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Geometric Bessel Models for GSp4 and Multiplicity One

Sergey Lysenko

1 Introduction

1.1 Classical Bessel models

In this paper, which is a sequel to [6], we study Bessel models of representations of

GSp4 in the framework of the geometric Langlands program. These models introduced

by Novodvorsky and Piatetski-Shapiro, satisfy the following multiplicity one property

(see [8]).

Set k = Fq and O = k[[t]] ⊂ F = k((t)). Let F̃ be an étale F-algebra with dimF(F̃) = 2

such that k is algebraically closed in F̃. Write Õ for the integral closure of O in F̃. We have

two cases:

(i) F̃ →̃ k((t1/2)) (nonsplit case),

(ii) F̃ →̃ F⊕ F (split case).

Write L for Õ viewed as O-module, it is equipped with a quadratic form s : Sym2 L → O

given by the determinant. WriteΩO for the completed module of relative differentials of

O over k.

Set M = L⊕(L∗⊗Ω−1
O ). This O-module is equipped with a symplectic form ∧2M→

L ⊗ L∗ ⊗Ω−1
O → Ω−1

O . Set G = GSp(M), this is a group scheme over Spec O. Write P ⊂ G

for the Siegel parabolic subgroup preserving the Lagrangian submodule L. Its unipotent

radical U has a distinguished character

ev : U−̃→ΩO ⊗ Sym2 L
s−→ ΩO (1.1)
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(here we viewΩO as a commutative group scheme over Spec O). Set

R̃ =
{
p ∈ P | ev

(
pup−1

)
= ev(u) for u ∈ U}. (1.2)

View GL(L) as a group scheme over Spec O and Õ∗ as its closed subgroup. Write α for the

composition Õ∗ ↪→ GL(L) det→ O∗. Fix a section Õ∗ ↪→ R̃ given by g �→ (g, α(g)(g∗)−1). Then

R = Õ∗U ⊂ R̃ is a closed subgroup, and the map R
ξ→ ΩO × Õ∗ sending tu to (ev(u), t) is a

homomorphism of group schemes over Spec O.

Let � be a prime invertible in k. Fix a character χ : F̃∗/Õ∗ → Q̄∗
� and a nontrivial

additive character ψ : k→ Q̄∗
� . Write τ for the composition

R(F) ξ−−→ ΩF × F̃∗ Res × pr−−−−−−→ k× F̃∗/Õ∗ ψ×χ−−−−→ Q̄∗
� . (1.3)

The Bessel module is the vector space

BMτ =
{
f : G(F)/G(O) −→ Q̄� | f(rg) = τ(r)f(g) for r ∈ R(F),

f is of compact support moduloR(F)
}
.

(1.4)

Let χc : F∗/O∗ → Q̄∗
� denote the restriction of χ. The Hecke algebra

Hχc =
{
h : G(O)\G(F)/G(O) −→ Q̄� | h(zg) = χc(z)h(g) for z ∈ F∗,
h is of compact support moduloF∗

} (1.5)

acts on BMτ by convolutions. Then BMτ is a free module of rank one over Hχc . In this

paper we prove a geometric version of this result.

Recall that the affine Grassmannian GrG = G(F)/G(O) can be viewed as an ind-

scheme over k. According to “fonctions-faisceaux” philosophy, the space BMτ should

have a geometric counterpart. A natural candidate for that would be the category of �-

adic perverse sheaves on GrG that change under the action of R(F) by τ. However, the R(F)-

orbits on GrG are infinite-dimensional, and this naive definition does not make sense.

The same difficulty appears when one tries to define Whittaker categories for any

reductive group. In [3] Frenkel, Gaitsgory, and Vilonen have overcome this by replacing

the corresponding local statement by its globalization, which admits a geometric

counterpart leading to a definition of Whittaker categories with expected properties. We

follow the strategy of [3] replacing the above local statement by a global one, which we

further geometrize.
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1.2 Geometrization

Fix a smooth projective absolutely irreducible curve X over k. Let π : X̃ → X be a two-

sheeted covering ramified at some effective divisorDπ of X (we assume X̃ smooth over k).

The vector bundle L = π∗OX̃ is equipped with a quadratic form s : Sym2 L→ OX.

WriteΩ for the canonical line bundle on X. Set M = L⊕ (L∗ ⊗Ω−1), it is equipped

with a symplectic form

∧2M −→ L⊗ L∗ ⊗Ω−1 −→ Ω−1. (1.6)

Let G be the group scheme (over X) of automorphisms of M preserving this symplec-

tic form up to a multiple. Let P ⊂ G denote the Siegel parabolic subgroup preserving L,

U ⊂ P its unipotent radical. ThenU is equipped with a homomorphism of group schemes

over X

ev : U−̃→Ω⊗ Sym2 L
s−→ Ω. (1.7)

Let T be the functor sending a X-scheme S to the group H0(X̃ ×X S,O∗). Then T is a group

scheme over X, a subgroup of GL(L). Write α for the composition T ↪→ GL(L) det→ Gm. Set

R̃ =
{
p ∈ P | ev

(
pup−1

)
= ev(u) ∀u ∈ U}. (1.8)

Fix a section T ↪→ R̃ given by g �→ (g, α(g)(g∗)−1). Then R = TU ⊂ R̃ is a closed subgroup,

and the map R
ξ→ Ω × T sending tu to (ev(u), t) is a homomorphism of group schemes

over X.

Let F = k(X), let A be the adele ring of F, and O ⊂ A the entire adeles. Write Fx

for the completion of F at x ∈ X and Ox ⊂ Fx for its ring of integers. Fix a nonramified

character χ : T(F)\T(A)/T(O)→ Q̄∗
� . Let τ be the composition

R(A) ξ−−→ Ω(A) × T(A)
r×χ−−−→ Q̄∗

� , (1.9)

where r : Ω(A)→ Q̄∗
� is given by

r(ωx) = ψ

(∑
x∈X

trk(x)/k Resωx

)
. (1.10)

Fix x ∈ X(k). Let Y denote the restricted productG(Fx)/G(Ox)×
∏ ′
y�=x R(Fy)/R(Oy).

Let Y(k) be the quotient of Y by the diagonal action of R(F). Set

BMX,τ =
{
f : Y −→ Q̄� | f(rg) = τ(r)f(g) for r ∈ R(A),

f is of compact support modulo R(A)
}
.

(1.11)



2660 Sergey Lysenko

View elements of BMX,τ as functions on Y(k). Let χc : F∗x/O
∗
x → Q̄∗

� be the restriction of

χ. As in Section 1.1, the Hecke algebra Hχc of the pair (G(Fx), G(Ox)) acts on BMX,τ by

convolutions. The restriction under

G
(
Fx
)
/G
(
Ox
)

↪→ Y (1.12)

yields an isomorphism of Hχc-modules BMX,τ → BMτ.

We introduce an ind-algebraic stack x,∞BunRπ whose set of k-points contains

Y(k). We define the Bessel category PL(x,∞BunRπ), a category of perverse sheaves on

x,∞BunRπ with some equivariance property. This is a geometric version of BMX,τ.

Let Sph(GrG) denote the category of G(Ox)-equivariant perverse sheaves on the

affine Grassmannian G(Fx)/G(Ox). By [7], this is a tensor category equivalent to the cat-

egory of representations of the Langlands dual group Ǧ→̃GSp4. The category Sph(GrG)

acts on the derived category D(x,∞BunRπ) by Hecke functors.

Our main result is Theorem 3.10 describing the action of Sph(GrG) on the irre-

ducible objects of PL(x,∞BunRπ). It implies the above multiplicity one. It also implies

that the action of Sph(GrG) on D(x,∞BunRπ) preserves PL(x,∞BunRπ). The same phenom-

enon takes place for Whittaker and Waldspurger models.

Compared to the case of Whittaker categories, the Bessel category PL(x,∞BunRπ)

is not semisimple (cf. Section 3.12).

The explicit Casselman-Shalika formula for the Bessel models has been estab-

lished in [2, Corollaries 1.8 and 1.9], where it is presented in the base of BMτ consisting

of functions supported at a single R(F)-orbit on GrG. Our Theorem 3.10 yields a geomet-

ric version of this formula. At the level of functions it yields another base {Bλ} of BMτ (cf.

Section 3.14). In this new base, the Casselman-Shalika formula writes in an essentially

uniform way for Bessel, Waldspurger, and Whittaker models.

In Section 2 we propose a general framework that gives a uniform way to de-

fine Whittaker, Waldspurger, and Bessel categories (the case of Waldspurger models was

studied in [6]).

2 Compactifications and equivariant categories

2.1 Notation

We keep the following notation from [6]. Let k denote an algebraically closed field of char-

acteristic p ≥ 0. All the schemes (or stacks) we consider are defined over k. Let X be a

smooth projective connected curve. Fix a prime � �= p. For a scheme (or stack) S write
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D(S) for the bounded derived category of �-adic étale sheaves on S, and P(S) ⊂ D(S) for

the category of perverse sheaves.

Write Ω for the canonical line bundle on X. For a group scheme G on X write F0G

for the trivial G-torsor on X.

2.2 Generalized R-bundles

2.2.1. Let G ′ be a connected reductive group over k. Given a G ′-torsor FG ′ on X let G

be the group scheme (over X) of automorphisms of FG ′ . Write BunG for the stack of G-

bundles on X. Note that FG ′ can be viewed as a G-torsor as well as a G ′-torsor on X. We

identify BunG and BunG ′ via the isomorphism that sends a G-torsor FG to the G ′-torsor

FG ′ = FG ′ ×G FG.

Let R ⊂ G be a closed group subscheme over X. Say that G/R is strongly quasi-

affine over X if for the projection pr : G/R → X the OX-algebra pr∗ OG/R is finitely gener-

ated (locally in Zarisky topology), and the natural mapG/R→ G/R is an open immersion.

Here G/R = Spec(pr∗ OG/R).

Let V be a vector bundle on X on which G acts, that is, we are given a homomor-

phism of group schemes G → Aut(V) on X. Assume that R is obtained through the fol-

lowing procedure. There is a section OX
s

↪→ V such that V/OX is locally free and R = {g ∈
G | gs = s}. Let Z be the closure of Gs in the total space of V, so G/R ⊂ Z. Let Z ′ be the

complement of Gs in Z. The following is a consequence of [5, Theorem 2].

Lemma 2.1. Assume that any fibre of the projection pr : Z ′ → X is of codimension ≥ 2 in

the corresponding fibre of pr : Z → X. Then G/R is strongly quasi-affine over X, and Z is

the affine closure G/R of G/R. �

Assume that R satisfies the conditions of Lemma 2.1 (this holds in our examples

below).

Definition 2.2. Let BunR be the following stack. For a scheme S, an S-point of BunR is a

pair (FG, β), where FG is an (S × X) ×X G-torsor on S × X, and β is a G-equivariant map

β : FG → S × G/R over S × X with the following property. For any geometric point s ∈ S
there is a nonempty open subset Us ⊂ s× X such that

β : FG
∣∣
Us −→ (s×G/R)

∣∣
Us (2.1)

factors through (s×G/R) |Us⊂ (s×G/R) |Us .
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An S-point of BunR can also be seen as a pair (FG, α), where FG is an (S×X)×XG-

torsor on S × X, and α : OS×X → VFG
is a section with the following property. First, α(1)

lies in G/R ×G FG. Secondly, for any geometric point s ∈ S there is a nonempty open

subsetUs ⊂ s×X such that α(1) |Us lies in (G/R×GFG) |Us . Here VFG
is the vector bundle

(V ⊗ OS×X) ×G FG on S× X.

