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On the functional equation f(p(z)) =g(q(z)),

where p and q are "generalized" polynomials

and / and g are meromorphic functions

S. A. Lysenko

Abstract. We find all the solutions of the equation f(p{zj) = g(q(z)), where p
and q are polynomials and / and g are transcendental meromorphic functions in C.
In fact, a more general algebraic problem is solved.

Introduction

0.1. Motivation. This paper (like [3]) arose as an extension of the following result
due to Flatto [1].

Let p, q € C[z] be polynomials of the same degree. Let

fop = goq, (1)

where / and g are non-constant entire functions in C. Then one of the following
two properties holds:

(i) p(z) = Xq{z) + a, where A, a e C;
(ii) p(z) = r(z)2 + a, q(z) = br(z)2 + cr(z) + d, where r(z) is a polynomial and

a,b,c,deC with 6 ^ 0 .
Flatto raised the question ([4], Question 5) of whether an analogue of his theorem

exists in case degp ^ degq. The same question arises in the case when / and g are
not entire, but meromorphic functions (in C or only in a deleted neighbourhood of
infinity). Partial results in connection with Flatto's problem were obtained in [11],
[2], [12] and [3] (a survey of most of these results can be found in [2]). The aim
of this paper is to describe all the pairs p, q for which there exist non-constant
meromorphic functions / , g that satisfy equation (1) and such that there do not
exist rational / , g with this property (in fact a more general problem is solved;
see §0.2 and § 1).

Equation (1) is also related to the following interesting problem: describe the
equivalence relations R on C such that

1) R as a subset of C2 is the union of a sequence of algebraic curves, and
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2) there exists a non-constant meromorphic function in C that is constant on
the equivalence classes of R.

Such an equivalence relation can be considered as a generalization of the discrete
group of biholomorphic automorphisms of C. (A discrete group F defines an equiv-
alence relation z ~ w if z = 7(11;) for some 7 € F; this equivalence relation satisfies
properties 1) and 2).)

Assume that the pair p, q gives a solution of equation (1) (with meromorphic / , g).
Then it corresponds to an equivalence relation Rp,q.

Let

Rp = {(z,u) E C2 I p(z)=p(u)}, Rq = {(«,«) 6 C2 I q(z) = q(u)}.

We define Rp>q as the equivalence relation generated by Rp and Rq. The properties 1)
and 2) hold for it. In some sense Rp<q arises from the action of the group F generated
by 2 H hp(z) := p~1{p(z)) and z t-¥ hq(z) := q~1(q(z)). We notice that hp and
hq are holomorphic only in a neighbourhood of infinity, so that F is the group of
germs of holomorphic maps (C, 00) -»• (C, 00).

0.2. Statement of the problem. Let (X, oox) and (Y, ooy) be compact Riemann
surfaces with marked points oox G X and ooy G Y. We shall frequently write oo
instead of oox, ooy. Let p : (X, oo) -t (Y, oo) be a holomorphic map. We shall call
it a generalized polynomial if p~1({oo}) = {00}.

We shall study equation (1) in the case when p : (X,oox) —• (Y,OOY) and
<7: (X, oox) —• (•£, oo^) are generalized polynomials and / and g are meromorphic
functions in deleted neighbourhoods of ooy and 00z, respectively. A meromorphic
function on a compact Riemann surface W will be called a rational function on W
(this agrees with the terminology used in algebraic geometry.) The problem is to
find all the pairs p, q for which there exist non-constant / , g satisfying (1) and for
which there do not exist rational / , g with this property. In fact a more general
algebraic problem, formulated in § 1, will be solved.

0.3. Main result. There are several standard solutions of equation (1).

Example 1. Let p(z) = zn, q(z) = (z + l ) m , where n, m, lcm(n,m) G {2,3,4,6}.
Then there exist non-constant functions / , g, meromorphic in C and satisfying (1),
and there do not exist rational / , g with this property.

Remark 1. Every diagram of generalized polynomials

(X.oo)

(Y.oo)
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such that gcd(degp, degg) = 1 can be completed to a diagram of generalized
polynomials

(W,oo) > (Z.oo)
pi

(X,oo) > (Y,oo)
V

in which degpi = degp, deggi = degg, and this is unique up to a canonical
isomorphism. In fact W = WQ, where Wo is the normalization (desingularization)
of the analytic curve X xYZ = {(z,x) 6 Z x X \ q(z) = p(x)}. (If degp and
deg q are relatively prime, then Wo has only one point over ooy, and thus Wo is
connected. Hence Wo -> X and Wo -+Y are generalized polynomials.) We notice
that if X, Y, Z are of genus 0, then, as a rule, W is of non-zero genus.

Example 2. Let p, q be the pair of polynomials from Example 1, degp = n,
deg? = TO. Let h: (Y,oo) ->• (CP\oo), r: (Z,oo) -» (CP^oo) be generalized
polynomials, deg/i = a, degr = /3. Let gcd(a,n) = gcd(/?,m) = gcd(a,/3) = 1.
Using Remark 1, we obtain a commutative diagram of generalized polynomials

1IT to n 91 rr

in which degri = degr2 = /3, deg/ii = degh2 = a, degpi = n, degqi = TO.
Let s : (X, oo) —> (W, oo) be an arbitrary generalized polynomial. We set

p = Pi o r2 o s, q = q\ o /i2 o s. Then the pair p, q gives a solution of our
problem.

All solutions are obtained in this way. (For example, in case degp = deg q this
means that h, hi, h2 and r, n , r2 are isomorphisms, so that in fact p = po s and
q = qoS.)

0.4. The structure of the paper. In § 1 we replace the original problem by a
more general algebraic problem, which is what we actually solve, and we formulate
the corresponding results. We define irreducible pairs of generalized polynomials
and divide the results into two parts. In § 3 we reduce the problem to the study
of irreducible pairs. In § 4 we proceed to the proper study of irreducible pairs and
also formulate the fundamental group-theoretic lemma that plays a central role in
the proof of the main result. This lemma is proved in § 5.

