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Let T be a split torus over local or global function field. The theory of Brylinski–Deligne

gives rise to the metaplectic central extensions of T by a finite cyclic group. The rep-

resentation theory of these metaplectic tori has been developed to some extent in the

works of M. Weissman, G. Savin, W. T. Gan, P. McNamara, and others. In this paper we

propose a geometrization of this theory in the framework of the geometric Langlands

program (in the everywhere nonramified case).

1 Introduction

In this paper we propose a setting for a twisted (nonramified) geometric Langlands cor-

respondence for a split torus in the local and global case. Here ‘twisted’ refers to the

quantum Langlands correspondence as outlined in [13, 22] with the quantum parameter

being a root of unity.

In [23, 24] Weissman has proposed a setting for the representation theory

of metaplectic groups over local and global fields. In his approach the metaplectic

groups are central extensions of a reductive group by a finite cyclic group coming from

Brylinsky–Deligne theory [8]. Considering only the case of a split torus T , we first review

the approach by Weissman and prove some related results for automorphic forms over

these metaplectic groups in the form we need. This is our subject to geometrize.
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Twisted Geometric Langlands Correspondence for a Torus 8681

In the geometric case we work with Q̄�-sheaves to underline a relation with the

results on the level of functions (a version for D-modules should also hold as in [22]).

Let k be an algebraically closed field. In the local case, for F = k((t)), we consider central

extensions 1→ B(μn)→ E→ T(F )→ 1 coming from Heisenberg κ-extensions of [6]. We

construct a category of perverse sheaves equipped with an action of E , which is a geo-

metric analog of the corresponding irreducible representation on the level of functions.

In the global case, we start with a smooth projective curve X over k. Let BunT be

the stack of T-torsors on X. We explain how the Brylinski–Deligne data yield a μn-gerbe

B̃unT,λ→BunT . For an injective character ζ : μn(k)→ Q̄∗� let Dζ (B̃unT,λ) be the derived

category of Q̄�-sheaves on B̃unT,λ on which μn(k) acts by ζ . We define Hecke functors

on this category leading to the problem of the corresponding spectral decomposition.

Finally, for each spectral parameter E we find a Hecke eigen-sheaf KE corresponding

to this parameter and irreducible (over each connected component). It is expected to be

unique, but this is not proved yet.

The sheaf KE is a local system. We expect that for E trivial it coincides with

the Heisenberg local system constructed by Bezrukavnikov et al. in [7] (in the setting

of D-modules), but we could not check this. Our result should also be related to the

equivalence of categories of modules over some sheaves of twisted differential operators

on abelian varieties obtained in [20].

2 Main Results

2.1 Notations

For a central extension of groups 1→ A→ E→G→ 1 we denote for a, b∈G by (a, b)c ∈ E

the commutator. If ã, b̃∈ E are over a, b∈G, then

(a, b)c= ãb̃ã−1b̃−1.

Call a map c: G × G→ A alternating if c(a, a)= 1 for all a∈G. If G is abelian, then

(a, b)c ∈ A, and the map (·, ·)c : G × G→ A is bimultiplicative, alternating, and satisfies

(a, b)c(b, a)c= 1 for a, b∈G.

Let k be an algebraically closed field of characteristic p≥ 0 (everywhere except in

Section 3, where we assume k= Fq). Pick a prime � invertible in k. Let Q̄� denote an alge-

braic closure of Q�. All our schemes or stacks are defined over k. For an algebraic stack

S locally of finite type write D(S) for the category introduced in [16, Remark 3.21] and

denoted by Dc(S, Q̄�) in [16]. It should be thought of as the unbounded derived category of

constructible Q̄�-sheaves on S. Our convention is that a super line is a Z/2Z-graded line.
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8682 S. Lysenko

Let X be a smooth projective absolutely irreducible curve over k. Write g for the

genus of X. For an algebraic group G over k write B(G) for the stack quotient of Spec k

by G. Denote by BunG the stack classifying G-torsors on X. For a split torus T , a T-torsor

F on a base S and a character λ̌ of T denote by Lλ̌
F the line bundle on S corresponding to

the push-forward of F via λ̌ : T→Gm.

For a notion of a group stack and an action of a group stack on another stack we

refer the reader to [14, Appendix A].

2.2

Let Λ be a free abelian group of finite type, set Λ̌=Hom(Λ, Z) and T =Λ⊗Gm.

In Section 3 we assume k finite, let A be the adeles ring of k(X). We consider a

central extension Ē of T(A) by a finite cyclic group as in [23] coming from the Brylinski–

Deligne theory [8]. We present basic results about the representation theory of Ē in the

everywhere nonramified case. They are partially borrowed and partially inspired by the

works of Weissman [23, 24]. This is our subject to geometrize.

Starting from Section 4 we assume k algebraically closed. Recall that BunT

denotes the stack of T-torsors on X. This is a commutative group stack. In Section 4

we review a relation between gerbes on a given base Z and central extensions of the

fundamental group of Z . We also review and introduce notations for the category of

θ-data of Beilinson and Drinfeld [6] and review its relation to the central extensions of

BunT by Gm.

2.3

In Section 5 we consider the twisted geometric Langlands correspondence for a torus

in the geometric setting. In the local case, we let O= k[[t]]⊂ F = k((t)). Let κ : Λ⊗Λ→Z

be an even symmetric bilinear form. Pick n> 1 invertible in k, let ζ : μn(k)→ Q̄∗� be an

injective character. The Heisenberg κ-extensions of T(F ) [5, Definition 10.3.13] give rise

to a central extensions of group stacks

1→ B(μn)→ E→ T(F )→ 1. (1)

We introduce a category of some Q̄�-perverse sheaves equipped with an action of E ,

which should play the role of a unique irreducible representation of E with a given

central character extending ζ . The central extension (1) splits over T(O), we also describe

the geometric analog of the corresponding nonramified Hecke algebra (as in [21]).
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Twisted Geometric Langlands Correspondence for a Torus 8683

In the global case our input data are as follows. Let θ = (κ, λ, c) be an object

of the category Pθ (X,Λ) of theta-data (cf. Section 4.2.1 and 5.2). Assume κ : Λ⊗Λ→Z

even. It gives rise to a line bundle, also denoted as λ on BunT , it is purely of parity zero

(cf. Section 5.2). We assume that the associated map δλ : Λ→ Λ̌ (defined in Section 4.2.1)

equals κ. Pick n> 1 and an injective character ζ : μn(k)→ Q̄∗� .

Let B̃unT,λ be the gerbe of nth roots of λ over BunT . Let

Λ	 = {μ ∈Λ | κ(μ, ν) ∈nZ for all ν ∈Λ}.

Set T 	 =Λ	 ⊗Gm, let i : T 	→ T be the corresponding isogeny. Let iX : BunT	→BunT be

the corresponding push forward map, and B̃unT 	,λ the restriction of the gerbe B̃unT,λ

under iX. Let κ	 (resp., θ	 ∈Pθ (X,Λ	)) denote the restriction of κ (resp., of θ ) to Λ	.

As a part of our input data, we pick an nth root of θ	 in Pθ (X,Λ	). It always

exists under our assumptions and gives rise to a section s : BunT 	→ B̃unT	,λ of the gerbe

B̃unT 	,λ→BunT 	 . For μ ∈Λ we denote by Bunμ

T the connected component of BunT defined

in Section 4.2.1. Let B̃un
μ

T,λ be the preimage of Bunμ

T in B̃unT,λ.

Let Dζ (B̃un
μ

T,λ) be the bounded derived category of Q̄�-sheaves on B̃un
μ

T,λ, on

which μn(k) acts via ζ . We have used here the natural action of μn(k) on B̃unT,λ by 2-

automorphisms. Write Dζ (B̃unT,λ) for the derived category of objects whose restriction

to each connected component B̃un
μ

T,λ lies in Dζ (B̃un
μ

T,λ). For μ ∈Λ	 define Dζ (B̃un
μ

T	,λ) sim-

ilarly, we also get Dζ (B̃unT 	,λ) as above.

The map s yields an equivalence s∗ : Dζ (B̃unT 	,λ)
∼−→D(BunT 	 ). Our main results

are Propositions 2.1 and 2.2, and their proof is found in Sections 5.2.2–5.2.4.

Proposition 2.1. Let μ ∈Λ with μ /∈Λ	. Then Dζ (B̃un
μ

T,λ) vanishes. �

We define an action on BunT 	 on B̃unT,λ in Section 5.2.3. Let Ť 	 be the torus dual

to T 	 over Q̄�. Let E be a Ť 	-local system on X. We define a notion of a E-Hecke eigen-

sheaf in Dζ (B̃unT,λ). The geometric Langlands problem in our setting is to find a spectral

decomposition of Dζ (B̃unT,λ) under the action of BunT 	 .

The map iX lifts to a morphism π : B̃unT	,λ→ B̃unT,λ defined in Section 5.2.2. Let

AE be the automorphic local system on BunT 	 associated to E (cf. Section 5.2.3). Let

W ∈Dζ (B̃unT	,λ) be an object equipped with s∗W
∼−→ AE .

Proposition 2.2.

(i) The local system π!W ∈Dζ (B̃unT,λ) is equipped with a structure of a E-Hecke

eigen-sheaf.
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8684 S. Lysenko

(ii) There is KE ∈Dζ (B̃unT,λ), which is an irreducible local system over B̃un
μ

T,λ

for μ ∈Λ	 and vanishing over B̃un
μ

T,λ for μ /∈Λ	 with the following property.

There is a Q̄�-vector space V such that π!W
∼−→KE ⊗ V over each connected

component B̃un
μ

T,λ, μ ∈Λ	. Moreover, KE admits a structure of a E-Hecke

eigen-sheaf in Dζ (B̃unT,λ). �

Remark 2.1. As in [23], pick two bases (εi), (ηi) of Λ with 1≤ i ≤ r such that κ(εi, η j)

vanishes unless i = j, and κ(εi, ηi)=di, where di divides di+1 for all i (as soon as

both di and di+1 are not zero). Let ei be the smallest positive integer such that diei ∈
nZ. Then Λ	 =⊕r

i=1(eiZ)εi. Let e=∏i ei be the order of Λ/Λ	. The rank of K is eg

and dim(V)= eg. �

It is natural to ask the following.

Question 2.1. Is there an equivalence of categories D(BunT	 )
∼−→Dζ (B̃unT,λ) commut-

ing with the action of Hecke functors? For each μ ∈Λ	 it would identify D(Bunμ

T 	 ) with

Dζ (B̃un
μ

T,λ). �

According to the quantum Langlands conjectures [22], in the setting of D-

modules the expected answer to the same question is “yes.” However, the correspond-

ing equivalence is expected to be given by a D-module on BunT 	 × B̃unT,λ, which is not

holonomic, and in our �-adic setting we expect the answer to be negative.

On the one hand, we show in Proposition 5.2 that the ‘corrected scalar products’

of automorphic sheaves are the same in both categories (this is an analog of the Rankin–

Selberg convolutions from [17] in the setting of metaplectic tori). On the other hand, in

Section 5.2.8 we give an argument in the case of an elliptic curve and T =Gm showing

that these categories are not expected to be equivalent.

3 Representations of the Metaplectic Tori on the Level of Functions

3.1 Central extensions

Throughout Section 3 we assume k= Fq. Let A, G be abelian groups, write A multi-

plicatively and G additively. A normalized 2-cocycle is a map f : G × G→ A satisfying

1= f(0, g)= f(g, 0) for g∈G, and

f(g1, g2) f(g1 + g2, g3)= f(g2, g3) f(g1, g2 + g3)
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Twisted Geometric Langlands Correspondence for a Torus 8685

for gi ∈G. Such a cocycle gives rise to a central extension 1→ A→ A× G→G→ 1 with

the group law

(a1, g1)(a2, g2)= (a1a2 f(g1, g2), g1 + g2), ai ∈ A, gi ∈G.

If we need to emphasize the dependence on f , we denote this group by (A× G) f . For

gi ∈G the commutator in (A× G) f is given by

(g1, g2)c= f(g1, g2)

f(g2, g1)
. (2)

Note that if f : G × G→ A is any bilinear map, then f is a normalized 2-cocycle.

Let T0 be the group of all maps of sets h: G→ A such that h(0)= 1, let T1 be the

group of normalized 2-cocycles f : G × G→ A. We have a complex T0→ T1, where h is

mapped to f given by

f(g1, g2)= h(g1 + g2)

h(g1)h(g2)
.

Let f, f ′ ∈ T1. Then given h∈ T0 with

f ′(g1, g2)

f(g1, g2)
= h(g1 + g2)

h(g1)h(g2)
for all gi ∈G,

we get an isomorphism of central extensions (A× G) f
∼−→ (A× G) f ′ given by (a, g) �→

(ah(g), g).

The Picard category of central extensions of G by A is canonically equivalent to

the Picard category associated to the complex T0→ T1 (see [8]).

3.2 Brylinski–Deligne extensions

3.2.1

Let Λ be a free abelian group of finite type. Recall that isomorphism classes of central

extensions 1→ A→ E→Λ→ 1 are in bijection with the set of bilinear alternating maps

Λ×Λ→ A, the map associated to a central extension being its commutator. Set Λ̌=
Hom(Λ, Z).

