1. COMMENTS TO: GAITSGORY, LYSENKO, METAPLECTIC WHITTAKER CATEGORY
AND QUANTUM GROUPS: THE "SMALL” FLE (VERSION APRIL 21, 2020)

1.1. For 0.1.3. The normalization for the Kac-Moody extension not precised. Let take
for the corresponding 2-cocycle the map x ® f(t),y ® g(t) — —(x,y)x Resi—o fdg for
z,y €, f,g9 € k((t)) from [16].

1.1.1. For (0.20). The setting for existence of such functor could be as follows. Let
f: A — B be amap in DGCat.y,:, H an affine algebraic group, Ty C H a closed
subgroup. We get the objects in C Alg(DGCatcont), RepH = QCoh(B(H)), same for
Ty. The map B(Ty) — B(H) yields a symmetric monoidal functor RepH — RepTy.
Assume A is a left Rep(H )-module, B is a left Rep(T)-module, and the functor f is a
morphism of Rep(H )-modules. Then the functor Rep(Ty) x A — B, (V,a) — V * f(a)
extends to a functor Rep(Ty) ®rep(ry A — B by bilinearity. The latter functor is
Rep(Tx)-linear. My understanding is that in these terms the induction functor A —
Rep(Tw) Q@Rep(rr) A sends a to e X a. Here e is the trivial Ty-module. We write e for
the base field of coefficients.

Question: is the functor ngnt lax braided monoidal?

1.1.2. For Rem. 0.3.11. Learn the definition of local finiteness in the definition of

Rep,(G) and Rep;md(G).

The relation between nga” and qus € Repq(T )?

1.1.3. What is Lurie’s equivalence between [E9-algebras and factorization algebras men-
tioned in 0.5.57

1.1.4. What is the sense of the objects N* defined in ([42], formula (29)) in terms of
&q(é) — mod?

1.1.5. What is "the full force of the Drinfeld-Plucker formalism” mentioned in Sect.
0.7.8?

1.1.6. For 0.8.10. By C" he means the functor RI'(Y,-). By Hom he means the functor
RI' Hom.

1.1.7. If G is a finite abelian group let « : B(G) — pt be the projection. Then
o : Shw(B(G)) — Vect admits a continuous right adjoint, namely, = o' is this right
adjoint.

Assume now G is a torsion abelian group. Write G,, = {g € G | ¢" = 1}. By
definition, a, : Shv(B(G)) — Vect comes from the compatible system of functors
(o)« = Shv(B(Gp)) — Vect by passing to the colimit over n € N with the di-
visibility relation, here «,, : B(G,) — pt. In particular o, is continuous. Then
. : Shu(B(G)) — Vect also admit the continuous right adjoint o'. Indeed, we have
B(G) = colimyen B(G,,) with respect to the divisibility relation on N, and

Shv(B(G)) = li&np Shv(Gy,) = colim,eny Shv(B(Gy)),
neNe,
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as we may pass to left adjoints in the limit system lim,enor Shv(G,). Now the func-
tor ay is obtained by passing to the colimit over n € N in the functors (ay)s :
Shv(B(Gy)) — Vect. Our claim follows now from ([41], end of Section 9.2.6). We
may also note that « is pseudo-proper, so a is defined for all the 4 sheaf theories by

19].

1.1.8. In 0.8.11 It is essential that gerbes are of finite order! Indeed, for finite groups
A, B we have Shv(Bet(A)) ® Shv(Bet(B)) = Shv(Bet(A x B)). In fact, this also holds
for torsion discrete groups.

Lemma 1.1.9. Let H, G be torsion discrete groups. Then the natural map Shv(B(H))®
Shv(B(G)) — Shv(B(H x G)) is an equivalence.

Proof. If H, G are finite, this is easy. Now consider N with the divisibility relation. The
diagonal map N — Nx N is cofinal. For H a torsion group write H, = {h € H | h" = 1}.
Then B(H)—= colim,cy B(H,,) canonically, and one may pass to left adjoint in the
presentation Shv(B(H))— nleig‘l’l’ Shv(B(Hy)). So,

Shv(B(H)) ® Shv(B(G)) = col]ieniop Shv(B(Gy x Hy)) = Shv(B(H x G))

n,[

g

The assumptions that gerbes are of finite order is needed to show that the functor
(PreStk; s +Grb)? — DGCat, (Y,5) — Shvg(Y) is right-lax symmetric monoidal I
think.

Indeed, given Y,Y’ € PreStk; sy and G : Y — Be(e17%), §' : Y/ — Bey(e*) recall
that

Shug(Y) = e — comod(Shv(Y)),  Shuvg(Y') = e — comod(Shv(Y")),

where )7, Y’ are the total spaces of these gerbes. Now G, G’ give rise to G X G/, which is
the composition

Y x Y 5 Buy(e7%)) x Sho(Bu(e7%) ™ Buy(e"17%))
Write m’ for the total space of GX G’'. We have
e e € coAlg(Shv(Be(eH7% x e:1°%)))
We need a map
(e — comod(Shu(Y))) ® (e — comod(Shv(Y"))) — e — comod(Shv(m’))

Now
Shv(Bes (€175 x €*175)) 5 Shv(Bes (€*1°7%)) @ Shv(Bet(e*'7%))

acts on Shv(Y x Y'). We have the natural map
(e — comod(Shv(Y))) ® (e — comod(Shv(Y"))) = (e X e) — comod(Shv(Y x Y'))
Write F' for the composition

oblv

e— comod(Shv(Y/;_}//’) — Shv(Y/;_}//’) o Sho(Y x Y)
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fora:Y xY' =Y x Y’. We claim that F is comonadic. Indeed, write coind for the
right adjoint to oblv. Then coind o(a')® is the right adjoint to F. Both oblv and o'
are conservative, so o' o oblv is conservative. It suffices to show now that F admits a
left adjoint. The functor o' admits the left adjoint /oz_g\By Section 1.1.7. It suffices to

show that oblv : e — comod(Shv(Y/;T/’)) — Shv(Y x Y’) has a left adjoint. In fact,

—~— S~

it suffices to show that the functor Shv(Y x Y’) — Sho(Y x Y'), K +— e x K preserves
totalizations, where we view e as a coalgebra in Shv(B(e*"®)).

Write act : B(e*!$) x Y x Y/ — Y x Y’ for the action map. We need that K
act(eX K) preserves totalizations. For this we would need the existence of a left adjoint
of act,. To simplify, assume that e*"* is replaced everywhere by a finite subgroup A.
Then act, admits a left adjoint act*, and in turn the above functor K — act.(e X K)
has a left adjoint. So, F' is comonadic.

The comonad FF corresponding to F is what? Let mB(A) x B(A) — B(A) be the
product map. Then e X e =5 m*e canonically. This is why for K € Shv(Y x Y’) one
has a*(e x (. K)) = (eXe) x K.

This gives the desired equivalence

(eXe) — comod(Shv(Y x Y')) e — comod(Shv(m’))

Question The object e € Shv(e*!"¥) is dualizable by ([19], Lemma 1.4.6). Indeed, its !-
restriction to each Shv(uy(€)) is dualizable for any n for the map B(un(€)) — B(e*"®).
Moreover, the dual is e itself. Maybe this would allow to rewrite e — comod(Shv(Y))
as modules?

Let G be any torsion abelian group. Then B2%(G) = colim,cy B?(G,) in PreStk,
hence also B%(G) = colim,cny B%(G,,) in Stk, where the colimit is calculated in Stk,
as the sheafification preserves colimits.

For a scheme of finite type S, any map q : S — B%(G) is of finite order. I see this
as follows: there is an etale cover f : S’ — S with S’ € Schjc{  such that our gerbe
trivializes over S’. So, it suffices to show that any etale G-torsor on S’ x g S’ is of finite
order, so we make a kind of induction. By induction on n, we want to show that any
map S — BJ4(G) is of finite order. The base of induction: the map S — G factors
through G,, for some m € N.

1.1.10. For any sheaf theory Shv : (Sch;{f)of’ — DGCateon: the category Shv(S) is
dualizable, because it is compactly generated.

For 1.3.2. Given a G-torsor ¥ on X the induced map Ran — £%(B(G)) sends J to
the restriction of F under Dy — S x X — X.

For 1.4.3. Note that G*” is the group scheme of automorphisms of teh G-torsor w”.
Now

Gr&Ran = S(G* )ran/L* (G Jhan
For S € Sch®/ its S-point is § € Ran(S) and a G¥’-torsor P on Dy with a trivialization
over Dy. We may equivalently think of its S-point over J as a G-torsor P on Dy with

an isomorphism of G-torsors P = w” on Dy.



For 1.4.4. If G is a group scheme on a base S, F is a G-torsor on .S then consider
the group scheme F¢ x& G with respect to the adjoint action of G. This is the group
scheme of automorphisms of the G-torsor F.

Let now Fg be a G-torsor on D,, and Aut(F¢g) its group scheme of automorphisms.
Then Grp (g, classifies a G-torsor Iy, on D, and an isomorphism Fg, = F¢ |[o) .

1.1.11. For 1.5.3. Recall rigorous definition of a factorization prestack over Ran. This
is a map Zran — Ran in PreStk, which is lifted to a morphism of non-unital commu-
tative algebras in PreStke... and such that for any J the induced morphism

J J J
ZRan XRanJ R,andisj — ZRan XRan R,&ndisj

is an isomorphism.

Let now ZRan, — Ran, be a map in PreStk. A structure of a factorization module
space over ZR,n on it is a structure of a module in PreStk.,.. over the non-unital
commutative algebra Zg,, such that the following hold: 1) this is a morphism of Zga,-
modules in PreStkco., where Zr,, acts on Ran, via Zr,, — Ran. So, for any J we
have a commutative diagram

Z3 X ZRan, < multy z —  ZRan,

+ \ \

Ran’ x Ran, < (Ran’ x Rang)gis; — Rang,

where the left square is cartesian (and the upper row defines the corresponding action
map in PreStkeo). 2) It is required that the right square is also cartesian.

1.1.12. For 1.6.5. T would add that (Ran x Ran)< is a ”category object” in PreStk
acting on Ran.
By a category object in C' € 1 — Cat we mean a map X : A°? — C such that for any

0,0

n > 0 the morphisms [1] Gy [n] yield an isomorphism

X([n]) = X[1] xxjo) X([1]) x o) - - - X[1],

where [1] appears n times. Then we say that X[1] acts on X[0].

Recall that if, in addition, C. has finite limits then X[1] € Alg(Corr(C)) naturally
by ([18], published version, Cor. 4.4.5, Chapter 9).

Now given a map 7 : ¢ — X[0] in C, we may define the notion that the X[1]-action
on X[0] is extended to a right X-action on c¢. This means that we get a category object
X': A’ — C and a map X’ — X of category objects in C' such that X'[0] — X[0] is
the map 7, and the square is cartesian

X'0] & X'[1]

b i
X[ & X[
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Here s is the source map attached to [0] 9 [1]. The action map t : X'[1] — ¢ is then

attached to [0] RN [1]. Note that in this situation the diagram

X' & X
i \
X[ & X[

is not necessarily cartesian, as in the case of the action of (Ran x Ran)< on Grg Ran-

Now given a map Zran — Ran in PreStk, a unital structure on Zg,, is a right
(Ran x Ran)“-action on Z such that the map Zr., — Ran is a equivariant with respect
to the right actions of (Ran x Ran)<. This is just a way to think. This is better as we
are working with oo-categories.

Note that Ran itself has a unital structure in the sense of Sect. 1.6.5. Make a precise
relation with a factorization lax prestacks over Ran"" from [51].

Let Zran — Ran be a factorization prestack, assume given a unital structure on
ZRan- By definition, these structures are compatible if the map

. C
Pbig - ZRan XRan,@smail (Ran X Ran) — ZRan

is a morphism of factorization prestacks over Ran.

Let C € 1 — Cat and X : A’ — C be a category object, S = X[0], H = X[1].
Consider the map ¢ : A — A, [n] — [n+ 1]. It sends a morphism S : [n] — [m] to
the morphism ¢(8) : [n 4+ 1] — [m + 1] given by 0 — 0 and k£ + 1 — S(k) + 1 for all
n >k > 0. Composing X with ¢°P, we get a new category objects, which realizes the
right action of H on itself.

Consider the natural transformation of functors id — ¢ from A to A given on on
[n] by 7, : [n] = [n + 1],7 — i + 1 and naturally on morphisms. Applying X to this
natural transformation, we see that t : H — S becomes a H-equivariant morphism
with respect to the natural H-action on itself on the right.

Example: a monoid gives a category object acting on the final object * of C.

1.1.13. For 1.6.5. As in [51], we have the lax prestack Ran"" (we supress X from
the notation of [51]). To treat unital structures, one should more generally, I think,
to consider a map f : Z — Ran®” in PreStk!®®. Recall that Ran™ is a commutative
algebra in PreStk!%% . Then the factorization structure on Z should be a lifting of f
to a morphism of commutative algebras in PreStk'%* . This would mean in particular

that we have for a finite set J a commutative diagram in PreStk!®®

Z J — mult J,Z — Z
i 1 3
(Ran"")” <+ (Ran"")7]., ; — Ran"",

where the left square is cartesian, and the top row defines the corresponding product
map in PreStk.,.. Then we should similarly require that the right square is cartesian.

1.1.14. For 1.6.9. The unital and factorization structures on Grg ran are compatible.
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1.1.15. For 2.1.4. Let G be a factorization gerbe over Grg Rran. Then its restriction
to the unit section ¢ : Ran — GrgRan is canonically trivialized. Indeed, Ran is con-
tractible, so ¢*§ is constant with value Gg. Now given x,y € X with x # y we have
(1*G)auy = (1°9)2 ® (i*G)y, so Go is trivialized.

This explains why G&Gratio g trivialized after restriction to £*(G)Ran/Ran —
HeckelGofRan.

In my comments below I use your definition of §¢ on Grgjm, not the one I propose.
(Change this!!!)

1.1.16. For 2.1.6. The point t* € Gr%?x corresponds to (wh.)(—Az) over Dy together

with an isomorphism (w%)(—Az) = w/. over Dj.

The fibre of the gerbe §7 on Gri}; at t0 € Gr‘;ﬁfx is trivial, because for any T-torsor
Fr on Dy, the fibre of §7 at (Fr, Fr,id : Fr = Fr) € Heckelfg,, is trivial.

The description of the fibres of 7 in 2.1.6 fixes a definition of the bilinear form on
A associated to a factorization gerbe.

One more subtle thing here: the isomorphism (2.1) fixes a normalization of the
map from factorizable gerbes on Gry to quadratic forms. There are two such possible
normalizations, in (2.1) changing this normalization corresponds to replacing b by —b.
I think the normalization chosen by this isomorphism is different from the one chosen
in [GLys]. (If you agree then I propose to correct in this section as follows: replace the
point t* € Gr":ﬁf}x by the T-torsor (w/)(Az), and the same for Grr ).

Verification: consider the case of G = SLs. Consider for a € e*!"$(—1) the gerbe
G% on Grg, whose fibre at (L, L= 0% |x_;) is det(L : 0?)% We know that the
corresponding ¢ : A =Z — e*(—1) sends 1 to a. So, b(1,1) = 2a. We identified Z — A
via 1 — «, where « is the simple coroot. Our T C G is the standard maximal torus,
and G7T is the restriction of §¢ under Grr, — Grge. So, the fibre of gT at t* € Gr“:ﬁfx
is

det(Q2 (—z) B Q72 (z) : O2)°
The gerbe G, from (2.1) becomes det(O(—z) & O(z) : 0%)* = w,*, and

x

det(Q2 (—2) B Q2 (z) : Q2 @ Q72)* w20

T

So, we see that the two normalizations are different!

1.1.17. To understand the gerbes in 2.1.4-2.1.8 consider an example when ti comes
from a factorization line bundle. Namely, assume L is some representation of G, a €
e*trs(—1), and the gerbe on Bung is with fibre

(det RT(X, Lg)/ det RT(X, Lg0))®
at F. Then the gerbe G% on Grg ran attaches to (7,9, 8 : F = F° ]% ) the fibre
3

(@ det(Lg.q, : Lyoy,)",
i€l
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in the case § = {z; | i € J}, and the points z; are disjoint. The gerbe G over Gr“éfRan
attaches to (F,d,a : F=w’ |% ) the fibre
J

(?1 det(Lg,, : Lura;)),
1
in the case when J = {z; | i € J}, and the points z; are disjoint.
So, in Remark 2.1.9 of the paper if 7 : Gr“{;?Ran — Bung is the natural maps then

(G%) |wr ®7*GY = GC.

1.1.18. For 2.4.1-2.4.2. For the definition of the convolution, one uses the convolution
diagram as in ([29], Sect 7.4) that I would denote Grg ;. It classifies G-torsors P}, P% on
D, with isomorphisms «; : U’%’—Tﬂ’lG \B , Qo ?10,/—79% \lo) . Let conv : Grgz — Grg s

be the map sending the above point to (f]%, ag o aq). Here ?OG is the trivial G-torsor.
As in ([29], Sect 7.4), since G is £1(G),-equivariant, we have the twisted product
GONGY, which according to loc.cit. identifies canonically with conv*(G%). The map
conv is ind-proper. For this reason the functor conwv is defined for any of the 4 sheaf
theories by ([19], 1.5.2).

Pick a presentation Grg = colim;e; Y;, where Y; are closed £1(G)-invariant sub-
schemes. Define Shv(£7(G)\ Grg) as lim;ejor Shv(£7(G)\Y;). For each i the action of
£1(G) factors through certain finite-dimensional group G; with prounipotent kernel,
so we set Shv(£7(G)\Y;) = Sho(G;\Y;). If £7(G) — G, — G; are surjections (both
kernels are unipotent) then we identify Shv(G;\Y;) and Sho(G;\Y;) via the functor ¢*
for ¢ : G)\Y; — G;\Y;. It is important that there is no cohomological shift in ¢*.

Now for pr : Grg — £7(G)\ Grg we get the functor pr* : Shv(£T(G)\ Grg) —
Shv(Grg) and identify oblv : Sho(Grg)® (@) — Shv(Grg) with pr*.

Namely, for each i pick G; as above then for the projection ¢ : Y; — G;\Y; we get
the functor ¢* : Shv(G;\Y;) — Shv(Y;). They are compatible and define the desired
functor pr*.

The category Shv(£1(G)\ Grg) is equpped with the following t-structure. For K €
Shv(£7(G)\ Grg) we say that it lies in nonpositive (resp. positive ) degrees if pr* K
lies in nonpositive (resp. positive ) perverse degrees. Thus, pr* is t-exact.

For 2.4.3. We restrict the corresponding morphisms of sheaves of categories over Ran
to the point x. Since we only want a monoidal functor, we may forget about ¢, though
it is not trivial. Namely, this Sat,c : Rep(H) — Sph, ,(G) is not compatible with

factorization in general. We also ignored the gerbe det g% appearing in the definition
1

of the metaplectic spherical category Sphy . (G). The gerbe detg§ on Grg, is trivial,
but this trivialization is not copmpatible with the factorization structure.

1.1.19. For 2.4.4. The fact that Rep(Tx) — Shv(Gry: ) should be the following gen-
eral thing. First, Shv(Grys ) = [[yeas Vect.
Recall that for any G, which is a group scheme of finite type,

Rep(G) = QCoh(B(G)) = RI'(G,0) — comod(Vect)
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This is done as in ([41], 10.2.9). Now for a torus Ty over e we have

k[Ty] — comod(Vect) = H Vect,
AeAy

where Ay is the weight lattice of T. The map in one direction is the evident one
Dreh, Vect = k[Th| — comod(Vect). Its A\-component sends V' € Vect to V' on which
Ty acts by A. We use the fact that coproducts in DGCatcens coincide with products
([41], 9.2.9).

1.1.20. For 2.4.5. The isomorphism (2.6) follows from [GLys, isomorphism (8.11) and
Sect. 9.4.3]. By ¥ |sv we mean the l-restriction, and I" denotes the *-direct image.

1.1.21. For 2.5.1. Let us study the question for ¢-adic sheaves. Let G be a group
scheme of finite type, Shv(G) the DG-category of ¢-adic sheaves of G equipped with the
convolution monoidal structure defined as Shv(G)® Shv(G) — Shv(Gx G) = Shu(@Q),
where m : G x G — G is the product. The unit is i1Qp, where i : Speck — G is the
unit. Let 7 : G — G be given by 7(g) = g~!. For F € Shv(G)¢ we have a natural map
F +D(r*F) — i,Q; coming by base change from

RT.(G, F @ D(F)) = RI.(G, Xg) — Q,

here Kg = p'Qp for p : G — Speck. We want to check if the functor (Shv(G))P —
Shv(G)¢, F — D(r*F') defines a monoidal dual for this convolution monoidal structure.

For F, F' € Shu(G)°, the inner hom Hom(F, F') for this monoidal structure exists
and identifies with (p1).FHom(p3F,m'F’), where p; : G x G — G is the i-th pro-
jection. The existence of inner homs always holds for any algebra in DGCat.ont, SO
inner homs exist in Shv(G). It is easy to see that for F' € Shu(G)¢ we get indeed
Hom(F,i,Qy) > D(r*F). The above candidate for the counit map is the morphism
Hom(F,i.Qs) ® F — i,Qy given by the universal property of Hom. To check that
the above map extends to a duality datum we have to establish for D, A € Shv(G) an
isomorphism in Vect

Hom(D, A« D(r*F))— Hom(D * F, A),

here by Hom we mean RI'Hom, where Hom is the inner hom in Shv(G) with the
pointwise tensor product monoidal structure. By the above calculation of the inner
hom, it suffices to establish the isomorphism for A € Shv(G)

(1) AxD(r*F) = (p1).Hom(psF,m' A)
Lemma 1.1.22. For A € Shv(G),F € Shv(G)° there is a natural isomorphism in
Shv(Q)

M (AR D@ F)) = (p1)Hom(psF,m' A)
Proof. Tt suffices to prove this for A compact. Indeed, we assume m' : Shv(G) —
Shv(G x G) and (p;1).« continuous. Note also that for A € Shv(S)¢, where S is a
separated scheme of finite type, Hom(A,-) preserves filtered colimits. So, the RHS

preserves filtered colimits as a functor of A. The LHS also preserves filtered colimits
as a functor of A.
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So, we assume A compact. Consider the isomorphism o : G X G — G x G, a(z,v) =
(zv,v71). We have a,Hom(psF, m' A) = Hom(psr*F, p} A), and moa = p;. This yields
an isomorphism

m.Hom(psr* F, py A) = (p1)«Hom(p3 F,m' A)
on G.

Recall that for Fy, F» € Shv(S)¢, where S is a scheme of finite type, one has D(F ®

G) =Hom(F,DG). This gives

Hom(pir* F,py A) S D(psr*F @ Dpi A) S D(D(A) K r*F) = AR D(r* F)
This gives finally m.(ARD(r*F)) = (p1)«Hom(p5F,m'A). O

So, (1) is equivalent to the natural map mi(AXD(r*F)) — m.(AX D(r*F)) to be
an isomorphism! We see that this is indeed the monoidal dual if G is proper.

1.1.23. Sam confirms that for any of our 4 sheaf theories, one has the following. Let
G € Grp(Stk) be an ind-scheme of ind-finite type. Then we define the convolution
monoidal structure on Shv(G) using my for m : G x G — G the product map. We
have the Verdier duality equivalence D : (Shv(G)¢)? — Shv(G)°. Let r : G — G,
r(g) = g~ !. Similarly, if we assume G ind-proper then the functor Dor : (Shv(G)¢)P —
Shv(G)¢ is the monoidal dual.

Now consider the following situation in the constructible context. Let G be a group
scheme of finite type, H C G a closed smooth subgroup with G/H proper. Then
Shv(H\G/H) is monoidal with the monoidal product K; * Ko = m.q'(K; & K») for

(H\G/H) x (H\G/H) & H\G x" G/H 3 H\G/H
This monoidal product preserves the full subcategory Shv(H\G/H )", because m
is proper.

Given F, F’ € Shvo(H\G/H), the inner hom Hom™ (F, F') for this monoidal structure

exists, it given for the i-th projection p; : (H\G/H) x (H\G/H) — (H\G/H) by

Hom*(F,F') = (p1)«Hom(psF, gom' F')[—2 dim H])
Here we used ([44], 0.2.2). Let i : B(H) — H\G/H be the closed immersion. The unit
of Shv(H\G/H) is i,w. Let r be the involution of H\G/H coming from G — G, g —
g~ L. Verdier duality gives an equivalence

D : (Sho(H\G/H)"'" )P = Shv(H\G/H)“"s*"

Let now F € Shv(H\G/H)®“"'. We claim that F has the monoidal right dual
D(r'F)[-2 dim H].

Proof. We have Hom*(F,i,w) = D(r'F)[~2dim H] naturally, which gives a canonical
map

F+D(r'F)[-2dim H] — i,w
by the universal property of Hom™. We. want to check this is a counit of a duality.
For this we need to show that the for any A € Sho(H\G/H), K € Shv(H\G/H)®"s"
one has canonically

Hom(K,Ax F)= Hom(K « D(r' F)[-2dim H], A)
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We get by ([44], 0.2.2),
Hom(K  D(r'F)[—-2dim H], A) = Hom(K, (p1 )« Hom(p5D(r' F), g.m' A))
The latter object, using piD(r' F) = D(phr'F), identifies with

11

Hom(K, (p1)«(phr' F @' quin' A)) = Hom (K, (p1)«q«(M' A @' ¢'phyr' F))
So, it suffices to establish an isomorphism
(2) (p1)+q(M' A @' ¢'pyr' F) =5 A% F

Consider the automorphism v : G x GG x G, (g91,92) — (9192,95 ). It induces
the isomorphism
7:H\G x" G/H= H\G x" G/H
Then p1¢y = m and p2qy = rpag. So, M' A= 7'¢'pi A and 7'¢'py, F = ¢'phr' F. Now the
LHS of (2) identifies with

(P1):a:7'¢' (AR F)

1= m, and we get the isomorphism (2). O

Now (p1)qy~

Consider now a more more case, where G is a placid group ind-scheme, and H C G
is a closed placid subgroup. Assume H prosmooth, and G/H is an ind-scheme of ind-
finite type, which is ind-proper. We define the monoidal structure on Shv(H\G/H)
by

Ky« K9 = m*q*(Kl X KQ)

for the same diagram
(H\G/H) x (H\G/H) & H\G x" G/H ™3 H\G/H

Define Shv(H\G/H)®“"'" C Shv(H\G/H) as the full subactegory of those K for
which oblv(K) € Shv(G/H)¢. This monoidal product preserves the full subcategory
Shv(H\G/H)®"t  because m is proper.

Let now F € Shv(H\G/H)®""". We claim that F has the monoidal right dual
D(r'F).

Proof. Let A € Shw(H\G/H),K € Shv(H\G/H)®"!" . 1t suffices to show that one
has canonically

Hom(K,Ax F)= Hom(K «D(r'F), A)
in Vect. We have
Hom(K «D(r'F), A) = Hom(K R D(r'F), g.m' A)
Step 1. We claim that the latter complex identifies with
Hom(K, (p1):(pyr'F ©' ¢’ A))

with the same notations as above. Here the functor p!Q sends L to wX L. The difficulty
is that p} do not make sense. Pick Y1,Y2 C G/H such that oblv(K) is the extension by
zero from Y7, oblv(r'F) is the extension by zero from Ya. Let py; : (H\Y1) x (H\Y:1) —
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(H\Y;) be the i-th projection. Then pj,; make sense, and K X D(T!F):)/p;lK ®
Py oD(r'F). So,

Hom(K K D(r'F), g.m'A) — Hom(py 1 K, f]-fom(pg‘/’Q]D)(r!F), gm'A)
Then Hom(pi ,D(r'F), gum' A) /;)/p!Y’QT!F ®' g.m'A. So,
(py1)«Hom(K BD(r'F), gem' A) = Hom(K, (py,1)+ (pyor' F @' qom'A)

Our claim follows now from

(py, 1)« (Dyor' F @' quem' A= py 1 (p1)+ (pyr' F @' quin' A)

Step 2. The rest of the proof is as in the finite-dimensional case. O

1.1.24. For 2.5.5. In (2.12) over the low horizontal arrow there should be Sat,-1 .
Note that D"y = 74D so the order in the left vertical arrow in (2.12) does not
matter. Besides, Sat, ¢ does not preserve compact objects, it sends compact objects
to constructible ones, correct!

1.1.25. For 3.1. The notion of a chiral category makes sense for ¢-adic sheaves (and
for all the 4 sheaf theories). It could be defined as in [51]. In particular, if S € PreStk
has a structure of a commutative algebra in PreStk.,., then we have the notion of a
multiplicative sheaf of categories on S as in ([51], 5.4). The fact that for S; € Schy,
separated, Shv(S1) ® Shv(S2) — Shv(S; x S3) is maybe not an equivalence, is not a
problem. The reason is that the exteriour tensor product of sheaves of categories is
Sh’l)/gl X Shv/52 :?Shv(Sl X SQ)

1.1.26. For 3.1.2. The sense of fSet*"J is that it is the 1-full subcategory of the
operad controlling the non-unital commutative algebras, where we keep only sets (n)
for n > 0 and active morphisms.

As in ([51], Appendix B), write Catg;, for the co-category of categories with direc-
tions. Recall that we have an adjoint pair Tw : 1 — Cat < Catgy;, : corr, where the
right adjoint sends C +— Ciorpihorvert- View 1 — Cat as symmetric monoidal with the
cartesian symmetric monoidal structure. View Caty;, as symmetric monoidal, where
for (C, horc,vertc), (D, horp,vertp), on C x D we get a structure of a category with
directions: horgxp = horg X horp, and vertoyxp = vertc X vectp. Then both Tw and
corr are symmetric monoidal, so yield an adjoint pair

Tw: CAlg"™ (1 — Cat) = CAlg™"(Catgyy) : corr

Now for D,D" € CAlg" (1 — Cat), the space Mapc jgnu(i—cat)(D; D’) is the space
Fun®(D, D')SP¢ of symmetric monoidal functors.

In fact, 1 — Cat and Caty;, are naturally 2-categories, and so are C'Alg™*(1 — Cat),
C Alg™(Catyy). For D, D' € Caty;, the category of maps between them in Caty;, is the
full subcategory Fun?" (D, D’) € Fun(D, D') classifying functors preserving horizontal
(resp., vertical) morphisms, and sending cartesian products of =z % y &5 with a
horizontal and b vertical to cartesian squares.

Given E,E' € CAlg™(1 — Qat), the mapping category in C'Alg"™*(1 — Qat) from
E to E' is the category Fun®(FE, E’) of non-unital symmetric monoidal functiors.
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Namely, if E® — Surj, E'® — Surj are the cocartesian fibrations corresponding to
E,E' then Fun®(E, E') C Fungyj(E®, E'®) is the full subcategory of functors sending
Surj-cocartesian arrows to cocartesian arrows.

Let us assume that Tw : 1 — Cat < Caty;, : corr is an adjoint pair of 2-categories,
that is, we have

Fun(E, Ceorrshorvert) — Fun® (Tw(E), C)

for C € Caty;, £ € 1 — Cat naturally.

Moreover, we assume the induced adjoint pair

Tw: CAlg™ (1 — Cat) = CAlg™(Caty;r)
is also an adjoint pair of 2-categories. For D, D’ € C Alg™(Catg;,) the mapping category
Mape gignu(caty,,) (D5 D') is the category Fun®%" (D, D') of those non-unital symmetric
monoidal functors f : D — D’ whose image in Fun(D, D’) lies in Fun®" (D, D’). 1 hope
for E € CAlg™ (1 — Cat) and D € C'Alg"™(Caty;,) one has a naturall equivalence

Fun® (E7 Ccorr,hor,vert) = Fun®’dir (Tw(E), C)
in 1 — Cat.

1.1.27. For 3.1.2 more. Let now C' € 1 — Cat admitting fibred products. We view
it as a category with directions taking hor = wvert to be all morphisms. Assume
moreover C' € C'Alg"™(1— Cat) with the cartesian symmetric monoidal structure. Then
C € CAlg™(Caty;) naturally, because the product map C' x C — C preserves the
cartesian squares automatically. So, Ceorr € C'Alg™ (1 — Cat) naturally.
The product map Ceorr X Ceorr — Ceopr sends (c1, ¢2) to ¢1 X ¢a. Now by ([48], Lm.
1.2.6),
Fun'®®( fSet*"rI ') = Fun® (Tw(fSet*), C),
here the RHS is the category of non-unital symmetric monoidal functors, and the
non-unital symmetric monoidal structure on Tw(fSet*7) sends a pair f : [ — J,
g:I' - J tofug: 10Ul — JuJ.
By the above,
Fun® %" (Tw( fSet*™™), C) = Fun®(fSet* | C\opr)
Finally, by ([48], 1.2.1),
Fun®(fSet*™7, Coopr) = CAlg™ (Ceorr)
Combining, we get a full embedding
CAlG™ (Crory) — Fun'®®(fSet*uri ()

Explicitly, given ¢ € CAlg™(Cporr), we get a non-unital symmetric monoidal functor
f i fSet®™ i — Cepprr, f(I) = ¢!, here f sends a surjection of finite non-empty sets
a: I — Jto the map ¢! « mult, — ¢’ in C,,,y corresponding to the product along
«. Note that

multy, = H multh,
jed

where for K € fSet*"/ we denote by c® «— multxy — ¢ the product map in Clopr
along K — . The corresponding functor f : Tw(fSet*”7) — C sends (I = J) €
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Tw(fSet*7) to mult,. Finally, the resulting left-lax symmetric monoidal functor

fj . fSetsuri — C sends I to mult;. The functor f sends 8 : I — J to the map
f(B) : mult; — multy, which fits into the diagram
multy f(—@ multy — %
\ !
multg  — c’
{
CI

The left-lax symmetric monoidal structure on f is as follows. Given I,.J € fSetsud,
we construct the map multy,; — mult; x mult; as follows. Consider the diagram

TuJ ﬁ) * L% — x. The product diagram for f is

¢ x ¢ mult; x multy — ¢ x ¢

Composing further in Ce,.r with ¢ ® ¢ < mult,« — ¢, we get a diagram

multyr g — multys — ¢
\ \
multy X multy — c¢Xc
d
cx ¢,

which gives the desired map mult;,; — mult; x mult;.

Conversely, let h : fSet*™J — C be a left lax symmetric monoidal functor. It
gives rise to a symmetric monoidal functor h : Tw(fSet*7) — C sending (I = J) to
[Tc; h(Z;). It sends a diagram

I 5 J

\ T

r sy
to the morphism [];c; h(1;) — [, h(I}), which is obtained as the product over
j € J of the compositions

wL) — I[ »a) — T »)

v ! s/ !
i EJJ- i er

Here the first map comes from tey left-lax structure, and the second is the functoriality
of h on morphisms. The so obtained functor A lies in Fun® " (Tw(fSet**7, C) iff for

any maps L 5 I % J % Kin fSet®"J the square is cartesian

h(L - K) — h(L—J)
) }

h(I = K) — h(I—J)
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This is not automatic! I think this is equivalent to the property that the square (which
is commutative by definition of a left-lax functor)

L) — [ljesMLy)
!
h(I) — Tljes b))

is cartesian.

In our case given a factorization space in the sense of Section 3.1.2, for J € fSets%
the map Z; — Rany] xg,.v(Z)7 induced by the left-lax structure is an isomorphism.
This implies that the functor J — Z; comes from an object of C'Alg™"(PreStkeory).
So, indeed the two definitions are equivalent and give rise to equivalent categories of
factorization prestacks over Ran.

1.1.28. For 3.1.4. First, I think it is important to explain to which notion from [51]
your definition of factorization algebra corresponds. It corresponds to multiplicative
object of a multiplicative sheaf of categories, as far as I understand.

One more thing here. If f : Y — C is a cartesian fibration corresponding to a
functor p : C? — 1 — Cat then lim p = Funf&"*(C,Y’) canonically. Here Fun&"(C,Y) C
Func(C,Y) is the full subcategory of those functors that send any arrow to a cartesian
arrow. This is something people (who tried to read your book) know. So, the category
of factorization algebras in Shvg(ZRan) in your sense maps naturally to

Ie(fSlc}tI)ISle)OP ShUgI (Z[) — Sh’l)g(Z*)
We used that fSet**™J has a final object.

Let now fSet*wJ — PreStk;s, I — Z; be a factorization space in the sense of
Section 3.1.2 of the paper, so a left lax nonunital symmetric monoidal functor with
sume properties. For I € fSet*"J the map I — * gives the morphism g7 : Z; — Z,,
which is the product map Z! X Ran! Rané — Z,. An object F € Shv(Z,) defines a
cartesian section fSet™"7 — Shv(Z gesuri) sending I to g;F. The left-lax monoidal
structure on the functor Z is given for a pair I,.J € fSet**"J by the open immersion

7" x gt Ran?? s (Z1 x . Rand) x (Z7 xg,, 7 Ran))
The fact that the above cartesian section is multiplicative means the following now.
For I,J € fSet*™J the l-restriction of (¢vF) K (¢',F) under the above open immersion
is identified with g ;7.

The comparison with the notion of multiplicative object from [51] is not evident, and
deserves an explanation.

Before thinking about multiplicatove objects, one tries in your way to understand
the multiplicative sheaves of categories. Namely, let

(3) PreStk)7, — 1 — Cat, Y — ShvCat )y

be the functor sending Y to the category of sheaves of categories ShvCat y over Y.
This functor is the RKE of its restriction to (Sch‘}{ 7y and it sends S € (Sch‘;;{ Tyop
to Shv(S) — mod. The functor (3) is right-lax symmetric monoidal, where PreStk; s
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is equipped with the cartesian monoidal structure. Let now Zgr., — Ran be a fac-
torization prestack over Ran. So, we are given a left-lax symmetric monoidal functor
fSetsuri — PreStk; s, J — Zj as in Section 3.1.2 of the paper. Composing with (3),
one gets a right-lax symmetric monoidal functor

(fSet*™7)P — 1 — Cat, J + ShvCatz,,
which gives rise to a cartesian fibration
(4) Sh’UCGt(ZfSetsurj) — fSetSUTj

As in the paper, ShvCat(Zjgessuri) is equipped with a symmetric monoidal structure
and (4) is symmetric monoidal.

So, we may consider the category of symmetric monoidal sections of (4) which are
also cartesian. Does this category identify with MultCat(Zgan)? We have denoted as
in ([51], 5.21.1) the category of multiplicative sheaves of categories on Zgay.

To answer the above, it is natural to consider the general situation in the next
subsection.

1.1.29. Let C be a symmetric monoidal category admitting fibre products, F': C? —
1 — Cat be a right lax symmetric monoidal functor. In the cases of interest, it factors
through 1 — Cateoempr — 1 — Cat, the latter is the 1-full subcategory, where we restrict
categories to cocomplete ones, and functors to those preserving small colimits.

Consider the category Grothee.(F') defined in ([51], 5.14). It is equipped with a
functor ¢ : Grotheor(F) — Ceorr, and the base change of the latter by C? — Clopr
identifies with Groth(F') — C°P, the cocartesian fibration attached to F'. We know from
([51], 5.16) that Grothee.(F') is symmetric monoidal, and ¢ is symmetric monoidal.

Let us use the following notation for the monoidal structure on Grothe.(F'). Given
(c,x),(c,2") € Grothee(F'), one has

(c,x) @ (d,a") = (cad,aRa'),
where x X 2/ is the image of (z,2’) under F(c) x F(¢') = F(c® ).
Let ¢ € CAlg™(Ceorr) be a non-unital commutative algebra in Ceorr. Write Mult'fi(c)

be the category of non-unital commutative algebras in Groth . (F') over ¢ € C Alg™(C).
For a non-empty finite set I let

(5) T8 Be

be the action diagram in C for I — . We write a2 1, a1, to express the dependence on
I if needed. For an object (c,z € F(c)) € Mult¥(c) we get the action map (c,z)®! — ¢
in Grothee(F') over (5). It is given by a morphism

nr: al(a?‘z']) — ag(x)

Let Multp(c) C Mult$(c) be the full subcategory of those (c,x) for which the map 7
is an isomorphism for any nonempty finite set I.

Consider the op-lax symmetric monoidal functor fSet**J — C, I + ¢y attached to
c € CAlg™(C) as above. Composing with F', one gets a right-lax symmetric monoidal
functor F : (fSet“7)P — 1 — Cat giving rise to a cartesian fibration

(6) coGroth(F) — fSet*r
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As in ([51], 5.15.2), coGroth(F) is equipped with a symmetric monoidal structure, and
(6) is symmetric monoidal. Write Sect® et ( F) for the category of symmetric monoidal
sections of (6), which are cartesian.

Question. Do we have an equivalence Sect® <t (F) = Multg(c)? This would cer-
tainly help a reader.

To answer this question, I propose first to answer

Question’. Prove that the base change Grotheo(F) Xc,,,. C — C of q is the
cartesian fibration coGroth(F') — C attached to F.

Assume the answer to the latter question is positive. Then coGroth(F') becomes a
symmetric monoidal subcategory in Grotheorr (F'). Now given (¢,x € F(c)) € Multr(c),
we get a functor fSet®“™J — coGroth(F) sending I to (I, a2 (x) € F(cs)). To see that
this is indeed a functor, recall that for a map v : I — J in fSet**"J we have a diagram

~ az, g
cr — Cj — C
{ {
cy — &
|
!

in C corresponding to products for the diagram I — J — . The functor F'(c;) — F(cr)
sending an object to the end of a cartesian arrow over 7 is the functor 5 : F(cs) —
F(cr). To see that (c,asr(x)) € coGroth(F) depends functorially on I, we need an
isomorphism 7(az j) = ag ;. It takes place because as jo7¥ = ag ;. We also see this is
a cartesian section.

Let now I, J be nonempty finite sets. To get a symmetric monoidal structure on this
section, we need to establish the isomorphism

(IUJ, ag 1u0(2) = (1, a2, (2))R(J, az, s (x)) = (IUJ, 7(ag(z)Rag s(z))) € coGroth(F),

where 7 is the map from the diagram below

CruJg — Cxux — C
b \:
®
cr®cy a2’1—>a2’“7 c®c
J, a1,7®a1,y
C®I ® C®J7
Since ag 1(z) = a1 1(#®) and as j(x) = a1 s(2%7), the above diagram gives isomor-
phisms
az,1(x) M az,;(z) =¥ (a2, © az,7)(z B x) = (ar,r ® ar,5) (@)
This gives
~ RIUJy ~
7(az,1(v) Rag j(z)) = a1 s (x )= a2 11 ()

as desired.

So, I hope the answer to both questions is yes.
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1.1.30. For 3.2.1. First, a general observation. Let F, " : (fSet7)P — 1 — Cat
be right lax symmetric monoidal functors, and « : ¥ — F’ be a morphism of right-lax
symmetric monoidal functors (recall that right-lax symmetric monoidal functors form a
category). Let X — fSet*"J X' — fSet*“"J be the corresponding cartesian fibratioins,
and @ : X — X’ the induced functor over fSet*J. Then @& sends cartesian arrows to
cartesian arrows over fSet*“J. Besides, @ is non-unital symmetric monoidal. Now &
induces a morphism

Pun®ert (75613, X) - FanS(FSet™ )

For this reason a morphism f : Z! — Z? of factorization prestacks over Ran with
gerbes f*Go — G1 induces a functor

f': FactAlg(Shv, (Z?%)) — FactAlg(Shuvg, (Z1))

At the levet of "main objects” it sends for f : Z! — Z2 the corresponding object of
K € Shvg,(Z2) to f'K € Shug, (Z1).

Let f: Z' — Z? be a map of factorization spaces over Ran for which f* exists. As-
sume a gerbe G restricts to G along f. Do we have a functor f* between the correspond-
ing factorization algebras? It exists in the constructible context if f is schematic locally
of finite type. Indeed, for any a : I — J in fSet*""7 from the diagram (7), since @' = a*,
we see that we get a natural transformation p of functors (fSet*“77)P — 1 — Cat send-

ing I to Shuvgz (Z?) EiR Shvgy (Z1). Then p is compatible with the right-lax symmetric
monoidal structrures on these functors, as we see from (8). Hence, gives the desired

morphism

f* : FactAlg(Shvga (ZR,,)) — FactAlg(Shvg (Zgan))
1.1.31. For 3.2.1. Let f : Z' — Z? be a morphism of factorization prestacks over Ran.
Assume f: Z! — Z? is ind-schematic. Then for any I € fSet*“J, f: Z! — Z? is ind-
schematic, as this is the map Rané XRanZy — Rané XRanZ2 obtained by base change
from f: Z! — Z2. Then we get a natural transformation 1 of functors (fSet%77)oP —

1 — Cat sending I to Shvg} (z}) Iy Shvgﬁ(Z%), because for any o : I — J in fSets*J
the square is cartesian
S

zZl = 73
(7) la la
AN

and & is etale. Moreover, n is compatible with the right-lax symmetric monoidal
structures on the corresponding functors (fSet*“7)? — 1 — Cat, because for any
1,J € fSet®™ the square is cartesian

1 r 1 1
Zi,y — 4 x4y

(8) Lf brxs
Zy, 5 Zlx 7%,

here r is an open immersion. For this reason we get as above the functor

f« : FactAlg(Shvgi (Zh,,) — FactAlg(Shvgi (Z3 )
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1.1.32. For 3.3.2. The map (Ranj)disj — Ran used in the definition of Ran? is the
projection on the factor corresponding to * € J.
The op-lax compatibility of (3.7) with the module structure is given by natural maps

(Ran™) 4is; XRan Ran, — (Ran)gis; x (Rany) gis;

for I € fSets"i J € fSet:"’. In the LHS the map (Ran")4i5; — Ran is the
projection on the factor corresponding to x € I LI J.

1.1.33. For 3.3.3. I think it is necessary to write explicitly that op-lax compatibility
surj

with actions is given by maps Zj .y — Z; x Zj for I € fSetsJ J e fSet:"™ which
are open immersions.

1.1.34. For 3.4.1. If Z' — Ran, are factorization module spaces with respect to a
factorization space Z — Ran, let f : Z' — Z? be a map of Z-factorization spaces over
Ran,. Assume that (G, G?) is a pair of compatible factorization gerbes over Z and Z2,
and G!' = f*G2. For I € fSet;""7,J € fSet®J the square is cartesian

7, o Zyx 7}
(9) 4 )

2 2
Zi,y < ZjXxZji,

and the horizontal arrows are open immersions. Let now A € FactAlg(Shvg(Z)). We
claim that in the constructible context we get the morphism

fi : A — FactMod(Shvgi (Z1)) — A — FactMod(Shvgz(Z?))
Indeed, consider the corresponding functors (fSet"”’) — 1 — Cat, I + Shvgi(Z}).
Then
Shugi (Z1) & Shug: (22)

is a natural transformation of these functors right-lax compatible with the actions.
Indeed, first for a : I — J in fSet;""’ the square is cartesian

7zt Lz
1 a la
AR

and the maps @ are etale. This gives & fi = fia', so we get a morphism of functors.
Now (9) gives the commutativity of the diagram

Shvg(Zy) ® Shwei(Z}) —  Shvgi(Z],;)
Jidefn A
Shvg(Zy) ® Shvga(Z3) —  Shvga(Z3 ;)
)

where the top horizontal arrow sends (L, M) to (LX M) | 7, ,» and similarly for the
low horizontal arrow. This gives our claim.
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1.1.35. For 4.3.1. The scheme Conf is naturally an object of C Alg™" (PreStk; ), so we
have the notion of a factorization gerbe on it as for any object of C'Alg™" (PreStk;s;).
Namely,

Mapc agre (Prestieor,) (CONS: B (A)) XMapprsu. . (Conf52,(4)) MaPpresu (Con f, BZ(A))

is the space of factorization A-gerbes on Conf.

1.1.36. For 4.3.3. We use here ([41], 9.2.28).

Let us check the following. Let Y be a scheme of finite type, f : Y’ — Y be etale
surjective, G be a e*'°"*-gerbe on Y, which becomes trivial on Y’. We want to check
that Shvg(Y) is compactly generated. We have the adjoint pair f* : Shvg(Y) =
Shvg(Y") : fi, and f* = f'. Here we denoted also by G the restriction of G to Y.
The category Shvg(Y') = Shv(Y”) is compactly generated, because Y is of finite type.
Besides, f*: Shvg(Y)¢ — Shv(Y’)¢, because its right adjoint is continuous.

We may assume that A is a finite abelian group and f is a Bei(A)-torsor on Y. In this
case fi— f. canonically. Indeed, for F' € Shv(Y”) is suffices to show that fiFF — f.F is
an isomorphism after an etale localization, which reduces the question to the case of the
trivial Bei(A)-torsor on Y. In this case both fiF and f.F is the the direct summand
of F on which A acts trivially. Further, fi is left adjoint to f' = f*. Since f* is
conservative, the essential image of fi generates Shvg(Y). Why Shu(Y”) is compactly
generated? In the constructible context this is automatic.

It is better maybe to argue as follows. Assume f : Y’ — Y etale and schematic,
surjective. So, f is an etale cover for Y. Let Y’*/Y be the Cech nerve of f. Since Shv
satisfies the etale descent, Shvg(Y) = Tot(Shv(Y'®/Y')). Moreover, for each transition
map a: Y'™/Y — Y'™/Y the functor a' = a* admits a left adjoint a). Passing to left
adjoints, we get Shvg(Y) = colimaor Sho(Y'*/Y).

Now for any injective map « : [n] — [m] and the corresponding map @ : Y'Y —
Y™ /Y, &y preserves compact object, because @' is continuous. Since each Shv(Y'™/Y)
is compactly generated, we may apply ([18], ch. 1.1, 7.2.7) with my impovement ([41],
4.2.8). Thus, Shvg(Y') is compactly generated.

Consider now an ind-scheme of ind-finite type Y with a gerbe §. Write Y = colim; Y,
where the transition maps f;; : ¥; — Yj are closed immersions. Write also § for the
restriction of G to Y; for each i. We get Shvg(Y) = colim; Shvg(Y;) in DGCateoni. Each
Shvg(Y;) is compactly generated by the above, and the functor (fi;)1 : Shvg(Y;) —
Shvg(Y;) preserves compact objects, because fl'] is continuous. So, as above, Shvg(Y')
is compactly generated. We may assume actually that Y is pseudo-proper here.

Lemma 1.1.37. 1) Let Y = colim;e; Y; be an ind-scheme of ind-finite type, here I is
filtered, Y; is of finite type. If i — j in I then Y; — Y; is a closed immersion. Then
any K € Sho(Y)¢ is of the form (iK' fori;:Y; =Y, K' € Sho(Y;)¢ for some i.

2) If Y = colim;er Y; be an ind-algebraic stack, I filtered, Y; is an algebraic stack locally
of finite type. Ifi — j in I thenY; — Y is a closed immersion. Then any K € Shv(Y)¢
is of the form (i;\K' fori; : Y; =Y, K' € Sho(Y;)¢ for some i.

Proof. 1) Write Y = colim;¢; Y;, where Y; is a scheme of finite type (algebraic stack of
finite type), and I is filtered. Then Shv(Y) = colim; Shv(Y;). Now we apply ([18], ch.
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L1, 7.2.6) to describe Sho(Y)¢. By (HA, 1.1.4.6), 1 — Cat>" admits filtered colimits,
and the inclusion 1 — Cat®* — 1 — Cat preserves filtered colimits. Recall that

Shv(Y) = Ind(colim;e; Shv(Y;)¢),

where the colimit inside is calculated in DGCat™"~“™P! (notation from [18], ch. 1.1,
10.3.1). By ([18], ch. 1.1, 7.2.4), any compact object of Shv(Y') is a direct summand
in Shov(Y') of an object F' € colim;e; Sho(Y;)¢. By (]41], 13.1.14), F' comes from an
object of Shv(Y;)¢ for some i, so the same holds for its direct summand, because the
inclusion Shv(Y;)¢ C Shv(Y;) is closed under retracts by (HTT, 5.3.4.16).

2) is similar. O

1.1.38. For 4.3.3. If f : Y? < Y is an open embedding (so schematic morphism) in
PreStk; s then fi : Shug(Y?) — Shvg(Y) is defined and continuous, so its left adjoint
f' preserves compact objects (as in [19], 1.4.8).

Lemma 1.1.37 remains valid when we twist Shv(Y) by a gerbe. This implies that
Sh’Ug(Y)C - Shvg(Y)loc'c.

