, \widetilde{\beta})$ be a k-point of $S_{R_{\pi}}^{\mu}$, where \mathfrak{F}_G is a G-torsor on D_x and $\widetilde{\beta} : \mathfrak{F}_G \xrightarrow{\sim} \mathfrak{F}_G \mid_{D_x^*}$ is an isomorphism of G-torsors. For any $\lambda \in \Lambda^+$ the scheme

$$\overline{\mathrm{Gr}}^{\lambda}_{\mathrm{G},x}(\mathfrak{F}_{\mathrm{G}}) \cap \mathrm{S}^{0}_{\mathrm{R}_{\pi}} \tag{3.38}$$

is empty unless $\mu \leq i(\lambda)$ in the sense of the order on $\Lambda_{\mathcal{B}}^+$. If $\mu \leq i(\lambda)$, then

$$\operatorname{Gr}_{G,x}^{\lambda}\left(\mathfrak{F}_{G}\right)\cap \operatorname{S}_{R_{\pi}}^{0} \tag{3.39}$$

is of dimension $\leq \langle \lambda, \check{\rho} \rangle - \langle \mu, \check{\rho} \rangle$. The equality holds if and only if there exists $\lambda' \in \Lambda^+, \lambda' \leq \lambda$, such that $\mu = i(\lambda')$, and in this case the irreducible components of (3.39) of maximal dimension form a base of

$$\operatorname{Hom}_{\check{M}}\left(\mathrm{U}^{w_{0}^{M}w_{0}(\lambda')},\mathrm{V}^{\lambda}\right).$$
(3.40)

If $\mu = i(\lambda)$, then (3.39) is a point scheme.

Remark 3.12. Consider the scheme (3.39) in the case $\lambda, \lambda' \in \Lambda^+$ with $\lambda' < \lambda$ and $\mu = i(\lambda')$. Our proof of Proposition 3.11 will also show that for such λ and μ in the nonsplit case, *all* the irreducible components of (3.39) are of the same dimension. In the split case, (3.39) may have irreducible components of different dimensions (e.g., this happens for $\lambda = (a, a, 0, 0) \in \Lambda^+$ and $\mu = 0$).

3.10 Proofs

For a P-torsor \mathfrak{F}_P over D_x let $\mathfrak{F}_G = \mathfrak{F}_P \times_P G$. For a coweight $\nu \in \Lambda^+_M$ denote by $S^{\nu}_P(\mathfrak{F}_P)$ the ind-scheme classifying pairs (\mathfrak{F}'_P, β) , where \mathfrak{F}'_P is a P-torsor on D_x and

$$\beta: \mathcal{F}'_{\mathsf{P}} \xrightarrow{\sim} \mathcal{F}_{\mathsf{P}} \mid_{\mathsf{D}^*_{\mathsf{x}}} \tag{3.41}$$

is an isomorphism such that the pair $(\mathcal{F}'_{\mathcal{M}}, \beta)$ lies in $\operatorname{Gr}^{\nu}_{\mathcal{M},x}(\mathcal{F}_{\mathcal{M}})$. Here $\mathcal{F}_{\mathcal{M}}$ and $\mathcal{F}'_{\mathcal{M}}$ are the M-torsors induced from \mathcal{F}_{P} and \mathcal{F}'_{P} , respectively. For $\lambda \in \Lambda^{+}$ denote by

$$\mathfrak{t}_{\mathsf{P}}^{\nu}:\mathsf{S}_{\mathsf{P}}^{\nu}\big(\mathfrak{F}_{\mathsf{P}}\big)\cap\mathsf{Gr}_{\mathsf{G},\mathfrak{x}}^{\lambda}\left(\mathfrak{F}_{\mathsf{G}}\right)\longrightarrow\mathsf{Gr}_{\mathsf{M},\mathfrak{x}}^{\nu}\left(\mathfrak{F}_{\mathsf{M}}\right)\tag{3.42}$$

the natural projection. Our Proposition 3.11 is based on the following result established in [1, Proposition 4.3.3 and Section 5.3.7].

Proposition 3.13. All the irreducible components of any fibre of t_P^{ν} are of dimension $\langle \nu + \lambda, \check{\rho} \rangle - \langle \nu, 2\check{\rho}_M \rangle$. These components form a base of

$$\operatorname{Hom}_{\check{M}}\left(U^{\nu},V^{\lambda}\right).$$
(3.43)

For $v = w_0^M w_0(\lambda)$ the map (3.42) is an isomorphism. \Box

Proof of Proposition 3.11. Write $\mu = (a_1, a_2)$. The pair $(\mathcal{F}_G, \widetilde{\beta})$ is given by \mathcal{O}_x -lattices $\mathcal{M} \subset \mathcal{M}_\pi \otimes F_x$ and $\mathcal{A} \subset \Omega^{-1} \otimes F_x$ such that $(\mathcal{M}, \mathcal{A})$ is a G-bundle over Spec \mathcal{O}_x . Note that

$$\left\langle \mu,\check{\rho}\right\rangle =\frac{1}{2}(3\mathfrak{a}_{1}+\mathfrak{a}_{2}). \tag{3.44}$$

(1) The nonsplit case.

Step 1. Acting by $R_{\pi}(F_x)$, we may assume that $(\mathcal{M}, \mathcal{A})$ has the standard form $\mathcal{M} = L_2 \oplus (L_2^* \otimes \mathcal{A})$, where $\mathcal{A} = \Omega^{-1}((\mathfrak{a}_1 - \mathfrak{a}_2)x) \otimes \mathfrak{O}_x$ and $L_2 = \mathfrak{O}_x \oplus \mathfrak{O}_x t^{\mathfrak{a}_2 + 1/2} \subset \widetilde{F}_x$; here $t \in \mathfrak{O}_x$ is a local parameter [6, Section 8.1].

Any k-point of $S^0_{R_{\pi}}$ is given by a collection $(a \in \mathbb{Z}, L'_2 \subset \mathcal{M}', \mathcal{A}')$, where $\mathcal{M}' \subset \mathcal{M}_{\pi} \otimes F_x$ is an \mathcal{O}_x -lattice, $\mathcal{A}' = \Omega^{-1}(-ax) \otimes \mathcal{O}_x$, and $L'_2 = \widetilde{\mathcal{O}}_x(-a\widetilde{x}) = \mathcal{M}' \cap (L_{\pi} \otimes F_x)$. Here $\pi(\widetilde{x}) = x$ and L'_2 is viewed as an \mathcal{O}_x -module, so

$$L'_{2} = t^{\alpha/2} \mathcal{O}_{\mathbf{x}} \oplus t^{(\alpha+1)/2} \mathcal{O}_{\mathbf{x}}.$$
(3.45)

Set $\mathcal{W} = \operatorname{Ker}(\wedge^2 \mathcal{M} \to \mathcal{A})$ and $\mathcal{W}' = \operatorname{Ker}(\wedge^2 \mathcal{M}' \to \mathcal{A}')$.