Let T =Λ⊗Gm. View T as a scheme over k= Fq. Let Sch/k be the category of

k-schemes of finite type equipped with the Zariski topology. The nth Quillen’s K-theory

group of a scheme form a presheaf on Sch/k as the scheme varies. We denote by K2 the

associated sheaf on Sch/k for the Zariski topology. Let Ext(T, K2) denote the category of

central extensions of T by K2 (in the category of sheaves of groups on Sch/k).
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8686 S. Lysenko

A bilinear form κ : Λ⊗Λ→Z is even if κ(x, x) ∈ 2Z for all x∈Λ. Recall that

quadratic forms q : Λ→Z are in bijection with the set of even symmetric bilinear forms

κ : Λ⊗Λ→Z. The form associated to q is κ, where κ(x1, x2)= q(x1 + x2)− q(x1)− q(x2).

Proposition 3.1 ([8, Theorem 3.16]). There is an equivalence of Picard groupoids

between Ext(T, K2) and the groupoid E(T, K2) of pairs: an even symmetric bilinear form

κ : Λ⊗Λ→Z and a central extension 1→ k∗ → Λ̃→Λ→ 1 whose commutator is given

by (μ1, μ2)c= (−1)κ(μ1,μ2), μi ∈Λ. �

Let us now discuss some realizations of the objects of E(T, K2). It is convenient

for this to introduce a category Es(T) of pairs: a symmetric bilinear form κ : Λ⊗Λ→Z

and a central super extension

1→ k∗ → Λ̃s→Λ→ 1 (3)

(as in [5, Lemma 3.10.3.1]) such that its commutator is (γ1, γ2)c= (−1)κ(γ1,γ2). This means

that for every γ ∈Λ we are given a Z/2Z-graded (or super) line εγ , and for every γ1, γ2 ∈Λ

a Z/2Z-graded isomorphism

cγ1,γ2 : εγ1 ⊗ εγ2
∼−→ εγ1+γ2

such that c is associative, that is,

cγ1,γ2+γ3(idεγ1 ⊗cγ2,γ3)= cγ1+γ2,γ3(cγ1,γ2 ⊗ idεγ3 ),

and one has cγ1,γ2 = (−1)κ(γ1,γ2)cγ2,γ1σ , where σ : εγ1 ⊗ εγ2
∼−→ εγ2 ⊗ εγ1 is the super commuta-

tivity constraint.

The category Es(T) is a Picard groupoid with respect to the tensor product of

central extensions. For an object of Es(T) as above for each γ ∈Λ the parity of εγ is

κ(γ, γ ) mod 2. So, E(T, K2) is the full Picard subgroupoid of Es(T) consisting of pairs

(κ, Λ̃s) such that κ is even.

According to [5, Lemma 3.10.3.1], let v : Λ→Z/2Z be a morphism and B : Λ×Λ→
Z/2Z a bilinear form such that

κ(γ1, γ2) mod 2= v(γ1)v(γ2)+ B(γ1, γ2)+ B(γ2, γ1)

for all γi ∈Λ. Then taking εγ = k of parity v(γ ), we get a super central extension (3) given

by the cocycle (γ1, γ2) �→ (−1)B(γ1,γ2). We will use the following two particular cases of

this construction.
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Lemma 3.1.

(1) Let B : Λ⊗Λ→Z be a bilinear form, set κ = B + tB, where tB(γ1, γ2)=
B(γ2, γ1) for γi ∈Λ. Then B gives rise to the object (κ, Λ̃s) ∈ E(T, K2), where

εγ = k of parity zero for each γ ∈Λ, and the central extension (3) is given by

the cocycle

(γ1, γ2) �→ (−1)B(γ1,γ2).

(2) Let λ̌ ∈ Λ̌ and κ = λ̌⊗ λ̌. Let v : Λ→Z/2Z be the map λ̌ mod 2. Consider the

super extension 1→ k∗ → Λ̃λ̌→Λ→ 1 given by the zero 2-cocycle, where εγ =
k is of parity v(γ ). Its commutator is

(γ1, γ2)c= (−1)κ(γ1,γ2). (4)

(3) Let κ : Λ⊗Λ→Z be an even symmetric bilinear form. Pick a presentation κ =∑
i bi(λ̌i ⊗ λ̌i) for some λ̌i ∈ Λ̌. For each i we get a super central extension Λ̃λ̌i .

The tensor product of their bith powers is a central extension 1→ k∗ → Λ̃→
Λ→ 1 of parity zero with the commutator (4). This is an object of E(T, K2). �

3.2.2

In this subsection we describe the Brylinski–Deligne extensions of T by K2 by some

explicit cocycles.

Let B : Λ⊗Λ→Z be any bilinear form and κ = B + tB as in Lemma 3.1(1). Recall

that K1 =O∗ as a sheaf on Sch/k (see [8]). There is a unique bimultiplicative map f̄ : T ×
T→ K2 satisfying

f̄(λ1 ⊗ c1, λ2 ⊗ c2)= {c1, c2}B(λ1,λ2)

for λi ∈Λ, ci ∈Gm. Here {·, ·} : K1 × K1→ K2 is the product in the graded sheaf of rings⊕
i Ki on Sch/k. It is bilinear and skew symmetric. The map f̄ is a 2-cocycle, it gives rise

to a central extension

1→ K2→ (K2 × T)B→ T→ 1, (5)

where (K2 × T)B = K2 × T is equipped with the product (z1, t1)(z2, t2)= (z1z2 f̄(t1, t2), t1t2),

ti ∈ T , zi ∈ K2. We write f̄B = f̄ if we need to express the dependence on B of the above

cocycle.
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8688 S. Lysenko

By [8, Corollary 3.7], the automorphisms of the extension (5) are Hom(Λ, k∗).

Namely, q ∈Hom(Λ, k∗) defines a homomorphism of sheaves q̄ : T→ K2 on Sch/k such

that q̄(λ⊗ c)= {c, q(λ)} for c∈Gm, λ ∈Λ. Note that q̄ ∈H0(T, K2).

As in [8], define a map Λ̌⊗ Λ̌→H0(T, K2) as follows. Given λ̌i ∈ Λ̌, view λ̌i ∈
H0(T,O∗)=H0(T, K1), so {λ̌1, λ̌2} ∈H0(T, K2) via the product in

⊕
j K j. Since the prod-

uct K1 × K1→ K2 is bimultiplicative, the map λ̌1 ⊗ λ̌2 �→ {λ̌1, λ̌2} extends to a linear map

Λ̌⊗ Λ̌→H0(T, K2) that we denote B �→ B̄.

Note that if {εi}, 1≤ i ≤ r is a basis of Λ, ci ∈Gm, then

B̄

(
r∏

i=1

(εi ⊗ ci)

)
=

∏
1≤i, j≤r

{ci, cj}B(εi,ε j).

The product in K2 is written multiplicatively. Write the operation in the abelian group

H0(T, K2) additively, so q and B define B̄ + q̄ ∈H0(T, K2).

To any s ∈H0(T, K2) one associates a 2-cocyle ds : H0(T × T, K2) by

(ds)(t1, t2)= s(t1t2)

s(t1)s(t2)

for ti ∈ T . For B̄ + q̄ as above we get d(B̄ + q̄)=d(B̄).

Lemma 3.2. For a bilinear form C : Λ⊗Λ→Z and B = C − tC , one has d(C̄ )= f̄B . �

Proof. Pick a base {εi} in Λ. Let t1 =
∏

i(εi ⊗ gi), t2 =
∏

i(εi ⊗ g′i) with λi ∈Λ, gi, g′i ∈Gm.

We get

C̄ (t1t2)= C̄

(∏
i

(εi ⊗ gig
′
i)

)
=
∏
i, j

{gig
′
i, gjg

′
j}C (εi ,ε j)

and

C̄ (t1)=
∏
i, j

{gi, gj}C (εi ,ε j),

C̄ (t2)=
∏
i, j

{g′i, g′j}C (εi ,ε j).

So,

C̄ (t1t2)

C̄ (t1)C̄ (t2)
=
∏
i, j

{gi, g′j}C (εi ,ε j)−C (ε j ,εi).

Our claim follows. �
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We get a complex Λ̌⊗ Λ̌
d1→ Λ̌⊗ Λ̌

d2→ Q(Λ) say in degrees 0,1,2, where Q(Λ) is the

group of even symmetric bilinear forms Λ⊗Λ→Z. The map d1 is given by d1(C )= C − tC

and d2(B)= B + tB. This complex is exact in degree 1.

By [8, Theorem 3.16], the isomorphism class of the extension (K2 × T)B is given

by d2(B) ∈ Q(Λ). If d2(B)= 0, an element C ∈ Λ̌⊗ Λ̌ with d1(C )= B gives a trivialization

of (K2 × T)B .

3.3 Global setting

3.3.1

Let X be a smooth projective absolutely irreducible curve over k. Set F = k(X), let A

denote the adeles ring of X, O⊂A be the integer adeles. For x∈ X write Fx for the com-

pletion of F at x. Let Ox⊂ Fx be the ring of integers and k(x) its residue field.

Write v( f) for the valuation of f ∈ F ∗x . For f, g∈ F ∗x write (·, ·)st for the tame sym-

bol given by

( f, g)st= (−1)deg(x)v( f)v(g)Nk(x)/k((g
v( f) f−v(g))(x))

according to [18, Remark 2.2]. Here Nk(x)/k denotes the norm for the extension k⊂ k(x).

The global tame symbol (·, ·)st : A∗ × A∗ → k∗ is given by

(a, b)st=
∏
x∈X

(ax, bx)st.

If both ax, bx ∈Ox, then (ax, bx)st= 1, so the product is finite.

Let B : Λ⊗Λ→Z be any bilinear form. Set κ = B + tB, so κ is even and symmet-

ric. As in Section 3.2.2, there is a unique bimultiplicative map f : T(A)× T(A)→ k∗ such

that for λi ∈Λ, gi ∈A∗ one has

f(λ1 ⊗ g1, λ2 ⊗ g2)= (g1, g2)
B(λ1,λ2)
st .

The map f is a normalized 2-cocycle as defined in Section 3.1. Let E = k∗ × T(A) with

the product (a1, g1)(a2, g2)= (a1a2 f(g1, g2), g1g2) for ai ∈ k∗, gi ∈ T(A). Then E is a locally

compact topological group that fits into a central extension

1→ k∗ → E→ T(A)→ 1. (6)

The commutator in E is given by

(λ1 ⊗ g1, λ2 ⊗ g2)c= (g1, g2)
κ(λ1,λ2)
st

for gi ∈A∗, λi ∈Λ.

 by guest on M
arch 7, 2016

http://im
rn.oxfordjournals.org/

D
ow

nloaded from
 

http://imrn.oxfordjournals.org/


8690 S. Lysenko

The map T(O)→ E , z �→ (1, z) is a group homomorphism, a splitting of (6) over

T(O). The image of T(O) is usually not a normal subgroup in E . In particular, if κ is

non-degenerate, then T(O) is not a normal subgroup.

If gi ∈ F ∗, then (g1, g2)st= 1 (see [2]). So, the map T(F )→ E , z �→ (1, z) is a group

homomorphism, a splitting of (6) over T(F ). The two splittings coincide over T(F ) ∩
T(O)= T(k). If κ is non-degenerate, then T(F ) is not normal in E .

Let BunT be the stack of T-torsors on X. Recall that BunT (k)
∼−→ T(F )\T(A)/T(O)

naturally, so T(F )\E/T(O)→BunT (k) is a k∗-torsor. The problem of the geometrization

of this torsor is essentially solved in [6, Proposition 3.10.7.1, Lemma 3.10.3.1 and Propo-

sition 4.9.1.2]. It will be discussed in Section 5.

3.3.2

Pick n≥ 1. We assume n| q − 1, so both μn(k) and k∗/(k∗)n are cyclic of order n. The natural

map μn(k)→ k∗/(k∗)n is not always an isomorphism.

Denote by

1→ k∗/(k∗)n→ Ē→ T(A)→ 1 (7)

the push-forward of (6) by k∗ → k∗/(k∗)n. Let

1→ k∗/(k∗)n→ Ēx→ T(Fx)→ 1 (8)

be the pull-back of (7) by T(Fx)→ T(A).

The results of this subsection are partially borrowed from and partially inspired

by the papers by Weissman [23, 24]. Let

Λ	 = {μ ∈Λ | κ(μ, ν) ∈nZ for all ν ∈Λ}. (9)

Set T 	 =Λ	 ⊗Gm, so we have an isogeny T 	→ T .

Let Z† ⊂ T(A) be the subgroup such that the center Z(Ē) of Ē is the preimage of

Z† in Ē . Let Z†
x ⊂ T(Fx) be the subgroup such that the center Z(Ēx) of Ēx is the preimage

of Z†
x in Ēx.

Lemma 3.3.

(1) Let g= (gx) ∈ T(A). Then g∈ Z† iff gx ∈ Z†
x for all x∈ X.

(2) Z†
x is the image of T 	(Fx)→ T(Fx). �
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Proof.

(1) Pick a base {εi} of Λ. For gi ∈A∗ the condition g=∏i(εi ⊗ gi) ∈ Z† is equivalent

to requiring that for any u∈A∗, λ ∈Λ one has∏
i

(gi, u)
κ(εi ,λ)
st ∈ (k∗)n.