Let us explain the definition of the equivalence D : (Shug(Y)"%¢)P=5 Shug-1 (Y )loc<.
Assume Y is an ind-scheme. For each ¢ and each quasi compact open subscheme YZ-O cY;
we have the Verdier duality

(10) D : (Shug(Y2)*) 5 Shug-1 (Y0)°

Further,
Shug(Y;) = lim  Shuvg(Y?)
Yleeer
Here C is the category of quasi-compact open subschemes of Y;. For QCoh such an
equivalence is in ([18], 1.3, 1.4.4). This comes from the fact that Shv satisfies the etale
descent for morphisms in PreStk; ;. By definition,

Shug(Y;)¢ = lim  Shvg(YY)°
YQeeop
The corresponding restrictions preserve compact objects because for an open immersion
j: V%<V in PreStk;s, j. is continuous ([19], 1.4.8). So,

(Shug(¥;)!°“)P = lim (Shwg(Y;"))
Y'i()eeop

The desired equivalence is obtained by passing to the limit over YZ-O € C° in the
equivalences (10), and then to the colimit over I, here Y = colim;c; Y; and I is filtered.
We used the fact that the projection 1 — Cat™* — 1 — Cat preserves limits.

We also use the following: (colim;e; Shvg(Y;)!¢¢)P =5 colimye(Shug(Y;)!°¢¢)°P, where
the colimit is calculated, say in 1 — Catt (the latter category admits filtered colim-
its). Indeed, the functor D +— D is an autoequivalence of 1 — Cat’t. Moreover, the
natural map DGCat™" Pl _, 1 — CatSt preserves filtered colimits. Recall also that
1 — Cat® — 1 — Cat preserves filtered colimits by ([34], 1.1.4.6).
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1.1.39. For 4.4.1. Since the action of A¥ on Con fs, commutes with the action of
Conf, for A € Af, (Tr)‘)*SA is naturally a factorization module gerbe over (Conf, G%).
Then it is required that (4.8) is an isomorphism of factorization module gerbes over

(Conf, SA).

1.1.40. For 4.5.3. One may get (4.13) from the universal property of the tensor prod-
uct. The composition

—

Rep(T'7) ® Shuga(Confosy) — Rep(Tg) @Rep(1yy) Shvga (Confocz) = Shvgx (Confecs)
is the action of Rep(Tz) on Shvgx ((/J_O\/nfoo:t).

1.1.41. For Lm. 4.5.5, proof. The assumption implies that A*/Af = A/A is a lattice,
so torsion free. Pick a decomposition Af = A¥ @ A, where A; is a lattice. Then
Kl @& A=A.

Let T} be the torus whose weight lattice is Kl, so Tz = Ty xT1. We have QCoh(B(Tx))®
QCoh(B(T1)) = QCoh(B(T})) accordingly, so

Rep(T;) @rep(1y) Shvga (Confooy) = Rep(T1) @ Shvga (Confoy)
Further,
Shugx (Confacs) = [ Shugx (ContL,),
}LGZN\

—~— i . . . .
where Conf .. C Confy; is the connected component given by fixing the degree to be

. For X € Ay and A € A let 4 = A+ X. Then the map Tr : Conf, — (/)gn/fl:ox is
an isomorphism.

We have Rep(T}) = D3, ek, Vect, so

Rep(T1) ® Shvga(Confoor) = @ Shuga(Confoe,),
PN
the \;-summand here s the desired category of sheaves on the union of components
corresponding to A + A; C A. In other words, the action of the summand Vect corre-
sponding to A1 gives an isomorphism

— ——A1+A
Shvga(Confocy) = Shugz (Conf o, )

1.1.42. For 4.6.2 Here is a proof of a simpler claim.

Lemma 1.1.43. Let T be a torus. Then the zero section Ran — GrrRran @s a closed
1MMErsion.

Proof. We may assume T' = G,. Then, by ([56], Lemma 31.18.9) an S-point of Grr Rran
over a S-point J € Ran(S) is a relative Cartier divisor D on S x X over S such that
D is contained set-theoretically in I'y. Write D = D; — Dy, where D; are relative
effective Cartier divisors over S. Then the desired closed subscheme is given by the
condition that D1 = Dy. More precisely, D1, Do give rise to a closed subscheme of
S x X x X, which we intersect with S x X, let D12 — S x X be the resulting scheme.
Then D1y — S is proper, and the required closed subscheme of S is the image of the
proper map Dis — S. 0



22

Write S +— Div(X)(S) for the functor sending S € Sch®/ to the set of relative
Cartier divisors on S x X over S. Let Div(X)gan : (Sch®/)P — Sets be the functor
sending S to the set of (J € Ran(S), D € Div(X)(S) such that D is set-theoretically
contained in I'y. Then Grg,, Ran — Div(X)Ran, and Grrran — Hom(A, Div(X)Ran)-

Lemma 1.1.44. Let T' — T be a surjective homomorphism of tori with a finite kernel.
Then Gr7r Ran — GITRan 1S a closed immersion.

Proof. Write T" = N ® G,,, T = A ® G,,, where A’ C A is a sublattice of finite index.
There is a base ey, ...,e, € A and positive integers m,...,m, such that {m;e;} is a
base of A’. So, we are reduced to the case of the map G,, — G,,, z — 2™

We show that the multiplication Div(X )ran — Div(X)Ran by 7 is a closed immersion.
For this it suffices to show that Div(X) - Div(X) is a closed immersion. The latter
follows from the fact that Dive/f(X)= L, X(™), O

1.1.45. For 4.6.2. Let us underline the definition of (Gr%ﬁRan)”O”_pos. In this definition
we assume G = Gg.. For S € Schy, its S-point is a datum of a T-torsor F7 on
S x X, d € Hom(S,Ran), a trivialization I7 = w” |sxx_r, such that for any Ae At
MFr) — AwP) is regular over X. We do not have to require that the quotient is flat
over S, this is automatic due to the following result from ([56], Lemma 31.18.9).

Claim 1.1.46. Let ¢ : X — S be a flat morphism of schemes which is locally of finite
presentation. Let Z C X be a closed subscheme. Let x € Z with image s € S.

i) If Zs C X5 is a Cartier divisor in a neighbourhood of x, then there exists an
open U C X and a relative effective Cartier divisor D C U such that ZNU C D and
ZsNU = Dy.

ii) If Zs C X5 is a Cartier divisor in a neighbourhood of z, the morphism Z — X s
of finite presentation, and Z — S is flat at x, then we can choose U and D such that
ZNU=D.

iit) If Zs C X is a Cartier divisor in a neighbourhood of x and Z is a locally principal
closed subscheme of X in a neighbourhood of x, then we can choose U and D such that

ZNU =D.

At the level of k-points, a point w”(Ay) with A € A and natural trivialization outside
y is in (Gr%]Ran)"O”_pos iff A e A™9.

1.1.47. For 4.6.4. This is analogous to [GLys, 4.1.2], which claimed that the map
from the combinatorial grassmanian to the usual grassmanian over Ran induces an
isomorphism after sheafification in the topology of finite surejctive maps.

For any map S — X its graph I' C S x X is an effective Cartier divisor on S x X.
Indeed, the diagonal X C X x X is a Cartier divisor, so its preimage under S x X —
X x X is also a Cartier divisor. Assume now given J € Ran(S) given by a collection
S 2% X, jeJ. Since each I'; C S x X is a Cartier divisor, their sum is also a Cartier
divisor. Assume in addition given a subsheaf 8 : L C Ogxx, where L is a line bundle,
and 3 is an isomorphism over Uy = Sx X —I';. Then O/L is flat over S by Claim 1.1.46,
so (L C O) defines a relative Cartier divisor on S x X over S.
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For this reason we get a morphism (Gr%ﬁRan)”‘m_pos — Conf sending (Fr,d €
Ran, 8 : 7 = w” [sxx-r,) to D such that 8 induces an isomorphism F(T") = O(D).

By the way, for a closed subscheme Y C S x X, the extension of vector bundles from
Sx X —Y toS x X is discussed here:
https://mathoverflow.net/questions/22111/extending-vector-bundles-on-a-given-open-subscher
It is related to Serre’s condition Ss.

Lemma 1.1.48. The map (Gr‘f’fRan)”eg — Conf is surjective in the topology of finite
surjective maps.

Proof. For each A\ € A" written as A = — > n;q;, where «; are simple coroots, we have
a symmetrization map [[; X™ — Conf*. It decomposes as [, X™ — (Gr”ffRan)”‘m_pos —
Conf with the image Conf?. O

In fact, (Gr"ffRan)”eg classifies D € Conf, J € Ran such that (SxX)—-T'y = (SxX)—
supp D, in particular (D, J) € (Conf x Ran)<. So, (Gr%if’Ran)”eg — (Conf x Ran)<.
I don’t see if (Gr‘%ﬁRan)"eg — Conf is an isomorphism after sheafification in the topol-

ogy of finite surjective maps, though it is surjective. The projection (Conf X Ran)~ —
Conf defines an isomorphism on spaces of gerbes, and the !-pull-back

Shvga (Conf) — Shvgc((GrE;’wfRan)"eg)
is fully faithful. So, (4.17) is fully faithful (but maybe an equivalence indeed).

1.1.49. For 4.6.5 and (4.17). Dennis claims that if Y7 — Y5 is a map in PreStk;s;
which becomes an isomorphism after sheafification in the topology of finite surjectuve
maps that Shv(Yz) — Shv(Y7) is an equivalence. This was used also without proof in
our first joint paper. What is the reference?

1.1.50. For 5.3.8. Explanation of the fact that the collection M’é’(!mf € Shvga(Con foor)

is a set of compact generators. First, for Conf_,, =L Conf<,; <Z—H> Conf o, the functors
(¢u)1, ()1 preserve compact objects, as their right adjoints are continuous.

Now, given A, u € A with A — p < 0, the stratification of Conf% 4z DY the subschemes
Conf?2, is finite. It is indexed by A < v < u. So, if for K € Shng(Confgw) its

=vz
l-restriction to each stratum vanishes then K vanishes itself. The claim follows now
from the isomorphism Shvga (Confoe,) = lim,ep Shuga (Conf< ).

It is not clear why M{ ., 1 € A co-generate A — FactMod(Shvga (Confaoz)). Let
K € A — FactMod(Shvga (Confooy)) with Hom(K, M ) = 0 for all 4 € A. This
shows that ¢, K = 0 for all p.It is not clear if this really implies that K = 0, because
the map Shv(Confeo,) — limuen Shv(Conf<y,) given by the system of functors ¢, could

maybe have a "kernel”. Maybe Verdier duality could help here to finish the argument.

1.1.51. For 5.4. For Y € Schy; there is a t-structure on Shv(Y) that we think of as
being perverse. It is important that this t-structure is accessible.

The t-structure on Shv(Y) for Y an ind-scheme is defined as follows. If YV =
colim;er Y; with I filtered and Y; € Schy; then Shu(Y)S? C Sho(Y) should be the
smallest full subcategory containing Shv(Y;)<" for any i, closed under extensions and
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closed under small colimits. By (HA, 1.4.4.11), Shv(Y)=Y is then presentable and de-
fines an accessible t-structure on Y. We use here the fact that Sho(Y;) is generated by
a small set of objects.

So, for F € Shv(Y) we have F' € Shu(Y)=? iff for any i and the closed immersion
i;:Y; — Y, itF € Shv(Y;)2%. This implies that the t-structure on Shv(Y) is compatible
with filtered colimits. Recall that for a closed immersion f : Y7 — Y3 with ¥; € Schy,
f! is left exact for the perverse t-structure.

1.1.52. For 5.4.1. The property for F' € Shvga(Confue;) the property
|
Map 4 pacentod (Mings F) = *, for any p € A
means that ZLF € ShvSA(ConfSW)ZO for any u, that is, F' € Shng(Confoom)Zo.

1.1.53. For 5.4.2. The following observation is used. If f : C — C’ is a t-exact
functor, a map in DGCaten: and f is conservative, assume ¢ € C and f(c) € (C")°.
Then c € CV.

1.1.54. Dennis proposed essentially the following.

Definition 1.1.55. Let C be a e-linear abelian category, A be a partially ordered set.
Assume given for X € A a full subcategory (i) : C<x C C. Assume that this functor
admits both left iy and right Z')\ adjoint. For A € A set C.) = colim, <\ C<;, where
the colimit is calculated in a suitable category (to be precised). We also assume that
Vect” is isomorphic to the cofibre of Ccy — C<y in the same category. Besides, the
functor (ja)' : C<x — C<x/Ccx admits both left (ja)1 and right (j)« adjoints in the
same category. Finally, we assume that colimyep C<y — C is an equivalence, again
for colimit calculated in the same category.

The above notion is adopted for a given (co,2)-category & (let’s assume &1—C2t
pointed for simplicity):

Definition 1.1.56. Let C € €. Then a structure of a h.w. category on C' with respect
to € is a datum as in the previous definition, where now (iy) and its adjoints are
understood in C, the colimits are calculated in C (that is, in C'=¢),

Since we want to apply this to a Grothendieck abelian category C, one option to
make the above precise is as follows: consider the 2-category &, whose objects are
presentable abelian categories, and morphisms are continuous functors. Then apply
definition in this particular case to get a notion of an abelian h.w. category.

We may also apply the above to DGCat viewed as a 2-category, and get a notion of
h.w. DG-category.

Remark 1.1.57. Let now C € DGCat with an accessible t-structure, which is com-
patible with filtered colimits. Assume C<y C C for X € A defines a structure of a
h.w. category with respect to DGCat (the latter was denoted DGCateont in your book).
We assume C<) equipped with the (unique possible) t-structure such that the inclusion
C<)x — C 1is t-exact. Set D = C° and D<) = (CSA)O. The inclusion D<) C D 1is
continuous, both D<yx, D are presentable by (HA, Remark 1.3.5.23). Is it true that this
defines a h. w. category structure on D?
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It was not explained in the proof of 5.4.4 why in a h.w. abelian category C' one has
Ext!(¢""!, ¢®*) = 0 for i > 1. Why this is so?

1.2. For Part II.

1.2.1. About invariants/coinvariants. If G is a group ind-scheme of ind-finite type
then (Shv(G), m,) is monoidal (convolution monoidal structure).

The functor Shv(G) ® Shv(G) — Shv(G x G) sends a compact object F} ® F» to
a compact object Fy X Fy. So, this functor admits a continuous right adjoint. In
the contstructible context the functor m, : Shv(G x G) — Shv(G) admits a contin-
uous right adjoint. Besides, the dual to m, is the functor m'. Thus, passing to the
dual in (Shv(G),m.), in the constructible context we get a coalgebra (Shv(G),m') in
DGCateons. Recall that (Sho(G), ms) — mod = (Shv(G),m') — comod (cf. [44]).

For any ind-scheme of ind-finite type Y, Y is a cocommutative coalgebra in PreStk; ¢;
viathe maps Y — Y xY and Y — Speck, hence a commutative algebra in (PreStk; ¢ ).
Applying the right-lax monoidal functor Shv, we get on Shv(Y') a commutative algebra

structure in CAlg(DGCateon). The product is Sho(Y) ® Shu(Y) — Sho(Y x Y) 2
Shv(Y). We denote this algebra (Shv(Y),A'). Tt makes sense for any sheaf the-
ory. Applying the duality, we get a coalgebra structure on Shv(Y'), which we denote
(Shv(Y'), A,) following [8]. Recall that this duality exchanges the functors A, and A'.
Then (Shv(G), A',m') is a Hopf algebra in the D-module case, but this is maybe
wrong in the constructible context. The same for (Shv(G), m., Ax) (as in [8]).
In the case of D-modules, (Shv(G), m.) — mod becomes a monoidal category.

1.2.2. If Y € PreStk;y; is equipped with a G-action then the action mapa : GXY — Y
is ind-schematic (isomorphic to the projection Y x G — Y'). So, (Shv(G),*) acts on
Shu(Y') on the left via F' € Shv(G),K € Sho(Y) = a (FRK). If f: Y] — Y5 is an
ind-schematic morphism in PreStk;s; commuting with G-actions then f, : Shv(Y1) —
Shw(Ys) is a map of (Shv(G), *)-modules. Besides, f' is a map of (Shv(G), *)-modules.
Indeed, consider the category of correspondences Corr(PreStk;:)qir ind—sch, Where for
Y1,Ys € PreStk;s; a map in this category from Y to Y3 is given by a diagram Y} &£
Y12 by Y3, where b is ind-schematic (of ind-finite type). Then
Shv : Corr(PreStk ¢t)ait ind—sch — DGCateont, Y = Shu(Y)

sending the above morphism to b.a' is right-lax symmetric monoidal ([18], Chapter
3, Section 6.1). Now if f : Y7 — Y3 is a morphism of G-modules in PreStk;s; then
not only the horlzotal map f but also the vertical map Yo — Yj given by the di-

agram Y, < Y] id Y1 in Corr(PreStks:)airind—sch 18 @ morphism of G-modules in
Corr(PreStk;fs) it ind—sch- This reduces to the fact that the corresponding diagrams
are cartesian.

Consider the prestack quotient Y/G € PreStk;s;. The map f:Y — Y/G commutes
with G-actions, where G acts trivially on Y/G. So, f': Shv(Y/G) — Shv(Y) is a map
of (Shv(G),*)- modules Thus, it induces a functor

(11) Shv(Y/G’) —>Fun(5hv( G)x )(Vect Shv( ))
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Is it an equivalence?

Assuming G smooth of finite type, as in ([43], 3.0.22) one shows that Shv(Y/G) = e—
comod(Shv(Y)). Namely, e here is the constant sheaf on G, it is a coalgebra in
(Shv(G), %), and we consider the corresponding category of comodules with the convolu-
tion action of Shv(G) on Shv(Y'). The forgetful functor e — comod(Shv(Y)) — Shu(Y')
is p' for p: Y - Y/G.

By the universal property of Fungp,(a)«), we have a canonical forgetful functor
Fungp,(a),« (Vect, Shu(Y)) — Shv(Y) (whose composition with (11) is f'). Is its right
adjoint continuous?

The answer to the question is yes for all sheaf theories. By definition, Shv(Y/G)
identifies with the limit of

Sho(Y) 2 Sho(G x Y) 3 Sho(G? x Y) ...,
while Fun g,(q) ) (Vect, Shu(Y')) is the limit of
Sho(Y) 3 Sho(G) @ Shu(Y) = Shu(G)®* © Shu(Y)....

The map Shv(G)®"@Shv(Y) — Shv(G"xY) is an equivalence for D-modules, so in this
case this is easy. For all the 4 sheaf theories by ([44], 0.0.20), Fungp,q)(Vect, Sho(Y)) = eg—
comod(Shv(Y)) also, and the functor (11) is an equivalence. So, oblvg : Shu(Y)¢ —
Sho(Y) identifies with f': Sho(Y/G) — Sho(Y).

We see that in the constructible context the functor f' admits a left adjoint fi, that
is, we get a dual pair Av® : Sho(Y) = Sho(Y)Y : oblvg.

1.2.3. With the notations of the previous section, assume G smooth group scheme of
finite type. Consider now the adjunction

(prg)” - Fungpy(a),« (Vect, Shu(Y)) = Shu(Y) : prg
given by (12) below for C' = Shv(Y). The functor (pr)” comonadic by ([45], 1.3.6).

1.2.4. Let C € (Shv(G),*) —mod. Assume G smooth of finite type. Then we have the
adjoint pair p* : Vect = Sho(G) : p« for p : G — Spec k. Note that Shv(G) is equipped
with a left and right (Shv(G),x)-actions. Besides, p, : Shv(G) — Vect is a monoidal
functor. So, we may view the above adjunction as an adjunction in (Shv(G),*) — mod
and also in (Shv(G),*) — mod".

Applying the functor Fungy,, (e, C) for the above adjunction in (Shv(G),*) —mod,
we get an adjoint pair

(12) (prG)L 0% = Fungp, ) (Vect, C) = C : prg
Viewing p* : Vect = Sho(G) : py as an adjunction in (Shv(G), *) —mod” and applying
® Qgnu(e) C, we get an adjunction

oblv® : C = Vect @ gpy()C S C + Al

Since p* is a map of (Shv(G),x)-bimodules, the functor oblv® inherits a structure of
a map of left (Shv(G),x)-modules, where on Cg the action is trivial (that is, sending
F € Shv(G), K to (p«F) @ K). By the definition of Fung,(q), this yields a functor 0 :



27

Cg — C%. For D-modules this is an equivalence by ([8], 2.3.12). It is an equivalence
for all the 4 sheaf theories by ([22], Th. B.1.2, where H the group is assumed smooth
of finite type).

1.2.5. If G is an ind-scheme of ind-finite type, assume m : G X G — G ind-proper.
Then (Shv(G),*) is rigid for any sheaf theory. My understanding is that there is no
hope for it to be rigid without the ind-properness assumption.

Claim 1: let f : G — H be a surjective homomorphism of smooth group schemes of
finite type. Then f* : Shv(H) = Shv(G) : fi is an adjoint pair in Shv(G) — mod.
Namely, f. is monoidal, and (Shv(G), *) acts on itself by convolutions on the left.

Proof. We have to check that f* is a morphism of Shv(G)-module categories. The
square is cartesian

GxG = G
Lidxf 1
fxid m
GxH - HxH— H
So, for F' € Shv(H), K € Shv(G) one gets my (K X f*F) = f*m.(fo K X F). O

For C' € Shv(G) —mod it gives an adjoint pair Fungy,q)(Shv(H),C) S C. If K =
Ker(G — H) and f is surjective then we may view Shv(H) = Shv(G)X = Shv(GQ)x,
S0

Fungp,(c) (Shv(H), C) = Fungp, k) (Vect, C) = C*

Claim 2 Let H,G be placid group schemes, G < H be a subgroup (not necessarily
a placid closed immersion). Assume G = lim;eror G;, where G; is a group scheme of
finite type, I is filtered, for ¢ — j in I the map G; — G; is smooth affine surjective.
Write K; = Ker(G — G;). Assume H = lim;cjor H/K; in PreStk. Assume H/G is a
pro-smooth placid scheme. Consider the projection p : H/G — Spec k as H-equivariant
map. Then

i) the adjoint pair p* : Vect = Shu(H/G) : ps takes place in Shv(H) — mod,;

ii) assume C € Shv(H) — mod(DGCatcont) and G is pro-smooth. Then the above
adjoint pair gives an adjoint pair in DGCat.ont

obly : CH = % : AV
Proof. i) Since p is H-equivariant map, p, : Shv(H/G) — Vect is a morphism of
Shv(H)-modules. Now the diagram is cartesian
HxH/G % H/G

dpr {
H —  Speck

So, for K € Shv(H), act,(KXp*e) = p* RI'(H, K) canonically by ([44], Lemma 0.0.20).
ii) Applying Fungp, (-, C), we get the adjoint pair oblv : Fung,q(Vect,C) =
Fungp, gy (Shv(H/G), C) : AVIC Now using the assumption H = lim;ecor H/K; in

PreStk from ([44], 0.0.36) we get Shv(H/G) = Shv(H)® with respect to the G-action
on H by right translations.
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Recall that Shu(H)® = Shv(H)g, because G is placid group scheme. Finally,
Fungy, (g (Shv(H/G), C) =5 Fungp,(zy (Shv(H) @spy(cy Vect, C) = C¢
O

~ An example of this situation: H = G x f{ , where H C H is a normal subgroup,
H is a placid group scheme, and G acts on H by conjugation. For example, assume
moreover H prounipotent. Then the functor oblv : C¥ — C€ is fully faithful.

1.2.6. If H is a group scheme of finite type, L is a local system on H equipped with
associative isomorphism m*L — L X L and a compatible trivialization i*L — e for i :
Speck — H then f : (Shv(H),x) — (Shv(H),*), F — F ® L is a monoidal functor.
Indeed,

f(FixF)=(FixF)@ L= (F1®L)* (F ® L) = f(F1) * f(IY)

Now given C € (Shv(H),*) — mod, we twist the action by L as follows. The object

Cr, € H — mod is defined as C € DGCatcops with the new action given by Shv(H) ®

c '8 sy e 0 .

Note that for K € Shv(H) we have L * K 5L ® RI'(H,L™' ® K) 5 K % L by
Lemma 1.3.16 below.

Remark 1.2.7. If we are not in the constructible context, it is better not to use the
®, but only ®'. For this we should start with an object L € Shv(H) invertible for
the ®'-monoidal structure and satisfying m'L = LR L associatively and i'L = e for i :
Speck L H. Then the functor (Shv(H), *) — (Shv(H),*), F + F ®" L is a monoidal
equivalence. If moreover we are in the constructible context then for a multiplicative
local system L in the usual sense, L := L ® wy satisfies the above properties.

Proposition 1.2.8. 1) IfY is an ind-scheme of ind-finite type then for p:Y — Speck
the functor p, : Shv(Y') — Vect does not admit a left adjoint unless Y is a scheme of
finite type.

2) Assume Y = colim;e;Y;, where Y; is an algebraic stack locally of finite type, I is
filtered and for i — j, Y; — Y} is a closed immersion. So, Y is an ind-algebraic stack.
Then py : Shv(Y) — Vect does not admit a left adjoint unless Y is an algebraic stack
locally of finite type.

Proof. 1) Write Y = colim;e; Y;, where Y; is a scheme of finite type, [ is filtered, and
for i — j, Y; — Yj is a closed immersion. Assume a left adjoint p* : Vect — Shu(Y)
of p, exists, let K = p*e. Assume Y is not a scheme of finite type. Then for F' €
Sho(Y), Mapgp, vy (K, F') = Mapyeg (e, p«F), so K € Shv(Y)¢. By Lemma 1.1.37, K
is of the form (i;).K’ for some i € I, K' € Shv(Y;)¢, here i; : Y; — Y is the natural
map. We see that p*F:?fHomShU(yi)(K’,iéF), the inner hom with respect to Vect-
action. Pick 7 — j in I and a point 7 : Speck — Y; such that 7 does not factor through
Y;. Consider n.e € Sho(Y). We get p.(n.e) = e on one hand. On the other hand,
it(n«e) = 0, a contradiction.

2) the same proof. O
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Remark. let G = colim;c; G; be a placid ind-group scheme, here I € 1 — Cat is small
filtered, G is a placid group scheme, if ¢ — j in I then G; — G is a placid closed
immersion and a homomorphism of group schemes. Then by ([41], 9.2.56), the natural
functor

Shv(G) — mod — ‘li}np Shv(G;) — mod
el°

is an equivalence, because Shv(G) = colim;e; Shv(G;) with respect to the x-push-outs.
Note that for M, N € Shv(G) — mod one has

Fungpya) (M, N) = Jim. Fungpy(c;)—mod(M, N)
naturally.

1.2.9. For 6.1.4. It is used that DGCat.y,y — 1 — Cat preserves limits.

For 6.1.9. The (eventually disconnected) right adjoint to (6.9) exists, because (6.9)
is continuous. A trial to explain the formula: let G € Grp(PreStk), G be a placid
ind-scheme, assume G = colim;c; G;, where G; is a placid group scheme, I is filtered.
Assume for ¢ — j in I the map G; — G; is a placid closed immersion, and a homo-
morphism of group schemes. Let C' € G — mod. Recall that C = lim;cror C% in
DGCatcont by ([45], Sect. 1.2.3). The functor oblvg : C% — C is obtained by passing
to the limit over I° in the family oblvg, : C% — C. The functor oblvg, : C% — C has
a continuous right adjoint Avf" : C' — C% given by the comonad C — C, ¢ — eq, * C.

Fori — jlet a: G; — G; be the closed immersion. The natural map eq; — aeg, in
Shv(G) is a morphism of comonads in C'. It induces the morphism eg, — comod(C) —
eq, — comod(C). Ts there any formula for Av$, which is maybe discontinuous? The
system of functors Av&i : ¢ — CGi for i € I is not compatible with the transition
functors in the inverse system lim;eor C.

Note that we may consider E := lim;cjor e, taken in CoAlg(Fune cont(C,C)). We
get a natural projection E — comod(C) — lim;cor C% =5 CC. Is it an equivalence?

We may add somewhere the following.

Remark 1.2.10. Let f : H — G be a map in Grp(PreStk). Assume H,G are placid
ind-schemes. Note that f, : (Shv(H),*) — (Shv(G),*) is monoidal. We get a mor-
phism of functors (G — mod)°P x (G — mod) — DGCateons,

(D, C) = Fun(spy(q) ) (D, C) = Fungpymy,« (D, C)

In particular, a map C — CH functorial in C € G — mod (and whose composition
with oblv : CH — C is oblv : C¢ — C).

wP
1.2.11. For 6.1.9. Explanation of the formula for the functor Avf(N)w XN

Lemma 1.2.12. Let C € DGCatepp:. Assume given a diagram I°P — DGCateon,
i — C;, where I is filtered, and a full embedding oblv; : C; C C in DGCateons functorial
ini. So, if i = j in I then C; C C; is a full subcategory. Assume for each i we have an
adjoint pair oblv; : C; = C Avfk. Let D = limcjor C; = 0;Cy. If it — j§ in I then we
have a natural map Avi = AV of functors C — C. Consider the functor Av, : C — C
equal to lim;erop AvY in Fun(C,C). We claim that Av, takes values in D and is the
right adjoint to oblv : D — C.
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Proof. Since Avi o Avi = Avl, the natural map Av: Av, — Av, is an isomorphism (as
I is filtered). For i € I the inclusion I;; < I is cofinal, and limjez,, Avi = limjer Avi.

However, AV for J € I;/ takes values in Cj, and the limit of the diagram AV
C — C; for j € I gives a functor Av, : C — C; by ([41], 2.7.9). So, Av, takes
values in D. We may also use the fact that Av, : C — C; preserves limits, so
AV (limjezor Avi(2)) = limjeror Avi AvL(2) = Av,(z).

Now for d € D, c € C we have

Map(d, lim Av'(c)) = lim Map(d, Av’(c)) = lim Map(d, ¢) = Map(d, c),
because I is contractible. g

It is maybe not true that Av, is given by the action of limye(z yor Xk € Shu(L(N)<"),
where xy, is the *-restriction of xn to Ng.
How to define the object xn in Shv(£(N)%")? 1 think it should not be defined as
limge(z, yor Xk~ Consider the functor
Sho(E(N)") = Vect, K — Homgpyar)(Ly, xK),

T

where x : £(N)¥” — Al is our nondegenerate homomorphism, and Ly is the Artin-

Shreier sheaf. Is this functor representable by an object that should be called xy €

Shv(L£(N)¥")? This object does not exist, because otherwise xy would be compact.
In other words, we should think of x as an object of

Shu(L(N)%")Y = Fun(Shv(L£(N)<"), Vect)

given by K — JHomgpya1)(Ly, fxK). (We know that this category is dualizable,
as for any placid ind-scheme). For any placid ind-scheme Z, there is a self-duality
Shv(Z)= Shv(Z)" ([44], Section 0.0.23), however one should not try at this point to
think of y as a sheaf on £(N)¥".

1.2.13. For 6.2.1.

Lemma 1.2.14. Let U be a pro-unipotent group scheme, U = lim;cop U;, where U; s
a unipotent group scheme of finite type, I is filtered, for i — j in I, the map U; — U;
is smooth surjective homomorphism. Let p : U — Speck be the natural map. Then
the functor p* : Vect — Shv(U) in the constructible context admits a left adjoint
(p*)* : Shv(U) — Vect. Moreover, ((p*)*)V identifies with the right adjoint to py :
Shv(U) — Vect. We used here the self-duality on Shv(U) from ([45], 1.1.10). In
addition, (p*)* o p* — id is the identity, so (p«)¥ o p. — id is the identity.

Proof. Write Shv(U) = lim;eor Shv(U;) where for @ — j in I and the corresponding
map fi; : Uy — U; we use (fij)« : Shv(U;) — Shv(U;) as transition maps. For each i
let p; : U; — Speck be the map. Then p! : Vect — Shv(U;) form a compatible system
of maps giving the functor p* : Vect — lim;erop Sho(U;). Since each pf = pi[—2 dim U;]
admits a left adjoint (p;)i[2dim U;], passing to left adjoints the compatible system of
functors (p;i[2dim U;] : Shv(U;) — Vect yields a functor colim;e; Shv(U;) — Vect,

where we use the functors ;; in this colimit system. The latter functor is the desired
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left adjoint by (by [41], 9.2.6). Now by ([45], 1.2.11), the dual of p* : Vect — Shv(U)
identifies with p, : Shv(U) — Vect. O

Let U be a pro-unipotent group scheme, C' € U — mod. Then we have the adjoint
pair py : Shv(U) < Vect : (ps)® in the constructible context. However, (p,)f is not
a strict morphism of Shv(U)-module categories, only a lax one, see Lemma 1.3.7. In
general in the constructible context the functor oblvy : CY — C does not admit a
left adjoint. An example given by Sam: take U = G, and the sheaf theory to be the
holonomic D-modules. Take C' = D — mod(G,), all D-modules. Let G, act on itself
by translations. Then he claims the functor oblvy : CY — C does not admit a left
adjoint.

Assume now N € Grp(PreStk), and N = colim;e; N;, where Nj; is a pro-unipotent
group scheme, if ¢ — j in I then N; — Nj; is a placid closed immersion, and a map of
group schemes, and I is filtered. Let C € N — mod. Recall that CV = lim;cjor CNi =
N;CNi. If we have an adjoint pair AV!N" C = ol oblvy, for each i, here CNi
is a localization of C, then by (HTT, 5.5.4.18), N;C™: C C is a strongly reflective
subcategory, so the functor AV!N exists.

For ¢ € C and i — j in I we get in this case the localization map Av!Ni(c) —
Av!Nj (¢) with respect to CVi ¢ CNi. We claim that in this case the functor C — C¥,

¢ — colim;er AU!N “(c) is the left adjoint to the inclusion C < C. This is a special
case of the following.

Lemma 1.2.15. Let C' € DGCateont, C; C C be a full subcategory, this is a map in
DGCateont for i € I. Here I € 1 — Cat is filtered. Assume for i — j in I, C; C Cj.
Set D = N;C; = limgeror C;, where the limit is calculated in DGCateont. Assume
L;: C — Cj is a left adjoint to the inclusion. Then D is a localization of C, and the
localization functor L : C — D is given by L(c) = colim;er Li(c), where the transition
maps are the localization morphisms for C; C C;, and the colimit is calculated in C.

Proof. For x € N;C;, ¢ € C we get
Map(colim; L;(c),z) = lim Map(L;(c),z) = lim Map(c,x)
ielop ielopP
— Map(c, z) = Fun(1°?, Map(c, x))

For J € 1 — Cat, Z € Spc we have Fun(J, Z) = Fun(| J |,Z), where | J |€ Spc is
obtained by inverting all arrows. Since a filtered category is contractible, we are done.
To explain that L takes values in NC;, note that we may equally understand colim; L;(c)
as taken in Cj over i € I;,, because the inclusion C; C C'is continuous, so the colimit
lies in C for any j. O

Claim: Let now Y = colimjc;Y; be an ind-scheme of ind-finite type, here J is
filtered, Yj is a scheme of finite type. For i — j in J, Y; — Y} is a closed immersion.
Let U be a prounipotent group scheme acting on Y preserving each Y;. Assume that for
any j € J, the U-action on Y; factors through a finite-dimensional quotient unipotent
group U — Up. Then oblv : Shv(Y)Y — Sho(Y) in the constructible context admits a
left adjoint Av!.
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Proof. For any j € J pick a finite-dimensional quotient U — U; such that the U-
action on Yj factors through Uj, so we have the quotient map h : Y; — Y;/U;. The
functor oblv : Shv(Y;)V — Sho(Y;) identifies with h' : Shv(Y;/U;) — Shv(Yj), it has
the left adjoint Ay in the constructible context. For i — j in J let f;; : ¥; < Y} be
the closed immersion. We get the diagram 7 : J x [1] — DGCateo, sending j to
oblv : Shv(Y;)V < Shu(Y;), with the transition functors fi!j. Passing to the limit over
JOP, this gives the functor oblv : Sho(Y)V — Sho(Y).

If ¢ — j is a map in J, pick a finite-dimensional quotient U — Uy such that on both
Y;,Y; the U-action factors through Uy. For the projections h; : ¥; — Y;/Uy we get
commutative diagram

Sho(v)) " Sho(Y;/U)

b (fij) 1 (fis)

Sho(v;) "8 Sho(Y;/U0)
So, we may pass to left adjoints in the diagram 7. Passing to the colimit over I
in DGCateonet, this gives a functor AV!U : Sho(Y) — colim;er Sho(Y;)V =5 Shu(Y)Y.
We are in the situation of ([41], 9.2.39). According to loc.cit, Av{ is left adjoint to
oblv : Shu(Y)Y — Shu(Y). O

Claim 2: Let Y)Y’ be ind-schemes of ind-finite type, f : Y — Y’ be a schematic
morphism of finite type. Let U be a prounipotent group scheme acting on Y, Y’ so that
f is U-equivariant. Then in the constructible context there are functors f* : Shu(Y”') —
Shu(Y) and f* : Shv(Y')V — Shu(Y)Y commuting with oblv : Shv(Y)V — Shu(Y),
oblv : Sho(Y)V — Shu(Y), that is, f* oblv = oblvof*. Besides,

Avl of* = f* o AvP
naturally as functors Shv(Y') — Shv(Y)Y.

Proof. Write Y’ = colimje, Y], where J is small filtered, if j € J then Y] € Schy;, and
for j — j" in J the map Y] — Y}, is a closed immersion. Set Y; = Y] xy+ Y. Then
Y = colimje;Yj. If j € J then Y; € Schyy, and for j — j' in J the map Y; — Yy
is a closed immersion. For j € J let f; : Y; — Yj’ be the restriction of f. Then
f; + Sho(Y]) — Shv(Y;) are compatible with the l-extensions giving the transition
maps in Shu(Y)—= colimje; Shu(Y;) and similarly for Y. In the colimit over j € J
then give the functor f*: Shv(Y’") — Sho(Y).

Now for each j let U — U; be the finite type quotient group scheme such that U
acts on Y; and on Yj’ via U;. We get the cartesian square

v, % v
In In
/U B YU,
where h is the quotient map in the sense of stacks. Then f7h = h f;. Passing to the
colimit over j in this isomorphism, we get AV!U of* = f* OAV!U. The second claim comes
from f;‘h! = h!fjfk by passing to the colimit. O
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1.2.16. For 6.2.2. The functor AV!E(N);JP’XN admits a continuous right adjoint, so sends
a compact object (on which it is defined) to a compact object. Besides, 0;» ¢, is compact
in Shvge (Grg,).

Why the shift [—()\,2p)] in the definition of W*'? The relation with the global
definition should explain this.

1.2.17. For 6.2.5. If Y; are ind-schemes of ind-finite type, f : Y1 — Y3 is a closed

immersion if for any S — Y with S € Schaf{ ! , S Xy, Y1 — Ys is a closed immersion.

This is the case for S* < S for pu < .
I propose to formulate here the following.

Remark 1.2.18. Let G be a placid ind-scheme, G € Grp(PreStk). Assume G =
colim;e; G; in Grp(PreStk), where G; is a placid scheme, I filtered, and for i —
Jjin I, Gi — Gj is a placid closed embedding. Let C € G — mod. Recall that
GY = limjcror C%i. Assume for each i — j in I the functor C% — CY% admits a left
adjoint. Consider the functor I — DGCatcopnt, © — CCi obtained from the above one
by passing to left adjoints. Then we have colim;cy Cc¢i= lim;e rop C%i in DGCateont.

Assume G is a placid ind-scheme, G € Grp(PreStk). Assume given an adjoint pair
f:C s C":gin Shu(G) —mod. Then applying Fungy,(q)(Vect, -), one gets an adjoint
pair C%¢ = C'¢ in DGCatepns. This gives in our case the desired equivalence

Whitg . (G) = colimyep Shvge (5A>£(N)‘;p,xzv

The explanation of the fact that (iy) : Shvgc(S’A)S(N):p’XN — Whit, »(G) is fully
faithful is not a good one. Here is one: we have an adjoint pair ((iy)1, (ix)') between the
categories of sheaves on S* and Gr“é’jz, and the left adjoint is fully faithful. Applying
the functor of invariants, we get an adjoint pair ((7))1, (iy)') between the categories of
invariants, and the left adjoint is still fully faithful. Indeed, invariants send an identity
functor to the identity.

An alternative would be to apply ([21], Lm. 1.3.6).

1.2.19. For 6.2.5. To see that W' ¢ Shvgc(g’\)g(N)fp’XN, note that we have an
adjoint pair

UJp —
Av NN Ghies (SY) S Whity 4 (G)<y : obly,

where the left adjoint is partially defined for D-modules (always defined in the con-
structible context). It is defined here, because d; ¢, is holonomic.

1.2.20. If G € Grp(PreStk), which is a placid ind-scheme, assume C' € G — mod. For
p : G — Speck the functor p, : Shv(G) — Vect does not have a left adjoint (unless G
is a scheme). The functor p, is monoidal, hence a map in G —mod, it induces applying
Fungpy(),«) (@, C) the functor oblvg : C% — C. However, it is not clear if oblvg has
a right adjoint, this may depend on C' maybe.
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For any map C7; — C5 in G — mod the diagram commutes

cé e o
1 {

oblvg
CQG — 02

1.2.21. For 6.2.6. The commutativity of square both both circuit follows from the
previous section.

1.2.22. For 6.2.6. We explain the fact that the essential images of Whit, ,(G)<, for
i < X generate the full subcategory of Whit, ,(G)<) of objects extended by zero under
the closed immersion S — S* — S*,

Let 4; : Y; — Y for ¢ = 1,...,n be diagrams of ind-schemes of ind-finite type,
where i; is a closed immersion, and LIY; — Y is surjective (say, pointwise for k-points).
Then (i;); : Shv(Y;) — Sho(Y) is fully faithful, and the essential images of (i;); for
i=1,...,n generate Shv(Y). Indeed, by induction we may assume n = 2. In this case
for K € Shu(Y') we have a fibre sequence (ilg)!(i12>!K — (il)!(il)!K@ (ig)[(ig)!K - K
in Shu(Y). Indeed, Shv satisfies the proper descent by ([44], 0.0.32), and Y1 LYy — Y
is a surjective on field-valued points (it is also a covering in the topology of finite
surjective maps). So, to check that this is a fibre sequence, it suffices to do this after
l-restriction to Y, Y;; for all 4, j, which is clear. If Map(F, K) =  for any F' € Shv(Yj;)
for j = 1,2 then i.K = 0, hence K = 0.

This implies that the essential images of Shv(S*~%) for all simple coroots a; generate
Shv(S§* — 8*).

For K € Whit, ,(G)<) extended by zero under S* — $* < S* we use a similar fibre
sequence defined by the closed subschemes iy_,,; : SA=ai for all simple coroots. The
point is that the functors i!)ﬁ «; are between the corresponding Whittaker categories,
so our fibre sequence will take place in Whit, »(G) <.

1.2.23. For 6.2.7. In the definition of W™ the functor used is Avf(N):p’XN : Shvga (S*) —
Whitg 5 (G)=x.

In (6.13) replace Maps by Hom. In addition, the formula (6.13) should say the
answer is e for A = X dominant, and zero otherwise. I propose to say it follows from
Prop. 6.2.9.

It would be useful for a reader if in this section it would be mentioned that W* has
a simplier definition: for the corresponding map say x* : S* — A! one has

WA (Y Lyl2 — (25, M),

where £, is the Artin-Schreier sheaf (refer then to Thm. 7.4.2 to explain this formula).

1.2.24. For 6.2.9. It is better to say in (b) that the continuous functor Vect —
Whit, ,(G)=y sending e to W is an equivalence.



35

1.2.25. For proof of 6.2.9. We check that (6.14) admits a left adjoint given by V
V' ® colimy, AV!NI“’X’“ (62 Gr); Where the colimit is calculated in Shuge(S*). For F €
Whitg »(G)=x,V € Vect one has

Map(V ®colimy, AV!Nk’Xk (6 ar), F) = liin MaPShUgG(sA)N;«xzﬂ (V®AV!N’“’XI“ (6px o)y F)
hlin MapShvgg(S/\) (V ® 5t/\,Gr’ F) — hlin Map\/'ect(vvv Z'igk F) — MapVect(V7 iiAF)v

because we calculate a limit over a contractible category.

To understand the proof, consider the following situation. Let U be a pro-unipotent
group scheme, U = lim;eor U;, where I is filtered, for i — j the map U; — U; in a
smooth, affine surjective homomorphism of group schemes, and U; is a smooth group
scheme of finite type. We assume iy € [ is the initial object.

Let S be a scheme of finite type, x € .5, the action of U on S is transitive. Let L
be a character local system on U coming from a local system Ly on U;,. Let St be the
stabilizor of x in U. Then St is a placid group scheme, and St — U is a placid closed
immersion. Moreover, we may assume that there is a closed subscheme St;, C U;, such
that St = St;, XU, U.

For h : U;j, — S, u — ux we have the functor h* : Shv(S) — Shv(U;,), because
h is smooth. Further, Shv(S)Y"* = Shv(S)Vo-lo by ([45], Lemma 1.3.11). Besides,
Shv(Ug)Vo-Fo = Vect with the generator Lo by ([45], Sect. 1.3.15). The functor A*
gives the full embedding

Shw(S)Viorlo ¢ Shy(U;,)Yiorlo = Vect

We see that if Lo—=h*L is in the essential image of h* : Shv(S) — Shv(Uj,) then
Shv(S)Y"L' = Vect with the generator L, and zero otherwise.

Consider now the functor « given as the composition Shv(S)V" c Shv(S) %% Vect.
It has a left adjoint sending e to AV!U’L((SQ;). Here 6, = (iy)ie for i, : Speck = S.
Then AVIU’L(ch)[—2 dim S] = L if h*L = L for some L, and zero otherwise. Indeed,
it L= e[-2dim S].

1.2.26. For 6.2.10. To see (c), note that S* is an ind-scheme of ind-finite type. For
any pu < A\, S* < S§* is a closed immersion. Now if Y € S is a closed subscheme,
Y is of finite type that Y meets only a finite number of £(N)%’-orbits Y N S*. Let

x
F e Shv(g/\)’:(N)gp’XN, let Fy be its !-restriction to Y. To see that F' = 0, it suffices to
show that Fy = 0 for any closed subscheme of finite type Y C S*. Since we know this
for the l-restriction to Y N S*, Fy vanishes indeed. So, Shv(g’\)S(N)fp’XN = 0 unless A
is dominant. ,

Note that for A dominant, Whit, ,(G)<x = Shv(S*)*(M XN admits a finite filtra-
tion with the graded pieces Vect. Indeed, {y € AT | u < A} is finite. By filtration
we mean here that there are full subcategories Whit, ,(G)<, for p < A, the functor
Whitg »(G)<, — Whity 2 (G)<y is a map in DGCatcopne, we also have functors

J5 s Whity o (G) <y — Whito(G)=, = Vect
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for 1 dominant, and Whit, ,(G)—,, is a localization of Whit, ,(G)<,. Besides, Whit, .(G)—,
is the the right orthogonal to the full subcategory of Whit, .(G)<, of those objects,
which are extensions by zero under the closed immersion

S<H <y GH

The latter category is generated by Whit, ,(G)<, with v < p in the sense of ([18], ch.
L1, 5.4.1).

To see that W' generate Whit, ,(G) for A dominant, let K € Whit,,(G) with
Map(W™'[n], K) = * for any n € Z,A\ € AT. Then (:*)'K = 0 for any A € A. Since
Grg, = colimyep ¥, K = 0.

(b) follows from the fact that for A minimal and p < A, (i#)'W** = 0. This means
that W** is the extension by zero from S*.

(a) For any A € AT the object W' admits a finite filtration by the objects W**
with g € A*, ;1 < \. This comes from the geometry, from the l-restrictions of W' to
the strata S¥. So, the smallest stable subcategory containing WH* for u € AT, also
contains W', This is why the objects W* generate Whit, ,(G).

1.2.27. For 6.3. The fact that this indeed defines a t-structure: we may say that
Whit, . (G)=0 is the smallest full subcategory containing W' for A € A*, closed under
colimits and extensions. Then Whit,,(G)=" is presentable, and indeed defines an
accessible t-structure by (HA, 1.4.4.11).

The t-structure on Whit, ,(G)<x can be defined in two ways: by the fact that the
inclusion into Whit, ,(G) is compatble with the t-structure. The second way is to say
that Whitq,z(G)%{ is the smallest full subcategory containing W' for u € A, closed

under the colimits and extensions. This definition also shows that iy : Whit, .(G) —
Whit, . (G)<x is left t-exact. Indeed, for F' € Whit, ,(G) and p < A,

Homyypie, , () (W', F) = Homyy, , () (W' i3 F)

1.2.28. For 6.3.2. In (a) we use the following definition. Let C' C D be a full embedding
in DGCatcont, D equipped with a t-structure. We say that C is compatible with the t-
structure on D if the truncation functors preserve C. This implies that C=% := CN.D=0
and C=0 := CND=C define a t-structure on C. Moreover, C¥ C DY is a full subcategory
closed under extensions, and C < D is t-exact.

Conversely, assume C C D is a t-exact full embedding in DGCateont, C',D equipped
with t-structures. Then the truncation functors of D preserve C'. Indeed, if ¢ € C,
let Tgnc — ¢ — 75"¢ be the corresponding fibre sequence in D. Consider the fibre
sequence TCSnC = c — TC>"c in C. This is a fibre sequence in D also, and TCSnC €
D=", 7'5”0 € D~™. Thus, the two fibre sequences are isomorphic. So, C' is compatible
with the t-structure on D.

If the t-structure on D is compatible with filtered colimits then the same holds for
the induced t-structure on C.

Proof of 6.3.2(a). For F' € Whit, ,(G)<) the condition F € Whitq,z(G)E?\ is equiva-
lent to

Homyypig, () (W', F) =0
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for any p < A. So, (Whit, . (G)<x)=" is the smallest full subcategory containing W'
for 4 < XA € AT, closed under colimits and extensions. It is presentable by (HA,
1.4.4.11). This gives (Whit, ,(G)<x)=? C (Whit, . (G)=0.

If K € (Whity,(G)<x)Z? and p € A, and p is not less then A then z;LK = 0.
So, HomWhitqyz(G)(W“’!,F) = 0 and K € (Whit,.(G)=%. We see that the inclusion
Whit, . (G)<x <= Whit, . (G) is t-exact, we are done.

1.2.29. For Remark 6.3.3. Misprint, you meant D (Whit, ,(G)¥), not D™ (Whit, .(G).

You can not talk about D*(Whit, ,.(G)") before you justify the fact that Whit, ,(G)"
has enough injective objects. Since you want to use the universal property of D', you
have first to justify that Whit, ,(G) is right complete for this t-structure.

1.2.30. For 6.3.5. In general, let C C D be a full embedding in DGCatont, D equipped
with a t-structure and C' compatible with this t-structure. If ¢ € C is irreducible,
then its image in DY is not necessarily irreducible.

Example: Let Y= A" p:Y — Speck. Then p* : Vect — Sho(Y) is fully faithful.
Consider Shv(Y') with the usual, not the perverse t-structure. This t-structure is
compatible with Vect. However, e € Vect is irreducible in Vect”, and p*e is not
irreducible in Shv(Y)Y.

The proof of 6.3.5 is absent, as it is not justified in the proof that L € Whit, ,(G)<x
is not justified (see Lemma below).

Let L be an irreducible object of Whit, ,(G)¥. For some A € AT there is a nonzero
map W™ — L, by definition of the t-structure. It gives a morphism W' — (jy)*(i*)'L.
Since Whit, »(G)=x — Vect, so is semisimple, we get a nonzero morphism

(32) ('L — W™
over S*, which gives a nonzero map (i*)'L — (j A)*I/%/M, hence a nonzero map
HO()'E) = ()W,

but this does not give the map L — W** that you wanted, we only have (i*);H°((i*)'L) —
L, which is surjective.
Here is how it should have been written.

Lemma 1.2.31. The objects WM™, X € At are irreducible, and each irreducible object
of (Whitq@(G)@ is of this form. Moreover, the unique irreducible quotient of W' is
WA’!*.

Proof. Step 1. Let us show that W™ is irreducible. We have a fibre sequence W —
Wr* — K in Whit, ,(G) <) with K € (Whit, ,(G)<))¥. Now for u € A, u < A we get

Hom(WH WA = Hom(WH | K[-1])

In particular, Hom(W', W) = 0. Besides, Hom(W™', WM*) e, Let now L C
WA be a subobject in Whit, ,(G)" with WA /L # 0. There is 4 < A and a nonzero
map WH' — L. Since the composition W' — L < WM™ is not surjective, p # .
But we have seen that for 4 < A this Hom vanishes. So, W™ is irreducible.
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Step 2. Let WM — L be a nonzero map in (Whit, ,(G)<x)” with L irreducible. We
claim that this map coincides up to a multiple with the canonical map W' — Wh'.

Indeed, we have a nonzero surjection W — ji L, which shows that we may pick a nonzero
map L — W»* in (Whit, .(G)<x)", which is injective. Since Hom (WM WA*) e,
this implies the claim.

