
1. Comments to: Gaitsgory, Lysenko, Metaplectic Whittaker category
and quantum groups: the ”small” FLE (version April 21, 2020)

1.1. For 0.1.3. The normalization for the Kac-Moody extension not precised. Let take
for the corresponding 2-cocycle the map x ⊗ f(t), y ⊗ g(t) 7→ −(x, y)κRest=0 fdg for
x, y ∈ g, f, g ∈ k((t)) from [18].

1.1.1. For (0.20). The setting for existence of such functor could be as follows. Let
f : A → B be a map in DGCatcont, H an affine algebraic group, TH ⊂ H a closed
subgroup. We get the objects in CAlg(DGCatcont), RepH = QCoh(B(H)), same for
TH . The map B(TH)→ B(H) yields a symmetric monoidal functor RepH → RepTH .
Assume A is a left Rep(H)-module, B is a left Rep(TH)-module, and the functor f is a
morphism of Rep(H)-modules. Then the functor Rep(TH)×A→ B, (V, a) 7→ V ∗ f(a)
extends to a functor Rep(TH) ⊗Rep(H) A → B by bilinearity. The latter functor is
Rep(TH)-linear. My understanding is that in these terms the induction functor A →
Rep(TH) ⊗Rep(H) A sends a to e ⊠ a. Here e is the trivial TH -module. We write e for
the base field of coefficients.

Question: is the functor JQuant!∗ lax braided monoidal?

1.1.2. For Rem. 0.3.11. Learn the definition of local finiteness in the definition of
Repq(Ǧ) and Repmxdq (Ǧ).

The relation between Ωsmallq and ΩLusq ∈ Repq(Ť )?

1.1.3. What is Lurie’s equivalence between E2-algebras and factorization algebras
mentioned in 0.5.5?

1.1.4. What is the sense of the objects Nλ defined in ([44], formula (29)) in terms of
•
uq(Ǧ)−mod?

1.1.5. What is ”the full force of the Drinfeld-Plucker formalism” mentioned in Sect.
0.7.8?

1.1.6. For 0.8.10. By C · he means the functor RΓ(Y, ·). By Hom he means the functor
RΓHom.

1.1.7. If G is a finite abelian group let α : B(G) → pt be the projection. Then
α∗ : Shv(B(G)) → Vect admits a continuous right adjoint, namely, = α! is this right
adjoint.

Assume now G is a torsion abelian group. Write Gn = {g ∈ G | gn = 1}. By
definition, α∗ : Shv(B(G)) → Vect comes from the compatible system of functors
(αn)∗ : Shv(B(Gn)) → Vect by passing to the colimit over n ∈ N with the di-
visibility relation, here αn : B(Gn) → pt. In particular α∗ is continuous. Then
α∗ : Shv(B(G)) → Vect also admit the continuous right adjoint α!. Indeed, we have
B(G) →̃ colimn∈NB(Gn) with respect to the divisibility relation on N, and

Shv(B(G)) →̃ lim
n∈Nop

Shv(Gn) →̃ colimn∈N Shv(B(Gn)),
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as we may pass to left adjoints in the limit system limn∈Nop Shv(Gn). Now the func-
tor α∗ is obtained by passing to the colimit over n ∈ N in the functors (αn)∗ :
Shv(B(Gn)) → Vect. Our claim follows now from ([43], end of Section 9.2.6). We
may also note that α is pseudo-proper, so α! is defined for all the 4 sheaf theories by
[21].

We claim also that α! is left adjoint to α∗????? Not clear.

1.1.8. In 0.8.11 It is essential that gerbes are of finite order! Indeed, for finite groups
A,B we have Shv(Bet(A))⊗ Shv(Bet(B)) →̃Shv(Bet(A×B)). In fact, this also holds
for torsion discrete groups.

Lemma 1.1.9. Let H,G be torsion discrete groups. Then the natural map Shv(B(H))⊗
Shv(B(G))→ Shv(B(H ×G)) is an equivalence.

Proof. If H,G are finite, this is easy. Now consider N with the divisibility relation. The
diagonal map N→ N×N is cofinal. ForH a torsion group writeHn = {h ∈ H | hn = 1}.
Then B(H) →̃ colimn∈NB(Hn) canonically, and one may pass to left adjoint in the
presentation Shv(B(H)) →̃ lim

n∈Nop
Shv(B(Hn)). So,

Shv(B(H))⊗ Shv(B(G)) →̃ colim
[n],[m]∈∆op

Shv(B(Gn ×Hn)) →̃Shv(B(H ×G))

□

The assumptions that gerbes are of finite order is needed to show that the functor
(PreStklft+Grb)

op → DGCat, (Y,G) 7→ ShvG(Y ) is right-lax symmetric monoidal I
think.

Indeed, given Y, Y ′ ∈ PreStklft and G : Y → Bet(e
∗,tors), G′ : Y ′ → Bet(e

∗,tors) recall
that

ShvG(Y ) = e− comod(Shv(Ỹ )), ShvG(Y
′) = e− comod(Shv(Ỹ ′)),

where Ỹ , Ỹ ′ are the total spaces of these gerbes. Now G,G′ give rise to G⊠ G′, which is
the composition

Y × Y ′ G×G
′

→ Bet(e
∗,tors))× Shv(Bet(e∗,tors)

m→ Bet(e
∗,tors))

Write Ỹ × Y ′ for the total space of G⊠ G′. We have

e⊠ e ∈ coAlg(Shv(Bet(e∗,tors × e∗,tors)))
We need a map

(e− comod(Shv(Ỹ )))⊗ (e− comod(Shv(Ỹ ′)))→ e− comod(Shv(Ỹ × Y ′))
Now

Shv(Bet(e
∗,tors × e∗,tors)) →̃Shv(Bet(e

∗,tors))⊗ Shv(Bet(e∗,tors))
acts on Shv(Ỹ × Ỹ ′). We have the natural map

(e− comod(Shv(Ỹ )))⊗ (e− comod(Shv(Ỹ ′)))→ (e⊠ e)− comod(Shv(Ỹ × Ỹ ′))
Write F for the composition

e− comod(Shv(Ỹ × Y ′) oblv→ Shv(Ỹ × Y ′) α!

→ Shv(Ỹ × Ỹ ′)
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for α : Ỹ × Ỹ ′ → Ỹ × Y ′. We claim that F is comonadic. Indeed, write coind for the
right adjoint to oblv. Then coind ◦(α!)R is the right adjoint to F . Both oblv and α!

are conservative, so α! ◦ oblv is conservative. It suffices to show now that F admits a
left adjoint. The functor α! admits the left adjoint α! by Section 1.1.7. It suffices to

show that oblv : e − comod(Shv(Ỹ × Y ′)) → Shv(Ỹ × Y ′) has a left adjoint. In fact,

it suffices to show that the functor Shv(Ỹ × Y ′)→ Shv(Ỹ × Y ′),K 7→ e ∗K preserves
totalizations, where we view e as a coalgebra in Shv(B(e∗,tors)).

Write act : B(e∗,tors) × Ỹ × Y ′ → Ỹ × Y ′ for the action map. We need that K 7→
act∗(e⊠K) preserves totalizations. For this we would need the existence of a left adjoint
of act∗. To simplify, assume that e∗,tors is replaced everywhere by a finite subgroup A.
Then act∗ admits a left adjoint act∗, and in turn the above functor K 7→ act∗(e ⊠K)
has a left adjoint. So, F is comonadic.

The comonad FFR corresponding to F is what? Let mB(A)×B(A)→ B(A) be the

product map. Then e ⊠ e →̃m∗e canonically. This is why for K ∈ Shv(Ỹ × Ỹ ′) one
has α∗(e ∗ (α∗K)) →̃ (e⊠ e) ∗K.

This gives the desired equivalence

(e⊠ e)− comod(Shv(Ỹ × Ỹ ′)) →̃ e− comod(Shv(Ỹ × Y ′))

Question The object e ∈ Shv(e∗,tors) is dualizable by ([21], Lemma 1.4.6). Indeed, its !-
restriction to each Shv(µn(e)) is dualizable for any n for the map B(µn(e))→ B(e∗,tors).

Moreover, the dual is e itself. Maybe this would allow to rewrite e − comod(Shv(Ỹ ))
as modules?

Let G be any torsion abelian group. Then B2(G) →̃ colimn∈NB
2(Gn) in PreStk,

hence also B2
et(G) →̃ colimn∈NB

2
et(Gn) in Stk, where the colimit is calculated in Stk,

as the sheafification preserves colimits.
For a scheme of finite type S, any map q : S → B2

et(G) is of finite order. I see this

as follows: there is an etale cover f : S′ → S with S′ ∈ Schaffft such that our gerbe

trivializes over S′. So, it suffices to show that any etale G-torsor on S′×S S′ is of finite
order, so we make a kind of induction. By induction on n, we want to show that any
map S → Bn

et(G) is of finite order. The base of induction: the map S → G factors
through Gm for some m ∈ N.

1.1.10. For any sheaf theory Shv : (Schaffft )op → DGCatcont the category Shv(S) is

dualizable, because it is compactly generated.
For 1.3.2. Given a G-torsor F on X the induced map Ran → L+(B(G)) sends J to

the restriction of F under DJ → S ×X → X.
For 1.4.3. Note that Gω

ρ
is the group scheme of automorphisms of teh G-torsor ωρ.

Now

Grω
ρ

G,Ran = L(Gω
ρ
)Ran/L

+(Gω
ρ
)Ran

For S ∈ Schaff its S-point is J ∈ Ran(S) and a Gω
ρ
-torsor P on DJ with a trivialization

over
◦
DJ. We may equivalently think of its S-point over J as a G-torsor PG on DJ with

an isomorphism of G-torsors PG →̃ωρ on
◦
DJ.
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For 1.4.4. If G is a group scheme on a base S, F is a G-torsor on S then consider
the group scheme FG ×G G with respect to the adjoint action of G. This is the group
scheme of automorphisms of the G-torsor F.

Let now FG be a G-torsor on Dx, and Aut(FG) its group scheme of automorphisms.
Then GrAut(FG) classifies a G-torsor F

′
G on Dx and an isomorphism F′G →̃FG | ◦

Dx

.

1.1.11. For 1.5.3. Recall rigorous definition of a factorization prestack over Ran. This
is a map ZRan → Ran in PreStk, which is lifted to a morphism of non-unital commu-
tative algebras in PreStkcorr and such that for any J the induced morphism

ZJRan ×RanJ RanJdisj → ZRan ×Ran Ran
J
disj

is an isomorphism.
Let now ZRanx → Ranx be a map in PreStk. A structure of a factorization module

space over ZRan on it is a structure of a module in PreStkcorr over the non-unital
commutative algebra ZRan such that the following hold: 1) this is a morphism of ZRan-
modules in PreStkcorr, where ZRan acts on Ranx via ZRan → Ran. So, for any J we
have a commutative diagram

ZJRan × ZRanx ← multJ,Z → ZRanx

↓ ↓ ↓
RanJ ×Ranx ← (RanJ ×Ranx)disj → Ranx,

where the left square is cartesian (and the upper row defines the corresponding action
map in PreStkcorr). 2) It is required that the right square is also cartesian.

1.1.12. For 1.6.5. I would add that (Ran×Ran)⊂ is a ”category object” in PreStk
acting on Ran.

By a category object in C ∈ 1− Cat we mean a map X : ∆op → C such that for any

n ≥ 0 the morphisms [1]
i,i+1→ [n] yield an isomorphism

X([n]) →̃X[1]×X[0] X([1])×X[0] . . .X[1],

where [1] appears n times. Then we say that X[1] acts on X[0].
Recall that if, in addition, C. has finite limits then X[1] ∈ Alg(Corr(C)) naturally

by ([20], published version, Cor. 4.4.5, Chapter 9).
Now given a map τ : c → X[0] in C, we may define the notion that the X[1]-action

on X[0] is extended to a right X-action on c. This means that we get a category object
X′ : ∆op → C and a map X′ → X of category objects in C such that X′[0] → X[0] is
the map τ , and the square is cartesian

X′[0]
s← X′[1]

↓ τ ↓
X[0]

s← X[1]
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Here s is the source map attached to [0]
0→ [1]. The action map t : X′[1] → c is then

attached to [0]
1→ [1]. Note that in this situation the diagram

X′[0]
t← X′[1]

↓ τ ↓
X[0]

t← X[1]

is not necessarily cartesian, as in the case of the action of (Ran×Ran)⊂ on GrG,Ran.
Now given a map ZRan → Ran in PreStk, a unital structure on ZRan is a right

(Ran×Ran)⊂-action on Z such that the map ZRan → Ran is a equivariant with respect
to the right actions of (Ran×Ran)⊂. This is just a way to think. This is better as we
are working with ∞-categories.

Note that Ran itself has a unital structure in the sense of Sect. 1.6.5. Make a precise
relation with a factorization lax prestacks over Ranun from [54].

Let ZRan → Ran be a factorization prestack, assume given a unital structure on
ZRan. By definition, these structures are compatible if the map

φbig : ZRan ×Ran,φsmall
(Ran×Ran)⊂ → ZRan

is a morphism of factorization prestacks over Ran.
Let C ∈ 1 − Cat and X : ∆op → C be a category object, S = X[0],H = X[1].

Consider the map q : ∆ → ∆, [n] 7→ [n + 1]. It sends a morphism β : [n] → [m] to
the morphism q(β) : [n + 1] → [m + 1] given by 0 7→ 0 and k + 1 7→ β(k) + 1 for all
n ≥ k ≥ 0. Composing X with qop, we get a new category objects, which realizes the
right action of H on itself.

Consider the natural transformation of functors id → q from ∆ to ∆ given on on
[n] by τn : [n] → [n + 1], i 7→ i + 1 and naturally on morphisms. Applying X to this
natural transformation, we see that t : H → S becomes a H-equivariant morphism
with respect to the natural H-action on itself on the right.

Example: a monoid gives a category object acting on the final object ∗ of C.

1.1.13. For 1.6.5. As in [54], we have the lax prestack Ranun (we supress X from
the notation of [54]). To treat unital structures, one should more generally, I think,

to consider a map f : Z → Ranun in PreStklax. Recall that Ranun is a commutative
algebra in PreStklaxcorr. Then the factorization structure on Z should be a lifting of f

to a morphism of commutative algebras in PreStklaxcorr. This would mean in particular

that we have for a finite set J a commutative diagram in PreStklax

ZJ ← multJ,Z → Z
↓ ↓ ↓

(Ranun)J ← (Ranun)Jdisj → Ranun,

where the left square is cartesian, and the top row defines the corresponding product
map in PreStkcorr. Then we should similarly require that the right square is cartesian.

1.1.14. For 1.6.9. The unital and factorization structures on GrG,Ran are compatible.
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1.1.15. For 2.1.4. Let G be a factorization gerbe over GrG,Ran. Then its restriction
to the unit section i : Ran → GrG,Ran is canonically trivialized. Indeed, Ran is con-
tractible, so i∗G is constant with value G0. Now given x, y ∈ X with x ̸= y we have
(i∗G)x∪y →̃ (i∗G)x ⊗ (i∗G)y, so G0 is trivialized.

This explains why GG,G,ratio is trivialized after restriction to L+(G)Ran/Ran →
HeckelocG,Ran.

In my comments below I use your definition of GG on Grω
ρ

G,x, not the one I propose.
(Change this!!!)

1.1.16. For 2.1.6. The point tλ ∈ Grω
ρ

T,x corresponds to (ωρT )(−λx) over DJ together

with an isomorphism (ωρT )(−λx) →̃ωρT over
◦
DJ.

The fibre of the gerbe GT on Grω
ρ

T,x at t0 ∈ Grω
ρ

T,x is trivial, because for any T -torsor

FT on Dx, the fibre of GT at (FT ,FT , id : FT →̃FT ) ∈ HeckelocT,Ran is trivial.

The description of the fibres of GT in 2.1.6 fixes a definition of the bilinear form on
Λ associated to a factorization gerbe.

One more subtle thing here: the isomorphism (2.1) fixes a normalization of the
map from factorizable gerbes on GrT to quadratic forms. There are two such possible
normalizations, in (2.1) changing this normalization corresponds to replacing b by −b.
I think the normalization chosen by this isomorphism is different from the one chosen
in [GLys]. (If you agree then I propose to correct in this section as follows: replace the
point tλ ∈ Grω

ρ

T,x by the T -torsor (ωρT )(λx), and the same for GrT,x).

Verification: consider the case of G = SL2. Consider for a ∈ e∗,tors(−1) the gerbe
GG on GrG,x whose fibre at (L,L →̃O2 |X−x) is det(L : O2)a. We know that the
corresponding q : Λ = Z→ e∗(−1) sends 1 to a. So, b(1, 1) = 2a. We identified Z→ Λ
via 1 7→ α, where α is the simple coroot. Our T ⊂ G is the standard maximal torus,
and GT is the restriction of GG under GrT,x → GrG,x. So, the fibre of GT at tα ∈ Grω

ρ

T,x

is

det(Ω
1
2 (−x)⊕ Ω−

1
2 (x) : O2)a

The gerbe GTα,x from (2.1) becomes det(O(−x)⊕ O(x) : O2)a →̃ω−ax , and

det(Ω
1
2 (−x)⊕ Ω−

1
2 (x) : Ω

1
2 ⊕ Ω−

1
2 )a →̃ω−2ax

So, we see that the two normalizations are different!

1.1.17. To understand the gerbes in 2.1.4-2.1.8 consider an example when ti comes
from a factorization line bundle. Namely, assume L is some representation of G, a ∈
e∗,tors(−1), and the gerbe on BunG is with fibre

(detRΓ(X,LF)/ detRΓ(X,LF0))a

at F. Then the gerbe GG on GrG,Ran attaches to (F, J, β : F →̃F0 | ◦
DJ

) the fibre

(⊗
i∈I

det(LF,xi : LF0,xi))
a,
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in the case J = {xi | i ∈ J}, and the points xi are disjoint. The gerbe GG over Grω
ρ

G,Ran

attaches to (F, J, α : F →̃ωρ | ◦
DJ

) the fibre

(⊗
i∈I

det(LF,xi : Lωρ,xi))
a,

in the case when J = {xi | i ∈ J}, and the points xi are disjoint.
So, in Remark 2.1.9 of the paper if τ : Grω

ρ

G,Ran → BunG is the natural maps then

(GG) |ωρ ⊗τ∗GG →̃GG.

1.1.18. For 2.4.1-2.4.2. For the definition of the convolution, one uses the convolution

diagram as in ([31], Sect 7.4) that I would denote G̃rG,x. It classifiesG-torsors P
1
G,P

2
G on

Dx with isomorphisms α1 : P
0
G →̃P1

G | ◦Dx

, α2 : P
1
G, →̃P2

G | ◦Dx

. Let conv : G̃rG,x → GrG,x

be the map sending the above point to (P2
G, α2 ◦ α1). Here P0

G is the trivial G-torsor.
As in ([31], Sect 7.4), since GG is L+(G)x-equivariant, we have the twisted product

GG⊠̃GG, which according to loc.cit. identifies canonically with conv∗(GG). The map
conv is ind-proper. For this reason the functor conv! is defined for any of the 4 sheaf
theories by ([21], 1.5.2).

Pick a presentation GrG = colimi∈I Yi, where Yi are closed L+(G)-invariant sub-
schemes. Define Shv(L+(G)\GrG) as limi∈Iop Shv(L

+(G)\Yi). For each i the action of
L+(G) factors through certain finite-dimensional group Gi with prounipotent kernel,
so we set Shv(L+(G)\Yi) = Shv(Gi\Yi). If L+(G) → G′i → Gi are surjections (both
kernels are unipotent) then we identify Shv(Gi\Yi) and Shv(G′i\Yi) via the functor q∗

for q : G′i\Yi → Gi\Yi. It is important that there is no cohomological shift in q∗.
Now for pr : GrG → L+(G)\GrG we get the functor pr∗ : Shv(L+(G)\GrG) →

Shv(GrG) and identify oblv : Shv(GrG)
L+(G) → Shv(GrG) with pr∗.

Namely, for each i pick Gi as above then for the projection q : Yi → Gi\Yi we get
the functor q∗ : Shv(Gi\Yi) → Shv(Yi). They are compatible and define the desired
functor pr∗.