This condition is local over X.

(2) is [23, Proposition 4.1]. The property used by Weissman in [23] is as follows.

Let d≥ 1. Write e for the smallest positive integer such that de∈nZ. Then

{g∈ F ∗x | for all h∈ F ∗x , (g, h)d
st ∈ (k∗)n} = (F ∗x )e.

The case d= 1 follows from the nondegeneracy of the tame symbol. Here is

the reduction to the case d= 1. First, if d is prime to n, then let α, β ∈Z with

dα + nβ = 1. If gd= zn for some z∈ F ∗x , then g= gdα+nβ = (zαgβ)n∈ (F ∗x )n. Now

let d, n be any, set a=GC D(n, d) and n= ae, d= ad′. Let z∈ F ∗x be such that

gd′a= zae. Then gd′z−e ∈μa(k). The map μn(k)→μa(k), u �→ue is surjective. So,

gd′ ∈ (F ∗x )e. Since (d′, e)= 1, we get g∈ (F ∗x )e. �

Remark 3.1. The Poitou-Tate duality in Galois cohomology implies {y∈A∗ | (y, z)st ∈
(k∗)n for all z∈ F ∗} = F ∗(A∗)n. �

Recall that (7) splits canonically over T(F ).

Lemma 3.4. The group T(F )Z(Ē) is a maximal abelian subgroup of Ē . �

Proof. Step 1. Pick two bases (εi), (ηi) of Λ with 1≤ i ≤ r such that κ(εi, η j) vanishes

unless i = j, and κ(εi, ηi)=di, where di divides di+1 for all i. Let ei be the smallest positive

integer such that diei ∈nZ. In this notation, we have

Z† =
{∏

i

(εi ⊗ gi) ∈ T(A) | gi ∈ (A∗)ei for all i

}
.

Note that Λ	 =⊕r
i=1(eiZ)εi. Now let gi ∈A∗ and g=∏i(εi ⊗ gi). If g commutes with T(F )

in Ē then for each 1≤ j ≤ r and u∈ F ∗ we get(∏
i

(εi ⊗ gi

)
, η j ⊗ u)c= (gj, u)

dj
st ∈ (k∗)n.

By Remark 3.1, this implies g
dj

j ∈ F ∗(A∗)n. We are reduced to the following.
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8692 S. Lysenko

Step 2. Let g∈A∗, d≥ 1, let e be the smallest positive integer such that de∈nZ.

If gd∈ F ∗(A∗)n, then g∈ F ∗(A∗)e. Let gd= fzn with f ∈ F ∗, z∈A∗. First, consider the

case (d, n)= 1. In this case, pick α, β ∈Z with dα + nβ = 1. Then g= gdα+nβ = ( fzn)αgnβ ∈
F ∗(A∗)n. Now let n, d be arbitrary, set a=GC D(d, n) and n= ae, d= ad′. Since (gd′z−e)a=
f , by the Grunwald-Wang Theorem [3, Theorem 1, Chapter IX], there is f1 ∈ F ∗ with

f = fa
1 . So, there is v ∈A∗ with ve= gd′z−e f−1

1 and gd′ ∈ F ∗(A∗)e. Since (d′, e)= 1 from the

relatively prime case we get g∈ F ∗(A∗)e. �

Remark 3.2. Let d, n≥ 1, let e be the smallest positive integer with de∈nZ. If a∈ k∗ and

ad∈ (k∗)n then a∈ (k∗)e. This is proved as in Lemma 3.3(2). �

3.3.3

Pick an injective character ζ : k∗/(k∗)n→ Q̄∗� . The twisted Langlands correspondence at

the level of functions for a torus is the study of the representation

R= { f : T(F )\Ē→ Q̄� | f(yz)= ζ(y) f(z) for all y∈ k∗/(k∗)n

there is an open subgroup K⊂ T(O), f(yu)= f(y), u∈K}

of Ē by right translations.

The nonramified part of this problem is the study of the space

Rnr = { f : T(F )\Ē/T(O)→ Q̄� | f(yz)= ζ(y) f(z) for all y∈ k∗/(k∗)n}

as a representation of the corresponding Hecke algebra. For each x∈ X we get the Hecke

algebra

Hx= {h: T(O)\Ēx/T(O)→ Q̄� | h(yz)= ζ(y)h(z) for all y∈ k∗/(k∗)n,

h is of compact support}

with respect to convolution. Namely, if hi ∈Hx then h1 ∗ h2 ∈Hx is given as follows. For

u, z∈ Ēx the expression h1(u)h2(zu−1) depends only on the image of u in T(Fx), and we

may define in this sense

(h1 ∗ h2)(z)=
∫

u∈T(Fx)

h1(u)h2(zu−1) du,
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where du is the Haar measure on T(Fx) such that the volume of T(Ox) is one. This algebra

acts on Rnr so that h∈Hx acts on f ∈Rnr as

( f ∗ h)(z)=
∫

u∈T(Fx)

f(zu−1)h(u) du. (10)

Again, it is understood that actually u∈ Ēx, and the expression f(zu−1)h(u) depends only

on the image of u in T(Fx). With this definition, Rnr is a left Hx-module: ( f ∗ h1) ∗ h2 =
f ∗ (h2 ∗ h1).

For each x∈ X pick a uniformizer tx ∈ Fx. Write tΛ
x for the image of the map

Λ→ T(Fx), λ �→ tλ
x . Denote by Div(X,Λ) the group of Λ-valued divisors on X viewed as a

subgroup of T(A). Namely, to a divisor
∑

x λxx we associate
∏

x tλx
x ∈ T(A).

For the rest of Section 3 we make a stronger assumption:

(A) the field k satisfies −1 ∈ (k∗)n.

Since we are interested only in geometrizing the classical picture, this case is sufficient.

This assumption implies that the restriction of (8) to Λ is abelian. Pick a section of (8)

over Λ. For λ ∈Λ we denote the corresponding element of Ēx over tλ
x by t̄λ

x .

Note that for each λ ∈Λ there could be at most one function hλ ∈Hx with support

being the preimage of T(Ox)tλ
x T(Ox) in Ēx, and satisfying hλ(t̄λ

x )= 1.

Lemma 3.5. Let λ ∈Λ. The following are equivalent.

(i) λ ∈Λ	,

(ii) There is hλ ∈Hx with support being the preimage of T(Ox)tλ
x T(Ox) in Ēx and

satisfying hλ(t̄λ
x )= 1. �

Proof. For v ∈ T(Ox) we have vt̄λ
x = (v, tλ

x )ct̄λ
xv in Ēx. So, hλ exists iff (v, tλ

x )c ∈ (k∗)n for all

v ∈ T(Ox). For v =μ⊗ u with μ ∈Λ, u∈O∗x we get (μ⊗ u, tλ
x )c= ū−κ(μ,λ), where ū∈ k∗ is the

image of u. Finally, ūκ(μ,λ) ∈ (k∗)n for all ū∈ k∗, μ ∈Λ if and only if λ ∈Λ	. �

Let Ť 	 be the Langlands dual torus over Q̄� to T 	. Write Rep(Ť 	) for the category

of finite-dimensional representations of Ť 	 over Q̄�.

Proposition 3.2. There is an isomorphism of rings Hx
∼−→ Q̄�[Λ	]

∼−→ K0(Rep(Ť 	)), where

K0 is the Grothendieck group of the corresponding category. �
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8694 S. Lysenko

Proof. Let Zλ
x be the preimage of T(Ox)tλ

x T(Ox) in Ēx. Clearly, if λ,μ ∈Λ	 then hλ ∗ hμ

has support included in Zλ+μ
x . It is easy to check that actually hλ ∗ hμ = hλ+μ. So, we get

an isomorphism Hx
∼−→ Q̄�[Λ	]. �

The isogeny T 	→ T is a surjective morphism of sheaves in étale topology on

Sch/k. Let K denote its kernel. This is a finite group that fits into an exact sequence

1→ K(F )→ T 	(F )→ T(F )→H1(Spec F, K)→ 1.

The center Z(Ē) acts on T(F )\Ē/T(O) by multiplication. Let BunT 	 denote the

stack of T 	-torsors over X. We have the push forward map iX : BunT	→BunT . Define K̄

as the cokernel of BunT 	 (k)→BunT (k), this is a finite subgroup K̄ ⊂H2(X, K).

Remark 3.3. The set of Z(Ē)-orbits on T(F )\Ē/T(O) is the group T(A)/(T(F )Z†T(O)), it

identifies with Coker(T 	(A)→ T(F )\T(A)/T(O)), that is, with K̄. The group K̄ is usually

nontrivial. �

3.3.4

Lemma 3.6.

(1) The group tΛ
x Z(Ēx) is a maximal abelian subgroup of Ēx.

(2) The group Div(X,Λ)Z(Ē) is a maximal abelian subgroup in Ē . �

Proof.

(1) By (A), this group is abelian. Pick bases (εi), (η j) of Λ and define di, ei ∈Z as

in the proof of Lemma 3.4. Then

Z†
x =

{∏
i

(εi ⊗ gi) ∈ T(Fx) | gi ∈ (F ∗x )ei for all i

}
.

Let now v =∏i εi ⊗ vi ∈ T(Ox) with vi ∈O∗x. Let v̄i be the image of vi under

O∗x→ k∗. Assume that (tλ
x , v)c= 1 for all λ ∈Λ. So, for each 1≤ j ≤ r we get(∏
i

εi ⊗ vi, t
η j
x

)
c

= (v j, tx)
dj
st ∈ (k∗)n.

So, v̄
dj

j ∈ (k∗)n. By Remark 3.2, we get v̄ j ∈ (k∗)ej for all j. So, v ∈ Z†
x.

(2) This follows from (1). �
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3.3.5

Let χ : Z(Ē)→ Q̄∗� be any continuous character trivial on Z(Ē) ∩ T(O) and extending

ζ : k∗/(k∗)n→ Q̄∗� . Pick any extension of χ to a character

χ̄ : Div(X,Λ)Z(Ē)→ Q̄∗�,

such an extension always exists, since Z(Ē) is an open subgroup of Div(X,Λ)Z(Ē). By

restriction, it yields a character χ̄x : tΛ
x Z(Ēx)→ Q̄∗� for each x∈ X. Let

πx= {h: Ēx→ Q̄� | h(yz)= χ̄x(y)h(z) for all y∈ tΛ
x Z(Ēx)}

be the induced representation of Ēx. It is irreducible (see [23, Theorem 3.1]). The space

πx is a “twisted version” of the space of functions on

r∏
i=1

k∗/(k∗)ei ,

where ei and r are defined as in the proof of Lemma 3.4, so dim πx=
∏r

i=1 ei. Since

tΛ
x T(Ox)= T(Fx), we get dim(πT(Ox)

x )= 1. So, we form the restricted tensor product

π =
⊗
x∈X

′
πx

with respect to the unique spherical vector hx ∈ πT(Ox)
x satisfying hx(1)= 1. This is an

irreducible representation of Ē , and dim(πT(O))= 1. Consider also

π̄ = {h: Ē→ Q̄� | h(yz)= χ̄ (y)h(z) for all y∈Div(X,Λ)Z(Ē),

there is an open subgroup K⊂ T(O), h(zz1)= h(z), z1 ∈K}.

This is a smooth representation of Ē . We identify π
∼−→ π̄ via the map sending

⊗
x hx to

h∈ π̄ , where h(z)=∏x∈X hx(zx).

Assume in addition that χ : Z(Ē)→ Q̄∗� is trivial on Z(Ē) ∩ T(F ). In this case,

there is a unique character

χ : T(F )Z(Ē)→ Q̄∗�

extending χ : Z(Ē)→ Q̄∗� and trivial on T(F ). Consider the Ē-submodule

Rχ = { f ∈R | f(yz)= χ(y) f(z) for all y∈ Z(Ē)}

of R. The results of [15, Section 0.3] apply in this situation. Combining them with

Lemma 3.4 we obtain that Rχ is irreducible and π̄
∼−→Rχ as Ē-modules.
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Let us write down an explicit isomorphism S : π̄
∼−→Rχ of Ē-modules. According

to ([15], Section 0.3), changing if necessary the extension χ̄ of χ , we may and do assume

the following:

(C): χ̄ and χ coincide over

(Div(X,Λ)Z(Ē)) ∩ (T(F )Z(Ē)).

Under this additional assumption, the isomorphism S : π̄
∼−→Rχ sends h to Sh, where

(Sh)(z)=
∑

y∈T(F )/(Div(X,Λ)Z(Ē))∩T(F )

h(yz), (11)

here z∈ Ē . According to (C), if u∈ (Div(X,Λ)Z(Ē)) ∩ T(F ), then χ̄(u)= 1. So, for y∈ T(F )

the expression h(yz) depends only on the image of y in

T(F )/(Div(X,Λ)Z(Ē)) ∩ T(F ). (12)

By the results of [15, Section 0.3] the map S is an isomorphism of Ē-representations.

The natural map T 	(F )→ T(F ) factors through Z(Ē) ∩ T(F )= Z† ∩ T(F ). From

Grunwald–Wang Theorem [3, Theorem 1, Chapter IX] we see that the natural map

T 	(F )→ T(F ) ∩ Z† is surjective. Thus,

T(F )/(Z(Ē) ∩ T(F ))
∼−→H1(Spec F, K).