0.5. Conventions. All Riemann surfaces are assumed to be connected. We recall
that the following three notions are equivalent: a compact Riemann surface, a
smooth connected projective algebraic curve over C, a finitely generated field over C
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of transcendence degree 1. We identify a point of a curve and the corresponding
valuation of the field of rational functions on this curve.

0.6. Thanks. I express my deep appreciation to V. G. Drinfel'd for useful advice
and his constant interest in this work.

§ 1. Statement of results

We denote by 3 the group of (all) germs of conformal maps (CP1, oo) ->• (CP1, oo).

Definition. Let F be a subgroup of 3. We will say that F is discrete if there exists
a non-constant function F, meromorphic in a deleted neighbourhood of infinity
in C, such that F(g(z)) = F(z) for all g 6 F.

A necessary condition for a group F to be discrete was obtained in [3] using
the results of local holomorphic dynamics [13]. This condition will be a funda-
mental method for proving our theorems. For g e C((^)) we write ordoojj = n if

\ an? O.We set

Then 3 D 3i D 3o D 3_i D . . . , and 3k is a normal subgroup of 3. If F C 3 is a
subgroup, then we will write Ffc = F D 3/t, k ^ 1.

Theorem 1 [3]. Let F C 3 be a discrete subgroup. Then:
1) at most one of the quotient groups Ffc/Ffc_i (k ^ 1) is not trivial;
2) for allk < 1 the group Tk/Tk-i C 3fc/3fc_i ~ (C, +) is a discrete subgroup of C.

Definition. A subgroup F C 3 is said to be formally discrete if F satisfies
conditions 1) and 2) of Theorem 1.

Remark 1. The quotient group F/Fi is not considered in Theorem 1.

Remark 2. Let F C 3 be a subgroup. If F is not soluble, then its orbits are dense
in domains with infinity on the boundary (see [14]). Therefore if F is discrete,
it is soluble. If F t is soluble, then it is Abelian (see [3], p. 68, Proposition 2.1).
This proves part 1) of Theorem 1. In order to prove part 2) we use the following
fact from local dynamics. Let g 6 3i. If g is not embeddable in a flow, then the
centralizer of g in 3i is isomorphic to Z, and if it is embeddable in a flow, then it
coincides with the corresponding flow (see [13], p. 26, Theorem 3, as well as p. 23,
Theorem 1).

Let X be a Riemann surface and oo a point of X. We denote by 3(X, oo) the
group of germs of conformal maps (X, oo) —> (X, oo). The choice of local parameter
at the point oo € X enables us to identify 3(X, oo) and 3. Let Y be another
Riemann surface and assume that / holomorphically maps a deleted neighbourhood
of infinity in X into Y. Then we define a group T/ = {g € 3(X, oo) | / o g = / } .

We consider a pair of compact Riemann surfaces X, Y with marked points
oo € X, oo G Y. We recall that a generalized polynomial is a holomorphic map
p : (X, oo) -» (Y, oo) such that p~1({oo}) = {oo}. It is easy to verify that if p is a
generalized polynomial, then Tp is a cyclic group of order degp.
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We consider the following diagram of generalized polynomials:

967

(2)

(Y,oo) (Z,oo)

Let / and g be non-constant meromorphic functions in deleted neighbourhoods
of infinity in Y and Z, respectively. We assume that

= goq. (3)

Then Tp and Tq generate a discrete subgroup of 3(X, 00). Conversely, if Tp and Tq

generate a discrete group, then there are functions / and g as above for which (3)
holds.

In fact in this paper we find all the pairs of generalized polynomials p and q for
which Tp and Tq generate an infinite formally discrete group.

Remark 3. We denote by 3 the group of all formal diffeomorphisms (CP1,oo) ->
(CP1,CXD), that is, 3 = {z t-+ axz + a0 + a-iz"1 + ••• | a» 6 C,Oi 7̂  0} with
composition as the operation. The subgroups 3j C 3 are defined just like the
3k C 3. We have 3 C 3. If F C 3 is a subgroup such that F <(. 3, then one can no
longer say that the group F is discrete, but one can talk about formal discreteness.
In this sense formal discreteness is an algebraic property of F.

Everywhere we shall denote by M(X) the field of meromorphic functions on the
Riemann surface X.

Let p : (X, 00) —¥ (Y, 00) be a generalized polynomial. Then ?V[(Y) c M(X).
Let F be an intermediate field, that is, M(Y) C F C M(X), and let W be a model
for it, that is, a compact Riemann surface such that F is isomorphic to M(W)
over C. We obtain a commutative diagram

W

We set oow = Pi(oox). Then pi : (X,00) -> (W,00) and p2 : (W,00) ->• (Y, 00)
will be generalized polynomials.

The following theorem can be considered as a description of the rational solutions
of the functional equation (3).
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Theorem 2. Assume that diagram (2) is given. Then there are two alternatives.
1) There exists a commutative diagram of generalized polynomials, unique up to

isomorphism,

(Z.oo) (4)

(W,oo)

such that deg/ = gcd(degp, degg), degg = (degpx^deggi). Here the groups Tp

andTq generate the group Tgof, M(Y)nM(Z) = M(W), M(V) is the compositum
of the fields M(Y) and M(Z).

2) Tp andTq generate an infinite non-Abelian subgroup of 3(X,oo); in this case

The following theorems describe the pairs of generalized polynomials p, q for
which Tp and Tq generate an infinite formally discrete subgroup of 3{X, oo).

Proposition 1. Assume that diagram (2) is given. Then among the fields F such
that M(Z) C F C M(X) and F D M(Y) ^ C, there is a smallest by inclusion. We
denote it by Fq<p.