Step 3. Let us show there are no other irreducibles. Let L be an irreducible object.
Pick A € AT and a nonzero map 7 : WM — L, this gives a nonzero map W' — ?/\L
in Whit, .(G)<x. The functor 7, is left t-exact, so H’(7) L) # 0, and we get a nonzero
map WM — HO(@ L) in (Whit,,(G)<))", whose restriction to S* is nonzero. Since
the composition

WM = (i) H (L) > L

is 7, the map 7 is nonzero. Let K be an irreducible quotient of HY(i}, L) in (Whit, . (G)<))"
such that 7 factors through a (nonzero) map (ix)iK — L. So, WM % K is nonzero
over S*. By Step 2, v identifies with W' — W™ We obtained a surjection
(ix) WA — L. By Step 1, WM™ is irreducible in Whit, ,(G)". O

Lemma 1.2.32. Let A € At. Then W' admits a unique irreducible quotient isomor-
phic to WM™, Any other irreducible subquotient is of the form W' for u < \.

Proof. The first claim was proved in the previous lemma.

Recall that WM™ is the extension by zero from S*, because we defined the image of
WA — WA in (Whit, .(G)<x)" first and used the fact that (iy)« is t-exact.

Assume by induction our claim true for u < A\. We check the same for A. The base
of the induction follows from 6.2.10.

Choose a filtration on W' with simple quotients. Assume 7 is the first index such
that for the i-th subquotient W*'*, the inequality v < A doesn’t hold. We have a short
exact sequence 0 — K’ — K — W¥"* — 0, where K is a subobject of W*'. We have
a non-zero map W' — W',

We claim this map can be lifted to a map W*' — K. Indeed, the obstruction to
the lift is in Ext!(W*', K'). By assumption, the simple subquotients of K’ are of form
W™ for ;i < A. So it’s enough to show that for u < X\, we have Ext!(W"', W) = 0.
By (2), W*" is supported on S*. By the assumption on v,

(13) Homwnis, . () (W, M) =0

for any M supported on S*.

Thus, we got a non-zero map W*' — W>*'. Now by (13), v = A. In the latter case,
the map W»' — W™ is the scalar multiple of the identity map, so the compostion
W' — K — WM is surjective, and we were dealing with the last quotient. O

1.2.33. For 6.3.5. Since W™ are of finite length and their irreducible subquotients are
compact, W' lies in the subcategory of Whit, ,(G) generated by all W, Since W'
generate Whit, ,(G), we see that the collection W 1 € AT generate Whit, ,(G).
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1.2.34. For 6.3.7. It is better to say that AVIN’“’X’V (04x ) is placed in usual degree
—2dim(Nt*). This follows from Section 1.2.25 of this file. Since Shv(SM)<™ C

Shv(S*) is closed under colimits, Av!S(N):p’XN (04x gr) is placed in degrees < m for
any m € Z.

I think for an ind-scheme Y of ind-finite type, Shv(Y)=C is stable under countable
products, right? Then this shows that Shv(S?) is not left complete by (HA, 1.2.1.19).

1.2.35. For 6.3.8. There it is assumed C' € DGCat.ont.

In the definition of a Artinian t-structure the finite length is understood in C* (not
in the abelian subcategory C¢N CY).

Note that if C¢ is preserved by truncation functors and the t-structure is compatible
with filtered colimits then the t-structure is compactly generated. Indeed, 7=0 : C' —
C=Y preserves filtered colimits. So, if ¢ € C=°, pick a functor I — C, i — ¢; with I small
filtered such that colim; ¢; = ¢ and ¢; € C°. Applying 7=, one gets ¢ = colim; 7=%c¢;.

Remark: in the definition of noetherian t-structure you write in parenthesis ”in
particular is abelian”. For any coherent t-structure, C inherits a t-structure, hence
C° N CY is abelian by (HA, 1.2.1.12). So, it is better to make this remark in the

definition of a noetherian t-structure.

1.2.36. Let us prove Cor. 6.3.10, we check that the t-structure on Whit, ,(G) is
Artinian.
Recall that Whit, ,(G) = colimyep Whitq «(G)<x. Note also that

Whitg(G) = ] Whitga(
pem(G)

where Whit, ,(G), is the Whittaker category on the connected component Gr“ép’”

of Ger Over each connected component GrG # this colimit is filtered, so as in
Lemma 1.1.37 of this file, each compact object of Whltq =(G), is the extension by zero
from some S” for v over p. Moreover, any compact object of [] pem( )Whitq,m(G) s
of the form (cu) en, (@), Where ¢, € Whit, »(G)f, and ¢, = 0 for all but finite number
of 1 by ([41], 9.2.28).

Lemma 1.2.37 ([18], ch. II.1, Lm. 1.2.4). Let Cy be a (non-cocomplete) DG-category,
endowed with a t-structure. Then C :=Ind(Cy) carries a unique accessible t-structure,
which is compatible with filtered colimits, and for which the tautological inclusion Cy —
C is t-exact. Moreover, the subcategory C=° (resp., C=°) is compactly generated under
filtered colimits by COSO (resp., C’OZO). In addition, if Cy is bounded from above then C
18 right-complete.

Proof. The proof of all but the last claim are given in ([41], 10.3.3). To see that C' is
right complete, note first that C' is presentable, as Cy admits finite colimits. Besides,
the t-structure on C' is accessible. So, by ([41], 4.0.10), it suffices to show that for any
z € C the natural map z — colim,cz 7<"z is an isomorphism in C. Pick a presentation
2z — colim;eg z; with z; € Cy. Then

<n <n <n
colim 7="2 = colim colim 7="2; = colim colim 7="z; — colim z; — z,
nez nez i€l i€l neZ el
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because 7=" preserves filtered colimits. O

Proposition 1.2.38. Let C € DGCateon: with a t-structure compatible with filtered
colimits. The condition that each irreducible object of C% is compact and they generate
C is equivalent to the t-structure on C be Artinian.

Proof. i) Assume each irreducible object of C is compact and they generate C. Let
I be the set of irreducible objects in C¥, we write ¢; for the corresponding object. Let
D be the smallest stable subcategory of C' containing ¢; for all i. So, each object of D
is a finite extension of objects of the form ¢;[n;].

Claim: 1) D C C is the full subcategory of those d € C, which are cohomologically
bounded, and whose all cohomologies are of finite length in CV.
2) The inclusion D C C' is closed under direct summands.

Proof. 1) Let d € D. We claim that each H'(d) is of finite length, and its subquotients
are of the form ¢; for some j € I. This is proved by induction on the length of a
filtration on d. Assume d; — d — ¢;[n] is a fibre sequence, where we know this claim
already for d; by induction hypothesis. Then H(dy) — H*(d) — H'(c;[n]) is exact,
and we are done.
The converse inclusion is obvious.

2) Let d € C, d = z® 2 with 2,2/ € C then z,2' are cohomologically bounded,
because H? preserves finite products, which are also finite coproducts. Moreover,
H'(z) @ H(2') = H(d) is of finite length, hence the same holds for H'(z) and H'(2').
Thus, z,2" € D. O

By ([18], ch. IL.1, 7.2.4(3)), Ind(D)=C. So, C°=D by (HTT, 5.4.2.4). By
Lemma 1.2.37, the t-structure on Ind(D) C=Y is compactly generated under filtered
colimits by D=V, So, the t-structure is compactly generated. By the above, the t-
structure is coherent.

If d € C°N CY then d is of finite length by the above claim, hence its subquotients
also lie in C°N CY. That is, the t-structure is noetherian and artinian. We are done.

ii) Conversely, assume the t-structure is Artinian. The category C¢NC is abelian, let
I denote the set of its irreducible objects. For i € I we denote by d; € C°N CY the
corresponding object. Then C° is the smallest stable subcategory of C' containing d;
for all 4.

Since the t-structure is coherent, C°¢ is equipped with the induced t-structure. Since
the t-structure on C' is compatible with filtered colimits, the t-structure on C' is the
one defined on Ind(C®) = C in Lemma 1.2.37. In particular, C=<0 = Ind(C¢ N C=Y).

Let ¢ € CY. Pick a diagram J — C=9 j — c¢j such that J is small filtered,
cj € C°NC=Y and ¢= colim; ¢;. Then ¢ = 72%=5 colim; 72%; in C", because 720 :
C=Y — C¥ preserves colimits. This shows that Ind(C°NCY) = C?. (The notation Ind
is that of [34]).

Let now ¢ € CV be irreducible. Pick a presentation ¢— colimjeyc; with ¢; €
CY N C*. By the above, there is i € I such that Homgo (d;,¢) # 0. Then a nonzero
map d; — ¢ is surjective. Since C°NCY € C7 is stable under subquotients, ¢ € C¢. O
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1.2.39. Example, take C' = Shv(Al), the f-adic sheaves. Assume k algebraically closed
for simplicity in this example. Equip C' with the usual ¢-structure. The collection
ex = (iz)e (for x € A! closed points) does not generate C. Indeed, write ey for
the constant sheaf on Y = Al. For z € Y we have i,ey — e[—2]. Consider the map
®2(iz)i(iz)'e — e in C. Applying i}, for any x, it becomes an isomorphism. However,
it is not an isomorphism. So, the collection e,, (x € A' closed) does not generate C.
Dennis claims in the case of /-adic sheaves to get a system of generators, it suffices to
add j,L for any irreducible representation L of the Galois group of n € A!, the generic
point of A! (and in the case of D-modules, to add j,D). Here j : n — A the inclusion.

1.2.40. Let G = colim;c; G; in PreStk, where [ is a filtered small category, each G;
is a placid scheme, a group scheme, and for ¢ — j in I the map i;; : G; — G is a
homomorphism of group schemes and a placid closed embedding. So, G is a placid ind-
scheme. Recall that Shv(G) = colim;e; Sho(G;). Let M € G — mod",C € G — mod.
Then one has

colim;c; M ®Sho(Gy) C=M ®Sho(@) C

Indeed, I is sifted, so colim;c; Shv(G;)®" = Shv(G)®™. So,

M ®gpyc) C = [g]%liA% M @ Shv(G)*"C =

li lim M ® Shv(G;)*"C = colim M \C
el [g]oelAngp @ Sho(G) e ©sho(Gi)
In particular, Cg — colim;er Cg, in DGCateont, the transition maps Cq, — C’Gj for
i — j in I come from (i)« : Shv(G;) — Shv(Gj).

1.2.41. Let f: H — G be a map in Srp(PreStk), where H, G are placid ind-schemes.
Recall that f. : (Shv(H),*) — (Shv(G),*) is monoidal. Let D € G — mod",C €
G — mod then we have a natural functor D ®gpyg) C — D Qgpy(q) C- Indeed, this
holds for any morphism A — B in Alg(DGCatcn) and D € B —mod",C € B — mod.

In particular, we have a natural functor Cy — Cq. For H = Speck and f the unit

map we denote the corresponding functor by Avg, : C — Cg. So, the composition

AVH,* .
C = Cg—Cgqgis AVQ*.

1.2.42. Let p : G — Speck be a placid scheme, and a group scheme. Let C' €
G — mod. Viewing p* : Vect = Shv(G) : ps« as an adjoint pair in G — mod” and
applying e ®gj,(q) C, we get an adjoint pair oblvg : Cg S C' 1 Avg x in DGCateon-

If in addition G is pro-unipotent then id — p.p* is an isomorphism, so oblv¢ is fully
faithful and Avg . oblvg — id.

Let now G be an placid ind-scheme, an object of Grp(PreStk) written as colim;cr G,
where [ is small filtered, G; is a pro-unipotent group scheme, for ¢ — j in [ the transition
map f;; : G; — G is a placid closed immersion and a homomorphism of group schemes.

For any C € G — mod and i — j in I the composition C AV—Gf’* Cg; — Cg; is Avg, -
Moreover, Avg, «, Avg; « have fully faithful left adjoints. By ([41], 9.2.35) the functor
oblvg, : Cg; — C factors through oblvg, : Cg; < C. Denote the functor so obtained
by OblVGi7Gj : CG’j — CG’Z--
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We obtained an adjoint pair oblvg, g, : Ca, = Cg, : Avg, g;,+ Where oblvg, g, is
fully faithful!

1.2.43. Let G be a unipotent group scheme C € DGCat.y,+ a nonunital G-module

G

category. Let D = Fib(C A& C%), this is a full subcategory in C. Consider the functor
¢ : C' — D sending c to cofib(Av%(c) — ¢). We use here the adjoint pair oblvg : C¢ =
C : AvY, where AvS(c) = eg * c. It gives the above morphism Av®(c) — ¢. We want
to check that the essential image of £ generates D.

Clearly, ¢ is left adjoint to the inclusion j : D — C. Since j is conservative, the
essential image of £ generates D by ([18], ch. 1.1, 5.4.3).

Now consider the natural functor Avg . : C — Cg. Clearly, D is contained in its
kernel.

For any smooth group scheme G of finite type, Avf : C — CC factors through
Cg — C%, and the latter is an equivalence ([22], B.1.2). This implies that the kernel
of Avg . : €' — Cg is precisely D.

1.2.44. Let G € Grp(PreStk) be a placid scheme, C' € G — mod. Assume G prounipo-
tent, write G = lim;cjop G;, where G; is a unipotent group scheme, I is small filtered,
and for ¢ — j in I the map oy; : G; — G is a smooth surjective affine homomorphism,
whose kernel Kj; is a unipotent group scheme. Recall that Shv(G) = colim;er Shv(G;),
where for i — j the transition map Shv(G;) — Shv(Gj) is oj;. The natural functor
Shv(G;) — Shv(G) coming from this inductive system is nonunital monoidal. Indeed,
the square is cartesian
Gj X Kij Gj — Gj
!
G,‘ X Gi g Gi,
where we denoted by G xk,; G; the quotient of G; x G by the action of Kj;;, where
z € K;j acts on (g1,92) as (912, 271gs). This implies that for F; € Shv(G;) one
has az‘jFI * az‘jFQ’—Ta;‘j(Fl x Fy). Let a; : G — G; be the projection. Now given
M € G — mod", the morphism

id®a ®id : M @ Sho(G;)®" @ C — M ® Shv(G)®" @ C

becomes a morphism of functors in Fun(A%, DGCatcont). Here A; C A is the subcat-
egory with the same objects and only injective maps. By ([33], 6.5.3.7), A® — A is
cofinal, s0 M ®gpy(q) C — colimp,c aor M & Shv(@)®" @ C. Restricting the action, we
may view M as a nonunital right Shv(G;)-module, and C' as a nonunital let Shv(G;)-
module, and we get a morphism

M ®shoG) € = M @gnyq) C
for each ¢ € I. Moreover,
M ®gpy(qy C = colimie; M ®gpy ;) Cs

because [ is sifted.
In particular, we get Cg — colim;e; Cg,. This implies formula (7.2) in the paper.
Related question: is the category G — mod equivalent to the category of nonunital
modules over Shv(G)?
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1.2.45. For 7.1.1. The description of Whit, »(G), comes from Section 1.10.8.

The claim for any continuous idempotent comonad acting on some D € DGCat oy
that he has in mind in 7.1.3 seems to be precisely Lemma 1.8.17 from this file.

For 7.1.5. For k < k', Ny//Ni is a smooth scheme of finite type, its dualizing sheaf
is 6[2 dlm(Nk//Nk)]

Definition of (7.3) of the paper: For k < k/ we have by definitions for the closed im-
mersion i : N — Ny the map i*z’!eNk, — en,,. Since i!eNk, — en, [—2dim(Ny /Ni)] by
([44],0.0.21), this gives a map ixen, — en,,[2dim (N /Ny)], hence for F' € ShUSG(Gr‘é’;)
a map

iven, * F' — en,, [2dim(Ny /Ny)] + F

We have AvieXk (F)=xk *x F for F' € Shvge (Gr‘é’;). We have denoted by y; the
s-restriction of yn to Nj. One similarly has i'y — xx[—2 dim(Ny /Ni)]. This gives a
map
AVNEXE(F) S5 (iuxp) * F = xa [2dim( Ny /N3)] « F = Avi ¥ X (F)[2 dim( Ny /Ny,)]
Let us assume Ny = £+(N)%”. The above map yields a morphism
h'+ X [2 dim(Nk /No)] = xp[2 dim(Nys /No)]
in Shv(L£(N)%"), so (7.4) of the paper is the functor of action by

T

(14) E = cgl>i(r)n><k[2 dim(Ny,/No)| € Shv(£(N)“")

T

As in Section 1.2.9 of this file, we may also consider E := i %izm) Xk in Shu(L(N)“").
€(4+ )P

By ([41], 4.0.12) E fits into a fibre sequence

E— II;ing 1T x»

k>0 k>0

where f is given by the collection of maps fy : [[p>oXk — Xm- Here fp, is the
composition B
h—id
IIXk—+Xm+1®Xm - Xm
k>0
and h is the natural map xma1 — 448 Xme1 — Xom fOr @ : Ny <> Nppaq.
Question Is E isomorphic to E’? T think no!!
For C = Shvga(£(N)%"), CP is stable, and we may calculate sequential limits in

C°? by the above recipe. So, E’ fits into a fibre sequence
@ xk[2dim(Ni/No)| & @ xx[2dim(Ng/No)| — E,
k>0 k>0

where ¢ is given by a collection of maps
Im : Xm[2dim(N,, /No)| — k€>BO Xk [2 dim(Ng /No)]
Here g,, is the composition

Xon 2 dim(No/No)] ™5™ X [2 i (N No Y] [2 dim( N1 /No)] = & xi[2lim(Ni/No))
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By ([41], 9.2.6),

E= colim(ig)i E
k€Z+( k) ik

for natural maps iy : Ny — £(N)%". Since z'k admits a left adjoint,
.1 —~ 7. .l
=1 ;
B i o

For k > m one has i\, xr = xm[—2 dim(Ny/Ny,)].
A better idea: one has

i B’ = colim iy k]2 dim(Ny,/No)| = colim i [2 dim(Npm /No)| = Xom[2 dim (N /No)],

because the corresponding inductive system is constant. So, E’ is given by the inverse
system with terms x, [2 dim(Ny,/No)] in lim;e(z, yor Shv(Z;), where the transition maps
are given for k > m by the isomorphisms

i X0 [2 dim (Njo/No)] = Xom[2 dim (N / No )]
Proposition 1.2.46.
colim x; 2 dim(Ni/No)] € Shu(£(N)2')

corresponds to xn € Shv(L(N)")Y under the self-duality on Shv(£(N)%"). The latter

self-duality uses a particular element 0 € Zy to apply the general framework of ([44],
0.0.23).

Proof. Note that dim(Ny/Np) = codimy;, (No) in the notation of ([44], 0.0.23). So,
it suffices to show that for each £ > 0, the image of XI:I under the self-duality

Shv(N;,)5Shv(Ny,)V identifies with the composition Sho(Ng) < Shu(L(N)<") &
Vect given by K — Hom(xx, K). This follows from ([44], 0.0.19). Namely, for k£ > 0
our nondegenerate character f : N — Al can be seen as a projection on a zero term

of a placid presentation Nj, — lim N, with Ny o = A'. Then for K € Shu(Ny),
RI(AY, (f.K) @' £1) = Homgpyu) (Ly, foK)
[l

This proposition explains why E’ is good for the definition of the pseudo-identity
functor (7.5).

By ([45], 1.2.5), for F € Shv(Ny,) one has yx * F = x4 ® RT'(Ny, F @ x;.'). For any
m > 0 one has x,, * B’ = E’ in Shv(£(N)%"), because for k > m, Xum * X — X, and
the convolution preserves colimits. For this reason the functor Ps-Id takes values in
Whitq’m(Grgjx).

For any m > 0, F € Shv(Ny,) applying E'- to x,n*F — F, one gets an isomorphism.
Indeed, applying E’ *- to x,, — 01 one gets an isomorphism. This follows from the fact
that applying RI'(Ny, x5! ® <) t0 Xm — d1, one gets an isomorphism. For this reason
Ps-1d factors through the coinvariants.
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1.2.47. For 7.1.6. Proof of the formula (7.6): let p € AT, u # X. Since WH' is
compact, we have

FHomwnis, . () (W', Ps-1d(6,r ¢,)) =

colimy Homygy,,, . (aref, )Vex (i) WH, AV (5,0 )2 dim(Ni /No) )
colimy, ‘%OmSthG(Grg’J )((iu)!ﬁ/“, Opx Gr[2dim(Ny /No)]) = 0 € Vect

because iLth,Gr = 0. Recall that here ¢, : S* — Gr‘c";:x.
Note that the *-direct image of x; under N, — Gr‘g’;’jz, x +— xt* is the *-extension of
a local system xj \ under i : Nipth — Gr‘é’:x. For the latter embedding ¢ we get

it Ps-Id(0pn6r) = colim i X [2 dim( Ny /No )| =5 xka[2 dim( Ny, /No )]

We used that Stabg yywr (t*) C £F(N)¥", so if m > k then codimy mn(Ngt?) =

T
codimy;,, (Ng). This gives i'Xmx — Xex[—2dim(N,,/Ng)] in the above displayed for-
mula. Now

Homyit, , () (W, Ps-1d (3 6,)) = lim Hom(AV)™ (5,3 ) [~ (A, 29)], Ps-1d (0 1)
lim Jomgny (v, (AVEXE (G ) [ (N, 20)], XA [2 dim (Ve /No)]) =
lim 3omgny () (XA [ 20)], Xien) = e[= (A, 2)]

We have used the fact that AV!Nk’Xk (0¢x Gr) = X [2 dim(NgtY)] over Njt* obtained as in
Section 1.2.25 of this file. Further, dim(Not*) = (), 2p) and dim(Ngt*) = dim(Ny/No)+
(A, 2p). This finishes the proof of the formula (7.6) of the paper.

1.2.48. For 7.2.2. For K € Shv(gc)q(Gr‘gjx), F e Shv(gc)(Grglﬂ) and k > 0 one has
RT(Grg,, K ®' (xi * F)) = RT(Grg,, (x; ' * K) @' F)

canonically. Indeed, consider the map f : Gr x Ny — Gr x Ny xGr, (g,n) — (g,n,n"1g).
The LHS identifies with RT f'( KXy ,XF). Consider now the isomorphism 7 : Gr x N —
Gr x N sending (z,n) to (nz,n). Then RT' 7' f'(K X x; X F) identifies with the RHS.
This shows that the dual of the functor

AVi\/vk’X]C : ShU(gG)(Grcgjx) — ShU(gG)(GrUé’jx)

-1
is the functor Avi Y Shvgay-1 (Gr“épx) p—) Sh’l}(gG)—l(GI‘uéi)w);

Consider the equivalence Shvge)-1(Grg,) — Shvgey(Gré )Y sending K to the
functor F — fx(F) = RD(Grg, K @' F). If K € Shvgay1(Grel,)VeXe then fi
sends each map AvY*X*(F) — F to an equivalence. So, if K € Whit,-1 ,(G) then
[ € (Whity;(G)eo)¥. This defines a functor Whit,—1 ,(G) — (Whitg . (G)eo)", which
is an equivalence. Indeed, it is fully faithful by construction. It is also essentially
surjective.



46

Indeed, if Cy C C is a map in DGCateyns, which is a full embedding, let D =
cofib(Cop — C). Then Fun(D, Vect) = Fun(C, Vect) X pun(cy,vect) 0, s0 Fun(D, Vect) —
Fun(C, Vect) is fully faithful.

Let now K € Shvgay-1 (Gr‘épm) such that fg lies in the full subcategory (Whitg »(G)eo)" C

Shv(gc)(Grgjx)V. Then K € Whit, 1 ,(G). Indeed, it suffices to show that for any &

—1

the map AV>,<N'“’X’c (K) — K is an isomorphism. This map is transformed by f to the

morphism f ! (F) — fx(F), that is, to the morphism fx (Avh*Xk(F)) )
Av, "™ (K)

frx(F) for the natural map & : AvDexe (F) — F. However, £ is an isomorphism in
Whit, . (G)co, hence fi(€) is also an isomorphism. Since F' was arbitrary, we are done.

1.2.49. For 7.2.3. Denote also, by abuse of notation, by Ps-Id : Shvgc(Gr"éﬁx) —
Shvge (Gr“épx) the functor given by (7.4) in the paper. What is missing is the claim that
the dual of this functor is the corresponding pseudo-identity functor Shvgae)-1 (Gr“épx) —
—1
Shvgay- (Gr‘épz) for ¢ replaced by ¢~ '. It is given as colimy, AV*N"’X’c [2 dim (N /Ny)].
This is also related with Proposition 1.2.46 above. This implies that (7.9) is an invo-
lution. This also removes a potential abmiguity in the definition of (7.9), as one could
compose from one side or the pother side!
For the sake of completeness, the diagram commutes
Whit,-1,(G)Y = Whitg(G)eo
T (Ps-Id)Y J Ps-1d
(Whit,—1 ,(G)eo)” = Whity . (G)
here the horizontal arrows are (7.7).
Definition of Verdier duality DV¢4": the image of K € (Whit,,(G)¢) is D(K) €
Whit, 1 .(G)¢ iff for any L € Whit, .(G),

Hom(K,L)= RI(Gr, L ® Ps-Id~Y(D(K)))
It is equivalently characterized by the property. that for any S € Whity . (G)co,
Hom(K,Ps-1d(S)) =5 RI(Gr, (DK) @' S)

1.2.50. For the proof of 7.2.5. It is understood that the map (Whit,,(G)*)? —
Whit, . (G)" sends K to the functor F' +— Homwnp, ,(c) (K, F)). We must check that

the image of W™ under the canonical equivalence Whitg 2 (G)eo — Whit,-1 ,(G)Y is
the functor F fHomWhitqyz(G)(W)"!, F). One has
—~ .
HOmShvgg(Gr‘é’?x)((stA,Gr’ F) =i, F,

where i1 : Speck — Gr‘é’jx is the point ¢*.

1.2.51. For 7.3.5. The following seems relevant here. Let Y € PreStk;s, i : Y’ — Y a
closed immersion (so, schematic), and j : U < Y an open immersion, the complement
to Y’ (so, j is schematic). Let N be a unipotent group scheme acting on Y and
preserving U,Y’. Let x be a character local system on N. Then we have the full
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embeddings Shv(U)VX c Sho(U), Shv(Y)NX c Sho(Y), Sho(Y')NX C Shu(Y') in
DGCateons. The functors j,, j', 4,4 restrict to functors

1

7 Sho(Y)YNX = Sho(U)NX gy, iy : Sho(Y)NX = Sho(Y)NVX : 4

This is because the functors ', 4, ', j. commute with the actions of S hv(N). Moreover,
for K € Shv(Y) we have K € Sho(Y)VX iff j'K € Sho(U)NX and i' K € Shu(Y")Nx.

Indeed, K fits into a fibre sequence iyi' K — K — j,j'K. Suppose i' K € Sho(Y")Vx,
§'K € Shu(U)NX. Since Shv(Y)NX C Shu(Y) is closed under colimits, K € Sho(Y)N:X,
This explains ([22], Lm. 4.6.2).

1.2.52. Note that (Bunf\,p)ooz = colim)\eA(Bun%})g,\w, so that

Shuge (BUns Joca) = Jim Shugo (Buny )<xe),

the transition functors are !-pullbacks. Since limits commute with invariants by defini-

tion,

(15) Whitq,glob(G) = )\leigl)p Whitqyglob(G)g,\

In the latter limit we may pass to left adjoints and get

Whit%glob(G) = Cg\)g[I\n Whitq’glob(G)S)\,

where the transition functors are !-pushforwards (the colimit taken in DGCatcopy, this
is not the colimit it 1 — Cat).

P
For a finite collection of points y = {y1,...,ym} on X — x, let (Buny )oow, good aty C

(Bun‘}\);)oow be the open substack given by requiring that the maps
kYWl Vérc(ooaz)

have no zeros at y. One first defines Whitq((Bunu&p)oox,good ary) as in ([22], 4.5.1).

The full embedding Whity((Buny )ocs, good aty) <> Shvge (BUy )oos, good aty) admits a

continuous right adjoint (this is proved as in Section 1.2.11 of this file), and similarly
for

— P — P
Whit((Buny )<iz, good aty) < Shvge (Buny )<iz, good aty)

This right adjoint commutes with the !-restriction under

WP P
(Bun(f\[ )gAx, good aty — (BUDN )S)\/z, good aty

for A < \.

In ([22], 4.6.5) Dennis uses the following general remark: Let I be the index small
category, we are given I x [1] — DGCat.y sending i to oblv; : C; C Ej, a full
subcategory. Assume obly; is included into an adjoint pair oblv; : C; & E; : Av?
in DGCateont. Let oblv : C = lim; C; — E = lim; E; be obtained by passing to
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the limit in DGCateont. Then C' is a full subcategory of E by ([41], 2.2.17), because
DGCateont — 1 — Cat preserves limits. Assume for ¢ — j in I the diagram commutes

J
Cj Avsy Ej
T 1
Av?
C i TRy Ei

Then the right adjoint to oblv is continuous by
2.2.68), and for any i the diagram commutes

—~

[18], ch. 1.1, Lm. 2.6.4) and ([41], Lm.

c ¥ E
i 1
c ¥ E

If y = y'Uy" then we have the open immersion (Buni:)oom,good aty C (Bun“]\);)oom’ good aty’-
Asin ([22], 4.6.7), the restriction functor along the latter map sends Whit((Bun Np)oom’ good aty')

P
to Whit((Bunﬁ, )oox, good aty), and the diagram commutes

— WP WP
Shvge ((Buny )ooz, good at g’) —  Shvge ((Buny ooz, good atg)
4 4

pp— P
Whlt((Bun(]UV ) ooz, good atg/) — Whlt((Bun“]\)[ )oo, good atg),
where the vertical arrows are the corresponding right adjoints to the inclusions.
P
By definition, Whitg g105(G) C Shvge((Buny )eoz) is the full subcategory of those

. . . —wPr . .
objects whose restriction to (Buny )ocz, good aty li€s in

P P
Whlt((Bunf[ )oo, good aty) C Shvga((BunLX, )ooi, good atg)
for any finite non-empty collection of points y C X — x.
. 5w’ T . .
From (15) we see that given K € Shvge((Buny )ocz), it lies in Whitg g05(G) iff for
any p € A, the !-restriction to (Bun‘]‘)\,p)gwC lies in Whitg gio6(G)<p-
For K € Shvgc((Bun‘X:)gw) the condition to lies in Whitg g104(G) <, is equivalent to

the property that its !-restriction to any locally closed substack given by fixing v < pu
such that in a neighbourhood of x the map

kYWl VéG((V, Nz)

has no zero, lies in the corresponding Whittaker category. (The latter stratum is bigger
than (Bun;‘ifp):,,m).

1.2.53. For 7.3.5 more: the fact that the inclusion Whitg 4104 (G) < Shvgc ((Bunfvp)oox)

is compatible with the perverse t-structure on (Bunfvp)oox comes as follows. For a finite
collection of points y and closed group subschemes £+(N), = Ny C N,,, C L(N),, the
stack N B

—=—wP | N—level ooy

No\N,, x™o (Buny )

ooz, good aty
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. . —wP  N—level coy
has a structure of groupoid acting on (Buny )ocy, sood aiy-

The corresponding action
map is smooth, and for this reason the truncation functors preserve the equivariance
condition. ,

In Section 7.3.5 the perverse t-structure on S hvga((mﬁ )ooz) is mentioned without
any definition. In the convention section a definition of the perverse t-structure for an
ind-algebraic stack should be given. My understanding is as follows: if Y = colim;c; Y;
with Y; an algebraic stack locally of finite type, I filtered then Shv(Y )<Y should be
the smallest full subcategory of Shv(Y') containing Shv(Y;)<? for any i, closed under
extensions and small colimits. Then by (HA, 1.4.4.11), Shv(Y)<" is then presentable
and defines an accessible t-structure on Shv(Y). For K € Shv(Y) we have K €
Shv(Y)Z0 iff for any i, the !-restriction of K to Y; lies in Shv(Y;)Z%. As in the case of

ind-schemes of ind-finite type, this t-structure is compatible with filtered colimits.

1.2.54. For 7.3.5. We may apply ([41], 2.7.6) to describe Shvgc((Bun%p)oox). Namely,
let I be the set of finite subsets in X — x ordered by reversed inclusion. We have

a functor I — PreStk sending y to (Bunuji,p)oox’ good aty- As in ([41], 2.7.6), we get a
functor F': A°? — PreStk sending [n] to

P
I—l(BunN )oom, good at Yo

<

the coproduct in PreStk taken over all maps of sets y : [n] — X — z, that is, y =
{y0,---,yn} C€ X —x. It is understood that if « : [m] — [n] is a map in A then for
Y =1{Y0;---»yn} C X —z one get y' = {Ya(0), - Ya(m)} C Y, and

p — WP
(BunL]’J\Z )ooa:, good aty C (Bunoj‘\)f )oom, good atyf’

Then coli}n(Bun%)oow, good aty identifies with [c]oliAmp F by ([41], 2.7.6). Its sheafification
ye = njc A°

in etale topology is (Bunuji,p)oox. This is similar to ([41], 10.2.2). So, applying Shvgc,
we get

Shugo (Buny Jocz) 5 lim Shoge (BUny )sos, good )
yel® -

and passing to the full subcategories Whit, we get

Whity.giop(G) = lim Whit((Buny )oce sood at )
yel® -

Now for each y, we have the continuous right adjoint

P P
Aviy - Shvgc((Bun‘fV )oo, good atg) — Whlt((Bun‘fV )oo, good atg)

to the inclusion. Passing to the limit over y, we get the continuous right adjoint

Ay poior XN Shvgc((Buan)oox) — Whitg g105(G) to the inclusion.
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1.2.55. For 7.3.10. It is not clear if Shvgc(((Bimu&p)gw) is compactly generated for
D-modules. However, it is compactly generated in the constructible context. Namely,
for any Y € PreStk; s, S hv(Y) is compactly generated in the constructible context by
([2], C.1.1).

Note that Whitg g05(G) is compactly generated by objects of the form W;l’;b for
A € AT. We check that

(16) Whity gi0s(G)° C Shuge (Buny )oes)'*

Consider the smallest stable subcategory C' C Whit, 4104(G) containing W;lib for all

A € At. Then Ind(C') — Whitg giop(G) is an equivalence, so any object of Whitg gop(G)©
is a direct summand in Whity g,,(G) of some K € C. So, over the connected component

of (Bun"]i,p)oox given by i € m1(G), K € Whit, g05(G)<,, for some g € AT over fi, and its

l-restriction to each (Bun(fvp):,\x lies in Whitg g106(G)<. . We see that C' C Whitg g04(G)
is stable under direct summands, so C' = Whit, 4105 (G)°.

Let us check that A € AT, Wg)}gb € Shvgc((Buanp)Oox)loc‘c. It is reduced to showing

that its restriction to (Biuncfvp):A lies in (Shvgc((Biunuxfp):A)c. However, (Bimfvp):A is
isomorphic to A™ /A" for some m,r > 0, where we view A" as a group scheme. Since
it is smooth, for the projection p : A™ /A" — Spec k the functor p, is continuous?

We claim that for Y € PreStk;s; equipped with a trivial action of a unipotent group
scheme U for the projection q : Y — Y/U the functor ¢' : Shv(Y/U) — Shv(Y) is an
equivalence. Indeed, it is fully faithful as invariants under Shv(U) with U unipotent
group scheme. The composition Y N Y/U 2vyis id, where pr is the projection, so
¢ pr' = id. Thus, ¢' is essentially surjective.

Since for p : A™ — Speck the functor p, : Shv(A™) — Vect is continuous, p, is
continuous. Thus, we proved the inclusion (16).

Now the equivalence (7.15) should be the claim that under the Verdier duality equiv-
alence

(Shuge (Buny Jocs) ') =5 Shvge) -1 (Buny Jocs)

the category (Whitg 4105(G)¢) is identified with Whit, -1 4,,(G)°.

1.2.56. For 7.4.1. The proof of ([22], 5.4.1(a)) uses a remark: for a finite subset y C X,
X —y is affine. (If X is smooth proper then X — x is affine. Indeed, the line bundle
Ox(nx) for n large enough defines an inclusion X < PV for some N, and the section
1 € Ox(nz) vanishes only at z, its complement is an affine open embedding).

As in ([22], 5.2.4), we have the following. For ;1 € A the map m, : S — (Biunojifp):wj
is a torsor under Nx_,. The action maps

(17) £,(N)/EF(N) x 8* — (Bun'y )—ps

P N_
and £,(N) x S* — (Buny )Jz\fuéevel“’y are torsors under Nx_¢, 1. Here the condition =

px includes the property ”good elsewhere” by the definitions from [30]. It is understood
here that Ny_(,, acts diagonally on £,(N)/£F(N) x SH.
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For example, Buny — Nx_; 1 \(Gry,y, x Gry,y) with respect to the diagonal action.
This corresponds to a trivialization of a given N-torsor over X — {x,y}.
The group Nx_¢, .1 acts here on £,(N) x S# diagonally, where on the factor £,(N)

N— levelom,

it acts by left multiplication. Recall that (BunN) is equipped with a left
action of Ly(N) by regluing. We let v € Ly(N) act on (2,9G(0;)) € £,(N) x S* as
(2071, 9G(0,)). Then the map

Wée,:iel : £,(N) x $* — (Buny )N#xlevel‘”y

is £,(N)-equivariant. Taking the quotient under £F(N) (acting by right translations

level

on the £,(N)-factor and trivially on S*) in the map m,7* one gets the map (17).
This is why in ([22], (a’) and (b)) the character —x, appears!! (Because when we
talk about action by right translations, we still mean a left action!)

P
Consider the perverse irreducible sheaf WgAlOb on (Bunly )—,z, which is a generator

of Whitg g1op(G)=,- That is, we have a map ev, : (Bunoji,p):w — Al and Wlob =
evy,Ly[dim], where

dim = dim(Buny )—p.e = (9 — 1)(d — (25,2p)) + (2. )

with d = dimn. For the map 7, : S* — (BunN )=paz we verify that 7r w lob[d!]] :ﬂ/%/“,

where d, = dim Bun¥’ is that of thm. 7.4.2.
In Thm. 7.4.2 the shift is correct. Here is a detailed explanation. Let p € AT,

Consider the composition Spec k o ogn Ty (BunN )=u + ¢ Al. Recall that

dlm(BunN )=z = dg + (2P, 1)
with d = dimn and dy; = (g — 1)(d — (2p,2p)). Let

Wﬁob = ev, Lyldg + (2p, )] = eULqu 2 —dy — (2p, )]

so Wk

Jlob 1S perverse.
We know from the proof of 6.2.9 in the paper that the composition Whit, »(G)=, —

Shvga (S*) # Vect is an equivalence and has a left adjoint sending e to

AVf(N): N (6px )

By definition,

o wP

W = AV (5 o) [ {11, 279)]
So, zb(ﬁ/“) = e[—(u,2p)]. Now to verify the isomorphism

(18) T, LWk ld, ]—H/(f/“,

glob

it suffices to apply i%) to both sides. The result follows now from the fact that for
i: Speck % Al one has 'Ly = e[-2).
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1.2.57. For 7.4.1. The following observation from ([22], 2.3.5) is used essentially in

the proof. For p € A, let N* be the stabilizer of t* € Grg in £(IN). There is an

ind-group scheme N’ with a closed immersion N’ C £(N) such that N'N# = £(N) and

N' N NH={1}.

1.2.58. For 7.4.3. The fact that W!xwg’,‘l;*b[dg] = Wiy, follows by base change from (18).
The map (7.16) is defined as follows. If f: X — X’ is obtained from g : Y — Y’ by

the base change via f': X’ — Y’ let f: X — Y be the corresponding map. We have a

canonical map g f' — (f')'g and apply it to W;lob[dg]’

Assume 7r!$ is fully faithful. Then (7.16) indeed induces an isomorphism on all

fHomWhitq’z(G)(-,WA’*). Indeed, the functor WL : Whitg g1op(G)=p — Whitg »(G)=p
is then also fully faithful, namely obtained by restricting 7\, to a full subcategory via
(iu)! : Whitq’glob(G):N — Whit%glob(G). We have

!
P

) A, —~ S ! A%
j{omWhitqyglob(G) (Wg,ulab [d9]7 ngob [dg]) %%OmWhitq’glob(G):u (W;;ob [dg]7 (zu)'ngob [dg]) 4

Homwnit, .(G)—,, (W, (i) W) = Homwnig, . ) (W, W)

. . . . . . | . . . .
which is an isomorphism in Vect, because the arrow with 7, over it is an isomorphism.
We see also directly that

7 [dy] : Whity 105 (G) =0 = Whit, . (G)=°

Moreover K € Whitg gi0p(G) lies in Whity, g0p(G)Z0 iff 7, K[dy] K lies in Whit ¢, z(G)=0.
So, 75 [dg] is t-exact.

1.2.59. The !-pullback functors for maps Z' — Z are missing, where Z € PreStk;,
and Z' is a placid ind-scheme.

Important phenomenon for (Bunfvp)oox. If e Aand K € Shv((BunU]i,p)SWC is the

. . 5w’
extension by zero from a quasi-compact open substack of (Buny )<y, then

Sho((Bun'y Joor) — Vect, L — RI((Bun'y )ooe, (i) K @' L)

is continuous! This is essentially because ”there are G, factors in the stabilizors of
points of this stack”.
For this reason, an object of Whit, 410,(G) is compact iff it is an object of the smallest

full stable subcategory containing W;}’;b for all A € AT,
Let K € Whitg gjo5(G). Then the functor

Shvg-1 (Bun’y )eea) — Vect, L > RT((Bun'y Joor, K @' L)

is continuous. Indeed, K = coli/rxn(iu)*(fu)!L, and for any F € Shv((Bun(pr)oom),
pe

RI((Bun'y )ocss F) = colim, RT((Bun'y )<y, (i)' F)

Comment to the proof of ([22], 4.8.3). The formula (4.7) there is proved for F €
Whit((Buny)g; e )¢ only. Tt holds for non-compact objects also. Indeed, let us

0T
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show that for any F € Shvg—1 ((BUDNp)oom) the functor
. = —w’ !
Whitg giop(G) — Vect, K — RI'(((Buny )ocs, K @ F)

is continuous. Write = colim;c; F; with I is small filtered, F; € Shvg-1 ((Bun?(,p)ooz)c.
Then

RF(((Buan)Oox, K& $)= CQIiIrn RF(((Bunﬁfp)oox, K® ;)
S

by the above. Our stacks appearing are duality adapted, to D(J;) € Shvg—1 ((Bunxfp)oox)c
for each i. So, for each 7 the functor

K — RO((Bun’ )oos, K @' )

is continuous, hence their colimit is also continuous.
P
Conclusion: for any K € Whity gi05(G), F € Shvg—1((Buny )ocz) one has
RI((Bun'’y )oce), K @' F) =5 RT((Bun'y ooz ), K @' Av o XN F)
1.2.60. For 7.4.4. For completeness, Nx_, is a group ind-scheme, for S € Sch?{f, its
S-points is the set of maps S x (X — x) — N. This shows that 7, is ind-schematic.
The group Nx_, can be written as a colimit of unipotent group schemes. Namely,
for a faithful representation N C GL(V) we may take those sections of Nx_, which

gives regular maps V' — V(max) over the whole of X and vary m. So, Shv(S*)Nx-= C
Shv(S*) is a full subcategory.

To calculate the functor dual to Whit,—1 50, (G) hEd Whity-1 ,(G) = Shvge)y- (Gr‘é’fx),
note that for 1 € Whit,—1 ,,(G), Fa € Shvgc(Gr“G":z) one has

RI(1,Fy @ Fo) = R(F) @' () Fa) = Hom (D(F), (72) Fo) =

—wP
Shvge ((Buny )oox)

Homwnis, . () (D(F1), Ava 7 XN) 5 R (Fy @' Ava#oXY)

Thus, the above dual is the composition

AVNglob’XN

Shuga (Grery) ™ Shuga (Buny Joce) “* = Whity 4(G)

Now the dual to the inclusion Whit,—1 ,(G) — Shv(gc)q(Grgw) is the projection
Shvge (Grg,) — Whity 2 (G)co

([22], 5.4.2(a)) in our setting reduces to the following claim: let N’ C £(N)%” be a
group subscheme large enough such that N'Nx_, = £(N)%’. Then for any pu € A the
natural map Avf(N);p’XN — AV of functors Sho(SH)Nx-= — Whit, ,(G)=, is an
isomorphism.

This is a claim like this: there are unipotent group schemes of finite type N” C N/,
amap m: S — Y, where Y is an affine space, S is an ind-scheme of ind-finite type, and
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m is N'-equivariant. So, we have a cartesian square

NS % N\S
In La

N\Y & N\Y

Then first b,m' = nx'b,. Combine this with the fact that Shuv(S)Y” obly Shv(S) AL%V
Shu(S)N is b,. This gives ([22], 5.4.2(a)) on each stratum.

Note that for the map 7, : S* — (Biunujifp)zw the functor (m,) (m,)s : Shv(S*) —
Shv(S*) is the functor of action by wy, . It takes values in the full subcategory
Shv(SH)Nx-= C Shu(SH).

Before commenting on ([22], 5.4.2(b)), which is badly explained, we claim that the
composition

Whity . (G) < Shvge (Gré,) = Whity o (G)eo
vanishes. We will see this aposteriori from this section and ([22], 5.4.5). And the same
holds for each orbit: the composition

Whitx(G)=x < Shvge (5%) = Shvge (SY) g(nyer

vanishes (this is probably also explained somewhere in Sam).

. wP
It is not true that Avf"]g}}ifb o, identifies with Avf(N)z XN In fact, if we apply m, to

WM we will get zero! Indeed, by ([22], 5.2.4(a)) it suffices to show that 7'm, WM = 0.
The latter identifies with

Al
WNx_. * W y

where we mean the action of Shv(£(N)%") on Shv(S*) here. The result vanishes,
because the isomorphism

Nx_z X 82 Nx_p x 8, (2,9) — (2, 29)

identifies wy, WM with RT(Nx_gz, w) @W™M, and RT(Ny_,,w) = 0, because Nx _,
is a colimit of unipotent group schemes.
The composition

WP AviV/’XN WP\ ()« —wP
Shvga(Gre,) = Shvge(Gre,) = Shvge ((Buny )oox)
takes values in Whitg g0,(G). It suffices to check that after applying zL for any p € A.
To check the latter, it suffices to apply 7TL and show that the composition
N/7XN !
Sho(5) M Sho(81) ™ Shuge (Bunsy )—,) % Shu($#)Nx—
takes values in ShU(S“)S(N)ip’XN. We know that 7TL o (m,)« is the action of wy, . So,

the composition is the action by yn' *wny_, € Sho(£(N)¥"). In ([22], 5.4.5) he claims
in particular the following.
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Lemma 1.2.61. One has
WNy_, * XN — XN * WNy_, — E'[2d] € Sho(L£(N)“")

with d = dimBun% . Here E' is given by the formula (14) of this file.

Proof. We establish the second isomorphism, the first being similar. Recall that Ny =
£H(N)’, and £(N)¥" = colimy, Nj. Write temporarily i : Ny < £(N)¥” for the
inclusion. Assume k is large enough so that N/ € N,. Then Z‘Z(XN’ kK WNy_ ) = XN7 *
WNy_,NN, Dby base change. Here Nx_, N NNy is a group scheme of finite type. Since
N'Nx_, = &(N)¢", we get N'(Nx_, N Ni) = Ny. Besides,

z o
WNx NNy, = €wny o, [2dim(Nx—z N Np)]
S0, XN’ * WNy_ NN, — Xk[2dim(wny ,n,)]- So, the claim is reduces to the equality
dim(Nx_y N Ny) = d + dim(Ny,/No)
for such k. The natural map Nj/Ny N Nx_, — £(N)%"/Nx_, is an isomorphism by

assumption, so No\Ni/Ny N Nx_, — Bun%’ as stack quotients. This gives an equality
dim(Ng\Ng) — dim(Ny N Nx_,) = dim Bun¥; . O

This lemma shows finally that indeed the functor AVY' XN on, from ([22], 5.4.2(b))
takes values in Whitg gop(G).

It should be true that for an object of Shv(S*)Nx-= the (N, x)-equivariance implies
already (£(N)“”, xn)-equivariance.

The idea of the proof of ([22], Pp. 5.4.2(b)) is to check that om, o AVYXN factors
through ShUSG(Gr“G’Tx) — Whitg »(G)eo. To see this let K € Shvgc(Grgx) and k > 0.
We check that the map Avi**¥(K) — K becomes an isomorphism after applying
Ty O Aviv/’XN . Since we will know later that 7' is fully faithful, we may replace the
latter functor by 7' o m, o Aviv/’XN = WNy_, * AViV/’XN.
WNy_, * XN — E'[2d], and we know that the action of E’ on Shvge (Gr“épm) factors

through Shvge (Gré,) — Whitg 2 (G)eo

By Lemma 1.2.61 above,

1.2.62. A general observation about categories of invariants. Let Y = colim;c;Y; be
an ind-scheme of ind-finite type, here J is a filtered category, Y; is a scheme of finite
type, and for j — j' in J the map Y; — Y}/ is a closed immersion.

Let a : H — G be a homomorphism of group schemes, which are placid schemes.
Assume T is a filtered category and H — lim;cjor H;, G — lim;cor G;, where H;, G; is
a smooth group scheme of finite type, for 7 — j in I the transition maps H; — H;,
G; — G; are smooth, affine, surjective homomorphisms. Besides, we are given a
diagram I°P x [1] — Grp(Sch), sending i to «; : H; — G;, where «; is a closed subgroup.
We assume o = lim;cop ;.

Assume G acts on Y. Moreover, for any j € J, Y; is G-stable, and G acts on Y}
through the quotient G — G; for some i € I. We claim that (for any of our 4 sheaf
theories) oblv : Shv(Y)¥ — Shv(Y)H admits a continuous right adjoint Av,.

Proof. We have Shv(Y)% = limj¢ o Shv(Yj)G with respect to the -pullbacks, similarly
Sho(Y)H = limje jor Sho(Y;)H, and oblv : Sho(Y)Y — Shu(Y)H is the limit over
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j € J of oblv; : Shv(Y;)¥ — Shu(Y;)H. For given j € J the functor oblv; admits
a continuous right adjoint Av;,. Indeed, pick i € I such that G-action on Y; factors
through G;. Then oblv; identifies with the functor f': Shv(Y;/G;) — Shv(Y;/H;) for
the projection f :Y;/H; — Y;/G;. Since G;/H; is smooth, f is smooth. So, f' admits
a continuous right adjoint (as f is schematic of finite type).

Let now j — j' be a map in J. Pick i such that the G-action on Yj,Y} factors
through G;. Then we get a cartesian square

h
Y;/H; — Yj/H,

\lf fi \l/ fj/
h/
where h, h' are closed immersions. We have (1) f;: .= f;«h'. Since fj, f; are of the
same relative dimension, we see that the diagram commutes

Sho(Y)H & Sho(Y;)H

1 Avj « d Avyr

Sho(v;)¢ 0 Shu(v;)©
By ([18], ch. 1.1, 2.6.4), oblv admits a right adjoint Av,, and for the evaliation maps
ev;: Sho(Y)Y — Sho(Y;)%, ev; : Sho(Y)H — Sho(Y;)H one gets evj Av, = Avj. ev;.
So, Av, is continuous. O

An example of an application: if H; C G is a closed subgroup, 1 is a smooth affine
group scheme of finite type then take o : H1(0) — G1(0) for O = k[[t]].

Lemma 1.2.63. Let G be a smooth group scheme of finite type over Speck, U C G be a
normal unipotent group subscheme. Then for F € Shu(G) one has Fxey — ey Fxey.
So, if C € Shu(G) — mod then Shv(G)-action on C preserves the full subcategory
CY c O, so we get a Shv(G)-action on CY.

Proof. We have a cartesian square

G ¥ aGxU
laq Im
G/U & q,

where ¢ is the quotient map, and m is the product. Thus, F % ey = ¢*g«F. Similarly,
ey * F=q"q.F. The claim follows from ¢.q*F = F for F € Shu(G/U). The category
CY C C is the essential image of the functor C — C, ¢ — ey * ¢. The second claim
follows. O

Lemma 1.2.64. Let H be a pro-smooth placid group scheme, U be a priounipotent

group scheme with an action of H by automorphisms of U such that the semi-direct

product G = U x H is a pro-smooth placid group scheme. Then for F' € Shv(G) we

have F x ey ey * F xey. Let C € Shv(G) — mod(DGCateont). Then CU is stable

under the Shv(G)-action of C, so inherits such an action (where U acts trivially).
Similarly, ey * F = ey x F x ey.
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Proof. Tt suffices to show the desired isomorphism for F' € Shv(G)¢. We have the
cartesian square

G & gxu
Laq Im
H & @G,

where ¢ is the quotient map, and m is the product. By ([44], Lm. 0.0.19), we have
the base change ¢*q.(F) = my pr*(F) for any F € Shv(G)°. Indeed, we may assume
given an exact sequence 1 — H' — H — H — 1, where H' is prounipotent, and H is a
smooth group scheme of finite type with F € Shu(G/H'). Then we actually deal with
the diagram

¢ & axuU

la Im

H & @

| |

H «+ G/H
(Here H' is not necessarily normal in G). So, we may repeat the argument of the
previous lemma. O

In the situation of the above lemma for C' € Shv(G) —mod(DGCatont) the category
CV inherits an action of Shv(H).

