
MY NOTES OF EMBRYO GL SEMINAR

1. Commutative factorization algebras

1.0.1. Let X/k be a separated scheme of finite type. Fix one of our 4 sheaf theories. If
the sheaf theory is D-modules then assume X proper, otherwise it is arbitary.

For p : X → Spec k we have the adjoint pair p! : Shv(X) ⇆ Vect : p!. The functor
p! : (Vect,⊗) → (Shv(X),⊗!) is symmetric monoidal, hence yields a functor p!CAlg :

CAlgnu(Vect) → CAlgnu(Shv(X)). This functor preseves limits, both categories are
presentable, so p!CAlg admits a left adjoint denoted CFact

c (X, •). This will be our functor
of factorization homology.

However, CFact
c (X, •) will not commute with oblv : CAlgnu(Vect) → Vect, oblv :

CAlgnu(Shv(X))→ Shv(X). The following diagram does commute

Shv(X)
free→ CAlgnu(Shv(X))

↓ p! ↓ CFact
c (X,•)

Vect
free→ CAlgnu(Vect)

For V ∈ Vect, free(V ) = ⊕d>0Sym
d(V ), where Symd(V ) is as in ([11], 3.0.40),

similarly for free : Shv(X)→ CAlgnu(Shv(X)).

1.0.2. Example (recheck). Let G be a simply-connected semisimple group. It is known
that the reduced cohomology C .

rd(B(G), e) = Sym(a) := ⊕d>0 Sym
d(a) for some a ∈

Vect, the cohomologically graded vector space of Chern classes. Assume X is a proper
curve. The Atyah-Bott formula says that

C .
rd(BunG, e) →̃CFact

c (X, p!C .
rd(B(G), e)) →̃ Sym(a⊗ C .

c(X,ωX))

The map in one direction is defined as follows. We define a map

CFact
c (X, p!C .

rd(B(G), e))→ C .
rd(BunG, e),

equivalently, a map of nonunital commutative algebras p!C .
rd(B(G), e)→ p!C .

rd(BunG, e)
in Shv(X). Namely, the diagram

X × BunG
γ→ X ×B(G)
↘ h ↓ q

X

gives a map q∗ → q∗γ∗γ
∗ = h∗γ

∗, which gives q∗(e)→ h∗e.
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1.0.3. Assume X connected. Then CFact
c (X,ω) →̃ e canonically as a commutative alge-

bra in Vect. This follows from Example 2 below and ([4], 1.6.5) giving C ·c(RanX , ω) →̃ k
canonically (here X is not necessarily complete).

Now if A ∈ CAlgnu(Shv(X)) is actully unital then the map ω → A provides a map
CFact
c (X,ω)→ CFact

c (X,A), which is a unit of this algebra in Vect.

1.0.4. How to construct CFact
c (X, •)? Consider an example of X a finite set. In this

case the functor p!CAlg is the diagonal map∏
x∈X

CAlgnu(Vect)← CAlgnu(Vect)

Assume for a moment we are in the unital setting. Then its left adjoint sends {Bx}x∈X
to ⊗x∈XBx (in the nonunital setting this is not the left adjoint).

Remark 1.0.5. Let A be a stable symmetric monoidal category. A unital augmented
commutative algebra in A is an object A ∈ CAlg(A) together with a morphism A→ 1
in CAlg(A).
1) One has the equivalence CAlg(A)/1 →̃CAlgnu(A). Namely, if A → 1 is an aug-
mented commutative algebra in A then 1 is a retract of A, so that we have canonically
A →̃ 1⊕a for some a ∈ A. This a = Fib(A→ 1) is naturally a non-unital commutative
algebra. Conversely, if a ∈ CAlgnu(A) then 1⊕ a ∈ CAlg(A)/1 naturally.
2) A finite coproduct in CAlgnu(A) is given as follows. Given Bx for x ∈ X, where X
is a finite set, one has

(the desired copoduct)⊕ e →̃ ⊗
x∈X

(e⊕Bx)

in CAlg(A)/1. So, the desired copoduct) →̃ ⊕
X′⊂X

( ⊗
x∈X′

Bx), the sum over non empty

subsets of X.

The coproduct in CAlgnu(Vect) is given by the above remark.

1.0.6. Assume X proper. Then RanX → Spec k is pseudo-proper. So, for F ∈
Shv(RanX),

C .
c(RanX , F ) →̃ colim

I∈fSetop
C .
c(X

I , (△I)!F )

Here fSet is the category of finite nonempty sets and surjections. Indeed, in Shv(RanX)

F →̃ colim
I∈fSetop

(△I)∗(△
I)!F

The map u : RanX ×RanX → RanX is pseudo-proper. Indeed, for a finite nonempty
set I one has

(RanX ×RanX)×u,RanX XI →̃ colim(I1,I2)∈fSetop×fSetop(X
I1 ×XI2)×RanX XI ,

and (XI1⊔I2)×RanX XI → XI is described in ([3], 8.1.2). So, Shv(RanX) is monoidal
with the convolution monoidal structure given by u!. We denote

F1 ⋆ F2 = u!(F1 ⊠ F2)

for Fi ∈ Shv(RanX). Write CAlgnu,⋆(Shv(RanX)) for the category of non-unital com-
mutative algebras for the ⋆-monoidal structure.
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Definition 1.0.7. Let CAlgFact(RanX) ⊂ CAlgnu,⋆(Shv(RanX)) be the full subcate-
gory of A ∈ CAlgnu,⋆(Shv(RanX)) for which the corresponding map A⊠A→ u!A re-
stricted to (RanX ×RanX)d becomes an isomorphism. (Since u is etale over (RanX ×RanX)d,
this is unambiguous).

1.0.8. For △: X → RanX the functor △!: Shv(RanX)→ Shv(X) is non-unital symmet-
ric monoidal, so gives a functor CAlgnu,⋆(Shv(RanX)) → CAlgnu,!(Shv(X)). Here !
means that we use the symmetric monoidal category (Shv(X),⊗!).

Theorem 1.0.9. The restriction of the above functor

CAlgFact(RanX)→ CAlgnu,!(Shv(X))

is an equivalence.

(This theorem is found in [7]). The inverse functor is denoted A 7→ Fact(A).
The desired functor CFact

c (X, •) will be C .
c(RanX ,Fact(•)).

1.0.10. Example 1. Let A = Sym(M) for some M ∈ Shv(X), where Sym is under-
stood in the non-unital sense for (Shv(X),⊗!). Then Fact(A) →̃ Sym⋆(△! M), where
Sym⋆ denotes the non-unital symmetric algebra in the non-unital symmetric monoidal
category (Shv(RanX), ⋆).

Explicitely, Sym⋆(△! M) = ⊕d>0 Sym
⋆,d(△! M), where Sym⋆,d(△! M) is the Sd-

coinvariants in (△n)!(M
⊠n). Here △n: X

n → RanX is the natural map.
Recall that this means colim

B(Sn)
(△n)!(M

⊠n).

1.0.11. Example 2. Note that ω ∈ CAlgnu,⋆(Shv(RanX)) naturally and it is a factor-
ization algebra. Besides, △! ω →̃ω on X, so Fact(ω) →̃ω by Theorem 1.0.9.

1.0.12. Recall that for C ∈ 1 − Cat one has Tw(C) ∈ 1 − Cat, see ([12], 1.0.1). For
J ∈ fSet let △J : XJ → RanX be the natural map. Now for A ∈ CAlgnu,!(Shv(X))
one has

Fact(A) →̃ colim
(I

ϕ→J)∈Tw(fSet)

(△J)!A
⊗ϕ

taken in Shv(RanX). Here for (ϕ : I → J) ∈ Tw(fSet) we set A⊗ϕ = ⊠
j∈J

(A⊗Ij ), where

A⊗Ij is the tensor power in (Shv(X),⊗!).
For a morphism in Tw(fSet)

(1)
I

ϕ→ J
↓ ↑
I ′

ϕ′
→ J ′

the transition map

(2) (△J)!A
⊗ϕ → (△J ′

)!A
⊗ϕ′

is obtained applying △J ′
! to the following map. For the closed immersion △(J ′/J): XJ →

XJ ′
one has

(3) △(J ′/J)! ( ⊠
j′∈J ′

A
⊗I′

j′ ) →̃ ⊠
j∈J

A⊗I
′
j
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Now (2) over XJ ′
is the composition

△(J ′/J)
! ( ⊠

j∈J
(A⊗Ij ))→△(J ′/J)

! ( ⊠
j∈J

(A⊗I
′
j ))→ ⊠

j′∈J ′
A
⊗I′

j′

where the first map is the exterior product over j ∈ J of the products in the algebra
A along maps Ij → I ′j , and the second one comes from (3). A rigorous definition as a

functor Tw(fSet)→ Shv(Ran) follows from the explanation of Justin below.

1.0.13. We have an adjoint pair l : fSet ⇆ Tw(fSet) : r, where l(I) = (I → ∗) and
r(I → J) = I. Here l is fully faithful.

Let now C ∈ 1−Cat be cocomplete say and e : fSet→ C be a functor. Let LKE(e) :
Tw(fSet) → C be the LKE of e along l. Then LKE(e) = e ◦ r by ([11], 2.2.39).
So, e : fSet → C identifies with the LKE of LKE(e) along r : Tw(fSet) → fSet.
For this reason, colimTw(fSet)(e ◦ r) →̃ colimfSet e. Now fSet has a final object ∗, so
colimfSet e →̃ e(∗).

1.0.14. For I ∈ fSet let AI = (△I)! Fact(A). For I = ∗ we get AI →̃A canonically.
Indeed, applying △! for △: X → RanX , we get

△! Fact(A) →̃ colim
(I

ϕ→J)∈Tw(fSet)

A⊗I

where for a morphism (1) in Tw(fSet) the transition map is the product A⊗I → A⊗I
′

along I → I ′. By the previous subsection, the above colimit identifies with A.

1.0.15. If I, J ∈ fSet then

XI ×RanX XJ →̃ colim
I↠K↞J

XK

naturally. More precisely, inside the colimit is over (fSetI/ ×fSet fSetJ/)
op. In partic-

ular, Shv(XI ×RanX XJ) →̃ colim
I↠K↞J

Shv(XK) with respect to !-extensions, and for any

F ∈ Shv(XI) we have

△J !△I
! F →̃ colim

I↠K↞J
△(J/K)
! △K! F

Here △(J/K): XK → XJ .

Proposition 1.0.16. For I ∈ fSet the object AI identifies with

colim
I→J

ϕ→K

△K
! (A⊗ϕ),

where the colimit is over Tw(fSet)×fSet fSetI/.