The category Shv(L+(G)\GrG) is equpped with the following t-structure. For K ∈
Shv(L+(G)\GrG) we say that it lies in nonpositive (resp. positive ) degrees if pr∗K
lies in nonpositive (resp. positive ) perverse degrees. Thus, pr∗ is t-exact.

For 2.4.3. We restrict the corresponding morphisms of sheaves of categories over Ran
to the point x. Since we only want a monoidal functor, we may forget about ϵ, though
it is not trivial. Namely, this Satq,G : Rep(H) → Sphq,x(G) is not compatible with

factorization in general. We also ignored the gerbe det g
1
2 appearing in the definition

of the metaplectic spherical category Sphq,x(G). The gerbe det
1
2
g on GrG,x is trivial,

but this trivialization is not copmpatible with the factorization structure.

1.1.19. For 2.4.4. The fact that Rep(TH) →̃Shv(GrT ♯,x) should be the following gen-
eral thing. First, Shv(GrT ♯,x) →̃

∏
λ∈Λ♯ Vect.

Recall that for any G, which is a group scheme of finite type,

Rep(G) = QCoh(B(G)) →̃ RΓ(G,O)− comod(Vect)
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This is done as in ([43], 10.2.9). Now for a torus TH over e we have

k[TH ]− comod(Vect) →̃
∏
λ∈Λ̌H

Vect,

where Λ̌H is the weight lattice of TH . The map in one direction is the evident one
⊕λ∈Λ̌H

Vect → k[TH ] − comod(Vect). Its λ-component sends V ∈ Vect to V on which
TH acts by λ. We use the fact that coproducts in DGCatcont coincide with products
([43], 9.2.9).

1.1.20. For 2.4.5. The isomorphism (2.6) follows from [GLys, isomorphism (8.11) and
Sect. 9.4.3]. By F |Sγ we mean the !-restriction, and Γ denotes the ∗-direct image.

1.1.21. For 2.5.1. Let us study the question for ℓ-adic sheaves. Let G be a group
scheme of finite type, Shv(G) the DG-category of ℓ-adic sheaves of G equipped with the

convolution monoidal structure defined as Shv(G)⊗Shv(G)→ Shv(G×G) m!→ Shv(G),
where m : G × G → G is the product. The unit is i!Q̄ℓ, where i : Spec k → G is the
unit. Let r : G→ G be given by r(g) = g−1. For F ∈ Shv(G)c we have a natural map
F ∗ D(r∗F )→ i∗Q̄ℓ coming by base change from

RΓc(G,F ⊗ D(F ))→ RΓc(G,KG)→ Q̄ℓ,

here KG = p!Q̄ℓ for p : G → Spec k. We want to check if the functor (Shv(G)c)op →
Shv(G)c, F 7→ D(r∗F ) defines a monoidal dual for this convolution monoidal structure.

For F, F ′ ∈ Shv(G)c, the inner hom Hom(F, F ′) for this monoidal structure exists
and identifies with (p1)∗Hom(p∗2F,m

!F ′), where pi : G × G → G is the i-th pro-
jection. The existence of inner homs always holds for any algebra in DGCatcont, so
inner homs exist in Shv(G). It is easy to see that for F ∈ Shv(G)c we get indeed
Hom(F, i∗Q̄ℓ) →̃D(r∗F ). The above candidate for the counit map is the morphism
Hom(F, i∗Q̄ℓ) ⊗ F → i∗Q̄ℓ given by the universal property of Hom. To check that
the above map extends to a duality datum we have to establish for D,A ∈ Shv(G) an
isomorphism in Vect

Hom(D,A ∗ D(r∗F )) →̃ Hom(D ∗ F,A),
here by Hom we mean RΓHom, where Hom is the inner hom in Shv(G) with the
pointwise tensor product monoidal structure. By the above calculation of the inner
hom, it suffices to establish the isomorphism for A ∈ Shv(G)

(1) A ∗ D(r∗F ) →̃ (p1)∗Hom(p∗2F,m
!A)

Lemma 1.1.22. For A ∈ Shv(G), F ∈ Shv(G)c there is a natural isomorphism in
Shv(G)

m∗(A⊠ D(r∗F )) →̃ (p1)∗Hom(p∗2F,m
!A)

Proof. It suffices to prove this for A compact. Indeed, we assume m! : Shv(G) →
Shv(G × G) and (p1)∗ continuous. Note also that for A ∈ Shv(S)c, where S is a
separated scheme of finite type, Hom(A, ·) preserves filtered colimits. So, the RHS
preserves filtered colimits as a functor of A. The LHS also preserves filtered colimits
as a functor of A.
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So, we assume A compact. Consider the isomorphism α : G×G→ G×G, α(z, v) =
(zv, v−1). We have α∗Hom(p∗2F,m

!A) →̃Hom(p∗2r
∗F, p!1A), andm◦α = p1. This yields

an isomorphism

m∗Hom(p∗2r
∗F, p!1A) →̃ (p1)∗Hom(p∗2F,m

!A)

on G.
Recall that for F1, F2 ∈ Shv(S)c, where S is a scheme of finite type, one has D(F ⊗

G) →̃Hom(F,DG). This gives

Hom(p∗2r
∗F, p!1A) →̃D(p∗2r∗F ⊗ Dp!1A) →̃D(D(A)⊠ r∗F ) →̃A⊠ D(r∗F )

This gives finally m∗(A⊠ D(r∗F )) →̃ (p1)∗Hom(p∗2F,m
!A). □

So, (1) is equivalent to the natural map m!(A ⊠ D(r∗F )) → m∗(A ⊠ D(r∗F )) to be
an isomorphism! We see that this is indeed the monoidal dual if G is proper.

1.1.23. Sam confirms that for any of our 4 sheaf theories, one has the following. Let
G ∈ Grp(Stk) be an ind-scheme of ind-finite type. Then we define the convolution
monoidal structure on Shv(G) using m∗ for m : G × G → G the product map. We
have the Verdier duality equivalence D : (Shv(G)c)op → Shv(G)c. Let r : G → G,
r(g) = g−1. Similarly, if we assume G ind-proper then the functor D◦r : (Shv(G)c)op →
Shv(G)c is the monoidal dual.

Now consider the following situation in the constructible context. Let G be a group
scheme of finite type, H ⊂ G a closed smooth subgroup with G/H proper. Then
Shv(H\G/H) is monoidal with the monoidal product K1 ∗K2 = m̄∗q

!(K1 ⊠K2) for

(H\G/H)× (H\G/H)
q← H\G×H G/H

m̄→ H\G/H
This monoidal product preserves the full subcategory Shv(H\G/H)constr, because m̄
is proper.

Given F, F ′ ∈ Shv(H\G/H), the inner hom Hom∗(F, F ′) for this monoidal structure
exists, it given for the i-th projection pi : (H\G/H)× (H\G/H)→ (H\G/H) by

Hom∗(F, F ′) = (p1)∗Hom(p∗2F, q∗m̄
!F ′)[−2 dimH])

Here we used ([46], 0.2.2). Let i : B(H) ↪→ H\G/H be the closed immersion. The unit
of Shv(H\G/H) is i∗ω. Let r be the involution of H\G/H coming from G→ G, g 7→
g−1. Verdier duality gives an equivalence

D : (Shv(H\G/H)constr)op →̃Shv(H\G/H)constr

Let now F ∈ Shv(H\G/H)constr. We claim that F has the monoidal right dual
D(r!F )[−2 dimH].

Proof. We have Hom∗(F, i∗ω) →̃D(r!F )[−2 dimH] naturally, which gives a canonical
map

F ∗ D(r!F )[−2 dimH]→ i∗ω

by the universal property of Hom∗. We. want to check this is a counit of a duality.
For this we need to show that the for any A ∈ Shv(H\G/H),K ∈ Shv(H\G/H)constr

one has canonically

Hom(K,A ∗ F ) →̃Hom(K ∗ D(r!F )[−2 dimH], A)
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We get by ([46], 0.2.2),

Hom(K ∗ D(r!F )[−2 dimH], A) →̃Hom(K, (p1)∗Hom(p∗2D(r!F ), q∗m̄!A))

The latter object, using p∗2D(r!F ) →̃D(p!2r!F ), identifies with

Hom(K, (p1)∗(p
!
2r

!F ⊗! q∗m̄
!A)) →̃Hom(K, (p1)∗q∗(m̄

!A⊗! q!p!2r
!F ))

So, it suffices to establish an isomorphism

(2) (p1)∗q∗(m̄
!A⊗! q!p!2r

!F ) →̃A ∗ F

Consider the automorphism γ : G × G →̃G × G, (g1, g2) 7→ (g1g2, g
−1
2 ). It induces

the isomorphism

γ̄ : H\G×H G/H →̃H\G×H G/H

Then p1qγ̄ = m̄ and p2qγ̄ = rp2q. So, m̄
!A →̃ γ̄!q!p!1A and γ̄!q!p!2F →̃ q!p!2r

!F . Now the
LHS of (2) identifies with

(p1)∗q∗γ̄
!q!(A⊠ F )

Now (p1)qγ̄
−1 = m̄, and we get the isomorphism (2). □

Consider now a more more case, where G is a placid group ind-scheme, and H ⊂ G
is a closed placid subgroup. Assume H prosmooth, and G/H is an ind-scheme of ind-
finite type, which is ind-proper. We define the monoidal structure on Shv(H\G/H)
by

K1 ∗K2 = m̄∗q
∗(K1 ⊠K2)

for the same diagram

(H\G/H)× (H\G/H)
q← H\G×H G/H

m̄→ H\G/H

Define Shv(H\G/H)constr ⊂ Shv(H\G/H) as the full subactegory of those K for
which oblv(K) ∈ Shv(G/H)c. This monoidal product preserves the full subcategory
Shv(H\G/H)constr, because m̄ is proper.

Let now F ∈ Shv(H\G/H)constr. We claim that F has the monoidal right dual
D(r!F ).

Proof. Let A ∈ Shv(H\G/H),K ∈ Shv(H\G/H)constr. It suffices to show that one
has canonically

Hom(K,A ∗ F ) →̃Hom(K ∗ D(r!F ), A)
in Vect. We have

Hom(K ∗ D(r!F ), A) →̃Hom(K ⊠ D(r!F ), q∗m!A)

Step 1. We claim that the latter complex identifies with

Hom(K, (p1)∗(p
!
2r

!F ⊗! q∗m̄
!A))

with the same notations as above. Here the functor p!2 sends L to ω⊠L. The difficulty
is that p∗i do not make sense. Pick Y1, Y2 ⊂ G/H such that oblv(K) is the extension by
zero from Y1, oblv(r

!F ) is the extension by zero from Y2. Let pY,i : (H\Y1)× (H\Y1)→
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(H\Yi) be the i-th projection. Then p∗Y,i make sense, and K ⊠ D(r!F ) →̃ p∗Y,1K ⊗
p∗Y,2D(r!F ). So,

Hom(K ⊠ D(r!F ), q∗m!A) →̃Hom(p∗Y,1K,Hom(p∗Y,2D(r!F ), q∗m!A)

Then Hom(p∗Y,2D(r!F ), q∗m!A) →̃ p!Y,2r
!F ⊗! q∗m

!A. So,

(pY,1)∗Hom(K ⊠ D(r!F ), q∗m!A) →̃Hom(K, (pY,1)∗(p
!
Y,2r

!F ⊗! q∗m
!A)

Our claim follows now from

(pY,1)∗(p
!
Y,2r

!F ⊗! q∗m
!A →̃ p!Y,1(p1)∗(p

!
2r

!F ⊗! q∗m̄
!A)

Step 2. The rest of the proof is as in the finite-dimensional case. □

1.1.24. For 2.5.5. In (2.12) over the low horizontal arrow there should be Satq−1,G.

Note that DlinτH →̃ τHDlin, so the order in the left vertical arrow in (2.12) does not
matter. Besides, Satq,G does not preserve compact objects, it sends compact objects
to constructible ones, correct!

1.1.25. For 3.1. The notion of a chiral category makes sense for ℓ-adic sheaves (and
for all the 4 sheaf theories). It could be defined as in [54]. In particular, if S ∈ PreStk
has a structure of a commutative algebra in PreStkcorr then we have the notion of a
multiplicative sheaf of categories on S as in ([54], 5.4). The fact that for Si ∈ Schft
separated, Shv(S1) ⊗ Shv(S2) → Shv(S1 × S2) is maybe not an equivalence, is not a
problem. The reason is that the exteriour tensor product of sheaves of categories is
Shv/S1

⊠ Shv/S2
→̃Shv(S1 × S2).

1.1.26. For 3.1.2. The sense of fSetsurj is that it is the 1-full subcategory of the
operad controlling the non-unital commutative algebras, where we keep only sets ⟨n⟩
for n > 0 and active morphisms.

As in ([54], Appendix B), write Catdir for the ∞-category of categories with direc-
tions. Recall that we have an adjoint pair Tw : 1 − Cat ⇆ Catdir : corr, where the
right adjoint sends C 7→ Ccorr;hor,vert. View 1 − Cat as symmetric monoidal with the
cartesian symmetric monoidal structure. View Catdir as symmetric monoidal, where
for (C, horC , vertC), (D,horD, vertD), on C ×D we get a structure of a category with
directions: horC×D = horC ×horD, and vertC×D = vertC ×vectD. Then both Tw and
corr are symmetric monoidal, so yield an adjoint pair

Tw : CAlgnu(1− Cat) ⇆ CAlgnu(Catdir) : corr

Now for D,D′ ∈ CAlgnu(1 − Cat), the space MapCAlgnu(1−Cat)(D,D
′) is the space

Fun⊗(D,D′)Spc of symmetric monoidal functors.
In fact, 1 − Cat and Catdir are naturally 2-categories, and so are CAlgnu(1 − Cat),

CAlgnu(Catdir). For D,D
′ ∈ Catdir the category of maps between them in Catdir is the

full subcategory Fundir(D,D′) ⊂ Fun(D,D′) classifying functors preserving horizontal

(resp., vertical) morphisms, and sending cartesian products of x
a→ y

b← z with a
horizontal and b vertical to cartesian squares.

Given E,E′ ∈ CAlgnu(1 − Cat), the mapping category in CAlgnu(1 − Cat) from
E to E′ is the category Fun⊗(E,E′) of non-unital symmetric monoidal functiors.
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Namely, if E⊗ → Surj, E′⊗ → Surj are the cocartesian fibrations corresponding to
E,E′ then Fun⊗(E,E′) ⊂ FunSurj(E

⊗, E′⊗) is the full subcategory of functors sending
Surj-cocartesian arrows to cocartesian arrows.

Let us assume that Tw : 1 − Cat ⇆ Catdir : corr is an adjoint pair of 2-categories,
that is, we have

Fun(E,Ccorr;hor,vert) →̃Fundir(Tw(E), C)

for C ∈ Catdir, E ∈ 1− Cat naturally.
Moreover, we assume the induced adjoint pair

Tw : CAlgnu(1− Cat) ⇆ CAlgnu(Catdir)

is also an adjoint pair of 2-categories. ForD,D′ ∈ CAlgnu(Catdir) the mapping category
MapCAlgnu(Catdir)

(D,D′) is the category Fun⊗,dir(D,D′) of those non-unital symmetric

monoidal functors f : D → D′ whose image in Fun(D,D′) lies in Fundir(D,D′). I hope
for E ∈ CAlgnu(1− Cat) and D ∈ CAlgnu(Catdir) one has a naturall equivalence

Fun⊗(E,Ccorr,hor,vert) →̃Fun⊗,dir(Tw(E), C)

in 1− Cat.

1.1.27. For 3.1.2 more. Let now C ∈ 1 − Cat admitting fibred products. We view
it as a category with directions taking hor = vert to be all morphisms. Assume
moreover C ∈ CAlgnu(1−Cat) with the cartesian symmetric monoidal structure. Then
C ∈ CAlgnu(Catdir) naturally, because the product map C × C → C preserves the
cartesian squares automatically. So, Ccorr ∈ CAlgnu(1− Cat) naturally.

The product map Ccorr × Ccorr → Ccorr sends (c1, c2) to c1 × c2. Now by ([50], Lm.
1.2.6),

Funllax(fSetsurj , C) →̃Fun⊗(Tw(fSetsurj), C),

here the RHS is the category of non-unital symmetric monoidal functors, and the
non-unital symmetric monoidal structure on Tw(fSetsurj) sends a pair f : I → J ,
g : I ′ → J ′ to f ⊔ g : I ⊔ I ′ → J ⊔ J ′.

By the above,

Fun⊗,dir(Tw(fSetsurj), C) →̃Fun⊗(fSetsurj , Ccorr)

Finally, by ([50], 1.2.1),

Fun⊗(fSetsurj , Ccorr) →̃CAlgnu(Ccorr)

Combining, we get a full embedding

CAlgnu(Ccorr) ↪→ Funllax(fSetsurj , C)

Explicitly, given c ∈ CAlgnu(Ccorr), we get a non-unital symmetric monoidal functor
f : fSetsurj → Ccorr, f(I) = cI , here f sends a surjection of finite non-empty sets
α : I → J to the map cI ← multα → cJ in Ccorr corresponding to the product along
α. Note that

multα =
∏
j∈J

multIj ,

where for K ∈ fSetsurj we denote by cK ← multK → c the product map in Ccorr
along K → ∗. The corresponding functor f̄ : Tw(fSetsurj) → C sends (I

α→ J) ∈
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Tw(fSetsurj) to multα. Finally, the resulting left-lax symmetric monoidal functor

f̃ : fSetsurj → C sends I to multI . The functor f̃ sends β : I → J to the map
f̃(β) : multI → multJ , which fits into the diagram

multI
f̃(β)→ multJ → ∗

↓ ↓
multβ → cJ

↓
cI

The left-lax symmetric monoidal structure on f̃ is as follows. Given I, J ∈ fSetsurj ,
we construct the map multI⊔J → multI × multJ as follows. Consider the diagram

I ⊔ J β→ ∗ ⊔ ∗ → ∗. The product diagram for β is

cI × cJ ← multI ×multJ → c× c

Composing further in Ccorr with c⊗ c← mult∗⊔∗ → c, we get a diagram

multI⊔J → mult∗⊔∗ → c
↓ ↓

multI ×multJ → c× c
↓

cI × cJ ,

which gives the desired map multI⊔J → multI ×multJ .
Conversely, let h : fSetsurj → C be a left lax symmetric monoidal functor. It

gives rise to a symmetric monoidal functor h̄ : Tw(fSetsurj) → C sending (I
α→ J) to∏

j∈J h(Ij). It sends a diagram

I
α→ J

↓ ↑
I ′

α′→ J ′

to the morphism
∏
j∈J h(Ij) →

∏
j′∈J ′ h(I

′
j′), which is obtained as the product over

j ∈ J of the compositions

h(Ij)→
∏
j′∈J ′j

h(Ij′)→
∏
j′∈J ′j

h(I ′j′)

Here the first map comes from tey left-lax structure, and the second is the functoriality
of h on morphisms. The so obtained functor h̄ lies in Fun⊗,dir(Tw(fSetsurj , C) iff for

any maps L
γ→ I

α→ J
β→ K in fSetsurj the square is cartesian

h̄(L→ K) → h̄(L→ J)
↓ ↓

h̄(I → K) → h̄(I → J)
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This is not automatic! I think this is equivalent to the property that the square (which
is commutative by definition of a left-lax functor)

h(L) →
∏
j∈J h(Lj)

↓ ↓
h(I) →

∏
j∈J h(Ij)

is cartesian.
In our case given a factorization space in the sense of Section 3.1.2, for J ∈ fSetsurj

the map ZJ → RanJd ×RanJ (Z∗)
J induced by the left-lax structure is an isomorphism.

This implies that the functor J 7→ ZJ comes from an object of CAlgnu(PreStkcorr).
So, indeed the two definitions are equivalent and give rise to equivalent categories of
factorization prestacks over Ran.

1.1.28. For 3.1.4. First, I think it is important to explain to which notion from [54]
your definition of factorization algebra corresponds. It corresponds to multiplicative
object of a multiplicative sheaf of categories, as far as I understand.