Lemma 1.2.65. In the situation of Lemma 1.2.64 given C € Shv(G)—mod(DGCateont),
the functor (CYYH — CH (obtained from oblv : OV — C' by functoriality of invariants)
is fully faithful.
Proof. We have a morphism of cosimplicial diagrams

Fun(Shv(H)®", CY) — Fun(Shv(H)®", C)
for [n] € A whose limit is the desired functor. Each functor in the diagram is fully
faithful, because Shv(H) is dualizable, so that we may apply ([21], 1.5.1). So, passing

to the limit we get a fully faithful embedding by ([41], Lemmas 2.2.16, 2.2.17), because
DGCateont — 1 — Cat preserves limits. O

In the situation of the last lemma (CV)# = C¢?

Remark 1.2.66. Let G be a placid group scheme, 1 - U — G 45 H 5 1bea
surjective group homomorphism, where H is a smooth group scheme of finite type, U
is prounipotent. Then for K; € Shv(H) one has ¢* K1 x ¢* Ko = ¢* (K1 * K3) naturally.
However, ¢* is not monoidal.

1.2.67. Let P C G be a parabolic in a connected reductive group with Levi M and
unipotent radical U. Let F' = k((t)),0 = k[[t]]. Let H = M(O)U(F). This is a placid
ind-scheme, closed in P(F'). We have also P(F)/H — M(F)/M(0O). Since the object
01 € Shv(Gryy) is H-invariant, the functor Vect — Shv(Gray), e — 01 is Shu(H )-linear.
Now the Shv(H)-action on Shv(Gras) comes as the restriction of a Shv(P(F))-action,
hence we get by adjointness a canonical functor

Shv(P(F)) ®Shv(H) Vect — ShU(GI“M)
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Let us show this is an equivalence.

Proof. Pick a presentation U(F') = colimyey Uy, where U, is a placid group scheme,
for n < m, U, — U, is a placid closed immersion. Assume M (O) normalizes each
Uy, so M(0)U, =: Hy, is a placid group scheme, and M (F') = colim,en H,,. We have
P(F)—= colimpey M (F)U,, in PreStk, as colimits in PreStk are universal. It should
ne true that now Shv(P(F))— colim,en Shu(M (F)U,) with respect to the x-push-
forwards. This gives

Shv(P(F)) ®snhumy Vect — Shu(Gryr) = colim Sho(M(F)Up,) @she Vect
(P(F)) ®sho(m) (Grar) T )1 (M(F)Up) @sho(t,)

The diagonal map N — Fun([1],N) is cofinal, so the above identifies with
colimyen Shv(M (F)Uy) @sho(m,) Vect

Now each term of the latter diagram identifies with Shv(M(F)/M(O)) using ([44],
0.0.36), and we are done. Indeed, for any I € 1 — Cat the natural map I —| I | is
cofinal, and for I filtered we get | I | = *. O

Further, let C' € Shv(P(F')) — mod(DGCatcont). We get
cH = Fungp, gy (Vect, C) = Fungpypery) (Sho(P(F)) ®@snomy Vect, C)
Thus, Fungy,pry) (Shv(Grar), Shv(Gray)) acts on CH. Now
Fungy,(p(ry) (Shv(Grar), Sho(Gray)) = Sho(Grar) " = Sho(Gra)M
1.3. For Section 8.

1.3.1. For8.1.4. If f : X1 — X2 is a map in PreStk;s; which is universally homologically
contractible, G is a gerbe on X then f': Shug(X2) — Shug(Xy) is fully faithful.
Indeed, pick an etale schematic cover Yo — X9 such that G trivializes over Yo, let
f : Y1 — Y3 be obtained by base change. Then Shuvg(Xs2)— Tot Shvg((Y2)%,) and
similarly for X;. Since for each n > 0, Shvg((Y2)%,) — Shvg((Y1)%,) is fully faithful,
passing to the limit we get the desired claim.
In fact, the map (8.2) is universally homologically contractible.

1.3.2. For 8.2.2. More details on the definition of Whit, ran, (G). First, recall that
Ran, = colim;(X' x x {x}), where the colimit is taken over (fSets,), here fSets, is
the category of pointed finite sets, and surjections preserving the distinguished point
([26], 2.5.2). It is understood that the projection X! — X is given by the distinguished
point. Now for I € fSets, we let

E(N)7" = &(N)8an, XRan, (X" xx {})

We have a canonical character ev : £(INV )“Piznz — Al. Tt gives the functor Shv(£(N )ﬁgnl) —
Vect, K +— Homgp,yar)(ev< K, Ly). By definition, xy is this functor, which is an object
of the dual category.

wP

Now Gr&’ = colim Gr¥% ; with
G,Rang Te(fSetss) G,I

Gruél,]l = Grué[:Ranz X Rang (XI XX {QZ})
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and

I = i P \L(N)YY,
Whity Ran, (G) = Ie(flsl‘gs*)op Shuge (Grgy ) ST xx

Here
Shuge (Grgl ) XM X% ¢ §huge (Grl))

is a full subcategory (compare with ([45], 1.2.1) for incorporating the character). We
used here the formalism from Sections 1.3.3-1.3.13.
Namely, £(N)4" € Grp(PreStk /x1) is a placid ind-scheme over X I written as

colimye 4 N7,

where N7 is a placid group scheme over X I for &« — o' in A the map N7 — Nf‘/ is
a placid closed immersion and a homomorphism of group schemes over X!, and A is
filtered (we may take A = N). Then for each a we have the full subcategory

Shvge (Gre )N XN C Shvga (Grg )

and

wP o
Shvgc (Groépl)g(N)I AN = ﬂA ShUgG (Gr“G)p[)Nj XN
I ae s

1.3.3. In the rest of Section 1.3 we develop the theory of group schemes over a base
S acting on categories (for any of our 4 sheaf theories) extending some results of ([31],
Appendix B) established for D-modules.

Let S be a scheme of finite type, f : G — S be a group scheme of finite type and
smooth over S. Then Shv(G) is a monoidal category with the convolution given by

Sho(@) @ Sho(G) B Sho(G x @) L Sho(G x5 G) ™S Sho(@),

for the diagram Gx G <& GxgG 2 G. Here m is the product. Let i : S — G be the unit
section. Recall that (Shv(S),®') is monoidal. Then i, : (Shv(S),®") = (Shv(G), )
and f. : (Shw(G), %) — (Shv(S), ®') are monoidal functors.

Let PreStk;,q—scn, /s C (PreStk;s) /s be the 1-full subcategory where we restrict the
morphism to be ind-schematic of ind-finite type. Consider the functor PreStk;,,q_scn, /s —
DGCatcont sending Y — S to Shv(Y), and amap f: Y — Y’ over S to f, : Sho(Y) —
Shv(Y'). Then this functor is right-lax symmetric monoidal. For Y; € PreStk;,q_sc, /s
the corresponding morphism Shv(Y7) ® Shv(Y2) — Shv(Y; xg Ya) is the composition
¢ o X, where ¢ : Y] xg Yy — Y] x Y5 is the natural map. So, the above functor
sends algebras to algebras. We could also instead consider the above functor with val-
ues in Shv(S) — mod(DGCateont), then it is still right-lax symmetric monoidal. So,
Shv(G) € Alg(Shv(S) — mod).

For K € Shv(G),F € Shu(S) one has canonically K * i,F S K ® f'F=i,F+x K.
So, the two possible structures of a Shv(S)-module on Shv(G) coincide, and Shv(S)
is central in (Shv(G), *).

My understanding is that the following actually is true. Let Corr(PreStk; s /.S)ind—sch,all
be the category of correspondences, whose objects are (Y — S§) € PreStk;s /S, and a
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morphism from Y; to Ys is a diagram Y, g Yia i> Y2 in PreStk;s; /S with g any and f
ind-schematic of ind-finite type. Then in the constructible context we get the functor

Shvcor : COI‘I‘(PI‘eStklft /S)indfsch,all — DGCateont

sending Y to Shv(Y), and sending the above map to f.g' : Shv(Y1) — Shv(Y2). Then
this functor has a natural right-lax symmetric monoidal structure. In the case S = pt
this is ([17], A.1.7).

If now H — S is another group scheme smooth of finite type over S and a: G — H is
a morphism of group schemes over S then a, : (Shv(G),*) — (Shv(H), *) is monoidal
and moreover a morphism in Alg(Shv(S) — mod). So, a, is Shu(S)-linear.

Let now Y € PreStk;s; with a map ¥ — S. Assume G acts on Y over S. Then
Shv(G) acts on Shv(Y) on the left as follows. Consider the diagram

GxY Laxgy ™2y,

where act is the action map. For F € Shv(G), K € Shv(Y)let FxK = act. (¢ (FRK)).
In fact, (Shv(G), Shv(Y')) € Alg + mod(Shv(S) — mod).

Restricting this action under i, : Shv(S) — Shv(G), we get the action of Shv(S) on
Shv(Y) such that F € Shu(S) sends K € Shv(Y) to (pr' F)®' K for pr: Y — S. Now
given C' € (Shv(G),*) — mod, we may consider

Fungp,(c) ) (Sho(S), C) € Sho(S) — mod

The theory of group ind-schemes (over a base) acting on categories is developed in ([31],
Appendix B), where it is explained that the latter is a good definition of invariants of
Shv(G) on C. By ([41], 9.2.36), the category of invariants is defined for (and depends
only on) a non-unital Shv(G)-module category C'.

If h: Y — Y’ is a morphism in (PreStk;s;) ;g assume G acts on Y and Y’ over
S, and h intertwines the G-actions. Then h' : Sho(Y’) — Shv(Y) commutes with
(Shv(G), *)-actions. A way to see it should be to say that the map Y/ — Y in
Corr(PreStk; £t /S)ind—sch,an given by h: Y — Y” is a morphism of G-modules from Y’
to Y in Corr(PreStk;¢: /S)ind—sch,aur- If h is ind-schematic (of ind-finite type) then h,
commutes with the (Shv(G), *)-actions.

Write Y/G for the quotient of Y by G in the sense of prestacks over S, that is,

Y/G: colim GXSGXS... ><5Y
[nleA°P

Let 7 : Y — Y/G be the natural map, p : Y/G — S be the projection. The functor
Shv(S)® Shv(Y/G) — Shv(Y), (F,K) — 7'(K @' p'F) by the universal property gives
a functor

(19) Shv(Y/G) = Fun gpy(a)«) (Shv(S), Shu(Y))
(by [41], 9.2.57).

Proposition 1.3.4. The functor (19) is an equivalence.
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Proof. Let G = G x5 G Xg ... xg G product over S taken n times. Recall that
Y/G = colimp,jc aor G'§ X5 Y. Consider
Shv(Y/G)—= lim Shu(G§ xgY),
[njeA
limit in DGCateons. As in the case when S is Speck, this cosimplicial diagram satis-
fies the comonadic Beck-Chevalley conditions, so that the functor ev® : Sho(Y/G) —
Shu(Y') is comonadic. Indeed, for any n > 0 assume the map attached to the last face
map Oy : [n] — [n+ 1] avoiding n + 1 is id x act : G% x5 G xgY — G¢ xgY. The
functor (id x act)' admits a right adjoint, because G is smooth over S of some relative
dimension d. For any « : [m| — [n] in A then the diagram
GixsY 13 Goxgvy
T on T om
Gg_‘_l ><5Y f§1 G?—H XSY

is cartesian, where we denoted by J,, the map attached to d,, and by f, the map
attached to a. So, f(6m)« = ()« fhi1. The corresponding comonad is (act')® o pr'
for the maps pr,act : G xgY — Y. Here (act')®= act,[—2d] is the right adjoint to
act', and f: G — S is smooth of dimension d. The comonad is act, pr*, it is given by
the action of f*wg € Shv(G) for f: G — S.

Recall that Shu(G) has just one natural structure of a Shv(S)-module.

Write Shv(G)?Zv(S) for the n-th tensor power of Shv(G) over Shu(S). Let us check

that the cosimplicial category [n| — Funghv(s)(Shv(G)?gv(s),Shv(Y)) satisfies the
comonadic Beck-Chevalley conditions. By ([41], 9.2.36) its totalization identifies with
the RHS of (19). For 9, : [n] — [n + 1] the corresponding functor

T . Funghv(s)(Shv(G)?}?v(S), Shv(Y)) — Funghv(s)(Shv(G)?}?:E}g), Shu(Y))

sends h to the functor
Fil®..0Fn—he..0F 1 F,* fiF1)),

where F), * f.F,4+1 is the convolution in the monoidal category Shv(G). Note that
f« : Sho(G) — Shv(S) is a map of Shv(G)-modules, because it is monoidal. It has
a left adjoint f* : Shv(S) — Shv(G), which is a strict morphism of Shv(G)-modules
(this is just base change).

Since Shv(S) — mod(DGCatcopn) is a 2-category, we get an adjoint pair

id@f*: Shu(G)gh, g = Sho(G) Gl g) 1 id®f.

in Sho(S) — mod. Let (T9)F be the functor obtained from id @ f* by applying
Fungp,(s) (-, Sho(Y))
We get the adjoint pair in DGCatynt

T : Fungp(s) (Sho(G)gh, gy Sho(Y)) = Fuangpy(s) (Sho(G)gh & Sho(Y)) = (T9)F
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Let now « : [m] — [n] be a map in A. Consider the corresponding diagram

n (T9n) R n
Fungp,(s) (Shu(G) Gy g) Sho(Y)) "+ Fungp,(s)(Sho(G) i), Sho(Y))
T T T Ta+l
@m (Tom )R @mi1
FunShU(s)(Shv(G)Shv(S), Shu(Y)) — FunShv(s)(ShU(G)Shv(S), Shu(Y))

We check that it commutes. It suffices to prove this for « injective, because of the
following. Let A; C A be the full subcategory with the same class of object, where we
keep only injective maps. Then A% — A is cofinal by ([33], 6.5.3.7).

If o : [m] — [n] is injective, and 0, n are in the image then the desired commutativity
follows from the commutativity of

Shu(G) s Sho(G)ZEH
1 (ma)« 1 (mag1)«

Q@m id®f~ @m-+1
Shv(G)gin ) Shv(G) g is),

where (mg)« is the product along « in the monoidal category Shv(G). We used the
observation that the convolution in Shv(G) factors through a map

Sho(G) @sps) Sho(G) — Sho(G),

which is a morphism of Shv(S)-modules.

If a: [n—1] — [n] is the last face map then a + 1 : [n] — [n 4+ 1] avoids n then 7°F!
is the composition with

Shv(G) gt s) — Sho(G) G gy K1 @ ... @ Knpy = K1 ©... @ K1 @ Ky % K
In this case the desired commutativity follows from K x (f*wg) = (i« [ K) * (f*ws).
Indeed, one has K * (f*wg) = m, pr; K = f* f. K for the cartesian square

G & GxsG
lr Im
s L«

Now we get f*fi K =iy (fo K) * (f*wg).
If : [n— 1] — [n] is injective and avoids 0 then T« sends f to the functor

Ki®..K,» K *f(Ka®...9 K,)
and the commutativity is tautological. So, it always hold. Thus,
evo : Fungpy(q) ) (Sho(S), Sho(Y)) — Sho(Y)

is comonadic, and the corresponding comonad is (T%)®T* for a : [0] — [1],@(0) = 1.
This is the functor Shu(Y') — Shv(Y), F — ffwg * F'. O
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1.3.5. Let now G — S be as in the previous section and x be a character local system
on G, so m*x = q¢*(x X x), and i*x = eg (at least in the constructible context). For
D-modules see the remark below.

We get the auto-equivalence Shv(G) — Shv(G) sending F to F' ® x. This is a
monoidal functor. Indeed, (i.wg) ® x = ixwg, and for F; € Shv(Y') we get

X® (F1* F2) = (x ® F1) * (x ® Fh)

Now for C' € Shu(G) — mod we define C, -1 as the object of Shv(G) — mod equal to
C € DGCatppnt with the new action such that F' € Sho(G) acts on ¢ € C as (F®x) xc.
Here * denotes the original action of Shv(G). This definition agrees with ([45], 1.3.1).
Finally we set

Cox = Fungp(@),«) (Sho(S), Cy-1) € Shu(S) — mod
By Section 1.3.17 below, we may equivalently define it as
((ffws) ® x) — comod(C)

Now for any sheaf theory, maybe eg does not make sense. In this case by a character
local system on G we mean an object £ € Shv(G) invertible for the !-monoidal structure
on Shu(G) and satisfying: m'L = ¢'(£ K L) associatively, and 'L = wg. Then the
functor Shv(G) — Shv(G), K + K ®' L is a monoidal equivalence, which preserves
the full subcategory Shv(S) and induces the identity on Shv(S) (cf. also Remark 1.2.7).
If we actually in the constructible context and L is a character local system on G in
the initial sense then £ := L ® wg is a character local system in this new sense.

1.3.6. Let S € Schy, p: G — S be a group scheme smooth of finite type over S. In
the constructible context the functor p. : Shv(G) — Shv(S) admits a continuous right
adjoint pf : Shu(S) — Shv(G) equal to (pr)Y. Since py : (Shv(G), %) — (Shv(S), @) is
monoidal, p® is right-lax monoidal. In particular, it is a right-lax morphism of Shv(G)-
module categories. That is, for V € Shv(S), M € Shv(G) we have a canonical map
M x pf(V) = p(V ®' p.M).

Lemma 1.3.7. In general, this map is not an isomorphism, and pZ is not a strict
morphism in Shv(G) — mod.

Proof. The argument is due to Sam. Assume S = Spec k.

0) For F,M € Shu(G) write (F,M) = RI(G,F ® M). Let inv(F) denote the
preimage of F under the inversion G — G. Then i}y(inv(F)* M) = (F, M) for the unit
section iy : Speck — G. For Vi, V, € Vect write also (V1, Vo) =V @ V5 € Vect.

1) For F € Shv(G),V € Vect we have (F,pF(V)) = (nF) @ V= (pF, V). Indeed,
it suffices to prove this for F' € Shv(G)¢ and pass to filtered colimits, as Shv(G) is
compactly generated. For F' compact, we get

RI(F @' pf'(V)) = Hom(D(F), pf(V)) = Hom(p,D(F), V)= Hom(D(pF), V)
S(pF)e'V
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2) For F,M € Shv(G),V € Vect we have (F, M % pf(V)) = (inv(M) x F,pE(V)).
Indeed, inv(F « M) = inv(M) xinv(F), so

(F, M % pE(V)) =iy (inv(F) M % pE(V)) = iy, (inv(inv(M) * F) % pE(V))
= (inv(M) * F,p*R(V)>

3) Assume our map M * pf(e) — pf(p,M) is an isomorphism for V = e. Then for
F € Shv(G) we get

(F, M x pE(e)) = (inv(M) * F,pl(e)) = pi(inv(M) * F)

On the other hand, (F, p®(p.M)) = (0 F) @ p. M. Taking F = (ig) e, our map becomes
pi(inv(M)) — p«M. This is not an isomorphism in general, for example, for U = A"
abelian. ]

However, if p : G — Speck is proper, the same argument shows that the map pZ is
a strict morphism in Shv(G) — mod.

1.3.8. Assume now f : G — S is a group scheme over S written as lim;cjor G;, where
I is small filtered category, GG; is a group scheme of finite type over S. For ¢ — j in
I the map f;; : G; — G; is smooth affine surjective homomorphism of group schemes
over S. By definition, Shv(G) = lim;ecror Shu(G;) with the transition functors (fij)«.
(If each G; — S is smooth, we say that G is prosmooth over 5).

Then for ¢ — j the functor (fij)« : (Shv(Gj),*) — (Shv(G;),*) is monoidal, so
Shu(G) = lim;eror Shv(G;) can be understood as a limit in Alg(DGCateont), that is, a
monoidal category denoted (Shv(G), *).

The category Shv(G;) is naturally a Shv(S)-module (both structures of Shv(S)-
module coincides as we have seen above). Then for i € I, Shv(G;) € Alg(Shv(S) —
mod) naturally. Namely, the product on Shv(G;) is Shv(S)-bilinear, and yields a
functor Shv(Gi) @ghe(s) Shv(Gi) — Shv(G;) in Shv(S) — mod. So we may think of
lim;erop Sho(G;) as a limit in Alg(Shv(S) — mod), so Shv(G) € Alg(Shv(S) — mod).
This structure comes of course from the monoidal functor i, : Shv(S) — Shv(G), the
push-out via the unit section <.

For a map i — j in I, the adjoint pair f}; : Sho(G;) S Sho(Gj) : (fij)« takes place
in Shv(S) — mod.

The functor f. : (Shv(G),*) — (Shv(S),®') is monoidal. For the projection ew; :
G — G; the functor (ev;)s : (Shv(G), *) — (Shv(G;), *) is monoidal by construction.

We have G xg G = lim;cror G X g G;, because [ is sifted, so G xg G is also a placid
scheme. The map ¢ : G xg G — G x G is a placid closed embedding for S separated,
but even it is not the functor ¢' is defined.

Let ¢; : G; xg G; = G; X G; be the natural map. In fact, the system of functors qé
is compatible with the transition functors ;}, hence in the colimit over ¢ € I yields the
functor ¢' : Shv(G x G) — Shv(G x5 G).

(More generally, for a placid scheme Y over S € Schy; and a map S — S in Schyy,
let h: Y’ — Y be obtained by base change S — S. Then h' is defined, cf. [44], 0.0.43).
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The convolution on Shv(G) is finally given by the diagram G x G Laxsa B a
and the product is the composition

Shu(G) ® Shu(G) — Sho(G x G) L Shu(G x5 G) ™ Sho(G)

where the first functor is that of ([22], C.2.8), the exteriour product. Since m : GXgG —
G is a morphism of placid schemes over S, m, is well-defined by ([22], Appendix C).

Assume G prosmooth. Then m* : Shv(G) — Shv(G xg G) is well-defined. Indeed,
for each i € I, the product m; : G; xg G; — G; is smooth, so we have m} : Shv(G;) —
Shv(G; xg G;). These functors are compatible with the transition functors fi; in the
corresponding colimit systems, and yield m* in the colimit.

Consider the map v : G — G x S. For F' € She(G), K € Shv(S), one has
WEFRK)S (i,K) « FSF « (i, K),

and Shv(S) is central in (Shv(G), *).

1.3.9. Let us for simplicity understand by a character local system on G a character
local system on G; for some i, that is, its #-pull-back to G. Assume G placid prosmooth
over S.

Let x be a character local system on G and C' € Shv(G) — mod. Consider C, -1 €
Shv(G) — mod as in the previous subsection. We have the adjoint pair

(20) f*:Shu(S) = Shv(G) : f«

in Shv(G) — mod and also in Shv(G) — mod” by Lemma 1.3.16 below. Applying the

functor Fungy,(g) (e, Cy-1), we get an adjoint pair

oblvg, : CEX = O : AvEX

in Shv(S) — mod. The composition oblvg,, Av&X is the functor ¢ — ((f*ws) ® x) * ¢,
where we use the original action of Shv(G) on C.
Applying the functor @ ®@gy, () C, we get an adjoint pair in DGCatcont

oblv® : C := Shu(S) @gpu(c) C S C + AvY

Since f* is a map of Shu(G)-bimodules, oblv® inherits a structure of a morphism in

Shv(G) — mod, hence factors as Cg — C¢ °Pl . Dennis claims the so obtained map
Cg — C% is always an equivalence (for all the 4 sheaf theories) for any placid group
scheme G over S.

Lemma 1.3.10. In the situation of Section 1.3.8 assume each G; is a unipotent group
scheme over S. Then the functor oblvg,, : C9X — C is fully faithful.

Proof. Recall the adjoint pair (20). The unit of this adjunction is an isomorphism
id = fif*. Thus, f* is fully faithful. This gives AvEX ooblvg, — id. 0
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1.3.11. Let S be a scheme of finite type, f : G — H be a morphism of group schemes
over S, both being as in the previous subsection. The functor f, : Shv(G) — Shv(H)
is monoidal.

Indeed, write H = limj¢c jor H; and G = lim;eror G; as in the previous section. It

suffices to show that for any ¢ the composition Shv(G) Eid Shu(H) (eg)* Shv(Hj) is
monoidal. Pick ¢ € I such that this composition factors through ev; : G — G;. Such
factorization exists by ([45], 1.1.3). The induced map f : G; — H; is automatically a
morphism of group schemes over S, hence f : (Shv(G;), *) — (Shv(H,), *) is monoidal
by Section 1.3.3. We are done.

1.3.12. Let S be a scheme of finite type, G — S be an object of Grp(PreStk,g) written
as G = colim;c; G; with G; a placid group scheme over S, I small filtered, and for i — j
in I the map h;; : G; — G is a placid closed immersion and a homomorphism of group
schemes over S. Then for i — j in I the functor (hsj)« : (Shv(G;),*) — (Shv(Gj), *)
is monoidal. Indeed, the square is cartesian

Gj XGj < Gj XSGj

T hijxhi; T

G xG; +— G XSGZ‘
So, Shv(G) = colim;er Shv(G;) taken in Alg(DGCateon) in view of (HA, 3.2.3.1)
equips Shv(G) with a monoidal structure (the convolution). Namely, the projection
Alg(DGCateont) — DGCateons preserves filtered colimits.

Moreover, if H — S is another object of Grp(PreStk,g) with the same properties
(thus, a placid ind-scheme) and o : G — H is any morphism in Grp(PreStk,g) then
ay : Shv(G) — Shv(H) is monoidal. Indeed, write G = colim;er G, H = colimjc; H;
as above. Then for any 7 € I the map G; — G — H factors through H; < H for some
J by ([45], 1.2.6). Besides, the functors Shv(G;) — Shv(H;) — Shv(H) are monoidal,
and form a compatible family giving a monoidal functor a.

For C' € Shu(G) — mod and a character local system y on C' we have

CYX = Fungp,(q)(Shv(S), Cy-1) = Jim. CGix
as in ([45], 1.3.8). (It is more convenient to twist the action of Shv(G) on Shu(S), that
is, get a new monoidal functor Shv(G) — Shv(S) using a character local system on
G. Namely, if G > H = S is a homomoprhism of group prestacks over S, where H
is a group scheme of finite type, and x is a character local system on H, we get the
monoidal functor K — uy (v« (K) ® x)).

Assume in addition that each G; is a prounipotent group scheme over S. Then each
oblvg, y : C%iX — C is fully faithful, and for i — j in I the corresponding functors

CGix 5 cOix Y o

are fully faithful, and lim;czor C%#X amounts to the intersection N;e;CE#X in C' by
([41], 2.7.7), because the forgetful functor DGCatcont — 1 — Cat preserves limits. The
natural functor oblvg , : CEX — (C is fully faithful, it admits a (maybe discontinuous)

right adjoint given by 'li}np AvEixX by Lemma 1.2.12 of this file.
1€l
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1.3.13. Let o : S’ — S be a morphism in Schy;, Y — S be a prestack locally of finite
type over S, G be a group scheme of finite type and smooth over S. Assume G acts
on Y over S. Let G, Y’ be obtained from G,Y by the base change via a. Let x be a
character local system on G, x’ its *-restriction to G’. Let a: Y’ — Y, 8: G’ — G be
natural maps.

The functor ' : Shv(G) — Shv(G') is monoidal, it actually induces a functor
Shv(S") @gho(s) Shu(G) — Shv(G'). For D-modules this kind of sheaves was discussed
in ([29], Sect. 1.6).

The functor & : Shv(Y') — Shv(Y’) commutes with the actions of Shv(G), where it
acts on Shu(Y') via ' : Shv(G) — Shu(G').

It is not true in the constructible context that Shv(G) ®gpy(s) Shv(S") = Shu(G'),
already for S = Speck.

The functor Shv(Y)X — Shu(Y")¢" X’ can be defined as the functor

(21) ((f*ws) ® x) — comod(Shv(Y)) — ((f*ws) ® x') — comod(Shv(Y"))

Here f: G — S, f' : G’ — S are the projections. The latter functor is induced by &'.
Indeed,

B'(ffws) @ Xx) = (f*wsr) @ X’
naturally. In details, @' : Sho(Y) — Sho(Y”) is a map of Shv(G)-modules. So, for any
coalgebra A in Shu(G), the functor &' upgrades to a functor A — comod(Shv(Y)) —
A — comod(Shv(Y")) by ([41], 3.0.49).

Since the colimits in a topos are universal, Y'/G' = (Y/G) xg S’ in PreStk;; canon-
ically. In particular, we have the projection & : Y'/G' — Y/G. It gives the functor
&' : Shu(Y/G) — Shu(Y'/G'). For x trivial the functor &' identifies with (21).

We may also consider the Shv(S’)-linear functor

u: Sho(S") @gpy(s) Fungpy () (Sho(S), Shu(Y)) — Sho(Y”)

coming from the Shv(S)-linear functor

Fungp,, ) (Shv(S), Shv(Y)) S Fungp,, ) (Shv(G), Shv(Y')) = Sho(Y) a, Shv(Y")

Here p: G — S. Then u is Shv(G’)-linear? I think so, but don’t see a formal proof!!!
Then by adjointness ([41], 9.2.57), it gives a Shv(S)-linear functor

Fungp, ) (Shv(S), Shv(Y)) — Fungp,(ar (Shv(S"), Shu(Y"))

1.3.14. Let us convent that by a unipotent group scheme over S € Schy; we mean in
particular, that this group scheme is smooth over S. The analog of Lemma 1.2.14 holds
also over a base:

Lemma 1.3.15. Let S € Schy;, U be a pro-unipotent group scheme over S, U =
lim;ecror U;, where U; is a unipotent smooth group scheme of finite type over S, I is
filtered, fori — j in I, the map f;; : U;j — U; is smooth affine surjective homomorphism
of group schemes over S. Letp : U — S be the projection. Then p* : Shv(S) — Shv(U)
in the constructible context admits a left adjoint (p*)* : Sho(U) — Shv(S). Moreover,
(p")E)Y : Sho(S) — Shou(U) identifies with the right adjoint to p, : Shv(U) — Shv(S).
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We used here the self-duality on Shv(U) from ([45], 1.1.10). In addition, (p*)*op* — id
is the identity, so (p«)T o p. — id is the identity.

Proof. Same proof, we have to replace dim U; by d;, where U; — S is smooth of relative
dimension d;. O

Lemma 1.3.16. Let S € Schyy, p: G — S be a placid pro-smooth group scheme over
S. We have for K € Shv(G), F € Shv(S) naturally (p*F) x K = p*(F @' p.K). So,
p* : Shv(S) — Shv(G) is a morphism in Shv(G) — mod naturally (that is, the left-lax
Shv(G)-monoidal structure on p* is strict).

Similarly for the left action of Shv(G), we have K * (p*F) = p*(F @' p,K), so we
may view p* as a map in Shv(G) — mod — Shv(G), the category of bimodules.

Proof. 1) First, assume p : G — S is a smooth group scheme of finite type over S, of
relative dimension d over S. Then m x pry : G Xg G — G Xg G is an isomorphism.
Here m : G xg G — G is the product. So, for X € Shv(G), ms prs K= p*p.XK.
For K € Shv(G),F € Shvu(S) we get for ¢ : G xg G — G x G the isomorphism
¢ ((p*F)XK)= pr3((p'F) @' K). Tt gives

(p*F) % K = maq (p"F) R K) S m.prs((p F) @ K) S p*p.((pF) @ K)

By the projection formula, p,((p'F) @' K) = F @' (p«K), and we are done.

2) The general case. The map p* is left-lax monoidal. This gives a canonical map
p*(F Q' p K ) = (p*F) * K. We check it is an isomorphism. We have a diagram, where
both squares are cartesian

GxG & GxsG B @
J pxid J pry ip
SxG G LA

Now we apply ([44], Lemma 0.0.19, 0.0.20) to get the desired base change. To see that
the assumptions of Lemma 0.0.20 holds, we may write G = lim;cjor G;, G; is a smooth
group scheme of finite type over S, [ is filtered, and for i — j the transition map
G; — G is a smooth affine surjective morphism of group schemes over S. Then the
left square is a limit over I°P is the cartesian squares

Gi XGZ' & Gz XSGZ'
4 pixid 4 pry
SxG & G
So, ¢'(p*F R K) = prib'(F X K). We have b'(F X K) = (i, F) * K, where i : S — G
is the unit section (this is the usual Shv(S)-module structure on Shv(G)). Further,
My P — p*py. Finally, pu((ixF) * K) = F @' p. K, as p, is monoidal. We are done. [

Let now U — S be as in Lemma 1.3.15 . Consider the adjoint pair p, : Sho(U) =
Shv(S9) : (p«)* in the constructible context. This is not an adjoint pair in Shv(U)—mod
in general, as we have seen above. Let C' € Shu(U) — mod.

The functor oblvy : CY — C does not admit a left adjoint in the constructible
context in general. This happens already for S = Speck and U = G,.
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1.3.17. Let S € Schy, f : G — S be a placid prosmooth group scheme over S, C' €
Shv(G) — mod. Arguing as in Proposition 1.3.4 and using Lemma 1.3.16 in addition,
one shows that cosimplicial category [n] — FunShv(s)(Shv(G)?}’zv(S),C’) satisfies the

comonadic Beck-Chevalley conditions. So, the functor oblvg : C¢ — C is comonadic,
and the corresponding comonad is ¢ — (f*wg) * c.

More generally, if f : G — S is a placid group ind-scheme over S, C' € Shv(G) —
mod then C% — C' is comonadic by ([34], 4.7.5.1), but we can say less about the
corresponding comonad.

1.3.18. Let S € Schy, I filtered, U € Grp(PreStk,g) a placid ind-scheme over S
written as U = colim;c; U;, where U; — S is a pro-unipotent placid group scheme over
S, for ¢« — j in I the map U; — Uj is a placid closed immersion, and a homomorphism
of group schemes. Let C' € Shv(U) — mod.

The forgetful functor oblvy, : CYi — (C is fully faithful for any 4. If it admits a left
adjoint AV!Ui then the fully faithful embedding CV = lim;cjor CY' — C also admits a
left adjoint AV!U by (HTT, 5.5.4.18) as in Section 1.2.14-1.2.15 of this file. In this case
by Lemma 1.2.15, AvV = colim;c; AV![]i.

1.3.19. Let S be a scheme of finite type, f : Y — S a map in PreStk;s which is ind-
schematic of ind-finite type say. Let U € Grp(PreStk / g) be written as U = colim;e; U,
where U; is a prounipotent placid group scheme over S, for i« — j in I, f;; : U; — Uj
is a placid closed immerion and a homomorphism of group schemes over S. Assume U
acts on Y over S, and the action is transitive on each fibre of f. Besides, there is a
section s : S — Y, whose stabilizer is a prounipotent placid closed subscheme of U.

Then f' : Shv(S) — Shv(Y)V is an equivalence? This kind of claim was used in
([24], 1.4.2). What are the precise assumptions to require???

We apply Proposition 1.3.4 of this file. Namely, consider first the following case: let
f Y — S be a morphism in Schy, p : U — S a unipotent group scheme of finite
type over S, U acts on Y over S, and the action is transitive over each fibre of f. Let
s:8 =Y be a section of f, whose stabilizer in U is a closed subgroup scheme U’ C U
over S. Here U’ is defined as U Xyxy Y, namely by the ”equation” us(u) = s(u) for
u € U, here @ € S is the projection of u. By Proposition 1.3.4, Shv(Y)V = Shv(Y/U).

The diagram U — Y — S yields by passing to the stack quotients the diagram S >

Y/U 1, S with f5 =1id. By the assumption, Y/U = S/U’, where the action of U’ on S
trivial. Since U’ is unipotent, the map 3 yields an equivalence 5 : Shv(S/U’) = Shv(S).

We want a version of this result for U € Grp(PreStk,g) a placid ind-scheme over S
as in the beginning of this section.

1.3.20. Let S € Schy; separated, G € Grp(PreStk,g5) be a relative placid ind-scheme
over S written as G = colim;e; G; in PreStk,g, where I is filtered, G; is a placid
prounipotent group scheme over S, for ¢ — j in I the map G; — G; is a placid
closed immersion, and a homomorphism of group schemes over S. Assume 0 € [ is

an initial element, and Gog — S is a prounipotent group scheme over S. Recall that
Shv(G/Go)Y C Shu(G/Gy) is fully faithful. Let i : S — G/G be the canonical section.
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Lemma 1.3.21. Under the assumptions of Section 1.5.20, the composition

Sho(G/Go)SM@ <5 Sho(G/Go) > Shu(S)
s an equivalence.

Proof. (compare with [31], Lemma B.4.1). We have Shv(G/Gg) = lim;eror Sho(G;/Go)
with respect to the I-pullbacks, and Shv(G/Gy) = colim;er Shv(G;/Gy) via x-pushforwards.
So,

Shu(G)Go)*M (&) = [l}mA lim. Fun(Shv(G;)®" @ Shv(S), Shv(G/Gy))
n|e A jeI®

Consider the category Fun([1],I). Note that the map I — Fun([1],]) sending ¢ to

(1 iq i) is cofinal. Indeed, for any i, I;, is contractible. For each j we may write
Shv(G/Gp) = limge g, yor Shv(G;/Gp), and the above limit identifies with

lim lim Fun(Shv(G;)®" @ Shv(S), Shv(Gi/Go)) =
[nleA jelopie(l;,)oP

lim lim Fun(Shv(G;)®" @ Shv(S), Shv(G./G
[J?A]‘EI%P un(Shv(G;)*" @ Shv(S), Shv(G;/Go))

Now fix j and calculate

[1& Fun(Shv(G;)®" @ Shv(S), Shv(G;/Go)) = Shv(G;/Go)i

n

By assumption, Gj/Gy is a scheme of finite type over S. Pick a placid closed subgroup
H C Gq such that H C G; is normal. So, Gj/H is a group scheme of finite type
over S, and the Gj-action on G;/Gy factors through an action of G;/H. Then H is
also prounipotent placid group scheme over S. For the projection p : G; — G/ H the
functor p, : Shu(G;) — Shv(G;/H) is monoidal. The Shv(G;)-action on Shv(G;/Go)
factors through a Shv(G;/H)-action. The prestack quotient of Gj/Go by G;j/H iden-
tifies with B(Go/H), and Shv(B(Go/H)) = Shv(S). Our claim follows from the next

lemma. O

Lemma 1.3.22. Let S € Schy, 1 - U — G — G1 — 1 an exact sequence of
placid group schemes over S, where U — G is a placid closed immersion, and U is
a prounipotent group scheme over S. Let E € Shu(G1) — mod, which we view by
restriction as Shv(G)-module. Then CE = C% canonically.

Proof. Let p : G — S and p; : G; — S be the projections. By Section 1.3.17,
C% = plws — comod(E) and C% = p*wg — comod(E). We have a canonical isomor-
phism of the corresponding comonads on E, because for the projection h : G — G we
have h,h*pjws = pjws. O

1.3.23. We generalize the situation of Section 1.3.13 as follows. Let o : S” — S be a
map in Schyy, Y — S be a prestack locally of finite type over S. Let G € Grp(PreStkg)
be a placid ind-scheme written as G = colim;c; G;, where [ is filtered, G; — S'is a placid
prosmooth group scheme over S, for ¢ — j in I the map G; — G is a placid closed
immersion, and a homomorphism of group schemes. Let @ : Y’ — Y and 8 : G’ — G be
obtained by the base change via .. Set G} = G; xg ', so G' = colim;e; G in PreStk.
Assume G acts on Y over S.
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The functor @ yields a functor Sho(Y)¢ — Sho(Y') defined as follows. First,
for each i € I, we have a functor Shv(Y)% — Shv(Y')% defined as in Section 1.3.13
by (21). Namely, let p; : G; — S, p, : G, — S’ be the projections, §; : G, — G;
be obtained from G; by the base change S’ — S. Since G; is prosmooth over S,
Biptws = (p})*ws: by ([44], 0.0.21). The functor &' is Shv(G;)-linear, where on Shv(Y”)
is acts via 3} : Shv(G;) — Shv(G?%). This gives the functor

Sho(Y)% = prwg — comod(Sho(Y)) = (ph)*ws: — comod(Shv(Y')) = Shv(Y")C

Set v; = piwg, this is a coalgebra in Shv(G). The coalgebra structure comes from
the fact that p; is left-lax monoidal. For i — j in I write f;; : G; < G for the closed
immersion. If ¢ — j is a map in I then we have a morphism of coalgebras v; — (fi;)«v;
in Shv(G) for any of the 4 sheaf theories. In the constructible context it is given by
id — (fi;)«(fi;)*. In other contexts it comes from the natural map

ws = (pj)«(fij)«piws = (pi)«p; ws
The fact that this is indeed a morphism of coalgebras comes from the fact that the
morphism p; — (fij)«p; is a morphism of left-lax functors, so automatically gives a
morphism of coalgebras when evaluated on a coalgebra by ([41], Example in 3.0.12).
It yields a functor (vj) — comod(Shv(Y')) — (v;) — comod(Shv(Y')). The diagram
commutes

(v;) — comod(Shv(Y)) —  (B'v;) — comod(Shv(Y"))
T T
(vj) — comod(Shv(Y)) — (B'vj) — comod(Shu(Y"))
So, we get a morphism of inverse systems and passing to the limit, we get a functor

Sho(Y)4 = lim. Sho(Y)% — lim. Sho(Y')% = Sho(Y)
S 1€l

1.3.24. In practice, we deal especially with the following case. Let o : S’ — S be a
map in Schy;, G € Grp(PreStk,g) be a placid ind-scheme written as G = colim;¢; Gj,
where [ is filtered, G; — S is a placid prounipotent group scheme over S, for i — j
the map G; — Gj is a placid closed embedding and a homomorphism of group schemes
over S. Let Y — S be an ind-scheme of ind-finite type with an action G xgY — Y of
Gover S. Let G' =G xg 58, Y =Y xg 5. Recall that

Sho(Y)9 = lim Sho(Y)%:.
ielop

Here Shv(Y)% C Shu(Y) is a full subcategory, and the above limit amounts to the
intersection (by [41], 2.7.7).

For each i we may write Y — colimjecs Y}, where Y; C Y is a closed subscheme of
finite type, for j — j' in J the map h;; : Y; — Y} is a closed immersion, and Yj is
stable under the Gj-action on Y. Then Sho(Y)% = limje jor Shv(Y;)%. For j — j
in J the functor h!jj, : Sho(Yj) — Sho(Y;) sends Sho(Yj)% to Shu(Y;)% as for any
(C" = C) € Shv(G;) —mod. Let G, = G; xg 5, Yj’ =Y; xg S for jeJ.

The additional phenimenon is that on each Y} the Gj-action factors through an action
of some finite dimensional quotient group scheme G; — G|y, so that by Lemma 1.3.22

Sho(Y;)% = Sho(Y;)Cim
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Assume that on both Y;, Y the Gj-action factors through G; — Gj ;,,. Then we have
the cartesian square

h .1

v, 4y
ol
R
)/}/Gz,m = }/}’/Gi,my
and the functor Shv(Y;)% — Shv(Y;)% idenifies with
it Shu(Yy /Gim) = Shu(Y;/Gim)

In this case the functor Sho(Y)% — Shv(Y”)% is also geometric essentially. Namely,
it suffices to understand each functor Shv(Y;)% — Shv(Yj’)G;. Let G} ,,, = Gim x5 S".
Then we have a canonical isomorphism of prestacks (Y;/Gim) xs S'=Y//G} .. So,
for the projection h : Y]/G; = Yj/Gim we get the desired functor

' Sho(Y) = Shu (Y /Gim) — Sho(Y]/G),,) = Sho(Y])%

1.3.25. More general character local systems. Let S € Schyy, let G — S be a placid
group ind-scheme over S written as G = colim;c; G;, where G; is a placid group scheme
over S, and for ¢ — j in I the map §;; : G; — G is a placid closed immersion (over
S), and a homomorphism of group schemes over S.

Assume we are in the constructible context. By ([44], 0.0.53), each (Shv(G;),®) €
CAlg(DGCateont). Pick a map ¢ — j in I, let 5;; : G; — G be the transition map.
Let E be a character local system on G; in the usual sense, so for m : G; xg G; — G}
one has m*E = prj E ® pr3 E, and for the unit section u : S — G; the local system
u*FE is trivialized. Then ﬁ;‘jE is a character local system on GG;. Moreover, the functor
Shv(G;) = Shv(Gj), K — K ® E is monoidal??

Assume for each ¢ we are given a character local system FE; on G; with an isomor-
phism 3;;E; — E; of character local systems. Consider the self-functors Shv(G;) —
Shv(G;), K — K ® E;. These functors are compatible with the direct images transi-
tion functors (f;;)«, because for K € Shv(G;) we have ((8;5)«K) ® Ej = (Bi5)« (K ® E;)
canonically by ([44], 0.0.55). So, passing to the colimit, they yield a functor of the
tensor product on Shv(G) by the projective system {E;}. My hope is that the latter
functor is monoidal.

For example, if each G; is a scheme of finite type then each functor Shv(G;) —
Shv(G;), K — K ® F; is monoidal. In this case passing to the colimit over ¢ € I in
Alg(DGCatcont) the above functors yield the monoidal functor of the tensor product
on Shv(G) by the projective system {E;}.

1.3.26. An idea coming from ([22], 2.5.7). Let Y be an ind-scheme of ind-finite type,
G be a placid group scheme acting on Y. Write G— lim;cjor G, where I is small
filtered, G; is a group scheme of finite type, and for 7 — j in I, G; — G is smooth
affine surjective. Let K; = Ker(G — G;). We assume K; prounipotent for i # 0, where
0 € I is initial (it seems this is automatic). Then the essential images of the functors
oblv : Shv(Y)%i — Sho(Y) for i € I generate Shv(Y).
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Indeed, let Y/ C Y be a closed G-invariant subscheme of finite type. Then G acts
on Y’ through a quotient G; for some i. So, K; acts trivially on Y’. We see that
Sho(Y') = Shv(Y")Ki ¢ Sho(Y)%i a full subcategory. The claim follows.

For each i consider the right adjont AvEi : Sho(Y) — Sho(Y)%i. We conclude that
the functor Shv(Y) — [], Shv(Y)%i whose i-th component is AvXi is conservative, so
the intersection of kernels of AvEi is zero.

1.3.27. For 8.2.7. The following points from [22] need an explanations. In the notations
of [22] it is claimed in (loc.cit., 2.5.3) that if j > 1 then I’ = (I’NLT(B7))(INL(N)).
This follows from the Iwahori decomposition of ([32], Section 3). Namely,

I = (£4(N7) N K (5 (1) N KL (N)
(see also [54], 2.2.6). Recall that here K; = Ker(£1(G) — £1(G),), and £7(G); has
k-points Hom(k[t]/t/, G). By definition, I is the preimage of £(N); under £ (G) —
£H(@G); and IV = Adtfjp(}j). Note also that [/ = K;L£*(N). Now

Adt—jp(£+(N7) N Kj) C £+<N7)

because for any negative root & and the corresponding root subgroup z4 : Al - N~
for iy € 70 we have t 7Pz (y)t/P = x4t~ (®IP)y) € 24(0). So,

I c YN (EHT) N K;)Ad—i0(£T(N))

1.3.28. in ([22], 2.5.7) the following is used. If D,C; € DGCatcoy for j € J, where
J is a small set, let f; : C; — D be continuous functors with right adjoints fJR. Then

Hj fJR : D — Hj C; is the right adjoint to the functor f : ©;C; — D whose j-th
component is f;.

1.3.29. Assume given a diagram X - Y % X 5 Z in PreStk; s with pi = id. Let
f = mp. Here X is a retract of Y. If f': Shv(Z) — Sho(Y) is fully faithful then
7' Shw(Z) — Shu(X) is also fully faithful as a retract of f'. A similar idea may work
when instead of usual sheaves, we consider sheaves that change under the action by
some group scheme by a given character local system.

1.4. For 8.3.3. The argument about the "retract of a fully faithful functor” is wrong.
We should say instead: Ran, is universally homologically contractible, hence the !-
pullback along the projection Ran, x Gr"éi,c — Gr‘gjx is fully faithful. The claim follows.

1.4.1. For 8.4.1. We may introduce S%an - 5%
property that each map wied) Vé"c is regular and has no zeros over X. So, we have

the open subfunctor given by the

an’

the projections S’%an — Bun%p and S%an is the preimage of Bun“ﬁ,p under this map. Any
object of Whity gan(G)=C is the extension by zero under S C S .

Verification of the shift in the formula: The claim that !-restriction of Vacwnit,Ran
to Gr“éf:x is W% is equivalent to (5}50 W% Se. For the corresponding map Y : S* — Al
one has

o

W)\’_\; (XA)"CW/JB - <2pv >‘>]7
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where £, is the Artin-Schreier sheaf (by Thm. 7.4.2). So, 5é0W07! — e indeed.

1.4.2. Recall that for a prestack X € PreStk;s; the property of X — pt being universally
homologically contractible is equivalent to homologically contractible, that is, to the
fact that the !-pullback Vect — Shv(X) is fully faithful (equivalently, RI'.(X,w) — e is
an isomorphism).

Let us prove ([24], Lemma A.2.5). Let f: X; — X2 be a map in PreStk; s, which is
pseudo-proper. We claim that f is universally homologically contractible iff all its fibres
(over field valued points including extensions of fields) are homologically contractible.

In one direction this is clear: after base change for x € X9 the map (X2), — =
is universally holologically contractible. Conversly, assume each fibre is homologically
contractible. Let ¥ — X be a map with Y € Schy,. Let fy : Y = Y xy, X3
be obtained by base change. By the projection formula, it suffices to show that the
map (fy)ifyw — w is an isomorphism on Y xx, X;. For this it suffices to show that
it becomes an isomorphism after any base change by a field valued point Speck’ —
Y Xy, Xi. Our claim follows from the fact that the pseudo-proper maps f satisfy the

!

base change (fi,g’) for any map g.
1.5. For Section 9.

1.5.1. For 9.1.1. The quotients £ (G).\ Grg, and £7(G)%¥"\ Grg, are naturally iso-
morphic.

About the normalization of the action, is it canonical? Example: let G C G’ be a
closed subgroup of an algebraic group G’, G’ acts on Z € PreStk;s; on the right. Here
say G, G’ € Schyy. Then Shv(G'/G)Y acts on the right on Shv(Z/G) as follows. Write
G\G'/G for the quotient of G'/G by G in the sense of prestacks. We have the diagram

t

Z/GL ZxG (@G B
I p
G\G/p/G

Given F € Shv(Z/G), K € Shv(G\G'/G) one may let Fx K = act,(py x p2) (FRK).
A similar convolution gives a monoidal structure on Sho(G\G'/G), so Shv(G\G'/G) €
Alg(DGCateont). This defines a right action of Sho(G\G'/G) on Shv(Z/G).

But we actually mean a different normalization, which is well-adapted to the perverse
t-structure on G'/G. Namely, assume now G’ is a placid ind-scheme, G a placid group
scheme closed in G'. For F € Shv(Z/G) and K € Shv(G'/G)" for the perverse t-
structure, which is G-equivariant, we first define FRK € Shv(Z x¢ (G'/G)) by the
property that for the diagram of projections

Z)G

(Z)G) x (G')G) & 2 x G )G 5 7 xC (G')G)
and has o*(F X K) = 8*(FKK). Then we let
Fx K= act, (FKK)

This definition is well-adapted to the case when G’ is a placid ind-scheme, and G a
placid group scheme, because the functors o, 5* are well-defined.
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Let p : G'/G — G\G'/G be the natural map. The functor p* is well-defined. Our
normalization is for X € Sho(G\G'/G), F € Shv(Z/G) to let F x X = act, p*(F K K),
where 5 : Z x% (G'/G) — (Z/G) x (G\G'/G) is the natural map.

1.5.2. For 9.2.2. The action of E’ given by (14) in this file satisfies (E'* F') « K = E' %
(F % K). Thus, Ps-1d intertwines the desired actions.

1.5.3. For 9.2.3 and 9.2.4 the tensor product in the left columns makes no sense, write
x instead.

Maybe instead of ”proper push-forward” say ind-proper?

The explanation of the commutativity of the square: given 8§ € Shv,.(G)°, K €
Whit, . (G)¢, L € Whit, ,(G), one has Hom(K %8, L) = Hom(K, L » DVerder iny©(8)).
So,

RI(Grg, L ®' Ps-Id"H(D(K  8))) = Hom(K % 8, L) = Hom(K, L + (Dinv®(8)))
= RI(Grg, (Lx(Dinv¥9(8)))®'Ps-Id}(DK)) = RI(Grg, L&' Ps-Id "L ((DK) «D(8)))

We used that Dinv®(8) = inv® ID(8). This shows that (DK) % (D8) S D(K * 8).