Remark 4. Prom the geometric point of view this means that there exists a
commutative diagram of generalized polynomials

X L«,p

I I
Y > Y

such that 92 ° <k = <7> and the following universal property holds. For every
commutative diagram of generalized polynomials

£__> x' —i-X

{' I
Y • Y'

such that hog = q, there exists a unique holomorphic map f: X' -* XqiP with the
property / o g = qx.



On the functional equation f(p{z)) = 9(9(2)) 969

Definition. The pair p, q in diagram (2) is said to be irreducible if Fp<q = FqtP =
M(X).

Remark 5. Assume that the pair p, q in diagram (2) is irreducible and that degp,
degq > 1. Then M{Y) n M(Z) = C.

Example. We set X = CF1, p(z) = zn, q{z) = {z + l ) m , where n, m axe natural
numbers. Then the pair p, q is irreducible.

For each pair of generalized polynomials (2) one can canonically construct an
irreducible pair in the following way. We set F = Fp,q (1 Fq>p, Fi — M.(Y) n F,
F2 = M(Z) n F. We denote the compositum of FPi? and F9iP by K. We obtain the
diagram of fields

M(X) D K D FqtP D
u u u

F P l , D F D F2

u u

M{Y) D Fi

It corresponds to the following commutative diagram of generalized polynomials:

We call diagram (5) the canonical diagram.
It follows from the definition of Fp<q (see Proposition 1) that the compositum

of the fields F and M(F) is equal to Fp,q. Analogously, Fq>p is the compositum of
the fields F and M(Z). It follows from Theorem 2 that deg/i = deg/ii = deg/12,
degr = degn = degr2, degpi = degp, deggj. = degg, gcd(deg/i,degp) =
gcd(degr,deg9) = gcd(deg h, deg r) - 1.

Proposition 2. The pair p, q is irreducible.

Proposition 3. Assume that a diagram (2) is given such that M(F) flM(Z) = C.
Let p, q be the corresponding irreducible pair of generalized polynomials. Then the
following conditions are equivalent:

(i) Tp and Tq generate a discrete subgroup of3(X, 00);
(ii) Tp and Tq generate a discrete subgroup of 3(W, 00).
This assertion remains valid if "discrete" is replaced by "formally discrete".
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Theorem 3. We consider a diagram (2) such that the pair p, q is irreducible and
degp, degg > 1. Assume that Tp and Tq generate a formally discrete group.

Then there exists a commutative diagram

{Y,oo) <-£— (A-.oo) —*-> (Z,oo)

(OP1 ,oo) <-^— (CP1,oo) —£-»• (CP\oo)

in which the vertical arrows are isomorphisms and the pair p\, q\ is the following
standard pair of polynomials: pi(z) = zn, qi{z) = (z+l)m, where n,m, lcm(n,m) €
{2,3,4,6}.

Conversely, the pair pi, q\ is irreducible, TPl andTqi generate a discrete subgroup
of3, C(pi)nC(ft) = C.

Our main result, stated in the Introduction, follows from Theorems 1-3 and
Propositions 1-3.

§ 2. Algebraic technique
Let X be a compact Riemann surface and oo a point of X. The valuation of the

field M(X) that corresponds to the point oo will be denoted by the same symbol oo.
We denote by M(X)oo the completion of M(X) at oo. Let p: (X,oo) -> (Y,co) be
a generalized polynomial. The restriction of oo to M(Y) is denoted by the same
symbol. It is known that M(X)oo is a cyclic Galois extension of degree degp of
the field M(y)oo. To each g € 3(X, oo) we assign the automorphism of M(X)oo,
defined by the formula (gf)(x) = f(g~1x), f € M(X)oo. Thus we have obtained
an embedding of 3(X, oo) into the automorphism group of the topological field
M(-X")oo over C. This embedding also induces an isomorphism between Tp and
Gal(M(X)oo/M(y)oo). In what follows we shall identify these two groups.

Lemma 1. Let X and Y be compact Riemann surfaces, f:X-+Y a holomorphic
n-sheeted cover. Let g: W —> Y be the smallest Galois cover that passes through X:

X

Let f~1(yo) — {xi,.-.,Xk} C X for yo 6 Y. We assume that the multiplicity of f
at Xi is equal to U, and g(u>o) — J/o for WQ € W.

Then the multiplicity of g at w0 is equal to lcm(Z1 , . . . ,lk).

The following explicit construction of W is useful in the proof. Let A CY be the
set of critical values of / . We set Y' = Y \ A, X' = X \ f'^A). We denote by Z'
the set of pairs (y,v), where y £ Y' and tp: f~l{y) -> {1 , . . . ,n} is a bijection.
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We denote by g the map from Z' to Y' that maps (y,<p) to y. A complex structure
is introduced on Z' in a natural way. The group Sn acts on Z' by biholomorphic
transformations, and this action is transitive on the fibres of g. Let Z be a smooth
compactification of Z' and W the connected component of Z. Then g: W —t Y
will be the desired Galois cover.

The rest of the proof is omitted.

Corollary- Let p: (X, oo) —> (Y, oo) be a generalized polynomial, let K be a finite
Galois extension ofM(X) such that K is not ramified over oo 6 X. Let L be the
smallest Galois extension ofM(Y) that contains K.

Then L is also unramified over oo e X.

We consider the diagram (2) of generalized polynomials. We fix an algebraic
closure M(X). We construct a tower of fields k™, k™ C M(X), m > 0, in the
following way. We set k° = k° = M(X). Let k™ be the smallest Galois extension
of M(Y) that contains k™"1, and k™ the smallest Galois extension of M(Z) that
contains k™"1. By induction we check that k™ D k™"1 and k™ D k™"1. We set
E = | Jm k™ = (Jm k™. Then £ C MpQ is a subfield that contains M(X) and
is normal over both M(Y) and M(^). It is clear that E C M(X) is the smallest
subfield with this property.

Lemma 2. For every m Js 0 £/ie /jeWs k™ and k™ ore unramified over oo € X.
Therefore E is unramified over oo € X.