One more thing here. If f : Y → C is a cartesian fibration corresponding to a
functor p : Cop → 1−Cat then lim p →̃FuncartC (C, Y ) canonically. Here FuncartC (C, Y ) ⊂
FunC(C, Y ) is the full subcategory of those functors that send any arrow to a cartesian
arrow. This is something people (who tried to read your book) know. So, the category
of factorization algebras in ShvG(ZRan) in your sense maps naturally to

lim
I∈(fSet)surj)op

ShvGI
(ZI) →̃ShvG(Z∗)

We used that fSetsurj has a final object.
Let now fSetsurj → PreStklft, I 7→ ZI be a factorization space in the sense of

Section 3.1.2 of the paper, so a left lax nonunital symmetric monoidal functor with
sume properties. For I ∈ fSetsurj the map I → ∗ gives the morphism gI : ZI → Z∗,
which is the product map ZI∗ ×RanI RanId → Z∗. An object F ∈ Shv(Z∗) defines a

cartesian section fSetsurj → Shv(ZfSetsurj ) sending I to g!IF. The left-lax monoidal

structure on the functor Z is given for a pair I, J ∈ fSetsurj by the open immersion

ZI⊔J ×RanI⊔J RanI⊔Jd ↪→ (ZI ×RanI Ran
I
d)× (ZJ ×RanJ RanJd )

The fact that the above cartesian section is multiplicative means the following now.
For I, J ∈ fSetsurj the !-restriction of (g!IF)⊠ (g!JF) under the above open immersion

is identified with g!I⊔JF.
The comparison with the notion of multiplicative object from [54] is not evident, and

deserves an explanation.
Before thinking about multiplicatove objects, one tries in your way to understand

the multiplicative sheaves of categories. Namely, let

(3) PreStkoplft → 1− Cat, Y 7→ ShvCat/Y

be the functor sending Y to the category of sheaves of categories ShvCat/Y over Y .

This functor is the RKE of its restriction to (Schaffft )op, and it sends S ∈ (Schaffft )op

to Shv(S) −mod. The functor (3) is right-lax symmetric monoidal, where PreStklft
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is equipped with the cartesian monoidal structure. Let now ZRan → Ran be a fac-
torization prestack over Ran. So, we are given a left-lax symmetric monoidal functor
fSetsurj → PreStklft, J 7→ ZJ as in Section 3.1.2 of the paper. Composing with (3),
one gets a right-lax symmetric monoidal functor

(fSetsurj)op → 1− Cat, J 7→ ShvCat/ZJ
,

which gives rise to a cartesian fibration

(4) ShvCat(ZfSetsurj )→ fSetsurj

As in the paper, ShvCat(ZfSetsurj ) is equipped with a symmetric monoidal structure
and (4) is symmetric monoidal.

So, we may consider the category of symmetric monoidal sections of (4) which are
also cartesian. Does this category identify with MultCat(ZRan)? We have denoted as
in ([54], 5.21.1) the category of multiplicative sheaves of categories on ZRan.

To answer the above, it is natural to consider the general situation in the next
subsection.

1.1.29. Let C be a symmetric monoidal category admitting fibre products, F : Cop →
1 − Cat be a right lax symmetric monoidal functor. In the cases of interest, it factors
through 1− Catcocmpl → 1− Cat, the latter is the 1-full subcategory, where we restrict
categories to cocomplete ones, and functors to those preserving small colimits.

Consider the category Grothcorr(F ) defined in ([54], 5.14). It is equipped with a
functor q : Grothcorr(F ) → Ccorr, and the base change of the latter by Cop → Ccorr
identifies with Groth(F )→ Cop, the cocartesian fibration attached to F . We know from
([54], 5.16) that Grothcorr(F ) is symmetric monoidal, and q is symmetric monoidal.

Let us use the following notation for the monoidal structure on Grothcorr(F ). Given
(c, x), (c′, x′) ∈ Grothcorr(F ), one has

(c, x)⊗ (c′, x′) = (c⊗ c′, x⊠ x′),

where x⊠ x′ is the image of (x, x′) under F (c)× F (c′)→ F (c⊗ c′).
Let c ∈ CAlgnu(Ccorr) be a non-unital commutative algebra in Ccorr. WriteMultwF (c)

be the category of non-unital commutative algebras in Grothcorr(F ) over c ∈ CAlgnu(C).
For a non-empty finite set I let

(5) c⊗I
a1← cI

a2→ c

be the action diagram in C for I → ∗. We write a2,I , a1,I to express the dependence on

I if needed. For an object (c, x ∈ F (c)) ∈MultwF (c) we get the action map (c, x)⊗I → c
in Grothcorr(F ) over (5). It is given by a morphism

ηI : a1(x
⊠I)→ a2(x)

Let MultF (c) ⊂MultwF (c) be the full subcategory of those (c, x) for which the map ηI
is an isomorphism for any nonempty finite set I.

Consider the op-lax symmetric monoidal functor fSetsurj → C, I 7→ cI attached to
c ∈ CAlgnu(C) as above. Composing with F , one gets a right-lax symmetric monoidal
functor F̄ : (fSetsurj)op → 1− Cat giving rise to a cartesian fibration

(6) coGroth(F̄ )→ fSetsurj
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As in ([54], 5.15.2), coGroth(F̄ ) is equipped with a symmetric monoidal structure, and
(6) is symmetric monoidal. Write Sect⊗,cart(F̄ ) for the category of symmetric monoidal
sections of (6), which are cartesian.

Question. Do we have an equivalence Sect⊗,cart(F̄ ) →̃MultF (c)? This would cer-
tainly help a reader.

To answer this question, I propose first to answer
Question’. Prove that the base change Grothcorr(F ) ×Ccorr C → C of q is the

cartesian fibration coGroth(F )→ C attached to F .
Assume the answer to the latter question is positive. Then coGroth(F ) becomes a

symmetric monoidal subcategory inGrothcorr(F ). Now given (c, x ∈ F (c)) ∈MultF (c),
we get a functor fSetsurj → coGroth(F̄ ) sending I to (I, a2,I(x) ∈ F (cI)). To see that
this is indeed a functor, recall that for a map γ : I → J in fSetsurj we have a diagram

cI
γ̄→ cJ

a2,J→ c
↓ ↓
cγ → c⊗J

↓
c⊗I

in C corresponding to products for the diagram I → J → ∗. The functor F (cJ)→ F (cI)
sending an object to the end of a cartesian arrow over γ is the functor γ̄ : F (cJ) →
F (cI). To see that (c, a2,I(x)) ∈ coGroth(F ) depends functorially on I, we need an
isomorphism γ̄(a2,J) →̃ a2,I . It takes place because a2,J ◦ γ̄ = a2,I . We also see this is
a cartesian section.

Let now I, J be nonempty finite sets. To get a symmetric monoidal structure on this
section, we need to establish the isomorphism

(I⊔J, a2,I⊔J(x)) →̃ (I, a2,I(x))⊗(J, a2,J(x)) = (I⊔J, τ(a2,I(x)⊠a2,J(x))) ∈ coGroth(F̄ ),

where τ is the map from the diagram below

cI⊔J → c∗⊔∗ → c
↓ τ ↓

cI ⊗ cJ
a2,I⊗a2,J→ c⊗ c

↓ a1,I⊗a1,J
c⊗I ⊗ c⊗J ,

Since a2,I(x) →̃ a1,I(x
⊠I) and a2,J(x) →̃ a1,J(x

⊠J), the above diagram gives isomor-
phisms

a2,I(x)⊠ a2,J(x) →̃ (a2,I ⊗ a2,J)(x⊠ x) →̃ (a1,I ⊗ a1,J)(x⊠I⊔J)

This gives

τ(a2,I(x)⊠ a2,J(x)) →̃ a1,I⊔J(x
⊠I⊔J) →̃ a2,I⊔J(x)

as desired.
So, I hope the answer to both questions is yes.
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1.1.30. For 3.2.1. First, a general observation. Let F,F′ : (fSetsurj)op → 1 − Cat
be right lax symmetric monoidal functors, and α : F → F′ be a morphism of right-lax
symmetric monoidal functors (recall that right-lax symmetric monoidal functors form a
category). Let X→ fSetsurj ,X′ → fSetsurj be the corresponding cartesian fibratioins,
and ᾱ : X → X′ the induced functor over fSetsurj . Then ᾱ sends cartesian arrows to
cartesian arrows over fSetsurj . Besides, ᾱ is non-unital symmetric monoidal. Now ᾱ
induces a morphism

Fun⊗,cart
fSetsurj

(fSetsurj ,X)→ Fun⊗,cart
fSetsurj

(fSetsurj ,X′)

For this reason a morphism f : Z1 → Z2 of factorization prestacks over Ran with
gerbes f∗G2 →̃G1 induces a functor

f ! : FactAlg(ShvG2(Z
2))→ FactAlg(ShvG1(Z

1))

At the levet of ”main objects” it sends for f : Z1
∗ → Z2

∗ the corresponding object of
K ∈ ShvG2(Z

2
∗ ) to f

!K ∈ ShvG1(Z
1
∗ ).

Let f : Z1 → Z2 be a map of factorization spaces over Ran for which f∗ exists. As-
sume a gerbe G restricts to G along f . Do we have a functor f∗ between the correspond-
ing factorization algebras? It exists in the constructible context if f is schematic locally
of finite type. Indeed, for any α : I → J in fSetsurj from the diagram (7), since ᾱ! = ᾱ∗,
we see that we get a natural transformation µ of functors (fSetsurj)op → 1−Cat send-

ing I to ShvG2
I
(Z2

I )
f∗→ ShvG1

I
(Z1

I ). Then µ is compatible with the right-lax symmetric

monoidal structrures on these functors, as we see from (8). Hence, gives the desired
morphism

f∗ : FactAlg(ShvG2(Z2
Ran))→ FactAlg(ShvG1(Z1

Ran))

1.1.31. For 3.2.1. Let f : Z1 → Z2 be a morphism of factorization prestacks over Ran.
Assume f : Z1

∗ → Z2
∗ is ind-schematic. Then for any I ∈ fSetsurj , f : Z1

I → Z2
I is ind-

schematic, as this is the map RanId×RanZ
1
∗ → RanId×RanZ

2
∗ obtained by base change

from f : Z1
∗ → Z2

∗ . Then we get a natural transformation η of functors (fSetsurj)op →
1 − Cat sending I to ShvG1

I
(Z1

I )
f∗→ ShvG2

I
(Z2

I ), because for any α : I → J in fSetsurj

the square is cartesian

(7)
Z1
I

f→ Z2
I

↓ ᾱ ↓ ᾱ
Z1
J

f→ Z2
J ,

and ᾱ is etale. Moreover, η is compatible with the right-lax symmetric monoidal
structures on the corresponding functors (fSetsurj)op → 1 − Cat, because for any
I, J ∈ fSetsurj the square is cartesian

(8)
Z1
I⊔J

r→ Z1
I × Z1

J
↓ f ↓ f×f

Z1
I⊔J

r→ Z1
I × Z1

J ,

here r is an open immersion. For this reason we get as above the functor

f∗ : FactAlg(ShvG1(Z1
Ran)→ FactAlg(ShvG1(Z2

Ran)
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1.1.32. For 3.3.2. The map (RanJ)disj → Ran used in the definition of RanJ∗ is the
projection on the factor corresponding to ∗ ∈ J .

The op-lax compatibility of (3.7) with the module structure is given by natural maps

(RanI⊔J)disj ×Ran Ranx → (RanI)disj × (RanJ∗ )disj

for I ∈ fSetsurj , J ∈ fSetsurj∗ . In the LHS the map (RanI⊔J)disj → Ran is the
projection on the factor corresponding to ∗ ∈ I ⊔ J .

1.1.33. For 3.3.3. I think it is necessary to write explicitly that op-lax compatibility

with actions is given by maps Z̃I⊔J → ZI × Z̃J for I ∈ fSetsurj , J ∈ fSetsurj∗ , which
are open immersions.

1.1.34. For 3.4.1. If Zi → Ranx are factorization module spaces with respect to a
factorization space Z → Ran, let f : Z1 → Z2 be a map of Z-factorization spaces over
Ranx. Assume that (G,G2) is a pair of compatible factorization gerbes over Z and Z2,

and G1 = f∗G2. For I ∈ fSetsurj∗ , J ∈ fSetsurj the square is cartesian

(9)
Z1
I⊔J ↪→ ZJ × Z1

I
↓ ↓

Z2
I⊔J ↪→ ZJ × Z2

I ,

and the horizontal arrows are open immersions. Let now A ∈ FactAlg(ShvG(Z)). We
claim that in the constructible context we get the morphism

f! : A− FactMod(ShvG1(Z1))→ A− FactMod(ShvG2(Z2))

Indeed, consider the corresponding functors (fSetsurj∗ ) → 1 − Cat, I 7→ ShvGi(ZiI).
Then

ShvG1(Zi1)
f!→ ShvG2(Z2

I )

is a natural transformation of these functors right-lax compatible with the actions.

Indeed, first for α : I → J in fSetsurj∗ the square is cartesian

Z1
I

f→ Z2
I

↓ ᾱ ↓ ᾱ
Z1
J

f→ Z2
J ,

and the maps ᾱ are etale. This gives ᾱ!f! →̃ f!ᾱ
!, so we get a morphism of functors.

Now (9) gives the commutativity of the diagram

ShvG(ZJ)⊗ ShvG1(Z1
I ) → ShvG1(Z1

I⊔J)
↓ id⊗f! ↓ f!

ShvG(ZJ)⊗ ShvG2(Z2
I ) → ShvG2(Z2

I⊔J)

where the top horizontal arrow sends (L,M) to (L ⊠M) |Z1
I⊔J

, and similarly for the

low horizontal arrow. This gives our claim.
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1.1.35. For 4.3.1. The scheme Conf is naturally an object of CAlgnu(PreStklft), so we
have the notion of a factorization gerbe on it as for any object of CAlgnu(PreStklft).
Namely,

MapCAlgnu(PreStkcorr)(Conf,B
2
et(A))×MapPreStkcorr

(Conf,B2
et(A))

MapPreStk(Conf,B
2
et(A))

is the space of factorization A-gerbes on Conf.

1.1.36. For 4.3.3. We use here ([43], 9.2.28).
Let us check the following. Let Y be a scheme of finite type, f : Y ′ → Y be etale

surjective, G be a e∗,tors-gerbe on Y , which becomes trivial on Y ′. We want to check
that ShvG(Y ) is compactly generated. We have the adjoint pair f∗ : ShvG(Y ) ⇄
ShvG(Y

′) : f∗, and f∗ = f !. Here we denoted also by G the restriction of G to Y ′.
The category ShvG(Y

′) = Shv(Y ′) is compactly generated, because Y ′ is of finite type.
Besides, f∗ : ShvG(Y )c → Shv(Y ′)c, because its right adjoint is continuous.

We may assume that A is a finite abelian group and f is a Bet(A)-torsor on Y . In this
case f! →̃ f∗ canonically. Indeed, for F ∈ Shv(Y ′) is suffices to show that f!F → f∗F is
an isomorphism after an etale localization, which reduces the question to the case of the
trivial Bet(A)-torsor on Y . In this case both f!F and f∗F is the the direct summand
of F on which A acts trivially. Further, f! is left adjoint to f ! = f∗. Since f∗ is
conservative, the essential image of f! generates ShvG(Y ). Why Shv(Y ′) is compactly
generated? In the constructible context this is automatic.

It is better maybe to argue as follows. Assume f : Y ′ → Y etale and schematic,
surjective. So, f is an etale cover for Y . Let Y ′•/Y be the Cech nerve of f . Since Shv
satisfies the etale descent, ShvG(Y ) = Tot(Shv(Y ′•/Y )). Moreover, for each transition
map a : Y ′m/Y → Y ′n/Y the functor a! = a∗ admits a left adjoint a!. Passing to left
adjoints, we get ShvG(Y ) →̃ colim∆op Shv(Y ′•/Y ).

Now for any injective map α : [n] → [m] and the corresponding map ᾱ : Y ′m/Y →
Y ′n/Y , ᾱ! preserves compact object, because ᾱ! is continuous. Since each Shv(Y ′n/Y )
is compactly generated, we may apply ([20], ch. I.1, 7.2.7) with my impovement ([43],
4.2.8). Thus, ShvG(Y ) is compactly generated.

Consider now an ind-scheme of ind-finite type Y with a gerbe G. Write Y = colimi Yi,
where the transition maps fij : Yi → Yj are closed immersions. Write also G for the
restriction of G to Yi for each i. We get ShvG(Y ) →̃ colimi ShvG(Yi) in DGCatcont. Each
ShvG(Yi) is compactly generated by the above, and the functor (fij)! : ShvG(Yi) →
ShvG(Yj) preserves compact objects, because f !ij is continuous. So, as above, ShvG(Y )
is compactly generated. We may assume actually that Y is pseudo-proper here.

Lemma 1.1.37. 1) Let Y = colimi∈I Yi be an ind-scheme of ind-finite type, here I is
filtered, Yi is of finite type. If i → j in I then Yi → Yj is a closed immersion. Then
any K ∈ Shv(Y )c is of the form (ii)!K

′ for ii : Yi → Y , K ′ ∈ Shv(Yi)c for some i.

2) If Y = colimi∈I Yi be an ind-algebraic stack, I filtered, Yi is an algebraic stack locally
of finite type. If i→ j in I then Yi → Yj is a closed immersion. Then any K ∈ Shv(Y )c

is of the form (ii)!K
′ for ii : Yi → Y , K ′ ∈ Shv(Yi)c for some i.

Proof. 1) Write Y →̃ colimi∈I Yi, where Yi is a scheme of finite type (algebraic stack of
finite type), and I is filtered. Then Shv(Y ) →̃ colimi Shv(Yi). Now we apply ([20], ch.
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I.1, 7.2.6) to describe Shv(Y )c. By (HA, 1.1.4.6), 1 − CatSt admits filtered colimits,

and the inclusion 1− CatSt → 1− Cat preserves filtered colimits. Recall that

Shv(Y ) →̃ Ind(colimi∈I Shv(Yi)
c),

where the colimit inside is calculated in DGCatnon−cocmpl (notation from [20], ch. I.1,
10.3.1). By ([20], ch. I.1, 7.2.4), any compact object of Shv(Y ) is a direct summand
in Shv(Y ) of an object F ∈ colimi∈I Shv(Yi)

c. By ([43], 13.1.14), F comes from an
object of Shv(Yi)

c for some i, so the same holds for its direct summand, because the
inclusion Shv(Yi)

c ⊂ Shv(Yi) is closed under retracts by (HTT, 5.3.4.16).
2) is similar. □

1.1.38. For 4.3.3. If f : Y 0 ↪→ Y is an open embedding (so schematic morphism) in
PreStklft then f∗ : ShvG(Y

0) → ShvG(Y ) is defined and continuous, so its left adjoint

f ! preserves compact objects (as in [21], 1.4.8).
Lemma 1.1.37 remains valid when we twist Shv(Y ) by a gerbe. This implies that

ShvG(Y )c ⊂ ShvG(Y )loc.c.
Let us explain the definition of the equivalence D : (ShvG(Y )loc.c)op→̃ShvG−1(Y )loc.c.

Assume Y is an ind-scheme. For each i and each quasi compact open subscheme Y 0
i ⊂ Yi

we have the Verdier duality

(10) D : (ShvG(Y
0
i )

c)op →̃ShvG−1(Y 0
i )

c

Further,

ShvG(Yi) →̃ lim
Y 0
i ∈Cop

ShvG(Y
0
i )

Here C is the category of quasi-compact open subschemes of Yi. For QCoh such an
equivalence is in ([20], I.3, 1.4.4). This comes from the fact that Shv satisfies the etale
descent for morphisms in PreStklft. By definition,

ShvG(Yi)
loc.c →̃ lim

Y 0
i ∈Cop

ShvG(Y
0
i )

c

The corresponding restrictions preserve compact objects because for an open immersion
j : V 0 ↪→ V in PreStklft, j∗ is continuous ([21], 1.4.8). So,

(ShvG(Yi)
loc.c)op →̃ lim

Y 0
i ∈Cop

(ShvG(Y
0
i )

c)op

The desired equivalence is obtained by passing to the limit over Y 0
i ∈ Cop in the

equivalences (10), and then to the colimit over I, here Y →̃ colimi∈I Yi and I is filtered.