Let BunR denote the stack of R-bundles on X.

Lemma 2.3. The stack BunR is algebraic, locally of finite type, and BunR ⊂ BunR is an

open substack. �

Proof. Consider the stack X classifying pairs (FG, α), where FG is a G-torsor on X, and

α : OX → VFG
is a section. It is well known that this stack is algebraic, locally of finite

type. The condition that α(1) lies in G/R ×G FG defines a closed substack X ′ ⊂ X. The

condition that α(1) factors through G/R ×G FG at the generic point of X is open in X ′.

Finally, the condition that α(1) lies in G/R×G FG everywhere over X is also open. �

2.2.2. Fix a closed point x ∈ X. Write Ox for the completed local ring of OX at x, and Fx

for its fractions field.

Let x,∞BunR be the following stack. Its S-point is a pair (FG, α), where FG is an

(S× X) ×X G-torsor on S× X, and

α : OS×X −→ VFG
(∞x) (2.2)

is a section with the following property. First, α(1) |S×(X−x) lies in G/R ×G FG |S×(X−x).

Secondly, for any geometric point s ∈ S there is a nonempty open subset Us ⊂ s× (X − x)

such that α(1) |Us lies in (G/R×G FG) |Us .

Let Yi ⊂ x,∞BunR be the closed substack given by the condition that (2.2) fac-

tors through VFG
(ix) ⊂ VFG

(∞x). In particular, Y0 = BunR. As in Lemma 2.3, one shows

that Yi is algebraic locally of finite type. Since x,∞BunR is the direct limit of Yi, the stack

x,∞BunR is ind-algebraic.

Recall that if a stack Y admits a presentation as a direct limit of algebraic stacks,

locally of finite type Yi, then we have the derived category D(Y), which is an inductive

2-limit of D(Yi). In particular, any K ∈ D(Y) is the extension by zero from some closed

algebraic substack of Y, and similarly for the category P(Y) of perverse sheaves on Y (cf.

[4, Appendices A.1–A.2] and [1, Section 0.4.4] for details).

For a scheme S, one can also view an S-point of x,∞BunR as a pair (FG, β), where

FG is an (S × X) ×X G-torsor on S × X, and β is a G-equivariant map β : FG |S×(X−x)→
S × (G/R |X−x) with the following property. For any geometric point s ∈ S, there is a
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nonempty open subset Us ⊂ s× (X − x) such that

β : FG |Us−→ (s×G/R) |Us (2.3)

factors through (s×G/R) |Us⊂ (s×G/R) |Us .

Let H be an abelian group scheme over X, and let R → H be a homomorphism of

group schemes over X. Assume that the stack BunH ofH-bundles on X is algebraic.

Fix a rank-one local system L on BunH trivialized at the trivial H-torsor F0H. As-

sume that for the tensor product mapm : BunH×BunH → BunH there exists an isomor-

phismm∗L→̃L � L whose restriction to the k-point (F0H,F
0
H) is the identity.

2.2.3. We would like to define a category PL(x,∞BunR) of L-equivariant perverse sheaves

on x,∞BunR, and similarly for BunR.

Let XY ⊂ (X−x)× x,∞BunR be the open substack classifying collections y ∈ X−x,

(FG, β) ∈ x,∞BunR such that the map β : FG → G/R factors through G/R ⊂ G/R in a

neighbourhood of y.

SetDy = Spec Oy. By definition, for a point of XY, theG-torsor FG |Dy is equipped

with a reduction to an R-torsor that we denote FR.

Let XX be the stack classifying (y,FG, β) ∈ XY, (y,F ′
G, β

′) ∈ XY and

τ : FG |X−y −̃→F ′
G |X−y (2.4)

such that the diagram commutes:

FG |X−y

β

τ

G/R|X−y

F ′
G|X−y

β ′
(2.5)

Let pr (resp., act) denote the projection XX → XY sending the above collection to

(y,FG, β) (resp., to (y,F ′
G, β

′)). They provide XX with a structure of a groupoid over XY.

SetD∗
y = Spec Fy. Let XGrR denote the stack classifying (y ∈ X−x,FR,F

′
R, τ),where

FR and F ′
R are R-torsors onDy and

τ : FR |D∗
y
−̃→F ′

R |D∗
y

(2.6)

is an isomorphism.
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We have a map XX→ XGrR sending the above collection to (y,FR,F ′
R, τ), where FR

and F ′
R are R-torsors on Dy obtained from (FG, β) and (F ′

G, β
′) and τ is the restriction of

(2.4).

Let X GrH denote the affine Grassmannian ofH over X− x, namely the ind-scheme

classifying y ∈ X − x and an H-torsor on Dy trivialized over D∗
y. We have a map XGrR →

XGrH sending (y,FR,F ′
R, τ) to (y,FH, τ), where

FH = Isom
(
FR ×R H,F ′

R ×R H
)
, (2.7)

and τ : FH→̃F0H |D∗
y

is the induced trivialization.

We have a map XGrH → BunH sending (y,FH, τ) to F̃H, where F̃H is the gluing of

F0H |X−y and FH |Dy via the isomorphism τ : FH→̃F0H |D∗
y
.

Define the evaluation map evX : XX→ BunH as the composition

XX −→ XGrR −→ X GrH −→ BunH . (2.8)

We would like PL(x,∞BunR) to be the category of perverse sheaves K on x,∞BunR

equipped with an isomorphism

act∗ K̃ −̃→ pr∗ K̃⊗ ev∗
X L (2.9)

satisfying the usual associativity condition, and such that its restriction to the unit sec-

tion of XX is the identity. Here K̃ is the restriction of K under XY → x,∞BunR. However,

this naive definition does not apply directly, because pr,act : XX → XY are not smooth

in general. (One more source of difficulties is that the affine Grassmannian GrR,y may be

highly nonreduced, this happens, e.g., for R a torus.)

We remedy the difficulty under an additional assumption satisfied in our exam-

ples. Suppose that R fits into an exact sequence of group schemes 1 → U → R → T → 1

overX, whereU is a unipotent group scheme, and T is as follows. There is an integer b ≥ 0
and a (ramified) Galois covering π : X̃ → X, where X̃ is a smooth projective curve, such

that for an X-scheme Swe have

T(S) = Hom
(
X̃×X S,Gbm

)
. (2.10)

In this case BunT is nothing but the stack of Gbm-torsors on X̃. For a divisor D on X̃ with
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values in the coweight lattice of Gbm, and for a T-torsor FT on X, we denote by FT (D) the

corresponding twisted T-torsor on X.

The stack XX can be seen as the one classifying (y,FG, β) ∈ XY, an R-torsor F ′
R

onDy, and an isomorphism τ : FR |D∗
y
→̃F ′

R |D∗
y
, where FR is the R-torsor onDy obtained

from (FG, β). From this point of view the projection pr : XX→ XY is the map forgetting F ′
R.

Modify the definition of XX and of XY as follows. Let

X̃
Y ⊂ X̃× x,∞BunR (2.11)

be the open substack classifying ỹ ∈ X̃ with π nonramified at ỹ and y := π(ỹ) �= x,

(FG, β) ∈ x,∞BunR such that the map β : FG → G/R factors through G/R ⊂ G/R in a

neighbourhood of y.

Given for each σ ∈ Σ = Gal(X̃/X) a coweight γσ : Gm → Gbm, we set γ = {γσ}. Let

pr :
X̃
Xγ −→

X̃
Y (2.12)

be the stack whose fibre over (ỹ,FG, β) ∈
X̃
Y is the ind-scheme classifying an R-torsor F ′

R

onDy, an isomorphism FR→̃F ′
R |D∗

y
, and an extension of the induced isomorphism

FR ×R T −̃→F ′
R ×R T |D∗

y
(2.13)

to an isomorphism overDy,

FR ×R T −̃→ (F ′
R ×R T

)(∑
σ∈Σ

γσσ(ỹ)

)
. (2.14)

Here y = π(ỹ), and FR is the R-torsor onDy obtained from (FG, β).

As above, we have an action map act :
X̃
Xγ → X̃

Y. The advantage is that any fibre

of each of the maps pr,act :
X̃
Xγ → X̃

Y is reduced (it identifies with the affine Grassman-

nian at y of a unipotent group scheme over X).

Now proceed as in [3]. Recall thatU(Fy) is an ind-group scheme, it can be written

as a direct limit of some group schemesU−m,m ≥ 0, such thatU−m ↪→ U−m−1 is a closed

subgroup, U0 = U(Oy), and U−m/U0 are smooth of finite type [3, Section 3.1].

For this reason, form ≥ 0 there exist closed substacks

X̃
Xγ,m ↪→

X̃
Xγ,m+1 ↪→ · · · ↪→

X̃
Xγ (2.15)
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such that both maps pr,act :
X̃
Xγ,m → X̃

Y are of finite type and smooth of the same

relative dimension, and
X̃
Xγ is a direct limit of the stacks

X̃
Xγ,m.

As above, we have a map
X̃
Xγ → XGrR, hence also the evaluation map ev

X̃,γ
:

X̃
Xγ → BunH.

Definition 2.4. Let PL(x,∞BunR) denote the category of perverse sheaves on x,∞BunR

equipped for each γ andm ≥ 0with isomorphisms

αγ,m : act∗ K̃ −̃→ pr∗ K̃⊗ ev∗
X,γ L (2.16)

over
X̃
Xγ,m. Here K̃ denotes the restriction of K under

X̃
Y → x,∞BunR. It is required that

for m1 < m2 the restriction of αγ,m2
to
X̃
Xγ,m1

equals αγ,m1
, the restriction of α0,m to

the unit section of
X̃
X0,m is the identity, and the usual associativity condition holds.

Denote by PL(BunR) the full subcategory of PL(x,∞BunR) consisting of perverse

sheaves, which are extensions by zero under BunR ↪→ x,∞BunR.

2.3 Hecke functors

Let xHG denote the Hecke stack classifying G-torsors FG,F
′
G on X together with an iso-

morphism τ : FG→̃F ′
G |X−x. Let q : xHG → BunG (resp., p : xHG → BunG) denote the map

forgetting FG (resp., F ′
G). Consider the diagram

x,∞BunR
pR←− x,∞BunR ×BunG xHG

qR−−→ x,∞BunR, (2.17)

where we used p to define the fibred product, pR forgets F ′
G, and qR sends (FG, β,F ′

G, τ) to

(F ′
G, β

′), where β ′ is the composition

F ′
G

τ−1

−−−→ FG
β−−→ G/R. (2.18)

In the same way one gets the diagram

X̃
Y

pY←−
X̃
Y ×BunG xHG

qY−−→
X̃
Y. (2.19)

The action of the groupoid
X̃
X on

X̃
Y lifts to an action on this diagram (in the sense of

[6, Appendix A.1]). Namely, for each γ we have two diagrams, where the squares are
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cartesian:

X̃
Xγ

pr

X̃
Y

X̃
Xγ ×BunG xHG

pX

pr

qX

X̃
Y ×BunG xHG

pY

qY

X̃
Xγ

pr

X̃
Y

X̃
Xγ

act
X̃
Y

X̃
Xγ ×BunG xHG

act

pX

qX

X̃
Y ×BunG xHG

pY

qY

X̃
Xγ

act
X̃
Y

(2.20)

Write Sph(GrG ′,x) for the category ofG ′(Ox)-equivariant perverse sheaves on the

affine Grassmannian GrG ′,x = G ′(Fx)/G ′(Ox). This is a tensor category equivalent to the

category of representations of the Langlands dual group Ǧ ′ over Q̄� [7].