1.5.4. For 9.3.3. Recall that x is an object in Shv(£(N))V, so is x. This is not a
problem, of course.

Line 8: we say ” Xf\\/ descends...”, this is not precise, because the map under which it
descends is not indicated. Say that A is arbitrary, and we consider the map £(N) —
SH=A 2+ zt"~A. Our nondegenerate character ev : £(N) — Al descends under this
map to a morphism év : S¥~* — Al and we get the object x7 € Shv(S#~*)V given
by ev*(Ly). Over each closed subscheme of S it is a true object (the corresponding
functor is representable). We may also refer to ([15], 7.1.5) to explain this. So, x3 is
the analog of the function denoted by X‘;_A in ([15], 7.1.5).

In (9.3) we again do not precise which restriction in Sat, ¢(V) |gu-» is meant!

By F |4 we denote the !-fibre in (9.3).

To verify the formula (9.3) it is easier to establish it for S hv((Biun?Vp)oox) first using
the definition of the Hecke action from ([15], 5.3.6-5.3.8). We will see below that for
Ty Gr“é’jx — (Bimxfp)oox the functor 7, commutes with the right actions of Rep(H).

Let H, be the Hecke stack classifying (Fg, I, ), where Fg, I, are G-torsors on
X, B : Fg— F, is an isomorphism over X — z. We have the diagram of projections

Bung T—_ H, h——; Bung
where h* (resp., h™) sends the above point to Fg (resp., Fr;). Set

—wP
Z = Hy XBung (Buny )ooz;

where we used the map A~ to define the fibre product. We have the projections

P /h<— /h—> 14

(Bun%)oox — Z — (Buny )oox
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extending the above projections h*",h™. Using these projections for § € Sphy(G)
which is perverse on Grg and T € Shv((m‘f\;)mx) one defines (TXS)!, (TKS)"
(Bun'y )acs as in ([15], 5.3.6).

For 8§ € Sphy(G) which is perverse on Grg and T € S hv((mfvp)oox) by definition

T8 ="h ((TRS)")

We calculate the !-restriction of W o * Satg (V) to (Bunfvp):mv. To do this apply

([15], Lemma 7.2.4). As in [15], we have the substacks Z#7, Z%H  ZiH |zt X and so
on given in ([15], 7.2.2), here p, 1’ € A and X is dominant.

Let W)} , be the perverse sheaf on (Buan) —»z for which W;‘l’:b is its *-extension.
Then W lob * Sat, (V) is the x-extension of W) glob * Satqc(V), so we are calculating
the !-restriction to (BunN )=y of W) glob * Satg.c(V). The map
(22) "W 20— (Bun'y )—pa
is a fibration with fibre S*~# by ([15], Lemma 7.2.4). That is, if we trivialize Fg
over D, then the resulting (J, 3) lies in SA~#. On the other hand, the fibre of
'h= o 2PN (Bunyvp):)\x identifies with S#~*. Further, write Z;g‘ for the fibre of (22)
over (Fg, k).

We apply ([15], Lemma 7.2.7) to understand the composition

Iy —

— P
ZE — 70 L (Buny )oxe A

When we identify Zgg\ = SAH then the above function becomes 92,’)_“ in the notations
of ([15], 7.2.7(2)).

So, the !-restriction to (Bunuji,p):ux of W,

glob * Satqgg(V) is

Wiioy ® RE(SY7H, (+Saty,c (V) lsr-n @) L) (1 — A, 25)]

for ;» dominant and vanishes otherwise. Here )‘(ff“ : §2A~# — Al is the function sending
2 G(O) to x(pu(t)zp(t)™h) for z € £(N), and by

(xSatg,c(V)) [gr—wu

we mean the l-restriction. Here £, is the Artin-Schreier sheaf.
Thus, the -fibre of W** x Sat, (V) € Whit, ,(G) at ¢t is

(23) RI(SY7H, (xSatec(V)) [or-n @) Lu)[= (X, 2)],

because the !-fibre of W# at t* is e[—(p,2p)]. As in Section 9.3.4 of the "small FLE”
paper, it is easy to see that (23) isn placed in degrees > (u,2p). This means that the
functor _ * Sat, (V) is left t-exact.

We may also compare with the 2nd displayed formula on p. 747 of the published
version of [15].
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o * Satq.c(V) to (Bunxfp):w The calculation
is done in ([42], after Lemma 2.1.4). The answer is

Wiioy ® RE(SY 74, (xSatq,6(V)) [r—n @) L) (A — 11,20)],

glob
where (xSatqc(V)) |ga-n denotes the x-restriction. Here

Xp M) = x () zu(t) ) ()

Let us calculate the s-restriction of W

The complex
RE(SY7H, (xSaty,c(V)) [sr-n @0 ") Cy) (A — 11, 27)]

is placed in cohomological degrees < 0, this shows that Wg/\l:)!b * Saty (V) is placed in
perverse degrees < 0.

The same calculated is also done in ([46], Theorem 7.1.1).

Our Gr"éﬁx classifies (Fg,7n), where Fg is a G-torsor on X, n : w” — Fg is an
isomorphism over X — z. The map 7, : Gr“éﬁx — (%ﬁ)m sends it to (Fg, k), where
k is the collection of maps ) ) )

WM V3 (cox)
Fa
for A € At given as ) ) )
wPA A Vérc(oox)

We sometimes write Grg, G(0), G(F') meaning actually their twists by w”. We iden-
tify Grg = G(F)/G(0) by the map sending F¢ with a trivialization 7 : w” — Fg over
X —zton~ly e G(F)/G(0) for a given v : w” = F¢ |p,-

The convolution diagram is Convg, it is the prestack classifying G-torsors F,F on
X and isomorphisms 71 : w?=F |x_z, 72 1 F=F |x_z. The map m : Convg — Grg
sends this point to (F,n2 o ny).

Let C/o\rgzg be the prestack classifyillgj point of Convg as above together with a
trivialization p; : w” — F |p,. Let ¢ : Convg — Convg be the map forgetting p.

We identify GSITVG:?G(F ) X Grg via the map sending the above collection to
(7 € G(F), (nap1,F) € Grg). We identify

Convg = G(F) x¢9) Grg

as follows. Let G(O) act on G(F) x Grg so that h € G(O) sends (g1,9G(0)) to

(g1h~ 1, hgG(0O)). This gives via the above isomorphism an action of G(O) on Conve.
Namely, h € G(O) sends the above collection to the same collection with py replaced
by pih1.

Write m; : Convg — Grg for the map sending the above collection to (I, 71). We
get the commutative diagram

Grg Y Convg 3B Grg
\l/ TTx \l/ \L Tz
WP /h~> /h<— WP
(Buny Jocx ¢ Z =  (Buny )ooa,

where both squares are cartesian. This diagram shows that for T € S hv((Bun“]\),p)oox), Se
Shv(Grg) (@) one gets 7 (T * 8) = (7,T) * 8.
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If T pick a trivialization 7 : w” = F¢ |p, then our fibre of 'h* over (Fg, k) identifies
with Gr via the map sending a point of Z to (Fy;, 7y 17). This way we get the subscheme
SA=# C Grg over which we integrate.

How can we get S*¥~* as the fibre? Consider * Convg C Convg given by imposing
the condition that (F,71) € S*. For a point of * Convg, FY; gets a B-structure F5 on
X together with an isomorphism F5 x g T'= w’(—Az) on X.

The scheme m~!(t#) classifies ' € Bung and isomorphisms 77 : w” =3 |x_a,
Ny : F = wP(—px) |x—p such that nan : w? = wP(—px) |x—, is the identity.

For a point of * Convg Nm~!(t*) pick any trivialization

n1 : wp(—)\x)g.’fjg |D:1;
of B-torsors inducing the identity on the corresponding T-torsors and define pp as the

A
composition w? & wP(=Az) B F7, |p,. Then
(F = wP(—pa),map1) € S

Here we view (o1 : w” = F |x—.) € Grg according to our above convention. This
is how you Dennis wants to identify the fibre with S#~*, and gets the l-restriction
SatyG(V) |gu x in (9.3).
Another idea to get (9.3). The inclusion Whit, .(G) < Shvge (Gr‘épz) is a map of
o( NP
right Rep(H )-modules, and in the constructible context has a left adjoint AV!L(N)z XN

(N)L;p XN

Since Rep(H) is rigid, in the constructible context AV!S is a strict morphism of

Rep(H)-modules, not just a left-lax morphism. So,
N U)p
WM % Satyo(V) = Avy V7 XN (5,0 6, % Satg.a (V) [~ (A, 20)]

1.5.5. One more way to calculate the same expression. In the formula below we write
Sat(V) for brevity instead of Sat, (V). Recall that iy : S* < Grg is the inclusion.
Assume V' € Rep(H)¢. We have

Hom(e, i (W* % Sat(V))) = Hom (5, W* * Sat(V)) =
Hom (S + Sat(V*), (ix) W) =5 Homgpysn) (ix)* (5 * Sat (V)), W)

Recall that for our y* : S* — Al one has

o

WA= () Lyl2 = (25, M)

Y
Here Y is what is xj in ”Whittaler patterns”. The composition S*~# ogr XAl
equals X;/\fﬂ . The isomorphism S*~#=58* given by multiplication by t* identifies the
above object of Vect with

Homgpysr—ny (5, (Sat(V*)), (xp ™)' Ly)[2 = (25, N)]
The latter identifies with the Verdier dual of
RIG(SMH, 85, (Sat(VF)) @ (xp ) L3I, 2)]
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Recall that D(xSat(V)) = Sat(V*). Thus, the result becomes
RIS, i, (xSat(V)) @ (™) Lu)[= (A, 27)]
We recovered my formula (23) from the previous section once again.

1.5.6. For 9.3.3. Here is the proof of (9.3) of Dennis up to shift. Recall that iy : S* <
Grg is the inclusion. Write Ny, for the group of maps X —z — N“”. Recall that N,y
is an ind-scheme of ind-finite type, and it acts transitively on S*. We ignore the twist
by w? in the notation below for this subsection.

Write Xou: for the composition Ny < N(F') X AL, Note that Ny N AN (0)t™ is
the global sections on X of the group scheme of automorphisms of the B-torsor w”(—Ax)
acting trivially on the induced T-torsor. This is also the stabilizor of t* € Gre in Ny
Let ny = dim Ny NAN(0)t™. If A € AT then Ny NEAN(0)t=> = N(M?) is the
unipotent radical of the Borel of M?*, where M* C G is the standard Levi whose set of
simple roots is the set of those &; satisfying (A, &;) = 0.

First, we claim that

XLy * 00 = W [(2p, A) — 2+ 2ny)]

Indeed, it suffices to prove this over S*. Let @& : N,y — Grg, z — 2t*. By definition,
Yot Ly * Opx = QX Loyp- Consider the commutative diagram

Nout Xf)t Al

o /7%

S,
where a(z) = 2t} € S, and Y (nt}) = x(n) for n € N(F). We have a.w — w[2ny].
So, over S* we get

Xi)ut'ﬁ’w * 5tA :a*xgutLT/} :04*04!(92)‘>!Lw = ()_()\)!prn)\],

and our formula follows.
For V € Rep(H) and F = Sat(V) consider x},; Ly %0, % F. We have the associativity
and can put the parenthesis as we like here. Write N2, = t *Nyt*. Let Xout, A :

U
N2, — Al be the map sending t~*2t* to x(z) for z € Nyy. Write a : Grg — Grg for

the multiplication by t*.
Next step is the isomorphism

| — !
Xbut[’¢ * 515/\ * F = ay (X;)ut,)\[’¢ * F)
Now the !-fibre of this complex at t* is
.l | — .l .l |
Gy Nout ALy * ) = ity (Xout N * F)
By base change, we have
.l | —~ .l |
Zp—)\(xbut,)\Lw * F) = Z,.uf)\(X.out,)\Lw « F),

where F’ is the l-restriction of F to SH#~A.
Note that the expression Ximt 1Ly * F' makes sense for any sheaf on SHE=A no equiv-
ariance condition on F’ is needed. The object x¥, Ly makes sense naturally as an
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object of S hv(No)‘ut)v, or a projective system of local systems on subschemes of finite
type, cf. Sect. 1.3.25.

We have X!o% oul2] = w Ny, ® Xout \Cy» Where the tensor product in the RHS is in
the sense of Section 1.3.25.

Let a: N, — S#~* be the map z — ztF .

out

Lemma 1.5.7. For F' € Shu(S*~) one has iL_A(ngut * ) = (cw) @ RD(SHA FY)
canonically.

Proof. The group NJ\, acts transitively on S#~*. Write N\, = colimy, Ny, where Nj

U, O
is a unipotent group of finite type. Then wys = colimywy, in S hv(N2,,). Tt suffices
to prove our claim after !-restriction to Njt*~* for each k. Fix such k. We may
assume that F’ is the extension by zero under Ny t#~* < S#= for some k’. Moreover,
we assume the stabilizor of #*~* in N7,, which is finite-dimensional, is contained in
Nys. We may and do assume k > k’. The inductive system m i!thu,A (wn,, * F')
stabilizes starting from m = k, and it suffices to calculate the !-restriction of (wpy, * F')
to Nit"~*. We have wn, = en,[2dim N], where ey, is the constant sheaf on Ny, and
the l-restriction of ex, * F’ to Nyt*~* is ey, ju-» @ R[(F'). So, for the map ay, : N, —
Npth=2, 2z 5 2th 2 we get ((ag)w) ® RF(F’):i!thM_A(wNm x F') for all m > k, so
((ag)sw) @ RF(F’):i!MW_A(wN;n % ). The claim follows, as N\, X gu-x Ngth=> —

Nptt= identifies with ay. O

A version of the above lemma with a character is as follows. Recall that for yp € AT,
N N
X’;_A is the composition S#~A 5 5# X AL, This is the map sending zt*~* to y(t 2t ™)
for 2 € N(F). Then X’;_Aa = Xout,\-

Lemma 1.5.8. For F' € Shv(S*=) and u € AT one has canonically
fa(Xouta L) * F) = (axa' 0 Ly) @ RI(S* F @' (G 7)'DLy))
Proof. This follows from the general claim below. O

Lemma 1.5.9. Let N = colim;c; N;, where N; is a smooth group scheme of finite type,
I is small filtered, for @ — j in I the map N; — N; is a closed subgroup scheme. Let
S be a N-homogeneous space with a k-point s € S, whose stabilizor in N is a closed
unipotent subgroup of finite type. Let x : S — H be a map, where H is a group scheme
of finite type. Let € be a character local system on H. Let q : N — S,z — zs and
F € Shv(S). Assume xq is a homomorphism of group ind-schemes. Then

a'X'€* F= (¢:(¢'x'€)) ® RT(S, (x'DE) @' F)

Proof. We may and do assume that F' is the extension by zero under Nis < .S for some
fixed k, as both sides are continuous functors of /. We may aslo assume the stabilizor
of s in N is contained in IVj.

Let i; : N; — N be the embedding. Let N; & N;is X H be obtained by restriction.
Then ¢} x*€ is a character local system on N;, and ¢}x}€ = ¢fx;€[2dim N; — 2 dim H].
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From the cartesian square
1 id xq; Lai
Nz’ X NZ'S ai;n NZ'S
For ¢ > k we see that
(@XE) * FSX[E@RI(N;s, F @ xjE€H) = x;€ @ RT(N;s, (x;DE€) @' F)
We get RT(S, (x'DE€) @' F)= RT(N;s, (x;DE) ® F), and the above isomorphism be-
comes

(@) *F = ((g:)swn, @ x;E)ORI(S, (X DE)R'F) = ((g:)+ (4;x;€)) @RI (S, (X' DE)®'F)

Since ¢'x'€ = colimye(i;)1itq'x'€ = colimes ¢ix;€ in Shu(N), we get passing to the
colimit over ¢

a'X'€* F= (¢:(¢'x'€)) ® RT(S, (x'DE) @' F)

Combining with the above we obtain the following.

Proposition 1.5.10. For V € Rep(H), A € AT, p € A the complex iy, (W**Sat,(V))
vanishes unless u € A*. In the latter case it identifies with
RI(S", (1), _ySaty(V)) ©' () DEy) = (A, 26) — 2 + 2n,.

O

For \, ;r dominant in the above Proposition we get ny = dim N(M?*), n,, = dim N(M*).
1.5.11. Note the following. Let A € AT,y € A, V € Rep(H) finite-dimensional.
Using the notations of (23), since W** x (xSat(V)) is not compact in Shv(Grg),
(24) i (W 5 (xSat(V))
does not identify with

Homveet (i3n (W’\’! x Sat(V*)), e) :?ﬂ{omghv(gm)(W)"! x Sat(V™), o)

wP
= Homwi, . () (WM % Sat(V*), Avi™E 2V (5,.)).

In fact, the latter complex vanishes by lemma below.
SN X _
Lemma 1.5.12. For any p € A, Avy (0m) = 0.

Proof. Tt suffices to show that ﬂ{om(W”’!,Avf(N):p’XN(étu)) =0 for all v € AT. This
is clear for v # p. For v = p we show that Homgy,,(gu)(wsk, dm) = 0.

Indeed, let N(F') = colimy N, where Ny is a pro-unipotent group scheme, and each
N — Ny is a placid closed immersion. For each k consider Nit* C S*. Then wgr =
colimy, wy, ¢, and wy, i = €[2 dim(Nyt*)], so Hom(wp, x, Opn ) = €[—2 dim(Nyt#)]. Thus,
HomShU(SH)(wsu, 5,5#) = limk Hom(katu, (5tu) =0.

Since v?/us(xu)*% ® wgk up to a shift, we get HomShv(Su)(VT/“, S) = 0. O
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1.5.13. For 9.4.2. We may introduce Ag ={\ € A" | (\,&;) = 0 for all i}. Then we
may add in Lemma 9.4.2 that for A € AT the elements y, v are defined uniquely up to
an action of Ag.

1.5.14. For 9.4.6. When you write in line 5 ”expression”
W)\’* * S(Zt%G(V’Y) ‘t,u,
precise that this is the !-fibre.

1.5.15. For 9.5.1. For the convenience of the reader, recall the following. Let A be
a torsion abelian group whose elements are of orders coprime to chark. To describe
the multiplicative A-torsors on T' (also known as Kummer local systems), we have to
analyse

Mapg,p(prest) (1> Bet(A)) = Mappq(presi) (B(T), B2 (A))

This is the relative cohomology Mapp,.s (B(T), B4(A)) X Mapp,osi (+, B2, (A)) *- Let ¢ :
« — B(T') be the natural map in PreStk. Define K by the fibre sequence K — A — ¢, A
in the corresponding stable category of sheaves on B(T'). The corresponding long exact
sequence in cohomology gives 0 — H2,(B(T), K) — H%(B(T),A) — 0. The map in
the middle is an isomorphism, so

H%,(B(T), K)= Hom(A, A(—1))
by ([29], Th. 3.2.6). So,
7o Mapg,p (presti) (1 Bei(A)) = Hom(A, A(—1))

If G is an A-gerbe over *, to provide its descent datum under the map x — B(T) means
essentially to provide a point of Mappq(presti) (B(1), B2,(A)). Indeed, we may assume
our gerbe on x trivial. The corresponding multiplicative A-torsor on T is obtained as
follows: we have QB(T)—=T. So, for h : T — * we get an automorphism of h*§, which
is given by a A-torsor on T

If £€: T — Bet(A) is a Kummer local system corresponding to f : A — A(—1) then
for A : G,, — T with A € A its restriction to G,, is a local system corresponding to
f(A) € A(—1). Namely, for n > 1 coprime with chark, G,, — Gy,, z — 2" defines
a map Gy, — Bet(upn), and an element f € Hom(u,, A) allows to compose it with
Bet(,ufn) — Bet(A)-

1.5.16. For 9.5.2, line 2: x’{)‘ : SF — Gg is Gyp-equivariant, where G, acts on G,
by multiplication by scalars and on S* via p : G,, — T and the T-action. Here
Xo (2t") = x(2)xg ().

In line 3 we consider the push-forward of ¥, under S* N S™" — G, but it is better
to say here along b — G,, where b C S#¥NS™" is a given irreducible component. Recall
here the following. Let ev : S# — A! be the map sending zt*G(0O) to x(z), where
X : £(N)¥” — Al is our nondegenerate character. Then for any irreducible component
b of S¥ NS, the map ev : b — Al is dominant?? For this ([23], Section 5.6) is not
sufficient.
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If ¥, is trivial on a given irreducible component b C S#¥ N S™" then p — v € Af
because ¥, is twisted T-equivariant under the Kummer local system corresponding to
b(p—v,-): A — e*(—1).

Let x5 : S* — Al be the map sending zt*G(0) to x(z), where x : £(N)<" — Al
is our nondegenerate character. Let pu # v and b be an irreducible component of
SHNS™Y. If the map xh : b — Al is dominant then x @ ¥, is nontrivial on b. Indeed,
for x4 : b — Al the complex ((xh)1¥,)® Ly in usual degree (u—wv, 2p) —2 is twisted Gyy,-
equivariant under the Kummer local system corresponding to b(u—v, p) € e*(—1). This
Kummer local system can not be £, at the generic point. So, H<“_”’2ﬁ>_2(£¢®(xg)g\11q)
is nontrivial over the generic point of A'. So, Hé”_y’Qm(b, & ®¥,) =0.

This shows that if X(])V ® W, is trivial on b then both XS)V, VU, are trivial on b.

By ([46], Lemma 4.12.4), for an irreducible component b C S* N S™" the map
Xp i b — Al is dominant iff there is a vertex i of the Dynkin diagram such that
¢i(b) > (p, &i).

1.6. For Section 10.

1.6.1. For 10.1, last line. I propose to add that H is of finite type, this is the only
needed case, right? Recall that Rep(H) is rigid.

Namely, by [7], B(H) is perfect in the sense of [GR1, ch. 1.3, 3.6], hence also passable
by [GR1, ch. 1.3, 3.5], hence rigid by [GR1, ch. 1.3, 3.4].

1.6.2. For 10.1.2. Refer to [GR1, Chapter 1, 9.3.3] for the existence of the continuous
right adjoint Wy, to CRD — C QRep() D- T he fact that W,,,;, is conservative follows
from the fact that the essential image of C ® D — C Qrep(p) D generates C Qrep () D
under colimits by [GR1, ch. 1, Lemma 5.4.3]. The generation claim is [GR1, ch. 1,
Lemma 8.2.6].

1.6.3. For 10.1.2. By [GR1, ch. 1.1, 3.7.7], the functor W, : C QRep() D = C®@ D
is monadic. The standard totalization complex representing

FunRep(H)@Rep(H) (Rep(H)7 Cw® D) —=C ®Rep(H) D
gives the description of C' ®@gep () D from 10.1.2.

For the diagonal map A: B(H) — B(H)x B(H) one may define Reg(H) € Rep(H)®
Rep(H) = QCoh(B(H) x B(H)) as Ay O. The functor A, is right-lax symmetric
monoidal, so sends algebras to algebras. So, A, O is an algebra.

Consider the adjoint pair m : Rep(H) ® Rep(H) = Rep(H) : m®f. Applying
Fungep(mygrep(s) (@, C ® D), we get the adjoint pair

Puniv : CRD S C ®Rep(H) D : Wouniy

Now mf om is the monad on A® A for A = Rep(H) given by the action of the algebra
m®(1). These results hold for any symmetric monoidal rigid A € C Alg(DGCateont).

1.6.4. For 10.1.4. If C, D are compactly generated then C'® D is compactly geberated
by objects of the form ¢ X d with ¢ € C¢,d € D¢ by ([18], ch. 1.1, 7.4.2). By ([18], ch.
L1, 7.1.5), the functor C' ® D — C ®gep() D sends compact objects to compact ones,
80 C ®Rep(r) D 1s compactly generated by the above.
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1.6.5. For 10.1.5. Let C' € Rep(H) —mod", D € Rep(H) — mod. Assume C, D dualiz-
able in DGCat,ynt. Then we have a canonical isomorphism

DY ®Rep(H) Cv - (C ®Rep(H) D)v

by ([18], ch. 1.1, 9.5.4). Namely, since Rep(H) is symmetric monoidal, the correspond-
ing automorphism denoted ¢ in loc.cit is the identity.

The fact that the adjoint pair @iy : DY @ CY S DY @gep(pry) C : Waniy is obtained
by passing to the duals in the adjoint pair C ® D = C ®gep(sy D follows from ([41],
9.2.37) for example.

1.6.6. For 10.1.7. Let C, D € DGCat.y: be compactly generated equipped with t-
structures. Assume the t-structures compactly generated for C, D (see Sect. 6.3.8 of
the paper). That is, Ind(C¢ N C=%) = C=Y naturally. By ([34], 1.4.4.11) this implies
that the t-structure is accessible, that is, C<C is presentable.

We equip C ® D with the t-structure declaring (C' ® D)<" to be the smallest full
subcategory containing cXd for ¢ € C°NC=,d € D°ND=Y, closed under extensions and
small colimits. This is indeed an accessible t-structure by ([34], 1.4.4.11). Moreover,
C' ® D is compactly generated by objects of the form ¢Xd with ¢ € C¢,d € D¢ by ([18],
ch. 1.1, 7.4.2).

By ([41], Section 9.3) the t-structure on C'® D is compactly generated. Moreover,
the t-structure on C and on D are compatible with filtered colimits.

By ([18], ch. 1.3, 3.6.4), V € Rep(H) is perfect iff its *-restriction under ¢ : Speck —
B(H) is compact in Vect, that is, bounded with finite-dimensional cohomologies. Be-
sides, V' € Rep(H) is pefect iff V' is compact by ([18], ch. 1.1, Sect. 9). The functor
q* is t-exact. Clearly, the truncation functors on Rep(H) preserve Rep(H)¢. Besides,
the t-structure on Rep(H) is compatible with filtered colimits by ([18], ch. 1.3, 1.5.7).
So, the t-structure on Rep(H) is compactly generated and coherent. Moreover, the
product functor m : Rep(H) ® Rep(H) — Rep(H) is t-exact.

Assume H affine. Then the right adjoint m* : Rep(H) — Rep(H) ® Rep(H) is also
t-exact. Indeed, this follows by base change as H is affine: for any S a classical affine
scheme, RI" : QCoh(S) — Vect is t-exact.

If H is reductive then the t-structure on Rep(H) is Artinian (as char(e) = 0).

The shortest way to get the desired claim about t-structure on C'®gep () D is to refer
to ([41], Lemma 9.3.11) using the presentation C' @gepy D — Reg(H) — mod(C ® D).

The t-structure on C' ®@gep(gy D can also be defined by ([34], 1.4.4.11). Namely,

(C ®Rep(rry D)= C C @pep(ay D

is the smallest full subcategory containing ®.,,i,(cXd) for c € C°NC=<,d € D=0N D¢
stable under colimits and extensions. We see that the t-structure on C' ®gep(r) D is
accessible. One gets immediately that (C @pep(ry D)0 = UL ((C® D)>"). Besides,
the t-structure on C @gep(r) D is compactly generated by construction: for ¢ € C°N
C=% d € D=%N D® the object ®ypiy(c X d) is compact in C ORep(H) D-

Assume the action functors a : C @ Rep(H) — C, b: Rep(H) ® D — D are t-exact.
Why both @, and ¥, are t-exact?



85

We may try to apply ([18], ch. 1.3, 1.5.8). Namely, via the usual bar construction
write V' ®@gep(ary D — [c]oliAmp C ® Rep(H)®"D. Passing to right adjoint, this rewrites
nje A°

as
lim C ® Rep(H)®"D
[nleA
Let af' : C — C ® Rep(H), b : D — Rep(H) ® D be the right adjoints to a,b.
Recall that af, b® are continuous by ([18], ch. 1.1, 9.3.2). By ([41], Remark 10.1.6),
they are left t-exact. Recall also that there is an explicit formula for af? given in ([18],
ch. 1.1, 9.3.2). Let A = Rep(H). Then a” is the composition

VectwC "3 A0 A % AwC
Here 1 is the unit for the self-duality on the rigid symmetric monoidal category A as
in ([18], ch. L1, 9.2.1). So, to check that a® is right t-exact, it is sufficient to check
that 4 : Vect — A ® A is right t-exact in view of ([41], 9.3.10). This is true, because u
is the composition

Vect 4 A™ A A,
and both functors here are t-exact. The first is the pull-back along smooth map B(H) —
Speck.

A better idea. Recall that for A = Rep(H) the functor m? : A — A® A is t-exact, so
Reg = mP(1) € (A® A)Y. View C® D as a A® A-module, and consider the projection
Uuniv : Reg —mod(C®@ D) — C® D. Its left adjoint @iy : CR D — Reg —mod(C ® D)
sends z to Reg*z with its natural Reg-module structure.

The tensor product of actions A ARC® D — C® D,

(a1 Rag R cKd) — (a1 xc) X (ag * d)
is t-exact by ([41], 9.3.10). Since the functor W, Puniv is t-exact, we apply ([41],
Lemma 9.3.11) and get the desired t-structure on C ®@gepgy D — Reg —mod(C @ D).

1.6.7. For 10.2.2. Say a more standard thing here: for a morphism A — B in
Alg(DGCateont), M € A—mod, N € B—mod we get Funs (M, N) = Fung(B®a M, N)
by adjointness.

1.6.8. For 10.2.5. We must assume H affine of finite type here, as we need B(H) to
be 1-affine in the sense of ([20], Th. 2.2.2).

Note that QCoh(H) is naturally a coalgebra in DGCatc oy, and we define the category
of categories "acted on by H” as QCoh(H) — comod(DGCateons), as in ([20], Section
10.2.1). Moreover, by (]20], Section 10.2.1) one has the equivalence
(25) Rep(H) — mod = QCoh(H) — comod
The map of coalgebras Vect — QCoh(H), e — Op defines an augmentation of the coal-
gebra QCoh(H ), and the corresponding cobar complex co-Bar®(QCoh(H)) is obtained

from [... H? 3 H = pt] by applying the functor QCoh(-). We get

Tot(co-Bar®*(QCoh(H))) = QCoh(B(H)),
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as QCoh : PreStk”? — DGCatons preserves limits. According to ([41], Section 3.3.1),
this totalization gets a structure of an augmented algebra in DGCatcopn:. Is this the
pointwise tensor product on B(H)? I think so, because in ([20], 10.2.2) the obtained
category QCoh(B(H)) is denoted Rep(H).

The equivalence (25) sends Vect € QCoh(H) — comod to QCoh(B(H)) € Rep(H) —
mod. More generally, it sends M € QCoh(H) — comod to

Tot(co-Bar®(QCoh(H), M)) € QCoh(B(H)) — mod

In particular, it sends QCoh(H) € QCoh(H ) — comod to Vect € Rep(H) — mod.

Note also that QCoh(H ) —comod(DGCat,ont) is naturally an (oo, 2)-category. Recall
that QCoh(H) is naturally a commutative Hopf algebra in the sense of ([20], Appen-
dix E), the algebra structure is given by the pointwise tensor product QCoh(H) ®

QCoh(H) — QCoh(H x H) A QCoh(H) for A: H — H x H. The coalgebra structure
is given by

m* : QCoh(H) — QCoh(H x H)= QCoh(H) ® QCoh(H)

for the product m : H x H — H. For this reason, QCoh(H) — comod(DGCatcons)
gets a monoidal structure: for C, D € QCoh(H) — comod(DGCatcont), C ® D is a
QCoh(H) ® QCoh(H)-comodule, and the QCoh(H )-comodule structure is given by the

extension of scalars via the map of coalgebras QCoh(H) @ QCoh(H) 8, QCoh(H).
That is, C ® D is equipped with the composition map
C®D — C®D®QCoh(H)® QCoh(H) %" € ® D @ QCoh(H)

We also have the antipode inv* : QCoh(H ) — QCoh(H) for the inversion map inv :
H — H. The unit object of QCoh(H ) — comod is Vect.

On the other hand, Rep(H) — mod also has a symmetric monoidal structure, as
QCoh(B(H)) is symmetric monoidal. This is the symmetric monoidal structure of
ShvCat(B(H)). My understanding is that it corresponds to the above symmetric
monoidal structure on QCoh(H) — comod via the equivalence (25).

For C, D € QCoh(H)—comod(DGCat,ont) we may consider the inner hom Hom(C, D)
in this monoidal category. According to ([20], 10.2.2), one has Rep(H ) = Hom(Vect, Vect),
where Vect is considered as an object of QCoh(H) — comod(DGCatcopnt). (This comes
from the fact that in the symmetric monidal category Rep(H ) —mod the inner hom from
Rep(H) to iself is Rep(H)). Besides, the functor QCoh(H) — comod = Rep(H) — mod
can be understood as the functor C' — Hom(Vect,C), which is naturally a right
Hom(Vect, Vect)-module.

Now Vect has commuting structures of Rep(H )-module and QCoh(H )-comodule,
hence the functor C' = C ®gep(z) Vect can be seen as the functor Rep(H) — mod —
QCoh(H) — comod.

Note also that Vect @gep(ry Vect — QCoh(H) by ([41], ch. 1.3, 3.3.5).

1.6.9. For 10.2.8. By Ap-graded algebra A we mean A € Alg(Rep(H)). The only case
needed in that A € Rep(H)" 1 think.
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Let H be a torus with weight lattice Agy. Given A a Ag-graded algebra in Vect”,
the isomorphism

A —mod ®gep(my Vect = A —mod

follows from ([18], ch. I.1, 8.5.7). Namely, A € Alg(Rep(H)) and by definition A
mod = A — mod(Rep(H)). Now Vect is a Rep(H )-module, so

A —mod(Rep(H)) @rep(r) Vect = A — mod(Vect)

The functor oblvgecke : A —mod — A —mod sends V to V ® Oy = @xcp, Vi, where
O is the ring of functions on H and V), = V. Write A = &, A),. The A-action on V)
is given by the old one A, ® V) — V)4, with the difference that it changes the graded
component.

1.6.10. Recall that for H reductive, Rep(H) — H/\GA; Vect according to ([20], 7.2.4).

For 10.4.1. It is understood that Rep(H) ® Rep(Ty) — Rep(Ty) is the map of
algebras sending V & W to Res’# (V) @ W.

1.6.11. For 10.5.1, line 1: add C' € DGCatqont.

Recall here the equivalence (C¢)? — (CV)¢, ¢ + ¢” from Section 10.1.5. So, for
c € C% ¢” : C — Vect is the functor Homc(c,). Mention that the Rep(H )-action
on CV is the natural one in the sense of ([18], ch. L1, 4.1.7). The first displayed
formula in this Section 10.5.1 is wrong. Indeed, we want to consider the natural action
of Rep(H) on CV, as the formula Hecke(C)Y = Hecke(C") from 10.1.5 is established
for the natural action.

Given ¢ € CV, the natural action by V € Rep(H) sends ¢” to ¢V x V : C — Vect,
x — Home(e, V+x). By ([34], 4.6.2.1), for V € Rep(H)® the functor C — C,c+— cxV
is both left and right adjoint to C — C,c — V* xc. So, for the natural actions
' x V= (ex VY.

In general, I think there is no reason for an isomorphism

Home (TH(V*) * ¢, ) = Home (e, V + x)

The square given by the displayed formula commutes for the following reason: write
Regy; = (id ® Res? ) (Reg(H)) € Alg(Rep(H)). Then for ¢ € C¢, M € Regy —mod,

CHO"nRegH —mod(RegH *C, M) - C}Comc(c, Obl’U(M))

1.6.12. For 10.5.2, the formulation is very bad! We just apply the 2nd displayed
formula from 10.1.5 identifying Rep(Ty)Y = Rep(Ty) via the natural pairing that we
have since Rep(Tx) is rigid.

Lemma 1.6.13. Let Rep(H) act naturally on Rep(Ty) via the restriction, consider
then the induced Rep(H )-action on Rep(Tx)V. Let us transfer the latter Rep(H)-action
to a Rep(H)-action on Rep(Ty) by the canonical equivalence Rep(TrH) = Rep(Ty )Y
coming from the fact that Rep(Ty) is rigid. We claim that the so obtained Rep(H)-
action on Rep(Tr) is the natural one. Namely, Vi € Rep(H) sends V € Rep(Ty) to
V @ Res™# (V7).
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Proof. We identify Rep(Ty)— Rep(Ty)" sending V to fy : Rep(Ty) — Vect, where
fv (V') = Homgep(ry) (k, V @ V'). The natural action of Rep(H) on Rep(Tx) induces
an action of Rep(H) on Rep(Ty)Y, namely Vi € Rep(H) sends fy to the functor

V' fyResTm (V) @ V') = Homgep(ry) (k, V @ Res’® (V1) @ V)
S0, (/1) * Vi ™ Fyonen i) -

On the other hand, we have the map (Rep(H)®)? — (Rep(H)Y)¢, V +— VV as
for any compactly generated category. We have (V*)V = fy for V € Rep(H)¢. Here
fv : Rep(H) — Vect denotes the functor fy (W) = Homgepm(e, V @ W).

Apply 10.1.5 for C any and D = Rep(Ty), we get the equivalence

He.cke(C')V =cv QRep(H) Rep(Tr)"
and the commutative square
ind o .
((C @ Rep(Ty))c)or Mgk (Hecke(C))P
A \:

ind o

(CY ®Rep(Ty)")* 5% (CY @rep(y Rep(Th)Y)",

where the left vertical arrow sends ¢V to ¢ K VY, and the right vertical arrow sends
z to zV.

By lemma, the pairing coming from rigidity is an equivalence of Rep(H )-modules
Rep(Ty) = Rep(Th)", so gives the equivalence (Hecke(C'))Y = Hecke(CV).

The square that you wrote in 10.5.2 commutes if the left vertical arrow sends ¢cX'V to
¢’ K V* and we use evrywhere the natural actions! That is, for ¢ € C¢,V € Rep(Tx)°
we get

(ind « (c®V))Y=Sind « (c'RV*)

Hecke Hecke

I propose to add this formula and remove the twisted actions. For example, in the
spacial case G = T it is particularly clear that we get the formula I have just written
above for the natural actions.

1.6.14. For 10.6, line 5: T think you meant Hecke(C)" instead of Hecke(C).
We must assume H reductive in Section 10.6.

1.6.15. For 10.6.3. If ¢ € Hecke(C)" then the natural map indpecge OblVhecke () — ¢
is surjective. Indeed, viewing Hecke(C) as Regy —mod(C'), where

Regy = (id ®@ Res)(Reg(H)) € Alg(Rep(H)),

the corresponding map Regy x¢ — ¢ is the action map for this Regy-module. It is
surjective, as the composition ¢ = k * ¢ — Regy ¢’ — ¢’ is the identity.
Recall that

RegH - 69VGI'r'rep(H) VeV*
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Indeed, for V' € Irrep(H) and q : Speck — B(H) we have Hom(V, ¢.0) = Hom(V, k).
This gives a map V @ V* — ¢,0, hence taking the direct sum over V' € Irrep(H), we
get a morphism

€: P VeoV"— Regy = ¢:0
Velrrep(H)

For any V' € Irrep(H) the map € induces an isomorphism
j‘fom(vl’ EBVGIrT’ep(H')VY ® K*) — fHOm(V’, RegH)

Assume now H reductive. Then for any V' € Rep(H)¢ the latter map is an isomor-
phism. Thus, € is an isomorphism.

In (10.7) there is V' € Irrep(H) such that the component ¢; — (c* V) ® V* is
nonzero, because otherwise the map ind(c1) — ind(c) would vanish.

For each V' € Irrep(H) we have a canonical isomorphism ay : VxRegy — Regpy V.
Indeed, consider the Rep(H)-action on itself coming from the symmetric monoidal
structure. We get the adjoint pair

indgecke : Rep(H) <= Regy — mod(Rep(H)) : oblviecke

Then for k € Rep(H) we get indgecke(k) = Regp, so according to Section 10.2.4 of
the paper, we get the desired isomorphisms. As in ([5], Sect. 2.2) it is constructed
explicitly as follows. We have the inclusion V ® V* < Regy via the matrix coefficient,
now the composition

Regyy +(V @ V*) < Regy * Regyy = Regy

yields by adjointness the map ay : Regy *V — Regy ®V, which is an isomorphism.
Here m is the product in the algebra Regy.

The desired map indgecke(c * V) =V ® indgecke(¢) — indpecke(c) identifies indeed
with & x id. This follows from the commutativity of the diagram

V @ Regp id%@d‘/@K*@RegH C Regy ®@Regy
Lay Im
Regy @V 5 Regy

This is general: let E; be vector spaces and a : F; — F3®V correspond by adjointness
toa: By ® V¥ — Fs. Then for £ € V* the diagram commutes

Ey i} EioV*
\La \LO_Z
3

E2®V — E2

1.6.16. For 10.6.6. Let ¢ € Hecke(C)" be irreducible. Then indecke(0bIViecke(€') —
¢ is nonzero. Since the t-structure on C" is Artinian, we may pick a presentation
0blviecke (¢)) = colim;ey ¢;, where ¢; € CY”NCe, and I is small filtered. So, thereisi € I
and a nonzero map ¢; — 0blviecke(¢’), hence the corresponding map indpyecre(c;) — ¢
in Hecke(C)" is nonzero.

For the end of the proof of (b): assume V' € Rep(H)", ¢; € C¥ restricted irreducible
with an isomorphism c¢; %V = ¢;. So, V ®indgecke(c1) = indpecke(c1 % V) = indpecke(€1)
is an irreducible object of Hecke(C)Y by Pp. 10.6.3. So, V is 1-dimensional.
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1.6.17. For 10.6.7. We may apply Proposition 1.2.38 of this file. Indeed, we know
by ([41], Lemma 9.3.7) that Hecke(C') is compactly generated and its t-structure is
compactly generated, so the t-structure on Hecke(C') is in particular compatible with
filtered colimits by ([41], 9.3.5).

By 10.6.6 of the paper we know that each irreducible object of Hecke(C)" is compact.
So, it suffices to show they generate Hecke(C'). Since oblvyeqe : Hecke(C) — C' is
conservative, the essential image of indgecke : C — Hecke(C') generates Hecke(C') under
colimits. Thus, Hecke(C) is compactly generated by objects of the form indyece(c) for
c € C° By 6.3.8 of the paper, such ¢ is cohomologically bounded, its cohomologies lie
in C°N C". Moreover, each object of C¢ N C¥ is of finite length. Thus, Hecke(C) is
generated by objects of the form indyeqe(c) with ¢ € C°NCY such that ¢ is irreducible in
C". So, Hecke(C) is generated by objects of the form indgecke(c* V) = indpecke(¢) @ V.
with ¢ restricted and V € Rep(H)" irreducible. So, irreducible objects of Hecke(C)Y
generate Hecke(C).

1.6.18. For 10.7.3. Our assumptions are: C' is compactly generated with compactly
generated t-structure, the action C®Rep(H) — C'is t-exact, H is reductive. Then both

Hecke(C),He.cke(C) are compactly generated with compactly generate t-structures
by ([41], Lemma 9.3.13). Now any irreducible object of He.cke(C)Q is restricted.
So, by Prop. 10.6.3, Res’#(c) € Hecke(C)? is irreducible for ¢ € He.cke(C)O irre-
ducible. The functor Res’# : He::ke(C) — Hecke(C) is the induction: He.cke(C’) —
He.cke(C) ®@Rep(Ty) Vect, and colnd” : Hecke(C) — He.cke(C’) is its right adjoint (that
is, oblvyecke for the Rep(T'y)-action on He.cke(C’)). Both Res’#, colnd’# are t-exact by
10.1.7 of the paper. So, 10.7.3(a) is proved.

For v € Ay write €7 € Rep(Tx) for the corresponding 1-dim representation of Ty.
For V € Rep(H) write V := Res’# (V) € Rep(Tx) for brevity. Let

Regy 1, = (IdX Res’®)Reg(H) € Rep(H) ® Rep(Tx)
So, Regy 1), — Sverrrep(r) V ® V*. For the adjoint pair
indH . :Rep(H)® Rep(Ty) = Regy 1, —mod(Rep(H) @ Rep(Th)) : oblvH .

eck ecke
we get indH - (kXk) = Regpy 1, - By 10.3.4 of the paper for V' € Rep(H) it is equipped
eckKe

with an isomorphism
V xRegy 1, = Regy 1y, * Res’H (V),

where we write the Rep(T) action on the right, and Rep(H)-action on the left.
Let ¢ € CY be restricted, let us first show that for v € Ag, indH. (cXe7) is

ecke

irreducible in Hecke(C')%. This is similar to 10.6.3. Let ¢ € Hecke(C)® with a given

nonzero map ¢ — indH - (cXeY). We must show it is surjective. We may assume it
eckKe

comes from some nonzero map

" —oblv « ind « (cKe¥)= & (Vxeo)R(e7@V*)
Hecke Hecke Velrrep(H)
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for some ¢’ € (C @ Rep(Tx))Y by adjointness. Since the t-structure on C' is compactly
generated, we may pick ¢; € C=° N C¢ and u € Ay and a nonzero map

o Ket — ® (Vxe)R(7@V*)
Velrrep(H)

So, there is V' € Irrep(H) such that its component
ciMet — (Vxe)X(e? @ V)
is nonzero. Replace ¢; by 72%;, the latter map is still nonzero. We may assume
c1 =V * c and the first component is the identity, and the weight v — p appears in V.
Recall that V % ¢ € CV is irreducible. The corresponding map
indH e (Vxe)Ret)= (indH - (cXeM)xV —ind « (cXe)
e

eck ecke Hecke
is surjective, because when we apply id X Res”# it becomes surjective.
Note that for z € Hecke(C)? if indH - (2) = 0 then z = 0. Indeed, Regp, = @€,
eckKe

and z * Regy,, — @, z*el. Since each e” is one-dimensional, this means that z*e# = 0
for all u € Ag, so z =0.
Let us verify 10.7.3(b) now. Let ¢ € Hecke(C)¥ be irreducible. Then there is

c € He.cke(C')QQ with a nonzero map c; * Regp, — ¢’. Here we view
Hecke(C') = Regr,, —mod(He.cke(C))

The above map comes from a nonzero map ¢; — colnd”# (¢/) in Hecke(C)¥. Since the

t-structure on Hecke(C') is compactly generated, we may assume ¢; € Hecke(C)°.

We could finish if we new that we may assume c¢; irreducible in addition. This is not
clear in general, and maybe wrong.

So, let us make for 10.7.3(b) and (c) and for 10.7.4(b) the assitional as-
sumption: the t-structure on C is Artinian, and the Rep(H )-action on C' is accessible.

Then by 10.6.6 we may assume ¢ — indgecke(c) for some ¢ € CV restricted. The
diagram commutes

ind o .
C ®@Rep(Ty) 5% Hecke(C)
J id®Res J ResTH
C i dgeie Hecke(C)

This is just the functoriality of the relative tensor product. We have already shown
that ind « (cXe) is irreducible. We get Res™ (ind « (c®e))= indpecke(c). So,
Hecke Hecke
10.7.3(b) is proved.
Proof of 10.7.3(c). Let ¢; € Hecke(C)¥ be irreducible with Res”# (¢;) = indgecke(co)

for some ¢y € C¥ restricted. Recall that Res# (indH o (cXe))= indgecke(c). So, we

may take ¢y = indHe.Cke(co Xe), and we get an isomorphism c; * Regr,, — c2 * Regr,,

in Regr, —mod(He.cke(C’)). It comes from a nonzero morphism ca — ¢1 * Regp, =

@uc1 * et in Hecke(C)¥. Since ¢z is compact in Hecke(C), there is a nonzero map
co — c1 * e’ for some p € Ag. It is an isomorphism, as both objects are irreducible.
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The claim 10.7.3(c) is proved. This also proves 10.7.4(b)(ii), because ind « is a map

Hecke
of Rep(Ty)-modules.
We verify 10.7.4(b)(iii). Let ¢; € CV be restricted irreducible, v; € Ay and

- MY 72
dee.Cke(cl Kel)—= 1ndHe.Cke(02 X e7?)

L]
in Hecke(C). Such an isomorphism comes from a nonzero map

ciXe™ —oblv « ind « (caXe™?)
Hecke Hecke

in C ® Rep(Tx). As the t-structure on C' is Artinian, ¢; e € (C ® Rep(Th)), so
there is V € Irrep(H) and a nonzero map c¢; M e — (V x cp) X (72 @ V*). The
latter is the tensor product of an isomorphism ¢; = V # ¢ in C with a nonzero map
e — e2®@V* in Rep(Ty). Since V xcy is restricted, for any V' € Rep(H), (V' ®@V ) *cz
is irreducible in C, hence V is 1-dimensional. Indeed, V @ V* must be irreducible and
contains e. So, 71 — 72 is a character of H, and 10.7.4(b)(iii) is proved.

We verify 10.7.4(b)(i). For ¢ € O restricted irreducible, v € Ag, indH . (cXe") e

ecke

He.cke(C)c, because ¢ € C° So, each irreducible object of He.cke(C')Qp is compact

in He.cke(C). We know already by ([41], 9.3.13) that the t-structure on He.cke(C)
is compactly generated. We check that the objects indH o (¢cXe7) for c restricted

ecke

irreducible in C% and v € Ay generate He.cke(C). Let z € He.cke(C') with

M X e lv » =M . i . X e =
apc®Rep(H)(c e7[n],ob VHecke(z))—> apHecke(C)(deecke(C el)[n], z) = *
for any ¢, as above and n € Z. Since the t-structure on C' is Artinian, the objects
cX e for ¢,y as above generate C' ® Rep(H), so oblvH - (2)=0. Since oblv_« is
ecke

Hecke
conservative, z — 0. We are done by Proposition 1.2.38 of this file.

1.7. For Section 11.

1.7.1. For 11.1.3, in the displayed square remove 77H

This section should be rewritten as follows. I assume that no twisted actions have ap-

peared in 10.5.1-10.5.2 according to my suggestions above. First, He::ke(Whitq,x(G))V

identifies with Whit, »(G)"Y @gep(r) Rep(TH)", where we use everywhere the actions
through Sat, ;. By Lemma 1.6.13 of this file, we identify Rep(T)" = Rep(T) via the
canonical self-diality coming from the rigidity of Rep(7x), and the Rep(H )-action on
Rep(Ty) becomes the natural one. Now we identify Whit,.(G)" = Whit,—1 ,(G) via
(7.9) in the paper. Under this equivalence the above Rep(H)-action on Whit, ,(G)Y
identifies not with the Rep(H )-action via Sat,-1 ¢ but by a twist of the latter. Namely,
for 3 € Whit,-1 ,(G), V € Rep(H) we have (according to Section 1.7.15 of this file)

F x Saty-1.6(V) =T+ Satgc(tu(V))
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1.7.2. For 11.2.1. In general, the composition Af < A — A does not factor through
AY

Example: take G =T = G2,, T = G,, given by the first factor. Let o € e*s(—1).
We get A = Z2. Let G : A — e5'"5(—1) be given by §(a1,a2) = aayas for (ay,as) € Z2.
Then Af = A with base e;. However, e; ¢ Af if a is nontrivial, because b(el, e2) = a.

As we discussed by email, I suppose we include the property Aﬁ C A in the definition
of strictly compatible with the geometric metaplectic data from 11.2.2.

In addition, H — H is a surjection, and its kernel is a torus equal to Ker(TH — Ty),
so Rep(H) C Rep(H) is fully faithful.

The reference for the existence of the map H — H attached to the the corresponding
morphism of root data is (SGA3, XXV, 1.1). This reference uses the notion of données
radicielles réduites épinglées defined in (SGA3, XXIII, 1.5). The usual references like
Springer, Linear Alegbraic groups, 2nd edition (2009) only treat the case of isogenies
with a finite quotient of lattices!

Note also that the cocartesian square in 11.2.2 is needed to garantee that the natural
inclusion A/Ag — A/Ag is bijective. Later we will identify A/Apy with the set of
irreducible objects of Hecke(Whit, ,(G)). So, this condition assures that the irreducible
do not augment when we make our ”generalized isogeny”.

1.7.3. For 11.2.3. The image of Gr“é’jx — Gr“épJU is the union of some connected com-

ponents (up to nilpotents). Just after (11.4) you claim that Sph, ,(G) — Sphqyx(é) is
fully faithful. In fact, there is no such natural functor at all.
Indeed, we may consider the local version of the Hecke stack HeckelGoCx classifying

Fa, F; over D, together with an isomorphism Fg = JFy; over D Then we have the nat-

ural map f: HeckeloC — Heckeloc compatible with the corresponding gerbes G&¢ratio,

SG’G’”‘”O. One could try to deﬁne the desired functor as f,, this is a bad approach

as already the case G = 1,G = T shows. Namely, this would produce RT(£+(T),, €)
instead of the constant sheaf.