The condition that $(\mathcal{F}'_G,\beta) = (\mathcal{M}',\mathcal{A}')$ lies in $\overline{Gr}^{\lambda}_{G,x}(\mathcal{F}_G)$ implies that $\mathcal{A}' \xrightarrow{\sim} \mathcal{A}(-\langle \lambda, \check{\omega}_0 \rangle x)$, hence

$$\mathbf{a} = \langle \lambda, \check{\omega}_0 \rangle - (\mathbf{a}_1 - \mathbf{a}_2). \tag{3.46}$$

It also implies that

$$\mathfrak{M}\big(-\langle\lambda,\check{\omega}_1\rangle x\big)\subset \mathfrak{M}',\tag{3.47}$$

$$\mathcal{W}(-\langle \lambda, \check{\omega}_2 \rangle \mathbf{x}) \subset \mathcal{W}'.$$
 (3.48)

The inclusion (3.47) fits into a commutative diagram

This yields an inclusion $L_2^* \subset L_2'^*(\langle \lambda, \check{\omega}_1 - \check{\omega}_0 \rangle)$, which implies $\langle \lambda, 2\check{\omega}_1 - \check{\omega}_0 \rangle \geq a_1 + a_2$. Note that $2\check{\omega}_1 - \check{\omega}_0 = \check{\beta}_{12} + \check{\alpha}_{12}$.

Further, the inclusion (3.48) shows that $(\wedge^2 L_2^*) \otimes \mathcal{A}^2(-\langle \lambda, \check{\omega}_2 \rangle x) \subset (\wedge^2 {L'}_2^*) \otimes \mathcal{A'}^2$, that is,

$$\langle \lambda, \check{\omega}_2 - \check{\omega}_0 \rangle \ge a_1.$$
 (3.50)

Since $\check{\omega}_2 - \check{\omega}_0 = \check{\beta}_{12}$, we get $\mu \leq i(\lambda)$.

Step 2. The above M-torsor (L'_2, \mathcal{A}') is in a position ν with respect to (L_2, \mathcal{A}) , where $\nu \in \Lambda^+_M$ is a dominant coweight for M that we are going to determine.

$$\begin{split} \text{Clearly, } \langle \nu-\lambda, \check{\omega}_0\rangle &= 0. \text{ Further, } (\wedge^2 L_2)(-\langle \nu, \check{\omega}_2\rangle x) \widetilde{\to} \wedge^2 L_2', \text{ so } \mathfrak{a}_1 = \langle \nu, \check{\omega}_0 - \check{\omega}_2\rangle. \\ \text{From } L_2(-\langle \nu, \check{\omega}_1\rangle x) \subset L_2' \text{ we get} \end{split}$$

$$\left\langle \nu, \check{\omega}_{1} \right\rangle = \begin{cases} \frac{a}{2}, & \text{a is even,} \\ \frac{a+1}{2}, & \text{a is odd.} \end{cases}$$
(3.51)

Now (3.39) identifies with the fibre of (3.42) over $(L'_2, \mathcal{A}') \in Gr^{\nu}_{\mathcal{M}, x}(\mathfrak{F}_{\mathcal{M}})$. Here the M-torsor $\mathfrak{F}_{\mathcal{M}}$ is given by (L_2, \mathcal{A}) .

By Remark 3.9, for a even, there exists a unique $\lambda' \in \Lambda^+$ with $\lambda' \leq \lambda$ such that $\mu = i(\lambda')$. In this case the above formulas imply $\nu = w_0^M w_0(\lambda')$.

If $\mu = i(\lambda)$, then $a = \langle \lambda, \check{\omega}_0 - \check{\beta}_{22} \rangle$ is even, because $\check{\omega}_0 - \check{\beta}_{22}$ is divisible by 2 in $\check{\Lambda}$. For $\mu = i(\lambda)$ we get $\nu = w_0^M w_0(\lambda)$.

Let us show that $\langle \mu, \check{\rho} \rangle + \langle \nu, \check{\rho} - 2\check{\rho}_{\mathcal{M}} \rangle \leq 0$. Indeed, since $2\check{\omega}_1 - \check{\omega}_2 = \check{\alpha}_{12}$, we get

$$\left\langle \nu, \check{\alpha}_{12} \right\rangle = \begin{cases} a_2, & \text{a is even,} \\ a_2 + 1, & \text{a is odd,} \end{cases}$$
(3.52)

and $\langle \nu, \check{\alpha}_{12} + \check{\beta}_{22} \rangle = -\alpha_1$. We have $\check{\rho} - 2\check{\rho}_M = \check{\alpha}_{12} + (3/2)\check{\beta}_{22}$ and $\check{\rho} = 2\check{\alpha}_{12} + (3/2)\check{\beta}_{22}$. So,

$$\left\langle \nu, \check{\rho} - 2\check{\rho}_{M} \right\rangle = \begin{cases} \frac{1}{2} \left(-3a_{1} - a_{2} \right), & \text{a is even,} \\ \frac{1}{2} \left(-3a_{1} - a_{2} - 1 \right), & \text{a is odd.} \end{cases}$$
(3.53)

The desired inequality follows now from (3.44), and it is an equality if and only if a is even, that is, $i(\lambda) - \mu$ vanishes in $\pi_1(G_{ad})$. Our assertion follows now from Proposition 3.13.

(2) The split case.

Step 1. Acting by $R_{\pi}(F_x)$, we may assume that $(\mathcal{M}, \mathcal{A})$ has the following standard form $\mathcal{M} = L_2 \oplus L_2^* \otimes \mathcal{A}$, where

$$L_2 = \mathcal{O}_x t^{\mathfrak{a}_2} e_1 \oplus \mathcal{O}_x (e_1 + e_2) \tag{3.54}$$

and $\mathcal{A} = \Omega^{-1}((\mathfrak{a}_1 - \mathfrak{a}_2)x) \otimes \mathfrak{O}_x$. Here $\{e_i\}$ is a base of $\widetilde{\mathfrak{O}}_x$ over \mathfrak{O}_x consisting of isotropic vectors [6, Section 8.1].