Proof. Consider the category E, whose objects are diagrams (I → K̄ ← K
ϕ← J) in

fSet, and a morphism from 1 to 2 is given by a diagram in fSet

I → K̄1 ← K1
ϕ1← J1

↘ ↑ ↑ ↓
K̄2 ← K2

ϕ2← J2
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From the description of XK ×RanX XI we get

(4) AI →̃ colim
(J

ϕ→K)∈Tw(fSet)

△I!△K
! (A⊗ϕ) →̃ colim

(I→K̄←K
ϕ←J)∈E

△(I/K̄)
! △(K/K̄)! A⊗ϕ

Write ϕ̄ for the composition J
ϕ→ K → K̄ for an object of E. Then △(K/K̄)! A⊗ϕ →̃A⊗ϕ̄.

Let r0 : E0 ⊂ E be the full subcategory given by the property that K → K̄ is an
isomorphism. We think of E0 as the category classifying diagrams (I → K̄ ← J), where
(K̄ ← J) ∈ Tw(fSet) and I → K̄ is a surjection of finite sets. We write E0,I if we need
to express the dependence on I.

Let l0 : E → E0 be the functor sending (I → K̄ ← K ← J) to (I → K̄ ← J). Then
r0 is left adjoint to l0. So, l0 is cofinal. Therefore, (4) identifies with

colim
(I→K

ϕ←J)∈E0

△(I/K)
! A⊗ϕ

in Shv(XI). Let F : E0 → Shv(XI) be the functor whose colimit is the latter expession.
Consider now the category C = Tw(fSet)×fSet (fSet)I/. We will write CI if we need

to express the dependence on I. This is the category of diagrams (K ← J ← I) in fSet

with (K ← J) ∈ Tw(fSet). We have the functor q : C→ E0 sending (K
ϕ← J

a← I) to

(I
ϕ◦a→ K

ϕ← J).
We claim that the natural map colimC F ◦ q → colimE0 F is an isomorphism in

Shv(XI). Is the map q cofinal? Let η := (I
α→ K

ϕ← J) ∈ E0. We need to check
that the category C ×E0 (E0)η/ is contractible. An object of the latter category is a
diagram

K1
ϕ1← J1

τ1← I
↓ ν1 ↑
K

ϕ← J

such that ν1ϕ1τ1 = α. A morphism from the above object to another object

(5)
K2

ϕ2← J2
τ2← I

↓ ν2 ↑
K

ϕ← J

(satisfying ν2ϕ2τ2 = α) is a commutative diagram

K
ϕ← J

↑ ↓
K1

ϕ1← J1
τ1← I

↑ ↓ ↓ id

K2
ϕ2← J2

τ2← I

such that the vertical compositions are the corresponding maps from (5).
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If K is a 1-element set then C×E0 (E0)η/ has an initial object given by the diagram

∗ ← I ⊔ J ← I
↓ ↑
∗ ← J

For general K, C×E0 (E0)η/ will be a product of categories over the set K. Namely,
denote for k ∈ K by Ik, Jk the corresponding fibres, so that ηk := (Ik → {k} ← Jk) ∈
E0,Ik . For each k ∈ K we have the category

CIk ×E0,Ik
(E0,Ik)ηk/,

and their product identifies with C×E0 (E0)η/. Thus, C×E0 (E0)η/ is contractible, and
q is cofinal. □

The formula from Proposition 1.0.16 has appeared for commutative factorization
categories (instead of algebras) in ([8], 8.1.6).

1.0.17. For I of order 2 we get AI →̃A ⊔
△!A⊗!2

(A ⊠ A) for △: X → X2, where the map

A⊗
!2 → A is the product in the algebra.

1.1. 2nd seminar.

1.1.1. We assume X a separated scheme of finite type. In the case of D-modules we
assumeX proper. For pRan : RanX → Spec k the functor p!Ran : Vect→ (Shv(RanX), ⋆)
is right-lax non-unital symmetric monoidal, and the diagram (of right-lax non-unital
symmetric monoidal functors) commutes

(Shv(X),⊗!)
△!

← (Shv(RanX), ⋆)
↖ p!X ↑ p!Ran

Vect

(here p!X ,△! are symmetric monoidal). So, the diagram commutes

CAlgnu,!(Shv(X))
△!

← CAlgnu,⋆(Shv(RanX))
↖ p!X ↑ p!Ran

CAlgnu(Vect)

So, we have for the corresponding left adjoint functors between the categories of nonuni-

tal commutative algebras (pRan)
CAlg
! ◦ △CAlg

! →̃CFact
c (X, •).

The key is that the functor (pRan)! : (Shv(Ran), ⋆) → Vect is nonunital symmetric

monoidal! So, (pRan)
CAlg
! is just the usual direct image (pRan)!.

Theorem 1.1.2. The functor △!: CAlgnu,⋆(Shv(RanX))→ CAlgnu,!(Shv(X)) admits
a fully faithful left adjoint, whose essential image is precisely CAlgFact(RanX).

Proof. The categories CAlgnu,⋆(Shv(RanX)), CAlgnu,!(Shv(X)) are presentable by
(HA, 3.2.3.5), and △! preserves limits and commutes with oblv, so its left adjoint

△CAlg
! exists. By Lemma 1.1.3 below, △CAlg

! is fully faithful.
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By the proof of Lemma 1.1.3 below, CAlgnu,!(Shv(X)) is generated under geometric

realizations by free algebras. So, to check that △CAlg
! takes values in CAlgFact(RanX),

it suffices to show that for any K ∈ Shv(X), △CAlg
! (Sym(K)) lies in CAlgFact(RanX),

where by Sym we mean the left adjoint to oblv : CAlgnu,!(Shv(X)) → Shv(X). In-
deed, oblv : CAlgnu,∗(Shv(RanX)) → Shv(RanX) preserves sifted colimits, so that
CAlgFact(RanX) ⊂ CAlgnu,∗(Shv(RanX)) is stable under sifted colimits.

We know that △CAlg
! (Sym(K)) →̃ Sym⋆(△! K) for K ∈ Shv(X) by Section 1.0.10

of this file. One checks by hands that this object has the factorization property:
We have for n > 0,

(6) u! Symn,⋆(△! K) |(RanX ×RanX)d →̃ ⊕
0<s<n

Syms,⋆(△! K)⊠ Symn−s,⋆(△! K)

Indeed, if for a point S → Xn given by (zk) we are given (xi), (yj) ∈ (RanX ×RanX)d
with (xi) ∪ (yj) = (zk), there is a unique decomposition I1 ⊔ I2 = {1, . . . , n} such that
our point is a product of two points S → XI1 , S → XI2 giving a point of (XI1 ×XI2)d,
which produces our point of (RanX ×RanX)d. The group Sn acts transitively on such
decompositions, and the stabilizor of a decompostion is S(I1) × S(I2), the product of
symmetric groups. If | I1 |= s this gives the contribution

Syms,⋆(△! K)⊠ Symn−s,⋆(△! K)

Now the RHS of (6) over (RanX ×RanX)d identifies with n-th graded component of
Sym⋆(△! K)⊠ Sym⋆(△! K).

It remains to show that △CAlg
! : CAlgnu,!(Shv(X)) → CAlgFact(RanX) generates

CAlgFact(RanX) under geometric realizations. The idea is to use ([10], Pp. 4.7.3.14).
We check first that

(7) △!: CAlgFact(RanX)→ CAlgnu,!(Shv(X))

is conservative. The latter fact follows from the factorization property, because we
know it over X.

Indeed, let f : A1 → A2 be a map in CAlgFact(RanX) with △! f an isomorphism. We
want to show that the !-restriction of f underXI → RanX is an isomorphism. It suffices
to show that for any quotient set I → J the !-restriction of f under XJ

d ↪→ XI → RanX
is an isomorphism, and this follows from the factorization property. Here XJ

d ⊂ XJ is
the complement to all the diagonals.

To finish, note that (7) preserves sifted colimits, because

CAlgFact(RanX) ⊂ CAlgnu,∗(Shv(RanX))

is stable under sifted colimits. Thus, ([10], 4.7.3.14) applies. □

Lemma 1.1.3. Suppose l : C ⇆ D : r is an adjoint pair in DGCatcont with l fully faith-
ful. Suppose that C,D ∈ CAlgnu(DGCatcont), and r is nonunital symmetric monoidal,
so l is left-lax nonunital symmetric monoidal. The functor rCAlg : CAlgnu(D) →
CAlgnu(C) preserves limits, so admits a left adjoint lCAlg, as both categories are pre-
sentable. Then lCAlg is fully faithful.

Proof. We check that the natural map id → rCAlglCAlg is an isomorphism. My un-
derstanding is that CAlgnu(C) is not a DG-category, just a presentable category. The
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functor oblv : CAlgnu(C) → C is conservative. The essential image of its left ad-
joint free : C → CAlgnu(C) generates CAlgnu(C) under colimits in the sense of ([9],
5.1.5.7), this follows from the (*) claim inside the proof of ([10], Corollary 3.2.3.3). An-
other way is to say that for any reduced operad P in the sense of ([2], ch. IV.2, 1.1.2),
oblv : P − Alg(C) → C is monadic, so we may apply ([10], 4.7.3.14). The functor
oblv : CAlgnu(C)→ C preserves sifted colimits (by [11], 9.4.12).

So, it suffices to show that for any c ∈ C,

free(c)→ rCAlglCAlg(free(c))

is an isomorphism. Now lCAlg◦free →̃ free◦l. Since r is nonunital symmetric monoidal,
we have for n > 0 and d ∈ D, r(Symn(d)) →̃ Symn(r(d)), because

Symn(d) →̃ colim
B(Sn)

d⊗n

the colimit being taken in D. So, oblv ◦rCAlg ◦ free →̃ oblv ◦free ◦ r. The claim
follows. □

Passing to left adjoints, we see that the diagram commutes

Shv(Ran)
free→ CAlgnu,⋆(Shv(Ran))

↑ △! ↑ Fact

Shv(X)
free→ CAlgnu,!(Shv(X))

Here is a dual version of Lemma 1.1.3.

Lemma 1.1.4. Let C,D ∈ CAlgnu(DGCatcont), let L : C → D be non-unital sym-
metric monoidal functor in DGCatcont. Assume it has a fully faithful continuous right
adjoint R : D → C, so R is non-unital right-lax symmertic monoidal. Let

L : ComCoAlgnu(C)→ ComCoAlgnu(D)

be the functor induced by L. Then L admits a right adjoint R. (Is this R fully faithful???
Not clear!!)