There is no natural map £7(G)%"\ Gr‘c"f;3 & gH@G)w\ Gr“é’; in general, so no hope
to define it as a pull-back.

The only thing we need is the following. Let h : GrGw — Gr be the natural
map. Then h, commutes with Rep(H )-actions on both sides. Here on the target it
acts through the morphism Rep(H) — Rep(H), which we have because we do have a
morphism H — H.

This is general: let Y = Y] LIY; be a disjoint union of two prestacks. Assume Rep(H)
acts on Shu(Y'), and the induced Rep(H )-action preserves the full subcategory Shv(Y7).
Then the inclusion Shv(Y1) C Shv(Y) commutes with Rep(H )-actions.

We have however the fully faithful functor Sph(m(C?)QQ — Sphqyx(é)v.

1.7.4. For 11.2.4. Given a morphism of algebraic groups H — H, we get a monoidal
functor Rep(H) — Rep(H). Let now C € Rep(H) — mod(DGCateon), C € Rep(H) —
mod(DGCatcont) and C — C be a map in Rep(H) — mod(DGCateopnt). It yields a
morphism Hecke(C') — C @Rep(H) Vect — C ORep(i) Vect-
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If H is reductive then Rep(H) = [y ¢rprep(ay Vect. This is obtained from ([18], ch.
1.3, 2.4.2) by taking left completions on both sides. Indeed, QCoh(H) is left-complete
by ([18], ch. 1.3, 1.5.7).

If we think of an object of Hecke(Shvgé(Grgfx)) as F € ShvSQ(Grgjx) with a Hecke

property then the isomorphism (11.5) says in words then when restricting it to Gr‘é’:z,
it inherits the Hecke property with respect to H.

1.7.5. For 11.2.5. Assume that Ay C Ag, so we have the functor (11.5). Indeed, to
show it is fully faithful, it suffices to show that it induces an isomorphism on the map
spaces for any pair of objects indpecke(J0), indpecke (F1) with Fo, F1 € Shvge (Gr‘é’;)c.
The reason is that Hecke(Shvge (Gr‘*é’jx)) is compactly generated by the image of indyecke :
Shvga (Gr‘*é’jm)c — Hecke(S’hvgc(Gr‘é’;)). So, any object of Hecke(Shvge (Gr‘*é’jm)) writes
as filtered colimit of objects of the form indyecke(F') for F' € § hvgc(Gr“Gﬂ:x)c.

Assume now the isogeny strictly compatible with the geometric metaplectic data in
the sense that Ay C A g and the square in 11.2.2 is cocartesian. Then indeed we get
an exact sequence 1 — To — H— H—1.

For (b): by ([18], ch. 1.1, 5.4.5), it suffices to show that for 0 # F’ € Hecke(Shvge (Gr‘*é;)
thereis F' € Shvge (Gr“é’;) and a nonzero map indgecke (F') — F” in Hecke(Shvge (Gr“Gf‘jx).

"For point (b) we note that the condition in Sect. 11.2.2 imply that for every
0#9 € Shvgé(Gr“’é’;) there is V € Irrep(H) so that T * Sat, (V) is non-zero when

wP 5

restricted to Gr¢; 7. The explanation of this: let v € m(é) whose image vg in Ag is
such that F; is nonzero over the component Grgpa’j. Pick V € Irrep(H) such that Tj

acts on V' by —v then F; * Saty (V) is non-zero hen restricted to Grgjm. Indeed, e
appears in V*®V, so F1 appears in (F1 xSatyq(V))*Satyq(V*) as a direct summand.

Remark: let H be a split reductive group with a central torus Ty C H. Then for
any character \ : Ty — G,,, there is a dominant weight of H whose restriction to T is
X. Indeed, let A : Ty — Gy, be any extension of A. If necessary, correct A by adding a
dominant character of H = H/Ty.

1.7.6. For 11.2.6. First, let C' € DGCat,ont be compactly generated equipped with a
Rep(T')-action, where 7' is a torus. Then indpecke : C — Hecke(C') = C @gep(r) Vect is
1-fully faithful.

Indeed, for ¢ € C¢, ¢ € C the map

Mapc (¢, ¢') = Mapyecke(c) (INdHecke (€); iNdHecke(¢')) = Mape (e, %9 dxet) = U,Map(c, ' xe?)
is a full subspace, where p runs through the weights of T'. Now for any ¢ = colim;¢; ¢;,
where [ is small filtered and ¢; € C¢ we get

Mapg(c,¢) = 1izm Mapg(ci, c) C lign Mappecke(c) (INdHecke (¢i), INdHecke 8)
is also a full subspace.

Lemma 1.7.7. Let f : C1 — C3 be a map in Rep(T) —mod(DGCateont). If the induced
functor ind(f) : Hecke(C1) — Hecke(C2) is an equivalence then f is an equivalence.
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Proof. The functor Rep(T) — mod(DGCatcont) — T — mod, C — Hecke(C) is an
equivalence, see Section 10.2.6 of the paper. O

We apply the lemma to get Cor. 11.2.6. Namely, applying Vect ®@Rep(Tj)" tO both
sides of (a), one gets an equivalence by 11.2.5, so (a) itself is an equivalence.

11.2.6(b) follows from 11.2.6(a). Namely, if we pick any splitting of (11.3), this
gives a splitting of the exact sequence 1 — Ty — T — Ty — 1 and an equivalence
Rep(T};) = Rep(Th) @ Rep(T), hence the desired equivalence by base change.

1.7.8. For 11.2.8(a). The same proof as in 11.2.5 applies and gives 11.2.8(a). As a
consequence, 11.2.8(b,c) are obtained in the same way as Cor. 11.2.6 (using my above
Lemma 1.7.7).

1.7.9. For 11.3.4. Here we assume [H, H] simply-connected. The bijection between the

irreducible objects of He?:ke(Whitqyx(G)) and A is as follows. To a pair (A,7), where
A € AT is restricted and v € Ay we associate A+ € A. The corresponding irreducible
isind « (WM"*Re). We have an action of Ag on pairs (A, ) such that 7 € Ag sends

Hecke
(A7) to (A + 7,7 — 7). The orbits identify with A. Here A} = {\ € A | (A, &) =
0 for all 7}.
Now the irreducible of Hecke(Whit, ,(G)) are in bijection with M/ Ag, here M =
{\ € At | \is restricted}. Namely, to A € M is assocated the object indecke(W™ ™).
Ifre Ag then indpecke (W) = indgece (W), The functor

Res™™ HeIzke(Whitq@(G)) — Hecke(Whit, »(G))
sends ind_« (WM* X e7) to indgecke(WH™).

Hecke

1.7.10. For 11.3.5. Suppose we know that the t-structure on He.cke(Whitq,x(C;’)) is
Artinian. We check that the t-structure on Hecke(Whit, ,(G)) is also Artinian. Pick a
splitting of (11.3), so that we get an equivalence of 11.2.8(c)

Rep(Ty) ® Hecke(Whitg o (G)) = Hecke(Whity o (G))
Using the forgetful functor Rep(Tp) — Vect, we get

Hecke(Whitg,.(G)) 5 Hecke(Whity . (G)) @pep iz, Vect

The Rep(Tp)-action on He.cke(Whitq@(@)) is automatically accessible (as in 10.7.1 of

the paper). So, the t-structure on He.cke(Whitq,x(G)) is Artinian by Cor. 10.7.4(b).
Assume [H, H| simply-connected. Then we know already by (11.3.3, first case) that

the irreducibles of Hecke(Whit, . (G))" are in bijection with A, that is, with pairs (o, ),
where o € A™ is restricted and v € A up to the action of the lattice Az , of characters
of Hy,. Namely, for such pair (o,7) the object indH . (Wo* K e7) is irreducible in

ecke

He.cke(Whitq@(é))o, here €7 € Rep(T;) is 1-dimensional. We pick a splitting of (11.3)
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given by s : Ag — Af = Ag. Then the forgetful functor Rep(Ty) — Vect yields a
functor

Hecke(Whit, . (G)) — Hecke(Whit, .(G)),
we may view the target as the Hecke category of the source with respect to the Rep(Tg)—

action. Now we apply 10.7.3 to describe the irreducibles of Hezzke(Whitqw(G))@. We
see that every irreducible object of the target is the image of some irreducible object

indH - (W K e7) of the source. More over, the pairs (o1,71) and (o2,72) give iso-
eckKe

morphic irreducible objects in Hecke(Whit, .(G))" iff there is v € Ag = Hom(Tp, G,,)
such that o1 = o9 and 9 = 71 + s(v).

We underline that the splitting of (11.3) in general is not compatible with root
systems, it is just a splitting of an exact sequence of abelian groups.

Write M = {\ € AT | X is restricted}. In general, the map M — A/A¥ is not
surjective, this is why we need isogenies. Write M = {\ € At | X is restricted}. We
have a bijection between equivalence classes of pairs (o,7) € M x A 7 and A. Here the
pairs (01,71) and (o2, 72) here are equivalent if there is 7 € A o such that oo = o1+,

vo = 41 — 7. Consider inside the set of equivalence classes of pairs (0,7) € M x A i

such that o+~ € A. Under the above bijection it identifies with A. This is the desired
bijection between A and irreducibles of Hecke(Whit, ,(G)). In the notations of 11.3.7
of the paper the image of indH . (Wo*ReY) in Hecke(Whit, ,(G)) is M%gt’!* provided

(
ecke
that o +v € A. i
To have a notation independent of s, let’s adopt the following. Given o € M,y € A
with o + v € A write

MEET™ € Hecke(Whity o (G))¥
for the unique irreducible object such that the image of
e @M € Rep(T);) ® Hecke(Whit (G))
under
Rep(T}y) @pep(ry) Hocke(Whit, ,(G)) — Hecke(Whit, . (G))
isind « (W%"*Re7). Then for A € A,y € Ay we have indeed

Hecke
DWES v nfAFY
Mwrnis * €7 = Migpid
because the previous functor is Rep(T;)-linear.

Similarly, there is a unique M%ﬁt* € He.cke(Whitq,x(G))@ such that the image of

e @MZEL* € Rep(Ty;) @ Hecke(Whity o (G))
under
Rep(Tj;) @Rep(ry) Hecke(Whity o (G)) — Hecke(Whitg . (G))

isind . (W7*Ke7).
Hecke
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Another way: we have canonically Rep(Ty) C Rep(T;). It yields a canonical fully
faithful functor

Hecke(Whit, . (G)) — Rep(Tj) @pep(ryy) Hecke(Whit, . (G))FHecke(Whitg . (G)

The composition is t-exact, so

Hecke(Whit, o (G))¥ — Hecke(Whit; o (G))°

is a full abelian subcategory stable under extensions. My understanding is that given
(0,7) € M x Ay, we have

ind_. (W™ Re)) e Hecke(Whit, o (G))¥

iff 0 + A € A, and this way we get all the irreducibles of the latter abelain category.

Proof of the existence of M%Xt* Let. 0 € M,y € Ag with 0 ++ € A. Then the

cokernel of W™ — W7* admits a finite filtration by objects of the form W™ with
o’ < o. For any such ¢’ we have ¢/ +~ € A. So, the cokernel of

ind « (W Ke')>ind « (W*Ke?)
Hecke Hecke

has a finite filtration with subquotients of the form ind « (W7""* K e?) for o/ <

Hecke _
o,0 € A;fi. For such ¢’ pick a presentation ¢’ = o1 + 1 with ¢’ € M,y € AI'S. Then

W' oL « V7. This gives

ind « (W"Re)Sind « (W KRe¥@Res’ (V1))
Hecke Hecke

We see that all the irerducible subquotient of the latter lie in the subcategory

Hecke(Whit, o (G))® € Hecke(Whitg »(G))

Thus, indH - (Wo* X e7) also lies in this subcategory, as it is closed under extensions.
ecke
O

Maybe M7/ 7* is a bad notation...

1.7.11. For 11.3.7. The displayed formula should be: if o € AT is restricted, v € Ay
then ind_+ (W™ K &) =M™ in Hecke(Whit, ,(G)).

ecke
More generally, the diagram commutes

Rep(T) ® Whit,.(G) — Rep(Ty) ® Whity .(G)

dind o Jind o
Hecke Hecke

Hecke(Whit,(G)) —  Hecke(Whit.(G)),

where the vertical arrow denotes respectivly the induction for G and G.
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1.7.12. For 11.3.8, line 1: indH « (W™*) does not make sense, we meant ind _+ (WX

ecke Hecke

e”) T think. The same for line 1 of the proof: we meant indH - (WA e).
ecke
The functor

ind « : Whit,s(G) ® Rep(Ty) — Hecke(Whitg..(G))

Hecke
is t-exact, soind « (WP*Re?) —ind « (Wo*Ke?) is injective for any o € AT,y €
ecke ecke
Ap, and the quotient admits a finite filtration with the subquotients
ind + (W™ Ke?)
Hecke

for o/ < 0.
The displayed formula in the proof of 11.3.8 is wrong, it should be
: PYRES T\ T A E
lndHe.cke(W X e7) = M

What is the correct formulation? First case is as follows.

Lemma 1.7.13. Assuming [H, H] simply-connected. Let A € A be written as A = A1+
with A\ € AT restricted and v € Ay. Then in the notations of Section 1.7.10 of this
file,

Myt = ind_. (WA* ) e7) € Hecke(Whit, »(G))"

ecke
recetves a non-zero map from Mé{,!ﬁit, and the Jordan-Holder constituents of the quotient
are of the form Mé\/]ﬁl’; for X < \.

Proof. The object ind . (WA K ¢7) is irreducible in He'cke(Whitq,x(G))o, now

WAL 5 WAL gives the desired injection, and the quoitient is equipped with a fi-
nite filtration whose subquotients are
ind  (W"Re)
Hecke
for some \| < A1 with \] € AT. Let now A} < Ay with \] € AT, It suffices to show

that indH - (Wi K ¢7) has a finite filtration with the successive quotients Mé{,;‘t
ecKe

for some ' < A. Pick a decomposition \j = X, + 72, where \; € AT is restricted and
Y2 € A}}. Then

W)\’l,!* /;;WXQ,!* x V2
in Whit, ,(G)". Here V"2 € Irrep(H) with h.w. ~2. We get

ind « (WM*Re)Sind o (W2 K (7 @ Res™™(V72)))

Hecke Hecke

Clearly, this object has the desired finite filtration. O

Let now [H, H] by any. We apply 11.3.6 and chose an isogeny strictly compatible with
the geometric metaplectic data. Then as in 11.2.8(c), we have a fully faithful embedding

Hecke(Whitg o (G))® < (Rep(Th)®Hecke(Whity - (G)))® = Hecke(Whity o (G))?. Then
the above lemma for G gives the following for G.
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Lemma 1.7.14. By Prop. 11.5.6 pick an isogeny strictly compatible with the geometric
metaplectic data such that [H, H| is simply-connected. Let A € A be written as A = A1+
v with Ay € AT restricted for G, and v € Ag. Then in the notations of Section 1.7.10
of this file, M%{,Lt receives an injective map from Mé\’,!;it, and the quotient has a finite
filtration with the sucessive quotients of the form

N x
MWhit
with X' < .

Proof. We may pick a splitting s : Ag — Ay of (11.3) if necessary. The proof of the

previous lemma goes though, since given A\, € AT with X; < A; in A* we still have
N +veA O

1.7.15. For 11.3.9. In the very beginning of this section the following should be ex-
plained first. Consider G equipped with the factorizable gerbe (G%)~!. Then the cor-
responding metaplectic Langlands dual group is again H canonically. We considered
before the equivalence Whit, ,(G)Y = Whit,-1 ,(G) given by (7.9) in the paper.

Under this equivalence the action of Rep(H) via Sat,-1 ¢ on Whit,-1 ,(G) corre-
spond not to the natural action of Rep(H) on Whit, ,(G)" via Sat, ¢ but to a twist
of this natural action. This is the true reason to introduce twists, and this should be
well-explained! Namely, we have for § € Whit, »(G)",V € Rep(H)

F x Satq—17g(V) = Fx Satq,G(TH(V))

where in the RHS we mean the action of Rep(H) coming from its action on Whit, ,(G)
via Sat, ¢ by passing to the dual category.

Using 11.1.3 of the paper we get in the notations of Section 1.7.10 of this file the
following. Given o € AT restricted, y € A g with o+ € A we get
D(ind . (Wo*Ke")=ind . (Wo*Ke)

Hecke Hecke
in Hecke(Whit,1 ,(G)) first. So, D(M%\;ﬁs*) 33\/(%\7}11’!* in the case when [H, H] is
simply-connected.

Now let [H, H] be any. Then we apply the recipe of Sections 1.7.10 and Sect. 11.1.3
of the paper (and Section 1.7.1 of this file) to calculate the dual. For this we first need
to answer

Question: how the equivalence 11.2.8(b) interacts with passing to dual categories?
I think this should be explained in the paper, this is not clear!

Your formula for D(Mé\’,!;it) is not clear in the case when [H, H] is not simply-
connected. Indeed, for the definition of an irreducible we used the full subcategory
Shvga (Gr“épm) C Shvgé(Gr‘gjx), and also a canonical functor

Hecke(Whity . (G)) = Rep(Tly) @pep(ry) Hecke(Whity . (G))
sending z to the image of e X z. How this interacts with the duality?
Namely, consider for the dual metaplectic data the natural inclusion Whit,-1 ,(G) <
Whit, -1 ,(G) commuting with Rep(H )-actions via Sat,—1 ¢ and pass to the dual cat-
egories, we get a functor Whit,,(G) — Whit,,(G) commuting with the induced
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Rep(H)-actions via Sat,-1 . Since it commutes with Rep(H)-actions via Sat,-1 g,
it also commutes with Rep(H)-actions via Sat, . So, we get a diagram

Whit, .(G) — Whit, . (G) — Whit, .(G)
of functors commuting with Rep(H )-actions via Sat, . Is the composition the identity?
The formula ' '
Verdi Ax \ — A
DY (MGrie) = Mg
should be better explained in the case when [H, H] is not simply-connected. One can
simply say the following I hope. Assume we have chosen the isogeny strictly compatible
with the metaplectic data for G. Then the diagram commutes

(Hecke(Whit, o, (G))9)® <  (Hecke(Whitg o (G))©)%
) )
Hecke(Whit, 1 ,(G))° < Hecke(Whitz—1 ,(G))°,

the horizontal arrows being natural fully faithful embeddings.

For 11.3.10: the category He.cke(Whitq,x(G))So is the smallest full subcategory of

He.cke(Whitq@(G)) containing M“W’!}fit for ;1 € A and closed under extensions and col-
imits. This implies 11.3.10.

1.7.16. For 11.4.2. Let us show that for a coroot a of G the elemen‘g & := 0o 6, which
is apriori a map A — Q takes values in Z. Since ay is a coroot of H, loby : Ay — Z.
So, it remains to show that for A € A, ({né,\) € Z. However, the composition

Ap CAg =/ equals &gy, the corresponding coroot of H and &y = % by construction
of H. We get
(abipg, ) = (&, \) € Z,

we are done. N

Why {a € = A}, as « runs through the coroots of G, forms a root datum?
The equality (&, &) = 2 is clear. Now, to see that sz : A — A preserves the set {a}
(as « runs through the coroots of G), we use the following. First, this is clear for the
root datum of (A, ay, AH, &) of H. Now, to check an equality in some lattice N, it
suffices to check it in N ® Q, so this is automatic.

1.7.17. For 11.4.4. It is not true that for an affine curve the geometric metaplectic

data are classified up to an isomorphism by the associated quadratic form. Namely, by
[GLys, Cor. 3.3.6],

Map(X, B (Hom(7 414(G), €*'°7%))) = FactGe’(Grg)

For an affine curve HZ (X, Hom (71 a14(G), €*:%7)) is nonzero in general. So, in addi-

tion to the construction of ¢, we should extend some gerbe from the structure group
Hom(my q14(G), €*'°"%) to a gerbe with the structure group Hom(my 44(G), e*"%).
However, since Ext!(Ag, e*t"%) = 0, the map

Hom (71 414 (G), eotorsy Hom (71 414(G), e otors)

is an isomorphism, and we are done.
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1.7.18. For 11.4.5 line 4: replace 7a map ¢* : Af — +1..7 by ”a linear map...”.
Correct the last displayed formula, it should be

Quad(A, e (=1)W . Quad(A, e (—1))

restr

If you want to write ¢(A) + ¢#(Af) then you should say that we denote the operation
on e*:1°7$(—1) additively, apriori it is the product.

If we take for g : A= +1 any linear map extending ¢f then it is indeed W-invariant.
It suffices to show that ¢%(sq(M)) = #(\!) for any simple coroot a of G. We denote
by ag = 4o the corresponding root of H, this is also the corresponding root of H via
Af ¢ A, Write g for the corresonding coroot of H. Then so(A) = M — (M, dp)ag.
Since ¢ is linear, it suffices to show that f(ay) = 1 in the multiplicative notation.
But we have §((ya) = qlag) = ()t =1, as €y = ord(g(c)).

By the way, for any central extension 1 — Ty — H — H — 1 the map

Hom(A*, Z/27)" — Hom(A%, Z/272)"

is surjective. Indeed, we may view Hom(Af, Z/2Z)" as the subgroup Zs of elements
of order 2 in the center Z7 C H. Similarly, Hom([\ﬁ,Z/ 27)" is the subgroup Zsy of
elements of order 2 in the center Z of H.

We view ¢f : A — +1 C e* as an element € € Zo. We have an exact sequence 1 —
Ty — Z — Z — 1 of algebraic groups over e. We must show that Zo — Zs is surjective.
This follows from ([11], Theorem 1.1). Namely, any extension 1 — Ty —? — g — 1
splits.

So, we assume now ¢ : A¥ — +1 is W-invariant and extending ¢f. Then § is correctly
defined, extends ¢ and § € Quad(A, e**5(—=1))W. Let b: A x A — eX75(—1) be the
attached bilinear form. For \; € A, 5\3 e Af we get

b+ A, Ag + M) = b(Ag, Ag)

So, the kernel of b is indeed A,
It remains to verify that ¢ is restricted. We must show that for every coroot « of G,
A€ A\ e Af we have

b(ay A+ X) = (Ladipr, A+ A ()

Here G(or) = g(a) and b(a, A + M) = b(e,A) = (&, A)g(a). Since ay : A* = Z,
(am, )\ﬂ>~€ Z and f,q(a) = 1. We have (&, \) = (Lo, \), because the restriction of &

to A C A is & by definition. Prop. 11.3.6 is proved.
1.8. For Part IV.
1.8.1. For 12.1. Write £(NV)%" as a union of closed subschemes Ny, k > 1. We assume

x
Ny, is a placid group scheme, and for ¢ < j, N; C N; is a placid closed immersion. As

in ([45], 1.2.8), we get the full embedding Shvgc (Gr"éix)Nk C Shvga(Gr"é;) admitting

a continuous right adjoint AvL

N Shvga(Grg,) ™ = Slya(G)

k. and

Note that Shvgc(Gr“c’fjx)N’C —en, — comod(Shvgc(Gr“é’;)) by ([45], 1.3.12).



102

The full subcategory Shvge (Grgz)N * consists of ' € Shvge (Gr‘épz) such that AvMs (F) —

F' is an isomorphism, as for any colocalization. By Lemma 1.2.12 of this file, the in-
wP
clusion SI, ,(G) C Shvge (Gr"é;) admits a maybe discontinuous right adjoint AvEOs
wP

given by Avf(N)z = limpenor AvDIVE,

By Lemma 1.2.14 and the section just after it of this file, in the constructible context
we have the left adjoint

AV : Shuga (Grg,) — Shuga (G )™
to the inclusion. Moreover, the left adjoint

(V)3

P w
AR L Shuge (Grgl,) — Shuge (Grgl, )2V

wP
to the inclusion also exists and is given by AV!S(N)” — colimyen AV!Nk by Lemma 1.2.15
of this file.

For A < X € A we have the commutative diagram

wP

Shvga(SY) «  Shuga(SY)SWN)2
¢ I )
Shvga(SY) <+ Shvge (S SN,

where the vertical arrows are !-pull-backs, and the diagram

Shuge (S) < Shuge(SV)S:"
) ) )
Shng (g)\) < ShUgG (S)\)S(N);’ y

where the vertival arrows are *-pushouts. Now Sl ,(G) = limy Shvge (S’A)E(N)gp with
respect to the !-pullbacks. Passing to left adjoints, this rewrites as

wP

ST, +(G) = colimy Shvga (5*)*V)3
with respect to the *-pushouts. The functor (iy): : SI, .(G)<) := Shvgc(S'A)E(N);p —
Sl 2 (G) is fully faithful, as this is so before taking the invariants.

For jy : S* = S* we get the adjoint pair

WP .
7%+ SIgw(G)en S Shvge (SN * M = 81, 4 (G)=y 1 (i)«
with (jy)« fully faithful.

As in Section 1.2.22 of this file, the subcategories SI; »(G)<x—q, C Sl..(G)<x for all
simple coroots o, generate the full subcategory S, ;(G)<x C Sl;.(G)<x consisting of
F such that F is the extension by zero under S* — S* < S*. The essential image of
(4a)« = SIgz(G)=x — SI; +(G) <y is the right orthogonal to SI; ;(G)<a.

As in the proof of 6.2.9, for any A € A and k£ > 1 we have

N, — . —
Av)* ((StA,Gr) —> en [2dim thA] —WN, A



103

and the corresponding monad on Vect is the identity. So, the functor Vect — SI; 5 (G)=x

° up —_ . —_ . .
sending e to WM := AV!S(N)QC O Gr — COhHlk(AV!Nk 0ix qr) = Wgr is an equivalence.
Since e € Vect®, WM € ST, ,(G)—, is compact.

Let WM = () WM € SI,2(G)<x. Then WM € SI, 2(G)¢, because (ja): : Slya(G)—r —
SI;.2(G) <) preserve compact objects. Similarly, (iy)r : SI; 4 (G)=x — SI;»(G) preserves
compact objects, it has a continuous right adjoint (iy)'. (This is both for the con-

structible context and for D-modules, as w is holonomic on a scheme of finite type).
The existence of (jx)1 : SIy 4 (G)=x — SI»(G)<) is explained in. ([25], 1.4.2).

1.8.2. For 12.1.3. In Sect. 6.2.2 of the paper we have chosen trivializations of the
fibres of the gerbe G¢ at t* for A € A. For A = 0 this gerbe is already trivialized, for
this reason the equivalence SI; ,(G)—o — Vect is canonical.
1.8.3. For 12.1.4. For A € A consider WM := (5,), WM € SI, . (G)<x. Why they are
not compact? (This is affirmed in [25]).

Let A= {p € A | p < A} with the usual order. If i/ <y < X then S* —S# ¢ §A— ¥
is open, and S* = UueAS’\ — SH. Let Ty S* — §# < S§* be the open immersion. The
natural map

WA* — colim (1,)1mi W
LE AP ®

is an isomorphism in SI, ;(G), because the property of being an isomorphism of sheaves
is local in Zariski topology. Recall that 8§ — Shv(8) satisfies the etale descent for any
sheaf theory.

Here AP is filtered. Is the natural map

A% . * LA, . A,k KA AN, *
Map(W ,Sce)gg(m)ﬁ“w )(—l(ice)ggleap(W s (T, W)

in Spc an isomorphism? Any object in the RHS comes from some map W* —
(Tu)gT;W’\’* for some p < A by ([41], 13.1.4). Assume the canonical map W* —

cogn; (Tu)lTZWA’* factors through (TM)IT;W/\’*. This would mean that (i,)*W"* = 0,
JUISHERS

and probably this is wrong.
It is affirmed in [25] that W** are not compact. Maybe this can be done using the
relation with the global geometry and using the resulutions from [10].

1.8.4. For 12.1.5. The definition of SI; ran(G) is similar to the case of Whitg ran(G) dis-
cussed in Sections 1.3.3-1.3.13 of this file. Recall that Ran = colim; X! taken over the
category (Fin**"7)P, here Fin®""7 is the category of finite nonempty sets and surjective
maps. For I € Fin®""7 let Gr“épl = X! XRan Gr‘épRan, SO GrgRan = colim Gr“épl.
’ ' ’ Ie(Fin®r7)or ’
For each I we have a full subcategory

SI; = Shugc(ergﬂ)ﬂwﬁp C Shvga(Grg))
and by definition

SIyRan(G) = lim  SIyC  lim  Shvge (Gr"épj))/;?Shvgc (Gr“épRan)
Ie(Fin®""7) Ie(Fin*v7) ) )
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Here we used ([44], 0.0.42).

1.8.5. For 12.1.6. The definition of S'lgan should be corrected as follows. This correction
is essential in the case when [G, G] is not simply-connected in view of Schieder’s paper
([55], Section 7.2). Fix an exact sequence 1 — Z — G — G — 1 with [G, G] simply-
connected and Z a connected central torus in G. The coroots lattices for G and G are
naturally isomorphic, so w” can be seen as a G-torsor on X. We have a natural map
Gr‘ijan — Gr“é[:Ran, and the prestack S’E{an defined for G as in the paper. By definition,
for G the prestack 51%% is defined as the same prestack for G. It is independent of a
choice of G.

1.8.6. For 12.2.1. When you say in e P is a G-bundle. Say G-torsor on what...

We should explain somewhere the following. Given S € Schy; and § — Conf, we may
talk about (S x X) —supp D. Namely, it is understood that we pick a homomorphism
7 : A" — Z sending each negative simple coroot to a strictly positive integer. Applying
this gives an S-point of X (or maybe of finite union of such for several n). Now for
S — X we get the corresponding relative effective Cartier divisor D’ < S x X, here
D is flat over S, then (S x X) — D’ is the desired scheme. It does not depend on a
choince of 7.

1.8.7. For 12.2.2. Given D = ), upxi, € Conf, the fibre of Sggﬂf — Conf over D is
[1, SkE. The fibre of S5O — Conf over D is [], S47.

1.8.8. For 12.2.3. The section of Gr%ﬁconf — Conf used in 12.2.3 sends D to w”(—D).

1.8.9. For 12.2.4. Consider the closed subscheme in X7 x X (™) given by the property
that for the collection ((x;), D) we have D < n()_, ;). On the other hand, for S €

Sch®/f and a pair S 3 xt1 ;S B XM we may consider the closed subscheme D C S x X
defined by D and require that D factors through Dy C S x X. Does this define the
same subfunctor of X! x X(? Recall that Dy is the affine scheme corresponding to
the formal scheme @3.

A possibility to define the functor (Conf x Ran)< is as follows. Let S € Sch®/ and
we are given J C Hom(S, X), D € Hom(S, Conf). we pick any homomorphism A — Z
sending each simple coroot to a positive integer. Let Confy be similarly defined scheme
for A replaced by Z, Dy : S — Confy the corresponding point. Then Dz yields a closed
subscheme D C S x X, and we require that (S x X) — D C (S x X) — Dy. Is this a
correct definition?

The formula (12.2) is wrong, in the LHS there are additional factors Grg , for some
points x which are in the collection J but not in the support of the divisor D. But I
think we don’t need this isomorphism. The ”consequence” of it in 12.2.5 is correct, I
think.

1.8.10. For 12.2.5. Note that Sgont <y 89 X Ran(Conf x Ran)© is a closed subfunctor.
First, a point of S, XRan (Conf x Ran)< is (D, (z;)) € (Conf x Ran)<, F¢ on X
with 8 : Fg = w” |x—(z;) such that w” C Fg defines a generalized B-structure on X.

This points lies in S’ggﬁf if the trivialization 8 extends to 8 : Fo — w” | x _supp(p) first,
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and moreover 3 defines a generalized B-structure w”(—D) C Fg. Both conditions are
closed. B
The map iggﬁf is proper.

1.8.11. For 12.2.7. Now an IMPORTANT change of notations: as we discussed
by skype, I will assume from now on that the objects denoted by Sf\{ Sﬁan in Section
12.2.7 for A < 0 are denoted, say by Sf‘{an, Sﬁan respectively.

Now we denote for A < 0 by gﬁan the following prestack. Pick G as above, so that
(G, G] is simply-connected. Then S}, classifies § € Ran, (D,J) € (Conf* x Ran)<, a
G-torsor F on X with an isomorphism F = w” | x-1, such that for each \ € /V\; the
map

an’

Mw?(=D)) — \7;
is regular over X. Here VA is the corresponding Weyl module for G.

The difference with Sf‘{an is that for this new gf‘{an we do not require the trivialization
F—=w |x_r, to extend to X — supp(D).

Now Sf\{an C Sf\{an is defined by requiring that the above map has no zeros, so that
it defines a B-structure on F with the corresponding T-torsor w”(—D).

It would help also to add the following. If D =" A,z € Con f for some \, € A9
and (D,J) € (Conf x Ran)© is a k-point then the fibre of the projection 8%, —
(Conf x Ran)“ over this point identifies with [], S*=and a similar claim for S%{an.

I propose not to define Sﬁan for A = 0. However, for A = 0, we may set S%an = Ran.

For convenience, for A € A" —0 the prestack 83, classifies: (D, (7)) € (Conf x Ran)<,
Fo on X with 8 : Fg = w” |x_supp(p) such that 3 defines a generalized B-structure

w?(—D) C F¢ lying in the true Bung. The open immersion jR,, : Sfun — Shan 1S
given by the condition that the generalized B-structure w?(—D) C F¢ is in fact a true
B-structure.

1.8.12. For 12.2.10. After the correction of the definitions of S’I%am Lemma 12.2.10 is
true in general. Recall that if 4 € A and (u, \) < 0 for all A dominant, this does not
imply that p € A", I assume the definition of S}, is corrected in in the style of
Schieder’s paper ([55], Section 7).

1.8.13. For 12.3.3. The reference [Ga7, Cor. 1.4.5] should be [Ga7, Cor. 1.5.3] for the
last version of [GaT7]. It is important for using [24] that for a finite nonempty set I the
projection p}‘ : S j\ — (Conf)‘ x XT)< is ind-schematic of ind-finite type, so the functor
(p7) is defined, we remain in the category PreStk; ;. For F' € Sho((Conf* x X)), K €
Shv(S?) we have the projection formula (p})«((p})'F @' K)= F &' (p})«K. This was
used in ([24], 1.5.3).

In the constructible context the existence of (i,,)* follows from the fact that i,
is schematic of finite type.

In ([24], proof of 1.7.3) Dennis claimed that any object of Shv(SY) is G,,-monodromic.
He meant instead that any object of SIISO is G,,-monodromic (here G,,-action comes
from T-action by restricting via a regular character).
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Definition: if G is an algebraic group of finite type acting on Z € PreStk;s; then
Shv(Z)G~mn is the full subcategory generated by the essential image of Shv(Z/G) —
Shv(Z) in the case of D-module. In the constructible context according to ([14], Sect.
0.4), the definition changes as follows: Shv(Z)¢~™°" C Shv(Z) is obtained from the
essential image of Shv(Z/G) — Shv(Z) by adding objects obtained by finite iteration
of the procedure of taking cone of a morphism.

In ([24], Pp. 1.5.3) the following is proved. For a finite set consider the corresponding
versions S7, SI_’)‘, (X* x X1)© as in loc.cit. and the diagram

—A Y Y ’y
(XM x xDHe " 97 ' Grgy & 9B (xA < XT)©
Then 4 : SITY — SIISO has a left adjoint given by (p}\)!(pl_”\)*(i*’)‘)!. This immediately
gives the base change property in ([24], Pp. 1.5.3, (¢)).

1.8.14. For 12.3.4. We meant here the reference to ([24], 1.5.6). The explanation in
([24], 1.5.6) is insufficient, Dennis should explain what he means by ”a formal Cousin ar-
gument” in ([24], 1.5.3). In the case of stratification with two strata this is Lemma 1.8.16
below.

One has the following.

Lemma 1.8.15. Let i, =4 : C' — C be a fully faithful functor in DGCateon;.
1) The following conditions are equivalent:
A) iy is a colocalization, that is, admits a right adjoint i' such that id — ') is an
isomorphism;
B) for any ¢ € C there is an ezact triangle ¢ — ¢ — d in C with ¢ € C' such that for
each ¢; € C', Hom(c1,d) = 0 in Vect.

If these conditions hold, we may identify C'/C" with the right orthogonal

C" ={z¢eC | foranyc; € C',Hom(cy,z) =0 € Vect}

and obtain a pair of adjoint functors j* : C = C'" : j, such that j*j. — id is an
isomorphism, here j, is the inclusion. The exact triangle from B) then becomes ii'c —
c— jyjrc.

2) Dually, the following conditions are equivalent.

A’) iy is a localization, that is, admits a left adjoint i* such that i*i, — id is an
isomorphism;

B’) for any ¢ € C there is an exact triangle d — ¢ — ¢ with ¢’ € C" such that for each
c1 € C', Hom(d,c1) =0 in Vect.

If these conditions hold, we identify the left orthogonal C" = {z € C | for any ¢, €
C', Hom(z,c1) = 0 € Vect} with C/C" and obtain an adjoint pair j, : C"" < C : §* such
that id — j'ji is an isomorphism, here jy is the inclusion. The exact triangle from B’)
then becomes jij'c — ¢ — iyi*e. O

Proof. In 2) it is clear that A’) and B’) are equivalent, and we get the functors j :
C" = C : j', where j' is maybe discontinuous. Besides, for each ¢ € C the fibre
sequence from B’) becomes jij'e = ¢ — iyi*e. In partcular, j'i, = 0. The functor j' is
continuous. To see this, it suffices to show that jj' : C — C is continuous. However,
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417" is ¢ = Cofib(c[—1] = i,i*c[—1]). Since i,,4* are continuous, we conclude that j' is
continuous.

Since j'i, = 0, the functor j' factors as C' LA C/C" 5 C", where T is continuous, and
h is the projection. Let n = hji. Now id = j'j, gives an isomorphism 71— id. Since
h% is fully faithful, h is a localization functor, so is essentially surjective. For ¢ € C
the above fibre sequence gives 15'(c) = hjij'(c) = h(c), so 1 is essentially surjective.

We have n7h = hjij' = h naturally as functors C' — C/C". Indeed, the above fibre
sequence gives hjij'(c) = h(c) fucntorially for ¢ € C. Since A% is fully faithful, multiply-
ing the above isomorphism by A% on the right, we get an isomorphism nrhh® = hhf.
Now, hhf = id, so this gives an isomorphism 77 = id. Thus, 7 and n are mutually
inverse equivalences. O

In Lemma 1.8.15 1), the functor j, is a map in DGCat, it is not necessarily continuous
(if 4* is continuous then j, is also continuous).

Lemma 1.8.16. Let C°,C,C’ € DGCateons and we are given adjoint pairs j' = j* :
CsC:j,i=i,:C'"SC:i', andi* : C S C' - iy. Assume that for any F € C the
triangle is exact i,i'F — F — j,j*F. Assume in addition that i*i, — id, and id — i'i,
and j*j, — id are isomorphisms, so i« and j. are fully faithful. Consider the functor
h:Co— C sending F to
Fib(j. F — 040" j. F)

Then h is left adjoint to j'.
Proof. Note that Cofib(C’ 2N C) in DGCatCOm identifies with Cp, namely we may pass
to left adjoint in the diagram Cy— Fib(C —> C’) in DGCateont. So, we may think the
input datum is just a fully faithful embedding 7, : C' — C admitting a continuous right
adjoint i and a left adjoint i* such that both A, A’ of Lemma 1.8.15 hold.

Note that j, : Co= {F € C' | i'F = 0} = C'" is an equivalence. So, we identify Cy
with C'" via j,. From now on, j*: C 2 C"" : j,, and h: C"" — C.

By Lemma 1.8.15, we get the adjoint pair j1 : C* = C : j' such that id — j'ji
is an isomorphism. The functor C'" — C" sending ¢ € C™ to Fib(c — i,i*c) is an
equivalence, we are done. O

If in addition A € CAlg(DGCateont) and all the categories and functors in the
inputs of Lemma 1.8.16 are maps in A — mod(DGCatcopn:) then h is also a map in
A — mod(DGCateon:). This is why in ([24], Cor. 1.5.6(b)) the functor (i*); commutes
with the actions of Shv(X7).

We used here the fact that oblv : A—mod(DGCateont) — DGCateont preserves limits
and colimits.

In the constructible context the existence of (i, )i : SIq Ran — SI=0 ¢:Ran is automatic,
this is the usual !-extension for sheaves, and it preserves the equivariance condition.

Lemma 1.8.17. Let C € DGCat, assume given an adjoint pair i : B < C : i' in
DGCateon: with i fully faithful. Set A = ii', this is a continuous e-linear comonad on

C. Let D = Ker(i'). . Then i' factors naturally as C LN C/D % B, where a is an
equivalence.
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Proof. By assumptions, i' is continuous. We have an equvalence C'//D = Ker(j%), where
j: D — C is the inclusion, and 5 : C — D is the right adjoint of j.

We claim that a and hi are quasi-inverses of each other. Indeed, on one hand, the
natural map id — ' = ahi is an isomorphism, because i is fully faithful. To show that
(hi)a is isomorphic to id, it suffices to show that hiah — h, because h is a localization
functor. For € C' we have a functorial in & € C fibre sequence ii'c — = — y with
y € D, hence h(ii'z) — h(z) — h(y) is a fibre sequence in C/D. Here h(y) = 0, so
hii' = h. O

Any idempotent continuous e-linear comonad on C is of the form #3' as in the previous
lemma, where B = A — comod(C).
Lemma 1.8.17 can be strenthened as follows.

Lemma 1.8.17: Let L : C <= D : R be an adjoint pair in DGCat with R fully
faithful, so L is a map in DGCateopne. Let Cy = Ker(L). Then L factors naturally as

h . .
C 5 C/Cy % D, where a is an equivalence.

Proof. First, h has a fully faithful right adjoint A%, because C'/Cy = Ker(j®), where
j : Cyg — C'is the inclusion. Now a also has a right adjoint a® and h?a® = R is fully
faithful, so a’ is fully faithful. We claim that hR and a are quasi-inverse to each other.
Indeed, on one hand, ahR— LR— id. Now we have to show that (hR)a— id. For
this it suffices to show that hRah = h, because h is a localization functor. For ¢ € C
we have a functorial fibre sequence x — ¢ — RL(c) in C with € Cy. Applying h we
get a fibre sequence h(x) — h(c) = hRL(c) in C/Cy, here h(zx) = 0. Thus, h— hRL
as desired. g

1.8.18. For 12.4.2. In Section 1.1.15 of this file I explained that one has to correct
the definition of the gerbe G& on Gr“é’jx. Proposition 12.4.2 can be true only after my
correction of the definition of G&. In (12.4), pran should be pgggf.

Prop. 12.4.2 is however wrong as stated, the corresponding gerbes are opposite, not
the same.

Indeed, recall the isomorphism (Conf x Ran)~ = (Gr“ffRan)”eg , it sends (D, (x;)) with
supp(D) C (x;) to Fr = wP(D). So, by the actual definition the fibre of G* at D is the
fibre of G at

(Fr =w’(D), (:),a: Fr = w” |x_(2,) € Cr%Ran

Consider a point of S’gggf given by (D, (x;),supp D C (x;)),Fp a B-torsor on X with
the corresponding T-torsor identified with w?(—D). The image of this point under

Conf wP wP :
SRan - GrB,Ran - GrT,Ran 15

Ir =w’(=D),a: Ir = w’ [x_(z,), (7;) € Ran

What seems natural is to ask that whatever definitions are, the pullback of §* under
Sggﬁf — Conf identifies with G&. This is assumed in 12.4.3 for example.

The proof of 12.4.2 should be simplified. The proof is simply the fact that the
diagram should commute (if you change the definition of Gr%fRan)"eg replacing F by
its opposite torsor):
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Sgent — (Conf x Ran)= = (Gr{/gan)™
\J 3
Gr%ﬁRan - Gr%f)Ran
To be able to continue reading, from now on I assume that the definition of
(Gr%fRan)”eg is corrected as follows: we assume for this definition G = G.. Then its
S-point is a collection: § € Hom(S, Ran),Fr on S x X with a trivialization w” |sxx -1,

=9 such that for any A € At the map w®" — X\(Fr) is regular over S x X.
I also assume that G* is defined as the descent of G¢ under (Gr%f’Ran)"eg — Conlf.
Now Prop. 12.4.2 is correct, but is not sufficient to get the functor (pﬁan)! :
Shuga ((Conf? x Ran)<) — Shvga (S,,) in Section 12.4.3 of the paper. For such appli-
cations, it is better to change the formulation of Prop. 12.4.2 to adopt it to S-versions
as opposed to 8-versions. Namely, we have a commutative diagram

S2..  — (Conf x Ran)~ = (Gr‘*ff’Ran)”eg
; k
Gr“é,Ran - GrLJi,Ran

1.8.19. For 12.4.3. The map pran in the 1st displayed fromula was instead denoted

pggﬁf in 12.2.6. Chose one of the two notations to use throughout.

1.8.20. For 12.4.4. The proof of [Ga7, 1.4.8] is not given in [GaT7]. I have written a
proof in ([42], Lemma 1.3.19) for any sheaf theory. For D-modules a closed claim is
([31], Lemma B.4.1). Some reference for the proof is needed here. Maybe the upcoming
paper by Lin Chen generalizing [31] will be already available at the moment of revising
of our paper, and we could refer to his upcoming paper.

1.8.21. For 12.5.1. Replace ¢gman by ¢!Small in the 1st displayed formula.

The prestack Gr“é'f(Ran « Ran)C has never been defined. It has appeared in the proof
of 12.4.2 but without a definition. You should write what you mean: this is the
prestack classifying (J € J') € (Ran x Ran)<, Pg a G-torsor on X and an isomor-
phism Pg /—\?ngx_ra. Then the map ¢pg : Gr“éfj( < Gr"é/jRan is the one
denoted by ¢y in Sect. 1.6 of the paper.

The definition of Shvgc(Gr“é[:Ran)untl should be corrected I think. This is just the

limit in DGCatcons of the diagram

Ran x Ran

b\ Phma o s ,
Shvga (GTé Ran) mglt GT& (Ran x Ran)C & Shvge (Gré Ran)

I mean one should not impose in addition the property that A' applied to the iso-
moprhism ¢,/ (F)= ¢y, (F) gives the identity. Indeed, if F;F’ € Shvge(Grég,,)

small
and ¢, (F') ¢}, o(F") then applying A' this yields an isomorphism F’' = F, and we
identify F’ with F.
In 1.6.5 we defined a unital structure for any prestack Z — Ran over Ran. It would
be easier to understand the definition if you give it in this generality. I propose to define
the following more general notion making things clearer. The next section justifies the

fact that the unital category should indeed be a full subcategory of S hv(Grijan).
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1.8.22. Generality about invariants under category objects. Let X : A% — PreStk; s
be a category object with S = X[0], H = X[1], so H acts on S. Then one may de-
fine the category of H-equivariant objects Shuv(S) of Shu(S) as Tot(Shv(X([e])).
Here we applied the functor Shv : (PreStk;s)”” — DGCateons to X. Namely, denote
colimp,je aor X[n] by S/H, we think of it as the quotient of S by H. Then by definition
Shv(S)! = Shv(S/H).

In this generality, Shv(S)H — Shwv(S) is comonadic by ([34], 4.7.5.1).

Let’s call the unit category object acting on S the constant functor A% — PreStk;
with value S. The unit section yields a morphism from the unit category object acting
on S to H. Note that Shv(S)® = Shv(S). Applying the invariants, we get a functor
Shv(S)H — Shv(S)° = Shu(S).

Is your definition of the unital category equivalent to the above definition of the
category of invariants under the action of (Ran x Ran)< on Gr“é’jRan?

As in Section 1.1.12 of this file, we have a natural right action of H on itself, so that

the map ¢ : H — S attached to [0] RN [1] is H-equivariant.

Recall from ([41], 3.0.73) the category A_, and the map ¢ : A_ — A%. Re-
stricting X along this map, we get a split augmented simplicial object. The corre-
sponding augmented simplicial object is a colimit diagram by ([34], 4.7.2.3), namely,

[c]oliAmp H x; 5, Hi— S in PreStk;s;. This says that the quotient of H by the natural
nje Al

right action of H on itself identifies with S. Here Hg = H x; 54 H X455 ... X455 H,
where H appears n times.

Consider the inclusion [n] < {—o00} % [n] functorial in [n] € A, it gives a morphism
of simplicial diagrams o, : H x; g5 Hg — H¢ (functorial in [n] € A). Passing to the
colimit, this gives the map

S— colim H x5, Hg — colim Hg—S/H
[n]e AP [n]e AP

which is the natural map f: S — S/H. Now for s,t : [0] — [1] write as,ay : H — S for
the corresponding maps. Assume «y : H — S universally homologically contractible.
So, for any n > 0 the functor o, : Shv(HZ) — Shv(H x;gs HZ) is fully faithful.
Passing to the limit we conclude that f': Shv(S/H) — Shv(S) is fully faithful.

My understanding is that an object K € Shv(S) lies in the full subcategory Shv(S/H)
iff @ (K) lies in the essential image of the full embedding o} : Shh(S) — Shv(H). Ts
this correct?

Remark: assume now X is such that for the source map oy : H — S attached to

[0] 5 [1] is universally homologically contractible. Then consider X", which is X with
reversed multiplication. Applying the above, we also see that f': Shv(S/H) — Shv(S)
is fully faithful.

1.8.23. For 12.5.3. The inclusions SquRan(G)SO C SI; Ran(G)=0, SIq,Ran(G)E;L\ﬂ C

untl

STy Ran(G)=, Sl Ran(G)2Y; C Sy Ran(G)™ are full subcategories.
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The fact that for A < 0 the functor (i), preserves unital subcategories follows from
the fact that both diagrams are cartesian

QA Ran Q0 a\ Ran
S(Ran x Ran)© = S(Ran x Ran) < S(Ran x Ran)© = S(Ran x Ran)©
i Psmall \L Psmall \L Pbig \L Pbig
p2a I
Ran Ran
S Ran = S Ran> S Ran = SRan

Similar thing happens for (j,, )«

We may similarly define the prestack (Conf* x Ran x Ran)<, it classifies (D, (z;)) €
(Conf* x Ran)<, ((z;) C (z;)) € (Ran x Ran)“. Then define Shvgx ((Conf* x Ran)<),ny
in a similar way.

For A < 0 we have the diagram, where both squares are cartesian

8'Ram ‘P8£a” S(Ram X Ran) @Ef 8'Ram
b Phan 4 Phan b Phan
(Conf* x Ran)© 7" (Conf* x Ran x Ran)< e (Conf* x Ran)©

However, the corresponding diagram for S-versions is not cartesian!
For this reason for A < 0 the functor

(pi\?an)* : SIq,Ran(G):A — Sh’UgA((COIlf)\ X Ran)c)

preserves the corresponding unital categories. We prove this using the S-versions!
Besides, (pj,,)" and (sRan)! preserve unital subcategories for A < 0, here sg,, :
(Conf* x Ran)© — S}, is the canonical section sending (D, (z;)) to F = w?(—D)
with 5= w” |x_supp(p)- This first implies that (12.6) is indeed an equivalence for
A < 0. It is easy to see that the functor (s%,,)" : SI; ran(G) ™" — Shvge (Ran) preserves
unital subcategories, hence gives an equivalence (s%,.)" : SI; ran(G)~°= Vect, where

wgo  goes to wRran. Here Shvge (Ran)yny — Vect with the canonical generator wray.

Ran

1.8.24. For ([24], 4.2.2): it is correct. Namely, S5, € PreStk;;. Let us be given
KesS hvgc(gﬁan). For any finite collection \; < 0, the union of I_Iigﬁgn maps to 5'%
<{Ai}

write Sg,;

an’
for the image. Then this image and its complement in S%an are stable
under the action of (Ran x Ran)<. So, we have the category Shvge (S3,, — _1%;3 i})uml.

Claim: let K € Shvga(SR,,)- Let {\;} be a finite collection of elements of A" such
that

A" —u{p e A p < N}

is finite. Assume that for each such collection the restriction of K to 5%
unital. Then K € Shvge (S%an)untl-

~ S s

by G0 .
(Ran x Ran)C = SRan- By our assumption, for

each finite collection of elements of A"eg such that A" — Ui{p e A| p < N} is finite,
the restriction of <Z>!bK to

Proof. Consider the diagram Sﬁa bad S

(SRan — SR{ }) X Ran,6, (Ran x Ran)<

an
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descends under ¢ to an object of Shvgg((SRan _ gl%a{ﬂi\i})_
We have cup{)\i}S%an - S;ii = SRan, as this is an open covering. Since Shv satisfies

Zariski descent,

Shvge (S%un) = lim Shu (99, — St
The objects we get on S’%a — SR;T i} clearly organize into an object of the above
limit. ]

The above claim implies ([24], 4.2.2).