Any k-point of $S^0_{R_{\pi}}$ is given by a collection $(b_1, b_2 \in \mathbb{Z}, L'_2 \subset \mathcal{M}', \mathcal{A}')$, where $\mathcal{M}' \subset \mathcal{M}_{\pi} \otimes F_x$ is an \mathcal{O}_x -lattice, $\mathcal{A}' = \Omega^{-1}(-(b_1 + b_2)x) \otimes \mathcal{O}_x$, and

$$L_{2}^{\prime} = \widetilde{\mathfrak{O}}_{x} \left(-b_{1} \widetilde{x}_{1} - b_{2} \widetilde{x}_{2} \right) = \mathcal{M}^{\prime} \cap \left(L_{\pi} \otimes F_{x} \right).$$

$$(3.55)$$

Here $\pi^{-1}(x)=\{\widetilde{x}_1,\widetilde{x}_2\}$ and L_2' is viewed as an $\mathfrak{O}_x\text{-module},$ so

$$\mathbf{L}_{2}^{\prime} = \mathcal{O}_{\mathbf{x}} \mathbf{t}^{\mathbf{b}_{1}} \mathbf{e}_{1} \oplus \mathcal{O}_{\mathbf{x}} \mathbf{t}^{\mathbf{b}_{2}} \mathbf{e}_{2}. \tag{3.56}$$

 $\text{If} \ (\mathfrak{F}_G',\beta) = (\mathfrak{M}',\mathcal{A}') \ \text{lies in} \ \overline{\text{Gr}}^{\lambda}_{G,\kappa}(\mathfrak{F}_G), \ \text{then} \ \mathcal{A}' \widetilde{\to} \mathcal{A}(-\langle \lambda,\check{\omega}_0\rangle x), \ \text{so} \\$

$$\mathbf{b}_1 + \mathbf{b}_2 = \left\langle \lambda, \check{w}_0 \right\rangle - a_1 + a_2. \tag{3.57}$$

As in the nonsplit case, the inclusion $L_2'(-\langle\lambda,\check\omega_1-\check\omega_0\rangle x)\subset L_2$ yields

$$b_{i} + \langle \lambda, \check{\omega}_{1} - \check{\omega}_{0} \rangle \ge a_{2}$$

$$(3.58)$$

for i = 1, 2. This implies $\langle \lambda, 2\check{\omega}_1 - \check{\omega}_0 \rangle \ge a_1 + a_2$. As in the nonsplit case, $(\wedge^2 L'_2)(\langle \lambda, 2\check{\omega}_0 - \check{\omega}_2 \rangle x) \subset \wedge^2 L_2$ implies $\langle \lambda, \check{\omega}_2 - \check{\omega}_0 \rangle \ge a_1$. We have shown that $\mu \le i(\lambda)$.

Step 2. Let us determine $\nu \in \Lambda_M^+$ such that $(L'_2, \mathcal{A}') \in Gr_{\mathcal{M}, x}^{\nu}(\mathcal{F}_M)$. Here \mathcal{F}_M is given by (L_2, \mathcal{A}) .

As in the nonsplit case, $\langle \nu - \lambda, \check{\omega}_0 \rangle = 0$ and $(\wedge^2 L_2)(-\langle \nu, \check{\omega}_2 \rangle x) \xrightarrow{\sim} \wedge^2 L'_2$. So, $a_1 = \langle \nu, \check{\omega}_0 - \check{\omega}_2 \rangle$. From $L_2(-\langle \nu, \check{\omega}_1 \rangle x) \subset L'_2$ we get

$$\langle \boldsymbol{\nu}, \check{\boldsymbol{\omega}}_1 \rangle = \max \{ \boldsymbol{b}_1, \boldsymbol{b}_2 \}. \tag{3.59}$$

In particular, for $\mu = i(\lambda)$ we get from (3.57) and (3.58)

$$\begin{split} b_{1} + b_{2} &= \left\langle \lambda, \check{\omega}_{0} - \check{\beta}_{22} \right\rangle, \\ b_{i} &\geq \left\langle \lambda, \check{\alpha}_{12} - \check{\omega}_{1} + \check{\omega}_{0} \right\rangle. \end{split} \tag{3.60}$$

But $2(\check{\alpha}_{12} - \check{\omega}_1 + \check{\omega}_0) = \check{\omega}_0 - \check{\beta}_{22}$, so in this case $b_i = \langle \lambda, \check{\alpha}_{12} - \check{\omega}_1 + \check{\omega}_0 \rangle$ for i = 1, 2. It easily follows that for $\mu = i(\lambda)$ we get $\nu = w_0^M w_0(\lambda)$.

As in the nonsplit case, it remains to show that $\langle \mu, \check{\rho} \rangle + \langle \nu, \check{\rho} - 2\check{\rho}_{\mathcal{M}} \rangle \leq 0$. We have $\langle \nu, \check{\alpha}_{12} + \check{\beta}_{22} \rangle = -a_1$ and $\langle \nu, \check{\alpha}_{12} \rangle = 2 \max\{b_i\} - \langle \lambda, \check{\omega}_0 \rangle + a_1$. So,

$$\langle \mathbf{v}, \check{\rho} - 2\check{\rho}_{\mathsf{M}} \rangle = -2\mathfrak{a}_{1} - \max\left\{ \mathfrak{b}_{\mathfrak{i}} \right\} + \frac{1}{2} \langle \lambda, \check{\omega}_{\mathfrak{0}} \rangle.$$
 (3.61)

The desired inequality follows now from (3.44), because max{ b_i } $\geq (1/2)(a_2 - a_1 + \langle \lambda, \check{\omega}_0 \rangle) = (1/2)(b_1 + b_2)$. It is an equality if and only if $b_1 = b_2$, and this implies that $2b_i = \langle \lambda, \check{\omega}_0 \rangle - (a_1 - a_2)$ is even.

If $b_1 = b_2$, then, as in the nonsplit case, we get $\langle \nu, \check{\alpha}_{12} \rangle = a_2$, so that $\nu = w_0^M w_0(\lambda')$ for $\lambda' \in \Lambda^+$ such that $\lambda' \leq \lambda$ and $i(\lambda') = \mu$.

Remark 3.14. Write $\check{B} \subset \check{G}$ for the dual Borel subgroup in \check{G} . The set of double-cosets $\check{M} \setminus \check{G} / \check{B}$ is finite, that is, $\check{M} \subset \check{G}$ is a Gelfand pair. So, for any character $\nu \in \Lambda$ with $\langle \nu, \check{\alpha}_{12} \rangle = 0$ and any $\lambda \in \Lambda^+$, the space $\operatorname{Hom}_{\check{M}}(U^{\nu}, V^{\lambda})$ is at most 1-dimensional [9, Theorem 1]. This implies that for $\lambda', \lambda \in \Lambda^+$ with $\lambda' \leq \lambda$ and $\langle \lambda', \check{\alpha}_{12} \rangle = 0$ for $\mu = i(\lambda')$, the scheme (3.39) is irreducible.

Remark 3.15. Let \mathfrak{F}_G be a G-torsor on D_x . For a k-point (\mathfrak{F}'_G,β) of $Gr_{G,x}(\mathfrak{F}_G)$ we have $(\mathfrak{F}'_G,\beta) \in \overline{Gr}^{\lambda}_{G,x}(\mathfrak{F}_G)$ if and only if

$$V_{\mathcal{F}'_{G}}^{\check{\omega}_{i}} \subset V_{\mathcal{F}_{G}}^{\check{\omega}_{i}} \left(\left\langle \lambda, -w_{0} \left(\check{\omega}_{i} \right) \right\rangle x \right)$$

$$(3.62)$$

for i = 0, 1, 2, and for i = 0, this is an isomorphism.