Let BunxG be the stack classifying aG-bundle FG on Xwith an isomorphism ofG-

torsors FG→̃FG ′ |Dx . In a way compatible with our identification BunG →̃BunG ′ one can

view BunxG as the stack classifying aG ′-torsor FG ′ with a trivialization FG ′→̃F0G ′ |Dx . So,

the projection q : xHG → BunG can be written as a fibration

BunxG×G ′(Ox) GrG ′,x −→ BunG . (2.21)

Now for A ∈ Sph(GrG ′,x) and K ∈ D(x,∞BunR) we can form their twisted exterior product

K�̃A ∈ D(x,∞BunR ×BunG xHG). (2.22)

It is normalized so that it is perverse for K perverse and D(K�̃A)→̃D(K)�̃D(A).

Define the Hecke functor H(A, ·) : D(x,∞BunR)→ D(x,∞BunR) by

H(A, K) = (pR)!(K�̃A). (2.23)

These functors are compatible with the tensor structure on Sph(GrG ′,x). Namely, we have
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canonically

H
(
A1,H

(
A2, K

)) −̃→ H
(
A1 ∗ A2, K

)
, (2.24)

where A1 ∗ A2 ∈ Sph(GrG ′,x) is the convolution [3, Section 5].

As in Section 2.2, one defines the category PL(x,∞BunR ×BunG xHG). If K ∈
PL(x,∞BunR), then

K�̃A ∈ PL
(
x,∞BunR ×BunG xHG

)
, (2.25)

so the complex H(A, K) inherits a L-equivariant structure. Each perverse cohomology

sheaf of H(A, K) lies in PL(x,∞BunR).

2.4 Substacks of x,∞BunR

LetΛY be the set of R(Fx)-orbits on the affine Grassmannian GrG,x = G(Fx)/G(Ox). We are

interested in the situations where ΛY is discrete. Write Orbµ ⊂ GrG,x for the R(Fx)-orbit

corresponding to µ ∈ ΛY.

Let Yloc be the stack classifying a G-torsor FG on Dx, an R-torsor FR on D∗
x, and

an R-equivariant map FR → FG |D∗
x
. Then Yloc identifies with the stack quotient of GrG,x

by R(Fx).

For µ ∈ ΛY, let Y
µ

loc (resp., Y≤µ
loc ) denote the stack quotient of Orbµ (resp., of Orbµ)

by R(Fx). (We do not precise for the moment the scheme structure on Orbµ.) We have an

order on ΛY given by µ ′ ≤ µ if and only if Orbµ ′ ⊂ Orbµ.

We have a map x,∞BunR → Yloc sending (FG, β) to its restriction toDx. For µ ∈ ΛY,

set

x,µBunR = x,∞BunR ×Yloc Y
≤µ
loc , x,µB̃unR = x,∞BunR ×Yloc Y

µ

loc. (2.26)

Let x,µ BunR ⊂ x,µB̃unR be the open substack given by the condition that

β : FG
∣∣
X−x

−→ G/R
∣∣
X−x

(2.27)

factors through G/R |X−x⊂ G/R |X−x.

To summarize, we have a sequence of embeddings,

x,µ BunR ↪→ x,µB̃unR ↪→ x,µBunR ↪→ x,∞BunR, (2.28)

where the first two arrows are open embeddings and the last arrow is a closed one.
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2.5 L-equivalent perverse sheaves

The stack x,µ BunR classifies a G-torsor FG on X, a G-equivariant map β : FG → G/R |X−x

such that the restriction of (FG, β) toDx lies in Y
µ

loc. Set

µX = x,µ BunR ×Yloc x,µ BunR; (2.29)

this is a groupoid over x,µ BunR for the two projections pr,act : µX→ x,µ BunR.

View µX as the stack classifying R-torsors FR,F
′
R on X − x with an isomorphism

τ : FR→̃F ′
R |D∗

x
, a G-torsor FG on X, and an R-equivariant map FR → FG |X−x, whose

restriction toDx lies in Y
µ

loc. The projection pr : µX→ x,µ BunR forgets F ′
R.

Let µ evX : µX → BunH be the map sending the above collection to the H-torsor

F̃H on X obtained by the following gluing procedure. Let FH denote the H-torsor on X − x

of isomorphisms

Isom
(
FR ×R H,F ′

R ×R H
)
. (2.30)

Then F̃H is the gluing of FH and of F0H |Dx overD∗
x via τ : FH→̃F0H |D∗

x
.

We say that µ ∈ ΛY is relevant if there exists a morphism evµ : x,µ BunR → BunH

making the following diagram commutative:

BunH×x,µ BunR
id × evµ

BunH×BunH
m

BunH

µX
act

µ evX × pr

x,µ BunR

evµ (2.31)

If such evµ exists, it is unique up to a tensoring by a fixedH-torsor on X. WriteΛ+
Y for the

set of relevant µ ∈ ΛY.

Write 0 ∈ ΛY for the R(Fx)-orbit on GrG,x passing by 1. Then x,0 BunR is noth-

ing but the stack BunR of R-bundles on X. The homomorphism R → H yields a map

ev0 : x,0 BunR → BunH such that (2.31) commutes, so 0 ∈ Λ+
Y .

For µ ∈ Λ+
Y we denote by Bµ the Goresky-MacPherson extension of

(
evµ

)∗
L ⊗ Q̄�[1]

(
1

2

)⊗ dim x,µ BunR

(2.32)

under x,µ BunR ↪→ x,µBunR. By construction, Bµ ∈ PL(x,∞BunR).
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The examples of the above situation include Whittaker models, Waldspurger

models for GL2, and Bessel models for GSp4 (the latter is studied in Section 3).

2.6 Whittaker models

Let G ′ be a connected reductive group over k, B ′ ⊂ G ′ a Borel subgroup, U ′ ⊂ B ′ its

unipotent radical. Set T ′ = B ′/U ′. Assume that [G ′, G ′] is simply connected. Let I denote

the set of vertices of the Dynkin diagram, and {α̌i, i ∈ I} the simple roots corresponding

to B ′. Fix a B ′-torsor FB ′ on X and a conductor for the induced T ′-torsor FT ′ . That is, for

each i ∈ I we fix an inclusion of coherent sheaves

ω̃i : Lα̌i
FT ′ ↪→ Ω. (2.33)

Write FG ′ for the G ′-torsor induced from FB ′ . Now G is the group scheme of au-

tomorphisms of FG ′ . Let R ⊂ G denote the group scheme of automorphisms of FB ′ acting

trivially on FT ′ .

To satisfy the assumptions of Lemma 2.1, take

V = ⊕iHom
(
Lω̌i

FT ′ ,V
ω̌i
FG ′

)
, (2.34)

the sum being taken over the set of fundamental weights ω̌i ofG ′. Here Vλ̌ is the WeilG ′-

module corresponding to λ̌. ThenG acts on V, and V is equipped with a canonical section

OX ↪→ V. By [1, Theorem 1.1.2], G/R is strongly quasi-affine over X.

The group scheme of automorphisms of FB ′/[U ′,U ′] acting trivially on FT ′ is

canonically

⊕i∈IL
α̌i
FT ′ . (2.35)

Set H = ⊕i∈IΩ. Define a homomorphism of group schemes R → H over X as the composi-

tion

R −→ ⊕i∈IL
α̌i
FT ′

ω̃−−→ H. (2.36)

The stack BunR identifies with the one classifying pairs (FG ′ , κ), where FG ′ is aG ′-torsor

on X, and κ is a collection of maps

κλ̌ : Lλ̌FT ′ ↪→ Vλ̌FG ′ (2.37)

for each dominant weight λ̌ of G ′, satisfying Plücker relations ([3], Section 2.2.2).

The set ΛY identifies in this case with the group Hom(Gm, T ′) of coweights of T ′.
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For λ ∈ ΛY the stack x,λBunR classifies a G ′-torsor FG ′ on X, a collection of maps

κλ̌ : Lλ̌FT ′ ↪→ Vλ̌FG ′ (〈λ, λ̌〉x) (2.38)

for each dominant weight λ̌ of G ′, satisfying Plücker relations.

Assume that the base field k is of characteristic p > 0, and fix a nontrivial additive

character ψ : Fp → Q̄∗
� . Write Lψ for the corresponding Artin-Shreier sheaf on A1k. Take L

to be the restriction of Lψ under the map

BunH −→∏
i∈I

H1(X,Ω) sum−−−→ A1k. (2.39)

The corresponding Whittaker category PL(x,∞BunR) has been described by

Frenkel, Gaitsgory, and Vilonen in [3].

2.7 Waldspurger models

The ground field k is of characteristic p �= 2. Let π : X̃ → X be a two-sheeted covering

ramified over some divisorDπ on X, where X̃ is a smooth projective curve. Set Lπ = π∗OX̃
and G ′ = GL2. View Lπ as a G ′-torsor FG ′ on X. Let G be the group scheme of automor-

phisms of FG ′ . Let R be the group scheme over X such that for an X-scheme S we have

R(S) = Hom(X̃×X S,Gm), so R is a closed group subscheme of G over X.

Let σ be the nontrivial automorphism of X̃ over X, so Lπ→̃O ⊕ E, where E are σ-

anti-invariants in Lπ. It is equipped with E2→̃OX(−Dπ). Take V = End0(Lπ) ⊗ E−1, where

End0(Lπ) stands for the sheaf of traceless endomorphisms of Lπ. The group scheme G

acts on V via its action on Lπ (the action of G on E is trivial).

We have

V −̃→O
(
Dπ
)⊕ O ⊕ E−1. (2.40)

Consider the section O → V given by (−1, 1, 0). The assumptions of Lemma 2.1 are satis-

fied.

Set H = R. The stack BunH classifies line bundles on X̃. Pick a rank-one local sys-

tem Ẽ on X̃. Take L to be the automorphic local system on BunH corresponding to Ẽ. The

stack x,∞BunR in this case is canonically isomorphic to the stack W aldxπ introduced in

[6, Section 8.2]. The corresponding Waldspurger category PL(x,∞BunR) has been studied

in [6, Section 8.2].
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3 Bessel categories

3.1 Notation

3.1.1 The groupG. From now on, k is an algebraically closed field of characteristic p >

2. We change the notation compared to Section 2. From now on G = GSp4, so G is the

quotient of Gm × S p4 by the diagonally embedded {±1}. We realize G as the subgroup of

GL(k4) preserving up to a scalar the bilinear form given by the matrix(
0 E2

−E2 0

)
, (3.1)

where E2 is the unit matrix of GL2.