1.8.25. Problem here! Using ([24], proof of 1.5.3) one wants to show that the functor
(z’ﬁan)* preserves unital subcategories for A < 0. Namely, one has

()" = (Phan) (Pram)« ()’

However, this is problematic, because (pﬁ;n) : Shvga (SR, ) — Shvga (Conf? x Ran)©
does not preserve unital categories. So, a proof of Proposmon 12.5.4 of the paper
should be improved (and also [24], Pp. 4.2.3).

The point here is that the square

A @ —A
S(Ran x Ran)C = S Ran

\L \L pRan
(Conf x Ran x Ran)“ & (Conf x Ran)“

is not cartesian!
Idea: if F € Shv(SRan)uml then (ig{jﬁl)! € Shv(Sg; n)untl is not arbitrary, it is the
s-extension under the closed immersion

SRan N SRan - SRan

The claim is that for K ¢ Shv(SR Juntl, Which is the x-extension under the closed

immersion Sy ﬂ 5’% — Sy, the object

an

(pRan) K € Shv((X A x Ran)<)

is unital.

Now since (if,,)" : SIgRan(G)=* = SI; Ran(G)™ preserves unital subcategories, this
should imply that (i%‘{an)! preserves unital categories for A < 0 formally via Lemma 1.8.16
of this file, because there is an explicit formula for this functor in terms of other func-
tors, which are already known to preserve unital categories.

One has separately to verify all the claims from 12.5.3-12.5.7 for A = 0. It is clear
that (p%,.)"s (Phan)s (F%an)'s (194, )+ Preserve unital subcategories. For (j%. )i this is
not clear (for this we need to know (i, )* preserve unital subcategories).



113

1.8.26. In ([24], Cor. 4.2.2) it is claimed that F € Slﬁgn lies in Slﬁgmuml iff for any
A < 07 (il/}{an)!F S SIE;\n,untl'

To prove this, we present Sﬁan’—\? colimy>¢ Yy in PreStk, where Y; C g%an is the
union those Sﬁan for which ht(\) < k. Here for A = ) nqa, the sum being over
simple coroots, we let ht(\) = > —nq € Z4. This holds, because 7<o Spc C Spc is
closed under filtered colimits, so for S € Sch®//, Map (S, colimy, Yy) is the union of the
sets Map(9, Yy;). Now any element in Map(S, Si,,) lies in some Map(S, Y}), because S
is quasi-compact.

The complement of Y} in S’%an is closed, and Y; C Yi41. So,

Shvge (Shan) = klelgl Shvga (V)
+

For each Y} we have the unital subcategory Shvge (Yy)uny defined similarly. For F' €
Shvge (Yy,) the already establised results show that F' lies in SI;(Y%)uns iff for any A <0
with ht(\) < k, (ig,,)'F lies in the unital category.

Let now F' € SIESH with (i’\Ran)!F S SIq,Ran(G);f‘tl for any X < 0. Its restriction to the
open part Y is unital for any k. So, over Y XRan,,,,,.,, (Ran x Ran)< C S?Ran % Ran)C
we get the desired isomorphism golsma”Fggo;)igF, they are automatically compatible
and yield in the limit over k the desired isomorphism.

Another thing, the proof of ([24], 4.2.7) is correct, but we need to know that Shv
satisfies the descent for a morphism f :Y — Z in Schy;, which is finite and surjective.
This follows from ([44], 0.0.30).

1.8.27. t-structures on gluings of categories. Let us be in the situation of Lemma 1.8.16.
Assume both C?, €’ are equipped with accessible t-structures. Then we define C=% C C
as the full subcategory of those F' € C for which i'F € C’29 and j'(F) € (C?)20.
Then F € C<Uiff both i*F € (C")<Y and j*F € (CY)<C. Indeed {F € C | i*F €
(C")<0 and j*F € (C%)<%} contains i, (C'<?), ji((C°)<") and is closed under colimits
and extensions. Since both C’<? and (C?)<? are presentable, each of them is gener-
ated by a small set of objects. Now C<Y C C' is the smallest full subcategory closed
under colimits, closed under extensions and containing jiF} for F; € (C°)<% and i, F;
for [, € C'<C. Thus, by ([34], 1.4.4.11), C<Y is presentable and defines an accessible
t-structure on C. Besides, i) : C' — C' is t-exact.

Let K € CY. Then i*K € C'<% and j*K € (C°)". So, i.i* K € C=. The exact
triangle j1j* K — K — i,i*K gives an exact sequence H(jij*K) — K — H°(i,i*K) —
0in CV. If i*K € C<0 then the map H°(jij*K) — K in C" is surjective. We have
§«j*K € C2% and i'K € C'20. The exact triangle i1i' K — K — j,j*K gives an exact
sequence 0 — H(iyi' K) — K — H°(j,j*K). So, if ii' K € C>° then K — H°(j,j*K)
is injective.

In particular, if K € C" is such that i'K € C>9 and i*K € C<° then K is the
intermediate extension of j* K, which is defined as the image of the map H%(jij*K) —
HO(j.j* K).

1.8.28. t-structures on gluings of categories: more. Assume we are given C' = C<q €
DGCateont and for any A € A™9 a full embedding ("), = (i), : C<)x — C, which
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admits a continuous right adjoint (:*)". Assume that for A < p we have C<) C U<y, that
is, ("), factors through (i*),. Assume also given a full embedding (j*). : C—) — C<x
admitting a left adjoint (j’\)* = (5%)' : C<x — C—y in DGCatepp. Assume also
(72)" has a left adJomt (™)1, then this left adJ01nt is automatically fully faithful. Set
(") = (3M)'(@)'. Assume the composition (i*).(j*). admits a left adjoint (i*)*.

For A € A" let C.) be the full DG- subcategory generated by C<y_,, for all simple
coroots a;. We assume in addition that ( M),O_y is the right orthogonal to C.y in
C<y, and Oy is the left orthogonal to (5*).C=y. In particular,

C<)\ = Ker(Cg)\ ]“2* C:)\)

by Lemma 1.8.15. To be safe, assume that if A\ # u, ' € C—, then (i*)'j{F = 0 (is it
automatic??). Let us also assume that if A # u, F' € C—, then (i*)*(j*)F = 0.

Assume now each C—, is equipped with an accessible t-structure. Let C<Y be the
smallest full subcategory closed under colimits, closed under extenswns and containing
for each A € A" and F € C=? ) the object (i*):(j*)1F. Since each c=) —, is presentable,
by ([34], 1.4.4.11), C=Y is presentable and defines an accessible t-structure on C.

Lemma 1.8.29. Under the assumptions of the previous subsection, we have the fol-
lowing.

1) For F € C we have F € CZ° iff for any A € A™*9 one has (i*)'F € C>O

2) If for any X\ the t-structure on C—y is compatible with filtered colzmzts then the
t-structure on C' is also compatible with filtered colimits.

Proof. 1) is immediate from definitions.
2) follows from 1). O

The functors z. : C—y — O are right t-exact, the functors (i*), : C—y — C are left
t-exact, hence (i*)* : C' — C_, are right t-exact.

In our special case the following holds in addition. For & > 0 let >,C C C be the full
subcategory generated by C<y for A € A" with ht(\) > k. Note that >;11C C >1C,
so we get the functor (Z4)” — DGCateont, k — C/>;C. Then

C— lim C / >kC
ke(Zy)er
is an equivalence. This additional assumption allows to conclude the following: if F' € C
and (i*)'F = 0 for all A < 0 then F' = 0. Indeed, the image of F' in C/>;C vanishes
for each k, hence F' = 0. We used that the right orthogonal (>;C)" to >;C in C' is the
full subcategory generated by the objects of the form (i*),F for ht(\) < k, F' € C_j.
Then C/>,C = (>1C)". Note that the set { € A9 | ht(p) = n} is finite for any n.

Each category (>1C)" has a similar filtration indexed by A with ht(\) < k. We also
define a t-structure on (>;C)" similarly. Then the evaluation C' — C/>;C is t-exact,
and the t-structure on C' can be seen as the t-structure obtained from the t-structures
on each C'/>,C via ([18], ch. 1.3, Lm. 1.5.8).

Then, I think, as in Section 1.8.27 of this file one gets the following. Let K € C* such
that for any A # 0 one has (i*)'K € CZ) and (i*)*K € C=9 then K is the intermediate

extension of (j°)'K € CS .
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Under our additional assumption, we also get the following. If (i*)*F = 0 for all
then F' = 0. This gives in turn: an object F € C is connective iff (i*)*F € C_, is
connective for any A < 0. Indeed, one direction is evident. Assume that (i*)*F € C_
is connective for any A < 0. Assume F' € C>°, we have to show that F = 0. Assume
F # 0. By the above, there is A < 0 such that (i*)*F # 0. Take A maximal with this
property. Then (i*)*F = (i*)'F, a contradiction.

1.8.30. Let A be any partially ordered set, assume given a diagram A — DGCateony,
A = C<y such that for A < p, (iy,)1: C<y C C<y, is fully faithful and has a continuous
right adjoint (f,\#)!. Assume also given a full embedding j : C_y — C<» admitting a
left adjoint (j)* = (j*)' in DGCateons. Assume also ()" has a left adjoint j : C—y <
C<», this j is automatically fully faithful.

For A € A let C.y be the full subcategory generated by C<, for p < A Assume
the inclusion (i<y)r : Ccy — C<) admits a continuous right adjoint (i<y)', and the
essential image of j) is the right orthogonal to Cy in C<x. So, for each K € C<) we
get a fibre sequence (i) )1(i<y)'K — K — j2(j2)*K in C<) with K.y € C.y.

Let C = colimyep C<) with respect to the transition functor (EA#);, equivalently
C'= limyepor C<y with respect to the functors (iy,)". Let i} : C<x — C be the
natural functor, it is fully faithful (by [21], Lemma 1.3.6), write (i*)' : C' — C<, for its
right adjoint, this is the projection in the above projective system. -

Assume each C_, is equipped with an accessible t-structure. Let C=Y C C be the
smallest full subcategory closed under extensions and small colimits and containing for
A € A the objects i} j}M(K) for K € C’Eg. By ([34], 1.4.4.11), C=" is presentable and
defines an accessible t-structure. Let (i*)* = (2)*(i*)' for A € A.

Is it true that for K € O one has K € C=V iff for any A, (i*)*K € C=?

1.8.31. Ezample. (Sam). Consider Y = colim,en A" with respect to the closed im-
mersions A" < A" Let 4, : A" < Y be the natural embedding. Then for any n,
i*w = 0. Indeed, w = colim,ey(in)iitw. So, for any K € Shv(A™),

Hom(w, (in)«K) = li%lp Hom((im )1wan, (in)«K)
meN®

is placed in degrees > N for any N € Z. Note that w[r] € Shv(Y)=<" for any r.
If K € Sho(Y) and i K € Shv(A™)< for all n, does it imply that K € Shv(Y)=<9?

<0
unt
subcategory containing for each A € A™Y and a connective F' € SquRan(G);f‘tl the

1.8.32. The full subcategory of connective objects in SI; Ran(G),,,,; is the smallest full

object (iﬁan)!F , closed under colimits and extensions. The previous section shows that
the t-structure on SIq,Ran(G)i?tl is accessible and compatible with filtered colimits.

1.8.33. For 13.2.2 line 1: replace Rep(H) by Rep(H)".

The objects V7 for v € Af dominant were already defined in 2.4.6 of the paper.

It is claimed that we get (13.2) by adjunction. This is not correct, it it obtained by
appying the functor F' + 0;— g, * F' to (13.1).
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1.8.34. For 13.2.3. By (A®)* we mean dominant coweights of H. It is not true that
(A")T becomes a poset with the definition y; < v iff 72 — 41 € (AF)T.

It is better to say that we get just a category (A®* <), not a poset, and this category
is indeed filtered, this is all we need. The same correction for [25].

1.8.35. For ([24], 1.6.3). An example: let Y — S be a map with S € Schy, ¥ an
ind-scheme of ind-finite type which can be written as Y = colim;¢; Y;, where I is small
filtered, Y; C Y is a closed subscheme of finite type, if i — j in I then Y; < Y. Assume
each Y; smooth over S. Then wy is ULA with respect to the Shv(S)-action on Shv(Y).

1.9. Comments to the paper the semi-infinite IC-sheaf [25].

1.9.1. The description of compact objects in SI(Grg) in ([25], 1.4.10): by ([25], 1.4.7),
SI(Grg) = Ind(C), where C' C SI(Grg) is the smallest stable subcategory containing
A for all A € A. Here C C SI(Grg) is idempotent complete, as any direct summand
K of an object of C satisfies: (¢#)*K = 0 for all but finite number of x, hence K is in
C'. The description of Ind(C)¢ is given in [33].

any object of C' is a finite extension objects of the form A* [m] for some A, m. Such
compact object F' satisfies the property that i} F vanishes for all but finite number
of A, and i} F is compact in SI(Grg)=y. Conversely, let F' € SI(Grg) be such that
i3 I vanishes for all but finite number of A, and i} F' is compact in SI(Grg)=x. Then
there is a locally closed ind-subscheme ¢ : U C Grg, which is a union of finite number
of the orbits S* such that F = i\Fy; for some Fyy € SI(U). Moreover, Fyy admits a
finite filtration in SI(U) with the successive quotients (iy)1i}F. Since each (iy)iyF €
SI1(Grg)¢, we get F' € SI(Grg)°.

For ([25], 2.1.3). In my file [47] I explained that for A dominant coweight for (G, B)
one has coindg(e_’\) = (VA)*. This implies formally that for A dominant coweight for

(G, B) one has coindg,(ek)gv)‘.

The map (2.1) from ([25], 2.1.4) is equally determined by requiring that e gt
VM @ VA2 5 VMM equals oM A2,

For ([25], 2.3.1). His (A, <) is not a poset, but a filtered category, this is sufficient.

For ([25], 2.3.7). In point (c) we use the following fact. Given \; € AT, we have a
canonical inclusion A2 <y AM x A*2 where A* € Sph(G) is the IC-sheaf of Gr)(‘;.
It simply comes from the fact that the x-restriction of (A x A?) ]Gré is canonically
IC(Gr).

Note that for g € G(F), K € Sph(G), 0y * K =g - K, where g : Grg — Grg is the
multiplication by g, and by ¢g - K we mean the direct image under this map. We apply
the functor e > e x A2 for the canonical map A — (6,5, )«e[(\1,2p)], compose with
the map A — (0,5, )«€[(A2,2p)], and precompose with AMTA2 <y AM x A2 The
result is the same map for A\; + A2. This is why in ([25], 2.3.4) the two compositions
coincide in the homotopy category.

For ([25], 2.4.4). Their Section 2.4.4 he actually shows that

107 =i (A") ® colimyep+ V(A + p)
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Each term in this inductive system for A deep enough in A is U(d™),. However, it is
not clear if the transition maps are the identities. Here i~ is the Lie algebra of N—, and
U(n™) is its envelopping algebra Indeed, for A deep enough in A+, VA(A\+p) S U(R7),
via the action of U(fi”) on v*. Compare with ([25], 2.5.4).

For ([25], 2.5.4), the answer is correct. Somehow, the map d,5 — A*[(\,2p)] ”cor-
responds” to the map e — V* given by v*. In the sense that the map Opr * AM
AN« AM (), 2p)] obtained by applying e+ A*! induces by applying RT'.(S*2#, i ()
the morphism

VAL +p) SV + 1) @ VA = (V@ V) (e + )

For v € VM(\ + ) with Ay dominant for G, the function n — {(v*)*,nv) lies in
O(N)(p), where t € T acts on f € O(N) as (tf)(n) = f(t Int).

The composition VM VAN) @ VM — VM @ VA — V2 in the proof of ([25],
2.5.4) is a map of N-modules. So, colimygp+ V* is naturally a N-module. Such col-
imit is described more generally in ([42], 7.6.16). It is better to write this colimit as
colimyep+ VA @ (VA(A))*, where the transition map for Ay = A + A with A\;, A € AT is
the composition

VA (VM) S VM @ (V) @ (VR ()" = (Ve V) @ (V2(A)*
= V@ (V2 (\)*
Then c)\ol/i\r}rl VA @ (VMA)* = O(N) as N-module, this is a version of ([4], Proposition-
€

Construction 3.1.2).

For ([25], 2.8.2). We see moreover that for F € Sph(G), A € A and any pu € A,
iZ(A)‘ «F) lies in SI(Grg)Z# actually.

The fact that for F € Sph(G) the functor SI(Grg) — SI(Grg), K — K * F is left
adjoint to K +— K x D(xF) follows from ([15], 5.3.9). Here it is important that by
e x F we mean the right action of F € Sph(G) on SI(Grg). Here * denotes as in [15]
the functor Sph(G)= Sph(G) induced by the map G(F) — G(F), g+ g~'. Note that
*D(F) = D(+F), because *xD(e) is an involution.

1.9.2. For 13.2.5 of [30]. First, if A is a monoidal co-category, C' € 1 — Cat then a lax
action of A on the left on C' is a right lax monoidal functor A — End(C), here End(C)
is the monoidal oco-category Fun(C,C). So, for ¢ € C, a; € A this gives functorial
morphisms ¢ — 1% ¢ and aj * (ag * ¢) — (a1 * ag) * c¢. Similarly for bimodules. This is
used in ([25], 2.7.1).

For bimodules this means that we are given a right-lax monoidal functor A x A™™ —
End(C), here A™™ is A with reversed multiplication.

In the situation of 2.7.1 either he means non-unital A or, if it is unital then it satisfies
in addition the property that the canonical map ¢ — 1% x * 1 is an isomorphism for
ceC.

For ([25], 2.7.3), A in general is not monoidal, I think. Namely, if a map a; — as
in A is given by ao = a * a1, b € A then it does not induce a map b * a; — b * as. He
rather assumes each a admits a right dual, as 1 — a" * a is given. But anyway this is
applied to a symmetric monoidal A.
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His setting does not apply as is, because any 0 # XA € AT is not dualizable in A™.

Actually a simplier thing is used. Let A be an abelian group in Sets, AT C A be a
submonoid. Assume given a lax A x (AT)"™-action on € € 1 — Cat. Assume the left
action of A on € is a strict action, not a lax one. Note that (A1) = AT as A is
abelian (rm stands for the reversed multiplication).

Let ¢ € C be a lax central element in the sence of ([25], 2.7.1). We assume for any
a € AT the space Map(ac,ca) is discrete. View now AT as a category, where for
a; € AT we let
agayt, ifagay! € AT

Mapy+ (a1, a) = { 0 otherwise

We want to check that the map At — C, a + a~'ca is well-defined as a functor of
oo-categories. For a; € At let a = ag — a; € AT also. Then the map aj *ca; — a; 'cas
is defined as the composition

aytea; = ayta  acar = (aar) "t ac)ay Pleye) ay (ca)ay — ay eas
Then this is well-defined as a functor of co-categories. There is "no room for higher
homotopies”. In our situation for b € A™, Map(acbh, (ca)b) is no more discrete possibly.
However, what really counts is the discreteness of spaces of the form Map~(b(ac), ¢(ba)),
and more generally, of the spaces Maps(aj x (ag * ... (ap *xc)...),c* (aj...a,)) which
we assume. They n-morphisms relating the compositions (for n > 2) lie in the latter
spaces, so need not be provided. Thus, we get a functor.
Leag &
aglcag and the map aq3 : al_lcal — aglcag. Let a = agal_l, b= a3a2_1. They both lie
in Mapc(b(a(cay)), c(baay)), because the multiplication by az* is an equivalence. Since
the latter space is discrete, we automatically get a 2-isomorphism asgais — a13.

. oy . — (0% —
For example, consider the composition of the morphisms a; Lea; & a,

1.9.3. For ([25], 1.2). The inclusion SI(Grg) < Shv(Grg) admits a partially defined

left adjoint AVi:(N) : Shv(Grg) — S1(Grg), which is always defined in the constructible
context (by my claim after Lemma 1.2.15), and in the D-module context it is defined on
the holonomic objects. (This is similar to the situation with the Whittaker category).

For ([25], 1.5.2). He claims F' € SI(Grg) lies in SI(Grg)=C iff for any A, i} F €
S1 (Grg)i()]\. This is probably wrong! The following is true: consider a closed ind-
subscheme Y C Grg stable under £(N) and such that if S* C Y then there is at most
a finite number of p such that A < g and S* C Y. Then indeed F € SI(Y) lies in
SI(Y)=Ciff for any S* C Y, i} F € SI(Grg)Eg. This is proved as in [24], Lemma 2.1.9).

1.9.4. For ([25], 2.6.2). In fact, G(F)— limyenor G(F)/K,, as prestacks, here F' =
k((t)) and K, = Ker(G(0) — G(0/t™)). This follows from ([40], 4.4.2). The category
Shv(G(F)) is defined in ([22], C.3.1), and G(F) is a placid ind-scheme. For the map
f: G(F) — Grg the functor f* is well-defined.

1.9.5. For ([25], 2.8.2). The argument is wrong as stated, because 1.5.2(iii) is wrong
as stated probably. To correct, one has to assume first that F € Sho(G)Y is compact
in Shv(G), that is, of finite length. Then the given argument garantees indeed that
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A*x T € SI(Grg)Y, because iZ(A)‘ x F) = 0 for all but finite number of x. Dennis has
corrected this in the revised version of Oct 31, 2021.

It is useful to note that for V € Rep(G)Y of finite length, A* % Sat(V) has a finite
filtration in ST(Grg)Y with successive quotients A* @ V(u — ), p € A.

To get ([25], 2.8.2) note that any V € Rep(G)Y is a filtered colimit of objects V;,

where V; € Rep(G)? is of finite length.

1.9.6. For ([25], 2.8.3). There we have to assume not Th. 1.5.5 but 1.5.7, that is, the
fact that each object A= lies in the heart SI(Grg)¥. Moreover, the claim is that for
any A € AT, the functor AV!Q(N)
in SI(Grg)

is defined on d,-» * Sat(V?), and one has canonically

AV (17 % Sat (V) = AviN (172) x Sat(V?)
Indeed, for any K € SI(Grg), one has

Mapscre) (Avi Y (17 )%Sat(VA), K) 5 Mapgyare) (Avy W (67), Kx(D(x Sat(V*))))
- MapShv(Grg) (6t*>\7 K x (D(* Sat(VA)))) = MapShv(Grg) (51%*)‘ * Sat(VA% K)

(We may also note that §,—x * Sat(V?) is holonomic, hence AV!E(N) is defined on it).
So,

A % Sat(V) = Avi M (N[N, 20)] % Sat (V) =5 Avi ™) (172 % Sat (V) [(A, 25)]

For g € T(F) consider the automorphism g : Grg = Grg. The functor g, : Shv(Grg) —
Shv(Grg) preserves SI(Grg), as T'(F') normalizes N(F'). Taking g = t* for A € A we
get tFwgr = wgaru. Consider the autoequivalence SI(Grg), K — t*K[—(u,2p)]. It
sends A* to AMH, so is right t-exact. It is in fact t-exact: let F' € SI(Grg)>? and
A € A. Tt suffices to show that for any n > 0, Hom(A*, t*F[—(u,2p)]) = 0. The latter
Hom identifies with Hom(A* #[n],F) = 0. So, if we know that A® € SI(Grg)¥ then
the same holds for all AY v € A.

1.9.7. For (]25], 3.1). Schieder’s correction is needed in the definition of the stacks

Buny, (BunN)oo:pa (]BEN)SALL" L

Let us mean by Buny the corrected definition now. The map Grg — (Buny)eos
from ([25], 3.1.6) is defined as follows. Pick an exact sequence 1 = Z — G — G — 1,
where Z is a central torus in @, [G’, G] is simply-connected. Let N C G be the preimage
of N. The correct definition of Buny is just Bung, where the latter is attached to the

pair (N C G). In other words, this is Map,,, (X, B(N) c G\(G/N)).

Then mé X Bun Bungy = mﬁ x Bunyz naturally. Consider the prestack X clas-
sifying Iz on X, Fz on X and an isomorphism Fe=Fz |x—z. We have a natu-
ral map v : X — (Buny)eez X Bunz commuting with Bungz-actions. Let X’ be the
prestack classifying ¥z on X, Fz on X — 2 and an isomorphism ¢ = JFz |[x .. The
projection X’ — Grg is a Bung-torsor in etale topology. We also have a projection
q : X — X' commuting with Bunz-actions. The map ¢ is a torsor under Grz. Since

Z acts trivially on G\(G/N), the map v is Gry-invariant, hence yields a morphism
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7 : X' = (Buny)soz X Bung, which is still Bungz-equivariant. Taking the quotient by
Buny, one gets the desired morphism Grg — Buny.

Note also that A;\lob, V;lob from ([25], 3.1.4) are perverse, as the inclusion (Buny)—, —

(Buny )<y, is affine by ([15], 3.3.1).

1.9.8. The map (3.1) in ([25], 3.2.3) comes from m7'w — w for 7w : S — (Buny)=xs,
here m is defined on wgx, because the latter is holonomic.

Writing temporary 7 : S* — (Buny)<xe we see that iymw[—(\, 2p)] =7 AN So, 7
is defined on A* € ST(S™).

In ([25], 3.3.1) a misprint in the 1st displayed formula: it should be

colimyen+ Hpxn (Gra, IC )[(A, 29)]

([25], 3.3.4) is proved only under the assumption that [G, G| is simply-connected,
while ([25], 2.5.2) is claimed without this assumption.

1.9.9. For ([25], 3.3.8). He wants to use ([27], 3.5.2). More precisely, here some Koszul
duality is need, so that the cited result should imply that j ICByun, — coBar(U"Y (iy), ICEm, ).
Then we want to use the description of the complex z;L ICgs,, siven by ([25], 3.3.4)
essentially, though the latter is for B replaced by N.

1.9.10. For ([25], 3.4.1). My understanding is that he claims that m is defined on
t=*Sat(V?), as the latter is holonomic. Note that for A € A the image of +~* under
7 ¢ Grr — (Buny)sz comes from the T-torsor F%(\z) by extending the structure
group to B.

For ([25], 3.4.3), there X is dominant. His nonstardard notation Gra/\ means Grawo(A),

same for @Ef\. To help a reader, the stack (Buny)oes i@&wom here classified (Fe, F),
where g € (Buny)eez and I, is in the position < —wo(A\) w.r.t. Fg at . The map act
sends this point to Iy, and pr sends it to Fg. Then ICy; * IC@C_;WO(;) = act«(IC &Aawo(/\))
by definition.

The preimage of t—* under S<0xGr;"° %4 Gre over = does not lies in §<0% (GrGMO(A) N
S7). In fact, it lies in many N (F)-orbits. Recall that @guo()\) NS~ is the point ¢~
It is not true that

act ™ ((t™)) N (Buny xGrg""™V) = act~(x(t ™)) N (Buny % Grg ™)

)

However, the 0-th cohomology of the desired !-fibre is indeed e, and this gives the
desired map

Ox(t-%) = 1Cqiob * IC o [(g — 1) dim N — (A, 2]

1.9.11. For ([25], 3.4.6). The inclusion Sets — Spc preserves limits. So if C' €
1 — Cat, ¢= colimjer¢; in C, ¢ € C, assume Mapp(c;, ) € Sets for any i. Then
lim;eror Mape(c;, ) can be calculated in Sets. Its element is a collection of maps
¢; — ¢ such that for any ¢ — j in I, the composition ¢; — ¢; — ¢’ is homotopic to
¢; — ¢. This gives a map ¢ — ¢ in C.
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For ([25], 3.4.8). We consider here the closed immersion is : SO Nt~ Grp, < S say.
Then the natural map igisw — w gives the desired morphism j§(t~*Sat(V*))[(\, 2p)] —
ws,, and we apply (jo)« to the latter map.

1.9.12. For ([25], 3.5.3). If K € Shv(S=Y) is the extension by zero from S<H for
any ¢ < 0 then K = 0. Indeed, the open subschemes S0 — S<¢ for ;i < 0 cover
S<Y and Shv satisfies the Zarizki descent. In particular the functor Shv(S<Y) —
[I<oS hv(S<0 — S<H) given by the product of restrictions, is conservative.

For ([25], 3.5.3 and 3.2.4). We have an action of A on Grg by automorphisms, namely
A acts by t* : Grg — Grg. Consider the action of A on Shv(Grg) such that A sends
F to t"F[—()\,2p)], we mean here the direct image under ¢* : Grg — Grg. Since this
action preserves the set of standard objects A* with u € A, we get an action of A
on SI(Grg), because these are the compact generators. For A € A the corresponding
autoequivalence of SI(Grg) is t-exact, as we have seen above.

Similarly, consider the smallest full stable cocomplete DG-subcategory € generated
in Shu((Buny)ocz) by A;‘lob for A € A. Then C contains ICgy; , also because Shv
satisfies the Zariski descent. We can consider the action of A on € coming from its

action on the set of objects Ag\lob for A € A. Namely, A\ € A sends Aglob to Ag;gg‘.

Recall that for A € A we should have A“EW!AZlOb[(Q — 1) dim N] according to ([25],
Thm. 3.2.4). So, ' should induce a functor € — SI(Grg) commuting with A-actions
on both sides.

He claims that to prove Thm. 3.2.4, it suffices to show that (iu)*ﬂ!(Aglob) = 0 for

i # 0. One should similarly prove actually that (iu)*W!(A;\lob) =0 for pu # A\

The group A acts on (Buny)eez. Namely, x4 € A sends (Fg, k) € (Buny ) ooz to
(Fg, k'), where for each A dominant, (m’)x :0x — VéG equals tz "N X This auto-
morphism t* : (Buny)eee — (Buny)ec, sends (Buny)<y to (Buny)<i4, and identifies
(Buny)=x to (Buny)=x4+,. For u € A the diagram commutes

L
GI“G — GI‘G

b I

P w PR
(BunN)oox t—) (BunN)oox

So, tH AN, = AN and 4V, S VAT We get 7' A =t*r' Ay, So,

glob glob glob glob * glob
N | A —~ % 1'A0
(i) T (AGion) = 1A Agiop

1.9.13. In (]25], 3.6.2) Dennis uses the description of Zastava spaces via Weyl modules
and dual Weyl modules, see ([47], 0.5) where I explain what they are.

The version of Zastava space from ([25], 3.6) is obtained from the usual one from [9]
by interchanging B and B~.

In his Prop. 3.6.6 he refers to ([9], Remark just after Pp. 5.7). By Hgu(ZH,ICqu)
he means RT'(F#, ' ICqu) for the closed immersion i : F* < Z*. Then his Prop. 3.6.6
comes from ([9], Pp. 5.8).

For ([25], 3.6.7). It is used that the G,,-action on Z* contracting it to X* can be

chosen so that it preserves the open subscheme Z*.
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1.9.14. For ([25], 3.7.2). First, for A\ dominant and p < 0, S™#FA N @g is of pure

dimension —(p, u) by ([50], Th. 3.2). Further, ITT(S*”“’\ﬁ@E\;) = Irr(S™H*ANGrY)
again by ([50], Th. 3.2), because the complement is of smaller dimension. It is known
that S* N S+ is of pure dimension —(u, p). By Anderson’s theorem ([1], Pp. 3),
one has a bijection

{aeIrr(S*NS™* ) |a @é} = Irr(Gry NS A

sending a to the closure of aN Gré. So, indeed each irreducible component Grg\; NS —HHA
is the closure of a unique irreducible component of S* N S+t N Grg.

Applying (][9], Pp. 6.4) with B and B~ exchanged, we get that for u fixed and A
deep enough in the dominant chamber A1 one has S* N .S§—#+* Grg.

To obtain the last map in ([25], 3.7.2), he uses for any K on S™# N (t_)‘@g) the
natural map K — j,j"K for the open immersion

589N STEA (M Grd) — SR N (T Grpy)
It induces his map on the level of cohomologies.
Recall that in his notations dim Z* = —(u, 2p) for u < 0, and dim S°NS=# = —(y, ).
He uses several times the commutative diagram
S0 SOnsH—g
J, L l, i

Buny <& ZH,

where ¢ is the inclusion of the central fibre §*.

1.9.15. For ([25], 3.8.3). The action of Nx_(,,) on S7 is transitive, as already the
action of Nx_, is transitive.

Consider the category I whose objects are open subschemes U C S° consisting
of finite number of N(F)-orbits, and maps are open immersions. The natural map
Shv(S°%) — limyeror Sho(U) is an equivalence. Indeed, let i : S C S be a closed sub-
scheme of finite type. It suffces to show that the natural map Shv(S) — Ulgllgp Shv(INS)

is an isomorphism. However, S is covered by a finite number of N (F')-orbits.

1.9.16. For ([25], 3.9). Two things have to be added here: first, the fact that ji ICgun,
is perverse on Buny, and similarly for j IC% on Z*. The second one is the fact that
i

the fibres in the maps in the diagram (3.9) used for the descent of perverse sheaves are
connected.

1.9.17. For ([25], 4.1.1). Note that I is a placid group scheme over Speck, so we
have an adjoint pair oblv : Shv(Grg)! = Shv(Grg) : Av, in DGCatepnt for the
usual category of invariants Shv(Grg)!. Justin proposes to define the renormalized
version as Ind(C), where C = {K € Shv(Grg)! | oblv(K) € Shv(Grg)¢}. Note
that C' € DGCat""—<mPl 5o that Ind(C) € DGCateons by ([41], 9.2.14). Indeed,
DGCat™n—ccmpl admits limits, and the oblivion functor DGCat™" Pl _, 1 — Cat
preserves limits.
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Let Shv(Grg)leonst™ ¢ Shu(Grg)! be the full subcategory of objects that pull-back
to a compact object of Shv(Grg). Then Shv(Flg)! acts on Ind(Shv(Grg)!onst) by
left convolutions. Indeed, Shv(Flg)! is compactly generated. Any compact object K of
Shv(Flg)! is the extension by zero from some I-invariant closed subscheme of finite type
Y C Flg, and K restricts to a compact object in Shv(Y). This is why (Shv(Flg)!)¢
acts on Shv(Grg)°s!", Passing to the ind-completion, we get an action of Shv(Flg)!
on Ind(Shv(Grg)heonstr),

Here is a model situation. Let Y € Schy;, G be a group scheme of finite type,
and H C G a closed group subscheme, assume G acts on Y. Consider f : Y —
Y/H. We then have an inclusion Shv(Y/H)¢ C Shv(Y/H)™!  which is not an
equality in general. Assume that we are in the constructible context or that G/H
is proper. Then Shv(H\G/H) acts on Ind(Shv(Y/H)""). Namely, the monoidal
structure on Shv(H\G/H) is as in my Section 1.10.1. The action map m : G x!
Y — Y identifies with the compositioin G x Y = (G/H) x Y B Y, where the first
map comes from the(g,y) — (g,9y). In the constructible context the map pr, has
a continuous right adjoint, so preserves compactness. So, under our assumptions 1m
preserves compactness. If K € Sho(H\G/H)¢, L € Shv(Y/H)“"! then consider
KKL € Sho(Gx7Y). Since its restriction to G x Y is compact, KNL € Sho(Gx7Y)e,
So, m.(KXL) € Shv(Y)¢. This defines an action of Shv(H\G/H)¢ on Shv(Y/H)constr,
and the desired action is then obtained by Ind-extension.

The t-structure on Shv(Flg)! is defined in ([44], 0.0.40). However, Dennis wants to
use the renormalized version of Shv(Flg)! instead.

1.9.18. The reference for ([25], 4.1.2) in ([3], Lemma 8).

For ([25], 4.1.2). He used without a proof the following. Let W4/ denote the
extended affine Weyl group. For w € Wa/7, Jw,ls Jwx the standard and costandard
objects, wyg € W the longuest element of the finite Weyl group. On the orbit itself FI¢
we take the IC-sheaf and extend by ! or *. Recall that the length £(w) of w € W/ is
the dimension of the I-orbit on Flg through w.

Lemma 1.9.19. Let A € AT. One has juyg1 * jax * Juwoyx = Jwo(n)« for the convolution
on Shv(Flg)!.

Proof. The rule of the game is that given w,w’ € W with £(w) + ¢(w") = £(ww') then
Juw * Jul 5 = Juwuw! x- Besides, jy .« * jy,-1) — 01. For any A € A, the set E) = {t"w | w €
W} has a unique element of minimal length, and dim O* = min,ep, £(w). Here O* is
the I-orbit on Grg through ¢*. If X is dominant then ¢} is of minimal length in E).

Assume A dominant. Then £(t*) = (\,2p) and £(wo) = dim(G/B), as BwoB/B C
G/B is open. Besides, fﬂgwo C 7 1(Gry) is open, where 7 : Flg — Grg is the
projection. So, £(t*wg) = £(t*) + £(wp), hence Tt wox — JA * Juwgx- One has trwy =
’wotwo)‘.

If 1 is antidominant then t* is the unique element of minimal length in Wt*. For
this reason, t“°* is minimal in Wt“0* hence similarly £(wq) + £(t*°*) = £(wot®°™).
SO, Jugx * Jpwo 4 = Jtrwo,« Multiplying on the left the isomorphism

Juwo s * jtwo(k),* - th,* * Juwg,



124

by Juw,,1» We get the result. O

1.9.20. For ([25], 4.2.3). The reformulation of the main result of [ABG] is not clear,
should be explained. For A € A™ the projection ?l’g — O% is an isomorphism. Here
for v € A we denote by O the I-orbit through #” on Grg, and FI§ is the I-orbit on
Flg through w in the extended affine Weyl group. So, the object jy . * 61,Gr,, is simply
4, IC for the open immersion O* — @é, hence a natural map IC@)\ — Jax ¥ 01,Grg D
G
S h’U(GI‘(;>I . 3
The product 2~ x3 {0} is taken in the category of derived affine schemes. Then B~
acts on it in the sense of prestacks. I think by ("™ X {0})/B~ he means the following:

first take the quotient in the sense of prestacks and then take etale sheafification. As
in ([18], ch. 1.2, 4.3.8) the result is a 1-Artin stack.

1.9.21. For ([25], 4.2.4). Misha Finkelberg says that
colimye p+ Honru (Gra, Sat(VA)[(A + 1, 25)]

is calculated in [39] with the answer Sym((§/b7)[—2])(—pu) as in ([25], Pp. 2.5.2).

To understand Dennis’ calculation, recall first that for H an algebraic group of
finite type, Shv(B(H)) = C(H) — comod(Vect) = C (H) — mod(Vect), where C(H) =
RI'(H,e) is a coalgebra in Vect, and C (H) = RI'.(H,w) is the dual algebra in Vect.

For a split torus T we get C (T') = Sym(t[1]), where t = LieT. We used here the
fact that for V; € Vect=" we have Sym(Vi @ V2) = Sym(V1) ® Sym(V2) naturally in
Vect. Indeed, by ([41], 3.0.40), the functor oblv : CAlg(Vect=") — Vect=C admits a
left adjoint sending V' to Sym(V) = @,>¢ Sym™ (V). This implies that Sym(V; @ V) is
the coproduct of Sym(V;) and Sym(V3) in C Alg(Vect=").

We have C (G,,) — ¢[l] & e — Sym(e[1]), so if we pick an isomorphism 7'—= G}, we
get C(T)= @, Sym(e[1]) = Sym(e®"[1]) = Sym(t[1]) via the induced isomorphism
t— e®". 1 think the resulting isomorphism does not depend on a choice of T'= G%,.

By Homgpy(Grg)r (K1, K2) € Vect in the formula (4.4) he means the relative inner

hom in Shv(Grg)! with respect to the Vect-action. Further,
RG(B(T)v 6) /_\;j{omShv(B(T)) (67 6) - Sym({[_ﬂ)

(the latter isomorphism holds even char (k) > 0 for Q-sheaves for example).
For A, A +p € AT,

Hom gy Grgy (SG(V ), Gint e #61,Grgr) = Homvees (i Sat (V?), €)@Sym (H—2]) [(A+1, 27)]
Here 4,a+, : Speck — Grg is the inclusion of the point t**#. Indeed,
FHomgpyortny (€, €) = Sym(t[-2])
Now Homveet (i1, Sat(V?),e) /—TiiHuSat(V/\). So,
HoMshy(Gre)t (V) fasps * 01,Gre) Osym(i—a)) € — ipnin SA(V) (A + 11, 25)]

Inside the proof in Sect. 4.2.4 in formula (4.6) inside the proof and ALL the remaining
formulas inside the proof of Pp. 2.5.2 replace g/b by §/b. He gets the answer

Sym((a/a7)[~2])(—4) = Sym((§/67)[~2])(—n) ® Sym({[-2)),
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which via extension of scalars Sym(tf[—2]) — e gives the desired result.

1.9.22. For ([25], 4.3.1). For. ¢ : Spece — B(M) we have an adjoint pair ¢* :
Rep(M) < Vect : g« in Rep(M)-modules, see ([18], I1.3). For this reason oblvyecke,, :
Hecker(€) — € is continuous.

For ([25], 4.3.2). For C € Shv(B(M)) — mod(DGCatcepn:) we have

C ®Rep(M) Vect = FunRep(M) (Vect7 C’)

by ([41], 9.2.43), as Vect is self-dual in DGCatcont, and Rep(M) is rigid, here M
is an algebraic group over e. For the natural map ¢ : Speck — B(M) under the
canonical self-dualities on the rigid categories Vect and QCoh(B(M)), the dual of
q* : QCoh(B(M)) — Vect identifies with ¢, : Vect — QCoh(B(M)). The functor
OblVHeckey, : Fungep(ar) (Vect, €) — Fungepary(Rep(M), €) comes from the composition
with ¢* : Rep(M) — Vect. The same functor oblvyecke,, : € ®rep(ar) Vect = € @rep(ar)
Rep(M) equals id ®q, for g, : Vect — Rep(M).

For ([25], 4.3.3). Let ¢ : B(T) — B(G) be the natural map then ¢* : Rep(G) =
Rep(T) : g4 is an adjoint pair in Rep(G)-modules, because ¢ is schematic and quasi-
compact. Tensoring with C € Rep(é) — mod, this gives an adjoint pair ind : C' S
C ®Rep(c) Rep(T) : oblv in DGCateone. By ([41], 9.2.43) we similarly get

C ORrep(c) Rep(T) 3FunRep(G) (Rep(T), C)

By ([41], 6.1.10) we also get the following: consider the natural functor [ : C ®Rep(T) —
C ®Rep(cy) Rep(T'). Since Rep(G) is rigid, its right adjoint 7 is continuous and monadic.
S0, C' ®gep(cy Rep(1) = A — mod(C @ Rep(T')) for A = rl.

For ([25], 4.3.4). The fact that C @,z Rep(T) is as described in 4.3.4 follows

from ([42], A.2.23). Note that € ® Rep(T') = @aea €. The we consider the graph I'; :

B(T) — B(T') x B(G) of the natural map « : B(T') — B(G). We have (I';),0—= 0,
where G acts by right translations, and T by left translations. Here we have identified
OG’;;O(TX &/ T where T acts diagonally on the product. Then

C ORep(c) Rep(T) = Oy i — mod(C ® Rep(T))

This gives the description as graded Hecke objects. In more details, we have an adjoint
pair I'Z : Rep(T x G) = Rep(T) : (I'z)« in Rep(7" x G)-modules. Tensoring with C,
this gives an adjoint pair

l:C@Rep(T) S C @pep(ey) Rep(T) : r
So, the monad A = rl on Rep(T x G) is tensoring with @(T';),0.
The functor oblviecke,. : Heckes(€) — Heckeg (€) is just the restriction of scalars
Ofy e — mod(C @ Rep(T)) — Oy 7 — mod(C' ® Rep(T))

with respect tov thev homO{norpvhisrvn of algebras O(Tx Tt Ofy ¢ coming from the
quotient map 7' x G — (T' x G)/T. The equivalence Heckex(C) = O, = — mod(C ®
Rep(T)) sends ¢ with a Hecke property to the graded object {cy}xea with ¢y = ¢ for
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all A and the same Hecke property for G and the evident Hecke property along 7. This
is why 0blviecke, sends c to the graded object {cx}aea with cy = ¢ for all A.
For ([25], 4.3.5). Let € € DGCateont be equipped with an action of Rep(vG’) @Rep(T).

Then € @gepcyarep(7) REP(T) = Og —mod(C), where O, is viewed as a G-module say

via right translations, and as T-module via left translations. This gives the description
from ([25], 4.3.5).

1.9.23. For ([25], 4.3.6), he continues to assume that Rep(j’) ® Rep((?) acts on C.
In 4.3.6 line 1: @ comes from the monoidal functor Rep(G) — Rep(T') ® Rep(G),
V = eXV, where e is the trivial Ty—module. §

Consider € ®gep,7)grep(c) ReP(T) @ Rep(T'), where we used the monoidal functor
id®ReSg : Rep(T) ® Rep(G) — Rep(T) @ Rep(T) to form the tensor product. This
tensor product identifies canonically with € ®g,, ) Rep(T'). Now the dual pair (¢, V)
comes from the dual pair in Rep(7") ® Rep(T') — mod

mult : Rep(T) @ Rep(T) = Rep(T) : mult?,

where mult is the product in the symmetric monoidal category Rep(T). The latter
dual pair identifies with

d* : QCoh(B(T x T)) = QCoh(B(T)) : d.
for the diagonal map d : B(T) — B(T x T).
Let us describe ® and W. Think of Heckexs(C) as the category of graded objects
{ca}rea of € equipped with isomorphisms ¢y ® V= @, V(1) ® cy—p, for any A € A
(Dennis used A + p instead in the latter formula, which is another normalization!).

Recall that € @pq7)@Rep() Rep(T) is identified with the category of ¢ € € together
with a collection of isomorphisms

(26) c*x V= Res(V) xc
for V e Rep(G), where Res : Rep(G) — Rep(T) is the restriction, and we write the
Rep(T)-action (resp., Rep(G)-action) on the left (resp., on the right).

Then ® sends the above object {cy} to ¢ := @y e x ¢\ equipped with the isomor-
phisms (26) obtained as the composition

cx V= ?e’\*(cA*V)’—T ?e’\*(@V(u)@)q_u)’—T @V(u)@e“*(?e’\_“*q_u)
1 1
S aV(p) e xc
m

Here the second isomorphism comes from the Hecke structure on {cy}.
In this normalization the functor ¥ sends c to {c)} with ¢y = e~ % ¢ with the Hecke
property obtained from that of ¢. (This normalization differs from that of Dennis).

Note that we have Heckes(C) = (C ® Rep(T) ORep(T)2Rep(G) Rep(T), where we do
not use the Rep(7T)-action on € at all. Now act : € ® Rep(T) — C is a Rep(T) ®

Rep(G)-linear functor, where on the source Rep(7") acts via its action on the factor
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Rep(T). Applying e ORep(T)2Rep(G) Rep(T) to act, we get ®. The right adjoint to act
is continuous and given explicitly by ([18], ch. 1.1, 9.3.2).

1.9.24. For ([25], 4.3.7). He continues to assume that Rep(7") ® Rep(G) acts on C.

Then on Heckej(C) we consider the remaining action of Rep(G) and the trivial action
of Rep(T'), so we may form Heckeg 7(Heckes(C)), and it identifies with
Hecke (Hecke(C)) = C @pepiygrep(c) Vect
Indeed, in the diagram below both squares are cartesian
pt = B(G) - pt
4 J id xw i
B(T) = B@G) xBT) B B,
here i comes from T < G, and v : pt — B(T) is the natural map.
In the diagram (4.10) the map indgecke, sends {cx}irea to @acy with the induced
Hecke property. Besides, the functor Heckeé(oblvHeckeT) sends ¢ to c, it forgets the
Hecke property with respect to 7.

1.9.25. For ([25], 4.4.1) by ([18], ch. 1.3, 3.3.5 one has
QCoh(B(B™)) @gep(cz) Vect = QCoh(G/B™)
The formula (4.13) was wrong, it should be QCoh(B(N~)) = Hecke;(QCoh(B(B7))),

corrected in the version of Oct 31, 2021.
Taking the quotient of the cartesian square

(T\G) x (G/B~) — T\G

4 1
G/B~ — pt
by the action of G, we get T\G/B~ = B(B") X B(&) B(T).

We do have
Heckes (Hecke;(QCoh(pt/B™))) = QCoh(G/N ™)

_ Consider the diagonal embedding B~ — T x G. Taking the quotient under the right
B~ -action (via the diagonal embedding), we get a cartesian square
TxC)/B —  pt
+ 4
B(B-) — B(TxQ)

Let in addition 7" act on the left diagonally on (T' x G)/B~. Taking the quotient by
this action, we get a cartesian square
T\(T xG)/B~ — B(T)
¥ St
B(B™) — B(T xG),
where d comes from the diagonal inclusion 7' < 7' x G. One has naturally
T\(T x G)/B~ S(G/N_)/Adrf
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This justifies the formula (4.14). The last displayed diagram in 4.4.1 is correct, the
sense of the functor W given by (4.9) is taking direct image along the quotient map
by the T-action, this is why along the horizontal arrows in that diagram we get direct
images. The last displayed diagram in 4.4.1 comes from the commutative diagram

PN x G /B~ B T\G/B-

T ot
(T'xG)/B~ B aG/B-,
where the vertical arrows are the stack quotients.
The direct image along T'\(7' x G)/B~ — B(B™) is the forgetful functor

Heckeg; (QCoh(pt/B~)) — QCoh(pt/B")
So,vthe image of MGT under the la,vtter vfunctor is the direct vimage of (‘)pt s under
B(T') — B(B™), it identifies with O(B~/T') with the action of B~ by left translations.
The diagonal embedding 7" — T x G gives a closed immersion
/T — T\(T x G)/ B
Composing with pr : T\(TxG)/B~ — T\G/B~ we get the closed immersion T\B~ /B~ —
T\G/B~. Taking the direct image of O under this closed immersion and then the pull-

back under G/B~ — T\G/B~ we get the sheaf §; € QCoh(G/B™), which corresponds
to M in his Section 4.4.2.

1.9.26. For (]25], 4.4.3). Let q : B(T) — B(B™) be the projection. The isomorphism
between the 2nd and 3rd line in the displayed formula is just the projection formula
W®(gee) = q.q¢*W for W € QCoh(B(B™). Indeed, if we denote by e* the 1-dimensional
representation of B~ then ¢*W = @, (¢*et) ® W (), and ¢.q*e* = (¢:0) ® et.
For 4.4.4. To get an isomorphism
colime* ® Res@_ (V})* g, ,
e @ Resg (V)7 = aee
let p : B(B~) — B(G) be the natural map. The corresponding map e @p*(V*)* — g.e
is by adjunction a map ¢*e* ® ¢*p*(V*)* — e on B(T). The latter is just v* : e < V2,
This isomorphism is precisely ([4], Proposition-Construction 3.1.2).

1.9.27. The last displayed formula in ([25], 4.5.3) is wrong as stated in arxiv version
5. The problem here is that u appearing in V is not necessarily dominant, so it is not
garanteed that jx . * ju« — Jatpux. It is clear how to correct. The correct formula in
the RHS is

DUr—pt * e @ V(=11)) @ (aspe * Sat(VAH)")
(corrected in the version of Oct 31, 2021).
In arxiv version 6: let A be dominant coweight. By the monoidal dual of the map

IC@)\ — Jas * 01,Gr he means the fact that if Rep(G) acts on some C' on the right,
G

and Rep(T) acts on it on the left, so that C' € Rep(G) ® Rep(T)-module then for
c€ C,V € Rep(G)° and A € AT one has Map(c* V, e x ¢) = Mapg(e ™ * ¢, c* VV),
where V'V is the dual of V with respect to the monoidal structure on Rep(G) (see HA,
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4.6.1.5). For any V € Rep(G)" finite-dimensional, V' is dualizable in Rep(G) with the
dual V*. Namely, the usual unit and counit maps e - V* Q@ V,V* ® V — e provide
this structure. Now take C' = Shv(Grg)! and ¢ = §1.Gr.. We get the morphism
Joxg % 01 Gre — Sat((VA)*).

1.9.28. For ([25], 5.1.1). First, the category Sho(Grg)2 ML (T) is defined as the cat-
egory of £+(T)-invariants in SI(Grg) = Shv(Grg)*™). The category Shv(Grg)*™)
inherits an action of Shv(£"(T)) by my Lemma 1.2.64. On the other hand, £(N)£*(T)
is a placid ind-scheme, and one may also define S hv(Grg)E(N )LT(T) as the category of
invariants under this group.

But further he assumes that Shv(Grg)*V JEHT) is renormalized as follows. First,
we consider C' € DGCat™" =Pl where C' C Sho(Grg)* ™€ (D) s the full category
of F whose image in Shv(Grg)S(N ) is compact. The renormalized category is defined
as Ind(C).

For ([25], 5.1.4). By my Section 1.9.6, for A € A the functor F ~ t"F[—(),2p)] is
t-exact.

Dennis claims first that Sho(Grg)*® )EHT) has a natural t-structure such that oblv :
Shu(Grg)*MEHT) 5 SI(Grg) is t-exact. For any A € A, S* is £ (T)-invariant, so
wgnx is naturally £ (7')-equivariant.