This is a finite group. The group T(F )/(Div(X,Λ)Z(Ē)) ∩ T(F ) is a quotient of the finite

group H1(Spec F, K), so the sum in (11) is finite.

Let φ ∈ π̄T(O) be the unique function satisfying φ(1)= 1. In Section 5 we will

geometrize the theta-function

Sφ : T(F )\Ē/T(O)→ Q̄�.

We will construct a local system on the corresponding μn-gerbe over BunT , whose trace

of Frobenius is the function Sφ (namely, the complex K in Proposition 2.2).

Remark 3.4. The group H1(Spec F, K) is equipped with a skew-symmetric pairing with

values in μn(k), it comes from the cup-product on H1(Spec F, K) and the bilinear form κ.

We think that (Div(X,Λ)Z(Ē)) ∩ T(F )/(Z(Ē) ∩ T(F )) is a maximal isotropic subgroup in

H1(Spec F, K) with respect to this pairing, but we have not checked this. �
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3.3.6

For each x∈ X let χx : Λ	→ Q̄∗� be the character sending μ to χ(t̄μ
x ). The character χ−1

x

extends uniquely to an algebra homomorphism χ−1
x : Q̄�[Λ	]→ Q̄�. The one-dimensional

space πT(Ox)
x is naturally a module over Hx, the action being defined as in (10). Then Hx

acts on πT(Ox)
x via the character

Hx
∼−→ Q̄�[Λ

	]
χ−1

x→ Q̄�, (13)

the first isomorphism being that of Proposition 3.2.

Set Rnr
χ =Rnr ∩Rχ , recall that this space is one-dimensional. On the other hand,

the Z(Ē)-orbits on T(F )\Ē/T(O) are identified with the group K̄ by Remark 3.3. So, only

one Z(Ē)-orbit on T(F )\Ē/T(O) supports a nonzero function from Rnr
χ , one checks that

this is the orbit through 1.

3.3.7

Let deg: Div(X,Λ)→Λ be the degree map sending
∏

x tμx
x to

∑
x μx. For μ ∈Λ write

Div(X,Λ)μ for the subgroup of divisors of degree μ. One has T(A)=Div(X,Λ)T(O). For

μ ∈Λ write T(A)μ =Div(X,Λ)μT(O). Note that T(F )⊂ T(A)0.

For μ ∈Λ write Ēμ for the preimage of T(A)μ under the projection Ē→ T(A). Let

Z(Ē)0 = Z(Ē) ∩ Ē0. The group Z(Ē)0 acts naturally on T(F )\Ēμ/T(O).

For μ ∈Λ let

μRnr
χ = { f : T(F )\Ēμ/T(O)→ Q̄� | f(yz)= χ(y) f(z) for y∈ Z(Ē)0}.

The property dimRnr
χ = 1 implies the following. If μ /∈Λ	, then μRnr

χ = 0. If μ ∈Λ	, then

dim(μRnr
χ )= 1, and any nonzero function from μRnr

χ is supported at T(F )Z(Ē)μT(O). Set

also

μRnr = { f : T(F )\Ēμ/T(O)→ Q̄� | f(yz)= ζ(y) f(z) for y∈ k∗/(k∗)n}.

The twisted Langlands correspondence on the classical level becomes essentially the

following.

Proposition 3.3. Let μ ∈Λ.

(1) If μ /∈Λ	, then μRnr = 0.
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(2) If μ ∈Λ	, then there is a finite direct sum decomposition

μRnr =
⊕

χ

μRnr
χ ,

the sum over all characters χ : Z(Ē)0→ Q̄∗� trivial on Z(Ē)0 ∩ T(O) and on

Z(Ē)0 ∩ T(F ) and extending ζ : k∗/(k∗)n→ Q̄∗� . �

4 Preliminaries to Geometrization

4.1 Gerbs via central extensions

4.1.1

From now on we assume k algebraically closed of characteristic p≥ 0. Let Z be a k-

scheme, n≥ 1 invertible in k. Let G be a finite group acting on Z . A lifting of this action

on the trivial gerbe Z × B(μn) is described as follows.

For g∈G and a μn-torsor F on Z we define a morphism (F , g) : Z × B(μn)→ Z ×
B(μn). For a S-point ( f, T ), where f : S→ Z and T is a μn-torsor on S, the map (F , g)

sends it to the S-point (gf, T ⊗ f∗F). The composition (F2, g2)(F1, g1)
∼−→ (F1 ⊗ g∗1F2, g2g1)

canonically.

The action of G on Z × B(μn) is given by the data: for each g∈G a μn-torsor

Fg on Z . We assume that F1 =F0 is the trivial μn-torsor. For each pair g, h∈G we are

given an isomorphism τg,h : Fh⊗ h∗Fg
∼−→Fgh of μn-torsors on Z . It is required that for

any g, h, x∈G the diagram commutes

Fx ⊗ x∗Fh⊗ x∗h∗Fg
τh,x→ Fhx ⊗ x∗h∗Fg

↓ x∗τg,h ↓ τg,hx

Fx ⊗ x∗Fgh
τgh,x→ Fghx .

Besides, for g∈G each of the maps τg,1 : F1 ⊗ Fg→Fg and τ1,g : Fg ⊗ g∗F1→Fg is the

identity.

Write T ors(Z , μn) for the groupoid of μn-torsors on Z . Consider the groupoid

GZ of pairs (F , g), where F ∈ T ors(Z , μn), g∈G. We define the multiplication functor

m : GZ × GZ→GZ on objects by

m((F2, g2)(F1, g1))= (F1 ⊗ g∗1F2, g2g1).
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It is defined naturally on morphisms. This extends naturally to a structure of a group

stack on the groupoid GZ . We obtain an exact sequence of group stacks

1→ T ors(Z , μn)→GZ→G→ 1. (14)

The group stack GZ acts on Z × B(μn), namely (F , g) acts by the morphism (F , g). So, the

datum of an action of G on Z × B(μn) is a section of (14) in the category of group stacks.

That is, a morphism of group stacks G→GZ whose projection to G is the identity. Such

morphism always exists.

Let GZ and Tors(Z , μn) be the coarse moduli space of GZ and T ors(Z , μn), respec-

tively. These are abstract groups. We get an exact sequence

1→Tors(Z , μn)→GZ→G→ 1,

which is a semidirect product with respect to the action of G on Tors(Z , μ) such that

g∈G sends F to (g−1)∗F .

If T ∈ T ors(Z , μn) and a section of (14) is given by a collection (Fg, τg,h), g, h∈G

as above, we may conjugate this section by the element (T , 1) ∈GZ . This produces the

collection (F ′g, τ ′g,h), where F ′g= T −1 ⊗ g∗T ⊗ Fg and τ ′ = τ .

Remark 4.1.

(1) Now let 1→μn(k)→ G̃→G→ 1 be a central extension in the category of

groups. Take Fg be the constant μn-torsor consisting of all g̃∈ G̃ over g. The

group structure of G̃ yields an isomorphism τg,h : Fh⊗ Fg
∼−→Fgh. The above

conditions on τ are verified, so we get an action of G on Z × B(μn) extending

the action of G on Z .

If we let G̃ act on Z via the homomorphism G̃→G with the previous

action of G then the stack quotient Z/G̃ is a μn-gerbe over the stack quotient

Z/G.

(2) Conversely, let Y→ Z/G be a μn-gerbe equipped with a trivialization of

the gerbe Y ×Z/G Z→ Z . This yields a section of (14) given by a collec-

tion (Fg, τg,h), g, h∈G as above. Assume also that all the μn-torsors Fg are

trivial. So, we view Fg as a μn-torsor over a point. Then this μn-torsor

over G is multiplicative in the sense of [8], so this is a central extension

1→μn→ G̃→G→ 1. Moreover, the trivialization of Y ×Z/G Z→ Z descends

to an isomorphism Y ∼−→ Z/G̃ over Z/G. �
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4.1.2

Assume that α : Z ′ → Z is a Galois étale covering with Galois group Γ . Assume also that

for each g∈G there is g′ ∈Aut(Z ′) such that the diagram commutes

Z ′
α→ Z

↓ g′ ↓ g

Z ′
α→ Z .

We get the group G ′ of automorphisms g′ ∈Aut(Z ′) for which such g∈G exists, it fits into

an exact sequence 1→ Γ →G ′
β→G→ 1.

Assume a section of (14) is given by a collection (Fg, τg,h), g, h∈G as above,

assume also that all the μn-torsors α∗Fg are trivial over Z ′. Consider the exact sequence

1→ T ors(Z ′, μn)→G ′Z→G ′ → 1

defined for the the above action of G ′ on Z ′. We get a section of this exact sequence given

by the collection (g′,Fg′ , τ
′), where Fg′ = α∗Fg for g= β(g′), and τ ′ = α∗τ .

By Remark 4.1(2), we get a central extension

1→μn→ G̃ ′ →G ′ → 1 (15)

and a μn-gerbe Z ′/G̃ ′ → Z/G.

Remark 4.2. One may ask if any μn-gerbe over the stack quotient Z/G comes from a

central extension 1→μn→?→G→ 1. We will not answer this question in this paper,

but we think the answer is ‘no’. If (15) does not admit a section over Γ , whose image is a

normal subgroup in G̃ ′ then the gerbe Z ′/G̃ ′ would provide a counterexample. �

4.2 θ-Data and central extensions of BunT

4.2.1

Let Λ be a free abelian group of finite type, Λ̌=Hom(Λ, Z). Set T =Λ⊗Gm and Ť =
Λ̌⊗Gm. Let X be a smooth projective connected curve over k.

We will use Picard groupoid Pθ (X,Λ) of θ-data introduced by Beilinson–Drinfeld

in [6, Section 3.10.3]. Recall that an object of Pθ (X,Λ) is a triple θ = (κ, λ, c), where

κ : Λ⊗Λ→Z is a symmetric bilinear form, λ is a rule that assigns to each γ ∈Λ a super

line bundle λγ on X, and c is a rule that assigns to each pair γ1, γ2 ∈Λ an isomorphism
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cγ1,γ2 : λγ1 ⊗ λγ2
∼−→ λγ1+γ2 ⊗Ωκ(γ1,γ2) on X. They are subject to the conditions explained in

[6, Section 3.10.3]. In particular, recall that the parity of λγ is κ(γ, γ ) mod 2.

Fixing a symmetric bilinear form κ : Λ⊗Λ→Z, one gets a subgroupoid

Pθ (X,Λ)κ ⊂Pθ (X,Λ). Recall that P(X,Λ) :=Pθ (X,Λ)0 is a Picard subgroupoid, and each

Pθ (X,Λ)κ is a P(X,Λ)-torsor. By [6, 3.10.3.1], there is a canonical equivalence of Picard

groupoids

P(X,Λ)
∼−→ T ors(X, Ť), (16)

where T ors(X, Ť) is the Picard groupoid of Ť-torsors on X. Recall the groupoid

Es(T) defined in Section 3.2.1. The following construction is borrowed from [6,

Lemma 3.10.3.1].

Lemma 4.1. Pick a square root Ω
1
2 of Ω on X. It gives rise to a functor Es(T)→

Pθ (X,Λ). �

Proof. Let (κ, Λ̃s) ∈ Es(T), so for each γ ∈Λ we are given a super line εγ and isomor-

phisms cγ1,γ2 : εγ1 ⊗ εγ2
∼−→ εγ1+γ2 . For γ ∈Λ set λγ = (Ω

1
2 )⊗−κ(γ,γ ) ⊗ εγ . Let ′cγ1,γ2 : λγ1 ⊗ λγ2

∼−→
λγ1+γ2 ⊗Ωκ(γ1,γ2) be the evident product obtained from cγ1,γ2 . Then (κ, λ,′ c) ∈Pθ (X,Λ). �

One has the sheaf Div(X,Λ) on the category Sch/k of k-schemes in flat topol-

ogy introduced in [6, 3.10.7]. It classifies relative Λ-valued Cartier divisors on X. One

has the Abel-Jacobi map AJ : Div(X,Λ)→BunT given by D ⊗ γ �→O(D)⊗γ for γ ∈Λ,

D ∈Div(X, Z). This is a morphism of abelian group stacks.

In [6, Section 3.10.7] the Picard groupoid Pic f
(Div(X,Λ)) of factorizable super

line bundles on Div(X,Λ) is introduced. By [6, Proposition 3.10.7.1], one has a natural

equivalence of Picard groupoids

Pic f
(Div(X,Λ))

∼−→Pθ (X,Λ). (17)

Write Pic(BunT ) and Pic(Div(X,Λ)) for the Picard groupoids of super line bundles on

BunT and Div(X,Λ), respectively. By [6, Proposition 4.9.1.2], the functor AJ∗ is an equiv-

alence of Picard groupoids

Pic(BunT )
∼−→Pic(Div(X,Λ)).

For μ ∈Λ write Bunμ

T for the connected component of BunT classifying F ∈BunT

such that for any λ̌ ∈ Λ̌ one has deg(Lλ̌
F )= 〈μ, λ̌〉.
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Recall that each line bundle τ on BunT defines a map δτ : Λ→ Λ̌ such that for

F ∈Bunμ

T the group T(k)⊂Aut(F) acts on the fibre τF by δτ (μ).