Let T be the maximal torus of G given by {(y1, . . . , y4) | yiy2+i does not depend

on i}. Let Λ (resp., Λ̌) denote the coweight (resp., weight) lattice of T . Let ε̌i ∈ Λ̌ be the

character that sends a point of T to yi. We have Λ = {(a1, . . . , a4) ∈ Z4 | ai + a2+i does not

depend on i} and

Λ̌ = Z4/
{
ε̌1 + ε̌3 − ε̌2 − ε̌4

}
. (3.2)

Fix the Borel subgroup of G preserving the flag ke1 ⊂ ke1 ⊕ ke2 of isotropic sub-

spaces in the standard representation. The corresponding positive roots are

{
α̌12, β̌ij, 1 ≤ i ≤ j ≤ 2

}
, (3.3)

where α̌12 = ě1− ě2 and β̌ij = ěi− ě2+j. The simple roots are α̌12 and β̌22. Write V λ̌ for the

irreducible representation of G of highest weight λ̌.

Fix fundamental weights ω̌1 = (1, 0, 0, 0) and ω̌2 = (1, 1, 0, 0) of G. So, Vω̌1 is

the standard representation of G. The orthogonal to the coroot lattice is Zω̌0 with ω̌0 =

(1, 0, 1, 0). The orthogonal to the root lattice is Zωwithω = (1, 1, 1, 1).

Let P ⊂ G be the Siegel parabolic subgroup preserving the Lagrangian subspace

ke1 ⊕ ke2 ⊂ k4. WriteU for the unipotent radical of P, setM = P/U.

Let Ǧ (resp., M̌) denote the Langlands dual group over Q̄�. Write Vλ (resp., Uλ)

for the irreducible representation of Ǧ (resp., of M̌) with the highest weight λ.

Letw0 be the longest element of the Weil group ofG. WriteΛ+ for the set of dom-

inant coweights ofG. The half sum of positive roots ofG is denoted by ρ̌. The correspond-

ing objects forM are denoted by Λ+
M, w

M
0 , ρ̌M.

Set Gad = G/Z, where Z ⊂ G is the center. Set ν̌1 = ω̌2 − ω̌0 and ν̌2 = 2ω̌1 − ω̌0.

So, V ν̌1 is the standard representation ofGad and ∧2V ν̌1→̃V ν̌2 . LetΛGad be the coweights

lattice of Gad. Write Λpos
Gad

for the Z+-span of positive coroots inΛGad .
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3.1.2. For d ≥ 0 write X(d) for the dth symmetric power of X and view it as the scheme

of effective divisors of degree d on X. Let rssX(d) ⊂ X(d) denote the open subscheme of

divisors of the form x1 + · · · + xd with xi pairwise distinct. Write Buni for the stack of

rank-i vector bundles on X. Set

RCovd = Bun1×Bun1

rssX(d), (3.4)

where the map rssX(d) → Bun1 sends D to OX(−D), and the map Bun1 → Bun1 takes

a line bundle to its tensor square. It is understood that rssX(0) = Spec k and the point
rssX(0) → Bun1 is OX. Then RCovd is the stack classifying two-sheeted coverings π : X̃→ X

ramified exactly atD ∈ rssX(d) with X̃ smooth [6, Section 7.7.2].

Fix a character ψ : Fp → Q̄∗
� and write Lψ for the corresponding Artin-Shreier

sheaf on A1.

3.2 Group schemes over X

3.2.1. Fix a k-point of RCovd given byDπ ∈ rssX(d) and π : X̃ → X ramified exactly atDπ.

Let σ denote the nontrivial automorphism of X̃ over X and let E be the σ-anti-invariants

in Lπ := π∗OX̃. It is equipped with an isomorphism

κ : E⊗2 −̃→O
(

−Dπ
)
. (3.5)

Recall that Lπ is equipped with a symmetric form Sym2 Lπ
s→ O such that

div(L∗π/Lπ) = Dπ for the induced map Lπ ↪→ L∗π [6, Proposition 14]. Set Mπ = Lπ ⊕ (L∗π ⊗
Ω−1). It is equipped with a symplectic form

∧2Mπ −→ Lπ ⊗ (L∗π ⊗Ω−1
) −→ Ω−1. (3.6)

Write FG for the G-torsor (Mπ,Ω
−1) on X. Let Gπ be the group scheme (over X) of auto-

morphisms of FG. Write Aπ for the line bundleΩ−1 on X equipped with the correspond-

ing action of Gπ.

Let Pπ ⊂ Gπ denote the Siegel parabolic subgroup preserving Lπ, andUπ ⊂ Pπ its

unipotent radical. Then Uπ is equipped with a homomorphism of group schemes on X:

evπ : Uπ −̃→Ω⊗ Sym2 Lπ
s−→ Ω. (3.7)

Denote by R̃π ⊂ Pπ the subgroup stabilizing evπ, that is,

R̃π =
{
p ∈ Pπ | evπ

(
pup−1

)
= evπ(u) ∀u ∈ Uπ

}
. (3.8)
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Let GL(Lπ) denote the group scheme (over X) of automorphisms of the OX-module Lπ. Let

Tπ denote the functor associating to an X-scheme V the group H0(X̃ ×X V,O∗). Then Tπ is

a group scheme over X, a subgroup of GL(Lπ).

Write BunTπ for the stack of Tπ-bundles on X, that is, for a scheme S, the S-points

of BunTπ constitute the category of (S× X) ×X Tπ-torsors on S× X. Given a Gm-torsor on

S× X̃, its direct image under id×π : S× X̃ → S× X is as (S × X) ×X Tπ-torsor. In this way

one identifies BunTπ with the Picard stack Pic X̃.

Let α : Tπ → Gm be the character by which Tπ acts on det(Lπ). Fix an inclusion

Tπ ↪→ R̃π by making t ∈ Tπ act on Lπ⊕(L∗π⊗Ω−1) as (t, α(t)(t∗)−1),where t∗ ∈ Aut(L∗π) is the

adjoint operator. Set Rπ = TπUπ, so Rπ ⊂ R̃π is a subgroup. Actually, R̃π/Uπ identifies with

the group of those g ∈ GL(Lπ) for which there exists α̃(g) ∈ Gm such that the following

diagram commutes:

Sym2 Lπ
s

O

Sym2 Lπ

g

s
O

α̃(g) (3.9)

So, R̃π/Uπ is equipped with a character α̃ : R̃π/Uπ → Gm whose restriction to Rπ equalsα.

For g ∈ R̃π/Uπ the following diagram commutes:

Lπ
s

L∗π

g∗

Lπ
α̃(g)s

g

L∗π

(3.10)

so (detg)2 = α̃(g)2. We see that Rπ is the connected component of R̃π given by the addi-

tional condition detg = α̃(g).

Lemma 3.1. The conditions of Lemma 2.1 are satisfied, soGπ/Rπ is strongly quasi-affine

over X. �

Proof. Define a Gπ-moduleWπ by the exact sequence 0→ Wπ → A−1
π ⊗ ∧2Mπ → OX → 0

of OX-modules. So,Wπ is equipped with a nondegenerate symmetric form Sym2Wπ → O,

and the center of Gπ acts trivially onWπ.

We have a subbundle Wπ,1 := A−1
π ⊗ detLπ→̃Ω ⊗ E in Wπ. Let Wπ,−1 denote the

orthogonal complement to Wπ,1 in Wπ. Then Wπ,−1/Wπ,1→̃End0(Lπ). As in Section 2.7,

we have a subbundle E ↪→ End0(Lπ). It gives rise to a subbundle

Ω
(

−Dπ
)

↪→Wπ,1 ⊗
(
Wπ,−1/Wπ,1

)
↪→ ∧2Wπ. (3.11)
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Set

V =
(
Ω−1 ⊗ E−1 ⊗Wπ

)⊕ (Ω−1
(
Dπ
)⊗ ∧2Wπ

)
, (3.12)

with the action of Gπ coming from its action onWπ. We get a subbundle OX
s

↪→ V, which

is the sum of the above two sections. One checks that R = {g ∈ G | gs = s}, and the pair

(V, s) satisfies the assumptions of Lemma 2.1. �

3.2.2. Fix a k-point x ∈ X and write Ox for the completed local ring of X at x and Fx for its

fraction field. SetDx = Spec Ox andD∗
x = Spec Fx.

Write F̃x for the étale Fx-algebra of regular functions on X̃ ×X D∗
x. If x ∈ Dπ, then

F̃x is nonsplit; otherwise it splits over Fx. Denote by Õx the ring of regular functions on

X̃×X Dx.

Write GrGπ,x for the affine Grassmannian Gπ(Fx)/Gπ(Ox). This is an ind-scheme

over k that can be seen as the moduli scheme of pairs (FGπ , β), where FGπ is a Gπ-torsor

overDx and β : FGπ→̃F0Gπ
is an isomorphism overD∗

x.

In concrete terms, GrGπ,x classifies the pairs Ox-lattices M ⊂ Mπ ⊗ Fx and A ⊂
Ω−1 ⊗ Fx such that the following diagram commutes:

∧2Mπ ⊗ Fx −→ Ω−1 ⊗ Fx
∪ ∪

∧2M −→ A

(3.13)

and induces an isomorphism M→̃M∗ ⊗ A of Ox-modules.

Definition 3.2. Let Yloc denote the stack classifying

(i) a free F̃x-module B of rank one; then write L for B viewed as Fx-module; it is

equipped with the nondegenerate form Sym2 L→ C, where C = (E⊗ Fx)⊗
detL [6, Proposition 14];

(ii) a G-bundle (M,A) on Spec Ox; here M is a free Ox-module of rank 4 and A is

a free Ox-module of rank 1 with a symplectic form ∧2M → A (it induces

M→̃M∗ ⊗ A);

(iii) an inclusion L ↪→ M ⊗Ox Fx of Fx-vector spaces, whose image is an isotropic

subspace;

(iv) an isomorphismΩ⊗ A ⊗ Fx→̃C of Fx-vector spaces.

Lemma 3.3. The stack Yloc identifies with the stack quotient of GrGπ,x by Rπ(Fx). �

Proof. Given a point of Yloc, it defines a Pπ-torsor over Spec Fx. Fix a splitting of the cor-

responding exact sequence 0 → Sym2 L ⊗ Fx → ? → A ⊗ Fx → 0. Fix also a trivialization
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B→̃F̃x. Then our data becomes just a point of GrGπ,x. Changing the two trivializations

above corresponds to the action of Rπ(Fx) on GrGπ,x. So, Yloc classifies aGπ-torsor FGπ on

Dx equipped with an Rπ-structure overD∗
x. �

The Rπ(Fx)-orbits on GrGπ,x are described in [2, Section 1]. Set ΛB = {(a1, a2) ∈
Z2 | a2 ≥ 0}.

Lemma 3.4. The k-points of Yloc are indexed by ΛB. �

Proof. Given a k-point of Yloc, set L2 = M∩L. We get a Pπ-torsor overDx given by an exact

sequence 0 → Sym2 L2 → ? → A → 0 of Ox-modules. There is a unique a1 ∈ Z such that

the isomorphism over Fx extends to an isomorphism Ω ⊗ A→̃(E ⊗ detL2)(Dπ + a1x) of

Ox-modules.