3.11 End of the proof

Recall the map $\chi_{\pi} : R_{\pi} \to \Omega \times T_{\pi}$ (cf. Section 3.5). Write $\chi_{\pi,x} : R_{\pi}(F_x) \to \mathbb{A}^1 \times \text{Pic} \widetilde{X}$ for the composition

$$R_{\pi}(F_{x}) \xrightarrow{\chi_{\pi}} \Omega(F_{x}) \times T_{\pi}(F_{x}) \xrightarrow{\sim} \Omega(F_{x}) \times \widetilde{F}_{x}^{*} \xrightarrow{\operatorname{Res} \times \tau_{x}} \mathbb{A}^{1} \times \operatorname{Pic} \widetilde{X},$$
(3.63)

where τ_x is the natural map $\widetilde{F}_x^* \to \widetilde{F}_x^* / \widetilde{\mathfrak{O}}_x^* \to \operatorname{Pic} \widetilde{X}$. It is easy to see that for $\mu \in \Lambda_{\mathcal{B}}^+$ there exists an $(R_{\pi}(F_x), \chi_{\pi,x})$ -equivariant map $\chi^{\mu} : S_{R_{\pi}}^{\mu} \to \mathbb{A}^1 \times \operatorname{Pic} \widetilde{X}$, and such a map is unique up to an additive constant (with respect to the structure of an abelian group on $\mathbb{A}^1 \times \operatorname{Pic} \widetilde{X}$).

We need the following analog of [3, Proposition 7.1.7].

Lemma 3.16. Let $\lambda, \lambda' \in \Lambda^+$ with $\lambda' < \lambda$. Set $\mu = i(\lambda')$. Let $(\mathfrak{F}_G, \widetilde{\beta})$ be a k-point of $S^{\mu}_{R_{\pi}}$. Let $\chi^0: S^0_{R_{\pi}} \to \mathbb{A}^1 \times \text{Pic} \widetilde{X}$ be an $(R_{\pi}(F_x), \chi_{\pi, x})$ -equivariant map. Then the composition

$$\operatorname{Gr}_{G,x}^{\lambda}(\mathcal{F}_G) \cap S_{R_{\pi}}^{0} \xrightarrow{\chi^{0}} \mathbb{A}^{1} \times \operatorname{Pic} \widetilde{X} \xrightarrow{\operatorname{pr}_{1}} \mathbb{A}^{1}$$

$$(3.64)$$

maps each irreducible component of (3.39) of dimension $\langle \lambda, \check{\rho} \rangle - \langle \mu, \check{\rho} \rangle$ dominantly to \mathbb{A}^1 .

Proof. We may assume that $(\mathfrak{F}_G, \widetilde{\beta})$ is given by the pair $(\mathfrak{M}, \mathcal{A})$ in its standard form as in the proof of Proposition 3.11; in particular, it is reduced to a M-torsor. Write $\mu = (\mathfrak{a}_1, \mathfrak{a}_2)$. Set $\nu = w_0^M w_0(\lambda')$.

Let $z \in \mathbb{G}_m$ act on L_{π} as a multiplication by z and trivially on Ω^{-1} . The corresponding action of \mathbb{G}_m on $\mathcal{M}_{\pi} = L_{\pi} \oplus L_{\pi}^* \otimes \Omega^{-1}$ defines a map $\mathbb{G}_m \to \mathcal{G}_{\pi}$ whose image lies

in the center of P_{π}/U_{π} . The corresponding action of $\mathbb{G}_{\mathfrak{m}}(\mathfrak{O}_{\mathbf{x}}) = \mathfrak{O}_{\mathbf{x}}^*$ on $Gr_{G_{\pi},\mathbf{x}}$ fixes $(\mathfrak{F}_G,\widetilde{\beta})$ and preserves the scheme (3.39).

The dimension estimates in Proposition 3.11 also show that the irreducible components of dimension $\langle \lambda,\check{\rho}\rangle - \langle \mu,\check{\rho}\rangle$ of the schemes $Gr^{\lambda}_{G,x}(\mathfrak{F}_G)\cap S^0_{R_{\pi}}$ and $\overline{Gr}^{\lambda}_{G,x}(\mathfrak{F}_G)\cap S^0_{R_{\pi}}$ are the same. We are going to describe the latter scheme explicitly.

(1) The split case. We have $\mathcal{M} = L_2 \oplus L_2^* \otimes \mathcal{A}$ with $L_2 = \mathcal{O}_x t^{\alpha_2} e_1 \oplus \mathcal{O}_x (e_1 + e_2)$ and $\mathcal{A} = \Omega^{-1}((a_1 - a_2)x) \otimes \mathcal{O}_x$, where $\{e_i\}$ is a base of $\widetilde{\mathcal{O}}_x$ over \mathcal{O}_x consisting of isotropic vectors, and $t \in \mathcal{O}_x$ is a local parameter. Let \mathcal{F}_M be the M-torsor on Spec \mathcal{O}_x given by (L_2, \mathcal{A}) .

Set $b = (1/2)(a_2 - a_1 + \langle \lambda, \check{w}_0 \rangle)$. Consider the k-point of $Gr_{M,x}(\mathcal{F}_M)$ given by (L'_2, \mathcal{A}') with $\mathcal{A}' = \Omega^{-1}(-2bx) \otimes \mathcal{O}_x$ and $L'_2 = \widetilde{\mathcal{O}}_x(-b\widetilde{x}_1 - b\widetilde{x}_2)$, where $\pi^{-1}(x) = \{\widetilde{x}_1, \widetilde{x}_2\}$. Under our assumptions the scheme (3.38) identifies with the fibre, say Y, of

$$\mathfrak{t}_{P}^{\gamma}: S^{\gamma}(\mathfrak{F}_{P}) \cap \overline{\mathrm{Gr}}_{G,x}^{\lambda}(\mathfrak{F}_{G}) \longrightarrow \mathrm{Gr}_{M,x}^{\gamma}(\mathfrak{F}_{M})$$
(3.65)

over (L'_2, \mathcal{A}') . In matrix terms, Y is the scheme of those $u \in Gr_{U,x}$ for which $gu \in \overline{Gr}_{G,x}^{\lambda}$. Here

$$g = \begin{pmatrix} t^{b-a_2} & -t^{b-a_2} & 0 & 0 \\ 0 & t^b & 0 & 0 \\ 0 & 0 & t^{a_1+b} & 0 \\ 0 & 0 & t^{a_1-a_2+b} & t^{a_1-a_2+b} \end{pmatrix}.$$
 (3.66)

Write

$$u = \begin{pmatrix} 1 & 0 & u_1 & u_2 \\ 0 & 1 & u_2 & u_3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
(3.67)

with $u_i\in \Omega(F_x)/\Omega({\mathbb O}_x).$ By Remark 3.15, Y inside of $Gr_{U,x}$ is given by the equations

$$\begin{split} u_{i} &\in t^{-b + \langle \lambda, w_{0}(\check{w}_{1}) \rangle} \Omega(\mathcal{O}_{x}), \\ u_{i} &- u_{j} \in t^{\alpha} \Omega(\mathcal{O}_{x}), \\ u_{1} u_{3} &- u_{2}^{2} \in t^{\delta} \Omega^{\otimes 2}(\mathcal{O}_{x}), \\ u_{i} &\in t^{\delta} \Omega(\mathcal{O}_{x}), \end{split}$$
(3.68)

where we have set for brevity $\delta = -2b + a_2 + \langle \lambda, w_0(\check{w}_2) \rangle$ and $\alpha = -b + a_2 + \langle \lambda, w_0(\check{w}_1) \rangle$.