Proof. First, by ([11], 9.2.66), ComCoAlgnu(C), ComCoAlgnu(D) are presentable. The
functor Lop : CAlgnu(Cop) → CAlgnu(Dop) preserves limits. So, L admits a right
adjoint R. Is it true that LR→ id is an isomorphism?

First, oblv : ComCoAlgnu(C)→ C preserves colimits, so has a right adjoint cofree :
C → ComCoAlgnu(C).

Passing to the right adjoints in oblvL →̃L oblv, we get cofree ◦ R →̃R ◦ cofree.
It is plausible that the essential image of cofree : C → ComCoAlgnu(C) generates
ComCoAlgnu(C) under colimits, but I don’t see a proof! □

1.2. Justin’s explanation.
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1.2.1. Let F : C ⇆ D : G be an adjoint pair in DGCatcont, where both C,D ∈
CAlgnu(DGCatcont), and G is nonunital symmetric monoidal. So, F is left-lax nonuni-
tal symmetric monoidal. We want to ”force” in some universal way F to be strictly
nonuinital symmetric monoidal.

Recall that fSet is the category of finite nonempty sets and surjections. View fSet
as nonunital symmetric monoidal with respect to the disjoint union. Note that pt ∈
CAlgnu(fSet), the product is the map pt ⊔ pt → pt. It has the following universal
property: for any nonunital symmetric monoidal category C, one has a commutative
diagram

(8)
Fun⊗(fSet,C) →̃ CAlgnu(C)

↓ ↙ oblv

C,

where the vertical arrow is the evaluation at pt ∈ fSet.
Indeed, recall the ∞-operad Surj, which is a subcategory of Fin∗ with the same

objects and where we keep the morphisms that are surjective. Its monoidal envelope
in the sense of ([10], 2.2.4.1) evidently identifies with fSet. Namely, to I ∈ fSet we
associate I ⊔ {∗} ∈ Surj. So, (8) is a particular case of ([10], 2.2.4.9).

Remark 1.2.2. What is the Fin∗-monoidal envelope of Fin∗? By ([10], 2.2.4.3), it is
as follows. Let fSet∅ be the category of finite (possibly empty) sets and any morphisms
between them. The map fSet∅ → Act(Fin∗), I 7→ I ⊔ {∗} is an equivalence. By ([10],
2.2.4.4), fSet∅ has a symmetric monoidal structure given by the disjoint union, and this

is the monoidal envelope of the ∞-operad Fin∗
id→ Fin∗. We may think of the ∞-operad

Fin∗
id→ Fin∗ just as the category {∗} with the natural symmetric monoidal structure.

So, ([10], 2.2.4.9) in this case says that for any symmetric monoidal ∞-category D the
restriction along {∗} ↪→ fSet∅ yields an equivalence

Fun⊗(fSet∅, D) →̃CAlg(D)

Here Fun⊗(fSet∅, D) is the category of symmetric monoidal functors fSet∅ → D.

1.2.3. For any C ∈ CAlg(1 − Cat) consider the functor h : Cop × C → Spc, (x, y) 7→
MapC(x, y). We equip Cop with the induced symmetric monoidal structure, and
similarly for Cop × C, and Spc with the cartesian symmetric monoidal structure.

Then h is right-lax symmetric monoidal: we have natural maps ∗ id→ MapC(1, 1) and
MapC(x1, y1)×MapC(x2, y2)→ MapC(x1⊗ x2, y1⊗ y2) given by the tensor product of
maps.

Let h′ : X → Cop × C be the cocartesian fibration in spaces attached to h. By
([14], 5.15), X is naturally symmetric monoidal and h′ is symmetric monoidal. So,
Xop is also symmetric monoidal, and h′op : Xop → C × Cop is symmetric monoidal.
The latter functor is a cartesian fibration attached to the functor Cop × C → Spc,
(x, y) 7→ MapC(x, y)

op →̃ MapC(x, y). So, X
op →̃Tw(C).

We similarly have a nonunital version for C ∈ CAlgnu(1 − Cat) giving a nonunital
symmetric monoidal structure on Tw(C).
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1.2.4. We apply this to C = fSet, and see that Tw(fSet) is nonunital symmetric
monoidal. The projection Tw(fSet)→ fSet×fSetop is nonunital symmetric monoidal.
The tensor product of the objects f : I → J and f ′ : I ′ → J ′ of fSet is the map
f ⊔ f ′ : I ⊔ I ′ → J ⊔ J ′.

1.2.5. Consider the functor l : fSet → Tw(fSet) sending I to (I → ∗). It is left-lax
nonunital symmetric monoidal.

Lemma 1.2.6. For any D ∈ CAlgnu(1− Cat) the composition with l yields an equiv-
alence

Fun⊗(Tw(fSet), D) →̃Funllax(fSet,D)

Here Fun⊗(Tw(fSet), D) is the category of nonunital symmetric monoidal functors.

Proof. A general claim first.
Step 1 Let Surj→ 1−Cat be a Surj-monoid in 1−Cat in the sense of ([10], 2.4.2.1), let A

be the value of this functor on ⟨1⟩. Let Ã⊗ → Surj be the cocartesian fibration attached
to it, so this is an ∞-operad defining the nonunital symmetric monoidal category A.
Recall the subcategory fSet ⊂ Surj, this functor sends I to I ⊔ {∗}. Let A⊗ → fSet

be obtained from Ã⊗ → Surj by the base change fSet → Surj. Then A⊗ identifies
with the Surj-monoidal envelope of the ∞-operad Ã⊗ → Surj in the sense of ([10],
2.2.4.3). So, A⊗ acquires a nonunital symmetric monoidal structure, and the natural
right-lax nonunital symmetric monoidal map A→ A⊗ giving rise, by ([10], 2.2.4.9), to
an equivalence

Fun⊗(A⊗, D) →̃Funrlax(A, D)

Here Funrlax(A, D) is what is called the category of Ã⊗-algebras in D⊗ over Surj in
[10], and Fun⊗(A⊗, D) is the category of nonunital symmetric monoidal functors.

An object of A⊗ is a finite nonempty set I and a collection ai ∈ A for i ∈ I. A map
in A⊗ from (I, {ai}) to (J, {bj}) is a surjection f : I → J and for each j ∈ J a map
⊗

i∈f−1(j)
ai → bj in A. The tensor product in the symmetric monoidal category A⊗ of

(I, {ai}) and (J, {bj}) is (I ⊔ J, {ai, bj}) by ([10], 2.2.4.6). The functor i : A → A⊗

sends a to (∗, a).
We also have a symmetric monoidal functor µ : A⊗ → A, (I, {ai}) 7→ ⊗i∈Iai. Note

that µ is left adjoint to i.

Step 2 Consider fSetop with the induced nonunital symmetric monoidal structure.
Then the Surj-monoidal envelope ((fSet)op)⊗ of (fSet)op is Tw(fSet)op. Indeed, by
the above, an object of ((fSet)op)⊗ is a collection (I, {Ji}i∈I), where I is a finite
nonempty set, and for i ∈ I, Ji is a finite nonempty set. A map in ((fSet)op)⊗ from
(I, {Ji}i∈I) to (I ′, {J ′i′}i′∈I′) is a surjection ϕ : I → I ′, and for each i′ ∈ I ′ a surjection
of finite sets

J ′i′ → ⊔
i∈ϕ−1(i′)

Ji
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We may view (I, {Ji}i∈I) as an object τ : J → I of fSet. The above morphism in

((fSet)op)⊗ from (J
τ→ I) to (J ′

τ ′→ I ′) becomes a commutative diagram

(9)
J ′

τ ′→ I ′

↓ ϕ′ ↑ ϕ

J
τ→ I

Now the right-lax functor fSetop → ((fSet)op)⊗ →̃Tw(fSet)op sends I to (I
τ→ ∗),

this is the functor lop from Section 1.2.5. By Step 1, we get an equivalence

Fun⊗(Tw(fSet), D)op →̃Fun⊗(Tw(fSet)op, Dop) →̃Funrlax(fSetop, Dop)

→̃Funllax(fSet,D)op

The functor µ : Tw(fSet)op →̃ ((fSet)op)⊗ → (fSet)op sends (J
τ→ I) to J . □

Remark 1.2.7. If A,B ∈ CAlgnu(1− Cat) then Fun⊗(A,B)op →̃Fun⊗(Aop, Bop) and
Funrlax(A,B)op →̃Funllax(Aop, Bop).

1.2.8. Let I,C ∈ CAlg(1 − Cat) with C cocomplete such that the tensor product in
C preserves colimits separately in each variable, and I is small. Then Fun(I,C) has a
symmetric monoidal structure given by Day convolution ([10], 2.2.6.17).

Let F : I→ J be a map in CAlg(1− Cat), where I, J are small. We have an adjoint
pair l : Fun(I,C) ⇄ Fun(J,C) : r, where l is the left Kan extension along F , and
r is the composition with F . Then l is symmetric monoidal. Indeed, for i ∈ I and
f1, f2 ∈ Fun(I,C) we have

(f1 ⊗ f2)(i) →̃ colim
(i1,i2)∈I×I, i1⊗i2→i

f1(i1)⊗ f2(i2)

Let f̄i = l(fi). Then the LKE of the composition I×I f1×f2→ C×C ⊗→ C along I×I→ J×J
is the composition J× J

f̄1×f̄2→ C× C
⊗→ C. Indeed, for (j1, j2) ∈ J× J the value of this

LKE at (j1, j2) is

colim
(i1,i2)∈I×I,F (i1)→j1,F (i2)→j2

f1(i1)⊗ f2(i2) →̃ ( colim
i1∈I,F (i1)→j1

f1(i1))⊗ ( colim
i2∈I,F (i2)→j2

f2(i2))

→̃ f̄1(j1)⊗ f̄2(j2)

Now l(f1⊗f2) is the LKE of the composition I×I f1×f2→ C×C ⊗→ C along the composition

I× I
⊗→ I

F→ J. So, our claim follows from the commutativity of the diagram

J× J
⊗→ J

↑ F×F ↑ F

I× I
⊗→ I

and the transitivity of LKE.
More generally, for a (maybe empty) finite set S and a collection fs ∈ Fun(I,C) for

s ∈ S, we have
( ⊗
s∈S

fs)(i) →̃ colim
{is}∈

∏
s∈S

I, ⊗
i∈S

is→i
( ⊗
i∈S

fs(is))
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In particular, for S = ∅ this gives the unit of Fun(I,C) for the Day covolution: its value
at i is colim

MapI(1,i)
1 taken in C. The space MapI(1, i) is not necessarily contractible, so in

Lurie’s notation this is MapI(1, i)⊗ 1, as C is tensored over Spc. If 1 is initial in I then
the unit of Fun(I,C) for the Day convolution is the constant functor with value 1 ∈ C.