Further, (L2,B, L→̃L2⊗Fx) is a k-point of W aldx,loc
π given by some a2 ≥ 0. Namely,

if Bex ⊂ B is the smallest Õx-lattice such that L2 ⊂ Bex, then a2 = dim(Bex/L2) [6, Section

8.1]. �

We realizeΛB as a subsemigroup ofΛGad via the map sending (a1, a2) to λ ∈ ΛGad

given by 〈λ, ν̌1〉 = a1 and 〈λ, ν̌2〉 = a1 + a2. Then ΛB = {λ ∈ ΛGad | 〈λ, α̌12〉 ≥ 0}.
The image of α12 inΛGad is divisible by two. Define the subsemigroupΛpos

B ⊂ ΛGad

as the Z+-span of (1/2)α12, β22. Then

Λ
pos
B =

{
λ ∈ ΛGad |

〈
λ, ν̌i

〉 ≥ 0 for i = 1, 2
}
. (3.14)

We introduce an order on ΛB as follows. For λ, µ ∈ ΛB write λ ≥ µ if and only if

λ− µ ∈ Λpos
B . The reader should be cautioned that this is not the order induced fromΛGad

(the latter order is never used in this paper).

3.3 Generalized Rπ-bundles

3.3.1. The stack BunRπ classifies the following collections: a line bundle Bex on X̃, for

which we set Lex = π∗Bex, and an exact sequence of OX-modules

0 −→ Sym2 Lex −→ ? −→ Ω−1 ⊗ E−1 ⊗ detLex −→ 0. (3.15)

By [6, Proposition 14], Lex is equipped with a symmetric form

Sym2 Lex −→ E−1 ⊗ detLex. (3.16)

It admits a canonical section E ⊗ detLex
s

↪→ Sym2 Lex.
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Here is a Plücker-type description of BunRπ . It is the stack classifying

(i) a G-bundle (M,A) on X; here M ∈ Bun4, A ∈ Bun1 with a symplectic form

∧2M→ A, for which we setW = Ker(A−1 ⊗ ∧2M→ OX);

(ii) two subbundles

κ1 : Ω⊗ E ↪→W,

κ2 : Ω
(

−Dπ
)

↪→ ∧2W.
(3.17)

It is required that there is a Lagrangian subbundle Lex ↪→ M, a line bun-

dle Bex on X̃, and an isomorphism Lex→̃π∗Bex with the following prop-

erties. LetW−1 denote the orthogonal complement toW1 = A−1 ⊗ detLex

in W, so that W−1/W1→̃End0(Lex) is equipped with E
s

↪→ End0(Lex).

Then

(a) κ1 factors asΩ⊗ E→̃W1 ↪→W;

(b) κ2 factors asΩ(−Dπ)
s

↪→W1 ⊗W−1/W1 ↪→ ∧2W.

3.3.2. As in Section 2.2, we have the stacks BunRπ ↪→ x,∞BunRπ . By definition, x,∞BunRπ

classifies pairs (FGπ , β), where FGπ is a Gπ-torsor on X, and β : FGπ → Gπ/Rπ |X−x is a

Gπ-equivariant map such that β factors throughGπ/Rπ over some nonempty open subset

of X − x.

Here is a Plücker-type description. The stack x,∞BunRπ classifies

(i) a G-bundle (M,A) on X; here M ∈ Bun4, A ∈ Bun1 with a symplectic form

∧2M→ A, for which we setW = Ker(A−1 ⊗ ∧2M→ OX);

(ii) nonzero sections

κ1 : Ω⊗ E ↪→W(∞x),
κ2 : Ω(−Dπ) ↪→ ∧2W(∞x). (3.18)

It is required that for some nonempty open subset X0 ⊂ X − x there be a

Lagrangian subbundle L ↪→M |X0 , a line bundle B on π−1(X0), and an iso-

morphism L→̃π∗B |X0 with the following properties. Let W−1 denote the

orthogonal complement toW1 = A−1⊗detL inW |X0 , soW−1/W1→̃End0L

is equipped with E
s

↪→ End0L. Then

(a) κ1 |X0 factors asΩ⊗ E→̃W1 ↪→W |X0 ;

(b) κ2 |X0 factors asΩ(−Dπ)
s

↪→W1 ⊗W−1/W1 ↪→ ∧2W |X0 .
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Definition 3.5. For λ ∈ ΛB denote by x,λBunRπ ↪→ x,∞BunRπ the closed substack given by

the condition that the maps

κ1 : Ω⊗ E
(

−
〈
λ, ν̌1

〉
x
)

↪→W,

κ2 : Ω
(

−Dπ −
〈
λ, ν̌2

〉
x
)

↪→ ∧2W
(3.19)

initially defined over X − x are regular over X.

For λ, µ ∈ ΛB we have x,µBunRπ ⊂ x,λBunRπ if and only if µ ≤ λ.

As in Section 2.4, we have the open substacks

x,λ BunRπ ⊂ x,λB̃unRπ ⊂ x,λBunRπ , (3.20)

given by requiring that κ1, κ2 are maximal everywhere on X (resp., in a neighbourhood

of x).

3.4 Stratifications

The following lemma is straightforward.

Lemma 3.6. Let λ ∈ ΛB. For any k-point of x,λBunRπ there is a unique divisorD on Xwith

values in −Λ
pos
B such that the maps

κ1 : Ω⊗ E
(

−
〈
λx +D, ν̌1

〉)
↪→W,

κ2 : Ω
(

−Dπ −
〈
λx +D, ν̌2

〉)
↪→ ∧2W

(3.21)

are regular and maximal everywhere on X, andD+ λx is a divisor with values inΛB. �

Consider aΛB-valued divisorD onXwithD = λx+
∑
y�=x λyy such that λy ∈ −Λ

pos
B

for y �= x. Denote by D BunRπ ⊂ x,λBunRπ the substack given by the condition that the

maps

κ1 : Ω⊗ E(−〈D, ν̌1〉) ↪→W,

κ2 : Ω(−Dπ − 〈D, ν̌2〉) ↪→ ∧2W
(3.22)

are regular and maximal everywhere on X. In particular, for D = λx we get D BunRπ →̃
x,λ BunRπ .

Actually, D BunRπ is the stack classifying a line bundle Bex on X̃, for which we

set Lex = π∗Bex, a modification L2 ⊂ Lex of rank-2 vector bundles on X such that the
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composition is surjective:

Sym2 L2 −→ Sym2 Lex −→ E−1 ⊗ detLex (3.23)

and div(Lex/L2) = 〈D, ν̌2 − ν̌1〉, and an exact sequence of OX-modules

0 −→ Sym2 L2 −→ ? −→ A −→ 0, (3.24)

where A = (Ω−1 ⊗ E−1 ⊗ detL2)(〈D, ν̌1〉). We have used here the description of W aldx,aπ
from [6, Section 8.2].

Remark 3.7. For a1 ∈ Z denote by a1
x BunRπ ⊂ x,∞BunRπ the substack given by the condi-

tion that the map

κ1 : Ω⊗ E
(

− a1x
)

↪→W (3.25)

is regular and maximal everywhere on X. This is the stack classifying the following col-

lections: L2 ∈ Bun2, an exact sequence 0 → Sym2 L2 → ? → A → 0 on X with A =

(Ω−1⊗E−1⊗detL2)(a1x), a line bundle B on π−1(X−x), and an isomorphism π∗B→̃L2 |X−x.

We have the projection

a1
x BunRπ −→W aldxπ (3.26)

sending the above point to (L2,B, π∗B→̃L2 |X−x) (cf. [6, Section 8.2]).

For λ = (a1, a2) ∈ ΛB write a1

x,λBunRπ for the preimage of W aldx,≤a2
π under this

map. The preimage of W aldx,a2
π under the same map identifies with x,λ BunRπ . Note that

a1

x,λBunRπ ⊂ x,λBunRπ (3.27)

is an open substack. This will be used in Section 3.12.

3.5 Bessel category

SetH = Ω× Tπ. Denote by χπ : Rπ → H the homomorphism of group schemes over X given

by χπ(tu) = (evπ(u), t), t ∈ Tπ, u ∈ Uπ. Let

ev0 : BunRπ −→ A1 × Pic X̃ (3.28)

be the map sending a point of BunRπ to the pair (ε,Bex), where ε is the class of the push-

forward of (3.15) by (3.16).
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Fix a rank-one local system Ẽ on X̃. WriteAẼ for the automorphic local system on

Pic X̃ corresponding to Ẽ. For d ≥ 0 its inverse image under X̃(d) → Picd X̃ identifies with

the symmetric power Ẽ(d) of Ẽ.

Let L denote the restriction of Lψ�AẼ under the natural map BunH → A1×Pic X̃.

As in Section 2.2, our data give rise to the Bessel category PL(x,∞BunRπ).

One checks that λ = (a1, a2) ∈ ΛB is relevant (in the sense of Section 2.4) if and

only if a1 ≥ a2. Write Λ+
B for the set of relevant λ ∈ ΛB.

3.6 Perverse sheaves Bλ

Consider a stratumD BunRπ of x,∞BunRπ as in Section 3.4, soD is aΛB-valued divisor on

X. Arguing as in Section 2.2.3 (with the difference that now ỹ ∈ X̃ satisfies an additional

assumption: π(ỹ) does not lie in the support ofD), one defines the category PL(DBunRπ).

We say that the stratum D BunRπ is relevant if PL(DBunRπ) contains a nonzero

object. As in [3, Lemma 6.2.8], one shows that the stratum D BunRπ is relevant if and only

ifD = λxwith λ ∈ Λ+
B.

For λ ∈ Λ+
B denote by

evλ : x,λ BunRπ −→ A1 × Pic X̃ (3.29)

the following map. Given a point of x,λ BunRπ as in Section 3.4, evλ sends it to the pair

(ε,Bex), where ε is the class of the push-forward of (3.24) under the map Sym2 L2 → A ⊗
Ω, obtained from the symmetric form on Lex.

For λ ∈ Λ+
B let Bλ be the Goresky-MacPherson extension of

(
evλ

)∗(
Lψ �AẼ

)⊗ Q̄�[1]
(
1

2

)⊗ dim x,λ BunRπ

(3.30)

under x,λ BunRπ ↪→ x,λBunRπ . The irreducible objects of PL(x,∞BunRπ) are (up to isomor-

phism) exactly Bλ, λ ∈ Λ+
B.

Let us underline that for 0 ∈ Λ+
B the only relevant stratum of x,0BunRπ = BunRπ is

x,0 BunRπ . So, B0 is the extension by zero from x,0 BunRπ . As in [3], we say that B0 is clean

with respect to the open immersion x,0 BunRπ ↪→ BunRπ . The same argument proves the

following.

Lemma 3.8. For λ ∈ Λ+
B the ∗-restriction of Bλ to x,λB̃unRπ − x,λ BunRπ vanishes. �
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3.7 Semigroups

The natural projection Λ→ ΛGad induces a map i : Λ+ → Λ+
B. Actually, we get an isomor-

phism of semigroups

Λ+/Zω −̃→Λ+
B. (3.31)

The map i preserves the order, that is, if λ ≤ µ for λ, µ ∈ Λ+, then i(λ) ≤ i(µ). Besides,

i(−w0(λ)) = i(λ). For µ ∈ Λ+
B an easy calculation shows that

dim x,µ BunRπ = 〈µ, 2ρ̌〉 + dim BunRπ . (3.32)

Remark 3.9. Let λ ∈ Λ+. The map λ ′ �→ i(λ ′) provides a bijection between {λ ′ ∈ Λ+ | λ ′ ≤
λ} and {µ ∈ Λ+

B | µ ≤ i(λ); i(λ) − µ = 0 in π1(Gad)}.