The forgetful functor Pic f
(Div(X,Λ))→Pic(Div(X,Λ)) yields a composition

Pθ (X,Λ)
∼−→Pic f

(Div(X,Λ))→Pic(BunT ). (18)

4.2.2

For a Ť-torsor T on X let LT denote the factorizable line bundle on Div(X,Λ) associated

to T via (16) and (17), it is of parity zero. For a k-point D =∑x λxx of Div(X,Λ) with λx ∈Λ

the fibre of LT at D is (LT )D =
⊗

x∈X(Lλx
T )x. For more general points the construction of

(LT )D is based on the norm map (see the proof of [6, Proposition 3.10.7.1]).

As T varies in BunŤ , these line bundles form a line bundle L on BunŤ ×Div(X,Λ).

As in [6, Proposition 4.9.1.2], one checks that there is a line bundle Luniv on BunŤ ×BunT

equipped with an isomorphism (id×AJ)∗Luniv ∼−→ L, where

id×AJ : BunŤ ×Div(X,Λ)→BunŤ ×BunT . (19)

The line bundle Luniv is defined up to a unique isomorphism.

Let Luniv
T denote the restriction of Luniv to BunT given by fixing a k-point T of

BunŤ . By [6, Lemma 4.9.2], the map δLuniv
T

is constant, its image equals deg(T ) ∈ Λ̌.

The line bundle Luniv defines a biextension of BunŤ ×BunT in the sense of [19,

Section 10.3]. So, Luniv can be seen as a commutative central extension of BunŤ ×BunT

by Gm × BunŤ in the category of commutative group stacks over BunŤ , and also as a com-

mutative central extension of BunŤ ×BunT by Gm × BunT in the category of commutative

group stacks over BunT .

For n≥ 1 write Bunn for the stack of rank n vector bundles on X. For example, if

T =Gm then Ť =Gm, and the line bundle Luniv over Bun1×Bun1 is canonically isomor-

phic to the line bundle, whose fibre at (A1,A2) is

det RΓ (X,A1 ⊗A2)⊗ det RΓ (X,O)

det RΓ (X,A1)⊗ det RΓ (X,A2)
.

Remark 4.3.

(1) The line bundle Luniv is symmetric in the following sense. We could start with

a T-torsor F on X and consider the corresponding factorizable line bundle

LF on Div(X, Λ̌). As F varies, they form a line bundle L on Div(X, Λ̌)× BunT .
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Then L is canonically isomorphic to (AJ × id)∗Luniv, where

AJ × id: Div(X, Λ̌)× BunT→BunŤ ×BunT .

(2) More generally, if Λ′ is a free abelian group of finite type, let η : Λ×Λ′ →Z be

a bilinear form. Let T ′ =Λ′ ⊗Gm. The corresponding linear maps η : Λ→ Λ̌′

and η : Λ′ → Λ̌ yield maps T→ Ť ′ and T ′ → Ť , respectively, hence a diagram

BunŤ ′ ×BunT ′
ηX×id← BunT ×BunT ′

id×ηX→ BunT ×BunŤ .

For this diagram the biextensions (ηX × id)∗Luniv and (id×ηX)∗Luniv of

BunT ×BunT ′ are canonically isomorphic, we denote this biextension by
ηLuniv. �

4.2.3

For λ̌ ∈ Λ̌ let L λ̌ denote the line bundle on BunT with fibre

det RΓ (X,Lλ̌
F )⊗ det RΓ (X,O)−1

at F ∈BunT . We view it as Z/2Z-graded of parity 〈μ, λ̌〉 over Bunμ

T . Let κ : Λ⊗Λ→Z be

a symmetric bilinear form. Given a presentation denoted β

κ =
∑

i

bi(λ̌i ⊗ λ̌i)

for some bi ∈Z, λ̌i ∈ Λ̌ we associate to it a line bundle Lβ =
⊗

i(L
λ̌i )⊗bi on BunT . This is

the image of some element of Pθ (X,Λ)κ under (18), compare with Lemma 3.1.

Let θ = (λ, κ, c) ∈Pθ (X,Λ), write also λ for its image under (18).

Proposition 4.1. For x∈ X, μ ∈Λ, F ∈BunT there is a natural Z/2Z-graded isomorphism

λF(μx)
∼−→ λF ⊗ (Lκ(μ)

F )x ⊗ λO(μx) (20)

functorial in θ ∈Pθ (X,Λ). Here (Lκ(μ)

F )x is of parity zero. �

Proof.

(1) First, consider the case κ = 0. Recall that the image of an object of P(X,Λ)

under (18) is a central extension of BunT by Gm (cf. [6], Lemma 4.9.2). In this

case, the line bundle λ on BunT is multiplicative. So, for any F ,F ′ ∈BunT one

has λF⊗F ′
∼−→ λF ⊗ λF ′ and we are done.
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(2) Assume first that κ = λ̌⊗ λ̌ and λ is of the form L λ̌ as above, it comes from

some particular object of Pθ (X,Λ)κ . In this case, κ(μ)= 〈μ, λ̌〉λ̌. Assume also

〈μ, λ̌〉 ≥ 0, the opposite case being similar. Then

L λ̌
F(μx)

∼−→ L λ̌
F ⊗ det RΓ (X,Lλ̌

F (〈μ, λ̌〉x)/Lλ̌
F )

and L λ̌
O(μx)

∼−→ det RΓ (X,O(〈μ, λ̌〉x)/O) canonically. To conclude, note that

for a line bundle A on X, m≥ 0, one has det RΓ (X,A(mx)/A)
∼−→ Am

x ⊗
det RΓ (X,O(mx)/O) canonically.

(3) For general κ pick a presentation κ =∑i bi(λ̌⊗ λ̌), it gives rise to the line

bundle Lβ on BunT coming from some particular object of Pθ (X,Λ)κ . The

desired isomorphism in this case is the product of isomorphisms obtained

in (2).

Moreover, the isomorphism (20) is equivariant with respect to the

action of Ť , here Ť is the group of automorphisms of any object of Pθ (X,Λ).

Indeed, z∈ Ť acts on λ ∈ Pic(BunT ) so that it acts on the fibre λF as (degF)(z).

Combining with (1), we get the desired isomorphism in general.
�

Write κ̄ : BunT→BunŤ for the map sending F to the Ť-torsor κ̄(F) such that for

λ ∈Λ one has Lλ
κ̄(F) =Lκ(λ)

F .

Proposition 4.2. For F , T ∈BunT there is a natural Z/2Z-graded isomorphism

λF⊗T
∼−→ λF ⊗ λT ⊗ κLuniv

F ,T .

Here κLuniv is the line bundle purely of parity zero on BunT ×BunT defined in

Remark 4.3.
�

Proof. Consider the map id×AJ : BunT ×Div(X,Λ)→BunT ×BunT . By [5, Proposi-

tion 4.9.1.2], it suffices to establish the desired isomorphism after applying (id×AJ)∗

to both sides. So, we may assume T =O(D), where D ∈Div(X,Λ). If D =∑i μixi with xi

pairwise distinct, then Proposition 4.1 gives an isomorphism

λF(D)
∼−→ λF ⊗ λO(D) ⊗ (⊗i(Lκ(μi)

F )xi ).

With the notations of Section 4.2.2, we get (⊗i(Lκ(μi)

F )xi )
∼−→ (L κ̄(F))D, the fibre of L κ̄(F) ∈

Pic(Div(X,Λ)) at D. The latter identifies canonically with Luniv
κ̄(F),T

∼−→ κLuniv
F ,T . Our claim

follows.
�

Remark 4.4. For μ′ ∈Λ let F =O(μ′x). Then the isomorphism (20) becomes the isomor-

phism cμ,μ′ in the definition of the theta-datum. �
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5 Geometrization

5.1 Local setting

5.1.1

Let Λ, Λ̌, T be as in Section 4.2.1. Let O= k[[t]]⊂ F = k((t)). View T(F ) as a commutative

group ind-scheme over k. Recall that Contou-Carrère defined in [9] a canonical skew-

symmetric symbol (·, ·)st : F ∗ × F ∗ →Gm. This is a morphism of ind-schemes, on the level

of k-points equal to the tame symbol (see [4, Sections 3.1–3.3]).

Let κ : Λ⊗Λ→Z be an even symmetric bilinear form. In [5, Definition 10.3.13] a

notion of a Heisenberg κ-extension of T(F ) was introduced. This is a central extension

1→Gm→ E→ T(F )→ 1 (21)

in the category of group ind-schemes, whose commutator satisfies

(λ1 ⊗ f1, λ2 ⊗ f2)c= ( f1, f2)
−κ(λ1,λ2)
st

for fi ∈ F ∗, λi ∈Λ. The Heisenberg extensions of T(F ) form a Picard groupoid, whose

structure is described in [5, Section 10.3.13]. Let (21) be a Heisenberg (−κ)-extension of

T(F ).

Pick n> 1 invertible in k, pick a primitive character ζ : μn(k)→ Q̄∗� . Let Gm act on

E so that y∈Gm acts on e∈ E as yne. The stack quotient E = E/Gm under this action fits

into an exact sequence of group stacks

1→ B(μn)→ E→ T(F )→ 1. (22)

This is a geometric analog of the extension (8).

Let Λ	 be given by (9), so Λ	 ⊂Λ is of finite index. Set T 	 =Λ	 ⊗Gm. Let i : T 	→ T

be the corresponding isogeny.

Let E	 (resp., E	) be obtained from E (resp., E ) by the base change T 	(F )→ T(F ).

The group stack E	 admits a natural commutativity constraint, so it is a commutative

group stack. Moreover, consider the maps m : E	 × E→ E and m′ : E	 × E→ E , where m

is the product, and m′(xy)=m(yx).

Lemma 5.1. There is a natural 2-isomorphism m′
∼−→m. In this sense E	 is contained in

the “center” of E . �

Proof. One has T(F )
∼−→Λ× (Λ⊗ (Gm ×W× Ŵ)) canonically, where W is the group

scheme of big Witt vectors, and Ŵ is its completion (with the change of variables
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t �→ t−1), see [4, Section 3.2]. So, T 	(F )=Λ	 × (Λ	 ⊗ (Gm ×W× Ŵ)). The composition

T 	(F )× T(F )→ T(F )× T(F )
(·,·)c→ Gm factors as T 	(F )× T(F )→Gm

z�→zn→ Gm. �

Remark 5.1. It is natural to ask for a description of the Drinfeld center of E . Is it an

algebraic stack? What is its relation with E	? We will not need to answer these questions

in this paper. �

Set T(F )′ =Λ× (Λ	 ⊗ (Gm ×W× Ŵ)) and

T(F )′′ =Λ	 × (Λ⊗ (Gm ×W)) ↪→ T(F )red.

Let E ′ (resp., E ′′) be the base change of E by T(F )′ ↪→ T(F ) (resp., by T(F )′′ ↪→ T(F )).

Lemma 5.2.

(1) Assume that either n is odd or κ(Λ⊗Λ)⊂ 2Z. Then E ′ is naturally an abelian

group stack.

(2) If n is even, then E ′′ is naturally an abelian group stack. �

Proof. (1) Consider the extension 1→Gm→ Λ̃→Λ→ 1 obtained as the pull-back of

(21) by Λ→ T(F ), λ �→ tλ. It commutator is (λ1, λ2)c= (−1)κ(λ1,λ2). If κ(Λ⊗Λ)⊂ 2Z then Λ̃

is abelian, so one gets a commutativity constraint for E ′ as in Lemma 5.1.

We may view Λ̃ as an extension of Λ by μ2 with the same commutator. We have

a morphism of group stacks δ̄ : μ2→ B(μn) given by the exact sequence of groups

1→μn→μ2n
δ→μ2→ 1, (23)

here δ(z)= zn. Namely, δ is a μn-torsor, which can be viewed as a morphism δ̄ : μ2→
B(μn). The multiplicative structure on the μn-torsor δ provides a structure of a morphism

of group stacks on δ̄. Let 1→ B(μn)→ Λ̄→Λ→ 1 be the push-forward of 1→μ2→ Λ̃→
Λ→ 1 by δ̄. Then Λ̄ is the restriction of E to Λ.

If n is odd, then the sequence (23) splits canonically, so the restriction of E to Λ

is naturally an abelian group stack. Now one gets the desired commutativity constraint

for E ′ as above.

(2) Let Λ̃	 denote the restriction of Λ̃ to Λ	. If n is even, then Λ̃	 is an abelian

group scheme. Now we can construct a commutativity constraint on E ′′ as in (1) using

the fact that the symbol (·, ·)st is trivial on Gm ×W. �
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We expect E ′ (resp., E ′′) to be a “maximal abelian substack” of E (resp., of Ered),

but we have not checked this.

Let Lζ be the local system on B(μn), the direct summand in a!Q̄�, on which μn(k)

acts by ζ . Here a: Spec k→ B(μn) is the natural map. Note that B(μn) is a group stack,

and Lζ is a character local system on this stack.

Define a ζ -genuine character local system on E ′ as a rank 1 local system A
equipped with the following data. The ∗-restriction of A to B(μn) is identified with Lζ .

For the product map m : E ′ × E ′ → E ′ we are given an isomorphism σ : m∗A ∼−→A � A,

which is associative and the restriction of σ to B(μn) is compatible with the character

local system structure of Lζ .