In fact, the unit of Fun(I,C) is the LKE of ∗ 1→ C along ∗ 1→ I.
This shows that l sends unit to unit. Note that r is right-lax monoidal for the

Day convolution structures. The functors r, l induce a diagram of adjoint functors
lCAlg : CAlg(Fun(I,C)) ⇆ CAlg(Fun(J,C)) : rCAlg given by composing with r and l
respectively. This follows from remark below.

Remark 1.2.9. Let C⊗ → O⊗ ← D⊗ be a diagram of cocartesian fibrations of ∞-
operads. Let A⊗ → O⊗ be a map of ∞-operads. Assume given an adjoint pair L :
C⊗ ⇆ D⊗ : R in 1− Cat, where L,R are maps of ∞-operads over O⊗. Assume that L
is a morphism of O⊗-monoidal categories, that is, sends a cocartesian arrow over O⊗

to a cocartesian arrow over O⊗. Let L′ : AlgA/O(C) ⇆ AlgA/O(D) : R′ be obtained by
composing with L and R. Then (L′, R′) is an adjoint pair in 1− Cat.

A special case of this has appeared as ([11], 3.0.20).

1.2.10. Now using CAlg(Fun(I,C)) →̃Funrlax(I,C) given by ([10], 2.2.6.8), we get an
adjoint pair lCAlg : Funrlax(I,C) ⇆ Funrlax(J,C) : rCAlg.

1.2.11. Let PrL be the category of presentable categories and colimit preserving func-
tors, it is equipped with the Lurie tensor product by ([10], 4.8.1.15). Consider 1− Cat

with the cartesian symmetric monoidal structure. Then the functor 1 − Cat → PrL,
I 7→ P(I) = Fun(Iop, Spc) is symmetric monoidal (see [10], inside the proof of 4.8.1.15).

For C ∈ PrL and I small there is an isomorphism in PrL

Fun(I,C) →̃P(Iop)⊗ C

Indeed, one has

Fun(I,C) →̃Fun(Iop,Cop)op →̃ (FunL(P(Iop),Cop))op →̃FunR(P(Iop)op,C) →̃P(Iop)⊗ C

here the last isomorphism is by ([10], 4.8.1.17). Here FunL(P(Iop),C) ⊂ Fun(P(Iop),C)
is the full subcategory of colimit preserving functors, and

FunR(P(Iop)op,Cop) ⊂ Fun(P(Iop)op,Cop)

is the full subcategory of limit preserving functors.

1.2.12. The results of Section 1.2.8 have a nonunital version: in this case I,C ∈
CAlgnu(1 − Cat) with C cocomplete such that the tensor product preserves colimits
separately in each variable, and I is small. Then Fun(I,C) has a nonunital symmet-
ric monoidal structure given by Day convolution. Namely, apply ([10], Construction
2.2.6.7) with the base ∞-operad O⊗ = Surj⊗.

Let now F : I→ J be a map in CAlgnu(1− Cat), where I, J are small. We have the
same adjoint pair l : Fun(I,C) ⇆ Fun(J,C) : r, where l is the LKE along F . Then l
is nonunital symmetric monoidal, and r is right-lax nonunital symmetric monoidal for
the Day convolution structures. So, we get an adjoint pair lCAlg : CAlgnu(Fun(I,C)) ⇆
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CAlgnu(Fun(J,C)) : rCAlg, here the functors are given by composing with l and with r.
In this case ([10], 2.2.6.8) gives CAlgnu(Fun(I,C)) →̃Funrlax(I,C), where on the right
hand side we mean nonunital right-lax symmetric monoidal functors.

1.2.13. Assume we are in the situation of Section 1.2.1, so we have an adjoint pair
F : C ⇆ D : G in DGCatcont, where C,D ∈ CAlgnu(DGCatcont), and G is nonunital
symmetric monoidal, so F is left-lax nonunital symmetric monoidal. We get an adjoint
pair GL

enh : CAlgnu(C) ⇆ CAlgnu(D) : Genh, where Genh commutes with oblv, and

GL
enh is its left adjoint. Here GL

enh is not a lifting of F .

Proposition 1.2.14. In the situation of Section 1.2.13 the following diagram commutes

(10)

CAlgnu(C)
GL

enh→ CAlgnu(D)
|| ||

Fun⊗(fSet,C) Funrlax(pt,D)
↓ F◦• ↑ colim

Funllax(fSet,D) →̃ Fun⊗(Tw(fSet),D)

Here the low horizontal isomorphism is given by Lemma 1.2.6.

In the above proposition we used the fact that Tw(fSet)→ pt is nonunital symmetric
monoidal, so we apply the result of Section 1.2.12 to this functor to conclude that
colim : Fun(Tw(fSet),D) → Fun(pt,D) is nonunital symmetric monoidal, so induces
a functor

CAlgnu(Fun(Tw(fSet),D)) → CAlgnu(Fun(pt,D))
|| ||

Funrlax(Tw(fSet),D)) Funrlax(pt,D)

The long composition in the diagram (10) is as follows. Let c ∈ CAlgnu(C). The
corresponding nonunital symmetric monoidal functor fSet→ C sends I to ⊗

i∈I
c, and a

map ϕ : I → J in fSet to ⊗
ϕ
: ⊗
i∈I

c→ ⊗
j∈J

c, the tensor product along ϕ.

This gives a right-lax functor fSetop → Dop, I 7→ F (⊗
i∈I

c). It associates to a map

τ : J → I in fSetop as above the morphism

F (⊗
τ
) : F ( ⊗

j∈J
c)→ F (⊗

i∈I
c)

in Dop. The corresponding nonunital symmetric monoidal functor θ : Tw(fSet)op →
Dop sends (J

τ→ I) ∈ Tw(fSet) to

⊗
i∈I

F ( ⊗
j∈Ji

c)

Now given a morphism from (J ′
τ ′→ I ′) to (J

τ→ I) in Tw(fSet) given by (9), θ sends it
to the morphism in D

⊗
i′∈I′

F ( ⊗
j′∈J ′

i′

c)→ ⊗
i∈I

F ( ⊗
j∈Ji

c)

obtained as the tensor product in D over i′ ∈ I ′ of the morphisms

F ( ⊗
j′∈J ′

i′

c)→ ⊗
i∈Ii′

F ( ⊗
j∈Ji

c),
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which are the compositions

(11) F ( ⊗
j′∈J ′

i′

c)→ F ( ⊗
⊔

i∈Ii′
Ji
c)→ ⊗

i∈Ii′
F ( ⊗

j∈Ji
c)

Here we used surjections ϕ′i′ : J
′
i′ → ⊔

i∈Ii′
Ji. The first map in (11) is F (⊗

ϕ′
i′

), and the

second one comes from the left-lax structure on F .

Proof of Proposition 1.2.14. From Remark 1.2.9 (by passing to the opposite categories)
one derives an adjont pair L : Funllax(fSet,C) ⇆ Funllax(fSet,D) : R, where L

and R are compositions with F and G respectively. Note that Fun⊗(fSet,C) ⊂
Funllax(fSet,C) is a full subcategory.

Step 1 Let d ∈ D (resp., c ∈ C) be a nonunital commutative algebra, and αd : fSet→
D (resp., αc : fSet → C) the corresponding nonunital symmetric monoidal functor.
Then G ◦ αd is nonunital symmetric monoidal, so

MapFun⊗(fSet,C)(αc, G◦αd) →̃ MapFunllax(fSet,C)(αc, G◦αd) →̃ MapFunllax(fSet,D)(F◦αc, αd)

Write ᾱc, ᾱd ∈ Fun⊗(Tw(fSet),D) for the images of F ◦ αc and αd respectively under

Funllax(fSet,D) →̃Fun⊗(Tw(fSet),D)

The functor ᾱd is the composition Tw(fSet)
r→ fSet

αd→ D, where r(J → I) = J .
Let α̃c : fSet → D be the LKE of ᾱc : Tw(fSet) → D under r : Tw(fSet) → fSet.
We get

MapFun⊗(Tw(fSet),D)(ᾱc, ᾱd) →̃ MapFunrlax(fSet,D)(α̃c, αd)

We used the fact that r is nonunital symmetric monoidal, so by Section 1.2.12 gives
rise an an adjunction

Funrlax(Tw(fSet),D) ⇆ Funrlax(fSet,D),

where the left adjoint is given by the LKE, and the right adjoint is the composition
with r. Besides, Fun⊗(Tw(fSet),D) ⊂ Funrlax(fSet,D) is a full subcategory.

Since pt is a final object of fSet, the composition

CAlgnu(C) →̃Fun⊗(fSet,C)
colim→ C

is oblv : CAlgnu(C) → C. By ([11], 9.2.13), Fun(fSet,C) ∈ DGCatcont, and composi-
tions with F and G yield an adjoint pair Fun(fSet,C) ⇆ Fun(fSet,D) in DGCatcont.

Decompose colim : Fun(Tw(fSet),D))→ Fun(pt,D) as

Fun(Tw(fSet),D))
LKE→ Fun(fSet,D)

colim→ Fun(pt,D),

where LKE is along Tw(fSet)
r→ fSet.

Step 2 To finish, it suffices to show that α̃c : fSet → D is nonunital symmetric
monoidal. This is a combination of the fact that ᾱc is symmetric monoidal and of
Lemma 1.2.15 below. Namely, let Ji ∈ fSet. We must show that the natural map
α̃c(J1)⊗ α̃c(J2)→ α̃c(J1 ⊔ J2) is an isomorphism. For i = 1, 2 we have

α̃c(Ji) →̃ colim
(Ii→Ki)∈Tw(fSet),Ii→Ji

ᾱc(Ii → Ki)
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in D, and

(12) α̃c(J1 ⊔ J2) →̃ colim
(I→K)∈Tw(fSet),I→J1⊔J2

ᾱc(I → K)

So,

α̃c(J1)⊗ α̃c(J2) →̃ colim
(I1→K1)∈Tw(fSet),I1→J1
(I2→K2)∈Tw(fSet),I2→J2

ᾱc(I1 ⊔ I2 → K1 ⊔K2)

We used in the above the fact that ᾱc(I1 → K1)⊗ᾱc(I2 → K2) →̃ ᾱc(I1⊔I2 → K1⊔K2).
The latter colimit identifies with (12) by Lemma 1.2.15. □

Lemma 1.2.15. Let J1, J2 ∈ fSet. Consider the functor

ϵ :
∏
i=1,2

(Tw(fSet)×fSet fSet/Ji)→ Tw(fSet)×fSet fSet/J1⊔J2

sending (J1 ← I1 → K1), (J2 ← I2 → K2) to

(J1 ⊔ J2 ← I1 ⊔ I2 → K1 ⊔K2)

Here (Ii → Ki) ∈ Tw(Set). Then ϵ is cofinal.