3.8 Main result

Recall that G = GSp4 and for each A ∈ Sph(GrG,x) we have the Hecke functor H(A, ·) :

D(x,∞BunRπ)→ D(x,∞BunRπ) introduced in Section 2.3.

Here is our main result.

Theorem 3.10. (1) Set ν̌ = (1/2)w0(ω̌0 − β̌22), so ν̌ ∈ Λ̌. For λ ∈ Λ+ there is a canonical

isomorphism

H
(
Aλ,B

0
) −̃→




Bi(λ) ⊗ (Ẽx̃)⊗〈λ,2ν̌〉
, the nonsplit case, π(x̃) = x,

Bi(λ) ⊗ (Ẽx̃1
⊗ Ẽx̃2

)⊗〈λ,ν̌〉
, the split case, π−1(x) =

{
x̃1, x̃2

}
.

(3.33)

(2) Forω = (1, 1, 1, 1) ∈ Λ+ and µ ∈ Λ+
B there is a canonical isomorphism

H(Aω,Bµ) −̃→



Bµ ⊗ Ẽ⊗2
x̃
, the nonsplit case, π(x̃) = x,

Bµ ⊗ Ẽx̃1
⊗ Ẽx̃2

, the split case, π−1(x) = {x̃1, x̃2}.
(3.34)

�

3.9 Dimensions estimates

Given a G-torsor FG over Dx, denote by GrG,x(FG) the affine Grassmannian classifying

pairs (F ′
G, β), where F ′

G is a G-torsor overDx and β : F ′
G→̃FG |D∗

x
an isomorphism.

For λ ∈ Λ+ we have the subschemes (cf. [1, Section 3.2.1])

GrλG,x
(
FG
) ⊂ Gr

λ

G,x

(
FG
) ⊂ GrG,x

(
FG
)
. (3.35)
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A point (F ′
G, β) ∈ GrG,x(FG) lies in Gr

λ

G,x(FG) if for any G-module V, whose weights are

≤ λ̌, we have

VFG

(
− 〈λ, λ̌〉x) ⊂ VF ′

G
. (3.36)

Recall that we identify GrGπ,x with the ind-scheme GrG,x(FG) classifying pairs

(FG, β̃), where FG is a G-torsor onDx and

β̃ : FG −̃→FG |D∗
x

(3.37)

is an isomorphism of G-torsors. A k-point (FG, β̃) of GrGπ,x yields an inclusion

Gr
λ

G,x(FG) ↪→ GrGπ,x sending (F ′
G, β) to (F ′

G, β̃ ◦β). For µ ∈ ΛB we denote by SµRπ
⊂ GrGπ,x

the Rπ(Fx)-orbit on GrGπ,x corresponding to µ.

As in [3] and [6, Proposition 17], the following is a key point of our proof of

Theorem 3.10.

Proposition 3.11. Let µ ∈ Λ+
B. Let (FG, β̃) be a k-point of SµRπ

, where FG is a G-torsor on

Dx and β̃ : FG→̃FG |D∗
x

is an isomorphism of G-torsors. For any λ ∈ Λ+ the scheme

Gr
λ

G,x

(
FG
) ∩ S0Rπ

(3.38)

is empty unless µ ≤ i(λ) in the sense of the order on Λ+
B. If µ ≤ i(λ), then

GrλG,x
(
FG
) ∩ S0Rπ

(3.39)

is of dimension ≤ 〈λ, ρ̌〉− 〈µ, ρ̌〉. The equality holds if and only if there exists λ ′ ∈ Λ+, λ ′ ≤
λ, such that µ = i(λ ′), and in this case the irreducible components of (3.39) of maximal

dimension form a base of

HomM̌

(
Uw

M
0 w0(λ ′), Vλ

)
. (3.40)

If µ = i(λ), then (3.39) is a point scheme. �

Remark 3.12. Consider the scheme (3.39) in the case λ, λ ′ ∈ Λ+ with λ ′ < λ and µ =

i(λ ′). Our proof of Proposition 3.11 will also show that for such λ and µ in the nonsplit

case, all the irreducible components of (3.39) are of the same dimension. In the split case,

(3.39) may have irreducible components of different dimensions (e.g., this happens for

λ = (a, a, 0, 0) ∈ Λ+ and µ = 0).
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3.10 Proofs

For a P-torsor FP over Dx let FG = FP ×P G. For a coweight ν ∈ Λ+
M denote by SνP(FP) the

ind-scheme classifying pairs (F ′
P, β), where F ′

P is a P-torsor onDx and

β : F ′
P −̃→FP |D∗

x
(3.41)

is an isomorphism such that the pair (F ′
M, β) lies in GrνM,x(FM). Here FM and F ′

M are the

M-torsors induced from FP and F ′
P, respectively. For λ ∈ Λ+ denote by

tνP : SνP
(
FP
) ∩ GrλG,x

(
FG
) −→ GrνM,x

(
FM
)

(3.42)

the natural projection. Our Proposition 3.11 is based on the following result established

in [1, Proposition 4.3.3 and Section 5.3.7].

Proposition 3.13. All the irreducible components of any fibre of tνP are of dimension 〈ν +

λ, ρ̌〉 − 〈ν, 2ρ̌M〉. These components form a base of

HomM̌

(
Uν, Vλ

)
. (3.43)

For ν = wM0 w0(λ) the map (3.42) is an isomorphism. �

Proof of Proposition 3.11. Write µ = (a1, a2). The pair (FG, β̃) is given by Ox-lattices M ⊂
Mπ ⊗ Fx and A ⊂ Ω−1 ⊗ Fx such that (M,A) is a G-bundle over Spec Ox. Note that

〈
µ, ρ̌

〉
=
1

2

(
3a1 + a2

)
. (3.44)

(1) The nonsplit case.

Step 1. Acting by Rπ(Fx), we may assume that (M,A) has the standard form M = L2 ⊕
(L∗2 ⊗ A), where A = Ω−1((a1 − a2)x) ⊗ Ox and L2 = Ox ⊕ Oxt

a2+1/2 ⊂ F̃x; here t ∈ Ox is a

local parameter [6, Section 8.1].

Any k-point of S0Rπ
is given by a collection (a ∈ Z, L ′

2 ⊂ M ′,A ′), where M ′ ⊂
Mπ ⊗ Fx is an Ox-lattice, A ′ = Ω−1(−ax) ⊗ Ox, and L ′

2 = Õx(−ax̃) = M ′ ∩ (Lπ ⊗ Fx).

Here π(x̃) = x and L ′
2 is viewed as an Ox-module, so

L ′
2 = ta/2Ox ⊕ t(a+1)/2Ox. (3.45)

Set W = Ker(∧2M→ A) and W ′ = Ker(∧2M ′ → A ′).
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The condition that (F ′
G, β) = (M ′,A ′) lies in Gr

λ

G,x(FG) implies that A ′→̃A(−〈λ,
ω̌0〉x), hence

a =
〈
λ, ω̌0

〉
−
(
a1 − a2

)
. (3.46)

It also implies that

M
(

−
〈
λ, ω̌1

〉
x
) ⊂ M ′, (3.47)

W
(

−
〈
λ, ω̌2

〉
x
) ⊂ W ′. (3.48)

The inclusion (3.47) fits into a commutative diagram

0 L ′
2 M ′ L ′∗

2 ⊗ A ′ 0

∪ ∪ ∪

0 L2(−〈λ, ω̌1〉x) M(−〈λ, ω̌1〉x) L∗2 ⊗ A(−〈λ, ω̌1〉x) 0

(3.49)

This yields an inclusion L∗2 ⊂ L ′∗
2(〈λ, ω̌1 − ω̌0〉), which implies 〈λ, 2ω̌1 − ω̌0〉 ≥ a1 + a2.

Note that 2ω̌1 − ω̌0 = β̌12 + α̌12.

Further, the inclusion (3.48) shows that (∧2L∗2) ⊗ A2(−〈λ, ω̌2〉x) ⊂ (∧2L ′∗
2) ⊗ A ′2,

that is,

〈
λ, ω̌2 − ω̌0

〉 ≥ a1. (3.50)

Since ω̌2 − ω̌0 = β̌12, we get µ ≤ i(λ).

Step 2. The above M-torsor (L ′
2,A

′) is in a position ν with respect to (L2,A), where ν ∈
Λ+
M is a dominant coweight forM that we are going to determine.

Clearly, 〈ν − λ, ω̌0〉 = 0. Further, (∧2L2)(−〈ν, ω̌2〉x)→̃ ∧2 L ′
2, so a1 = 〈ν, ω̌0 − ω̌2〉.

From L2(−〈ν, ω̌1〉x) ⊂ L ′
2 we get

〈
ν, ω̌1

〉
=



a

2
, a is even,

a + 1

2
, a is odd.

(3.51)
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Now (3.39) identifies with the fibre of (3.42) over (L ′
2,A

′) ∈ GrνM,x(FM). Here theM-torsor

FM is given by (L2,A).

By Remark 3.9, for a even, there exists a unique λ ′ ∈ Λ+ with λ ′ ≤ λ such that

µ = i(λ ′). In this case the above formulas imply ν = wM0 w0(λ
′).

If µ = i(λ), then a = 〈λ, ω̌0 − β̌22〉 is even, because ω̌0 − β̌22 is divisible by 2 in Λ̌.

For µ = i(λ) we get ν = wM0 w0(λ).

Let us show that 〈µ, ρ̌〉 + 〈ν, ρ̌ − 2ρ̌M〉 ≤ 0. Indeed, since 2ω̌1 − ω̌2 = α̌12, we get

〈
ν, α̌12

〉
=



a2, a is even,

a2 + 1, a is odd,
(3.52)

and 〈ν, α̌12 + β̌22〉 = −a1. We have ρ̌ − 2ρ̌M = α̌12 + (3/2)β̌22 and ρ̌ = 2α̌12 + (3/2)β̌22. So,

〈
ν, ρ̌ − 2ρ̌M

〉
=




1

2

(
− 3a1 − a2

)
, a is even,

1

2

(
− 3a1 − a2 − 1

)
, a is odd.

(3.53)

The desired inequality follows now from (3.44), and it is an equality if and only if a is

even, that is, i(λ) − µ vanishes in π1(Gad). Our assertion follows now from Proposition

3.13.

(2) The split case.

Step 1. Acting by Rπ(Fx), we may assume that (M,A) has the following standard form

M = L2 ⊕ L∗2 ⊗ A, where

L2 = Oxt
a2e1 ⊕ Ox

(
e1 + e2

)
(3.54)

and A = Ω−1((a1 − a2)x) ⊗ Ox. Here {ei} is a base of Õx over Ox consisting of isotropic

vectors [6, Section 8.1].