Let a: E ′ × E→ E be the product map. We have the diagram of associativity

E ′ × E ′ × E
id×a→ E ′ × E

↓m×id ↓ a

E ′ × E
a→ E .

Definition 5.1. Let (A, σ ) be a ζ -genuine character local system on E ′. Let Ind(A) be

the category of Q̄�-perverse sheaves F on E , on which μn(k) acts by ζ , and which are

equipped with an isomorphism η : a∗F ∼−→A � F such that the diagram commutes

(m× id)∗a∗F = (id×a)∗a∗F (id×a)∗η→ A � a∗F
↓ (m×id)∗η ↓ id �η

(m× id)∗(A � F)
σ�id→ A � A � F . �

The group stack E acts on Ind(A) by right translations. If n is odd or κ(Λ⊗Λ)⊂
2Z, then Ind(A) is our geometric analog of the representation πx from Section 3.3.5.

If n is even, then we may repeat the construction of Ind(A) with E ′ replaced

by E ′′.

Remark 5.2. Given in addition a bilinear form B : Λ⊗Λ→Z with κ = B + tB, one

can construct (21) as Gm × T(F ) with the group structure given by a cocycle as in

Section 3.3.1. In particular, the μn-gerbe E→ T(F ) is trivial. �

5.1.2 Twisted spherical sheaves

Recall that (21) splits over T(O). We pick such splitting. It yields a splitting of (22) over

T(O). So, we may consider the category Sph of perverse sheaves on E , which are left
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and right equivariant with respect to T(O) and on which μn acts by ζ : μn(k)→ Q̄�. It is

naturally equipped with a monoidal category structure given by the convolution. This is

a geometric analog of the Hecke algebra Hx defined in Section 3.3.3.

The exact sequence 1→μn→Gm
πn→Gm→ 1, where πn(z)= zn, yields a morphism

of group stacks Gm→ B(μn), we also denote by Lζ the restriction of Lζ under the latter

map. This is the direct summand in (πn)!Q̄�, on which μn(k) acts by ζ . We may view Sph

as the category of (Gm,Lζ )-equivariant perverse sheaves on E , which are also left and

right T(O)-equivariant.

Remark 5.3. The monoidal category Sph has been studied in [21]. One should be careful

using [21], for example, [21, Proposition II.3.6] is wrong as stated. Besides, in [21] only

the case when k is of characteristic zero is considered. �

For μ ∈Λ let Eμ be the connected component of E containing the preimage of

tμ ∈ T(F ). It is easy to see that there is a nonzero object of Sph supported on Eμ iff μ ∈Λ	.

Pick a section of (22) over Λ	, that is, a morphism of group stacks s : Λ	→ E extending the

inclusion Λ	→ T(F ), μ �→ tμ. The functor s∗ yields an equivalence of monoidal categories

Sph
∼−→Rep(Ť 	).

5.2 Global setting

5.2.1

Keep the notations of Section 4.2.1. According to Weissman [23, 24], the input data for

the twisted Langlands correspondence for a torus should be an object (κ, Λ̃) of E(T, K2)

and an integer n≥ 1. Since E(T, K2)⊂ Es(T), it would produce an object of Pθ (X,Λ) by

Lemma 4.1.

We consider a bit more general situation. We take as initial input data an object

θ = (κ, λ, c) ∈Pθ (X,Λ), and assume κ : Λ⊗Λ→Z to be even. So, for each γ ∈Λ the line

bundle λγ on X is of parity zero. Write also λ for the line bundle on BunT obtained

applying the functor (18) to θ . Recall that AJ∗λ is equipped with a factorizable structure.

Note that λF0 is trivialized. Here F0 is the trivial T-torsor on X. The line bundle λ on

BunT is purely of parity zero.

As in Section 4.2.1, the line bundle λ on BunT yields the map δλ : Λ→ Λ̌. By

[6, Lemma 4.9.2], the map δλ is affine with the linear part κ. We assume in addition that

δλ = κ. So, our θ = (κ, λ, c) is defined uniquely up to an action of the groupoid of Ť-torsors

of degree zero.
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5.2.2

Pick n> 1 invertible in k, pick a primitive character ζ : μn(k)→ Q̄∗� .

Let B̃unT,λ be the gerbe of nth roots of λ over BunT . It classifies FT ∈BunT , a Z/2Z-

graded line U of parity zero, and an isomorphism Un ∼−→ λFT of super k-vector spaces. For

μ ∈Λ we write B̃un
μ

T,λ for the preimage of Bunμ

T in B̃unT,λ. Let Dζ (B̃un
μ

T,λ) be the bounded

derived category of Q̄�-sheaves on B̃un
μ

T,λ, on which μn(k) acts via ζ . We have used here

the natural action of μn(k) on B̃unT,λ by 2-automorphisms.

Let Λ	 be given by (9), so Λ	 ⊂Λ is of finite index. Set T 	 =Λ	 ⊗Gm. Let i : T 	→ T

be the corresponding isogeny. Let iX : BunT 	→BunT be the push forward map. Set λ	 =
i∗Xλ. Write B̃unT	,λ for the restriction of the gerbe B̃unT,λ under iX.

Let κ	 (resp., θ	) denote the restriction of κ (resp., of θ ) to Λ	. Since both κ	 and δλ	

are divisible by n, we may and do pick an object ( κ	

n , τ, c	) ∈Pθ (X,Λ	) and an isomorphism(
κ	

n
, τ, c	

)n
∼−→ θ	 (24)

in Pθ (X,Λ	). Note that ( κ	

n , τ, c	) is defined uniquely up to an action of Ť 	-torsors on X,

whose nth power is trivialized.

If n is odd, then for any γ ∈Λ the line bundle τ γ is of parity zero. If n is even,

then it may be indeed a super line bundle. Write also τ for the super line bundle on BunT 	

obtained by applying the functor (18) to ( κ	

n , τ, c	) ∈Pθ (X,Λ	) with Λ replaced by Λ	. It is

equipped with a Z/2Z-graded isomorphism τn ∼−→ λ	 over BunT 	 obtained from (24). This

yields a section

s : BunT 	→ B̃unT	,λ

of the gerbe B̃unT 	,λ→BunT 	 .

A point of B̃unT	,λ is given by F 	 ∈BunT 	 for which we set F =F 	 ×T 	 T , and a line

U equipped with σ : Un ∼−→ λF . Let

π : B̃unT 	,λ→ B̃unT,λ

be the map sending the above point to (F ,U , σ ). The map s is given by U = τF 	 .

For μ ∈Λ	 we similarly define the category Dζ (B̃un
μ

T 	,λ), this is the category of

objects in D(B̃un
μ

T 	,λ) on which μn(k) acts by ζ . The section s defines an equivalence

s∗ : Dζ (B̃un
μ

T	,λ)
∼−→D(Bunμ

T 	 ).

Note that for K ∈Dζ (B̃un
μ

T 	,λ) the object π!K ∈D(B̃un
μ

T,λ) actually lies in the sub-

category Dζ (B̃un
μ

T,λ).
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Lemma 5.3. Let L be a line bundle on B(T) such that T acts on it via the character

λ̌ ∈ Λ̌. Let B̃(T) be the gerbe of nth roots of L over B(T), so B̃(T)→ B(T) is a μn-gerbe. Let

Db
ζ (B̃(T)) be the bounded derived category of Q̄�-complexes on B̃(T) on which μn(k) acts

by ζ : μn(k)→ Q̄∗� . If λ̌ /∈nΛ̌, then Db
ζ (B̃(T))= 0. �

Proof. Let G be the kernel of the map T ×Gm→Gm, (t, z) �→ λ̌(t)z−n. Then B̃(T)
∼−→ B(G)

naturally. Consider the weight lattice Λ̌⊕ Z of T ×Gm. The above map is the weight

λ̌− nε̌, where ε̌ is the standard weight of Gm. Let m≥ 1 be the biggest integer such that
1
m (λ̌− nε̌) ∈ Λ̌⊕ Z. This is a divisor of n. In particular, m is invertible in k. By Remark 5.4,

π0(G)
∼−→μm(k). By our assumption, m < n. The action of μn(k) by 2-automorphisms

on B(G) factors through the map μn(k)→ π0(G), so μn(k) cannot act via a faithful

character. �

Remark 5.4. If λ̌ ∈ Λ̌, consider the kernel Ker λ̌ of λ̌ : T→Gm. Let μ̌ ∈ Λ̌ be such that

Λ̌/Zμ̌ is torsion free, and λ̌=mμ̌ for some m≥ 1. The group π0(Ker λ̌) of connected com-

ponents of Ker λ̌ is π0(μm(k)). If m is invertible in k, then π0(μm(k))=μm(k). �

Proof of Proposition 2.1. Pick a k-point F ∈Bunμ

T . It gives a map B(T)→Bunμ

T , as T is

the group of automorphisms of F . Let L be the restriction of the line bundle λ to B(T). Let

B̃(T) be the gerbe of nth roots of L over B(T). It suffices to show that Db
ζ (B̃(T))= 0. The

group T acts on L by the character δλ(μ)= κ(μ) ∈ Λ̌. The condition μ /∈Λ	 is equivalent

to κ(μ) /∈nΛ̌. So, Db
ζ (B̃(T))= 0 by Lemma 5.3. �

5.2.3 Hecke functors

In this section, we construct an action of BunT 	 on B̃unT,λ.

A point of B̃unT,λ is a pair (F ,U), where F ∈BunT , U is a line of parity zero, and

Un ∼−→ λF is a Z/2Z-graded isomorphism. For μ ∈Λ	 we define a map mμ : X × B̃unT,λ→
B̃unT,λ as follows. It sends (x∈ X, (F ,U) ∈ B̃unT,λ) to (F(μx),U ′), where

U ′ = U ⊗ (L
κ(μ)

n
F )x ⊗ τO(μx) (25)

is equipped with the isomorphism

(U ′)n ∼−→ λF(μx) (26)

given by Proposition 4.1. Let us explain that for μ ∈Λ	 we may view O(μx) as a k-

point of BunT	 , and τO(μx) denotes here the fibre of τ at O(μx) ∈BunT 	 . Recall that
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over BunT 	 we have an isomorphism τn ∼−→ λ |BunT	 obtained from (24). This is how (26) is

obtained.

The Hecke functor

Hμ : Dζ (B̃unT,λ)→Dζ (X × B̃unT,λ)

is defined as Hμ(K)=m∗μK. For a∈μn(k) the corresponding 2-automorphism of X ×
B̃unT,λ acts by a on U and trivially on (F , x). The image of this 2-automorphism under

mμ acts by a on U ′ and trivially on F(μx). So, if K ∈Dζ (B̃unT,λ) then μn(k) acts on m∗μK

by ζ .

If Λ′ is a free abelian group of finite type and j : Λ→Λ′ is a linear map, for

T ′ =Λ′ ⊗Gm we get a map j̄ : BunT→BunT ′ such that if λ̌ ∈ Λ̌′ then Lλ̌

j̄(F)

∼−→Lλ̌◦ j
F . Here

Λ̌′ =Hom(Λ′, Z). The diagram

Λ	 ↪→ Λ

↓ κ
n ↓ κ

Λ̌
n→ Λ̌

yields a diagram of morphisms

BunT 	

iX→ BunT

↓ iκ ↓ κ̄

BunŤ
nX→ BunŤ ,

where nX sends F to F⊗n.

Lemma 5.4. For F ∈BunT , T 	 ∈BunT	 let T = T 	 ×T 	 T . Our choice of (24) yields an

isomorphism

λF⊗T
∼−→ λF ⊗ τ⊗n

T 	 ⊗ (Luniv
iκ (T 	),F )⊗n. �

Proof. By Proposition 4.2, λF⊗T
∼−→ λF ⊗ τn

T 	 ⊗ Luniv
κ̄(T ),F . Now Luniv

κ̄(T ),F
∼−→Luniv

iκ (T 	)⊗n,F
∼−→

(Luniv
iκ (T 	),F )⊗n because of the biextension structure on Luniv. �

Let a: BunT 	 × B̃unT,λ→ B̃unT,λ be the map sending (T 	,F ,U ,Un ∼−→ λF ) to (F ⊗
T ,U ′), where T = T 	 ×T	 T , and

U ′ = U ⊗ τT 	 ⊗ Luniv
iκ (T 	),F (27)

is equipped with the isomorphism U ′n ∼−→ λF⊗T given by Lemma 5.4.
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8712 S. Lysenko

Lemma 5.5. The map a has a natural structure of an action of the group stack BunT	 on

B̃unT,λ. �

Proof. The bilinear form associated to τ is κ	

n : Λ	 ⊗Λ	→Z. Using Remark 4.3 and

applying Proposition 4.2 to τ on BunT	 , for T 	,G	 ∈BunT 	 one gets an isomorphism

τT 	 ⊗ τG	 ⊗ Luniv
iκ (G	),T

∼−→ τG	⊗T 	 , (28)

where T = T 	 ×T	 T . This combined with Lemma 5.4 gives a 2-morphism making the

following diagram 2-commutative

BunT 	 ×BunT 	 × B̃unT,λ
id×a→ BunT	 × B̃unT,λ

↓m×id ↓ a

BunT 	 × B̃unT,λ
a→ B̃unT,λ .