Proof. We claim that ϵ has a left adjoint R given as follows. Let (J1 ⊔ J2
α← I

β→ K) ∈
Tw(fSet) ×fSet fSet/J1⊔J2 . Set Ii = α−1(Ji). For i = 1, 2 consider the equivalence
relation on Ii given by x ∼ y iff β(x) = β(y). The quotient by this equivalence relation
defines a surjection βi : Ii → Ki. In addition, we get a surjection K1 ⊔ K2 → K.
Consider a morphism in Tw(fSet)×fSet fSet/J1⊔J2 , it is given by the diagram

I1 ⊔ I2 → K
↙ ↓ γ1⊔γ2 ↑

J1 ⊔ J2 ← I ′1 ⊔ I ′2 → K ′

where Ii (resp. I ′i) is the preimage of Ji. We get natural morphisms K ′i → Ki for
i = 1, 2. Indeed, fix i ∈ {1, 2} and let k′,m′ ∈ I ′i be such that their images in K ′

coincide. Pick k,m ∈ Ii with γi(k) = k′, γi(m) = m′. Then the images of k,m in K
coincide, so k and m define the same element x ∈ Ki. We send k′ and m′ to x. The
obtained map I ′i → Ki factors uniquely through K ′i → Ki. Thus, we defined a functor

R sending (J1 ⊔ J2
α← I

β→ K) to the pair (J1 ← I1 → K1), (J2 ← I2 → K2). Then R
is left adjoint to ϵ. □

Remark 1.2.16. Trying to replace algebras by coalgebras in Proposition 1.2.14, one
immediately gets the following. Let F : C ⇆: D : G be an adjoint pair in 1 − Cat,
where C,D ∈ CAlgnu(1 − Cat), G is nonunital symmetric monoidal, so F is left-lax
nonunital symmetric monoidal. Composing with F gives F enh : ComCoAlgnu(C) →
ComCoAlgnu(D). Composing with G gives Genh : ComCoAlgnu(D)→ ComCoAlgnu(C).
Then F enh : ComCoAlgnu(C)↔ ComCoAlgnu(D) : Genh is an adjoint pair.

1.3. Unital version of Justin’s argument.
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1.3.1. Let us try to wotk out a unital version of Proposition 1.2.14. Assume given
an adjoint pair F : C ⇆ D : G in DGCatcont, where C,D ∈ CAlg(DGCatcont), the
functor G is symmetric monoidal, so that F is left-lax symmetric monoidal. The
functor Genh : CAlg(D)→ CAlg(C) preserves limits, so has a left adjont GL

enh, because
CAlg(D) is presentable.

Recall the equivalence CAlg(C) →̃Fun⊗(fSet∅,C) given by Remark 1.2.2. As in the
nonunital case, Remark 1.2.9 gives an adjoint pair

(13) L : Funllax(fSet∅,C) ⇆ Funllax(fSet∅,D) : R,

where the functors L,R are compositions with F and G.

1.3.2. Consider the functor l : fSet∅ → Tw(fSet∅) sending I to (I → ∗). This func-
tor is left-lax symmetric monoidal. Here Tw(fSet∅) is equipped with the symmetric
monoidal structure sending (J → I), (J ′ → I ′) to (J ⊔ J ′ → I ⊔ I ′).

Lemma 1.3.3. For any D ∈ CAlg(1−Cat) the composition with l yields an equivalence

Fun⊗(Tw(fSet∅), D) →̃Funllax(fSet∅, D)

Proof. We apply ([10], 2.2.4.9) to the symmetric monoidal category fSetop∅ . We claim

that its symmetric monoidal envelope Env(fSetop∅ ) identifies with Tw(fSet∅)
op. In-

deed, by ([10], 2.2.46), an object of Env(fSetop∅ ) is a collection: I ∈ fSet∅ and

Ji ∈ fSet∅ for each i ∈ I. We simply encode this as a map J
τ→ I in fSet∅.

A morphism from (I, {Ji}) to (I ′, {J ′i′}) in Env(fSetop∅ ) is a collection: a map ϕ :

I → I ′ in fSet∅, and for each i′ ∈ I ′ a morphism J ′i′ → ⊔
i∈ϕ−1(i′)

Ji in fSet∅. This

morphism is nothing but a diagram

J ′ → I ′

↓ ↑ ϕ

J → I

in fSet∅. Now the composition with l : fSetop∅ → Tw(fSet∅)
op yields an equivalence

Fun⊗(Tw(fSet∅)
op, Dop) →̃Funrlax(fSetop∅ , D

op)

□

Proposition 1.3.4. In the situation of Section 1.3.1 the diagram commutes

CAlg(C)
GL

enh→ CAlg(D)
|| ||

Fun⊗(fSet∅,C) Funrlax(pt,D)
↓ F◦• ↑ colim

Funllax(fSet∅,D) →̃ Fun⊗(Tw(fSet∅),D)

Proof. Step 1 Let c ∈ C, d ∈ D be commutative algebras in C and D. Write αc :
fSet∅ → C, αd : fSet∅ → D for the corresponding symmetric monoidal functors.
Using (13), we get

MapFun⊗(fSet∅,C)
(αc, G ◦ αd) →̃ MapFunllax(fSet∅,D)(F ◦ αc, αd)
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Write ᾱc, ᾱd for the images of F ◦ αc and αd respedtively under

Funllax(fSet∅,D) →̃Fun⊗(Tw(fSet∅),D)

Note that αd sends I ∈ fSet∅ to ⊗
I
d, and it send a map I

ϕ→ I ′ to ⊗
ϕ
: ⊗

I
d→ ⊗

I′
d given

by the algebra structure on d.
One has ᾱd = r ◦ αd for r : Tw(fSet∅)→ fSet∅ sending (J → I) to J . We have an

adjoint pair l : fSet∅ ⇆ Tw(fSet∅) : r, and r is symmetric monoidal. Note that the
unit of Tw(fSet∅) is (∅ → ∅). Now we apply Section 1.2.10 and get an adjoint pair

Funrlax(Tw(fSet∅),D) ⇆ Funrlax(fSet∅,D)

where the left adjoint is the LKE along r : Tw(fSet∅) → fSet∅ and the right adjoint
is the restriction along r. So,

MapFunrlax(Tw(fSet∅),D)(ᾱc, r ◦ αd) →̃ MapFunrlax(fSet∅,D)(α̃c, αd),

where α̃c is the LKE of ᾱc : Tw(fSet∅)→ D along r.
The category fSet∅ has a final object pt. So, the value of α̃c on pt is colim

(J→I)∈Tw(fSet∅)
ᾱc.

Step 2 To finish, it suffices to show that α̃c is strict, that is, symmetric monoidal. Let
Ji ∈ fSet∅. We must show that the natural map α̃c(J1) ⊗ α̃c(J2) → α̃c(J1 ⊔ J2) is an
isomorphism in D. For i = 1, 2 we have

α̃c(Ji) →̃ colim
(Ii→Ki)∈Tw(fSet∅), Ii→Ji

ᾱc(Ii → Ki)

in D, and

α̃c(J1 ⊔ J2) →̃ colim
(I→K)∈Tw(fSet∅), I→J1⊔J2

ᾱc(I → K)

So,

α̃c(J1)⊗ α̃c(J2) →̃ colim
(I1→K1)∈Tw(fSet∅),I1→J1
(I2→K2)∈Tw(fSet∅),I2→J2

ᾱc(I1 ⊔ I2 → K1 ⊔K2)

We used in the above the fact that ᾱc(I1 → K1)⊗ᾱc(I2 → K2) →̃ ᾱc(I1⊔I2 → K1⊔K2).
So, our claim follows from Lemma 1.3.5 below. □

Lemma 1.3.5. The result of Lemma 1.2.15 remains true if we replace everywhere in
its formulation fSet by fSet∅.

Proof. We construct a left adjoint R of ϵ as follows. Let (J1 ⊔ J2
α← I

β→ K) ∈
Tw(fSet∅) ×fSet∅ (fSet∅)/J1⊔J2 . Set Ii = α−1(Ji). Then R sends the above object to
the pair (J1 ← I1 → K), (J2 ← I2 → K). This is naturally a functor in the opposite
direction. Then R is left adjoint to ϵ. □

1.3.6. In the situation of Section 1.3.1 assume d ∈ CAlg(D). Let us describe the counit
of the adjunction map GL

enh(G(d))→ d in D. It is the map

colim
(J→I)∈Tw(fSet∅)

⊗
i∈I

F (G(d)⊗Ji)→ d
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given by a compatible system of maps ⊗
i∈I

F (G(d)⊗Ji) → d for (J → I) ∈ Tw(fSet∅).

The desired map is the composition

(14) ⊗
i∈I

F (G(d)⊗Ji)→ ⊗
i∈I

F (G(d))→ d,

where the first map is the tensor product over i ∈ I of the maps F (G(d)⊗Ji)→ F (G(d))
obtained by applying F to the product map G(d)⊗Ji → G(d), here we use the unital
commutative algebra structure on G(d). The second map in (14) comes from the counit
of the adjunction F (G(d)) → d giving rise to the composition F (G(d))⊗I → d⊗I → d,
where the second map is the product using the algebra structure of d.

1.4. Factorization homology functor.

1.4.1. Combining Theorem 1.1.2 and Section 1.1.1 we conclude that the composition

CAlgnu,!(Shv(X))
Fact→ CAlgFact(RanX)

(pRan)
CAlg
!→ CAlgnu(Vect)

is the desired functor CFact
c (X, •) of factorization homology.

1.4.2. Let p : Y → X be an affine scheme with a connection over X, here we are over
the algebraically closed ground field of characteristic zero. This means that p∗O ∈
CAlg(QCoh(X)) is lifted to an object of CAlg(D − mod(X)). Such schemes with a

connection along X form a category D − Schaff/X . More generally, there is a category

D− Sch/X of DX -schemes which are not necessarily affine.