Any k-point of S0Rπ
is given by a collection (b1, b2 ∈ Z, L ′

2 ⊂ M ′,A ′), where M ′ ⊂
Mπ ⊗ Fx is an Ox-lattice, A ′ = Ω−1(−(b1 + b2)x) ⊗ Ox, and

L ′
2 = Õx

(
− b1x̃1 − b2x̃2

)
= M ′ ∩ (Lπ ⊗ Fx

)
. (3.55)

Here π−1(x) = {x̃1, x̃2} and L ′
2 is viewed as an Ox-module, so

L ′
2 = Oxt

b1e1 ⊕ Oxt
b2e2. (3.56)
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If (F ′
G, β) = (M ′,A ′) lies in Gr

λ

G,x(FG), then A ′→̃A(−〈λ, ω̌0〉x), so

b1 + b2 =
〈
λ, ω̌0

〉
− a1 + a2. (3.57)

As in the nonsplit case, the inclusion L ′
2(−〈λ, ω̌1 − ω̌0〉x) ⊂ L2 yields

bi +
〈
λ, ω̌1 − ω̌0

〉 ≥ a2 (3.58)

for i = 1, 2. This implies 〈λ, 2ω̌1 − ω̌0〉 ≥ a1 + a2. As in the nonsplit case, (∧2L ′
2)(〈λ, 2ω̌0 −

ω̌2〉x) ⊂ ∧2L2 implies 〈λ, ω̌2 − ω̌0〉 ≥ a1. We have shown that µ ≤ i(λ).

Step 2. Let us determine ν ∈ Λ+
M such that (L ′

2,A
′) ∈ GrνM,x(FM). Here FM is given by

(L2,A).

As in the nonsplit case, 〈ν − λ, ω̌0〉 = 0 and (∧2L2)(−〈ν, ω̌2〉x)→̃ ∧2 L ′
2. So, a1 =

〈ν, ω̌0 − ω̌2〉. From L2(−〈ν, ω̌1〉x) ⊂ L ′
2 we get

〈
ν, ω̌1

〉
= max

{
b1, b2

}
. (3.59)

In particular, for µ = i(λ) we get from (3.57) and (3.58)

b1 + b2 =
〈
λ, ω̌0 − β̌22

〉
,

bi ≥
〈
λ, α̌12 − ω̌1 + ω̌0

〉
.

(3.60)

But 2(α̌12− ω̌1+ ω̌0) = ω̌0− β̌22, so in this case bi = 〈λ, α̌12− ω̌1+ ω̌0〉 for i = 1, 2. It easily

follows that for µ = i(λ) we get ν = wM0 w0(λ).

As in the nonsplit case, it remains to show that 〈µ, ρ̌〉 + 〈ν, ρ̌ − 2ρ̌M〉 ≤ 0. We have

〈ν, α̌12 + β̌22〉 = −a1 and 〈ν, α̌12〉 = 2max{bi} − 〈λ, ω̌0〉 + a1. So,

〈
ν, ρ̌ − 2ρ̌M

〉
= −2a1 − max

{
bi
}

+
1

2

〈
λ, ω̌0

〉
. (3.61)

The desired inequality follows now from (3.44), because max{bi} ≥ (1/2)(a2 − a1 + 〈λ,
ω̌0〉) = (1/2)(b1 + b2). It is an equality if and only if b1 = b2, and this implies that 2bi =

〈λ, ω̌0〉 − (a1 − a2) is even.

If b1 = b2, then, as in the nonsplit case, we get 〈ν, α̌12〉 = a2, so that ν = wM0 w0(λ
′)

for λ ′ ∈ Λ+ such that λ ′ ≤ λ and i(λ ′) = µ. �



Geometric Bessel Models for GSp4 and Multiplicity One 2687

Remark 3.14. Write B̌ ⊂ Ǧ for the dual Borel subgroup in Ǧ. The set of double-cosets

M̌\Ǧ/B̌ is finite, that is, M̌ ⊂ Ǧ is a Gelfand pair. So, for any character ν ∈ Λ with

〈ν, α̌12〉 = 0 and any λ ∈ Λ+, the space HomM̌(Uν, Vλ) is at most 1-dimensional [9, The-

orem 1]. This implies that for λ ′, λ ∈ Λ+ with λ ′ ≤ λ and 〈λ ′, α̌12〉 = 0 for µ = i(λ ′), the

scheme (3.39) is irreducible.

Remark 3.15. Let FG be a G-torsor on Dx. For a k-point (F ′
G, β) of GrG,x(FG) we have

(F ′
G, β) ∈ Gr

λ

G,x(FG) if and only if

Vω̌i

F ′
G
⊂ Vω̌i

FG

(〈
λ,−w0

(
ω̌i
)〉
x
)

(3.62)

for i = 0, 1, 2, and for i = 0, this is an isomorphism.

3.11 End of the proof

Recall the map χπ : Rπ → Ω× Tπ (cf. Section 3.5). Write χπ,x : Rπ(Fx)→ A1 × Pic X̃ for the

composition

Rπ(Fx)
χπ−−−→ Ω(Fx) × Tπ(Fx) −̃→Ω(Fx) × F̃∗x Res ×τx−−−−−−→ A1 × Pic X̃, (3.63)

where τx is the natural map F̃∗x → F̃∗x/Õ
∗
x → Pic X̃. It is easy to see that for µ ∈ Λ+

B there

exists an (Rπ(Fx), χπ,x)-equivariant map χµ : S
µ
Rπ
→ A1 × Pic X̃, and such a map is unique

up to an additive constant (with respect to the structure of an abelian group on A1 ×
Pic X̃).

We need the following analog of [3, Proposition 7.1.7].

Lemma 3.16. Let λ, λ ′ ∈ Λ+ with λ ′ < λ. Set µ = i(λ ′). Let (FG, β̃) be a k-point of SµRπ
. Let

χ0 : S0Rπ
→ A1 × Pic X̃ be an (Rπ(Fx), χπ,x)-equivariant map. Then the composition

GrλG,x(FG) ∩ S0Rπ

χ0

−−→ A1 × Pic X̃
pr1−−−→ A1 (3.64)

maps each irreducible component of (3.39) of dimension 〈λ, ρ̌〉 − 〈µ, ρ̌〉 dominantly to A1.

�

Proof. We may assume that (FG, β̃) is given by the pair (M,A) in its standard form as in

the proof of Proposition 3.11; in particular, it is reduced to aM-torsor. Write µ = (a1, a2).

Set ν = wM0 w0(λ
′).

Let z ∈ Gm act on Lπ as a multiplication by z and trivially on Ω−1. The corre-

sponding action of Gm on Mπ = Lπ ⊕ L∗π ⊗Ω−1 defines a map Gm → Gπ whose image lies
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in the center of Pπ/Uπ. The corresponding action of Gm(Ox) = O∗
x on GrGπ,x fixes (FG, β̃)

and preserves the scheme (3.39).

The dimension estimates in Proposition 3.11 also show that the irreducible com-

ponents of dimension 〈λ, ρ̌〉 − 〈µ, ρ̌〉 of the schemes GrλG,x(FG) ∩ S0Rπ
and Gr

λ

G,x(FG) ∩ S0Rπ

are the same. We are going to describe the latter scheme explicitly.

(1) The split case. We have M = L2 ⊕ L∗2 ⊗ A with L2 = Oxt
a2e1 ⊕ Ox(e1 + e2) and A =

Ω−1((a1 − a2)x) ⊗ Ox, where {ei} is a base of Õx over Ox consisting of isotropic vectors,

and t ∈ Ox is a local parameter. Let FM be theM-torsor on Spec Ox given by (L2,A).

Set b = (1/2)(a2−a1+〈λ, ω̌0〉). Consider the k-point of GrM,x(FM) given by (L ′
2,A

′)

with A ′ = Ω−1(−2bx) ⊗ Ox and L ′
2 = Õx(−bx̃1 − bx̃2), where π−1(x) = {x̃1, x̃2}. Under our

assumptions the scheme (3.38) identifies with the fibre, say Y, of

tνP : Sν(FP) ∩ Gr
λ

G,x(FG) −→ GrνM,x(FM) (3.65)

over (L ′
2,A

′). In matrix terms, Y is the scheme of those u ∈ GrU,x for which gu ∈ Gr
λ

G,x.

Here

g =


tb−a2 −tb−a2 0 0

0 tb 0 0

0 0 ta1+b 0

0 0 ta1−a2+b ta1−a2+b

 . (3.66)

Write

u =


1 0 u1 u2

0 1 u2 u3

0 0 1 0

0 0 0 1

 (3.67)

with ui ∈ Ω(Fx)/Ω(Ox). By Remark 3.15, Y inside of GrU,x is given by the equations

ui ∈ t−b+〈λ,w0(ω̌1)〉Ω(Ox),

ui − uj ∈ tαΩ(Ox),

u1u3 − u22 ∈ tδΩ⊗2(Ox),

ui ∈ tδΩ(Ox),

(3.68)

where we have set for brevity δ = −2b + a2 + 〈λ,w0(ω̌2)〉 and α = −b + a2 + 〈λ,w0(ω̌1)〉.
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We may assume that (3.64) sends (3.67) to Resu2. Let Y ′ ⊂ Y be the closed sub-

scheme given by u2 = 0. The above O∗
x-action on Y multiplies each ui in (3.67) by the same

scalar. So, it suffices to show that dimY ′ < 〈λ, ρ̌〉 − 〈µ, ρ̌〉.
The scheme Y ′ is contained in the scheme of pairs

{
u1, u3 ∈ tδΩ

(
Ox
)
/Ω
(
Ox
)

| u1u3 ∈ tδΩ
(
Ox
)
/Ω
(
Ox
)}
. (3.69)

The dimension of the latter scheme is at most −δ. We have −δ ≤ 〈λ, ρ̌〉 − 〈µ, ρ̌〉, and the

equality holds if and only if α = 0. But if α = 0, then Y ′ is a point scheme. Since 〈λ, ρ̌〉 −

〈µ, ρ̌〉 is strictly positive, we are done.

(2) The nonsplit case. We have M = L2 ⊕ L∗2 ⊗ A with L2→̃Ox ⊕ Oxt
a2+(1/2) and A→̃Ω−1

((a1 − a2)x) ⊗ Ox, where t ∈ Ox is a local parameter. Let FM be the M-torsor on Spec Ox

given by (L2,A).

Set L ′
2 = ta/2Ox ⊕ t(a+1)/2Ox and A ′ = Ω−1(−ax) ⊗ Ox with a = 〈λ, ω̌0〉 − a1 + a2

and recall that a is even. The scheme (3.38) identifies with the fibre, say Y, of (3.65) over

(L ′
2,A

′).