Proof. Apply the preceding corollary.

We fix a place oo' of E over oo € X. The choice of oo' gives an embedding
E "-> M(X)oo = £<»' over M(X). Since 2? is normal over M(X), the image of E
in M(X)oo does not depend on the choice of oo'.

We set Gp = Gal(E/M(Y)), Gq = Gal(E/M(Z)), U = Gal(E/M(X)).
We denote by G the subgroup of Auti? generated by Gp and Gq. It is well

known that for every valuation u of M(X) (trivial on C) the action of U on the set
of places of E over u> is transitive.

We denote the set of places of E over oo by S. The groups Gp and Gq act on 5,
and therefore G also acts on S. The action of U on 5 is free, since E is unramified
over oo, and transitive, as explained above.

It is known that the assignment of a £ Gal(M(X)00/M(y)00) to its restriction
to E C E^ = MiX)^ defines an isomorphism

Tp = Gal(M(X)0O/M(F)oo)^{5 € Gp | poo' = oo'}.

Analogously we have an isomorphism:

Tq = Gal(M(X)00/M(Z)00)-^{3 e Gq | 500' = 00'}.

Let F be the subgroup of AutM(X)oo generated by Tp and Tq.
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Lemma 3. 1) For every g G Gp (respectively, g G Gq) there exist unique h € Tp

(respectively, h €.Tq) and a G U such that g = ha.
2) Restriction to E defines an isomorphism

€G\ goo' = oo'}.

3) For every g G G there exist unique heT and a eU such that g = ha.

Proof. Assertion 1) follows from the facts that S is identified with Gp/Tp or Gq/Tq

and that the action of U on 5 is free and transitive.
We shall prove assertions 2) and 3). We have a homomorphism / : F -t {g G G \

goo' = oo'}. It is injective, so that E is dense in M(X)oo- It follows from 1) that
for any j 6 G there exist h G F and a G U such that g — f(h)a. Such h and a are
unique since the action of U on 5 is free. If goo' = oo', then a — 1, so that / is
surjective.

Remark 1. We shall consider Tp, Tq and F as subgroups of G. At the same time,
F can be considered as the subgroup of 3(X, oo) generated by Tp and Tg. In view
of Lemma 3 we have a bijection G/U O F. The group U acts on G/U by left
translations, and hence U acts on the set F, without preserving the group structure
on F. This action plays a decisive role in this paper and has the following analytic
meaning. The elements of F can be considered as germs of algebraic functions at
oo G X. Analytic continuation along closed paths defines the monodromy action
of H on F, where H is the inverse limit of the groups 7Ti(X \ S, oo), 5 C X \ {oo},
# 5 < oo. There is a canonical homomorphism f:H-iU with a dense image,
and the monodromy action of H on F arises from the action of U on F. Thus, the
action of U on F is an algebraic version of the monodromy action used in § 4 of [3].

Remark 2. We notice that £ is a field of transcendence degree 1 over C, and, in
general, E is not generated over C by a finite number of elements. At the same time
there exists a finite subset A C E such that every subfield E' of E that contains
A and is invariant under Autc E coincides with E. (Let A be the set of generators
of M(X) over C. Then E is generated by U9er 9A over C.) Fields with such
properties were studied in [5].

We now consider the following abstract situation. Let G be an abstract group and
let U and F be subgroups of G. Let G = TU, FnC/ = 1 (then UT = (Ft/)-1 = G).
We obtain a bijection F «-> G/U. The group G acts on G/U by left translation and
therefore G acts on F.

Lemma 4. Let A and B be subsets ofT.
1) // A is invariant under the action of U, then A~l is also invariant.
2) A is invariant &UAC AU •& AU cUA<*UA = AU.
3) // A and B are invariant, then AB is also invariant.

Proof. It is clear that A is invariant •» UA C AU and A'1 is invariant <=> UA~X C
A'1 U <& AU C UA. Therefore, in order to prove 1) and 2) it suffices to show
that if UA C AU, then AU C UA. Let a G A, a £ U. Then aa = a'a' for some
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a' eU,a' G T. We claim that a' G A: a' = (a'^aa G U AU C AUU = AU. Thus,
a ' e AUnT = A.

In order to prove 3) we notice that if UA C AU and UB C BU, then C/AB C
C ABU.

Lemma 5. Let A C F fee a subgroup. Then the following conditions are equivalent:
1) t/A is a subgroup;
2) At/ is a subgroup;
3) A is invariant under the action ofU.

Proof. Conditions 1) and 2) are equivalent, because AU = (UA)^1. 1) means
that UAU A C UA and (UA)~1 C UA. Each of these inclusions is equivalent to
AU C UA, that is, it is equivalent to condition 3).

In § 5 we shall need the following description. Let Ai,... ,Ak,B1: , B n C T
be [/-invariant subsets.

Definition. A relation of the form

A1...Ak = Bl...Bn (6)

is a k + n-tuple

(ai,...,ak,bi,...,bn)€A1x---xAkxBiX---xBn

such that ai.. .ak = &i...bn.
We define an action of U on the set of relations of the form (6) in the following

way. Let or £ U and let (ai , . . . , ak, b\,..., bn) be a relation of the form (6). There
are unique a[ € A\ and o\ € U such that aa\ = a\o\. There are unique a2 € A2

and (72 € U such that o\ai = a2<72, and so on. We obtain a[ G A\,... ,a'k G Ak

and o\,..., ak G U such that aax... a* = a i . . . a'kak • In an analogous way, we find
b[ G B\,..., b'n G Bn and <fi,...,<?„ G U such that cr&i... bn — b[... b'nWn. Since
a\ ... ak = bi.. .bn, we have a[... a'ko~k = b[... b'nan, from which we find that
a'x ... a'k = b[... b'n. Thus (ai , . . . , a'k, &i,..., b'n) is a relation of the form (6). By
definition, a maps the set (ai , . . . , a*, &i,..., bn) into the set (ai , . . . , a'k, b[,..., b'n).
This is in fact an action, since for any i ^ h, j ^ n the product a[... a\ is the
result of the action of a on a\... ai G T = G/U and b[... 6'- is the result of the
action of a on 6i . . . bj.