Then we may consider the scheme Sect∇(X,Y ) ∈ Schaff of horizontal sections of p.

It is defined by an isomorphism of functors Schaff → Spc: for S ∈ Schaff ,

MapSchaff (S, Sect∇(X,Y )) →̃ Map
D−Schaff

/X

(S ×X,Y )

One checks that

C ·(Sect∇(X,Y ),O) →̃CFact
c (X,Fact(p∗OY ))

1.4.3. Example. Let p : Z → X be an affine morphism. Define Sect(X,Z) by an

isomorphism of functors (Schaff )op → Spc, for S ∈ Schaff ,

MapSch(S, Sect(X,Z)) →̃ MapSch/X (S ×X,Z)

Then we may describe C ·(Sect(X,Z),O).
Namely, the functor oblv : D−Sch/X → Sch/X has a right adjoint Jets given by the

scheme of jets ([1], 2.3.2). One checks that for x ∈ X, Jets(Z)x →̃Sect(D̂x, Z), here

D̂x is the formal neighbourhood of x in X. Besides, Jets takes values in D− Schaff/X .

One has Sect(X,Z) →̃Sect∇(X,Jets(Z)) immediately. So,

C ·(Sect(X,Z),O) →̃CFact
c (X, q∗OJets(Z))

for the projection q : Jets(Z)→ X. This is an example of a local-to-global principle.

1.5. Graded version.
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1.5.1. AssumeX is a smooth projective curve, A is a Z>0-graded object in CAlgnu,!(Shv(X)),
that is, the product is compatible with gradings.

Let Diveff = ⊔
d>0

X(d). Then Diveff is naturally a semi-group with respect to the

sum of divisors. Now Shv(Diveff ) →̃
∏
d>0

Shv(X(d)) is equipped with the convolution

monoidal structure. For the sum u : Diveff ×Diveff → Diveff we let

F1 ⋆ F2 = u!(F1 ⊠ F2)

Let △: ⊔
d>0

X → Diveff be the inclusion given by the diagonal △d: X ↪→ X(d) for

each d > 0. We view Shv( ⊔
d>0

X) =
∏

d>0 Shv(X) = Shv(X)Z
>0

as the category of

Z>0-graded sheaves on X.

The functor △!: (Shv(Diveff ), ⋆)→ (Shv(X)Z
>0
,⊗!) is nonunital symmetric monoidal.

It has a fully faithful left adjoint △!: Shv(X)Z
>0 → Shv(Diveff ), which is so left-lax

nonunital symmetric monoidal. By Lemma 1.1.3, the functor

△!: CAlgnu,⋆(Shv(Diveff ))→ CAlgnu,!(Shv(X)Z
>0
)

has a fully faithful left adjoint denoted Fact. Let

(Diveff ×Diveff )d ⊂ (Diveff ×Diveff )

be the open subscheme of disjoint divisors.

Definition 1.5.2. Define CAlgFact(Shv(Diveff )) ⊂ CAlgnu,⋆(Shv(Diveff )) as the full
subcategory of those commutative algebras A for which the induced map A⊠A→ u!A
restricted to (Diveff ×Diveff )d is an isomorphism.

Theorem 1.5.3. The functor

Fact : CAlgnu,!(Shv(X)Z
>0
)→ CAlgnu,⋆(Shv(Diveff ))

is fully faithful with the essential image CAlgFact(Shv(Diveff )).

Proof. Similar to Theorem 1.1.2. □

The explicit formula for Fact is again given by Proposition 1.2.14. Namely, for

A ∈ CAlgnu,!(Shv(X)Z
>0
) given as A = ⊕d>0Ad, we get a functor θ : Tw(fSet) →

Shv(Diveff ) sending (J
τ→ I) to ⋆

i∈I
△! ( ⊗

j∈Ji
A). Here ⊗

j∈Ji
denotes the product in the

symmetric monoidal category (Shv(X)Z
>0
,⊗!). The d-th component of the latter is

⊕
{dj∈Z>0}j∈Ji

,
∑

j dj=d
( ⋆
i∈I

△! ( ⊗
j∈Ji

Adj ))

Given a map from (J ′
τ ′→ I ′) to (J

τ→ I) in Tw(fSet) given by (9), θ sends it to the
morphism in Shv(Diveff )

⋆
i′∈I′

△! ( ⊗
j′∈J ′

i′

A)→ ⋆
i∈I

△! ( ⊗
j∈Ji

A),
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which is the composition

⋆
i′∈I′

△! ( ⊗
j′∈J ′

i′

A)→ ⋆
i′∈I′

△! ( ⊗
j∈Ji′

A)→ ⋆
i∈I

△! ( ⊗
j∈Ji

A)

where the first functor is obtained by applying △! to the product maps along J ′i′ → Ji′ ,
and the second one comes from the left-lax symmetric monoidal structure of △!.

1.5.4. Let VectZ
>0

=
∏

d>0Vect be the category of Z>0-graded objects of Vect. For

the projection p : X → Spec k the functors p! : VectZ
>0 → (Shv(X)Z

>0
, !) is nonunital

symmetric monoidal, so gives rise to a functor

p!CAlg : CAlgnu(VectZ
>0
)→ CAlgnu,!(Shv(X)Z

>0
)

Its left adjoint is also called the functor CFact
c (X, •) of factorization homology (in the

graded context).
One shows similarly that CFact

c (X, •) is the composition

CAlgnu,!(Shv(X)Z
>0
)
Fact→ CAlgnu,⋆(Shv(Diveff ))

(p
Diveff

)!→ CAlgnu(VectZ
>0
)

Here pDiveff : Diveff → Spec k is the projection, and

(pDiveff )! : (Shv(Diveff ), ⋆)→ VectZ
>0

is nonunital symmetric monoidal.

1.6. Λpos-graded version of commutative factorization algebras.

1.6.1. Let Λpos be a semigroup isomorphic to (Z+)
m for some m ≥ 1. For λ ∈ Λ

let Xλ be the moduli scheme of Λpos − {0}-valued divisors of degree λ. Let Conf =
⊔λ∈Λpos−0X

λ. Then Conf is a non-unital semigroup, and as above Shv(Conf) →̃
∏

λ∈Λpos−0
Shv(Xλ)

is equipped with the convolution symmetric monoidal structure denoted ⋆.
We view Shv(X)Λ

pos−0 →̃Shv( ⊔
λ∈Λpos−0

X) as the category of Λpos−0-graded sheaves

on X. We equip it with the symmetric monoidal structure so that for F = ⊕λF
λ,K =

⊕λK
λ, the ν-component of the tensor product F ⊗! K is ⊕λ+µ=νF

λ ⊗! Kµ.
We have the embedding

△: ⊔
λ∈Λpos−0

X → ⊔
λ∈Λpos−0

Xλ

The functor △!: Shv(Conf, ⋆)→ (Shv(X)Λ
pos−0,⊗!) is non-unital symmetric monoidal,

its left adjoint △! is fully faithful. The corresponding functor

△!: CAlgnu(Shv(Conf, ⋆))→ CAlgnu,!(Shv(X)Λ
pos−0)

has a fully faithful left adjoint denoted Fact. Let u : Conf ×Conf → Conf be the sum.

Definition 1.6.2. Define CAlgFact(Shv(Conf)) ⊂ CAlgnu(Shv(Conf, ⋆)) as the full
subcategory of those commutative algebras for which the induced map A ⊠ A → u!A
restricted to (Conf ×Conf)d is an isomorphism.
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Theorem 1.6.3 ([5], Prop. 2.3.3). The functor

Fact : CAlgnu,!(Shv(X)Λ
pos−0)→ CAlgnu(Shv(Conf, ⋆))

is fully faithful and its essential image is CAlgFact(Shv(Conf)).

Let A = ⊕λAλ ∈ CAlgnu,!(Shv(X)Λ
pos−0). The explicit construction of the cor-

responding commutative factorization algebra is as follows. We get a functor θ :

Tw(fSet)→ Shv(Conf) sending (J
τ→ I) to ⋆

i∈I
△! ( ⊗

j∈Ji
A), here ⊗ denotes the product

in the nonunital symmetric monoidal category CAlgnu,!(Shv(X)Λ
pos−0). The restric-

tion of ⋆
i∈I

△! ( ⊗
j∈Ji

A) to Xλ is

⊕
λ:J→Λpos−0,

∑
j λ(j)=λ

( ⋆
i∈I

△! ( ⊗!

j∈Ji
Aλ(j)))

Here we used the map

XI → Xλ, (xi) 7→
∑
i

(
∑
j∈Ji

λ(j))xi

and ⋆
i∈I

△! ( ⊗
j∈Ji

Aλ(j)) is the direct image of ⊠
i∈I

( ⊗
j∈Ji

Aλ(j)) under the latter map.

Given a map from (J ′
τ ′→ I ′) to (J

τ→ I) in Tw(fSet) by (9), θ sends it to the
morphism in Shv(Conf)

⋆
i′∈I′

△! ( ⊗
j′∈J ′

i′

A)→ ⋆
i∈I

△! ( ⊗
j∈Ji

A),

which is the composition

⋆
i′∈I′

△! ( ⊗
j′∈J ′

i′

A)→ ⋆
i′∈I′

△! ( ⊗
j∈Ji′

A)→ ⋆
i∈I

△! ( ⊗
j∈Ji

A)

where the first functor is obtained by applying △! to the product maps along J ′i′ → Ji′ ,
and the second one comes from the left-lax symmetric monoidal structure of △!.