Consider the base {1, t1/2} in Lπ ⊗ Ox and the dual base in L∗π ⊗ Ox. Then in ma-

trix terms, Y becomes the scheme of those u ∈ GrU,x for which gu ∈ Gr
λ

G,x. Here g =

ta/2 diag(1, t−a2 , ta1−a2 , ta1). For u ∈ GrU,x written as in (3.67), the scheme Y is given by

the equations

u1 ∈ t−(a/2)+〈λ,w0(ω̌1)〉Ω(Ox),

u2, u3 ∈ tαΩ(Ox),

u1u3 − u22 ∈ tδΩ⊗2(Ox),

ui ∈ tδΩ(Ox),

(3.70)

where we have set α = a2 − (a/2) + 〈λ,w0(ω̌1)〉 and δ = a2 − a + 〈λ,w0(ω̌2)〉.
We may assume that (3.64) sends (3.67) to Res(u1 − tu3). Let Y ′ ⊂ Y be the closed

subscheme given by u1 = tu3. Since we have an action of O∗
x, it suffices to show that

dim Y ′ < 〈λ, ρ̌〉 − 〈µ, ρ̌〉.
The scheme Y ′ is contained in the scheme

{
u2, u3 ∈ tδΩ

(
Ox
)
/Ω
(
Ox
)

| tu23 − u22 ∈ tδΩ⊗2(Ox)}. (3.71)
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The latter scheme is included into Y ′′ given by

Y ′′ =



{
u2, u3 ∈ tδ/2Ω

(
Ox
)
/Ω
(
Ox
)}
, for δ even,

{
u2 ∈ t(1+δ)/2Ω

(
Ox
)
/Ω
(
Ox
)
, u3 ∈ t(δ−1)/2Ω

(
Ox
)
/Ω
(
Ox
)}
, for δ odd.

(3.72)

This implies dimY ′ ≤ dim Y ′′ ≤ −δ. As in the split case, −δ ≤ 〈λ, ρ̌〉 − 〈µ, ρ̌〉 and the

equality implies α = 0. But for α = 0we get Y ′→̃Spec k. This concludes the proof. �

Proof of Theorem 3.10. (2) Let qω : x,∞BunRπ→̃x,∞BunRπ denote the isomorphism send-

ing (M,A, κ1, κ2) to

(
M(x),A(2x), κ1, κ2

)
. (3.73)

It preserves the stratification of x,∞BunRπ by D BunRπ introduced in Section 3.4, and we

have a commutative diagram

x,µ BunRπ

qω

evµ

x,µ BunRπ

evµ

A1 × Pic X̃
id×q̃ω

A1 × Pic X̃

(3.74)

where q̃ω sends Bex to Bex(2x̃) (resp., to Bex(x̃1 + x̃2)) in the nonsplit (resp., split) case.

Our assertion follows from the automorphic property ofAẼ.

(1) We change the notation replacing λ by −w0(λ). In other words, we will estab-

lish a canonical isomorphism H(A−w0(λ),B
0)→̃Bi(λ) ⊗ N with

N −̃→


(
Ẽx̃
)⊗〈λ,2ν̌〉

, the nonsplit case , π(x̃) = x,(
Ẽx̃1

⊗ Ẽx̃2

)⊗〈λ,ν̌〉
, the split case , π−1(x) =

{
x̃1, x̃2

}
.

(3.75)

Denote by K̃µ (resp., by Kµ, DK) the ∗-restriction of H(A−w0(λ),B
0) to x,µB̃unRπ (resp., to

x,µ BunRπ , D BunRπ). HereD is ΛB-valued divisor on X as in Section 3.4.

By Section 2.3, we know that each perverse cohomology sheaf of DK is L-equivar-

iant. So, DK = 0 unless D = µx with µ relevant. In particular, K̃µ is the extension by zero

under x,µ BunRπ ↪→ x,µB̃unRπ .
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Since B0 is self-dual (up to replacing Ẽ by Ẽ∗ and ψ by ψ−1), our assertion is re-

duced to the following lemma. �

Lemma 3.17. One has K̃µ = 0 unless µ ≤ i(λ). The complex K̃µ lives in nonpositive (resp.,

strictly negative) perverse degrees for µ = i(λ) (resp., for µ < i(λ)). One has canonically

Ki(λ) −̃→ ( evi(λ) )∗(Lψ �AẼ
)⊗ N ⊗ Q̄�[1]

(
1

2

)⊗ dim x,i(λ) BunRπ

. (3.76)
�

Proof. Write xH
λ

G for the substack of xHG that under the projection qG : xHG → BunG

identifies with

BunxG×
G

(
Ox

)Gr
λ

G,x −→ BunG . (3.77)

For the diagram

x,∞BunRπ

pR←− x,∞BunRπ ×BunG xH
−w0(λ)
G

qR−−→ x,∞BunRπ , (3.78)

we have

H
(
A−w0(λ), ·

)
=
(
pR
)

!

(
q∗R(·)�̃A−w0(λ)

)
. (3.79)

Let µ = (a1, a2) ∈ Λ+
B. Pick a k-point η ∈ x,µ BunRπ given by the following col-

lection: a line bundle Bex on X̃, for which we set Lex = π∗Bex, a modification L2 ⊂ Lex of

rank-2 vector bundles on X such that the composition is surjective:

Sym2 L2 −→ Sym2 Lex −→ (
E ⊗ detLex

)(
Dπ
)
, (3.80)

and a2x = div(Lex/L2), and an exact sequence

0 −→ Sym2 L2 −→ ? −→ A −→ 0 (3.81)

on X, where we have set A = (Ω−1 ⊗ E ⊗ detL2)(Dπ + a1x).

The fibre of

pR : x,∞BunRπ ×BunG xH
−w0(λ)
G −→ x,∞BunRπ (3.82)

over η identifies with Gr
λ

G,x(FG), where FG = (M,A) ∈ BunG is given by the P-torsor

(3.81).
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Fix a trivialization Bex ⊗ Õx→̃Õx and a splitting of (3.81) over Spec Ox. They yield

isomorphisms M→̃(L2 ⊕ L∗2 ⊗ A) |Spec Ox and A→̃Ω−1((a1 − a2)x) |Spec Ox . So, the pair

M ⊗ Ox ⊂ Mπ ⊗ Fx,
A ⊗ Ox ⊂ Ω−1 ⊗ Fx

(3.83)

becomes a point of GrGπ,x lying in SµRπ
.

Recall that B0 is clean with respect to the open immersion x,0 BunRπ ⊂ x,0 BunRπ .

So, only the stratum (3.38) contributes to Kµ. By Proposition 3.11, Kµ = 0 unless µ ≤ i(λ).
Assume that µ ≤ i(λ). Stratify (3.38) by locally closed subschemes Grλ

′
G,x(FG)∩S0Rπ

with λ ′ ≤ λ, where λ ′ ∈ Λ+. The ∗-restriction of A−w0(λ) under

Grλ
′
G,x

(
FG
)

↪→ Gr
λ

G,x

(
FG
)

(3.84)

is a constant complex placed in usual degree ≤ − dim Grλ
′
G,x(FG) = −〈λ ′, 2ρ̌〉, the inequal-

ity is strict unless λ ′ = λ. From (3.32) and Proposition 3.11, we get

− dim x,0 BunRπ − 〈λ ′, 2ρ̌〉 + 2dim
(

Grλ
′
G,x

(
FG
) ∩ S0Rπ

) ≤ − dim x,µ BunRπ . (3.85)

So, Kµ is placed in perverse degrees ≤ 0. If µ − i(λ) does not vanish in π1(Gad), then, by

Proposition 3.11, Kµ is placed in strictly negative perverse degrees.

If i(λ) − µ vanishes in π1(Gad), let λ ′ ∈ Λ+ be such that λ ′ ≤ λ and µ = i(λ ′). Then

only the stratum (3.39) could contribute to the 0th perverse cohomology sheaf of Kµ. For

µ < i(λ) it does not contribute, because the restriction of q∗R(B
0)�̃A−w0(λ) to (3.39) is a

nonconstant local system by Lemma 3.16.

If µ = i(λ), then (3.39) is a point scheme by Proposition 3.11, and the description

of Ki(λ) follows from the automorphic property of AẼ. �

3.12 Properties of the Bessel category

For λ ∈ Λ+
B the perverse sheaf Bλ is not always the extension by zero from x,λ BunRπ . For

example, take λ = (1, 1) and µ = (1, 0). An easy calculation shows that, over x,λ BunRπ

∪x,µ BunRπ , B
λ is a usual sheaf placed in cohomological degree − dim x,λ BunRπ .

Now we can show that the category PL(x,∞BunRπ) is not semisimple. Recall the

stack a1
x BunRπ (cf. Remark 3.7). Let λ = (1, 1) and µ = (1, 0). We have a sequence of open

embeddings

x,λ BunRπ

j
↪→ 1

x,λBunRπ

j̃
↪→ x,λBunRπ , (3.86)
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where j is obtained from the affine open embedding W aldx,1π ↪→ W aldx,≤1π by the base

change

1
x,λBunRπ −→W aldx,≤1π . (3.87)

Set Bλ,µ = j̃!∗j!(Bλ |
x,λ BunRπ

). We get an exact sequence in PL(x,∞BunRπ):

0 −→ K −→ Bλ,µ −→ Bλ −→ 0. (3.88)

If PL(x,∞BunRπ) was semisimple, it would split; this contradicts the fact that the ∗-re-

striction of Bλ to x,µ BunRπ is not zero.

3.13 Geometric Casselman-Shalika formula

Recall that we write Vµ for the irreducible representation of Ǧ of highest weight µ. Let E

be a Ǧ-local system on Spec k equipped with an isomorphism

VωE −̃→


Ẽ⊗2
x̃
, the nonsplit case, π(x̃) = x,

Ẽx̃1
⊗ Ẽx̃2

, the split case, π−1(x) =
{
x̃1, x̃2

}
.

(3.89)

We assign to E the ind-object KE of PL(x,∞BunRπ) given by

KE = ⊕ λ∈Λ+

〈λ,ν̌〉=0
Bi(λ) ⊗ (Vλ)∗

E
, (3.90)

where ν̌ ∈ Λ̌ is that of Theorem 3.10. For a representation V of Ǧ write AV for the object

of Sph(GrG,x) corresponding to V via the Satake equivalence Rep(Ǧ)→̃ Sph(GrG,x).

One formally derives from Theorem 3.10 the following.

Corollary 3.18. For any V ∈ Rep(Ǧ), there is an isomorphism αV : H(AV , KE)→̃KE ⊗ VE.

For V,V ′ ∈ Rep(Ǧ) the following diagram commutes:

H
(
AV ′ ,H

(
AV , KE

)) αV

η

H
(
AV ′ , KE ⊗ VE

)
αV ′⊗id

H
(
AV⊗V ′ , KE

) αV⊗V ′
KE ⊗ (V ⊗ V ′)E

(3.91)

where η is the isomorphism (2.24). �
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3.14 Multiplicity one

One may view GrGπ,x as the ind-scheme classifying a Gπ-bundle FGπ on X together with

a trivialization FGπ→̃F0Gπ
|X−x. This yields a map GrGπ,x → x,∞BunRπ .

Theorem 3.10 holds also in the case of a finite base field k = Fq. In this case we

have the Bessel module BMτ introduced in Section 1.1, which we now view as the space

of functions onGπ(Fx)/Gπ(Ox) that change by τ under the action of Rπ(Fx). Let Bλ denote

the restriction under

Gπ
(
Fx
)
/Gπ

(
Ox
) −→ x,∞BunRπ(k) (3.92)

of the trace of Frobenius function of Bλ. Then {Bλ, λ ∈ Λ+
B} is a base of BMτ. From Theo-

rem 1 it follows that BMτ is a free module of rank one over the Hecke algebra Hχc .
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