§ 3. The canonical diagram

We need the following simple generalization of Artin's theorem from Galois
theory.

Lemma 6. Let K be a Galois extension of a field F, U = Ga\(K/F). Let G be a
subgroup ofAutK such that G D U and [G : U) = n. We setk = KG. Then K is
a Galois extension ofk, [F : k] = m, Gal(AT/k) = G.

The proof of this is a word-for-word repetition of the argument given in [6],
Chapter 7, Theorem 2.
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Proof of Theorem 2. Diagram (4), in which deg/ = gcd(degp, degg), degg =
(deg pi)(deg gi), is unique if it exists, because M(W) — M(Y)nM(Z) and M(V) is the
compositum of the fields M(Y) andM(Z). In fact, degpi = deg p/gcd(degp, degg)
and deggi = degg/gcd(degp,degg) are relatively prime. Therefore M(V) is the
compositum of the fields M{Y) and M(Z). Since [M(Y) : M(W)} = degg/ degpi =
degqi and [M(Z) : M(W)] = degpi are relatively prime, we have Jvl(W) =
M(Y)nM(Z).

In the rest of the proof we use the notation of § 2. If F is infinite then it is not
Abelian (if Tp and Tq commute, then T is finite). Obviously, M(F) D M(Z) = C in
this case.

If F is finite, then Fi is trivial, since 3i is torsion-free. Therefore F = F/Fi is
cyclic of order d = lcm(degp,degg). By Lemma 3 [G : U] = d. We set F = EG.
Using Lemma 6, we will obtain [M(X) :F] = d. It is clear that M(F)nM(Z) = F.
Let W denote a model of the field F. We have a diagram

(7)

We set ocw = r(°°x)- Passing to completions, we will find

D M{ZU

u u

MOT)*, D Foo

Since degr = d, we have [M(X)<x, : F^] ^ d. But [M(X)oo : M(y)oo] and
[M(X)oo : M(Z)oo] divide [MiX)^ : FTO]. Hence, d divides [M(X)oo : F*,]. There-
fore d = [M(X)oo : FQO], that is, r: {X, oo) -> (W, oo) is a generalized polynomial,
and po and go are also generalized polynomials. Moreover, Tp and Tq generate a
subgroup in Tr of order d, that is, they generate Tr.
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We notice that degpo = lcm(degp,degg)/degp and degq0 = lcm(degp,
degg)/deg<7 are relatively prime. Applying Remark 1 from the Introduction to
the diagram (Y, oo) -> (W, oo) <- (Z, oo), we obtain a commutative diagram

(V,oo)

(K.oo) (Z.oo)
(8)

in which V is the normalization of Y xwZ, degpi = deggo, degqi = degpo.
It follows from the definition of Y x ^ Z that the diagrams (7) and (8) can be
embedded in a diagram of the form (4).

Remark. On X there are two equivalence relations:

Rp = {(xux2) €X xX \p(x1)=p{x2)},

Rq = {(xi,x2) £ X x X | qfa) = q(x2)}.

We let R denote the equivalence relation that they generate. If F is finite, then it is
easy to show that R is an algebraic curve on X x X. The essential part of the proof
of Theorem 2 is the construction of the Riemann surface X/R. This was done using
Lemma 6 (in actuality we constructed the field 7/l(X/R)). The Riemann surface
X/R can also be constructed directly, using the results of Grauert [7]. In addition,
it is possible to construct the algebraic curve X/R in the framework of algebraic
geometry using Theorem 4.1 from p. 262 of [8].

Corollary. Letpi: (X,oo)
have a diagram of fields

(Fj,oo) be generalized polynomials, i e {1,2,3}. We

C M{X) D M(Y3)

U

M(Y2)

LetM(ri)nM(yj) / C / o r anyi, j . Then M(Fi) <1M(Y2) nM(y3) ^ C.
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Proof. By Theorem 2 the elements of TPi and TPj commute, and we have a diagram
of generalized polynomials

X

Pi P2

W

such that M(W) = M(Fi) n M(y2), Tpi and TP2 generate Tr. The elements
of Tr and TP3 commute. Applying Theorem 2 to the pair r, pz we will obtain

i n M(Yo) n M(Y"3) ?4 c.

Proposition 1 now follows immediately from this corollary.
We consider a commutative diagram of generalized polynomials

>r

T/,j is a subgroup of Th2. The right factor hi of the map /i2 is recovered from
the group Thl as follows: M(F) = M(X) nM(X)S ' • Thus, some subgroups of Th2

(not necessarily all subgroups) correspond to right factors of /i2.
We return to diagram (2). In § 1 the intermediate field M(Z) C F9tP C M(X)

was introduced. The following theorem indicates the subgroup of Tq corresponding
to this field. There exists a commutative diagram of generalized polynomials

lq,p

such that 92 o qx = q, M(X,,P) = Fq,p, M(YqiP) = FqtP n M(Y). We set Hq,p =
{a e T, | ra = <TT for all r e Tp}.

Theorem 4. T9l = ff,)P.

We need two lemmas to prove this theorem.
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Lemma 7. Let H C 3 be a finite subgroup. Then H is cyclic.

Proof. Since 3i is torsion-free, we have H D 3i = 1. Therefore, H ~ H/Hi <->
D/3i ~ C*. A finite subgroup of C* is cyclic.

We use the constructions and notation of § 2.

Lemma 8. Let L C F be a subset that is invariant under the action of U, that is,
uLU = LU for all utU. We set

NL = {aeTq\La = L}.

Then NL is a subgroup ofTq that is invariant under the action ofU.