Here m is the product map for BunT 	 . Besides, there is a natural 2-morphism identifying

the restriction of a to the trivial T 	-torsor with the identity map. �

Consider the map e0 : B(μn)→ B̃unT,λ sending (U ,Un ∼−→ k) to (F0,U ,Un ∼−→ λF0).

We used the fact that λF0
∼−→ k canonically, here F0 is the trivial T-torsor on X. The

composition

BunT 	 ×B(μn)
id×e0→ BunT 	 × B̃unT,λ

a→ B̃unT,λ

is naturally 2-isomorphic to π : B̃unT 	,λ→ B̃unT,λ. We have a 2-commutative diagram

BunT 	 × B̃unT,λ
ā→ BunT	 × B̃unT,λ

↘ a ↓ pr2

B̃unT,λ,

(29)

where ā is the isomorphism sending (T 	,F ,U ,Un ∼−→ λF ) to (T 	,F ⊗ T ,U ′,U ′n ∼−→ λF⊗T )

with T = T 	 ×T 	 T , and U ′ is given by (27). So, a is a BunT 	-torsor.

Let Ť 	 be the Langlands dual to T 	 torus over Q̄�, let E be a Ť 	-local system on X.

Let AE denote the corresponding automorphic local system on BunT 	 . For a Λ	-valued

divisor D =∑x∈X μxx on X, write O(D) := AJ(D) ∈BunT 	 then

AEO(D)
∼−→
⊗
x∈X

Eμx
x

canonically. Here for μ ∈Λ	 we denoted by Eμ the push forward of E via μ : Ť 	→Gm.

Note that AE is a character local system on BunT 	 . So, for the product map m there is a
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natural isomorphism m∗AE
∼−→ AE � AE , in particular, the restriction of AE to the trivial

T 	-torsor is trivialized.

Definition 5.2. A E-Hecke eigensheaf in Dζ (B̃unT,λ) is an object K ∈Dζ (B̃unT,λ) equipped

with a (BunT 	 , AE)-equivariant structure. This means that it is equipped with an isomor-

phism a∗K
∼−→ AE � K, which is associative, and whose restriction to the unit section is

trivialized (in a way compatible with the character local system structure on AE ). �

Note that if K ∈Dζ (B̃unT,λ) is a E-Hecke eigen-sheaf then for μ ∈Λ	 we get an

isomorphism Hμ(K)
∼−→ Eμ � K.

Let

a	 : BunT 	 × B̃unT	,λ→ B̃unT	,λ

be the map sending (T 	,F 	,U ,Un ∼−→ λF ) with T = T 	 ×T 	 T , F =F 	 ×T	 T to the collection

(T 	 ⊗ F 	,U ′), where U ′ is given by (27) and equipped with the isomorphism U ′n ∼−→ λF⊗T
given by Lemma 5.4. The map a	 is equipped with a structure of an action map of BunT 	

on B̃unT	,λ. The diagram is naturally 2-commutative and cartesian

BunT 	 × B̃unT 	,λ

a	→ B̃unT	,λ

↓ id×π ↓ π

BunT 	 × B̃unT,λ
a→ B̃unT,λ .

(30)

Define the derived category Dζ (BunT	 × B̃unT 	,λ) similarly, that is, by requiring

that μn(k) acts by ζ . Consider the 2-automorphism of BunT 	 × B̃unT	,λ acting by a∈μn(k)

on U and trivially on T 	,F 	. Its image under a	 acts by a on U ′ and trivially on T 	 ⊗ F 	.

Therefore, (a	)∗ : Dζ (B̃unT	,λ)→Dζ (BunT 	 × B̃unT	,λ).

Proof of Proposition 2.2(i). The local system W is naturally equipped with an isomor-

phism (a	)∗W
∼−→ AE � W, which is associative, and its restriction to the unit section of

BunT 	 is trivialized. Since (30) is cartesian, π!W is a E-Hecke eigen-sheaf naturally. �

5.2.4

As in Section 3.3.3, define K by the exact sequence 1→ K→ T 	 i→ T→ 1.

Lemma 5.6. Let G1 be a K-torsor on X, μ ∈Λ	. The μn-torsor on Bunμ

T	 with fibre τG⊗G1 ⊗
τ−1
G at G ∈Bunμ

T 	 is constant on Bunμ

T 	 and independent of μ. We have canonically τG⊗G1 ⊗
τ−1
G
∼−→ τG1 . �
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8714 S. Lysenko

Proof. The nth power of the line bundle on Bunμ

T	 with fibre τG⊗G1 ⊗ τ−1
G at G is triv-

ialized, so we think of it as a μn-torsor. By Proposition 4.2, for G ∈BunT 	 we get

τG⊗G1

∼−→ τG ⊗ τG1 ⊗ (
κ	

n Luniv
G,G1

). The map κ	

n : Λ	 ×Λ	→Z factors as Λ	 ×Λ	 id×i→ Λ	 ×Λ→Z.

Therefore,

κ	

n Luniv
G,G1

∼−→ κ
nLuniv

G,F0

∼−→ k,

where F0 is the trivial T-torsor. The latter isomorphism comes from the biextension

structure on Luniv. �

Write Bunμ

T	 for the coarse moduli space of Bunμ

T 	 , similarly for Bunμ

T . For μ ∈
Λ	 and a k-point η ∈Bunμ

T	 , π1(η, Bunμ

T 	 ) is abelian and independent of η and μ up to a

canonical isomorphism, we simply denote it by π1(BunT 	 ). Similarly for π1(BunT ). The

map iX induces a Galois covering π : Bunμ

T 	→Bunμ

T with Galois group H1(X, K). It yields

an exact sequence

1→ π1(BunT 	 )→ π1(BunT )→H1(X, K)→ 1. (31)

Note that over Bun0
T 	 the line bundle τ descends to a line bundle on its coarse

moduli space Bun0
T 	 , which is an abelian variety. Let K(τ ) denote the kernel of the map

φτ : A→ Â defined as in [19, Corollary 8.6], here A=Bun0
T 	 . By Lemma 5.6, H1(X, K)⊂

K(τ ). This inclusion may be strict, see example in Section 5.2.6.

If S is a scheme, H is a flat finitely presented and separated group scheme over

S, X is an algebraic stack over S, and α : pr2→ pr2 is a 2-morphism for the projection

pr2 : H ×S X →X defining an action of H on X by 2-automorphisms, we will use a rigidi-

fication of X along H [1, Definition 5.1.9 and Theorem 5.1.5] obtained by killing H inside

the automorphisms of objects of X .

Let ′ BunT 	 be obtained from BunT	 by killing the group H0(X, K) inside the auto-

morphisms of BunT 	 . The projection BunT 	→ ′ BunT 	 is a K-gerbe. One has noncanoni-

cally ′ BunT 	

∼−→BunT	 ×B(T). The map iX factors through ′iX : ′ BunT 	→BunT , the map ′iX

is a Galois covering with Galois group H1(X, K).

Since δτ = κ	

n , it follows that K acts trivially on τ . So, τ descends to a line bundle
′τ on ′ BunT 	 . The isomorphism τn ∼−→ λ	 also descends to an isomorphism

′τn ∼−→ (′iX)∗λ (32)

on ′ BunT 	 . Let ′π : ′ BunT	→ B̃unT,λ be the map corresponding to (32). Now applying

Remark 4.1 ii) and Lemma 5.6 to the Galois covering ′iX : ′ BunT 	→BunT , we get a central
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extension

1→μn(k)→ Γ →H1(X, K)→ 1 (33)

(eventually depending on μ) such that ′π : ′ Bunμ

T 	→ B̃un
μ

T,λ is a Galois covering with

Galois group Γ , here Γ acts on ′ BunT 	 via its quotient H1(X, K). We write Γμ = Γ if

we need to express the dependence of Γ on μ.

Given ν ∈Λ	 and a k-point T 	 ∈Bunν
T 	 , the action by T 	 yields a diagram

′ Bunμ

T	 → ′ Bunμ+ν

T 	

↓ ′π ↓ ′π
B̃un

μ

T,λ → B̃un
μ+ν

T,λ ,

where the horizontal arrows are isomorphisms. This provides an isomorphism αν : Γμ
∼−→

Γμ+ν , which depends only on ν, μ and not on T 	, because Bunν
T	 is connected. Moreover,

for νi ∈Λ	 we get αν1αν2 = αν1+ν2 . In this sense, Γμ is independent of μ.

Define the category of ζ -genuine local systems on B̃unT,λ as the category of local

systems in Dζ (B̃unT,λ). For μ ∈Λ	 let

1→μn(k)→ Γ̄ → π1(BunT )→ 1

be the exact sequence obtained as the pull-back of (33) by (31).

Corollary 5.1. Let μ ∈Λ	.

(1) The category of ζ -genuine Q̄�-local systems on B̃un
μ

T,λ is equivalent to the cat-

egory of Γμ-equivariant Q̄�-local systems V on ′ Bunμ

T	 such that the subgroup

μn(k) acts on V by the character ζ : μn(k)→ Q̄∗� .

(2) The category of ζ -genuine Q̄�-local systems on B̃un
μ

T,λ is equivalent to

the category of finite-dimensional representations of Γ̄ , on which μn(k)

acts by ζ . �

Proof. (2) Let Γ act on Bunμ

T	 via its quotient H1(X, K). The natural map r : ′ Bunμ

T	→
Bunμ

T 	 is Γ -equivariant. Now r∗ gives an equivalence of the category of Γ -equivariant

Q̄�-local system on Bunμ

T 	 , on which μn(k) acts by ζ with the category of Γ -equivariant

Q̄�-local system on ′ Bunμ

T 	 , on which μn(k) acts by ζ . Indeed, for any Gm-gerbe α : Ỹ→Y

over a stack Y, α∗ is an equivalence between the categories of Q̄�-local systems on Y

and on Ỹ. �
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In [19, Section 10.4] the Weil pairing on K(τ ) has been constructed, it is a skew-

symmetric bilinear form bτ : K(τ )× K(τ )→Gm associated to the above map φτ : A→
Â with A=Bun0

T	 . By our construction, the commutator of the extension (33) is the

restriction of bτ to H1(X, K). The latter takes values in μn, because τn descends under

BunT 	→BunT .

The map φτ is not always an isogeny, and K(τ ) is not always a finite group

scheme. If φτ is an isogeny then by [19, Theorem 10.1] the bilinear form bτ is non-

degenerate, it identifies K(τ ) with its Cartier dual.

Proposition 5.1. The commutator (·, ·)c : H1(X, K)×H1(X, K)→μn(k) of (33) is non-

degenerate and independent of μ ∈Λ	, it induces an isomorphism

H1(X, K)
∼−→Hom(H1(X, K), μn(k)). �

Proof. The commutator (·, ·)c is described as follows. Since Λ/Λ	 is a Z/nZ-module, we

get Hom(Λ̌	/Λ̌, 1
nZ/Z)

∼−→Λ/Λ	 canonically. So, K
∼−→Hom(Λ̌	/Λ̌, μn)

∼−→ (Λ/Λ	)⊗ μn canon-

ically. The cup-product gives the pairing

H1(X,Λ⊗ μn)⊗H1(X,Λ⊗ μn)→H2(X,Λ⊗Λ⊗ μ⊗2
n )

κ→H2(X, μ⊗2
n )

∼−→μn. (34)

We have an exact sequence 0→ (Λ	/nΛ)⊗ μn→Λ⊗ μn→ (Λ/Λ	)⊗ μn→ 0. It yields a

long exact sequence

H1(X,Λ⊗ μn)
ν→H1(X, K)→ H2(X, (Λ	/nΛ)⊗ μn) → H2(X,Λ⊗ μn)

↓ ↓
(Λ	/nΛ) Λ/nΛ,

where the vertical arrows are canonical isomorphisms. This shows that ν is surjective.

The pairing (34) is skew-symmetric, because κ is symmetric, and the cup-product is

skew-symmetric. This pairing vanishes (Ker ν)×H1(X,Λ⊗ μn), because it vanishes after

restriction to H1(X, (Λ	/nΛ)⊗ μn)⊗H1(X,Λ⊗ μn). So, we get a non-degenerate pairing

H1(X, K)×H1(X, K)→μn. �

Second proof of Proposition 5.1 in the case dim T = 1.

Step 1. Assume first dim T arbitrary. Let us show that the group K(τ ) identifies with the

group of T 	 ∈Bun0
T	 such that for all μ ∈Λ	 the line bundle Lκ(μ)/n

T 	 is trivial on X.

Let T 	 ∈Bun0
T	 . Consider the line bundle on Bun0

T 	 with fibre τT 	⊗G	 ⊗ τ−1
G	 at

G	 ∈Bun0
T 	 . From (28) we see that this line bundle is constant if and only if the line
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bundle with fibre Luniv
iκ (G	),T at G	 ∈Bun0

T 	 is constant. Here T = T 	 ×T 	 T . This is equivalent

to requiring that for all μ ∈Λ	 the line bundle on X with fibre

Luniv
iκ (O(μx)),T = (L

κ(μ)

n
T )x

at x∈ X is trivial.