We used the fact that the projection 1− CatSt → 1− Cat preserves limits.
We also use the following: (colimi∈I ShvG(Yi)

loc.c)op →̃ colimi∈I(ShvG(Yi)
loc.c)op, where

the colimit is calculated, say in 1 − CatSt (the latter category admits filtered colim-

its). Indeed, the functor D 7→ Dop is an autoequivalence of 1 − CatSt. Moreover, the

natural map DGCatnon−cocmpl → 1− CatSt preserves filtered colimits. Recall also that
1− CatSt → 1− Cat preserves filtered colimits by ([36], 1.1.4.6).
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1.1.39. For 4.4.1. Since the action of Λ♯ on Conf∞x commutes with the action of
Conf , for λ ∈ Λ♯, (Trλ)∗GΛ is naturally a factorization module gerbe over (Conf,GΛ).
Then it is required that (4.8) is an isomorphism of factorization module gerbes over
(Conf,GΛ).

1.1.40. For 4.5.3. One may get (4.13) from the universal property of the tensor prod-
uct. The composition

Rep(TH̃)⊗ ShvGΛ(Conf∞x)→ Rep(TH̃)⊗Rep(TH) ShvGΛ(Conf∞x)→ Shv
GΛ̃(C̃onf∞x)

is the action of Rep(TH̃) on ShvGΛ̃(C̃onf∞x).

1.1.41. For Lm. 4.5.5, proof. The assumption implies that Λ̃♯/Λ♯ →̃ Λ̃/Λ is a lattice,

so torsion free. Pick a decomposition Λ̃♯ = Λ♯ ⊕ Λ̃1, where Λ̃1 is a lattice. Then

Λ̃1 ⊕ Λ = Λ̃.
Let T1 be the torus whose weight lattice is Λ̃1, so TH̃ →̃TH×T1. We have QCoh(B(TH))⊗

QCoh(B(T1)) →̃ QCoh(B(TH̃)) accordingly, so

Rep(TH̃)⊗Rep(TH) ShvGΛ(Conf∞x) →̃Rep(T1)⊗ ShvGΛ(Conf∞x)

Further,

Shv
GΛ̃(C̃onf∞x) →̃

∏
µ∈Λ̃

Shv
GΛ̃(C̃onf

µ

∞x),

where C̃onf
µ

∞x ⊂ C̃onf∞x is the connected component given by fixing the degree to be

µ. For λ′ ∈ Λ̃1 and λ ∈ Λ let µ = λ + λ′. Then the map Trλ
′
: Confλ∞x → C̃onf

µ

∞x is
an isomorphism.

We have Rep(T1) = ⊕λ̃1∈Λ̃1
Vect, so

Rep(T1)⊗ ShvGΛ(Conf∞x) →̃ ⊕
λ̃1∈Λ̃1

ShvGΛ(Conf∞x),

the λ̃1-summand here is the desired category of sheaves on the union of components

corresponding to Λ + λ̃1 ⊂ Λ̃. In other words, the action of the summand Vect corre-
sponding to λ̃1 gives an isomorphism

ShvGΛ(Conf∞x) →̃Shv
GΛ̃(C̃onf

λ1+Λ

∞x )

1.1.42. For 4.6.2 Here is a proof of a simpler claim.

Lemma 1.1.43. Let T be a torus. Then
i) the unit section Ran→ GrT,Ran is a closed immersion.
ii) if 1 → G → G′ → T → 1 is an exact sequence of reductive groups then GrG,Ran →
GrG′,Ran is a closed immersion.

Proof. i) We may assume T = Gm. Then, by ([59], Lemma 31.18.9) an S-point of
GrT,Ran over a S-point I ∈ Ran(S) is a relative Cartier divisor D on S × X over S
such that D is contained set-theoretically in ΓI. Write D = D1 − D2, where Di are
relative effective Cartier divisors over S. Then the desired closed subscheme is given by
the condition that D1 = D2. More precisely, D1, D2 give rise to a closed subscheme of
S ×X ×X, which we intersect with S ×X, let D12 → S ×X be the resulting scheme.
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Then D12 → S is proper, and the required closed subscheme of S is the image of the
proper map D12 → S.

ii) follows from i). □

Write S 7→ Div(X)(S) for the functor sending S ∈ Schaff to the set of relative

Cartier divisors on S ×X over S. Let Div(X)Ran : (Schaff )op → Sets be the functor
sending S to the set of (I ∈ Ran(S), D ∈ Div(X)(S) such that D is set-theoretically
contained in ΓI. Then GrGm,Ran →̃ Div(X)Ran, and GrT,Ran →̃ Hom(Λ̌,Div(X)Ran).
This means that an S-point of GrT,Ran is I ∈ Map(S,Ran), and a homomorphism

from Λ̌ to the group of relative Cartier divisors D on S × X over S such that D is
set-theoretically included into ΓI.

By definition, a relative Cartier divisor on S×X over S is written as D1−D2, where
Di are relative effective Cartier divisors on S×X over S. We identifyD1−D2 = D′1−D′2
iff D1 +D′2 = D′1 +D2 as relatiive effective Cartier divisors on S ×X over S.

Lemma 1.1.44. Let T ′ → T be a surjective homomorphism of tori with a finite kernel.
Then GrT ′,Ran → GrT,Ran is a closed immersion.

Proof. Write T ′ = Λ′ ⊗Gm, T = Λ⊗Gm, where Λ′ ⊂ Λ is a sublattice of finite index.
There is a base e1, . . . , en ∈ Λ and positive integers m1, . . . ,mn such that {miei} is a
base of Λ′. So, we are reduced to the case of the map Gm → Gm, z 7→ zn.

We show that the multiplication Div(X)Ran → Div(X)Ran by n is a closed immersion.

For this it suffices to show that Div(X)
n→ Div(X) is a closed immersion. The latter

follows from the fact that Diveff (X) →̃ ⊔m X(m). □

1.1.45. For 4.6.2. Let us underline the definition of (Grω
ρ

T,Ran)
non−pos. In this definition

we assume G = Gsc. For S ∈ Schft, its S-point is a datum of a T-torsor FT on

S ×X, J ∈ Hom(S,Ran), a trivialization FT →̃ωρ |S×X−ΓJ
such that for any λ̌ ∈ Λ̌+,

λ̌(FT ) → λ̌(ωρ) is regular over X. We do not have to require that the quotient is flat
over S, this is automatic due to the following result from ([59], Lemma 31.18.9).

Claim 1.1.46. Let ϕ : X → S be a flat morphism of schemes which is locally of finite
presentation. Let Z ⊂ X be a closed subscheme. Let x ∈ Z with image s ∈ S.

i) If Zs ⊂ Xs is a Cartier divisor in a neighbourhood of x, then there exists an
open U ⊂ X and a relative effective Cartier divisor D ⊂ U such that Z ∩ U ⊂ D and
Zs ∩ U = Ds.

ii) If Zs ⊂ Xs is a Cartier divisor in a neighbourhood of x, the morphism Z → X is
of finite presentation, and Z → S is flat at x, then we can choose U and D such that
Z ∩ U = D.

iii) If Zs ⊂ Xs is a Cartier divisor in a neighbourhood of x and Z is a locally principal
closed subscheme of X in a neighbourhood of x, then we can choose U and D such that
Z ∩ U = D.

At the level of k-points, a point ωρ(λy) with λ ∈ Λ and natural trivialization outside
y is in (Grω

ρ

T,Ran)
non−pos iff λ ∈ Λneg.
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1.1.47. For 4.6.4. This is analogous to [GLys, 4.1.2], which claimed that the map
from the combinatorial grassmanian to the usual grassmanian over Ran induces an
isomorphism after sheafification in the topology of finite surejctive maps.

For any map S → X its graph Γ ⊂ S ×X is an effective Cartier divisor on S ×X.
Indeed, the diagonal X ⊂ X ×X is a Cartier divisor, so its preimage under S ×X →
X ×X is also a Cartier divisor. Assume now given J ∈ Ran(S) given by a collection

S
j→ X, j ∈ J . Since each Γi ⊂ S ×X is a Cartier divisor, their sum is also a Cartier

divisor. Assume in addition given a subsheaf β : L ⊂ OS×X , where L is a line bundle,
and β is an isomorphism over UI = S×X−ΓI . Then O/L is flat over S by Claim 1.1.46,
so (L ⊂ O) defines a relative Cartier divisor on S ×X over S.

For this reason we get a morphism (Grω
ρ

T,Ran)
non−pos → Conf sending (FT , J ∈

Ran, β : FT →̃ωρ |S×X−ΓJ
) to D such that β induces an isomorphism F(T ) →̃O(D).

By the way, for a closed subscheme Y ⊂ S×X, the extension of vector bundles from
S ×X − Y to S ×X is discussed here:
https://mathoverflow.net/questions/22111/extending-vector-bundles-on-a-given-open-subscheme.
It is related to Serre’s condition S2.

Lemma 1.1.48. The map (Grω
ρ

T,Ran)
neg → Conf is surjective in the topology of finite

surjective maps.

Proof. For each λ ∈ Λneg written as λ = −
∑
niαi, where αi are simple coroots, we have

a symmetrization map
∏
iX

ni → Confλ. It decomposes as
∏
iX

ni → (Grω
ρ

T,Ran)
non−pos →

Conf with the image Confλ. □

We have (Conf ×Ran)⊂ ⊔ Ran →̃ (Grω
ρ

T,Ran)
non−pos. Here Ran corresponds to the

locus of those S-points of (Grω
ρ

T,Ran)
non−pos, where the trivialization α : FT →̃ωρ extends

to S ×X.
In fact, (Grω

ρ

T,Ran)
neg classifies D ∈ Conf, J ∈ Ran such that (S×X)−ΓJ = (S×X)−

suppD, in particular (D, J) ∈ (Conf ×Ran)⊂. So, (Grω
ρ

T,Ran)
neg ↪→ (Conf ×Ran)⊂.

I don’t see if (Grω
ρ

T,Ran)
neg → Conf is an isomorphism after sheafification in the topol-

ogy of finite surjective maps, though it is surjective. The projection (Conf ×Ran)⊂ →
Conf defines an isomorphism on spaces of gerbes, and the !-pull-back

ShvGΛ(Conf)→ ShvGG((Grω
ρ

T,Ran)
neg)

is fully faithful. So, (4.17) is fully faithful (but maybe an equivalence indeed).

1.1.49. For 4.6.5 and (4.17). Dennis claims that if Y1 → Y2 is a map in PreStklft
which becomes an isomorphism after sheafification in the topology of finite surjectuve
maps that Shv(Y2)→ Shv(Y1) is an equivalence. This was used also without proof in
our first joint paper. What is the reference?

1.1.50. For 5.3.8. Explanation of the fact that the collection M
µ,!
Conf ∈ ShvGΛ(Conf∞x)

is a set of compact generators. First, for Conf=µx
jµ→ Conf≤µx

iµ
↪→ Conf∞x the functors

(iµ)!, (jµ)! preserve compact objects, as their right adjoints are continuous.

Now, given λ, µ ∈ Λ with λ−µ ≤ 0, the stratification of Confλ≤µx by the subschemes

Confλ=νx is finite. It is indexed by λ ≤ ν ≤ µ. So, if for K ∈ ShvGΛ(Confλ≤µx) its
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!-restriction to each stratum vanishes then K vanishes itself. The claim follows now
from the isomorphism ShvGΛ(Conf∞x) →̃ limµ∈Λ ShvGΛ(Conf≤µx).

It is not clear why M
µ,∗
Conf , µ ∈ Λ co-generate A − FactMod(ShvGΛ(Conf∞x)). Let

K ∈ A − FactMod(ShvGΛ(Conf∞x)) with Hom(K,Mµ,∗
Conf) = 0 for all µ ∈ Λ. This

shows that ι∗µK = 0 for all µ.It is not clear if this really implies that K = 0, because
the map Shv(Conf∞x)→ limµ∈Λ Shv(Conf≤µ) given by the system of functors ι∗µ could
maybe have a ”kernel”. Maybe Verdier duality could help here to finish the argument.

1.1.51. For 5.4. For Y ∈ Schft there is a t-structure on Shv(Y ) that we think of as
being perverse. It is important that this t-structure is accessible.

The t-structure on Shv(Y ) for Y an ind-scheme is defined as follows. If Y =
colimi∈I Yi with I filtered and Yi ∈ Schft then Shv(Y )≤0 ⊂ Shv(Y ) should be the
smallest full subcategory containing Shv(Yi)

≤0 for any i, closed under extensions and
closed under small colimits. By (HA, 1.4.4.11), Shv(Y )≤0 is then presentable and de-
fines an accessible t-structure on Y . We use here the fact that Shv(Yi) is generated by
a small set of objects.

So, for F ∈ Shv(Y ) we have F ∈ Shv(Y )≥0 iff for any i and the closed immersion
ii : Yi → Y , i!iF ∈ Shv(Yi)≥0. This implies that the t-structure on Shv(Y ) is compatible
with filtered colimits. Recall that for a closed immersion f : Y1 → Y2 with Yi ∈ Schft,

f ! is left exact for the perverse t-structure.

1.1.52. For 5.4.1. The property for F ∈ ShvGΛ(Conf∞x) the property

MapA−FactMod(M
µ,!
Conf , F ) = ∗, for any µ ∈ Λ

means that i!µF ∈ ShvGΛ(Conf≤µx)
≥0 for any µ, that is, F ∈ ShvGΛ(Conf∞x)

≥0.

1.1.53. For 5.4.2. The following observation is used. If f : C → C ′ is a t-exact
functor, a map in DGCatcont and f is conservative, assume c ∈ C and f(c) ∈ (C ′)♡.
Then c ∈ C♡.

1.1.54. Dennis proposed essentially the following.

Definition 1.1.55. Let C be a e-linear abelian category, Λ be a partially ordered set.
Assume given for λ ∈ Λ a full subcategory (iλ)! : C≤λ ⊂ C. Assume that this functor
admits both left i∗λ and right i!λ adjoint. For λ ∈ Λ set C<λ = colimµ<λC≤µ, where
the colimit is calculated in a suitable category (to be precised). We also assume that
Vect♡ is isomorphic to the cofibre of C<λ → C≤λ in the same category. Besides, the
functor (jλ)

! : C≤λ → C≤λ/C<λ admits both left (jλ)! and right (jλ)∗ adjoints in the
same category. Finally, we assume that colimλ∈ΛC≤λ → C is an equivalence, again
for colimit calculated in the same category.

The above notion is adopted for a given (∞, 2)-category E (let’s assume E1−Cat

pointed for simplicity):

Definition 1.1.56. Let C ∈ E. Then a structure of a h.w. category on C with respect
to E is a datum as in the previous definition, where now (iλ)! and its adjoints are
understood in C, the colimits are calculated in C (that is, in C1−Cat).



25

Since we want to apply this to a Grothendieck abelian category C, one option to
make the above precise is as follows: consider the 2-category E, whose objects are
presentable abelian categories, and morphisms are continuous functors. Then apply
definition in this particular case to get a notion of an abelian h.w. category.

We may also apply the above to DGCat viewed as a 2-category, and get a notion of
h.w. DG-category.

Remark 1.1.57. Let now C ∈ DGCat with an accessible t-structure, which is com-
patible with filtered colimits. Assume C≤λ ⊂ C for λ ∈ Λ defines a structure of a
h.w. category with respect to DGCat (the latter was denoted DGCatcont in your book).
We assume C≤λ equipped with the (unique possible) t-structure such that the inclusion
C≤λ → C is t-exact. Set D = C♡ and D≤λ = (C≤λ)

♡. The inclusion D≤λ ⊂ D is
continuous, both D≤λ, D are presentable by (HA, Remark 1.3.5.23). Is it true that this
defines a h. w. category structure on D?

It was not explained in the proof of 5.4.4 why in a h.w. abelian category C one has
Exti(cµ

′,!, cµ,∗) = 0 for i ≥ 1. Why this is so?

1.2. For Part II.

1.2.1. About invariants/coinvariants. If G is a group ind-scheme of ind-finite type
then (Shv(G),m∗) is monoidal (convolution monoidal structure).

The functor Shv(G) ⊗ Shv(G) → Shv(G × G) sends a compact object F1 ⊗ F2 to
a compact object F1 ⊠ F2. So, this functor admits a continuous right adjoint. In
the contstructible context the functor m∗ : Shv(G × G) → Shv(G) admits a contin-
uous right adjoint. Besides, the dual to m∗ is the functor m!. Thus, passing to the
dual in (Shv(G),m∗), in the constructible context we get a coalgebra (Shv(G),m!) in
DGCatcont. Recall that (Shv(G),m∗)−mod →̃ (Shv(G),m!)− comod (cf. [46]).

For any ind-scheme of ind-finite type Y , Y is a cocommutative coalgebra in PreStklft
via the maps Y → Y×Y and Y → Spec k, hence a commutative algebra in (PreStklft)

op.
Applying the right-lax monoidal functor Shv, we get on Shv(Y ) a commutative algebra

structure in CAlg(DGCatcont). The product is Shv(Y ) ⊗ Shv(Y ) → Shv(Y × Y )
△!

→
Shv(Y ). We denote this algebra (Shv(Y ),△!). It makes sense for any sheaf the-
ory. Applying the duality, we get a coalgebra structure on Shv(Y ), which we denote
(Shv(Y ),△∗) following [8]. Recall that this duality exchanges the functors △∗ and △!.

Then (Shv(G),△!,m!) is a Hopf algebra in the D-module case, but this is maybe
wrong in the constructible context. The same for (Shv(G),m∗,△∗) (as in [8]).

In the case of D-modules, (Shv(G),m∗)−mod becomes a monoidal category.

1.2.2. If Y ∈ PreStklft is equipped with a G-action then the action map a : G×Y → Y
is ind-schematic (isomorphic to the projection Y × G → Y ). So, (Shv(G), ⋆) acts on
Shv(Y ) on the left via F ∈ Shv(G),K ∈ Shv(Y ) 7→ a∗(F ⊠K). If f : Y1 → Y2 is an
ind-schematic morphism in PreStklft commuting with G-actions then f∗ : Shv(Y1) →
Shv(Y2) is a map of (Shv(G), ⋆)-modules. Besides, f ! is a map of (Shv(G), ⋆)-modules.
Indeed, consider the category of correspondences Corr(PreStklft)all,ind−sch, where for
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Y1, Y2 ∈ PreStklft a map in this category from Y1 to Y2 is given by a diagram Y1
a←

Y12
b→ Y2, where b is ind-schematic (of ind-finite type). Then

Shv : Corr(PreStklft)all,ind−sch → DGCatcont, Y 7→ Shv(Y )

sending the above morphism to b∗a
! is right-lax symmetric monoidal ([20], Chapter

3, Section 6.1). Now if f : Y1 → Y2 is a morphism of G-modules in PreStklft then
not only the horizotal map f but also the vertical map Y2 → Y1 given by the di-

agram Y2 ← Y1
id→ Y1 in Corr(PreStklft)all,ind−sch is a morphism of G-modules in

Corr(PreStklft)all,ind−sch. This reduces to the fact that the corresponding diagrams
are cartesian.

Consider the prestack quotient Y/G ∈ PreStklft. The map f : Y → Y/G commutes

with G-actions, where G acts trivially on Y/G. So, f ! : Shv(Y/G)→ Shv(Y ) is a map
of (Shv(G), ⋆)-modules. Thus, it induces a functor

(11) Shv(Y/G)→ Fun(Shv(G),⋆)(Vect, Shv(Y ))

Is it an equivalence?
Assuming G smooth of finite type, as in ([45], 3.0.22) one shows that Shv(Y/G) →̃ e−

comod(Shv(Y )). Namely, e here is the constant sheaf on G, it is a coalgebra in
(Shv(G), ⋆), and we consider the corresponding category of comodules with the convolu-
tion action of Shv(G) on Shv(Y ). The forgetful functor e−comod(Shv(Y ))→ Shv(Y )
is p! for p : Y → Y/G.

By the universal property of Fun(Shv(G),⋆), we have a canonical forgetful functor

Fun(Shv(G),⋆)(Vect, Shv(Y ))→ Shv(Y ) (whose composition with (11) is f !). Is its right
adjoint continuous?