Remark. The subgroups Tp and Tg of F are invariant under U.

Proof. It is clear that NL is a subgroup of Tq. In correspondence with Lemma 4 it
remains to prove that UNL C NLU.

Let a € NL, 7 G U, ja = a'y1, where a' € Tq, 7' € U. We will show that La'-L.
Using Lemma 4, we have LU C UL, and thus LUNL C ULNL C UL C LU.
Therefore La' - Ljaij')'1 C LU. On the other hand, La' C F and F D LU = L,
and hence La' C L. Since <r is of finite order, we have La' = L.

Proof of Theorem 4. We set L = TqTp. By part 3) of Lemma 4, L is [/-invariant. By
Lemma 8 we obtain a subgroup Ni ( = ./V) of Tq that is invariant under the action
of U. By Lemma 5, NU will be a subgroup of G, [NU : U] = #N. In addition,
M(Z) C ENU C M(X), [M(X) : ENU] = #./V. This means that N corresponds to
a right factor of q. Obviously, HqtP C N. We will show that Hq<p = N. We have
TpAT C TqTp. Let ra = a'r', where T,T' € TP, <T G N, a' e T?. Then

TqTpa' = ^TpffCr')-1 = TjTp^)- 1 = TqTp.

Thus, CT' G N. We have shown that TPN C iVTp, and hence, NTP is a subgroup
of F. By Lemma 7 A^rp is Abelian. Therefore TV C Hq,p.

We have proved that Hq<p corresponds to a right factor of q. Using Theorem 2,
it is easy to see that Hq<p corresponds to Fq>p.

By definition, the pair p, q in (2) is irreducible if FqiP = Fp<q = M(X). By
Theorem 4 this is equivalent to the property HPtq = HqiP — 1.

Example. We consider the pair of polynomials p(z) = zn, q(z) = (z 4- l ) m . We
have Tp = {z >->• ez | en = 1}, Tq = {z ^ Sz + (6 - 1) \ 6m = 1}. Now it is easy to
verify that Hp>q = Hq,p = 1, that is, the pair p, q is irreducible.

Lemma 9. We consider a diagram (2) in which M(Y) n M(Z) ^ C. Let K be an
intermediate field: (M(Y) n M(Z)) C K C M(F). Lei ̂  denote t/ie compositum
of K and M(Z). Then K n M(K) = K.
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Proof, We set F = M(Y) n M(Z). The corresponding diagram of fields has the
form

M{X) D K D M(Z)

U U U

M(Y) D K D F

By Theorem 2 [M(y) : F] and [M(Z) : F] are relatively prime. Therefore [K : F]
and [M(Z) : F] are also relatively prime, and hence, [K : K] = [M(Z) : F]. Prom
this it follows that pYt(Y) : K] and [K : K] are relatively prime, from which we
obtain tf = £ n M ( r ) .

Proof of Proposition 2. This follows immediately from Lemma 9.

Proof of Proposition 3. The assertion is non-trivial in the case of formal discrete-
ness. Using Theorem 2, it suffices to prove the following result.

Lemma 10. We consider a diagram of generalized polynomials

X

Y

P

z w
Let F be the group generated by Tv and Tq, and let T' be the group generated by
Tpor anrf Tgor • F is formally discrete if and only if I" is formally discrete.

Proof. We set 3(X,Y,oo) = {(9X,9Y) | 9X € 3(X,oo), 9Y G 3(y,oo), J y o r =
r o j x } . Then 3(-X",y, oo) is a subgroup of 3(X,oo) x 3(Y,oo). We consider the
projections TT: 3(X,F,OO) -»• 3(7,oo) and j : 3(-X",Y,oo) ->• 3(X,oo). It is easy
to verify that n is surjective, Ker7r = TT and j is injective, Tpor = J^vr"1^)),
T,or = jOr-^T,)). Therefore T' = j ^ - ^ F ) ) .

We choose a meromorphic function of z in a neighbourhood of oo € Y with
a first-order pole at oo (so that z~x is the local coordinate at oo). We choose an
analogous function of C in a neighbourhood of oo € X so that r*(z) = Cn, n = degr
(that is, in terms of z and £ the map r is written as z = £")• Then the elements
gx S 3(JC, oo), ^y € 3(y, oo) can be written in the form

9x(Q =
*=-i
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Further, the relation gy ° r = r o gx acquires the form
oo \ n oo

,*—-kn
/ oo \ n oo

(E «f) - E
^j=-l / k=-l

that is,
oo

. _ „ \l/n

ijC = C(o-i + &oC + &iC H ) •

Now it is clear that the subgroup F C J(Y, oo) is formally discrete if and only if
j(7r~1(F)) is formally discrete.

This proves Lemma 10, and also Proposition 3.

§ 4. Irreducible pairs of generalized polynomials

Theorem 5. We consider a diagram (2) in which the pair p, q is irreducible and
degp > 1, degg > 1. We denote by T the group generated by Tp and Tq. Assume
that Fi is Abelian. We set n = degp, m = degq, p(z) = zn, q(z) = (z + l ) m ;
p , g 6 C[z]. Let F be the group generated by Tp and Tq.

Then there exists an isomorphism ip: F-̂ >F such that <P\TP'- Tp^Tp, ip\xq '•
Tq^Tq and (/JII^: Fi-^Fi are also isomorphisms. Moreover, F is formally discrete
if and only if F is formally discrete.

For the proof we shall need the following fact. Let A; be a natural number. We
denote by <7*k+i the time-£ transformation for the flow of the holomorphic vector
field zk+1-^. This is a germ of a conformal map (C, 0) - • (C, 0). The set of germs
G{k) = {Ag*fe+, | A G C*,t G C} forms a group under composition. We abbreviate
Aff't+i to (A,t). Then the multiplication table for G(k) has the following form:

The subgroup C(k) = {A G C | A* = 1} is the centre of G(k). We set Gd(k) =
{Xg^k+i S G(k) | Ad = 1}. Then G,t(k) is a subgroup of G{k). It is easy to verify
that if h G Gk (k) is an element of finite order, then h G C(k).