We may assume that (3.64) sends (3.67) to Res u_2 . Let $Y' \subset Y$ be the closed subscheme given by $u_2=0$. The above \mathbb{O}_x^* -action on Y multiplies each u_i in (3.67) by the same scalar. So, it suffices to show that $\dim Y' < \langle \lambda, \check{\rho} \rangle - \langle \mu, \check{\rho} \rangle$.

The scheme Y^\prime is contained in the scheme of pairs

$$\left\{ u_1, u_3 \in t^{\delta} \Omega(\mathfrak{O}_x) / \Omega(\mathfrak{O}_x) \mid u_1 u_3 \in t^{\delta} \Omega(\mathfrak{O}_x) / \Omega(\mathfrak{O}_x) \right\}.$$

$$(3.69)$$

The dimension of the latter scheme is at most $-\delta$. We have $-\delta \leq \langle \lambda, \check{\rho} \rangle - \langle \mu, \check{\rho} \rangle$, and the equality holds if and only if $\alpha = 0$. But if $\alpha = 0$, then Y' is a point scheme. Since $\langle \lambda, \check{\rho} \rangle - \langle \mu, \check{\rho} \rangle$ is strictly positive, we are done.

(2) The nonsplit case. We have $\mathcal{M} = L_2 \oplus L_2^* \otimes \mathcal{A}$ with $L_2 \widetilde{\rightarrow} \mathcal{O}_x \oplus \mathcal{O}_x t^{\alpha_2 + (1/2)}$ and $\mathcal{A} \widetilde{\rightarrow} \Omega^{-1}$ $((\alpha_1 - \alpha_2)x) \otimes \mathcal{O}_x$, where $t \in \mathcal{O}_x$ is a local parameter. Let \mathcal{F}_M be the M-torsor on Spec \mathcal{O}_x given by (L_2, \mathcal{A}) .

Set $L'_2 = t^{\alpha/2} \mathfrak{O}_x \oplus t^{(\alpha+1)/2} \mathfrak{O}_x$ and $\mathcal{A}' = \Omega^{-1}(-ax) \otimes \mathfrak{O}_x$ with $a = \langle \lambda, \check{\omega}_0 \rangle - a_1 + a_2$ and recall that a is even. The scheme (3.38) identifies with the fibre, say Y, of (3.65) over (L'_2, \mathcal{A}') .

Consider the base $\{1, t^{1/2}\}$ in $L_{\pi} \otimes O_x$ and the dual base in $L_{\pi}^* \otimes O_x$. Then in matrix terms, Y becomes the scheme of those $u \in Gr_{U,x}$ for which $gu \in \overline{Gr}_{G,x}^{\lambda}$. Here $g = t^{\alpha/2} diag(1, t^{-\alpha_2}, t^{\alpha_1-\alpha_2}, t^{\alpha_1})$. For $u \in Gr_{U,x}$ written as in (3.67), the scheme Y is given by the equations

$$\begin{split} &u_{1} \in t^{-(\alpha/2)+\langle\lambda,w_{0}(\check{w}_{1})\rangle}\Omega(\mathfrak{O}_{x}), \\ &u_{2}, u_{3} \in t^{\alpha}\Omega(\mathfrak{O}_{x}), \\ &u_{1}u_{3}-u_{2}^{2} \in t^{\delta}\Omega^{\otimes 2}(\mathfrak{O}_{x}), \\ &u_{i} \in t^{\delta}\Omega(\mathfrak{O}_{x}), \end{split}$$
(3.70)

where we have set $\alpha = a_2 - (a/2) + \langle \lambda, w_0(\check{\omega}_1) \rangle$ and $\delta = a_2 - a + \langle \lambda, w_0(\check{\omega}_2) \rangle$.

We may assume that (3.64) sends (3.67) to Res $(u_1 - tu_3)$. Let $Y' \subset Y$ be the closed subscheme given by $u_1 = tu_3$. Since we have an action of \mathcal{O}^*_x , it suffices to show that dim $Y' < \langle \lambda, \check{\rho} \rangle - \langle \mu, \check{\rho} \rangle$.

The scheme Y' is contained in the scheme

$$\big\{u_2, u_3 \in t^{\delta}\Omega\big(\mathfrak{O}_x\big)/\Omega\big(\mathfrak{O}_x\big) \mid tu_3^2 - u_2^2 \in t^{\delta}\Omega^{\otimes 2}\big(\mathfrak{O}_x\big)\big\}. \tag{3.71}$$

The latter scheme is included into Y" given by

$$Y'' = \begin{cases} \{u_2, u_3 \in t^{\delta/2}\Omega(\mathfrak{O}_x)/\Omega(\mathfrak{O}_x)\}, & \text{for } \delta \text{ even}, \\ \{u_2 \in t^{(1+\delta)/2}\Omega(\mathfrak{O}_x)/\Omega(\mathfrak{O}_x), u_3 \in t^{(\delta-1)/2}\Omega(\mathfrak{O}_x)/\Omega(\mathfrak{O}_x)\}, & \text{for } \delta \text{ odd}. \end{cases}$$

$$(3.72)$$

This implies dim $Y' \leq \dim Y'' \leq -\delta$. As in the split case, $-\delta \leq \langle \lambda, \check{\rho} \rangle - \langle \mu, \check{\rho} \rangle$ and the equality implies $\alpha = 0$. But for $\alpha = 0$ we get $Y' \xrightarrow{\sim}$ Spec k. This concludes the proof.