Write £(N) = colim,e 4 N,, where A is a filtered category, and N, is a placid group
scheme, and for @ — o’ in A the map N, — N, is a placid closed immersion and a ho-
momorphism of group schemes. Moreover, we may assume each N, is £ (T')-invariant.
Then £(N)LH(T) = colimy N, L1 (T), here N, £1(T) is the semi-direct product of the
two factors. Moreover, N, £ (T) is a placid group-scheme.

We may equivalently define Shv(Grg)’g(N L) yia geometry I think. Before any
renormalization,

ShU(Grg)E(N)£+(T)3 lim Shv(Gr@Naﬁ(T)
aEAoP
Fix a € A. Pick a presentation Grg — colim;e Y;, where I is filtered, and Y; C Grg

is a closed N, £ (T)-invariant subscheme of finite type. We assume for i — j in I the
map Y; — Yj is a closed immersion. Then Shu(Grg)Net" (1) = 'li}np Shu(Y;)NeL™(T),
1e1°

Now the group No£&(T) acts on Y; through a quotient of finite type G, ; such that
Ker(N, £ (T) — G4.;) is prounipotent. Then we define Sho(V;)Ne€" (1) ag Shy(Y;)Ces.
This gives the desired category. The functor oblv : Shv(Grg)*™E (M) 5 Shy(Grg)®™)
is also geometric given by !-pullback. We may similarly define ”the stratification by
£(N)-orbits” on Shv(Grg) ML (D) and the objects AY V* € Sho(Grg)tMWeH (D)
equipped with oblv(A*) = A, oblv(VA) = VA

Then we define the t-structure on Sho(Grg)*® )ET(T) in a way similar to that for
SI(Grg). Namely, connective objects is the smallest full subcategory stable under
extensions, colimits and containing A* for all A € A. By definition, oblv is right t-
exact. It is also left t-exact. Indeed, let F € Shv(Grg) ™ML (1) be coconnective.
Then for any A\ € A, i F is coconnective in Sho(SMENET)  hence oblv(i\ F) is
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Sho(SMEMNET) = Shy(B(T)).

The renormalized version of Shuv(Grg)™ is similarly equipped with a t-
structure. Namely, we first equip the above C with a t-structure, which in turn gives
one on Ind(C) by Lemma 1.2.37 of this file.

Using the geometry as above we also see that Shv(Grg)‘Q(N)EJr(T) - Shv(Grg)SJr(T) is
a full subcategory (before any renormalization). We then get (Shuv(Grg)SN)€" (T))constr <
(Shv(Grg)L (M)eonstr is o full subcategory, hence a natural functor between the renor-
malizations (=the ind-completions of the constructible subcategories). By ([33], 5.3.5.11(1))
the functor between the renormalizations is also fully faithful.

coconnective in SI(Grg)=y. So, oblv(F) is coconnective. My understanding is that

N+ (T)

1.9.29. For ([25], 5.2.1). The fact that oblv : Sho(Grg)! — Shv(Grg)* ™) (before
any renormalization) admits a continuous right adjoint follows from Section 1.2.62 of
this file.

1.9.30. For ([25], 5.2.3). By definition, AV;Q(N) is the partially defined left adjoint to
the full embedding Shv(Grg) M (D) ¢ Shy(Grg)t (D). In the constructible context
the functor Avf:(N) is everywhere defined. Indeed, in the notations of my Section 1.9.28,
pick o. Then for i € I we may assume £1(T)) acts on Y; through its quotient £+ (T);
of finite type, and £7(T'); C Gy, is a subgroup. Then we have the projection of stack
quotients f : Y;/LT(T); — Y;/Gqi, and the left adjoint in question comes from fi,
which is everywhere defined in the constructible context.

To show that Avf(N) is defined on the essential image of oblv : Shv(Grg)! —
Shv(Grg)t (D), use my Lemma 1.2.15. Namely, for cach A € At set Ny = Ad,—»(£T(N)),
so N)£T(T) is a placid group scheme, and we get

Shv(Grg)z(N)ﬁ(T):; lim Shv(Grg)NASJr(T)
AE(AT)op

The key thing is is the following. Let A € A*. Then it is known that N(0)t*G(0)/G(0) C
Grg is an affine space of dimension ()\,2p), it coincides with the I-orbit O* on Grg
through t*. For @ in the affine extended Weyl group write fﬂg for the corresponding I-
orbit on Flg. It is well known that the natural projection Cr"lg — O* is an isomorphism.
So,

t~ M /T = NyG(0)/G(0)
is the Ny-orbit of 1 on Grg. Here Ny = t=*N(O)t*.

Consider the functor AV!N* : Sho(Grg)T©) = Sho(Grg)T(ON left adjoint to the
inclusion. Given K € Shu(Grg)T(©) the object AV!N’\ (K) is nothing but act;(eXK) for
the map

act : N\T'(0) xTO) Grg — Grg,
more precisely this is the image of AV!N)‘ (K) under obly : Shv(Grg)T©ON — Shy(Grg).

Let now F € Shv(Grg)!. Note that IC = e[(), 2p)] is the IC-sheaf of the affine space

t~ It 1 /I. Then the object
£ FION,20)]
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writes as a;(IC KXF) for the action map
a:t AN X! Grg — Grg

So, the latter may be calculated as AV!N A(F"), where F” is the image of F' under oblv :
Shv(Grg)! — Shv(Grg)T©),

The shift he uses does not mean too much, because a shift is an equivalence of
Shv(Grg)?!, and the way to identify abstract functors (such as oblv) with geometricn
ones is not made precise! Normalization of shifts is really not clear in his paper!

For ([25], 5.2.4). The 1st isomorphism in his Section 5.2.4 follows from the fact that
for the left adjoint AV!N(F) . Sho(Grg)T©) — Shu(Grg)TONE) to the inclusion, and
any K € Shv(Grg)T(©) we have

2 A P K S AV (k)
Indeed, for L € Shv(Grg)N(F)T(O)

Hom gy ey (2 AV V() L) 5 Homgp, argyreo (Avi ) (P K), 1°L)

,—\; g‘[OmShv(Grc)T(O) (t)\K, tAL) /——\; g-COmSh,U(GrG)T(O) (K, L)

1.9.31. For ([25], 5.2.5). If F € Shv(Grg)! and A € A then ¢t~ F is equivariant under
I* := t~*[t*. Now the composition
1/T(0)
Sho(Gra) "™ 2 Sho(Gre) ™ @ ML Sho(Gre)!

I/InIA
identifies with Shv(Grg)!” b g hv(Grg)*0 A, Shv(Grg)!, because for a prounipo-

tent group the inclusion of invariants is fully faithful. The latter functor writes as
K + act,(eXK) for the action map act : 17 x1* Grg — Grg. Now for F € Shv(Grg)!
we get

(27) acty (et A F) S j .« F

up to a shift, because IT* = It~*It*, and due to the following. Consider the isomor-
phism
IT x Grg = It x Grg, (v, gG(0)) = (vt t*9G(0O))
Let y € I act on It~*I x Grg diagonally, where on u € It~*I it acts as uy ™', and
on gG(O) € Grg it acts as ygG(O). Let also y € I act on II* x Grg diagonally,
where on v € I it acts as vt~ y~1t*, and on gG(0O) as t~*yt*¢G(O). Then the above
isomorphism is I-equivariant, and this gives (27).
This proves that for F € Shv(Grg)! one has

(28) AVITO N F) 355« FI— (2, 25)]

as claimed in his paper. I don’t understand the shift however!

For 5.2.6. He uses the fact from ([22], D.1.2) that for any C' € DGCatey,s with an
action of Shv(G(F)), C= colim, C*» where K, = Ker(G(0) — G(0/t")). So, for
any ¢ € C, ¢= colimy,, oblv,, AvEn(¢), where oblv,, : CK» — C and AvEr . ¢ — CFn
are adjoint functors.

1
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The reference for the Iwahori factorization N~ (0)17(0)(0) = I is ([13], Section 3).
Here N~ (0); = Ker(N(©) — N7) is the first congruence subgroup. For A € A he

— AN — A
thinks of Avi N=(Ont here as a functor

Shv(Grg)T(o) — S’fw(Grg)T(O)tiA]\f*(o)ltA

In the end of the proof there are misprints. A correct argument: given F' € Shv(Grg)Y (F)T(0)

nonzero, there is A € A™ deep enough such that AViﬁAN?(O)ItA(F) # 0, the latter is in
Shv(Grg)p. Now

AV O p N O oy =5 AV Y O () -, 27)]
by formula (28) of this file.

1.9.32. Ezample. For ([53], 6.4.1). Let I C G(O) be the Iwahori. For A € A let
I = Ad—»(I). Let C € Shv(G(F)) — mod. For any \,u € AT the composition

X oblv A Av, . .
cl” 2 o'nI® 2 01" is an equivalence.

Proof. Since I*/I* N I* is contractible (a tower of Al-torsors), oblv : CI* — CI*N1"
is fully faithful. Up to conjugation, we may assume A = 0 and p any. Then this
composition is the functor F' +— t7#j, . * F for ' € C!. Here Jusx = Jtns is the
corresponding object in Shv(I\G(F)/I), the %-extension of the constant sheaf from
IttI to G(F')/1. Note also that j, exists for any sheaf theory, because I-orbit through
t* is an affine space and the dualizing sheaf on an affine space is holonomic. So, the
inverse functor makes sense. The object ju 4 is invertible in Sho(I\G(F')/I), its inverse
is ji-u ). The forgetting to I N I* appears, because the stabilizer of 1 € Flg inside I*
is I NIk U

1.9.33. Let V be a finite-dimensional e-vector space. Then e ®gymy € = Sym(V[1])
canonically (the Koszul complex). Let now 0 - E — V — W — 0 be an exact
sequence of vector spaces, this gives a surjective map of algebras SymV — Sym W.
Now Sym W ®gymy e — Sym(E[1]) canonically. Indeed, if we fix a splitting W — V/
of the above exact sequence then it gives an isomorphism SymV = Sym W ® Sym E,
and Sym W ®symwasymE) € — € @sym g - | think the so obtained isomorphism is
independent of a splitting. We used here ([41], 9.2.10).

1.9.34. For [25]. Remarks 6.1.5, 6.1.7 are correct in arxiv version 6. Their proof
is essentially as follows. Assume Rep(G) acts on C, and ¢ € O(G/N~) — mod(C),
where we view now O(G/N~) as an algebra in Rep(G). For each \; € AT we have a
commutative diagram

A1sA
(cx VMY x VA2 VISP oy phithe
\l/ ax, \l’ AX1+Xg
ay
cx VA2 = c,

where ay denotes the corresponding action map ¢ * V* — ¢. We denote by u2 :
VM @ VA2 o VMFTA apd M2 s YAtAe YA @ VA2 the maps fixed in his Section



133

2.1.4 (as well as their duals). We must show that the diagram obtained by passing to
adjoints

b,\§>>\2 . (V>\1+>‘2)*

c
Loy T A2
b
cx (VA)* i S (VA2)* @ (VAL)*
also commutes naturally, where by : ¢ — ¢ * (V*)* is the map obtained from ay by
adjointness.

A1sA
This is easy to check. For this we use the following. First, the composition VA1+A2 © =
A\
VMg VA VT R g id, Second, the diagram commutes
V/\l ® V)\g ® (V/\l)* ® (V)\g)* u(@u e
Lt lu
ALsA2

V)\1+)\2 ® (V}q)* ® (V)\Q)* u — V)\1+)\2 ® (‘/’)\1~i>)\2)>i<7

where u every time denotes the unit of the corresponding duality.
We may see here ¢ as a lax central element, where the left Rep(7')-action on c¢ is
trivial. For a nontrivial Rep(T")-action the situatioin is similar.

1.9.35. For 6.2.1. Let ¢ : B(T) — B(T x G) come from the diagonal map T—T X G.
We have an adjoint pair ¢* : QCoh(B(T' x G)) < QCoh(B(T)) : ¢« in Rep(1) ®

Rep(G) — mod. Tensoring by C over Rep(T') ® Rep(G), one gets the desired right
adjoint to C — Heckes 7(C). This right adjoint is monadic, because ¢ fits into a

diagram B(T) % B(T x G) — B(T'), whose composition is id. So, C' — Heckeg 7(C)
generates Heckeg 7(C) under colimits.
We may also use ([18], ch. 1.1, 8.5.7) and the fact that ¢, : Rep(T) — Rep(T) ®

Rep(G) is monadic. So, for the algebra A = ¢.¢"0 € Rep(T) ® Rep(G) we have
A —mod(Rep(T) ® Rep(G)) = Rep(T') and

C ORep(i)aRep(c) A — mod(Rep(T) @ Rep(G)) = A — mod(C)
1.9.36. For 6.2.2. Consider the diagram
B(B7) <  B(T)
Na o dp
B(T x G),
where we use the diagonal maps T — B~ — T x G. Using ([18], ch. 1.1, 3.3.3),

one has QCoh(vB(l?_))’—Tq*O — mod(QCoh(B(T x G))) and. QCoh(B(T)) = p,O —
mod(QCoh(B(T' x G))). After the base change by pt — B(T' x () the diagram becomes

G/N- &
¢

i
NS

The adjoint pair he considers comes from the adjoint pair n* : QCoh(B(B~) =
QCoh(B(T)) : ns.
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The functor n* : O(G/N7) — mod — O(G) — mod, where modules are taken in

Rep(T") ® Rep(G) is given by
¢ 0(G) ®g(cyn-) ©

This is why it is sufficient to present O(G) = (5\01}\@ e ®O(G/N7)® (V)
€

1.9.37. For 6.2.4. The first two isomorphisms come from ([18], ch. I.1, 8.5.7). Let us
check that the maps e* ® O(G/N~) ® (V)* — O(G) that he suggests are compatible
with the transition maps in our inductive system. The above map sends e* ® f ® u with
y e (VM*, f € O(G/N7) to the function g — f(g){y, gv*) or maybe to f(g){y, g~ ')

The map VA ® e — O(G/N7) sends v ® e~ to ((v*)*,g~'v). These maps are

evidently compatible with the product in O(G/N~) = @ V* ® e * given in his
HEAT

Section 6.1.2. o

Similarly, we have the maps (V*)* @ e# — O(G/N) sending y ® e* to (y,g'v}).

They are similarly compatible with the product in O(G/N) = @ (V¥)*®e” given by
veAT

V1:v2

(Vul)* ®6V1 ® (lez)* ® 61/2 = (VV1+V2)* ®€I/1+I/2

The claim reduces to the commutativity for any A1, Ao, u € AT of the diagram

Mk [VE@e M x (VM) — 0(@)
J/ unit
MR x ey [VE @ e M x V2 @ (VA2)* @ (VM) 0
iuudz
e)\1+)\2 % [V;H—)\z ® 6_'u_>\2] % (V/\Q)* ® (V)\l)* 1;/\1;\2 6,\14-)\2 % [V;H-/\Q ® 6_“_)‘2] * (V)q—f—)\g)*

Here we view parts in [ | parenthesis as those of O(G/N7), the lowest vertical arrow
is the product in O(G/N~) with the term V2 @ e™*2, and the remaining matrices
are taking the matrix coefficients. The decomposition of O(G) and related things
are discussed in Roe Goodman, Nolan R. Wallach, Symmetry, Representations, and

Invariants, 12.1.4.

1.9.38. In ([25], 6.3.2 line 5) he means the direct image of O, under the closed
immersion B(T) < (G/N7)/T.

1.9.39. In ([25], 5.3.3 and 5.3.4) there is a mistake: given A\ dominant and regular,
it is not true that E(t_wo()‘)) = {(wo) + L(t > wp) as stated, so the isomorphism Jwo,! *
J—wo(N) — Jt=>awg « does not hold.

1.10. FLE again.
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1.10.1. Action of Hecke algebras on invariants. If G is a placid group scheme over
Speck and C € Shv(G) —mod(DGCateepnt) then Dennis claims that the natural functor
Cg — O is an equivalence for any of the 4 sheaf theories (in [31] this is proved for D-
modules). Recall that oblv : C¢ — C admits a continuous right adjoint AvE : C — C¢
by Section 1.3.9. The composition C' — Cq — CC is AV*G,

Let H € Grp(PreStk) be a placid ind-scheme, and G its closed placid group sub-
scheme. By ([44], 0.0.37), Shv(H/G) = Shv(H)%, where G acts on H by right trans-
lations. Note that H/G is an ind-scheme of ind-finite type. So, we have naturally

Shv(H)g= Shv(H)® = Shv(H/G)

More precisely, the functor oblv : Shv(H)Y — Shv(H) may be identified with a* :
Shv(H/G) — Shv(H) for a : H — H/G, so its right adjoint Av¢ : Shv(H) —
Shv(H/G) is a. It factors as Shv(H) — Shv(H)g — Shv(H/G), where the second
arrow is an equivalence.

Let now C € Shv(H) — mod(DGCatcont). This gives an equivalence

CG/—\;FUIIShU(H)(ShU(H) @ Sho(G) Vect, C) 3F\1n5hv(H)(Shv(H/G), C)

The monoidal category Fungy, g (Shv(H/G), Shv(H/G)) acts on Fungy,, gy (Shv(H/G), C)
by compositions. Now

Fungy,, ) (Shv(H/G), Sho(H/G)) = Shv(H/G),

where G acts on H/G by left translations.

The so obtained monoidal structure on Shv(H/G)% is as follows. We accept the
convention of ([44], 0.0.40). So, Shv(H/G)® = Shv(G\H/G) in such a way that for
q: H/G — G\H/G the functor ¢* identifies with oblv : Shv(H/G)¢ — Shv(H/G).
Then the monoidal structure on Shv(G\H/G) is as in Section 1.5.1 I think. Namely,
consider the diagram

G\H/G¥ G\H x¢ (H/G) B G\H/G
4 po
G\H/G,
where p; is the projection on i-th term. Given Ky, Ky € Shv(G\H/G), we get K1x Ko =

my(p1 X p2)* (K1 X K>). The functor (p; X p2)* makes sense, because p; X py is a G-torsor.
The needed base change result is ([44], Lemma 0.0.20).

1.10.2. Let G be a placid group scheme, H C G be a placid closed immersion and a
group subscheme. Let C' € Shv(G) —mod(DGCateons). We claim that oblv : C¢ — CH
admits a continuous right adjoint Av%, .

Proof. For q : H — Spec k consider the dual pair ¢* : Vect = Shu(H) : ¢ in Shv(H) —
mod, where H acts on itself by left translations. Tensoring by Shv(G) over Shv(H),
we get a dual pair L : Shv(G) ®gpy(my Vect S Sho(G) @ R in Shu(G), where G acts by
left translations on G. Here R is the natural functor appearing in the bar construction
of the tensor product, it sends K to K Ke.

Consider the functor R : Shv(G) ®@gpy(r)y Vect — Vect corresponding under the
isomorphism Fungp, ) (Shv(G) @gperr) Vect, Vect) = Fun gy, gy (Vect, Vect) to id. So,
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R sends K Me to RI'(G, K). By Section 1.10.1, v : Shv(G) ®gpy(my Vect — Sho(G/H)
canonically. Here for a : G — G/H we get v(K Ke) — a,K naturally for K € Shv(G).
Now the functor R o y~! identifies with RI'(G/H, ) : Shv(G/H) — Vect. Since G/H
is a smooth scheme of finite type, R admits a continuous left adjoint £ : Vect —
Shv(G/H) sending e to eq/p. Moreover, the adjoint pair £ : Vect = Sho(G/H) : R
takes place in Shv(G) — mod.

Applying the functor Fungy, ) (e, C) to the latter adjoint pair, we get an adjoint

pair oblv : Fungy,,(q)(Vect, C') S Fungp, g (Vect, C) : Avfl* in DGCateong- O

Note also that if G/H is isomorphic to an affine space then oblv : C¢ — C is fully
faithful, because id — Av%, ooblv is an isomorphism.

According to Section 1.10.1, Shu(H\G/H) acts on C¥. The functor oblvo Avy,
identifies with the action of eq € Sho(H\G/H) (maybe up to a shift).

1.10.3. Let G € Grp(PreStk) be a placid indscheme, C' € Shv(G) — mod(DGCatcont).

Then Fun(C, Vect) is naturally a right Shv(G)-module category. One has naturally

Fun(cC, Vect) = Fun(C, Vect)®. Under this isomorphism the functor C' — ¢C' is dual

to oblv : Fun(C, Vect)? — Fun(C, Vect). If C is dualizable this gives Fun(gC, Vect) = (CV)¢.
The notation ¢C' is supposed to recall that G acts on C' on the left.

Proof. One has gC — colimy,jc aor Vect @Shv(G)®*" @ C, so

Fun(gC, Vect) = lim Fun(Shv(G)®" @ C, Vect) =

[nleA

[l%mA Fun(Shv(G)®", Fun(C, Vect)) =5 Fun(C, Vect)“
n|e

Here Fun means Funyeet ]

Note that for any D € DGCatcont, if C € Shv(G)—mod(DGCateon:) then Funy cont(C, D)
is a right G-module.

More generally, let f : H — G be a homomorphism of placid group ind-schemes, C' €
Shu(G) — mod. Under the above isomorphisms the functor oblv$ : Fun(C, Vect)® —
Fun(C, Vect)H is dual to the natural functor Avg gy : gC — ¢C. Here ‘dual’ means
obtained by applying Funy con:(e, Vect) (it is not necessarily the dual functor in the
sense of the monoidal structure on DGCatcopnt, but a weaker notion).

Assume in addition that Avg g, admits a continuous left adjoint oblvg r : ¢C —

g C. Then the dual to oblvg g in the above sense is the right adjoint Av$, : Fun(C, Vect)? —
Fun(C, Vect) of oblv%.

1.10.4. Let G, H be placid group schemes and f : H — G a homomorphism of group
schemes (we do not assume it is a placid closed embedding). Let R : Shv(G) ® gy ()
Vect — Vect be the continuous e-linear functor sending F' X e to RI'(G, F'). This is
a morphism of Shv(G)-module categories. If R admits a continuous left adjoint £ in
Shv(G)—mod then for C' € Shv(G)—mod applying Fungy,() (e, C), we get the functor

AVG, - ¢ — OC right adjoint to oblv : C¢ — CH.
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1.10.5. Let G = U x H be as in Lemma 1.2.64, C' € Shv(H) — mod. Recall that
CY € Shv(G) — mod, and we have (CY)¢ = (CY)H by ([45], Lemma 1.3.7). Since
oblv : CY — C'is a map in Shv(G) — mod, its continuous right adjoint AvY : ¢ — CV
is a right-lax morphism of Shv(G)-module categories. We claim it is a strict morphism
of Shu(G)-module categories.

Indeed, let F € Shv(G), ¢ € C. We have to show that the natural map F+AvY(c) —
AV*U(F*C) is an isomorphism in CV. It suffices to show this after applying oblv : CV —
C. We get oblv(F x AvV(¢)) = F x ey * ¢ and oblv AvY (F  ¢) S ey * F * ¢. Our claim
follows from Lemma 1.2.64.

Applying the functor Fungy,(q)(Vect, #) to the adjoint pair oblv : CY = C:AVY, we
get an adjoint pair L : (CY)¢ = C% : R. From id = AvV oblv we learn that id — RL
is an isomorphism, so L is fully faithful. We check below that L : (CY)¢ — C¢ is an

equivalence.
EH &GU

The composition Vect "— "~ Shv(H) @ Sho(U) L Shv(G) sends e to eg, here

h = XK. Each functor in this diagram has a continuous right adjoint, the diagram of

. . . . R RI'QRT . s .
right adjoints is Shv(G) — Shv(H) @ Shv(U) = Vect, their composition is RT".

Moreover, RI" : Shv(G) — Vect factors naturally as Shv(G) — Shv(G) @ gpy (1) Vect Y
Vect, here R(F K e)—= RI'(G, F) for F € Shv(G). Since h is a map of Shv(U)"-
modules, A" is a right-lax morphism in Shv(U)"-modules. Is it strict? This looks
plausible, but here is a simplier argument.

Consider the map ¢ : G = U x H — U sending (u,h) to u. The functor ¢, writes

as the composition Shv(G) h Shv(H) ® Shv(U) RI(H e Shv(U). The functor g,

is a morphism of right Shv(U)-modules, where U acts by convolutions on the right.
So, we get a dual pair ¢* : Sho(U) S Shv(G) : g« in Sho(U) — mod" (DGCateont)-
Passing to conivariants for U, we get a dual pair £ : Vect = Shv(G) ®gpy ) Vect @ R
in DGCateon. The map £ is a left-lax morphism of Shv(G)-modules by construction,
and £(e) = eg W e canonically. For F' € Shv(G) we have F x e — RI'(G, F) ® eq
in Shv(G), so £ is a strict morphism of Shv(G)-modules. Now by Section 1.10.4 we
learn that oblv : C¢ — CV admits a continuous right adjoint Avg* : OV — C¢. The
composition oblv Av§, sends ¢ € CU to eg * c.

Now we claim that oblv : C¢ — CU is comonadic. Since the composition C¢ —
CY — C'is conservative, oblv : C¢ — CU is conservative. Let V be a simplicial object
of (C%)°P which becomes a split simplicial object V' in (CY)°. Then V’ has a colimit
in (CY)% and oblv : (CY)P — C preserves this colimit automatically. Let V" be
the obtained split simplicial object in C°?. Since C¢ — C is comonadic, V admits
a colimit in (C%)°, and (C%)P — CP preserves this colimit. Since (CV)? c CP
is a full subcategory, the colimit of V” lies in (CV)°. So, oblv : (C)P — (CY)oP
preserves the colimit of V. By ([34], Th. 4.7.3.5), oblv : C¢ — OV is comonadic, the
corresponding comonad is ¢ — eg * ¢. This is the same comonad as for the comonadic
functor obly : (CY)% — CU. Since we have a diagram (CY)¢ — C% — OV, and the
comonads are the same, the above functor L : (CY)¢ — C¢ is an equivalence for al
our 4 sheaf theories.



138

1.10.6. Let U, @ be group ind-schemes, whose underlying ind-schemes are placid. As-
sume @ acts on U by conjugation, set G = ) x U, the semi-direct product, so G is
a placid ind-scheme. We claim that Shv(G) ®gp @y Vect — Shv(Q) naturally. In the
setting of D-modules this should be in ([12], B.2).

Proof. Pick a presentation U = colim;cj U;, where I € 1 — Cat is small filtered, U; is a
placid group scheme, for i — j in I the morphism U; — Uj is a placid closed immersion
and a homomorphism of group schemes. Then G = colim;c; Q xU;, because the colimits
in PreStk are universal. So, Shv(G) — colim;c; Shv(Q x U;) with respect to the x-direct
images. Now

Sho(G)y = cQéiIm Shv(G) @ghe(v,) Vect =

I h : \ Vect =5 colim Sh ) ey Vect,
(i—>j)CeOFHr111([1},I) Shv(Q x Uj) ®gpy(u,) Vect — cci)ellmS v(Q x U;) @gn(uy) Vec

because the diagonal map N — Fun([1],N) is cofinal. Finally,
Sho(Q x Up)y, = Sho(Q x U;)Vi = Sho(Q),

and the corresponding maps are the identities. Since I —| I | is cofinal and I is
contractible, we are done. ]

This gives the fact that for any C € Shv(G) — mod(DGCateont), OV € Shv(Q) —
mod" (DGCat,ont) naturally. Indeed,
Fun gy, oy (Vect, C) = Fungpy ) (Shv(G) @gpowy Vect, C)
= Fungpy(g) (S (Q), C)

The latter is a right Shv(Q)-module.
Similarly, Cy € Shv(Q) — mod(DGCateont). Indeed,

Vect ®Shv(U)C: Vect ®S]w(U)ShU(G) X Sho(G) C= Shv(Q) X Sho(G) C

Now if C — C’ is a map in Shv(G) — mod then it yields morphisms CV — C'V and
Cy — Cy; in Shu(Q) — mod by the above.

1.10.7. Let H,G be placid group schemes, f : G — H be a closed subgroup scheme
such that H =Y X G as right G-modules for some placid scheme Y. Then for ¢ : H —
H/G the functor ¢* : Shv(H/G) — Shv(H) is Shu(H )-linear. Here Y = H/G. So, the
dual pair ¢* : Shv(H/G) = Shv(H) : g« takes place in Shv(H) — mod.

Proof. We have a cartesian square

HxH % H
lidxq lq
HxH/G * H/G,

where m is the mutliplication. Now we have m.(id xq)* = ¢* act, by ([44], 0.0.52).
Indeed, m identifies with the product act x idg. We are done. O
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If now C' € Shv(H) — mod(DGCatcnt), in the above situation applying the functor
Fungp, ) (-, C) gives an adjoint pair Fung, g (Shv(H/G),C) S C in DGCateont-
Assume G prosmooth. Then Shv(H/G) = Shv(H)% = Shv(H)g, because G is placid.
So, we get canonically FunShv(H)(Shv(H/G),C’)A—?CG. We reobtained the adjoint

pair oblv : C¢ = C : Av®. Let p : G — Speck. In fact, ¢* is obtained from
p* : Vect — Shv(G) by applying Shv(H) ®gpy(q) -

1.10.8. Let G, H be pro-smooth placid group schemes, f : H — G a homomorphism
of group schemes and a placid closed immersion. Let C' € Shv(G) — mod(DGCateont).
Recall that the canonical functor Cq — C© is an equivalence, and similarly for H.
Consider the natural functor pr : Cg — Cg. Composing with the above equivalences,
it gives a functor F : C — C%. Gurbir claims that F is the right adjoint to oblv :
cé - cH,

We check this under the additional assumptions that H\G is smooth. Let ¢ : H\G —
Speck be the projection. Then the functor ¢* : Vect — Shv(H\G) is a map of right
Shv(G)-modules. This follows from ([44], Lemma 0.0.20) by base change, because H\G
is smooth. We get the dual pair ¢* : Vect = Shv(H\G) : ¢, in right Sho(G)-modules.
Applying the functor - ®gp,(q) C, this gives an adjoint pair

prL:Cg‘:CH:pr

We used here the isomorphism Shv(H\G) = Vect ®gpy () Shv(G) of right Sho(G)-
modules. (The functor pr exists for any morphism of placid group ind-schemes H — G).

Passing to the left adjoints in the diagram C P Cy B Cn with propry — prg, one

L L
gets Cg % on 8 ¢ with pr{?{ prl = pré. The functor prfg : Cy — C identifies with
oblvy : CH — C, and similarly for pré. So, pr’ identifies with oblv : C¢ — CH.

1.10.9. Let U be a pro-unipotent group scheme, p : U — Speck. The dual pair
p* : Vect = Sho(U) : p, and C € Shv(U)—mod give an adjoint pair pr’ : Cy < O : pr,
where pr is the natural functor (existing for any placid group ind-scheme). Clearly, pr¥
is fully faithful. Passing to the right adjoints in the isomorphism id = pro prZ, we see
that the right adjoint pr’* : Cyy — C of pr is also fully faithful. So, pr is a localization
functor.

More generally, let U = colim;c; U; be an ind-pro-unipotent group scheme, here I is
small filtered, U; is pro-unipotent, and for ¢ — j in I the map U; — Uj is a placid closed
immersion and a homomorphism of group schemes. Then for any C' € Shv(U) — mod,
C — Cy is a localizatoin functor (has a fully faithful right adjoint). By Lemma 1.8.17’
of this file, if Cy = Ker(C' — Cy) then Cy = C/Cj naturally. Here Cp is the smallest
full DG-subcategory of C' containing Ker(C' — Cy;,) for each i. If i — j is a map in [
then Cy;, — Cy; is a localization functor.

Proof. For each 1 € I, C' — Cy, is a localization functor by the above, it has a
fully faithful right adjoint. Recall that Cyy — colim;e; Cy, in DGCateont, hence also

in 1 — Cat>b and in Prl. here Prl is the notation from (HTT, 5.5.3.1). So,

cont

Cy = lim;eror Cy,, where we passed to right adjoint in DGCat, these right adjoint
are maybe discontinuous, and the limit is taken in DGCat (or in 1 — Cat®beoemPly ¢
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also coincides with N;cyCy, taken inside C, because the corresponding limit can be
calculated in 1 — Cat by ([18], ch. 1.1, 2.5.7), so we apply ([41], 2.7.7).

For i — j is a map in I then C — Cy, — Cy; admits right adjoints, and the
composition of this right adjoints is fully faithful, so Cy, — Cy, is a localization
functor. O

1.10.10. Let f : H — G be a homomorphism of placid group ind-schemes. Recall that
f« 1 Shv(H) — Shv(G) is monoidal, hence gives the restriction functor Shv(G)—mod —
Shv(H)—mod. If C' € Shv(H)—mod then Fungy, g (Shv(G), C) is naturally an object
of Shv(G) — mod, a left module. Moreover the functor C' + Fungp, g (Shv(G), C) is
right adjoint to the above restriction functor.

Proof. We view here Shv(G) as a Shu(H )-module via the left action Shv(H)®Shv(G) —
Shv(G), (K, L) — f«(K)* L. Then the right action of Shv(G) on itself by right convo-
lutions yields the left Shv(G)-module structure on Fungy, gy (Shv(G), C). Now apply
([41], 9.2.57). O

The left adjoint to the restriction functor Shv(G) — mod — Shv(H) — mod is given
by the induction functor Shv(H) — mod — Shv(G) — mod, D +— Shv(G) @gpe(m) D-

1.10.11. Let G be a smooth group scheme of finite type, Y € PreStk;s;. Recall that the
prestack quotient Y/G = colimpyjc aor G™ XY in PreStk; s, so Shv(Y/G) = limp,jc aor Sho(G™ x
Y') with respect to the corresponding !-restrictions.

Assume we are in the constructible context. The co-simplicial category [n] +—
Shv(G™ x Y) satisfies the monadic Beck-Chevalley conditions, so Shv(Y/G)—= A —
mod(Shv(Y')), where A(K) = acti(wg W K) for act : G x Y — Y. We may also write
A=¢gqforq:Y =Y/G.

Let now C € DGCatcons. Let Sho(G) act on Sho(Y) ® C via its action on Shu(Y).

Lemma 1.10.12. The natural functor Shv(Y)% @ C — (Shv(Y) @ C)¢ is an equiva-
lence.

Proof. For any n, Shv(G)®" is dualizable, so
Fun(Shv(G)®", Sho(Y) ® C) = Fun(Shv(G)®", Shv(Y)) @ C

Moreover, this is an isomorphism of co-simplicial categories in [n] € A, where the RHS
is obtained from the co-simplicial category Fun(Shv(G)", Shu(Y')) by tensoring with
C.

The co-simplicial category [n] — Fun(Shv(G)", Shv(Y')) ® C satisfies the comonadic
Beck-Chevalley conditions, so

(Sho(Y) ® C)Y = A — comod(Shv(Y)) ® C)

Here A € Alg(Fun(Shv(Y)) ® C,Shv(Y)) ® C) equal to eq ® id for id : C' — C, here
eq is the constant sheaf on G.

Now Shv(Y)% = Tot(Shv(G® x Y) with the transition functors given by l-inverse
images. It also satisfies the comonadic Beck-Chevalley conditions with the comonad
e € Fun(S(Y),S(Y)). We may pass to left adjoints in the latter totalization and get
Shv(Y)¢ = colimp)c aor Shu(G™ x Y'), because we are in the constructible context. So,
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Shw(Y)¢eC= colimp,je aer Shv(G™ x V) @ C. We may again pass to right adjoints
in the latter colimit and get Shv(Y)¥ ® C = Tot(Shv(G* x Y) ® C).

Since the co-simplicial category Tot(Shv(G*® x Y') satisfies the comonadic Beck-
Chevalley conditions, so does the co-smplicial category Tot(Shv(G® x V) ® C') with
the comonad being A. U

1.10.13. Let I be small filtered, N = colim;c; N;, where Nj; is a prounipotent group
scheme, for ¢ — j in I the map N; — Nj is a placid closed immersion, a homomorphism
of group schemes. So, N is a placid ind-scheme. Let 0 € I be initial.

We claim that Shv(N/Ny)ny — Vect. Indeed, Shu(N/Ny)n — colim; Shv(N/No)n;,
with respect to the natura maps Shv(N/No)n, — Shv(N/No)n; for i — j in N. Then
colim; Shu(N/Ny)n, = colim; colim;_,; jer Shv(N;/No)n, = colim; Shu(N;/No)n;,,
because I — Fun([1],I) is cofinal. Here for j — j' the map Shv(N;/No)n, —
Shv(Nj/No)n, comes from the x-extension under N;/No — Nj//No. The functor
RI : Shv(N;/Ny) — Vect factors as Shu(N;/Ny) — Shv(N;/No)n, — Vect, and the
corresponding transition maps are identities. This gives Shv(N/Ny)ny — Vect. In fact,

RI' : Shu(N/Ny) — Vect factors as Shv(N/Ny) — Shu(N/No)n — Vect.
Besides, Vect = Shv(N/Np)", e — w. Compare with ([22], 3.4.6).

1.11. More about [24].

1.11.1. In (][24], Section 2.5.3) given A € C Alg(DGCateon) Dennis defines Fact®9 (A)ran
just as an object of DGCatcons. In fact, for any of our 4 sheaf categories, there is a sheaf
of categories Fact(A) defined as in ([29], 8.1.6) so that Fact®¥(A)Rran is the category of

its global sections over Ran.
Indeed, for any C' € ShvCat(Ran), I'(Ran,C) = IlifrgltF(XI,C) with respect to
cfoe

restrictions. Here fSet is the category of finite nonempty sets and surjections. For each
I — Jin fSet we have the adjont pair Aj: Sho(X7) = Sho(XT) :A' in Shv(XT) —mod,
here A: X7 — X', Tensoring with I'(X’, C) yields an adjoint pair

D(X',C) @gpu(xry Sho(X7) S T(XT,C)

So, passing to left adjoint, we may rewrite I'(Ran,C) = ((:Jg}qlﬂ)l (X!, C) taken in
i€(fSet)op

DGCatcont (equivalently, in Shv(Ran) — mod).

1.11.2. In 2.5.5 he means the following. Let A € ComCoAlg"™ (DGCatcopn:). We then
get a functor TwArr(A) : TwArr®® — DGCateons sending (I — J) to Sho(X7) @ A®L,
Given a map in TwArr from (I; — Jy) to (Iy — J3) given by the diagram

Il — Jl
la T
_[2 — JQ,

the attached map
Sho(X72) @ A®T2 5 Shy(X7) @ A9
in DGCateop is the tensor product of A': Shu(X72) — Shv(X71) with the coproduct
map A®2 — A®1 along . Then he defines Fact®9(A)gay, as . 1114111  TwArr(A).
wArre



142

Does the result upgrades to a sheaf of categories on Ran?
In fact, each X7 is 1-affine for any sheaf theory, so given (I — J) € TwArr,
Sho(X7) @ A®T € ShvCat(X7).

1.11.3. For an affine algebraic group of finite type I' over our field e of character-
istic zero, and D € DGCateons, oblv : Rep(I') ® D — D is comonadic by (see [52],
Lemma 6.23.2). To see this quickly note that by ([20], Lemma 5.5.2) to the cover
* — B(I') and the quasi-coherent sheaf of categories on B(I") given by Rep(I')-module
C:=Rep(I") ® D. Apply then ([34], 4.7.5.1) to the co-simplicial category I'(I"®, €), here
I'* is the Cech nerve of x — B(T"). This gives Rep(I') ® D= Op — comod(D).

Recall that for a map f : C7 — Cs in DGCateopn: with C; dualizable, D € DGCatcopny
the corresponding map C7; ® D — Cs ® D can be seen as

Fun(Cy, D) — Fun(Cy, D)

given by the composition with f¥ : CY — CY. Now the dual of oblv : Rep(I") — Vect
is ps : Vect — Rep(T"), for p : Spece — B(T'), so (ps«)(e) = Op. This explains why in
([52], 6.31.1) the equivalence

Fun(Rep(T"), D) = Op — comod(D)

sends f to f(Or). The inverse functor sends A € Or — comod(D) to the functor
V = (V® AL, By the functor of I-invariants Or — comod(D) — D he means the
functor ¢, ® id : Rep(I') ® D — D for ¢ : B(I') — Spece.

Assume T reductive and not discrete, so the set of irreducible representations A™ is
infinite. Then the left adjoint to oblv : Rep(I') — Vect does not exists, though it is
defined in the compact part Vect® by V — V ® Or.

For ([52], 6.31.2): Given D € Alg(DGCatcont), Or — comod(D) is equipped with a
structure of an object of Alg(DGCateont) via Or — comod(D) = Rep(I') ® D, the RHS
is naturally an object of Alg(DGCatcont). The claim is that we have canonically

Fun’'%® (Rep(I'), D)= Alg(Or — comod(D))

e,cont

This is just the claim that
Alg(Fune cont(Rep(I', D))) = Alg(Or — comod(D))

coming from the fact that the monoidal categories theirself are isomorphic, see ([41],
9.2.68).

1.11.4. Chiral Hecke algebra. Let us study the notion of chiral Hecke algebra from
([28], 7.5), which is needed for the definition of the factorizable Satake functor. It is
used in ([52], Section 6.33).

For I € fSet let Grg xr be the corresponding version of the affine Grassmanian. As
in ([50], Section 5), let Gy be the group scheme over X' classifying (z;) € X! and a
section of 3"% over Dy, where J is the corresponding point of Ran. We have the category
Perv(Grg, «1)9x7T of equivariant perverse sheaves on Grg xr. Recall the diagram from
([50], Section 5, diagram (5.2))

GI"G7X X GI"G7X £ GI“G,X X GI“G,X i) Grgyx X GrG,X Ln) GrG,X2 l) )(2
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Given B; € Perv(Gqu)GX, one has By xx By € ShU(GrG’Xz)GXQ defined by formula
(5.6) from [50]. Let also 79 : Perv(Grg)¥(©) — Perv(Grg x)®x be the functor defined
as in ([50], Remark 5.1). Let j : U < X2 be the complement to the diagonal. The
pullback of m under j : U < X? canonically becomes the identity map

id : (GI“G7X X GI“GJ() ‘U_> (GI‘G7X X GrG,X) |U

in view of the factorization structure of Grg yr. By abuse of notations, we also write

(GI“G,X X GI“G,X) ‘U‘i) GI“G,X X GI“G’X <z— (GI“G’X X GI"G7)() X x2 X

for the corresponding closed immersion and its complement.
For V € Rep(G)Y write Ay € Perv(Grg)©(© for the usual Satake functor at one
point of our curve. Recall the convolution diagram

Gre x Grg & G(F) x Grg % G(F) x%©) Grg B Grg

at one point of the curve. For V,W € Rep(G)" write Ay®Ay for the corresponding
perverse sheaf on G(F) x%©) Grg equipped with

7" (AvRAw) 5 p*(Av K Aw),

so that Ay * Aw = m.(AyXAy) is the usual convolution. For V € Rep(G)Y set
Ty = 79(Ay). Write also by abuse of notations

70 Perv(G(F) x9©) Grg)¢©) - Perv((Grg,x x Grax) x x2 X)6X

for the corrresponding functor. Given V,W € Rep(G)QQ we define the perverse sheaf
TyX®Ty on Grg x x Grg x by the property

¢ (TyRTw) = p*(Ty K Tw)
So, Ty *x Ty = ma (‘J'V®‘J'W) by definition. N _
Given V,W € Rep(G)" one has canonically i'(TyXTy ) = 70(AyXAw)[~1]. Now
the fibre sequence
iy (TyR¥Ty — Ty XTw — 5.5 (T RTw)
becomes an exact sequence of perverse sheaves on Grg x X Grg,x
0— TVg(.TW — j*j*(‘:rv@j'w) — TO(.AVg.Aw) —0
Applying m. it yields an exact sequence of perverse sheaves on Grg x2
(29) 0— ‘IV *x ‘TW — j*(TV X Tw) — E*TV@)W —0
Here we denoted by

GrGXXGl“GX U‘i>G1“ X2<LG1"GX
7 7 G’ )

the corresponding closed immersion and its complement. Recall that Ty xx Ty is
perverse, the intermediate extension under j by [50].
For I € fSet set A\ = (Ele[l])[— | I|], so A\f = e, but the group Auts acts on it by
1€

the sign character.
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Let O be the algebra of functions on G viewed as an object of Rep(G) via the
action of G on itself by left translations. Let Ry = Jos- Since Og € C Alg(Rep(G)),
the product on O gives a map To g0, — Jo- Composing with the above morphism

Jx(Rx B Rx) = i:To 00,
we get the map
(30) J+(Rx B Rx) — ixRx

on Grg x2 denoted by (14) in ([28], Section 7.5). In fact, the construction of (30)
depended on the order on the set of two elements, because the prestack Grg x x Grg, x
is not symmetric. What we get canonically is rather the map

j*(R§1) @ Ar — E>x<ng
for a set I of two elements.

Remark 1.11.5. If more generally V € CAlg(Rep(G)), Ty is equipped with a similar
chiral multiplication.

Gaitsgory claims essentially that Rx gets a structure of a ”chiral algebra” on Grg, x,
which is a synonym of a factorization algebra in Shv(Grg Rran), and (30) is its chiral
multiplication. The chiral pairing (30) satisfies the Jacobi identity, we explain this in
Section 1.11.6 below.

Set Sph¢; ; = Sh'l}(GI‘G’XI>GXI for I € fSet. According to the construction from
([6], 3.4.11), one forms the Chevalley-Cousin complex C'(Rx) of Ry, it is a collections
C(Rx)xr € Sphg 1 for each I € fSet together with isomorphisms

A C(Rx) s S C(Rx) xr

for each m : J — I in fSet. Here A™: X! — X7 is the corresponding diagonal.
Moreover, C(Rx) yr is placed in one perverse degree — | I | only, and the corresponding
perverse sheaf lies in Perv(Grg, +1)8x1. Let UD) < X! be the complement to all the
diagonals. Recall the factorization isomorphism

Grg x1 X x1UY = (Grg x)! xx1 UWD
There is a canonical injective G xr-equivariant map of perverse sheaves
HI(O(R)xr) = JD (B Rx) @ Ar,
where
i (Grax)! xx1 UM < Grg x1

is the open immersion. We used that j) is an affine open embedding.
Besides, C(Rx) is equipped with the factorization isomorphisms: for any 7 : J — [
in fSet we have

(31) (BCRx)xn) lptom =3 C(Rx)
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as in ([6], 3.4.11). Here jI//71 . U/1l s X7 is the open subset {(z;) € X7 | if 7(j) #
7(j) then z; # x5 }. We denoted by the same symbol the open immersion

j[J/I] . H GI'G’XJZ- XXJU[J/I] — Ger’le
el

1.11.6. Jacobi identity. For I = {1,...,n} write (GrG,X);I for the corresponding
version of the convolution diagram. The linear order on [ is used for the definition

of the latter prestack. We still denote by m : (Grg x)*! — Grg x1 the convolution
map. For V; € Rep(G)Y we get the perverse sheaf Ty K. .. KTy on (GrG’X);I. For
the diagram
(GrG7X);I Xxr X ‘i> (GFG,X)“ <i (GFIG,X ‘(XI—X)
we get
Ty K. R/Ty) S0 (A K. KAy, )1 — )
Applying m. to the fibre sequence

id' (TR RTy,) = (TR ]Iy — 7. (R Tv,)
we get the fibre sequence

WITvie.ov, [l —n] = Ty, xx ... xx Ty, — 3*(517%)
for the diagram

(Gréx) |XI—Xi> GI‘G7xj (Z— GI‘G}X

This is precisely the property sufficient to get the exactness of the Cousin complex
on Grg xr for the stratification coming from the diagonal stratification of X I

The diagonal stratification of X' is as follows. Let for d > 0,

Y, = U A (T
IST,|T|=n—d
Here A(™: XT — X1 Let Y, =Y, — Y;41. So, Yy is smooth of dimension n — d. Recall
that the inclusion Yy < X7 is affine.

Let Zg = Yy xx1 Grg x1. Let jq : Zg = Grg x1 be the inclusion. We apply ([49],
1.3.3) to the perverse sheaf Ty, *x ... *x Ty, on Grg xr and the stratification {Z;} of
Grg x1- The assumption of ([49], 1.3.3) says that 35(Tvy #x ... *xx Ty,) is placed in
perverse degree —d for all d > 0. It is satisfied, so we get the exact sequence of perverse
sheaves on Grq x1

(32) TVI*X...*XTVn—>3'0—>5L'1—>3~2...
with
Fa = (ja)+Ja(Tvy *x .- *x Tv,)[d]

Remark 1.11.7. When G = Spec k, this is sufficient, as the Jacobi identity comes from
the fact that the square of the differential of the latter complex on Grg xs vanished for

Vi =V, = Vi = e the trivial representation of G.
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Let us write down the exact sequence (32) explicitly for n = 3. Write A(12:3) A (23,1)
,A132): X2, X3 for the closed embedding for the corresponding equivalence relations.
For example, (12, 3) is the equivalence relation on {1,2,3} identifying 1 and 2, and so
on. Let j2: X2 — X < X2 be the embedding.

Now (32) for n = 3 becomes

Tvl *x ‘IVQ *x TVg — (jo)*jS(Tvl * X TVQ *x Tvs) —
12,3) . . 13,2) . . 23,1) . .
28 G (Tnevs +x Tug)+ a8 5 Trier +x T+ %Y 50" (T, *x Tva)
— Dy (TV1®V2®V3)7

where we denoted temporarily j : X? — X < X2, as well as its base changes, and
similarly for the main diagonal A: X <+ X3. The second term of this complex is
actually

(jO)*(T‘ﬁ X Ty, X “TV3) |U(3)
using the factorization structure of Grg ys.

Assume in addition V € C' Alg(Rep(G)). Equip Ty with the chiral multiplication of
Remark 1.11.5.

Then Ty becomes a Lie algebra with this multiplication, that is, satisfies the Jacobi
identity. Namely, the product in the algebra V' commutes with chiral pairings. More
precisely, the diagram commutes

a8 55 (Tvey +x Tv) = s (Tyes)
(33) ; i\ I
NS 33T Tvxx Ty) = A (Tv),

where the vertical arrows come from the multiplication in V', and similarly for other
equivalence relations on {1,2,3}. Then we could get the Jacobi identity from the above
exact sequence by pushing out and getting the square of the differential equal to zero.
So, Ty becomes a chiral algebra on Grg x.

The commutativity of (33) follows from the more general claim: given V,W, V' €
Rep(G) and a map V — V', the diagram on Grg, x2 commutes

G (Tvxx Tw) —  &Tvew
{ {

33 Ty xx Tw) = Tvew,

where the horizontal maps are as in (29) and the vertical arrows come from the func-
toriality.

1.11.8. In fact, C(Rx) xr lifts to an object of Rep(G) y ®sho(x1) SPhe 7. To see this,

we use the definition of Rep(G) s as

lim Shv(X] ;) ® Rep(G)®*
(IBJ—K)eTw(I) ’

So, Dennis’ definition as colimit seems insufficient for this, as anyway one needs to
rewrite it as the above limit.
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The reason is that Os € Rep(G x G), and moreover Oy € CAlg(Rep(G x G).
Namely, for the diagonal map ¢ : B(G) — B(G x G) the functor g, : QCoh(B(G)) —
QCoh(B(G x () is right-lax symmetric monoidal, so sends the commutative algebra
e to the commutative algebra O.

For this reason for I € fSet the shifted perverse sheaf C(Rx)yr is equipped with
an action of G, so it is an object of Rep(G) ® Sphg ;- Now for 7 : J — U the action
of G' on (31) comes as the product of actions of G' on each factor C(Rx )y, for i € I.
Thus, (31) lies in Rep(G)®  Sphg, ;.

To get the above claim we need a version of Sam’s ([52], Lemma 6.18.1):

Lemma 1.11.9. Let C € CAlg(DGCateont) be compactly generated and rigid. Then
for any D € Shv(X!) — mod the natural map
Cx1 @gpyxiy D — lim (C*F @ Shv(X[4) ® D)
(1% J—K)eTw(I) ’

18 an equivalence?? Not clear!!!!

APPENDIX A. ABOUT SCHIEDER’S CORRECTION

A.0.1. Example: G = PGLy, B standard Borel, N = [B, B]. Then G/N is the variety
of nilpotent 2 x 2 non-zero matrices N — 0, so G/N is the variety of nilpotent 2 x 2
matrices.

Let G = GLy, B the standard Borel in G. Then G/N = (E — {0}) x (det E — {0}),
where FE is the srandard representation of G. So, the afﬁne closure is G /N = E x
(det E — {0}) C E x det E= A3. The complement of G/N in E x (det E — {0}) is
{0} x (det E—{0}), and the center G,, — Z of GL2 acts on det E— {0} by the character
2+ 22, Now (det E — {0})/Z is not a point.
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