Theorem A ([9], Theorem 2.2, p. 66). A finitely generated non-Abelian soluble
group of germs of conformal maps (C, 0) -> (C, 0) is formally equivalent to a finitely
generated subgroup of G(k) for some k.

Proof of Theorem 5. We set d = lcm(n,m). We choose a local parameter z
at oo G X and identify J(X, oo) with the group of germs of conformal maps
(C,0) -> (C,0). By Remark 5 of § 1 M{Y)nM(Z) = C. By Theorem 2 F is
non-Abelian. On the other hand Fi is Abelian and therefore F is soluble. By
Theorem A, F is formally equivalent to a subgroup of Gd(k) for some k. We have
Tp n Gk(k) C C(k), Tq n Gk(k) C C(k). By Theorem 4, Hp>q = Hq<p = 1, and
therefore Tp n Gk(k) = Tq D Gk(k) = 1. Hence gcd(n,fc) = gcd(m,fc) = 1, and
hence gcd(d, k) = 1. We define a map / : Gd(k) -»• Gd(l) by the formula
Aff'k+i "->• A*</*2. The condition gcd(d, k) = 1 implies that / is bijective. The
multiplication table (9) shows that / is an isomorphism.
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Let hp (respectively hq) be a generator of Tp (respectively Tq). Let eg^, Sg^l
be the elements of Gd(l) corresponding to hp and hq; then e (respectively S) is
a primitive nth root of unity (respectively a primitive mth root of unity). Using
conjugation in G<j(l) we may assume that ti = 0. Then t2 ^ 0. We notice that
the map Ap*2 *-* A^* (c 6 C*) is an automorphism of Gd(l). Finally the pair of
generators takes the form e, Sg1^. It is clear that F is formally discrete if and only
if F is formally discrete.

Lemma 11. We set p(z) = zn, q(z) = (z + l ) m , n,m ^ 2. Let F be the
group generated by Tp and Tq. The group T is formally discrete if and only if
lcm(n,m) € {2,3,4,6}.

Proof. Let e (respectively, 6) be a primitive nth (respectively, mth) root of unity.
We have eFi = Fi, ST\ = Fi (here Fi is considered as a subgroup of C). Therefore
e27n/dpi c p i ; w n e r e d = lcm(n,m). Hence, the discreteness of F implies that
d e {2,3,4,6}. On the other hand, Fi C Z[e27ri/d], and if d € {2,3,4,6}, then Fi
is discrete and F is formally discrete.

Corollary. Under the hypotheses of Theorem 5 the group F is formally discrete if
and only t/lcm(n,m) G {2,3,4,6}.

Lemma 12 (the fundamental group-theoretic lemma). We set p(z) = zn, q(z) =
(z + l ) m , n, m ^ 2. Let T be the group generated by Tp and Tq. Let G be an
abstract group, and let U be a subgroup ofG. Assume that F is embedded in G and
TU = G, TnU = 1. We assume thatTpU andTqU are subgroups ofG. Let (n,m) €
Pi U P2 U P3, where Px = {{n,m) | n = m}, P2 = {(n,m) \ n = 2 or m = 2},
and P3 consists of the pairs (3,6) and (6,3).

Then there exists a subgroup U' of U such that [U : U'] < 00 and U' is a normal
subgroup ofG.

This lemma will be proved in the following section.

Remark. If lcm(n, m) € {2,3,4,6} and n, m ^ 2, then (n, m) € Pi U P2 U P3.

Theorem 6. We consider a diagram (2) in which the pair p, q is irreducible and
degp > 1, degq > 1. Let F be the group generated by Tp andTq. We assume that Y\
is Abelian. We set n = degp, m = degq, p(z) = zn, q(z) = (z + l ) m . //
(n,m) € Pi U Pi U P3, then there exists a commutative diagram

(y | 0 0) <_JL_ (x,oo) —*-> (Z,oo)

(CP\oo)

in which the vertical arrows are isomorphisms.

Proof. We use the notation of § 2. By Theorem 5 we can apply the group-theoretic
lemma to obtain a subgroup U' of U such that [U :U'] < 00 and U' is normal in G.
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The field Eu> is normal over both M(Y) and M(Z). Therefore Eu' = E, that is,
U' = 1- Thus, #1 / < oo, and we obtain a diagram

W

•

X

in which W is a compact Riemann surface, M(W) = E, r is a non-constant holomor-
phic map, po r and q o r are Galois covers. Since G C Aut W, we have # Aut W = oo,
and hence, the genus of W is equal to zero or one. G acts on the finite set
S = r"1 (oo) C W. If the genus of W is one, then the group {g 6 Aut W \ gw = w}
is finite for every point w 6 W. Therefore the group {g € AutW | gS = S}
is also finite. Thus, the genus of W is equal to zero.

We set Go = {g e G \ g(s) = s for every s G 5}. Then [G : Go] < oo, and
#Go = oo. This means that # 5 < 2. By Lemma 2, r is unramified over oo € X.
Assume that # 5 = 2. By part 2) of Lemma 3 we have T = Go- We may assume that
W = CP1, 5 = {0,oo}. Then r c {g <E AutCP1 | 5(0) = 0,5(00) = 00} ~ C*, and
hence F is Abelian, a contradiction. Thus, # 5 = 1 , that is, r is an isomorphism,
and p and q are Galois covers. This completes the proof.

Theorem 3 is a special case of Theorem 6.

§ 5. Proof of the fundamental group-theoretic lemma

The group-theoretic lemma was formulated in § 4.

Remark. The idea of the proof is to study the action of U on the set of relations of a
certain form in T. (This action was defined at the end of § 2.) We set A — Tp \ {id},
B = Tq\ {id}. We shall use relations of the form

BA = AB, (10)

and also of the form
A B A = BAB. (11)

Proposition 4. The fundamental group-theoretic lemma holds in the case n = m.