The answer to the question is yes for all sheaf theories. By definition, Shv(Y/G)
identifies with the limit of

Shv(Y ) −→−→ Shv(G× Y )
−→−→−→ Shv(G2 × Y ) . . . ,

while Fun(Shv(G),⋆)(Vect, Shv(Y )) is the limit of

Shv(Y ) −→−→ Shv(G)⊗ Shv(Y )
−→−→−→ Shv(G)⊗2 ⊗ Shv(Y ) . . .

The map Shv(G)⊗n⊗Shv(Y )→ Shv(Gn×Y ) is an equivalence forD-modules, so in this
case this is easy. For all the 4 sheaf theories by ([46], 0.0.20), FunShv(G)(Vect, Shv(Y )) →̃ eG−
comod(Shv(Y )) also, and the functor (11) is an equivalence. So, oblvG : Shv(Y )G →
Shv(Y ) identifies with f ! : Shv(Y/G)→ Shv(Y ).

We see that in the constructible context the functor f ! admits a left adjoint f!, that
is, we get a dual pair AvG! : Shv(Y ) ⇄ Shv(Y )G : oblvG.

1.2.3. With the notations of the previous section, assume G smooth group scheme of
finite type. Consider now the adjunction

(prG)
L : Fun(Shv(G),⋆)(Vect, Shv(Y )) ⇆ Shv(Y ) : prG

given by (12) below for C = Shv(Y ). The functor (prG)
L comonadic by ([47], 1.3.6).
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1.2.4. Let C ∈ (Shv(G), ⋆)−mod. Assume G smooth of finite type. Then we have the
adjoint pair p∗ : Vect ⇆ Shv(G) : p∗ for p : G→ Spec k. Note that Shv(G) is equipped
with a left and right (Shv(G), ⋆)-actions. Besides, p∗ : Shv(G) → Vect is a monoidal
functor. So, we may view the above adjunction as an adjunction in (Shv(G), ⋆)−mod
and also in (Shv(G), ⋆)−modr.

Applying the functor FunShv(G)(•, C) for the above adjunction in (Shv(G), ⋆)−mod,
we get an adjoint pair

(12) (prG)
L : CG = FunShv(G)(Vect, C) ⇄ C : prG

Viewing p∗ : Vect ⇆ Shv(G) : p∗ as an adjunction in (Shv(G), ⋆)−modr and applying
• ⊗Shv(G) C, we get an adjunction

oblvG : CG = Vect⊗Shv(G)C ⇆ C : AvG∗

Since p∗ is a map of (Shv(G), ⋆)-bimodules, the functor oblvG inherits a structure of
a map of left (Shv(G), ⋆)-modules, where on CG the action is trivial (that is, sending
F ∈ Shv(G),K to (p∗F )⊗K). By the definition of FunShv(G), this yields a functor θG :

CG → CG. For D-modules this is an equivalence by ([8], 2.3.12). It is an equivalence
for all the 4 sheaf theories by ([24], Th. B.1.2, where H the group is assumed smooth
of finite type).

1.2.5. If G is an ind-scheme of ind-finite type, assume m : G × G → G ind-proper.
Then (Shv(G), ⋆) is rigid for any sheaf theory. My understanding is that there is no
hope for it to be rigid without the ind-properness assumption.

Claim 1: let f : G → H be a surjective homomorphism of smooth group schemes of
finite type. Then f∗ : Shv(H) ⇆ Shv(G) : f∗ is an adjoint pair in Shv(G) − mod.
Namely, f∗ is monoidal, and (Shv(G), ∗) acts on itself by convolutions on the left.

Proof. We have to check that f∗ is a morphism of Shv(G)-module categories. The
square is cartesian

G×G m→ G
↓ id×f ↓ f

G×H f×id→ H ×H m→ H

So, for F ∈ Shv(H),K ∈ Shv(G) one gets m∗(K ⊠ f∗F ) →̃ f∗m∗(f∗K ⊠ F ). □

For C ∈ Shv(G)−mod it gives an adjoint pair FunShv(G)(Shv(H), C) ⇆ C. If K =

Ker(G → H) and f is surjective then we may view Shv(H) →̃Shv(G)K →̃Shv(G)K ,
so

FunShv(G)(Shv(H), C) →̃FunShv(K)(Vect, C) →̃CK

Claim 2 Let H,G be placid group schemes, G ↪→ H be a subgroup (not necessarily
a placid closed immersion). Assume G →̃ limi∈Iop Gi, where Gi is a group scheme of
finite type, I is filtered, for i → j in I the map Gj → Gi is smooth affine surjective.
Write Ki = Ker(G → Gi). Assume H →̃ limi∈Iop H/Ki in PreStk. Assume H/G is a
pro-smooth placid scheme. Consider the projection p : H/G→ Spec k as H-equivariant
map. Then
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i) the adjoint pair p∗ : Vect ⇆ Shv(H/G) : p∗ takes place in Shv(H)−mod;
ii) assume C ∈ Shv(H) − mod(DGCatcont) and G is pro-smooth. Then the above
adjoint pair gives an adjoint pair in DGCatcont

oblv : CH ⇆ CG : Av
H/G
∗

Proof. i) Since p is H-equivariant map, p∗ : Shv(H/G) → Vect is a morphism of
Shv(H)-modules. Now the diagram is cartesian

H ×H/G act→ H/G
↓ pr ↓
H → Spec k

So, for K ∈ Shv(H), act∗(K⊠p∗e) →̃ p∗RΓ(H,K) canonically by ([46], Lemma 0.0.20).

ii) Applying FunShv(H)(·, C), we get the adjoint pair oblv : FunShv(H)(Vect, C) ⇆

FunShv(H)(Shv(H/G), C) : Av
H/G
∗ . Now using the assumption H →̃ limi∈Iop H/Ki in

PreStk from ([46], 0.0.36) we get Shv(H/G) →̃Shv(H)G with respect to the G-action
on H by right translations.

Recall that Shv(H)G →̃Shv(H)G, because G is placid group scheme. Finally,

FunShv(H)(Shv(H/G), C) →̃FunShv(H)(Shv(H)⊗Shv(G) Vect, C) →̃CG

□

An example of this situation: H = G ⋊ H̄, where H̄ ⊂ H is a normal subgroup,
H̄ is a placid group scheme, and G acts on H̄ by conjugation. For example, assume
moreover H̄ prounipotent. Then the functor oblv : CH → CG is fully faithful.

1.2.6. If H is a group scheme of finite type, L is a local system on H equipped
with associative isomorphism m∗L →̃L⊠L and a compatible trivialization i∗L →̃ e for
i : Spec k → H then f : (Shv(H), ⋆)→ (Shv(H), ⋆), F 7→ F ⊗L is a monoidal functor.
Indeed,

f(F1 ∗ F2) →̃ (F1 ∗ F2)⊗ L →̃ (F1 ⊗ L) ∗ (F2 ⊗ L) = f(F1) ∗ f(F2)

Now given C ∈ (Shv(H), ∗)−mod, we twist the action by L as follows. The object
CL ∈ H −mod is defined as C ∈ DGCatcont with the new action given by Shv(H) ⊗
C

f⊗id→ Shv(H)⊗ C act→ C.
Note that for K ∈ Shv(H) we have L ∗ K →̃L ⊗ RΓ(H,L−1 ⊗ K) →̃K ∗ L by

Lemma 1.3.16 below.

Remark 1.2.7. If we are not in the constructible context, it is better not to use the
⊗, but only ⊗!. For this we should start with an object L ∈ Shv(H) invertible for
the ⊗!-monoidal structure and satisfying m!L →̃L⊠L associatively and i!L →̃ e for i :

Speck
1→ H. Then the functor (Shv(H), ∗)→ (Shv(H), ∗), F 7→ F ⊗! L is a monoidal

equivalence. If moreover we are in the constructible context then for a multiplicative
local system L in the usual sense, L := L⊗ ωH satisfies the above properties.
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Proposition 1.2.8. 1) If Y is an ind-scheme of ind-finite type then for p : Y → Spec k
the functor p∗ : Shv(Y ) → Vect does not admit a left adjoint unless Y is a scheme of
finite type.

2) Assume Y = colimi∈I Yi, where Yi is an algebraic stack locally of finite type, I is
filtered and for i→ j, Yi → Yj is a closed immersion. So, Y is an ind-algebraic stack.
Then p∗ : Shv(Y ) → Vect does not admit a left adjoint unless Y is an algebraic stack
locally of finite type.

Proof. 1) Write Y = colimi∈I Yi, where Yi is a scheme of finite type, I is filtered, and
for i → j, Yi → Yj is a closed immersion. Assume a left adjoint p∗ : Vect → Shv(Y )
of p∗ exists, let K = p∗e. Assume Y is not a scheme of finite type. Then for F ∈
Shv(Y ),MapShv(Y )(K,F ) →̃MapVect(e, p∗F ), so K ∈ Shv(Y )c. By Lemma 1.1.37, K

is of the form (ii)∗K
′ for some i ∈ I, K ′ ∈ Shv(Yi)c, here ii : Yi → Y is the natural

map. We see that p∗F →̃HomShv(Yi)(K
′, i!iF ), the inner hom with respect to Vect-

action. Pick i→ j in I and a point η : Speck → Yj such that η does not factor through
Yi. Consider η∗e ∈ Shv(Y ). We get p∗(η∗e) →̃ e on one hand. On the other hand,
i!i(η∗e) = 0, a contradiction.

2) the same proof. □

Remark. let G →̃ colimi∈I Gi be a placid ind-group scheme, here I ∈ 1− Cat is small
filtered, Gi is a placid group scheme, if i → j in I then Gi → Gj is a placid closed
immersion and a homomorphism of group schemes. Then by ([43], 9.2.56), the natural
functor

Shv(G)−mod→ lim
i∈Iop

Shv(Gi)−mod

is an equivalence, because Shv(G) →̃ colimi∈I Shv(Gi) with respect to the ∗-push-outs.
Note that for M,N ∈ Shv(G)−mod one has

FunShv(G)(M,N) →̃ lim
i∈Iop

FunShv(Gi)−mod(M,N)

naturally.

1.2.9. For 6.1.4. It is used that DGCatcont → 1− Cat preserves limits.
For 6.1.9. The (eventually disconnected) right adjoint to (6.9) exists, because (6.9)

is continuous. A trial to explain the formula: let G ∈ Grp(PreStk), G be a placid
ind-scheme, assume G = colimi∈I Gi, where Gi is a placid group scheme, I is filtered.
Assume for i → j in I the map Gi → Gj is a placid closed immersion, and a homo-
morphism of group schemes. Let C ∈ G − mod. Recall that CG →̃ limi∈Iop C

Gi in
DGCatcont by ([47], Sect. 1.2.3). The functor oblvG : CG → C is obtained by passing
to the limit over Iop in the family oblvGi : C

Gi → C. The functor oblvGi : C
Gi → C has

a continuous right adjoint AvGi
∗ : C → CGi given by the comonad C → C, c 7→ eGi ∗ c.

For i→ j let α : Gi → Gj be the closed immersion. The natural map eGj → α∗eGi in
Shv(G) is a morphism of comonads in C. It induces the morphism eGj − comod(C)→
eGi − comod(C). Is there any formula for AvG∗ , which is maybe discontinuous? The

system of functors AvGi
∗ : C → CGi for i ∈ I is not compatible with the transition

functors in the inverse system limi∈Iop C
Gi .
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Note that we may consider E := limi∈Iop eGi taken in CoAlg(Fune,cont(C,C)). We
get a natural projection E − comod(C)→ limi∈Iop C

Gi →̃CG. Is it an equivalence?
We may add somewhere the following.

Remark 1.2.10. Let f : H → G be a map in Grp(PreStk). Assume H,G are placid
ind-schemes. Note that f∗ : (Shv(H), ∗) → (Shv(G), ∗) is monoidal. We get a mor-
phism of functors (G−mod)op × (G−mod)→ DGCatcont,

(D,C) 7→ Fun(Shv(G),∗)(D,C)→ Fun(Shv(H),∗)(D,C)

In particular, a map CG → CH functorial in C ∈ G − mod (and whose composition
with oblv : CH → C is oblv : CG → C).

1.2.11. For 6.1.9. Explanation of the formula for the functor Av
L(N)ω

ρ
x ,χN

∗ .

Lemma 1.2.12. Let C ∈ DGCatcont. Assume given a diagram Iop → DGCatcont,
i 7→ Ci, where I is filtered, and a full embedding oblvi : Ci ⊂ C in DGCatcont functorial
in i. So, if i→ j in I then Cj ⊂ Ci is a full subcategory. Assume for each i we have an

adjoint pair oblvi : Ci ⇆ C : Avi∗. Let D = limi∈Iop Ci = ∩iCi. If i → j in I then we

have a natural map Avj∗ → Avi∗ of functors C → C. Consider the functor Av∗ : C → C
equal to limi∈Iop Av

i
∗ in Fun(C,C). We claim that Av∗ takes values in D and is the

right adjoint to oblv : D → C.

Proof. Since Avi∗ ◦Avi∗ →̃ Avi∗, the natural map Avi∗Av∗ → Av∗ is an isomorphism (as

I is filtered). For i ∈ I the inclusion Ii/ ↪→ I is cofinal, and limj∈Ii/ Av
j
∗ →̃ limj∈I Av

j
∗.

However, Avj∗ for j ∈ Ii/ takes values in Ci, and the limit of the diagram Avj∗ :
C → Ci for j ∈ Ii/ gives a functor Av∗ : C → Ci by ([43], 2.7.9). So, Av∗ takes

values in D. We may also use the fact that Avi∗ : C → Ci preserves limits, so

Avi∗(limj∈Iop Av
j
∗(x)) →̃ limj∈Iop Av

i
∗Av

j
∗(x) →̃ Av∗(x).

Now for d ∈ D, c ∈ C we have

Map(d, lim
i
Avi(c)) →̃ lim

i
Map(d,Avi(c)) →̃ lim

i
Map(d, c) →̃ Map(d, c),

because I is contractible. □

It is maybe not true that Av∗ is given by the action of limk∈(Z+)op χk ∈ Shv(L(N)ω
ρ

x ),
where χk is the ∗-restriction of χN to Nk.

How to define the object χN in Shv(L(N)ω
ρ

x )? I think it should not be defined as
limk∈(Z+)op χk. Consider the functor

Shv(L(N)ω
ρ

x )→ Vect, K 7→ HomShv(A1)(Lψ, χ∗K),

where χ : L(N)ω
ρ

x → A1 is our nondegenerate homomorphism, and Lψ is the Artin-
Shreier sheaf. Is this functor representable by an object that should be called χN ∈
Shv(L(N)ω

ρ

x )? This object does not exist, because otherwise χN would be compact.
In other words, we should think of χN as an object of

Shv(L(N)ω
ρ

x )∨ = Fun(Shv(L(N)ω
ρ

x ),Vect)

given by K 7→ HomShv(A1)(Lψ, f∗K). (We know that this category is dualizable,
as for any placid ind-scheme). For any placid ind-scheme Z, there is a self-duality
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Shv(Z) →̃Shv(Z)∨ ([46], Section 0.0.23), however one should not try at this point to
think of χN as a sheaf on L(N)ω

ρ

x .

1.2.13. For 6.2.1.

Lemma 1.2.14. Let U be a pro-unipotent group scheme, U = limi∈Iop Ui, where Ui is
a unipotent group scheme of finite type, I is filtered, for i→ j in I, the map Uj → Ui
is smooth surjective homomorphism. Let p : U → Spec k be the natural map. Then
the functor p∗ : Vect → Shv(U) in the constructible context admits a left adjoint
(p∗)L : Shv(U) → Vect. Moreover, ((p∗)L)∨ identifies with the right adjoint to p∗ :
Shv(U) → Vect. We used here the self-duality on Shv(U) from ([47], 1.1.10). In
addition, (p∗)L ◦ p∗ → id is the identity, so p∗ ◦ (p∗)R → id is the identity.

Proof. Write Shv(U) = limi∈Iop Shv(Ui) where for i → j in I and the corresponding
map fij : Uj → Ui we use (fij)∗ : Shv(Uj) → Shv(Ui) as transition maps. For each i
let pi : Ui → Spec k be the map. Then p∗i : Vect→ Shv(Ui) form a compatible system
of maps giving the functor p∗ : Vect→ limi∈Iop Shv(Ui). Since each p∗i = p!i[−2 dimUi]
admits a left adjoint (pi)![2 dimUi], passing to left adjoints the compatible system of
functors (pi)![2 dimUi] : Shv(Ui) → Vect yields a functor colimi∈I Shv(Ui) → Vect,
where we use the functors f∗ij in this colimit system. The latter functor is the desired

left adjoint by (by [43], 9.2.6). Now by ([47], 1.2.11), the dual of p∗ : Vect → Shv(U)
identifies with p∗ : Shv(U)→ Vect. □

Let U be a pro-unipotent group scheme, C ∈ U −mod. Then we have the adjoint
pair p∗ : Shv(U) ⇆ Vect : (p∗)

R in the constructible context. However, (p∗)
R is not

a strict morphism of Shv(U)-module categories, only a lax one, see Lemma 1.3.7. In
general in the constructible context the functor oblvU : CU → C does not admit a
left adjoint. An example given by Sam: take U = Ga and the sheaf theory to be the
holonomic D-modules. Take C = D −mod(Ga), all D-modules. Let Ga act on itself
by translations. Then he claims the functor oblvU : CU → C does not admit a left
adjoint.

Assume now N ∈ Grp(PreStk), and N →̃ colimi∈I Ni, where Ni is a pro-unipotent
group scheme, if i → j in I then Ni → Nj is a placid closed immersion, and a map of
group schemes, and I is filtered. Let C ∈ N −mod. Recall that CN →̃ limi∈Iop C

Ni =
∩iCNi . If we have an adjoint pair AvNi

! : C ⇄ CNi : oblvNi for each i, here CNi

is a localization of C, then by (HTT, 5.5.4.18), ∩iCNi ⊂ C is a strongly reflective
subcategory, so the functor AvN! exists.

For c ∈ C and i → j in I we get in this case the localization map AvNi
! (c) →

Av
Nj

! (c) with respect to CNj ⊂ CNi . We claim that in this case the functor C → CN ,

c 7→ colimi∈I Av
Ni
! (c) is the left adjoint to the inclusion CN ↪→ C. This is a special

case of the following.

Lemma 1.2.15. Let C ∈ DGCatcont, Ci ⊂ C be a full subcategory, this is a map in
DGCatcont for i ∈ I. Here I ∈ 1 − Cat is filtered. Assume for i → j in I, Cj ⊂ Ci.
Set D = ∩iCi = limi∈Iop Ci, where the limit is calculated in DGCatcont. Assume
Li : C → Ci is a left adjoint to the inclusion. Then D is a localization of C, and the
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localization functor L : C → D is given by L(c) = colimi∈I Li(c), where the transition
maps are the localization morphisms for Cj ⊂ Ci, and the colimit is calculated in C.

Proof. For x ∈ ∩iCi, c ∈ C we get

MapC(colimi Li(c), x) →̃ lim
i∈Iop

Map(Li(c), x) →̃ lim
i∈Iop

Map(c, x)

→̃ Map(c, x) →̃Fun(Iop,Map(c, x))

For J ∈ 1 − Cat, Z ∈ Spc we have Fun(J, Z) →̃Fun(| J |, Z), where | J |∈ Spc is
obtained by inverting all arrows. Since a filtered category is contractible, we are done.

To explain that L takes values in ∩Ci, note that we may equally understand colimi Li(c)
as taken in Cj over i ∈ Ij/, because the inclusion Cj ⊂ C is continuous, so the colimit
lies in Cj for any j. □

Claim: Let now Y = colimj∈J Yj be an ind-scheme of ind-finite type, here J is
filtered, Yj is a scheme of finite type. For i → j in J , Yi → Yj is a closed immersion.
Let U be a prounipotent group scheme acting on Y preserving each Yj . Assume that for
any j ∈ J , the U -action on Yj factors through a finite-dimensional quotient unipotent
group U → U0. Then oblv : Shv(Y )U → Shv(Y ) in the constructible context admits a
left adjoint AvU! .