Let Θ̌ denote the image of 1
nκ : Λ	→ Λ̌. Let TΘ be the split torus, whose weights

are Θ̌. The inclusion Θ̌ ⊂ Λ̌ gives a morphism T→ TΘ . Let K1 be the kernel of T→ TΘ , so

H1(X, K1) is the kernel of Bun0
T→Bun0

TΘ
. Then K(τ ) is the preimage of H1(X, K1) under

Bun0
T 	→Bun0

T .

Step 2. If rk(Λ)= 1, then the only nontrivial case is κ �= 0. In this case let d> 0

be such that κ(Λ⊗Λ)=dZ, recall that d is even. Let e be the smallest positive integer

such that de∈nZ. Then Λ	 = eΛ, Θ̌ = ed
n Λ̌. So, K

∼−→μe and K1
∼−→μ ed

n
. Recall that the Weil

pairing bτ on K(τ ) is non-degenerate. Since e and ed
n are relatively prime, the orders of the

groups H1(X, K) and H1(X, K1) are relatively prime. So, the restriction of bτ to H1(X, K)

is also nondegenerate. �

Corollary 5.2. The center of Γ is μn(k). There is a unique irreducible representation of

Γ with central character ζ . �

Let H⊂H1(X, K) be a maximal subgroup isotropic with respect to (·, ·)c. The

order of H1(X, K) is e2g, where e is the order of Λ/Λ	, so H is of order eg. Recall that

H1(X, K) acts on ′ BunT 	 . Let BunT	,H denote the quotient of ′ BunT 	 by H . For μ ∈Λ	 write

Bunμ

T 	,H for the image of ′ Bunμ

T 	 in BunT 	,H . Let

′ B̃unT 	→ B̃unT 	,H
πH→ B̃unT,λ

be obtained from ′ BunT	→BunT 	,H→BunT by the base change B̃unT,λ→BunT .

Proof of Proposition 2.2(ii). Let μ ∈Λ	. Let HΓ be the preimage of H in Γ , H̄ be the

preimage of HΓ in Γ̄ . Let χ : π1(BunT 	 )→ Q̄∗� be the character corresponding to AE . By

[23, Proposition 2.1], we may and do pick a character χ̄ : H̄→ Q̄∗� extending

ζ � χ : μn(k)× π1(BunT 	 )→ Q̄∗�.

It yields a HΓ -equivariant structure on AE over ′ Bunμ

T 	 such that μn(k) acts on it by ζ .

Since ′ BunT	→ B̃unT 	,H is a Galois covering with Galois group HΓ , we get a rank

1 local system AEH on B̃unT 	,H equipped with an isomorphism of its restriction to ′ BunT 	

with AE . Set KE = πH !(AEH ).
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Over B̃un
μ

T,λ the local system π!W of Proposition 2.2 corresponds via the equiva-

lence of Corollary 5.1 to the representation

IndΓ̄
μn(k)×π1(BunT	 )

(ζ � χ).

Pick a vector space V and an isomorphism of the above representation with V⊗ IndΓ̄

H̄ χ̄ .

It yields a decomposition π!W
∼−→V⊗KE over B̃un

μ

T,λ for each μ ∈Λ	. The Hecke property

of KE is obtained from that of π!W. �

Remark 5.5. In our setting what really matters in the input data (θ, n) is the bilinear

form κ
n : Λ⊗Λ→Q/Z (compare with [10, Remark 1]). Namely, let d≥ 1. Assume nd invert-

ible in k. Let ζ̄ : μnd(k)→ Q̄∗� be a character satisfying ζ̄d= ζ . Let B̃unT,λd be the gerbe of

ndth roots of λd. We have a morphism

fd : B̃unT,λ→ B̃unT,λd

sending (B,F ,Bn ∼−→ λF ) to (B,F ,Bnd ∼−→ λd
F ). The functor f∗d gives rise to an equivalence

f∗d : Dζ̄ (B̃unT,λd)
∼−→Dζ (B̃unT,λ).

So, (θ, n) and (θd, dn) give rise essentially to the same problem of the spectral

decomposition. �

5.2.5

By Lemma 5.6, for G1,G2 ∈BunK we have naturally τG1 ⊗ τG2

∼−→ τG1⊗G2 . Let Λ(τ) denote the

biextension of BunT 	 ×BunK , whose fibre at G,G1 is

τG⊗G1 ⊗ τ−1
G ⊗ τ−1

G1
.

Lemma 5.6 yields a trivialization of this biextension. Now by ([19], Theorem 10.5), there

is a line bundle τH on BunT 	,H , whose restriction to ′ BunT	 is identified with ′τ .

Question. Is it true that the line bundle τn
H ⊗ λ−1 is trivial on BunT 	,H ? We know already

that the restriction of the central extension (33) to H is abelian. Does the restriction

of the central extension (33) to H split? Is it true that the gerbe B̃unT	,H→BunT	,H is

trivial? �

5.2.6 Example (1)

Take Λ=Z, so T =Gm and κ : Λ⊗Λ→Z given by κ(x1, x2)= 2x1x2. There is an object

θ = (κ, λ, c) ∈Pθ (X,Λ) such that the corresponding line bundle λ on BunT has fibre
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det RΓ (X, L)⊗ det RΓ (X, L−1)⊗ det RΓ (X,O)−2 at L ∈Bun1. We get δλ = κ here. Pick a

square root of (κ, λ, c) in Pθ (X,Λ), it yields as in Section 4.2 a super line bundle L1 on

Bun1 with a Z/2Z-graded isomorphism L2
1
∼−→ λ on BunT . Over Bun0

1 the line bundle L1

descends to Bun0
1.

Let n≥ 1. Let e≥ 1 be the smallest positive integer such that 2e∈nZ. So, e=n for

n odd and e=n/2 for n even. We get Λ	 = eZ. Identify T 	 with Gm, so that iX : Bun1 =
BunT 	→BunT =Bun1 is L �→ Le.

Lemma 5.7. For any L ∈Bun1 there is a canonical Z/2Z-graded isomorphism

det RΓ (X, Le)⊗ det RΓ (X, L−e)

det RΓ (X, L)e2 ⊗ det RΓ (L−1)e2

∼−→ det RΓ (X,O)2−2e2
. �

Proof. Let K(L) denotes the LHS of the formula to be proved. Note that K(L) descends

to a line bundle on Bun1. It suffices to check that for x∈ X one has K(L(x))
∼−→ K(L)

canonically. Since det RΓ (X, ·) is multiplicative in exact sequences of coherent sheaves

on X, this is reduced to showing that

det RΓ (X, Le(ex)/Le)⊗ L−e2

x

det RΓ (X, L−e/L−e(−ex))⊗ (L(x)/L)e2

is canonically trivialized. Using the fact that for a line bundle A on X one has canoni-

cally det RΓ (X,A(ex)/A)
∼−→Ae

x ⊗ det RΓ (X,O(ex)/O), our claim is reduced to a canonical

isomorphism det RΓ (X,O(ex)/O)
∼−→ det RΓ (X,O/O(−ex))⊗Ω−e2

x . �

We may pick (24) here with the following properties. The line bundle τ on

BunT 	 =Bun1 is as follows. If n is odd, then τL = det RΓ (X, L)n⊗ det RΓ (X, L−1)n⊗
det RΓ (X,O)−2n. If n is even, then τ =Le

1 is a super line bundle.

The group K(τ )⊂Bun0
1 is as follows. If n is odd, then K(τ )=H1(X, μ2n), and the

inclusion H1(X, K)⊂ K(τ ) is strict. If n is even, then K(τ )=H1(X, μe), and H1(X, K)=
K(τ ).

Example (2). Consider the case when κ(Λ⊗Λ)⊂ 2Z. Pick a presentation κ
2 =

∑
i bi(λ̌i ⊗ λ̌i)

with λ̌i ∈ Λ̌. For λ̌ ∈ Λ̌ let Rλ̌ be the line bundle on BunT with fibre

det RΓ (X,Lλ̌
F )⊗ det RΓ (X,L−λ̌

F )

det RΓ (X,O)2

at F ∈BunT . There is θ = (κ, λ, c) ∈Pθ (X,Λ) such that the corresponding line bundle λ on

BunT is λ=⊗i(Rλ̌i )bi , and we get δλ = κ.
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5.2.7 Corrected scalar products

Let E, E ′ be Ť 	-local systems on X. The local system AE on BunT 	 descends to a (defined

up to a unique isomorphism) local system on BunT 	 that we denote by the same letter by

abuse of notation. For each μ ∈Λ	 we may consider the “corrected scalar product” of AE

and AE ′, namely

RΓ (Bunμ

T 	 , AE∗ ⊗ AE ′). (35)

The word “corrected” here refers to the rigidification of BunT along T . A similar rigidifi-

cation (along the center of GLn) has appeared in the calculation of the scalar product of

automorphic sheaves for GLn in [17].

Lemma 5.8. The complex (35) vanishes unless E
∼−→ E ′. If E

∼−→ E ′, then for each μ ∈Λ	 the

complex (35) identifies canonically with
⊕

i ∧iH1(Bun0
T , Q̄�)[−i]. �

To express the dependence of the automorphic sheaf K of Proposition 2.2 on E ,

let us write KE =K. Consider the complex (KE )∗ ⊗KE ′ on B̃unT,λ. Note that μn(k) acts

trivially on this complex, so it descends to a complex (defined up to a unique isomor-

phism) on BunT , we denote it by the same letter by abuse of notation. The “corrected

scalar product” of KE and KE ′ is

RΓ (Bunμ

T , (KE )∗ ⊗KE ′). (36)

Proposition 5.2. For each μ ∈Λ	 one has canonically

RΓ (Bunμ

T , (KE )∗ ⊗KE ′)
∼−→RΓ (Bunμ

T 	 , AE∗ ⊗ AE ′). (37)
�

Proof. If E and E ′ are not isomorphic then both sides vanish, so we assume E = E ′.

Recall that the map πH : B̃unT 	,H→ B̃unT,λ defined in Section 5.2.4 is an étale Galois cov-

ering with Galois group H1(X, K)/H . Let AEH and χ̄ be as in the proof of Proposition 2.2.

Note that π∗HKE
∼−→⊕

σ∈H1(X,K)/H σ ∗AEH , so

(KE )∗ ⊗KE
∼−→ πH !(

⊕
σ∈H1(X,K)/H

AE∗H ⊗ σ ∗AEH ).

The local system σ ∗AEH corresponds to the character χ̄ σ obtained from χ̄ by conju-

gating with any element σ̄ ∈ Γ̄ over σ . Write BunT 	,H for the coarse moduli space of

BunT 	,H . For each σ , the local system AE∗H ⊗ σ ∗AEH descends with respect to the gerbe

B̃unT 	,H→BunT 	,H . For σ ∈H1(X, K)/H we have χ̄ = χ̄ σ if and only if σ = 0, because (·, ·)c
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is non-degenerate. So, only σ = 0 contributes nontrivially to the LHS of (37), which

idenitifies with RΓ (Bunμ

T	,H , Q̄�). �

5.2.8 About Question 2.1

If the answer to Question 2.1 is positive, then for any μ ∈Λ	 there is M ∈Dζ (B̃un
μ

T,λ) such

that for any Ť 	-local system E on X the complex RHom(KE , M) is placed in cohomologi-

cal degree zero and is of dimension one.

Here is a model situation for T =Gm and g= 1 showing that one should expect

the negative answer to Question 2.1. Let Y, X be elliptic curves and i : Y→ X be an

isogeny with kernel K, which is reduced of order e2. Assume given a central extension

1→μn(k)→ Γ → K→ 1 such that the corresponding commutator pairing yields an iso-

morphism K
∼−→Hom(K, μn(k)). Let Γ act on Y via its quotient K, write X̃ for the stack

quotient of Y by Γ . Pick an injective character ζ : μn(k)→ Q̄∗� . Let Dζ (X̃) be the bounded

derived category of Q̄�-sheaves on X̃ on which μn(k) acts by ζ . Each irreducible local

system E ∈Dζ (X̃) is of rank e.

Proposition 5.3. Let E be an irreducible local system in Dζ (X̃). If M ∈Dζ (X̃), then e

divides χ(Spec k, RHom(E, M)). �

Proof. Let h: Y→ X̃ be the quotient map. By [11, Theorem 6.7], we get χ(Y, h∗(E∗ ⊗
M))= eχ(Y, h∗M), as we may replace h∗E by Q̄e

�. The complex h∗Q̄� decomposes by the

characters of μn(k), and only the trivial character of μn(k) contributes to χ(X̃, (E∗ ⊗ M)⊗
h∗Q̄�)= e2χ(X̃, (E∗ ⊗ M)). So, χ(Y, h∗M)= eχ(X̃, E∗ ⊗ M).

Let us show that if F ∈Dζ (X̃) then χ(Y, h∗F ) is divisible by e2. Indeed, χ(Y, h∗F )

depends only on the image of F in the Grothendieck group of Dζ (X̃). The latter is gener-

ated by the irreducible perverse sheaves. Let F ∈Dζ (X̃) be an irreducible perverse sheaf.

If F is supported on the preimage of a point in X, then this is clear. Assume now F is sup-

ported generically. For each point x∈ X, where F is not a local system, i−1(x) consists

of e2 elements. By the Ogg-Shafarevich formula for the Euler characteristic, the local

contributions in χ(Y, h∗F ) for all points in i−1(x) are the same. So, χ(Y, h∗F ) is divisible

by e2. �
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