Proof. We set Gp = TPU, Gq = TqU, Up = {a 6 U,\ CTTU = TU for all r € Tp},
Uq = {a e U I aril = TU for all r € Tq}. The group Up is the kernel of the action
of Gp on Gp/U. Therefore Up is normal in Gp and [U : Up] < 00. Since Uq is
normal in Gq, it suffices to prove that Up = Uq (then Up will be a normal subgroup
of G).
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We set hp(z) = ez, hq{z) = ez + (e - 1). Here hp e Tp, ft, e T,, and e is a
primitive nth root of unity. We consider two cases.
Case 1: n is even.

(a) If n = 2, then U = Up = Uq, and there is nothing to prove.
(b) Assume that n ^ 4. We consider the set of relations of the form (10). If

/ty/ij? = hfyh!? then eh+h = eki+k* and eh - 1 = eki(ek* - 1).
Now it is easy to verify that the relations of the form (10) are exactly the

following:
h\h-l+^ = 4 + f h~\ (12)

where 21 ̂  0 mod n. We notice that all the hs
p (s ^ 0 mod ^) appear in the

right-hand sides of the relations (12). We shall show that Up = XJq. Assume that
a 6 Uq. Then a preserves each relation (12), and therefore a preserves Wp for every
i ^ 0 mod ^. Since a preserves Tp and id, a preserves hp'

2. Thus, a G Up.
Analogously, Up C Uq.
Case 2: n is odd.

Since Fi is Abelian, h~lhl
p and h~*hp commute. This gives relations

h%ti;h£ = h?>h;l>h;l\ (13)

where h ^ 0 mod n, h + l2 + h = 0 mod n. The relations of the form (11)
contain the relations (13). We shall not find all the relations of the form (11), but
we shall prove the following lemma.

Lemma 13. We assume that

%%h*hph*; luh^O modn. (14)

Then h ^ fci mod n (recall that n is odd).

Derivation of Case 2 from Lemma 13. We see from the formulae (13) that for any
li ^ 0 mod n, fci ^ 0 mod n, k\ ^ l\ mod n there exists a relation of the
form (14) with given h, ki. Let a € U, crhpU = h^U for some s, t. Then a
maps the set of relations of the form (14) such that hl

p
x = hp into the set of those

relations for which hl
p

l — hl
p. Therefore a maps the set {h?q \ j £ s mod n} into

the set m | j ' ^ t mod n}, and hence ahs
qU = hqU. Thus, for a G U we have

ah\V = hqll *> ah°pU = hl
pU. Therefore Up = Uq.

It remains to prove Lemma 13.
We set ai = hl

qhp
l. Then at{z) = z + (e1 - 1). Let h%h'*h]» = hfrhfrh**;

li,ki£0 mod n. Then fc2 + fc3 = h + 3̂- Hence,

that is, (e-'1 - l) + (e'2 - 1) = (ek2+k3 - 1) - (e*2 - l) . Therefore it suffices to
prove the following lemma.
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Lemma 14. Assume that n is odd, and that e is a primitive nth root of unity.
Then the equation

£7i + £T2 + £73 _ £K + 2 ( 1 5 )

has no solutions such that 71,72,73 ^ 0 mod n, where ^%,Hi G Z are unknown.

Proof. If fj, = 0 mod n, then e71 = e72 = e73 = 1, so that /x ̂  0 mod n. The idea
is to average over the action of Gal(Q(e)/Q).

We set K = U m Q ( ^ ) - ^or every m € N we define a Q-linear functional
Tm: Q(v /T) ->• Q by the formula

where H = Gal (Q(Vl) /Q) .
If m' I m, then ^mLfmVj-} = T"m'- Therefore the formula T\ o/™^-\ = Tm gives a

well-defined Q-linear functional T: K -> Q.

We recall that if j is a primitive mth root of unity, then TTQ (6) = fJ,(m),

where (j, is the Mobius function. Therefore TS = ^fct- We have

tp(l) = 1 = v>(2), ^(3) = ^(4) = ^(6) = 2,

ip(m) > 2 for TO ̂  1,2,3,4,6. Therefore for odd TO > 1 we have - 1 / 2 < TS < 1/2.
Applying T to (15), we find

= T(e71)

a contradiction.
This proves Proposition 4.

Propos i t ion 5. The fundamental group-theoretic lemma holds for n = 3, TO = 6.

Proof. Let w be a primitive 6th root of unity. We set hp(z) = CJ2Z, hq(z) =
uz + (w - 1). It is easy to show that in this case there are two relations of the
form (10):

hqhP = h2
ph

5
q, h\h\ = hphq. (16)

The group U acts on the set of these two relations. Therefore the set A —
{hq,h^} is [/-invariant. By part 3) of Lemma 4, A • A = {h%,h*,h% = id} is also
[/-invariant. We let T' denote the subgroup of F generated by Tp and {id, h2

q, h*}.
Then F' is invariant under U, and therefore G' = Y'U will be a subgroup of G.
Moreover, [G : G'] = [F : F'] < 00. By Proposition 4 the group-theoretic lemma
holds for G' (in this case n = m — 3). We will obtain a subgroup V of U such
that [U :U']<oo and U' is normal in G'. Now flggG/c 9U>9~1 w m b e t n e desired
subgroup of U.
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Proposition 6. The fundamental group-theoretic lemma holds for n = 2 and
arbitrary m.

Proof. Let a € Tp, a ^ 1. Then the group U preserves a, so that aTqo is
[/-invariant. We let F" denote the subgroup of T generated by Tq and oTqa. Then
G' = T'U is a subgroup of G, and [G : G'] = [T : V] < oo. By Proposition 4 the
group-theoretic lemma holds for G', and the desired subgroup of U is constructed
as in Proposition 5.
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