Proof. For any j ∈ J pick a finite-dimensional quotient U → Uj such that the U -
action on Yj factors through Uj , so we have the quotient map h : Yj → Yj/Uj . The

functor oblv : Shv(Yj)
U → Shv(Yj) identifies with h! : Shv(Yj/Uj) → Shv(Yj), it has

the left adjoint h! in the constructible context. For i → j in J let fij : Yi ↪→ Yj be
the closed immersion. We get the diagram τ : Jop × [1] → DGCatcont sending j to
oblv : Shv(Yj)

U ↪→ Shv(Yj), with the transition functors f !ij . Passing to the limit over

Jop, this gives the functor oblv : Shv(Y )U → Shv(Y ).
If i→ j is a map in J , pick a finite-dimensional quotient U → U0 such that on both

Yi, Yj the U -action factors through U0. For the projections hi : Yi → Yi/U0 we get
commutative diagram

Shv(Yi)
(hi)!→ Shv(Yi/U0)

↓ (fij)! ↓ (fij)!

Shv(Yj)
(hj)!→ Shv(Yj/U0)

So, we may pass to left adjoints in the diagram τ . Passing to the colimit over I
in DGCatcont, this gives a functor AvU! : Shv(Y ) → colimi∈I Shv(Yi)

U →̃Shv(Y )U .

We are in the situation of ([43], 9.2.39). According to loc.cit, AvU! is left adjoint to
oblv : Shv(Y )U → Shv(Y ). □

Claim 2: Let Y, Y ′ be ind-schemes of ind-finite type, f : Y → Y ′ be a schematic
morphism of finite type. Let U be a prounipotent group scheme acting on Y, Y ′ so that
f is U -equivariant. Then in the constructible context there are functors f∗ : Shv(Y ′)→
Shv(Y ) and f∗ : Shv(Y ′)U → Shv(Y )U commuting with oblv : Shv(Y )U → Shv(Y ),
oblv : Shv(Y )U → Shv(Y ), that is, f∗ oblv →̃ oblv ◦f∗. Besides,

AvU! ◦f∗ →̃ f∗ ◦AvU!
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naturally as functors Shv(Y ′)→ Shv(Y )U .

Proof. Write Y ′ →̃ colimj∈J Y
′
j , where J is small filtered, if j ∈ J then Y ′j ∈ Schft, and

for j → j′ in J the map Y ′j → Y ′j′ is a closed immersion. Set Yj = Y ′j ×Y ′ Y . Then

Y →̃ colimj∈J Yj . If j ∈ J then Yj ∈ Schft, and for j → j′ in J the map Yj → Yj′
is a closed immersion. For j ∈ J let fj : Yj → Y ′j be the restriction of f . Then

f∗j : Shv(Y ′j ) → Shv(Yj) are compatible with the !-extensions giving the transition

maps in Shv(Y ) →̃ colimj∈J Shv(Yj) and similarly for Y ′. In the colimit over j ∈ J
then give the functor f∗ : Shv(Y ′)→ Shv(Y ).

Now for each j let U → Uj be the finite type quotient group scheme such that U
acts on Yj and on Y ′j via Uj . We get the cartesian square

Yj
fj→ Y ′j

↓ h ↓ h
Yj/Uj

fj→ Y ′j /Uj ,

where h is the quotient map in the sense of stacks. Then f∗j h! →̃h!f
∗
j . Passing to the

colimit over j in this isomorphism, we get AvU! ◦f∗ →̃ f∗◦AvU! . The second claim comes
from f∗j h

! →̃h!f∗j by passing to the colimit. □

1.2.16. For 6.2.2. The functor Av
L(N)ω

ρ
x ,χN

! admits a continuous right adjoint, so sends
a compact object (on which it is defined) to a compact object. Besides, δtλ,Gr is compact

in ShvGG(Grω
ρ

G,x).

Why the shift [−⟨λ, 2ρ̌⟩] in the definition of W λ,!? The relation with the global
definition should explain this.

1.2.17. For 6.2.5. If Yi are ind-schemes of ind-finite type, f : Y1 → Y2 is a closed

immersion if for any S → Y2 with S ∈ Schaffft , S ×Y2 Y1 → Y2 is a closed immersion.

This is the case for S̄µ ↪→ S̄λ for µ ≤ λ.
I propose to formulate here the following.

Remark 1.2.18. Let G be a placid ind-scheme, G ∈ Grp(PreStk). Assume G =
colimi∈I Gi in Grp(PreStk), where Gi is a placid scheme, I filtered, and for i →
j in I, Gi → Gj is a placid closed embedding. Let C ∈ G − mod. Recall that
GG →̃ limi∈Iop C

Gi. Assume for each i → j in I the functor CGj → CGi admits a left
adjoint. Consider the functor I → DGCatcont, i 7→ CGi obtained from the above one
by passing to left adjoints. Then we have colimi∈I C

Gi →̃ limi∈Iop C
Gi in DGCatcont.

Assume G is a placid ind-scheme, G ∈ Grp(PreStk). Assume given an adjoint pair
f : C ⇆ C ′ : g in Shv(G)−mod. Then applying FunShv(G)(Vect, ·), one gets an adjoint

pair CG ⇆ C ′G in DGCatcont. This gives in our case the desired equivalence

Whitq,x(G) →̃ colimλ∈Λ ShvGG(S̄λ)L(N)ω
ρ

x ,χN

The explanation of the fact that (̄iλ)! : ShvGG(S̄λ)L(N)ω
ρ

x ,χN → Whitq,x(G) is fully

faithful is not a good one. Here is one: we have an adjoint pair ((̄iλ)!, (̄iλ)
!) between the
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categories of sheaves on S̄λ and Grω
ρ

G,x, and the left adjoint is fully faithful. Applying

the functor of invariants, we get an adjoint pair ((̄iλ)!, (̄iλ)
!) between the categories of

invariants, and the left adjoint is still fully faithful. Indeed, invariants send an identity
functor to the identity.

An alternative would be to apply ([23], Lm. 1.3.6).

1.2.19. For 6.2.5. To see that W λ,! ∈ ShvGG(S̄λ)L(N)ω
ρ

x ,χN , note that we have an
adjoint pair

Av
L(N)ω

ρ
x ,χN

! : ShvGG(S̄λ) ⇆ Whitq,x(G)≤λ : oblv,

where the left adjoint is partially defined for D-modules (always defined in the con-
structible context). It is defined here, because δtλ,Gr is holonomic.

1.2.20. If G ∈ Grp(PreStk), which is a placid ind-scheme, assume C ∈ G−mod. For
p : G → Spec k the functor p∗ : Shv(G) → Vect does not have a left adjoint (unless G
is a scheme). The functor p∗ is monoidal, hence a map in G−mod, it induces applying
Fun(Shv(G),∗)(•, C) the functor oblvG : CG → C. However, it is not clear if oblvG has
a right adjoint, this may depend on C maybe.

For any map C1 → C2 in G−mod the diagram commutes

CG1
oblvG→ C1

↓ ↓
CG2

oblvG→ C2

1.2.21. For 6.2.6. The commutativity of square both both circuit follows from the
previous section.

1.2.22. For 6.2.6. We explain the fact that the essential images of Whitq,x(G)≤µ for
µ < λ generate the full subcategory of Whitq,x(G)≤λ of objects extended by zero under

the closed immersion S̄λ − Sλ ↪→ S̄λ.
Let ii : Yi ↪→ Y for i = 1, . . . , n be diagrams of ind-schemes of ind-finite type,

where ii is a closed immersion, and ⊔Yi → Y is surjective (say, pointwise for k-points).
Then (ii)! : Shv(Yi) → Shv(Y ) is fully faithful, and the essential images of (ii)! for
i = 1, . . . , n generate Shv(Y ). Indeed, by induction we may assume n = 2. In this case
for K ∈ Shv(Y ) we have a fibre sequence (i12)!(i12)

!K → (i1)!(i1)
!K⊕ (i2)!(i2)

!K → K
in Shv(Y ). Indeed, Shv satisfies the proper descent by ([46], 0.0.32), and Y1 ⊔ Y2 → Y
is a surjective on field-valued points (it is also a covering in the topology of finite
surjective maps). So, to check that this is a fibre sequence, it suffices to do this after
!-restriction to Yi, Yij for all i, j, which is clear. If Map(F,K) = ∗ for any F ∈ Shv(Yj)
for j = 1, 2 then i!iK = 0, hence K →̃ 0.

This implies that the essential images of Shv(S̄λ−αi) for all simple coroots αi generate
Shv(S̄λ − Sλ).

For K ∈Whitq,x(G)≤λ extended by zero under S̄λ− Sλ ↪→ S̄λ we use a similar fibre

sequence defined by the closed subschemes iλ−αi
: S̄λ−αi for all simple coroots. The

point is that the functors i!λ−αi
are between the corresponding Whittaker categories,

so our fibre sequence will take place in Whitq,x(G)≤λ.
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1.2.23. For 6.2.7. In the definition of
◦
W λ the functor used is Av

L(N)ω
ρ

x ,χN

! : ShvGG(Sλ)→
Whitq,x(G)=λ.

In (6.13) replace Maps by Hom. In addition, the formula (6.13) should say the
answer is e for λ = λ′ dominant, and zero otherwise. I propose to say it follows from
Prop. 6.2.9.

It would be useful for a reader if in this section it would be mentioned that
◦
W λ has

a simplier definition: for the corresponding map say χ̄λ : Sλ → A1 one has
◦
W λ →̃ (χ̄λ)!Lψ[2− ⟨2ρ̌, λ⟩],

where Lψ is the Artin-Schreier sheaf (refer then to Thm. 7.4.2 to explain this formula).

1.2.24. For 6.2.9. It is better to say in (b) that the continuous functor Vect →
Whitq,x(G)=λ sending e to

◦
W λ is an equivalence.

1.2.25. For proof of 6.2.9. We check that (6.14) admits a left adjoint given by V 7→
V ⊗ colimk Av

Nk,χk
! (δtλ,Gr), where the colimit is calculated in ShvGG(Sλ). For F ∈

Whitq,x(G)=λ, V ∈ Vect one has

Map(V ⊗colimk Av
Nk,χk
! (δtλ,Gr), F ) →̃ lim

k
MapShv

GG
(Sλ)Nk,χk (V ⊗Av

Nk,χk
! (δtλ,Gr), F )

lim
k

MapShv
GG

(Sλ)(V ⊗ δtλ,Gr, F ) →̃ lim
k

MapVect(V, i
!
tλF ) →̃ MapVect(V, i

!
tλF ),

because we calculate a limit over a contractible category.
To understand the proof, consider the following situation. Let U be a pro-unipotent

group scheme, U = limi∈Iop Ui, where I is filtered, for i → j the map Uj → Ui in a
smooth, affine surjective homomorphism of group schemes, and Ui is a smooth group
scheme of finite type. We assume i0 ∈ I is the initial object.

Let S be a scheme of finite type, x ∈ S, the action of U on S is transitive. Let L
be a character local system on U coming from a local system L0 on Ui0 . Let St be the
stabilizor of x in U . Then St is a placid group scheme, and St→ U is a placid closed
immersion. Moreover, we may assume that there is a closed subscheme Sti0 ⊂ Ui0 such
that St = Sti0 ×Ui0

U .

For h : Ui0 → S, u 7→ ux we have the functor h∗ : Shv(S) → Shv(Ui0), because
h is smooth. Further, Shv(S)U,L →̃Shv(S)U0,L0 by ([47], Lemma 1.3.11). Besides,
Shv(U0)

U0,L0 →̃Vect with the generator L0 by ([47], Sect. 1.3.15). The functor h∗

gives the full embedding

Shv(S)Ui0
,L0 ⊂ Shv(Ui0)Ui0

,L0 →̃ Vect

We see that if L0 →̃h∗L̄ is in the essential image of h∗ : Shv(S) → Shv(Ui0) then
Shv(S)U,L →̃ Vect with the generator L̄, and zero otherwise.

Consider now the functor α given as the composition Shv(S)U,L ⊂ Shv(S)
δ!x→ Vect.

It has a left adjoint sending e to AvU,L! (δx). Here δx = (ix)!e for ix : Spec k
x→ S.

Then AvU,L! (δx)[−2 dimS] →̃ L̄ if h∗L̄ →̃L for some L̄, and zero otherwise. Indeed,

i!xL̄ →̃ e[−2 dimS].
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1.2.26. For 6.2.10. To see (c), note that S̄λ is an ind-scheme of ind-finite type. For
any µ ≤ λ, S̄µ ↪→ S̄λ is a closed immersion. Now if Y ⊂ S̄λ is a closed subscheme,
Y is of finite type that Y meets only a finite number of L(N)ω

ρ

x -orbits Y ∩ Sµ. Let

F ∈ Shv(S̄λ)L(N)ω
ρ

x ,χN , let FY be its !-restriction to Y . To see that F = 0, it suffices to
show that FY = 0 for any closed subscheme of finite type Y ⊂ S̄λ. Since we know this

for the !-restriction to Y ∩ Sµ, FY vanishes indeed. So, Shv(S̄λ)L(N)ω
ρ

x ,χN = 0 unless λ
is dominant.

Note that for λ dominant, Whitq,x(G)≤λ = Shv(S̄λ)L(N)ω
ρ

x ,χN admits a finite filtra-
tion with the graded pieces Vect. Indeed, {µ ∈ Λ+ | µ ≤ λ} is finite. By filtration
we mean here that there are full subcategories Whitq,x(G)≤µ for µ ≤ λ, the functor
Whitq,x(G)≤µ ↪→Whitq,x(G)≤λ is a map in DGCatcont, we also have functors

j∗µ : Whitq,x(G)≤µ →Whitq,x(G)=µ →̃ Vect

for µ dominant, andWhitq,x(G)=µ is a localization of Whitq,x(G)≤µ. Besides, Whitq,x(G)=µ
is the the right orthogonal to the full subcategory of Whitq,x(G)≤µ of those objects,
which are extensions by zero under the closed immersion

S<µ ↪→ S̄µ

The latter category is generated by Whitq,x(G)≤ν with ν < µ in the sense of ([20], ch.
I.1, 5.4.1).

To see that W λ,! generate Whitq,x(G) for λ dominant, let K ∈ Whitq,x(G) with

Map(W λ,![n],K) = ∗ for any n ∈ Z, λ ∈ Λ+. Then (̄iλ)!K = 0 for any λ ∈ Λ. Since
Grω

ρ

G,x = colimν∈Λ S̄
ν , K = 0.

(b) follows from the fact that for λ minimal and µ < λ, (iµ)!W λ,∗ = 0. This means
that W λ,∗ is the extension by zero from Sλ.

(a) For any λ ∈ Λ+ the object W λ,! admits a finite filtration by the objects Wµ,∗

with µ ∈ Λ+, µ ≤ λ. This comes from the geometry, from the !-restrictions of W λ,! to
the strata Sµ. So, the smallest stable subcategory containing Wµ,∗ for µ ∈ Λ+, also
contains W λ,!. This is why the objects Wµ,∗ generate Whitq,x(G).

1.2.27. For 6.3. The fact that this indeed defines a t-structure: we may say that
Whitq,x(G)

≤0 is the smallest full subcategory containing W λ,! for λ ∈ Λ+, closed under
colimits and extensions. Then Whitq,x(G)

≤0 is presentable, and indeed defines an
accessible t-structure by (HA, 1.4.4.11).

The t-structure on Whitq,x(G)≤λ can be defined in two ways: by the fact that the
inclusion into Whitq,x(G) is compatble with the t-structure. The second way is to say

that Whitq,x(G)
≤0
≤λ is the smallest full subcategory containing Wµ,! for µ ∈ Λ, closed

under the colimits and extensions. This definition also shows that ī!λ : Whitq,x(G) →
Whitq,x(G)≤λ is left t-exact. Indeed, for F ∈Whitq,x(G) and µ ≤ λ,

HomWhitq,x(G)(W
µ,!, F ) →̃ HomWhitq,x(G)(W

µ,!, ī!λF )

1.2.28. For 6.3.2. In (a) we use the following definition. Let C ⊂ D be a full embedding
in DGCatcont, D equipped with a t-structure. We say that C is compatible with the t-
structure on D if the truncation functors preserve C. This implies that C≥0 := C∩D≥0
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and C≤0 := C∩D≤0 define a t-structure on C. Moreover, C♡ ⊂ D♡ is a full subcategory
closed under extensions, and C ↪→ D is t-exact.

Conversely, assume C ⊂ D is a t-exact full embedding in DGCatcont, C,D equipped
with t-structures. Then the truncation functors of D preserve C. Indeed, if c ∈ C,
let τ≤nD c → c → τ>nD c be the corresponding fibre sequence in D. Consider the fibre

sequence τ≤nC c → c → τ>nC c in C. This is a fibre sequence in D also, and τ≤nC c ∈
D≤n, τ>nC c ∈ D>n. Thus, the two fibre sequences are isomorphic. So, C is compatible
with the t-structure on D.

If the t-structure on D is compatible with filtered colimits then the same holds for
the induced t-structure on C.

Proof of 6.3.2(a). For F ∈Whitq,x(G)≤λ the condition F ∈Whitq,x(G)
≥0
≤λ is equiva-

lent to

HomWhitq,x(G)(W
µ,!, F ) = 0

for any µ ≤ λ. So, (Whitq,x(G)≤λ)
≤0 is the smallest full subcategory containing Wµ,!

for µ ≤ λ ∈ Λ+, closed under colimits and extensions. It is presentable by (HA,
1.4.4.11). This gives (Whitq,x(G)≤λ)

≤0 ⊂ (Whitq,x(G)
≤0.

If K ∈ (Whitq,x(G)≤λ)
≥0 and µ ∈ Λ, and µ is not less then λ then i!µK = 0.

So, HomWhitq,x(G)(W
µ,!, F ) = 0 and K ∈ (Whitq,x(G)

≥0. We see that the inclusion

Whitq,x(G)≤λ ↪→Whitq,x(G) is t-exact, we are done.

1.2.29. For Remark 6.3.3. Misprint, you meant D+(Whitq,x(G)
♡), not D+(Whitq,x(G).

You can not talk about D+(Whitq,x(G)
♡) before you justify the fact that Whitq,x(G)

♡

has enough injective objects. Since you want to use the universal property of D+, you
have first to justify that Whitq,x(G) is right complete for this t-structure.

1.2.30. For 6.3.5. In general, let C ⊂ D be a full embedding in DGCatcont, D equipped
with a t-structure and C compatible with this t-structure. If c ∈ C♡ is irreducible,
then its image in D♡ is not necessarily irreducible.

Example: Let Y →̃An, p : Y → Spec k. Then p∗ : Vect → Shv(Y ) is fully faithful.
Consider Shv(Y ) with the usual, not the perverse t-structure. This t-structure is
compatible with Vect. However, e ∈ Vect is irreducible in Vect♡, and p∗e is not
irreducible in Shv(Y )♡.

The proof of 6.3.5 is absent, as it is not justified in the proof that L ∈Whitq,x(G)≤λ
is not justified (see Lemma below).

Let L be an irreducible object of Whitq,x(G)
♡. For some λ ∈ Λ+ there is a nonzero

mapW λ,! → L, by definition of the t-structure. It gives a morphismW λ,! → (jλ)
∗(̄iλ)!L.

Since Whitq,x(G)=λ →̃ Vect, so is semisimple, we get a nonzero morphism

(jλ)
∗(̄iλ)!L→

◦
W λ

over Sλ, which gives a nonzero map (̄iλ)!L→ (jλ)∗
◦
W λ,!, hence a nonzero map

H0((̄iλ)!L)→ (jλ)∗
◦
W λ,!,

but this does not give the map L→W λ,∗ that you wanted, we only have (iλ)!H
0((̄iλ)!L)→

L, which is surjective.
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Here is how it should have been written.

Lemma 1.2.31. The objects W λ,!∗, λ ∈ Λ+ are irreducible, and each irreducible object
of (Whitq,x(G)

♡ is of this form. Moreover, the unique irreducible quotient of W λ,! is

W λ,!∗.

Proof. Step 1. Let us show thatW λ,!∗ is irreducible. We have a fibre sequenceW λ,!∗ →
W λ,∗ → K in Whitq,x(G)≤λ with K ∈ (Whitq,x(G)≤λ)

♡. Now for µ ∈ Λ, µ < λ we get

Hom(Wµ,!,W λ,!∗) →̃Hom(Wµ,!,K[−1])

In particular, Hom(Wµ,!,W λ,!∗) = 0. Besides, Hom(W λ,!,W λ,!∗) →̃ e. Let now L ⊂
W λ,!∗ be a subobject in Whitq,x(G)

♡ with W λ,!∗/L ̸= 0. There is µ ≤ λ and a nonzero

map Wµ,! → L. Since the composition Wµ,! → L ↪→ W λ,!∗ is not surjective, µ ̸= λ.
But we have seen that for µ < λ this Hom vanishes. So, W λ,!∗ is irreducible.