Finally, Fact(A) is defined as

colim
(J

τ→I)∈Tw(fSet)

⋆
i∈I

△! ( ⊗
j∈Ji

A)

The diagram commutes

Shv(Conf)
free→ CAlgnu(Shv(Conf), ⋆)

↑ △! ↑ Fact

Shv(X)Λ
pos−0 free→ CAlgnu,!(Shv(X)Λ

pos−0)

If A = ⊕λAλ ∈ Shv(X)Λ
pos−0 then free △! A restricted to Xλ is the direct sum over

all ways to write λ =
∑

k∈K nkλk with K finite nonempty, λk ∈ Λpos − 0, nk ≥ 1 of

⋆
k∈K

Symnk,⋆(△! Aλk
)

Here Symnk,⋆(△! Aλk
) ∈ Shv(Xnkλk).
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1.6.4. For △: X → Xλ we get △! (Fact(A)Xλ) →̃Aλ canonically by definition of Fact.
Let Fact(A)Xλ be the restriction of Fact(A) to Xλ. For a point D =

∑
k λkxk ∈ Xλ

with xk ̸= xk′ for k ̸= k′ and λk ∈ Λpos − 0 the !-fibre of Fact(A)Xλ at D is

⊗kAλk,xk

Here Aλ,x denotes the !-fibre of Aλ ∈ Shv(X) at x ∈ X.
More precisely, for K ∈ fSet and λ : K → Λpos − 0 with λ =

∑
k∈K λk consider

h : XK → Xλ, (xk) 7→
∑

k λkxk. Let
◦
XK be the complement to all the diagonals. Let

(
∏
k

Xλk)d ⊂
∏
k

Xλk

be the open subscheme of those (Dk) such that for k ̸= k′, the divisors Dk and Dk′ are
disjoint. We get a diagram

◦
XK ↪→ XK

↓ f ↓ h

(
∏

k X
λk)d

s→ Xλ

with s etale. By definition, s!(Fact(A)Xλ) →̃ ⊠k Fact(A)Xλk over (
∏

k X
λk)d, and over

◦
XK we have

f !( ⊠
k∈K

Fact(A)Xλk ) →̃ ⊠
k∈K

Aλk

1.6.5. Let A,B ∈ CAlgnu,!(Shv(X)Λ
pos−0). Then A ⊗ B ∈ CAlgnu,!(Shv(X)Λ

pos−0),
here⊗ denotes the tensor product in the latter non-unital symmetric monoidal category.
Note that for λ ∈ Λpos − 0, (A⊗B)λ = ⊕λ1+λ2=λAλ1 ⊗! Bλ2 .

Recall a general fact that for a pair of not necessarily commutative factorization
algebras F,F′ ∈ AlgFact(Conf), F ⋆ F′ is naturally an object of AlgFact(Conf). Here
AlgFact(Conf) is the category of factorization algebras on Conf.

It is easy to see that Fact(A ⊗ B) →̃ Fact(A) ⋆ Fact(B) on Conf. That is, for λ ∈
Λpos − 0,

Fact(A⊗B)λ →̃ ⊕
λ1+λ2=λ

Fact(A)Xλ1 ⋆ Fact(B)Xλ2

Here Fact(A)Xλ1 denotes the restriction of Fact(A) to Xλ1 . So, the functor Fact of
Theorem 1.6.3 is non-unital symmetric monoidal.

1.6.6. If A is a non-unital coalgebra in CAlgnu(Shv(X)Λ
pos−0,⊗!) then the comul-

tiplication A → A ⊗ A is a map in CAlgnu,!(Shv(X)Λ
pos−0), so gives a morphism

Fact(A)→ Fact(A⊗A) →̃ Fact(A) ⋆ Fact(A) in CAlgFact(Shv(Conf)).
More precisely, Fact induces a functor

CoAlgnu(CAlgnu(Shv(X)Λ
pos−0,⊗!))→ CoAlgnu(CAlgnu(Shv(Conf, ⋆)))
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1.6.7. Let us try the following calculation (in the constructible context). Let B = ⊕Bλ

be a (Λpos − 0)-graded non-unital commutative algebra in Vect. Set Aλ = Bλ ⊗ ω on
X for each λ, and A = ⊕λAλ.

Pick λ ∈ Λpos − 0. Let △: X → Xλ be the natural map.
Question: calculate the ∗-restriction △∗ (Fact(A)Xλ) to X.

The functor △∗ θ : Tw(fSet)→ Shv(X) sends (J
τ→ I) ∈ Tw(fSet) to

⊕
λ:J→Λpos−0,

∑
j λ(j)=λ

( ⊗
j∈J

Bλ(j))[2 | I |] = ( ⊗
j∈J

B)λ[2 | I |]

here e[2 | I |] = (△I)∗ωXI for △I : X → XI . It sends the map (9) to the composition

( ⊗
j∈J ′

B)λ[2 | I ′ |]→ ( ⊗
j∈J

B)λ[2 | I ′ |]
id⊗ϵ→ ( ⊗

j∈J
B)λ[2 | I |],

where the first map comes from the product in the algebra B, and the second map is
obtained from ϵ : e[2 | I ′ |] → e[2 | I |]. We have denoted by ϵ here the morphism

obtained from i!ωXI′ → ωXI by applying the functor (△I)∗. Here i : XI′ → XI is the
diagonal attached to ϕ : I → I ′. The answer is not clear in general.

1.7. Generalization of Proposition 1.2.14.

1.7.1. Let C,D ∈ CAlgnu(1−Cat), we assume C,D admit all small limits and colimits.
Let us be given an adjoint pair F : C ⇆ D : G in 1 − Cat such that G is nonuni-
tal symmetric monoidal, so F is left-lax nonunital symmetric monoidal. Let Genh :
CAlgnu(D) → CAlgnu(C) be the functor obtained from G, so oblv ◦Genh →̃G ◦ oblv
for oblv : CAlgnu(D)→ D, oblv : CAlgnu(C)→ C.

We difference with Proposition 1.2.14 is that we do not assume that the tensor
product in D preserves colimits separately in each variable!

Conjecture 1.7.2. In the situation of Section 1.7.1 the following holds.
i) The functor colim : Funrlax(Tw(fSet),D) → D upgrades naturally to a functor
colim : Funrlax(Tw(fSet),D)→ Funrlax(pt,D).
ii) There is a left adjoint GL

enh : CAlgnu(C)→ CAlgnu(D), which fits into the commu-
tative diagram (10).

1.7.3. To extend the proof of our Proposition 1.2.14 to this case, we should, I think,
solve the following question. Let I, J ∈ 1−Cat be small nonuinital symmetric monioidal
categories, f : I → J be a nonunital symmetric monoidal functor. Take O⊗ = Surj,
the ∞-operad defined in Section 1.2.1. Then we have the ∞-operads FunO(I,D)⊗,
FunO(J,D)⊗ defined in ([10], Construction 2.2.6.7). The functor f yields by functori-
ality a natural map

ef : FunO(J,D)⊗ → FunO(I,D)⊗

of ∞-operads. Its fibre over ⟨1⟩ ∈ Surj is f̄ : Fun(J,D) → Fun(I,D), the composition
with f . The functor f̄ has a left adjoint f̄L : Fun(I,D)→ Fun(J,D) given by the LKE
along f . We need to extend f̄L to a map of ∞-operads FunO(I,D)⊗ → FunO(J,D)⊗ I
think.
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I think unfortunately, this does not work, then so obtained functor f̄L is only non-
unital left-lax symmetric monoidal (it is not strict). So, I don’t believe in the above
Conjecture.

1.8. Λpos-graded version of cocommutative factorization coalgebras.

1.8.1. For this section we work in the constructible context.1 Let Λpos, Xλ,Conf,△, u
be as in Section 1.6.1. We consider the symmetric monoidal category (Shv(Conf), ⋆)
as in Section 1.6.1.

View now Shv(X)Λ
pos−0 as equipped with the symmetric monoidal structure so that

for F = ⊕λF
λ,K = ⊕λK

λ, the ν-component of F ⊗ K is ⊕λ+µ=νF
λ ⊗ Kµ. So, we

replaced ⊗! by ⊗.
The functor △∗: Shv(Conf, ⋆) → Shv(X)Λ

pos−0 is non-unital symmetric monoidal,
its right adjoint △∗ is fully faithful and non-unital right-lax symmetric monoidal. The
functor △∗ induces a functor

(15) △∗: ComCoAlgnu(Shv(Conf, ⋆))→ ComCoAlgnu,∗(Shv(X)Λ
pos−0)

In the RHS the ∗ refers to the fact that we use the⊗-monoidal structure. By Lemma 1.1.4,
(15) admits a right adjoint.

Definition 1.8.2. Let ComCoAlgFact(Shv(Conf)) ⊂ ComCoAlg(Shv(Conf, ⋆)) be the
full subcategory of those A for which the induced map u∗A→ A⊠A is an isomorphism
over (Conf ×Conf)d. We used that u is proper and of finite type.

Remark 1.8.3. The map u : (Conf ×Conf)d → Conf is etale, so that u∗ over this
locus exists even if we are not in the consructible context.

Question. Is it true that the right adjoint to (15) is fully faithful?

1.8.4. Let A = ⊕λAλ ∈ ComCoAlgnu,∗(Shv(X)Λ
pos−0). The construction of Fact(A)

should go as follows. We get a functor θ : Tw(fSet)op → Shv(Conf) sending (J
τ→ I)

to ⋆
i∈I

△∗ ( ⊗
j∈Ji

A), here ⊗ denotes the product in the non-unital symmetric monoidal

category (Shv(X)Λ
pos−0,⊗). The restriction of the latter object to Xλ is

⊕
λ:J→Λpos−0,

∑
j λ(j)=λ

( ⋆
i∈I

△! ( ⊗
j∈Ji

Aλ(j)))

Here we used the map

XI → Xλ, (xi) 7→
∑
i

(
∑
j∈Ji

λ(j))xi

and ⋆
i∈I

△! ( ⊗
j∈Ji

Aλ(j)) is the direct image of ⊠
i∈I

( ⊗
j∈Ji

Aλ(j)) under the latter map.

Given a map from (J ′
τ ′→ I ′) to (J

τ→ I) in Tw(fSet) by (9), θ sends it to the
morphism in Shv(Conf)

⋆
i∈I

△! ( ⊗
j∈Ji

A)→ ⋆
i′∈I′

△! ( ⊗
j′∈J ′

i′

A)

1There should be a version for D-modules but with imposing strong assumptions like all the sheaves
are compact, I have not thought about this case.
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which is the composition

⋆
i∈I

△! ( ⊗
j∈Ji

A)→ ⋆
i′∈I′

△! ( ⊗
j∈Ji′

A)→ ⋆
i′∈I′

△! ( ⊗
j′∈J ′

i′

A)

Here the second map is the (⋆-product over I ′) of the coproduct maps ⊗
j∈Ji′

A→ ⊗
j′∈J ′

i′

A

along surjections J ′i′ → Ji′ , and the first map comes from the right-lax structure on △∗.
Here △(I/I′): XI′ → XI , and we used that (△(I/I′))∗(⊠

i∈I
A⊗Ji) →̃ ⊠

i′∈I′
A⊗Ji′ .

The right-lax structure above was used to get maps

⋆
i∈Ii′

△! ( ⊗
j∈Ji

A)→△! ( ⊗
i∈Ii′

⊗
j∈Ji

A)

for each i′ ∈ I ′, and further take ⋆
i′∈I′

of these maps.

Now define

Fact(A) = lim
Tw(fSet)op

θ

in Shv(Conf).