Proof of Theorem 3.10. (2) Let $\mathfrak{q}_{\omega} : {}_{x,\infty}\overline{\operatorname{Bun}}_{R_{\pi}} \xrightarrow{\rightarrow}_{x,\infty} \overline{\operatorname{Bun}}_{R_{\pi}}$ denote the isomorphism sending $(\mathfrak{M}, \mathcal{A}, \kappa_1, \kappa_2)$ to

$$\left(\mathfrak{M}(\mathbf{x}), \mathcal{A}(2\mathbf{x}), \kappa_1, \kappa_2\right). \tag{3.73}$$

It preserves the stratification of $_{x,\infty}\overline{\text{Bun}}_{R_{\pi}}$ by $_{D}\text{Bun}_{R_{\pi}}$ introduced in Section 3.4, and we have a commutative diagram

$$\begin{array}{c} {}_{x,\mu}\operatorname{Bun}_{R_{\pi}} \xrightarrow{\mathfrak{q}_{\omega}} {}_{x,\mu}\operatorname{Bun}_{R_{\pi}} \\ & \downarrow_{ev^{\mu}} & \downarrow_{ev^{\mu}} \\ \mathbb{A}^{1} \times \operatorname{Pic} \widetilde{X} \xrightarrow{\operatorname{id} \times \widetilde{\mathfrak{q}}_{\omega}} \mathbb{A}^{1} \times \operatorname{Pic} \widetilde{X} \end{array}$$

$$(3.74)$$

where $\tilde{\mathfrak{q}}_{\omega}$ sends \mathcal{B}_{ex} to $\mathcal{B}_{ex}(2\tilde{x})$ (resp., to $\mathcal{B}_{ex}(\tilde{x}_1 + \tilde{x}_2)$) in the nonsplit (resp., split) case. Our assertion follows from the automorphic property of $A\tilde{E}$.

(1) We change the notation replacing λ by $-w_0(\lambda)$. In other words, we will establish a canonical isomorphism $H(\mathcal{A}_{-w_0(\lambda)}, \mathcal{B}^0) \xrightarrow{\sim} \mathcal{B}^{i(\lambda)} \otimes \mathcal{N}$ with

$$\mathcal{N} \xrightarrow{\longrightarrow} \begin{cases} \left(\widetilde{\mathsf{E}}_{\widetilde{\mathsf{x}}}\right)^{\otimes \langle \lambda, 2\check{\mathsf{v}} \rangle}, & \text{the nonsplit case }, \pi(\widetilde{\mathsf{x}}) = \mathsf{x}, \\ \left(\widetilde{\mathsf{E}}_{\widetilde{\mathsf{x}}_1} \otimes \widetilde{\mathsf{E}}_{\widetilde{\mathsf{x}}_2}\right)^{\otimes \langle \lambda, \check{\mathsf{v}} \rangle}, & \text{the split case }, \pi^{-1}(\mathsf{x}) = \{\widetilde{\mathsf{x}}_1, \widetilde{\mathsf{x}}_2\}. \end{cases}$$
(3.75)

Denote by \widetilde{K}_{μ} (resp., by K_{μ} , $_{D}K$) the *-restriction of $H(\mathcal{A}_{-w_{0}(\lambda)}, \mathcal{B}^{0})$ to $_{x,\mu}\widetilde{Bun}_{R_{\pi}}$ (resp., to $_{x,\mu}Bun_{R_{\pi}}$, $_{D}Bun_{R_{\pi}}$). Here D is $\Lambda_{\mathcal{B}}$ -valued divisor on X as in Section 3.4.

By Section 2.3, we know that each perverse cohomology sheaf of $_DK$ is \mathcal{L} -equivariant. So, $_DK = 0$ unless $D = \mu x$ with μ relevant. In particular, \widetilde{K}_{μ} is the extension by zero under $_{x,\mu} \operatorname{Bun}_{R_{\pi}} \hookrightarrow _{x,\mu} \widetilde{\operatorname{Bun}}_{R_{\pi}}$.

Since \mathcal{B}^0 is self-dual (up to replacing \tilde{E} by \tilde{E}^* and ψ by ψ^{-1}), our assertion is reduced to the following lemma.

Lemma 3.17. One has $\widetilde{K}_{\mu} = 0$ unless $\mu \leq i(\lambda)$. The complex \widetilde{K}_{μ} lives in nonpositive (resp., strictly negative) perverse degrees for $\mu = i(\lambda)$ (resp., for $\mu < i(\lambda)$). One has canonically

$$\mathsf{K}_{\mathfrak{i}(\lambda)} \xrightarrow{\sim} \left(ev^{\mathfrak{i}(\lambda)} \right)^* \left(\mathcal{L}_{\psi} \boxtimes \mathsf{A}\widetilde{\mathsf{E}} \right) \otimes \mathfrak{N} \otimes \bar{\mathbb{Q}}_{\ell}[1] \left(\frac{1}{2} \right)^{\otimes \dim_{\mathfrak{x},\mathfrak{i}(\lambda)} \mathsf{Bun}_{\mathsf{R}_{\pi}}}. \tag{3.76}$$

Proof. Write $_x\overline{\mathcal{H}}_G^{\lambda}$ for the substack of $_x\mathcal{H}_G$ that under the projection $\mathfrak{q}_G: _x\mathcal{H}_G \to Bun_G$ identifies with

$$\operatorname{Bun}_{G}^{x} \times_{G(\mathcal{O}_{x})} \overline{\operatorname{Gr}}_{G,x}^{\lambda} \longrightarrow \operatorname{Bun}_{G}.$$

$$(3.77)$$

For the diagram

$$_{x,\infty}\overline{\operatorname{Bun}}_{\mathsf{R}_{\pi}} \xleftarrow{\mathfrak{p}_{\mathsf{R}}}{}_{x,\infty}\overline{\operatorname{Bun}}_{\mathsf{R}_{\pi}} \times_{\operatorname{Bun}_{\mathsf{G}}} {}_{x}\overline{\mathcal{H}}_{\mathsf{G}}^{-w_{0}(\lambda)} \xrightarrow{\mathfrak{q}_{\mathsf{R}}}{}_{x,\infty}\overline{\operatorname{Bun}}_{\mathsf{R}_{\pi}},$$
(3.78)

we have

$$H\left(\mathcal{A}_{-w_{\mathfrak{o}}(\lambda)},\cdot\right) = \left(\mathfrak{p}_{\mathsf{R}}\right)_{!} \left(\mathfrak{q}_{\mathsf{R}}^{*}(\cdot) \widetilde{\boxtimes} \mathcal{A}_{-w_{\mathfrak{o}}(\lambda)}\right).$$

$$(3.79)$$

Let $\mu = (a_1, a_2) \in \Lambda_{\mathcal{B}}^+$. Pick a k-point $\eta \in {}_{x,\mu} \operatorname{Bun}_{R_{\pi}}$ given by the following collection: a line bundle \mathcal{B}_{ex} on \widetilde{X} , for which we set $L_{ex} = \pi_* \mathcal{B}_{ex}$, a modification $L_2 \subset L_{ex}$ of rank-2 vector bundles on X such that the composition is surjective:

$$\operatorname{Sym}^{2} L_{2} \longrightarrow \operatorname{Sym}^{2} L_{ex} \longrightarrow (\mathcal{E} \otimes \det L_{ex})(D_{\pi}), \tag{3.80}$$

and $a_2 x = div(L_{ex}/L_2)$, and an exact sequence

$$0 \longrightarrow \operatorname{Sym}^2 L_2 \longrightarrow ? \longrightarrow \mathcal{A} \longrightarrow 0 \tag{3.81}$$

on X, where we have set $\mathcal{A} = (\Omega^{-1} \otimes \mathcal{E} \otimes det L_2)(D_{\pi} + \mathfrak{a}_1 x).$