Step 2. LetW λ,! → L be a nonzero map in (Whitq,x(G)≤λ)
♡ with L irreducible. We

claim that this map coincides up to a multiple with the canonical map W λ,! → W λ,!∗.

Indeed, we have a nonzero surjection
◦
W → j∗λL, which shows that we may pick a nonzero

map L → W λ,∗ in (Whitq,x(G)≤λ)
♡, which is injective. Since Hom(W λ,!,W λ,∗) →̃ e,

this implies the claim.
Step 3. Let us show there are no other irreducibles. Let L be an irreducible object.

Pick λ ∈ Λ+ and a nonzero map τ : W λ,! → L, this gives a nonzero map W λ,! → ī!λL

in Whitq,x(G)≤λ. The functor ī!λ is left t-exact, so H0(̄i!λL) ̸= 0, and we get a nonzero

map W λ,! → H0(̄i!λL) in (Whitq,x(G)≤λ)
♡, whose restriction to Sλ is nonzero. Since

the composition

W λ,! → (̄iλ)!H
0(̄i!λL)

η→ L

is τ , the map η is nonzero. LetK be an irreducible quotient of H0(̄i!λL) in (Whitq,x(G)≤λ)
♡

such that η factors through a (nonzero) map (̄iλ)!K → L. So, W λ,! ν→ K is nonzero
over S̄λ. By Step 2, ν identifies with W λ,! → W λ,!∗. We obtained a surjection
(̄iλ)!W

λ,!∗ → L. By Step 1, W λ,!∗ is irreducible in Whitq,x(G)
♡. □

Lemma 1.2.32. Let λ ∈ Λ+. Then W λ,! admits a unique irreducible quotient isomor-
phic to W λ,!∗. Any other irreducible subquotient is of the form Wµ,!∗ for µ < λ.

Proof. The first claim was proved in the previous lemma.
Recall that W λ,!∗ is the extension by zero from S̄λ, because we defined the image of

W λ,! →W λ,∗ in (Whitq,x(G)≤λ)
♡ first and used the fact that (̄iλ)∗ is t-exact.

Assume by induction our claim true for µ < λ. We check the same for λ. The base
of the induction follows from 6.2.10.

Choose a filtration on W λ,! with simple quotients. Assume i is the first index such
that for the i-th subquotient W ν,!∗, the inequality ν ≤ λ doesn’t hold. We have a short
exact sequence 0 → K ′ → K → W ν,!∗ → 0, where K is a subobject of W λ,!. We have
a non-zero map W ν,! →W ν,!∗.

We claim this map can be lifted to a map W ν,! → K. Indeed, the obstruction to
the lift is in Ext1(W ν,!,K ′). By assumption, the simple subquotients of K ′ are of form
Wµ,!∗ for µ < λ. So it’s enough to show that for µ < λ, we have Ext1(W ν,!,Wµ,!∗) = 0.
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By (2), Wµ,!∗ is supported on S̄λ. By the assumption on ν,

(13) HomWhitq,x(G)(W
ν,!,M) = 0

for any M supported on S̄λ.
Thus, we got a non-zero map W ν,! → W λ,!. Now by (13), ν = λ. In the latter case,

the map W ν,! → W λ,! is the scalar multiple of the identity map, so the compostion
W ν,! → K →W λ,! is surjective, and we were dealing with the last quotient. □

1.2.33. For 6.3.5. SinceW λ,! are of finite length and their irreducible subquotients are
compact, W λ,! lies in the subcategory of Whitq,x(G) generated by all Wµ,!∗. Since W λ,!

generate Whitq,x(G), we see that the collection Wµ,!∗, µ ∈ Λ+ generate Whitq,x(G).

1.2.34. For 6.3.7. It is better to say that AvNk,χN

! (δtλ,Gr) is placed in usual degree

−2 dim(Nkt
λ). This follows from Section 1.2.25 of this file. Since Shv(Sλ)≤m ⊂

Shv(Sλ) is closed under colimits, Av
L(N)ω

ρ
x ,χN

! (δtλ,Gr) is placed in degrees ≤ m for
any m ∈ Z.

I think for an ind-scheme Y of ind-finite type, Shv(Y )≤0 is stable under countable
products, right? Then this shows that Shv(Sλ) is not left complete by (HA, 1.2.1.19).

1.2.35. For 6.3.8. There it is assumed C ∈ DGCatcont.
In the definition of a Artinian t-structure the finite length is understood in C♡ (not

in the abelian subcategory Cc ∩ C♡).
Note that if Cc is preserved by truncation functors and the t-structure is compatible

with filtered colimits then the t-structure is compactly generated. Indeed, τ≤0 : C →
C≤0 preserves filtered colimits. So, if c ∈ C≤0, pick a functor I → C, i 7→ ci with I small
filtered such that colimi ci →̃ c and ci ∈ Cc. Applying τ≤0, one gets c →̃ colimi τ

≤0ci.
Remark: in the definition of noetherian t-structure you write in parenthesis ”in

particular is abelian”. For any coherent t-structure, Cc inherits a t-structure, hence
Cc ∩ C♡ is abelian by (HA, 1.2.1.12). So, it is better to make this remark in the
definition of a noetherian t-structure.

1.2.36. Let us prove Cor. 6.3.10, we check that the t-structure on Whitq,x(G) is
Artinian.

Recall that Whitq,x(G) →̃ colimλ∈ΛWhitq,x(G)≤λ. Note also that

Whitq,x(G) =
∏

µ∈π1(G)

Whitq,x(G)µ,

where Whitq,x(G)µ is the Whittaker category on the connected component Grω
ρ,µ

G,x

of Grω
ρ

G,x. Over each connected component Grω
ρ,µ

G,x this colimit is filtered, so as in

Lemma 1.1.37 of this file, each compact object of Whitq,x(G)µ is the extension by zero
from some S̄ν for ν over µ. Moreover, any compact object of

∏
µ∈π1(G)Whitq,x(G)µ is

of the form (cµ)µ∈π1(G), where cµ ∈ Whitq,x(G)
c
µ and cµ = 0 for all but finite number

of µ by ([43], 9.2.28).
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Lemma 1.2.37 ([20], ch. II.1, Lm. 1.2.4). Let C0 be a (non-cocomplete) DG-category,
endowed with a t-structure. Then C := Ind(C0) carries a unique accessible t-structure,
which is compatible with filtered colimits, and for which the tautological inclusion C0 →
C is t-exact. Moreover, the subcategory C≤0 (resp., C≥0) is compactly generated under

filtered colimits by C≤00 (resp., C≥00 ). In addition, if C0 is bounded from above then C
is right-complete.

Proof. The proof of all but the last claim are given in ([43], 10.3.3). To see that C is
right complete, note first that C is presentable, as C0 admits finite colimits. Besides,
the t-structure on C is accessible. So, by ([43], 4.0.10), it suffices to show that for any
z ∈ C the natural map z → colimn∈Z τ

≤nz is an isomorphism in C. Pick a presentation
z →̃ colimi∈I zi with zi ∈ C0. Then

colim
n∈Z

τ≤nz →̃ colim
n∈Z

colim
i∈I

τ≤nzi →̃ colim
i∈I

colim
n∈Z

τ≤nzi →̃ colim
i∈I

zi →̃ z,

because τ≤n preserves filtered colimits. □

Proposition 1.2.38. Let C ∈ DGCatcont with a t-structure compatible with filtered
colimits. The condition that each irreducible object of C♡ is compact and they generate
C is equivalent to the t-structure on C be Artinian.

Proof. i) Assume each irreducible object of C♡ is compact and they generate C. Let
I be the set of irreducible objects in C♡, we write ci for the corresponding object. Let
D be the smallest stable subcategory of C containing ci for all i. So, each object of D
is a finite extension of objects of the form ci[ni].

Claim: 1) D ⊂ C is the full subcategory of those d ∈ C, which are cohomologically
bounded, and whose all cohomologies are of finite length in C♡.
2) The inclusion D ⊂ C is closed under direct summands.

Proof. 1) Let d ∈ D. We claim that each Hi(d) is of finite length, and its subquotients
are of the form cj for some j ∈ I. This is proved by induction on the length of a
filtration on d. Assume d1 → d → ci[n] is a fibre sequence, where we know this claim
already for d1 by induction hypothesis. Then H i(d1) → H i(d) → Hi(ci[n]) is exact,
and we are done.

The converse inclusion is obvious.
2) Let d ∈ C, d = z ⊕ z′ with z, z′ ∈ C then z, z′ are cohomologically bounded,
because H0 preserves finite products, which are also finite coproducts. Moreover,
Hi(z) ⊕ Hi(z′) →̃Hi(d) is of finite length, hence the same holds for Hi(z) and Hi(z′).
Thus, z, z′ ∈ D. □

By ([20], ch. I.1, 7.2.4(3)), Ind(D)→̃C. So, Cc →̃D by (HTT, 5.4.2.4). By
Lemma 1.2.37, the t-structure on Ind(D) C≤0 is compactly generated under filtered
colimits by D≤0. So, the t-structure is compactly generated. By the above, the t-
structure is coherent.

If d ∈ Cc ∩ C♡ then d is of finite length by the above claim, hence its subquotients
also lie in Cc ∩ C♡. That is, the t-structure is noetherian and artinian. We are done.

ii) Conversely, assume the t-structure is Artinian. The category Cc ∩C♡ is abelian, let
I denote the set of its irreducible objects. For i ∈ I we denote by di ∈ Cc ∩ C♡ the



41

corresponding object. Then Cc is the smallest stable subcategory of C containing di
for all i.

Since the t-structure is coherent, Cc is equipped with the induced t-structure. Since
the t-structure on C is compatible with filtered colimits, the t-structure on C is the
one defined on Ind(Cc) →̃C in Lemma 1.2.37. In particular, C≤0 = Ind(Cc ∩ C≤0).

Let c ∈ C♡. Pick a diagram J → C≤0, j 7→ cj such that J is small filtered,

cj ∈ Cc ∩ C≤0 and c →̃ colimj cj . Then c →̃ τ≥0c →̃ colimj τ
≥0cj in C

♡, because τ≥0 :

C≤0 → C♡ preserves colimits. This shows that Ind(Cc∩C♡) →̃C♡. (The notation Ind
is that of [36]).

Let now c ∈ C♡ be irreducible. Pick a presentation c →̃ colimj∈J cj with cj ∈
C♡ ∩ Cc. By the above, there is i ∈ I such that HomC♡(di, c) ̸= 0. Then a nonzero
map di → c is surjective. Since Cc∩C♡ ⊂ C♡ is stable under subquotients, c ∈ Cc. □

1.2.39. Example, take C = Shv(A1), the ℓ-adic sheaves. Assume k algebraically closed
for simplicity in this example. Equip C with the usual t-structure. The collection
ex = (ix)!e (for x ∈ A1 closed points) does not generate C. Indeed, write eY for
the constant sheaf on Y = A1. For x ∈ Y we have i!xeY →̃ e[−2]. Consider the map
⊕x(ix)!(ix)!e → e in C. Applying i!x for any x, it becomes an isomorphism. However,
it is not an isomorphism. So, the collection ex, (x ∈ A1 closed) does not generate C.

Dennis claims in the case of ℓ-adic sheaves to get a system of generators, it suffices to
add j∗L for any irreducible representation L of the Galois group of η ∈ A1, the generic
point of A1 (and in the case of D-modules, to add j∗D). Here j : η → A1 the inclusion.

1.2.40. Let G = colimi∈I Gi in PreStk, where I is a filtered small category, each Gi
is a placid scheme, a group scheme, and for i → j in I the map iij : Gi → Gj is a
homomorphism of group schemes and a placid closed embedding. So, G is a placid ind-
scheme. Recall that Shv(G) →̃ colimi∈I Shv(Gi). Let M ∈ G −modr, C ∈ G −mod.
Then one has

colimi∈IM ⊗Shv(Gi) C →̃M ⊗Shv(G) C

Indeed, I is sifted, so colimi∈I Shv(Gi)
⊗n →̃Shv(G)⊗n. So,

M ⊗Shv(G) C →̃ colim
[n]∈∆op

M ⊗ Shv(G)⊗nC →̃

colim
i∈I

colim
[n]∈∆op

M ⊗ Shv(Gi)⊗nC →̃ colim
i∈I

M ⊗Shv(Gi) C

In particular, CG →̃ colimi∈I CGi in DGCatcont, the transition maps CGi → CGj for
i→ j in I come from (iij)∗ : Shv(Gi)→ Shv(Gj).

1.2.41. Let f : H → G be a map in Grp(PreStk), where H,G are placid ind-schemes.
Recall that f∗ : (Shv(H), ∗) → (Shv(G), ∗) is monoidal. Let D ∈ G − modr, C ∈
G −mod then we have a natural functor D ⊗Shv(H) C → D ⊗Shv(G) C. Indeed, this
holds for any morphism A→ B in Alg(DGCatcont) and D ∈ B −modr, C ∈ B −mod.

In particular, we have a natural functor CH → CG. For H = Spec k and f the unit
map we denote the corresponding functor by AvG,∗ : C → CG. So, the composition

C
AvH,∗→ CH → CG is AvG,∗.
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1.2.42. Let p : G → Spec k be a placid scheme, and a group scheme. Let C ∈
G − mod. Viewing p∗ : Vect ⇆ Shv(G) : p∗ as an adjoint pair in G − modr and
applying • ⊗Shv(G) C, we get an adjoint pair oblvG : CG ⇆ C : AvG,∗ in DGCatcont.

If in addition G is pro-unipotent then id→ p∗p
∗ is an isomorphism, so oblvG is fully

faithful and AvG,∗ oblvG →̃ id.
Let now G be an placid ind-scheme, an object of Grp(PreStk) written as colimi∈I Gi,

where I is small filtered, Gi is a pro-unipotent group scheme, for i→ j in I the transition
map fij : Gi → Gj is a placid closed immersion and a homomorphism of group schemes.

For any C ∈ G −mod and i → j in I the composition C
AvGi,∗→ CGi → CGj is AvGj ,∗.

Moreover, AvGi,∗,AvGj ,∗ have fully faithful left adjoints. By ([43], 9.2.35) the functor
oblvGj : CGj → C factors through oblvGi : CGi ↪→ C. Denote the functor so obtained
by oblvGi,Gj : CGj → CGi .

We obtained an adjoint pair oblvGi,Gj : CGj ⇆ CGi : AvGi,Gj ,∗, where oblvGi,Gj is
fully faithful!

1.2.43. Let G be a unipotent group scheme C ∈ DGCatcont a nonunital G-module

category. Let D = Fib(C
AvG∗→ CG), this is a full subcategory in C. Consider the functor

ξ : C → D sending c to cofib(AvG∗ (c)→ c). We use here the adjoint pair oblvG : CG ⇄
C : AvG∗ , where AvG∗ (c) = eG ∗ c. It gives the above morphism AvG∗ (c) → c. We want
to check that the essential image of ξ generates D.

Clearly, ξ is left adjoint to the inclusion j : D → C. Since j is conservative, the
essential image of ξ generates D by ([20], ch. I.1, 5.4.3).

Now consider the natural functor AvG,∗ : C → CG. Clearly, D is contained in its
kernel.

For any smooth group scheme G of finite type, AvG∗ : C → CG factors through
CG → CG, and the latter is an equivalence ([24], B.1.2). This implies that the kernel
of AvG,∗ : C → CG is precisely D.

1.2.44. Let G ∈ Grp(PreStk) be a placid scheme, C ∈ G−mod. Assume G prounipo-
tent, write G = limi∈Iop Gi, where Gi is a unipotent group scheme, I is small filtered,
and for i→ j in I the map αij : Gj → Gi is a smooth surjective affine homomorphism,
whose kernelKij is a unipotent group scheme. Recall that Shv(G) →̃ colimi∈I Shv(Gi),
where for i → j the transition map Shv(Gi) → Shv(Gj) is α∗ij . The natural functor

Shv(Gi)→ Shv(G) coming from this inductive system is nonunital monoidal. Indeed,
the square is cartesian

Gj ×Kij Gj → Gj
↓ ↓

Gi ×Gi
m→ Gi,

where we denoted by Gj ×Kij Gj the quotient of Gj ×Gj by the action of Kij , where

z ∈ Kij acts on (g1, g2) as (g1z, z
−1g2). This implies that for Fi ∈ Shv(Gi) one

has α∗ijF1 ∗ α∗ijF2 →̃α∗ij(F1 ∗ F2). Let αi : G → Gi be the projection. Now given
M ∈ G−modr, the morphism

id⊗α∗i ⊗ id :M ⊗ Shv(Gi)⊗n ⊗ C →M ⊗ Shv(G)⊗n ⊗ C
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becomes a morphism of functors in Fun(∆op
s ,DGCatcont). Here ∆s ⊂∆ is the subcat-

egory with the same objects and only injective maps. By ([35], 6.5.3.7), ∆op
s →∆op is

cofinal, so M ⊗Shv(G) C →̃ colim[n]∈∆op
s
M ⊗ Shv(G)⊗n ⊗C. Restricting the action, we

may view M as a nonunital right Shv(Gi)-module, and C as a nonunital let Shv(Gi)-
module, and we get a morphism

M ⊗Shv(Gi) C →M ⊗Shv(G) C

for each i ∈ I. Moreover,

M ⊗Shv(G) C →̃ colimi∈IM ⊗Shv(Gi) C,

because I is sifted.
In particular, we get CG →̃ colimi∈I CGi . This implies formula (7.2) in the paper.
Related question: is the category G −mod equivalent to the category of nonunital

modules over Shv(G)?

1.2.45. For 7.1.1. The description of Whitq,x(G)co comes from Section 1.10.8.
The claim for any continuous idempotent comonad acting on some D ∈ DGCatcont

that he has in mind in 7.1.3 seems to be precisely Lemma 1.8.17 from this file.
For 7.1.5. For k ≤ k′, Nk′/Nk is a smooth scheme of finite type, its dualizing sheaf

is e[2 dim(Nk′/Nk)].
Definition of (7.3) of the paper: For k ≤ k′ we have by definitions for the closed im-

mersion i : Nk → Nk′ the map i∗i
!eNk′ → eNk′ . Since i

!eNk′ →̃ eNk
[−2 dim(Nk′/Nk)] by

([46], 0.0.21), this gives a map i∗eNk
→ eNk′ [2 dim(Nk′/Nk)], hence for F ∈ ShvGG(Grω

ρ

G,x)
a map

i∗eNk
∗ F → eNk′ [2 dim(Nk′/Nk)] ∗ F

We have AvNk,χk
∗ (F ) →̃χk ∗ F for F ∈ ShvGG(Grω

ρ

G,x). We have denoted by χk the

∗-restriction of χN to Nk. One similarly has i!χk′ →̃χk[−2 dim(Nk′/Nk)]. This gives a
map

AvNk,χk
∗ (F ) →̃ (i∗χk) ∗ F → χk′ [2 dim(Nk′/Nk)] ∗ F →̃ Av

Nk′ ,χk′
∗ (F )[2 dim(Nk′/Nk)]

Let us assume N0 = L+(N)ω
ρ

x . The above map yields a morphism

h′ : χk[2 dim(Nk/N0)]→ χk′ [2 dim(Nk′/N0)]

in Shv(L(N)ω
ρ

x ), so (7.4) of the paper is the functor of action by

(14) E′ := colim
k≥0

χk[2 dim(Nk/N0)] ∈ Shv(L(N)ω
ρ

x )

As in Section 1.2.9 of this file, we may also consider E := lim
k∈(Z+)op

χk in Shv(L(N)ω
ρ

x ).

By ([43], 4.0.12) E fits into a fibre sequence

E →
∏
k≥0

χk
f→

∏
k≥0

χk,
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where f is given by the collection of maps fm :
∏
k≥0 χk → χm. Here fm is the

composition ∏
k≥0

χk → χm+1 ⊕ χm
h−id→ χm

and h is the natural map χm+1 → i∗i
∗χm+1 →̃χm for i : Nm ↪→ Nm+1.