1.9. Ran-version of commutative factorization categories attached to coalge-
bras.

1.9.1. For this subsection we work with any sheaf theory. LetA ∈ ComCoAlgnu(DGCatcont).
In ([6], 2.5.5) Dennis proposed the following construction. Consider the functor Tw(A) :

Tw(fSet)op → DGCatcont sending (J
ϕ→ I) to A⊗J ⊗ Shv(XI). It sends the map (9)

to

A⊗J ⊗ Shv(XI)→ A⊗J
′ ⊗ Shv(XI′)

which is the tensor product of △!: Shv(XI) → Shv(XI′) for △: XI′ → XI with the

product map A⊗J → A⊗J
′
. Then limTw(fSet)op Tw(A) in DGCatcont. Note that this

limit can also be calculated in Shv(Ran)−mod naturally.

1.10. Ran-version for commutative factorization categories attached to alge-
bras.

1.10.1. For this subsection we work with any sheaf theory. LetA ∈ CAlgnu(DGCatcont).
In ([6], 2.5.1) Dennis proposed the following construction. Let Tw(A) : Tw(fSet) →
DGCatcont be the functor sending (J

ϕ→ I) to A⊗J ⊗Shv(XI). It sends the map (9) to

A⊗J
′ ⊗ Shv(XI′)→ A⊗J ⊗ Shv(XI)

which is the tensor product of △∗: Shv(XI′) → Shv(XI) for △: XI′ → XI with the

product map A⊗J
′ → A⊗J along J ′ → J . Then we may consider colim

Tw(fSet)
Tw(A), this

is the category of global sections over Ran of a suitable sheaf of categories attached to
A as in ([8], 8.1), see my file ([13], Section 3.3).

1.11. Factorizable sheaves.

1.11.1. Let be X is a smooth curve. We may define Shv(RanX)Fact similarly to [13].
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2. Non-commutative version

2.0.1. Let D ∈ Algnu(DGCatcont). Then Algnu(D) is presentable. This is obtained
from the following general fact: let C be a presentable∞-category, A a monad on C such
that the undelying functor C → C is accessible. Then A−mod(M) is presentable. In
our case Algnu(D) admits a sifted colimits by (HA, 3.2.3.1), and oblv : Algnu(D)→ D
preserves sifted colimits and is conservative by (HA, 3.2.2.6). Thus, oblv : Algnu(D)→
D is monadic, and the corresponding monad is continuous.

2.0.2. Let C,D ∈ Algnu(DGCatcont). Let l : C ⇆ D : r be an adjoint pair in
DGCatcont, where r is non-unital monoidal, so l is left-lax non-unital monoidal. Write
rAlg : Algnu(D) → Algnu(C) for the induced functor, it preserves limits. Besides,
Algnu(C), Algnu(D) are presentable, so rAlg admits a left adjoint lAlg.

Write free : C → Algnu(C) for the left adjoint to oblv : Algnu(C) → C. Note that
lAlg ◦ free →̃ free ◦ l.

Lemma 2.0.3. Assume l : C → D fully faithful. Then lAlg is also fully faithful.

Proof. The proof of Lemma 1.1.3 immediately generalizes to this case. Note that
Algnu(C) is generated under geometric realization by free algebras. By a free algebra
we mean an object of Algnu(C) lying in the essential image of free : C → Algnu(C),
see (HA, 3.2.3.3). □

2.1. Example of the affine grassmanian.

2.1.1. Let G be split reductive, consider the affine grassmanian GrG,Ran. This is a

factorization prestack over Ran. For S ∈ Schaffft given an S-point I of Ran let D̂I

denote the formal scheme obtained as the formal completion of S ×X along ΓI, here
ΓI is the union of the graphs Γi for i ∈ I. Let DI be the affine scheme attached

D̂I (by passing to the colimit inside affine schemes instead of prestacks). Write also
◦
DI = DI − ΓI.

Let L+(G)Ran be the group scheme over Ran defined as follows. Given an S-point I
of Ran, its lifting to an S-point of L+(G)Ran is a section DI → G.

Let HeckelocG be the stack over Ran classifying collections: I ∈ Ran, G-torsors FG,F
′
G

onDI, and an isomorphism β : F →̃F′G over
◦
DI. The stack quotient GrG,Ran /L

+(G)Ran

(in the étale topology) identifies with HeckelocG .

2.1.2. Now HeckelocG is naturally a factorization prestack over Ran. It is also an as-
sociative algebra in PreStkcorr. Namely, for a linearly ordered set I = {1, . . . , n} the
product is given by the diagram

(HeckelocG )n
a← ConvI

b→ HeckelocG

Here ConvI is the stack classifying I1, . . . , In ∈ Ran, G-torsors F1
G, . . . ,F

n+1
G on D∪iIi

together with isomorphisms

β1 : F
1
G →̃F2

G |D∪iIi
−ΓI1

, . . . , βn : Fn
G →̃Fn+1

G |D∪iIi
−ΓIn
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The map a sends this collection to

(F1
G,F

2
G, β1) |DI1

, . . . , (Fn
G,F

n+1
G , βn) |DIn

The map b sends this point to (∪ni=1Ii, β,F
1
G,F

n
G), where β is the composition βn◦. . .◦β1.

Though HeckelocG is not locally of finite type, we may still define the DG-category

Shv(HeckelocG ) in our constructible context via the usual way. Moreover, Shv(HeckelocG )
becomes a non-unital monoidal category via the convolution ⋆. Namely, given Ki ∈
Shv(HeckelocG ), their convolution K1 ⋆ . . . ⋆ Kn is defined as

K1 ⋆ . . . ⋆ Kn = b∗a
!(K1 ⊠ . . .⊠Kn)

Here the map b is pseudo-proper, so we should have b∗ →̃ b! naturally. Write Shv(HeckelocG , ∗) ∈
Algnu(DGCatcont) for this monoidal category.

2.1.3. We view Ran as an object of Algnu(PreStk). The inclusion PreStk ⊂ PreStkcorr
allows to view it also as an object of Algnu(PreStkcorr). Then the projection HeckelocG →
Ran is a map in Algnu(PreStkcorr). In partiocular, for the linearly ordered set I =
{1, . . . , n} the above diagram fits into a commutative diagram

(HeckelocG )n
a← ConvI

b→ HeckelocG

↓ ↓ ↓
RanI

id← RanI
u→ Ran,

where u is the union operation on Ran.

2.1.4. Let A⊗ : ∆op → 1− Cat be a monoidal ∞-category, A = A⊗([1]). Let Ã→∆op

be the corresponding cocartesian fibration. Let ∆s ⊂ ∆ be the subcategory with
the same objects, where we keep only injective morphisms [n] → [m]. The category
Algnu(A) of non-unital associative algebras in a monoidal category A is controled

according to ([10], 5.4.3.3) as the full subcategory Algnu(A) ⊂ Funct∆op((∆s)
op, Ã)

spanned by functors F that send morphisms of the form [1]→ [n], 0 7→ i, 1 7→ i+ 1 to
a cocartesian arrow.

2.1.5. Let HeckelocG,X = HeckelocG ×RanX. We may view Shv(HeckelocG,X) also as an object

of Algnu(Shv(X,⊗!)−mod) via convolution.

Namely, the non-unital monoidal structure on HeckelocG is given by a functor fH :

∆op
s → PreStkcorr, [n] 7→ (HeckelocG )n, and ϕ : [n]→ [m] in ∆ goes to some diagram

(HeckelocG )m ← Convϕ → (HeckelocG )n

We get the functor fH,X : ∆op → (PreStk/X)corr sending [n] to

(HeckelocG )m ×Ranm X =
∏
/X

1≤i≤m

HeckelocG,X ,

and ϕ : [n]→ [m] in ∆ to

(HeckelocG )m ×Ranm X ← Convϕ×RanIX → (HeckelocG )n ×Rann X
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Now fH,X is an object of Algnu((PreStk/X)corr). Applying the functor Shv, this

gives on Shv(HeckelocG,X) the structure of an object of Algnu(Shv(X,⊗!)−mod).

2.1.6. The functor oblv : Shv(X,⊗!) − mod → DGCatcont is right-lax symmetric

monoidal, so on Shv(HeckelocG,X) we get a structure of an object of Algnu(DGCatcont).
We denote this convolution by ∗. For the linearly ordered set I = {1, . . . , n} consider
the diagram

(HeckelocG,X)n
q← (HeckelocG )n ×Rann X

aX← ConvI,X
bX→ HeckelocG,X ,

where we denoted ConvI,X := ConvI ×RanIX, and aX , bX are obtained from a, b by the

base change. The convolution product of Ki ∈ Shv(HeckelocG,X) is given as

K1 ∗ . . . ∗Kn = (bX)∗a
!
Xq!(K1 ⊠ . . .⊠Kn) ∈ Shv(HeckelocG,X)

2.1.7. Let i : HeckelocG,X → HeckelocG be the natural map. Then r = i! : Shv(HeckelocG , ⋆)→
Shv(HeckelocG,X , ∗) is non-unital monoidal. So, induces a functor

rAlg : Algnu(Shv(HeckelocG , ⋆))→ Algnu(Shv(HeckelocG,X , ∗))

Appendix A. Some remarks

A.0.1. Recall the adjoint pair l : fSet ⇆ Tw(fSet) : r from Section 1.0.13. Since
r : Tw(fSet) → fSet is cofinal, r induces an isomorphism | Tw(fSet) | →̃ | fSet |.
Since fSet has a final object, | fSet | →̃ ∗, so Tw(fSet) is contractible.

Consider the functor

q : Tw(fSet)→ fSetop, (J → K) 7→ K

We claim that q is cofinal. Indeed, let K ∈ fSet. We show that the category
Tw(fSet)×fSetop (fSet

op)K/ is contractible. Its objects are collections (J1 → K1 → K)
with (J1 → K1) ∈ Tw(fSet). Taking the fibres (J1)k → (K1)k for each k ∈ K, one
gets an isomorphism Tw(fSet) ×fSetop (fSet

op)K/ →̃
∏

k∈K Tw(fSet). By the above,
the latter category is contractible.

A.0.2. As an applicatioin, for A = ωX ∈ Shv(X) the corresponding commutative
factorization algebra on Ran is

colim
(J→K)∈Tw(fSet)

△K
! ωXK

for △K : XK → Ran. This is the colimit of the composition Tw(fSet)
q→ fSetop →

Shv(Ran), so rewrites as

colim
K∈fSetop

ωXK →̃ωRan,

because Shv(Ran) →̃ colimfSetop Shv(X
I) in DGCatcont.
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