The fibre of

$$\mathfrak{p}_{\mathsf{R}}: {}_{\mathbf{x},\infty}\overline{\mathrm{Bun}}_{\mathsf{R}_{\pi}} \times_{\mathrm{Bun}_{\mathsf{G}}} {}_{\mathbf{x}}\overline{\mathcal{H}}_{\mathsf{G}}^{-w_{0}(\lambda)} \longrightarrow {}_{\mathbf{x},\infty}\overline{\mathrm{Bun}}_{\mathsf{R}_{\pi}}$$
(3.82)

over η identifies with $\overline{Gr}^{\lambda}_{G,x}(\mathfrak{F}_G)$, where $\mathfrak{F}_G = (\mathfrak{M}, \mathcal{A}) \in Bun_G$ is given by the P-torsor (3.81).

Fix a trivialization $\mathcal{B}_{ex} \otimes \widetilde{\mathcal{O}}_x \xrightarrow{\sim} \widetilde{\mathcal{O}}_x$ and a splitting of (3.81) over Spec \mathcal{O}_x . They yield isomorphisms $\mathcal{M} \xrightarrow{\sim} (L_2 \oplus L_2^* \otimes \mathcal{A}) \mid_{\text{Spec } \mathcal{O}_x}$ and $\mathcal{A} \xrightarrow{\sim} \Omega^{-1}((a_1 - a_2)x) \mid_{\text{Spec } \mathcal{O}_x}$. So, the pair

$$\begin{split} &\mathcal{M} \otimes \mathcal{O}_{\mathbf{x}} \subset \mathcal{M}_{\pi} \otimes \mathsf{F}_{\mathbf{x}}, \\ &\mathcal{A} \otimes \mathcal{O}_{\mathbf{x}} \subset \Omega^{-1} \otimes \mathsf{F}_{\mathbf{x}} \end{split}$$
 (3.83)

becomes a point of $\operatorname{Gr}_{G_{\pi},\chi}$ lying in $S_{R_{\pi}}^{\mu}$.

Recall that \mathcal{B}^0 is clean with respect to the open immersion $_{x,0} \operatorname{Bun}_{R_{\pi}} \subset _{x,0} \operatorname{Bun}_{R_{\pi}}$. So, only the stratum (3.38) contributes to K_{μ} . By Proposition 3.11, $K_{\mu} = 0$ unless $\mu \leq i(\lambda)$.

Assume that $\mu \leq i(\lambda)$. Stratify (3.38) by locally closed subschemes $Gr_{G,x}^{\lambda'}(\mathcal{F}_G) \cap S_{R_{\pi}}^{0}$ with $\lambda' \leq \lambda$, where $\lambda' \in \Lambda^+$. The *-restriction of $\mathcal{A}_{-w_0(\lambda)}$ under

$$\operatorname{Gr}_{G,x}^{\lambda'}(\mathfrak{F}_{G}) \hookrightarrow \overline{\operatorname{Gr}}_{G,x}^{\lambda}(\mathfrak{F}_{G})$$

$$(3.84)$$

is a constant complex placed in usual degree $\leq -\dim Gr_{G,x}^{\lambda'}(\mathcal{F}_G) = -\langle \lambda', 2\check{\rho} \rangle$, the inequality is strict unless $\lambda' = \lambda$. From (3.32) and Proposition 3.11, we get

$$-\dim_{\mathbf{x},0}\operatorname{Bun}_{\mathsf{R}_{\pi}} - \langle \lambda', 2\check{\rho} \rangle + 2\dim\left(\operatorname{Gr}_{G,\mathbf{x}}^{\lambda'}\left(\mathfrak{F}_{G}\right) \cap S_{\mathsf{R}_{\pi}}^{0}\right) \leq -\dim_{\mathbf{x},\mu}\operatorname{Bun}_{\mathsf{R}_{\pi}}.$$
 (3.85)

So, K_{μ} is placed in perverse degrees ≤ 0 . If $\mu - i(\lambda)$ does not vanish in $\pi_1(G_{ad})$, then, by Proposition 3.11, K_{μ} is placed in strictly negative perverse degrees.

If $i(\lambda) - \mu$ vanishes in $\pi_1(G_{ad})$, let $\lambda' \in \Lambda^+$ be such that $\lambda' \leq \lambda$ and $\mu = i(\lambda')$. Then only the stratum (3.39) could contribute to the 0th perverse cohomology sheaf of K_{μ} . For $\mu < i(\lambda)$ it does not contribute, because the restriction of $\mathfrak{q}^*_R(\mathfrak{B}^0) \widetilde{\boxtimes} \mathcal{A}_{-w_0(\lambda)}$ to (3.39) is a nonconstant local system by Lemma 3.16.

If $\mu = i(\lambda)$, then (3.39) is a point scheme by Proposition 3.11, and the description of $K_{i(\lambda)}$ follows from the automorphic property of $A\tilde{E}$.

3.12 Properties of the Bessel category

For $\lambda \in \Lambda_{\mathcal{B}}^+$ the perverse sheaf \mathcal{B}^{λ} is not always the extension by zero from $_{x,\lambda} \operatorname{Bun}_{R_{\pi}}$. For example, take $\lambda = (1,1)$ and $\mu = (1,0)$. An easy calculation shows that, over $_{x,\lambda} \operatorname{Bun}_{R_{\pi}} \cup_{x,\mu} \operatorname{Bun}_{R_{\pi}}, \mathcal{B}^{\lambda}$ is a usual sheaf placed in cohomological degree $-\dim_{x,\lambda} \operatorname{Bun}_{R_{\pi}}$.

Now we can show that the category $P^{\mathcal{L}}(_{x,\infty}\overline{\operatorname{Bun}}_{R_{\pi}})$ is not semisimple. Recall the stack $_{x}^{\alpha_{1}}\overline{\operatorname{Bun}}_{R_{\pi}}$ (cf. Remark 3.7). Let $\lambda = (1,1)$ and $\mu = (1,0)$. We have a sequence of open embeddings

$$_{x,\lambda}\operatorname{Bun}_{\mathsf{R}_{\pi}} \stackrel{j}{\hookrightarrow} _{x,\lambda}^{1}\overline{\operatorname{Bun}}_{\mathsf{R}_{\pi}} \stackrel{j}{\hookrightarrow} _{x,\lambda}\overline{\operatorname{Bun}}_{\mathsf{R}_{\pi}}, \tag{3.86}$$

where j is obtained from the affine open embedding $W ald_{\pi}^{x,1} \hookrightarrow W ald_{\pi}^{x,\leq 1}$ by the base change

$${}^{1}_{x,\lambda}\overline{\operatorname{Bun}}_{\mathsf{R}_{\pi}}\longrightarrow \operatorname{Wald}_{\pi}^{x,\leq 1}.$$
(3.87)

 $\text{Set } \mathcal{B}^{\lambda,\mu} = \widetilde{\mathfrak{j}}_{!*}\mathfrak{j}_{!}(\mathcal{B}^{\lambda}\mid_{\mathtt{x},\lambda}\mathtt{Bun}_{\mathsf{R}_{\pi}}). \text{ We get an exact sequence in } P^{\mathcal{L}}(\mathtt{x},\infty}\overline{\mathtt{Bun}}_{\mathsf{R}_{\pi}}):$

$$0 \longrightarrow \mathsf{K} \longrightarrow \mathcal{B}^{\lambda,\mu} \longrightarrow \mathcal{B}^{\lambda} \longrightarrow 0. \tag{3.88}$$

If $P^{\mathcal{L}}(_{x,\infty}\overline{Bun}_{R_{\pi}})$ was semisimple, it would split; this contradicts the fact that the *-restriction of \mathcal{B}^{λ} to $_{x,\mu}Bun_{R_{\pi}}$ is not zero.

3.13 Geometric Casselman-Shalika formula

Recall that we write V^{μ} for the irreducible representation of \check{G} of highest weight μ . Let E be a \check{G} -local system on Spec k equipped with an isomorphism

$$V_{E}^{\omega} \longrightarrow \begin{cases} \widetilde{E}_{\widetilde{x}}^{\otimes 2}, & \text{the nonsplit case, } \pi(\widetilde{x}) = x, \\ \widetilde{E}_{\widetilde{x}_{1}} \otimes \widetilde{E}_{\widetilde{x}_{2}}, & \text{the split case, } \pi^{-1}(x) = \{\widetilde{x}_{1}, \widetilde{x}_{2}\}. \end{cases}$$
(3.89)

We assign to E the ind-object K_E of $P^{\mathcal{L}}(_{x,\infty}\overline{Bun}_{R_{\pi}})$ given by

$$\mathsf{K}_{\mathsf{E}} = \bigoplus_{\substack{\lambda \in \Lambda^{+} \\ \langle \lambda, \tilde{\mathbf{v}} \rangle = 0}} \mathcal{B}^{\mathfrak{i}(\lambda)} \otimes \left(\mathsf{V}^{\lambda}\right)_{\mathsf{E}}^{*},\tag{3.90}$$

where $\check{\nu} \in \check{\Lambda}$ is that of Theorem 3.10. For a representation V of \check{G} write \mathcal{A}_V for the object of $Sph(Gr_{G,x})$ corresponding to V via the Satake equivalence $Rep(\check{G}) \xrightarrow{\sim} Sph(Gr_{G,x})$.

One formally derives from Theorem 3.10 the following.

Corollary 3.18. For any $V \in \text{Rep}(\check{G})$, there is an isomorphism $\alpha_V : H(\mathcal{A}_V, K_E) \xrightarrow{\sim} K_E \otimes V_E$. For $V, V' \in \text{Rep}(\check{G})$ the following diagram commutes:

where η is the isomorphism (2.24).

3.14 Multiplicity one

One may view $\operatorname{Gr}_{G_{\pi},x}$ as the ind-scheme classifying a G_{π} -bundle $\mathcal{F}_{G_{\pi}}$ on X together with a trivialization $\mathcal{F}_{G_{\pi}} \xrightarrow{\sim} \mathcal{F}_{G_{\pi}}^{0} |_{X-x}$. This yields a map $\operatorname{Gr}_{G_{\pi},x} \to {}_{x,\infty} \overline{\operatorname{Bun}}_{R_{\pi}}$.

Theorem 3.10 holds also in the case of a finite base field $k=\mathbb{F}_q$. In this case we have the Bessel module BM_τ introduced in Section 1.1, which we now view as the space of functions on $G_\pi(F_x)/G_\pi(\mathbb{O}_x)$ that change by τ under the action of $R_\pi(F_x)$. Let B^λ denote the restriction under

$$G_{\pi}(F_{x})/G_{\pi}(\mathcal{O}_{x}) \longrightarrow _{x,\infty} \overline{Bun}_{R_{\pi}}(k)$$
(3.92)

of the trace of Frobenius function of \mathcal{B}^{λ} . Then $\{B^{\lambda}, \lambda \in \Lambda_{\mathcal{B}}^{+}\}$ is a base of BM_{τ} . From Theorem 1 it follows that BM_{τ} is a free module of rank one over the Hecke algebra $H_{\chi_{c}}$.

References

- A. Braverman and D. Gaitsgory, *Geometric Eisenstein series*, Invent. Math. 150 (2002), no. 2, 287–384.
- D. Bump, S. Friedberg, and M. Furusawa, Explicit formulas for the Waldspurger and Bessel models, Israel J. Math. 102 (1997), 125–177.
- [3] E. Frenkel, D. Gaitsgory, and K. Vilonen, *Whittaker patterns in the geometry of moduli spaces of bundles on curves*, Ann. of Math. (2) **153** (2001), no. 3, 699–748.
- [4] D. Gaitsgory, Construction of central elements in the affine Hecke algebra via nearby cycles, Invent. Math. 144 (2001), no. 2, 253–280.
- [5] F. Grosshans, Observable groups and Hilbert's fourteenth problem, Amer. J. Math. 95 (1973), 229–253.
- S. Lysenko, Whittaker and Bessel functors for GSp4, to appear in Ann. de l'Institut Fourier, http://www.arxiv.org/abs/math.AG/0310361.
- [7] I. Mirkovic and K. Vilonen, Geometric Langlands duality and representations of algebraic groups over commutative rings, to appear in Ann. of Math., http://www.arxiv.org/abs/ math.RT/0401222.
- [8] M. E. Novodvorskiĭ and I. I. Pjateckiĭ-Šapiro, Generalized Bessel models for the symplectic group of rank 2, Mat. Sb. (N.S.) 90 (132) (1973), 246–256, 326 (Russian).
- [9] É. A. Vinberg and B. N. Kimel'fel'd, Homogeneous domains on flag manifolds and spherical subsets of semisimple Lie groups, Funktsional. Anal. i Prilozhen. 12 (1978), no. 3, 12–19, 96 (Russian), translated in Funct. Anal. Appl. 12 (1978), no. 3, 168–174 (1979).

Sergey Lysenko: Analyse Algébrique, Institut de Mathématiques (UMR 7586), Université Paris 6, 175 rue du Chevaleret, 75013 Paris, France E-mail address: lysenko@math.jussieu.fr