Question Is E isomorphic to E′? I think no!!
For C = ShvGG(L(N)ω

ρ

x ), Cop is stable, and we may calculate sequential limits in
Cop by the above recipe. So, E′ fits into a fibre sequence

⊕
k≥0

χk[2 dim(Nk/N0)]
g→ ⊕
k≥0

χk[2 dim(Nk/N0)]→ E′,

where g is given by a collection of maps

gm : χm[2 dim(Nm/N0)]→ ⊕
k≥0

χk[2 dim(Nk/N0)]

Here gm is the composition

χm[2 dim(Nm/N0)]
− id+h′→ χm[2 dim(Nm/N0)]⊕χm+1[2 dim(Nm+1/N0)]→ ⊕

k≥0
χk[2 dim(Nk/N0)]

By ([43], 9.2.6),

E →̃ colim
k∈Z+

(ik)∗i
!
kE

for natural maps ik : Nk → L(N)ω
ρ

x . Since i!k admits a left adjoint,

i!mE →̃ lim
k≥m

i!mχk

For k ≥ m one has i!mχk →̃χm[−2 dim(Nk/Nm)].
A better idea: one has

i!mE
′ →̃ colim

k≥m
i!mχk[2 dim(Nk/N0)] →̃ colim

k≥m
χm[2 dim(Nm/N0)] →̃χm[2 dim(Nm/N0)],

because the corresponding inductive system is constant. So, E′ is given by the inverse
system with terms χm[2 dim(Nm/N0)] in limi∈(Z+)op Shv(Zi), where the transition maps
are given for k ≥ m by the isomorphisms

i!mχk[2 dim(Nk/N0)] →̃χm[2 dim(Nm/N0)]

Proposition 1.2.46.

colim
k≥0

χ−1k [2 dim(Nk/N0)] ∈ Shv(L(N)ω
ρ

x )

corresponds to χN ∈ Shv(L(N)ω
ρ

x )∨ under the self-duality on Shv(L(N)ω
ρ

x ). The latter
self-duality uses a particular element 0 ∈ Z+ to apply the general framework of ([46],
0.0.23).

Proof. Note that dim(Nk/N0) = codimNk
(N0) in the notation of ([46], 0.0.23). So,

it suffices to show that for each k > 0, the image of χ−1k under the self-duality

Shv(Nk)→̃Shv(Nk)
∨ identifies with the composition Shv(Nk)

i∗
↪→ Shv(L(N)ω

ρ

x )
χN→

Vect given by K 7→ Hom(χk,K). This follows from ([46], 0.0.19). Namely, for k > 0
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our nondegenerate character f : Nk → A1 can be seen as a projection on a zero term
of a placid presentation Nk →̃ limNk,r with Nk,0 = A1. Then for K ∈ Shv(Nk),

RΓ(A1, (f∗K)⊗! L−1ψ ) →̃HomShv(A1)(Lψ, f∗K)

□

This proposition explains why E′ is good for the definition of the pseudo-identity
functor (7.5).

By ([47], 1.2.5), for F ∈ Shv(Nk) one has χk ∗ F →̃χk ⊗ RΓ(Nk, F ⊗ χ−1k ). For any

m ≥ 0 one has χm ∗ E′ →̃E′ in Shv(L(N)ω
ρ

x ), because for k ≥ m, χm ∗ χk →̃χk, and
the convolution preserves colimits. For this reason the functor Ps-Id takes values in
Whitq,x(Grω

ρ

G,x).

For anym ≥ 0, F ∈ Shv(Nm) applying E
′∗· to χm∗F → F , one gets an isomorphism.

Indeed, applying E′ ∗ · to χm → δ1 one gets an isomorphism. This follows from the fact
that applying RΓ(Nm, χ

−1
m ⊗ ·) to χm → δ1, one gets an isomorphism. For this reason

Ps-Id factors through the coinvariants.

1.2.47. For 7.1.6. Proof of the formula (7.6): let µ ∈ Λ+, µ ̸= λ. Since Wµ,! is
compact, we have

HomWhitq,x(G)(W
µ,!,Ps-Id(δtλ,Gr)) →̃

colimkHomShv
GG

(Grω
ρ

G,x)
Nk,χk ((iµ)!

◦
Wµ,AvNk,χk

∗ (δtλ,Gr)[2 dim(Nk/N0)]) →̃

colimkHomShv
GG

(Grω
ρ

G,x)
((iµ)!

◦
Wµ, δtλ,Gr[2 dim(Nk/N0)]) = 0 ∈ Vect

because i!µδtλ,Gr = 0. Recall that here iµ : Sµ ↪→ Grω
ρ

G,x.

Note that the ∗-direct image of χk under Nk → Grω
ρ

G,x, x 7→ xtλ is the ∗-extension of

a local system χk,λ under i : Nkt
λ ↪→ Grω

ρ

G,x. For the latter embedding i we get

i! Ps-Id(δtλ,Gr) →̃ colim
m≥k

i!χm,λ[2 dim(Nm/N0)] →̃χk,λ[2 dim(Nk/N0)]

We used that StabL(N)ω
ρ

x
(tλ) ⊂ L+(N)ω

ρ

x , so if m ≥ k then codimNmtλ(Nkt
λ) =

codimNm(Nk). This gives i!χm,λ →̃χk,λ[−2 dim(Nm/Nk)] in the above displayed for-
mula. Now

HomWhitq,x(G)(W
λ,!,Ps-Id(δtλ,Gr)) →̃ lim

k
Hom(AvNk,χk

! (δtλ,Gr)[−⟨λ, 2ρ̌⟩],Ps-Id(δtλ,Gr))

lim
k

HomShv(Nktλ)
(AvNk,χk

! (δtλ,Gr)[−⟨λ, 2ρ̌⟩], χk,λ[2 dim(Nk/N0)]) →̃

lim
k

HomShv(Nktλ)
(χk,λ[⟨λ, 2ρ̌⟩], χk,λ) →̃ e[−⟨λ, 2ρ̌⟩]

We have used the fact that AvNk,χk
! (δtλ,Gr) →̃χk,λ[2 dim(Nkt

λ)] overNkt
λ obtained as in

Section 1.2.25 of this file. Further, dim(N0t
λ) = ⟨λ, 2ρ̌⟩ and dim(Nkt

λ) = dim(Nk/N0)+
⟨λ, 2ρ̌⟩. This finishes the proof of the formula (7.6) of the paper.
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1.2.48. For 7.2.2. For K ∈ Shv(GG)−1(Grω
ρ

G,x), F ∈ Shv(GG)(Grω
ρ

G,x) and k ≥ 0 one has

RΓ(Grω
ρ

G,x,K ⊗! (χk ∗ F )) →̃ RΓ(Grω
ρ

G,x, (χ
−1
k ∗K)⊗! F )

canonically. Indeed, consider the map f : Gr×Nk → Gr×Nk×Gr, (g, n) 7→ (g, n, n−1g).
The LHS identifies with RΓ f !(K⊠χk⊠F ). Consider now the isomorphism τ : Gr×N →
Gr×N sending (x, n) to (nx, n). Then RΓ τ !f !(K ⊠ χk ⊠ F ) identifies with the RHS.
This shows that the dual of the functor

AvNk,χk
∗ : Shv(GG)(Grω

ρ

G,x)→ Shv(GG)(Grω
ρ

G,x)

is the functor Av
Nk,χ

−1
k

∗ : Shv(GG)−1(Grω
ρ

G,x)→ Shv(GG)−1(Grω
ρ

G,x).

Consider the equivalence Shv(GG)−1(Grω
ρ

G,x) → Shv(GG)(Grω
ρ

G,x)
∨ sending K to the

functor F 7→ fK(F ) = RΓ(Grω
ρ

G,x,K ⊗! F ). If K ∈ Shv(GG)−1(Grω
ρ

G,x)
Nk,χ

−1
k then fK

sends each map AvNk,χk
∗ (F ) → F to an equivalence. So, if K ∈ Whitq−1,x(G) then

fK ∈ (Whitq,x(G)co)
∨. This defines a functor Whitq−1,x(G)→ (Whitq,x(G)co)

∨, which
is an equivalence. Indeed, it is fully faithful by construction. It is also essentially
surjective.

Indeed, if C0 ⊂ C is a map in DGCatcont, which is a full embedding, let D =
cofib(C0 → C). Then Fun(D,Vect) →̃Fun(C,Vect) ×Fun(C0,Vect) 0, so Fun(D,Vect) →
Fun(C,Vect) is fully faithful.

Let nowK ∈ Shv(GG)−1(Grω
ρ

G,x) such that fK lies in the full subcategory (Whitq,x(G)co)
∨ ⊂

Shv(GG)(Grω
ρ

G,x)
∨. Then K ∈ Whitq−1,x(G). Indeed, it suffices to show that for any k

the map Av
Nk,χ

−1
k

∗ (K) → K is an isomorphism. This map is transformed by f to the

morphism f
Av

Nk,χ−1
k

∗ (K)
(F ) → fK(F ), that is, to the morphism fK(AvNk,χk

∗ (F ))
fK(ξ)→

fK(F ) for the natural map ξ : AvNk,χk
∗ (F ) → F . However, ξ is an isomorphism in

Whitq,x(G)co, hence fK(ξ) is also an isomorphism. Since F was arbitrary, we are done.

1.2.49. For 7.2.3. Denote also, by abuse of notation, by Ps-Id : ShvGG(Grω
ρ

G,x) →
ShvGG(Grω

ρ

G,x) the functor given by (7.4) in the paper. What is missing is the claim that

the dual of this functor is the corresponding pseudo-identity functor Shv(GG)−1(Grω
ρ

G,x)→

Shv(GG)−1(Grω
ρ

G,x) for q replaced by q−1. It is given as colimk Av
Nn,χ

−1
k

∗ [2 dim(Nk/N0)].

This is also related with Proposition 1.2.46 above. This implies that (7.9) is an invo-
lution. This also removes a potential abmiguity in the definition of (7.9), as one could
compose from one side or the pother side!

For the sake of completeness, the diagram commutes

Whitq−1,x(G)
∨ →̃ Whitq,x(G)co

↑ (Ps-Id)∨ ↓ Ps-Id

(Whitq−1,x(G)co)
∨ →̃ Whitq,x(G)

here the horizontal arrows are (7.7).
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Definition of Verdier duality DV erdier: the image of K ∈ (Whitq,x(G)
c)op is D(K) ∈

Whitq−1,c(G)
c iff for any L ∈Whitq,x(G),

Hom(K,L) →̃ RΓ(Gr, L⊗! Ps-Id−1(D(K)))

It is equivalently characterized by the property. that for any S ∈Whitq,x(G)co,

Hom(K,Ps-Id(S)) →̃ RΓ(Gr, (DK)⊗! S)

1.2.50. For the proof of 7.2.5. It is understood that the map (Whitq,x(G)
c)op →

Whitq,x(G)
∨ sends K to the functor F 7→ HomWhitq,x(G)(K,F ). We must check that

the image of W λ,∗
co under the canonical equivalence Whitq,x(G)co → Whitq−1,x(G)

∨ is

the functor F 7→ HomWhitq,x(G)(W
λ,!, F ). One has

HomShv
GG

(Grω
ρ

G,x)
(δtλ,Gr, F ) →̃ i!tλF,

where itλ : Spec k → Grω
ρ

G,x is the point tλ.

1.2.51. For 7.3.5. The following seems relevant here. Let Y ∈ PreStklft, i : Y
′ ↪→ Y a

closed immersion (so, schematic), and j : U ↪→ Y an open immersion, the complement
to Y ′ (so, j is schematic). Let N be a unipotent group scheme acting on Y and
preserving U, Y ′. Let χ be a character local system on N . Then we have the full
embeddings Shv(U)N,χ ⊂ Shv(U), Shv(Y )N,χ ⊂ Shv(Y ), Shv(Y ′)N,χ ⊂ Shv(Y ′) in
DGCatcont. The functors j∗, j

!, i!, i! restrict to functors

j! : Shv(Y )N,χ ⇆ Shv(U)N,χ : j∗, i! : Shv(Y
′)N,χ ⇆ Shv(Y )N,χ : i!

This is because the functors i!, i!, j
!, j∗ commute with the actions of Shv(N). Moreover,

for K ∈ Shv(Y ) we have K ∈ Shv(Y )N,χ iff j!K ∈ Shv(U)N,χ and i!K ∈ Shv(Y ′)N,χ.
Indeed, K fits into a fibre sequence i!i

!K → K → j∗j
!K. Suppose i!K ∈ Shv(Y ′)N,χ,

j!K ∈ Shv(U)N,χ. Since Shv(Y )N,χ ⊂ Shv(Y ) is closed under colimits,K ∈ Shv(Y )N,χ.
This explains ([24], Lm. 4.6.2).

1.2.52. Note that (Bun
ωρ

N )∞x = colimλ∈Λ(Bun
ωρ

N )≤λx, so that

ShvGG((Bun
ωρ

N )∞x) →̃ lim
λ∈Λop

ShvGG((Bun
ωρ

N )≤λx),

the transition functors are !-pullbacks. Since limits commute with invariants by defini-
tion,

(15) Whitq,glob(G) →̃ lim
λ∈Λop

Whitq,glob(G)≤λ

In the latter limit we may pass to left adjoints and get

Whitq,glob(G) →̃ colim
λ∈Λ

Whitq,glob(G)≤λ,

where the transition functors are !-pushforwards (the colimit taken in DGCatcont, this
is not the colimit it 1− Cat).

For a finite collection of points y = {y1, . . . , ym} on X − x, let (Bun
ωρ

N )∞x, good at y ⊂
(Bun

ωρ

N )∞x be the open substack given by requiring that the maps

κλ̌ : ω⟨ρ,λ̌⟩ → Vλ̌FG
(∞x)
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have no zeros at y. One first defines Whitq((Bun
ωρ

N )∞x, good at y) as in ([24], 4.5.1).

The full embedding Whitq((Bun
ωρ

N )∞x, good at y) ↪→ ShvGG((Bun
ωρ

N )∞x, good at y) admits a

continuous right adjoint (this is proved as in Section 1.2.11 of this file), and similarly
for

Whit((Bun
ωρ

N )≤λx, good at y) ↪→ ShvGG((Bun
ωρ

N )≤λx, good at y)

This right adjoint commutes with the !-restriction under

(Bun
ωρ

N )≤λx, good at y ↪→ (Bun
ωρ

N )≤λ′x, good at y

for λ ≤ λ′.
In ([24], 4.6.5) Dennis uses the following general remark: Let I be the index small

category, we are given I × [1] → DGCatcont sending i to oblvi : Ci ⊂ Ei, a full
subcategory. Assume oblvi is included into an adjoint pair oblvi : Ci ⇆ Ei : Avi∗
in DGCatcont. Let oblv : C = limiCi → E = limiEi be obtained by passing to
the limit in DGCatcont. Then C is a full subcategory of E by ([43], 2.2.17), because
DGCatcont → 1− Cat preserves limits. Assume for i→ j in I the diagram commutes

Cj
Avj∗← Ej

↑ ↑

Ci
Avi∗← Ei

Then the right adjoint to oblv is continuous by ([20], ch. I.1, Lm. 2.6.4) and ([43], Lm.
2.2.68), and for any i the diagram commutes

C
Av∗← E

↓ ↓
Ci

Av∗← Ei

If y = y′∪y′′ then we have the open immersion (Bun
ωρ

N )∞x, good at y ⊂ (Bun
ωρ

N )∞x, good at y′ .

As in ([24], 4.6.7), the restriction functor along the latter map sendsWhit((Bun
ωρ

N )∞x, good at y′)

to Whit((Bun
ωρ

N )∞x, good at y), and the diagram commutes

ShvGG((Bun
ωρ

N )∞x, good at y′) → ShvGG((Bun
ωρ

N )∞x, good at y)

↓ ↓
Whit((Bun

ωρ

N )∞x, good at y′) → Whit((Bun
ωρ

N )∞x, good at y),

where the vertical arrows are the corresponding right adjoints to the inclusions.

By definition, Whitq,glob(G) ⊂ ShvGG((Bun
ωρ

N )∞x) is the full subcategory of those

objects whose restriction to (Bun
ωρ

N )∞x, good at y lies in

Whit((Bun
ωρ

N )∞x, good at y) ⊂ ShvGG((Bun
ωρ

N )∞x, good at y)

for any finite non-empty collection of points y ⊂ X − x.
From (15) we see that given K ∈ ShvGG((Bun

ωρ

N )∞x), it lies in Whitq,glob(G) iff for

any µ ∈ Λ, the !-restriction to (Bun
ωρ

N )≤µx lies in Whitq,glob(G)≤µ.
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For K ∈ ShvGG((Bun
ωρ

N )≤µx) the condition to lies in Whitq,glob(G)≤µ is equivalent to
the property that its !-restriction to any locally closed substack given by fixing ν ≤ µ
such that in a neighbourhood of x the map

κλ̌ : ω⟨ρ,λ̌⟩ → Vλ̌FG
(⟨ν, λ̌⟩x)

has no zero, lies in the corresponding Whittaker category. (The latter stratum is bigger

than (Bun
ωρ

N )=νx).

1.2.53. For 7.3.5 more: the fact that the inclusionWhitq,glob(G) ↪→ ShvGG((Bun
ωρ

N )∞x)

is compatible with the perverse t-structure on (Bun
ωρ

N )∞x comes as follows. For a finite
collection of points y and closed group subschemes L+(N)y = N0 ⊂ Nm ⊂ L(N)y, the
stack

N0\Nm ×N0 (Bun
ωρ

N )
N−level∞y
∞x, good at y

has a structure of groupoid acting on (Bun
ωρ

N )
N−level∞y
∞x, good at y. The corresponding action

map is smooth, and for this reason the truncation functors preserve the equivariance
condition.

In Section 7.3.5 the perverse t-structure on ShvGG((Bun
ωρ

N )∞x) is mentioned without
any definition. In the convention section a definition of the perverse t-structure for an
ind-algebraic stack should be given. My understanding is as follows: if Y = colimi∈I Yi
with Yi an algebraic stack locally of finite type, I filtered then Shv(Y )≤0 should be
the smallest full subcategory of Shv(Y ) containing Shv(Yi)

≤0 for any i, closed under
extensions and small colimits. Then by (HA, 1.4.4.11), Shv(Y )≤0 is then presentable
and defines an accessible t-structure on Shv(Y ). For K ∈ Shv(Y ) we have K ∈
Shv(Y )≥0 iff for any i, the !-restriction of K to Yi lies in Shv(Yi)

≥0. As in the case of
ind-schemes of ind-finite type, this t-structure is compatible with filtered colimits.

1.2.54. For 7.3.5. We may apply ([43], 2.7.6) to describe ShvGG((Bun
ωρ

N )∞x). Namely,
let I be the set of finite subsets in X − x ordered by reversed inclusion. We have

a functor I → PreStk sending y to (Bun
ωρ

N )∞x, good at y. As in ([43], 2.7.6), we get a

functor F : ∆op → PreStk sending [n] to

⊔
y
(Bun

ωρ

N )∞x, good at y,

the coproduct in PreStk taken over all maps of sets y : [n] → X − x, that is, y =
{y0, . . . , yn} ⊂ X − x. It is understood that if α : [m] → [n] is a map in ∆ then for
y = {y0, . . . , yn} ⊂ X − x one get y′ = {yα(0), . . . , yα(m)} ⊂ y, and

(Bun
ωρ

N )∞x, good at y ⊂ (Bun
ωρ

N )∞x, good at y′

Then colim
y∈I

(Bun
ωρ

N )∞x, good at y identifies with colim
[n]∈∆op

F by ([43], 2.7.6). Its sheafification

in etale topology is (Bun
ωρ

N )∞x. This is similar to ([43], 10.2.2). So, applying ShvGG ,
we get

ShvGG((Bun
ωρ

N )∞x) →̃ lim
y∈Iop

ShvGG((Bun
ωρ

N )∞x, good at y)
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and passing to the full subcategories Whit, we get

Whitq,glob(G) →̃ lim
y∈Iop

Whit((Bun
ωρ

N )∞x, good at y)

Now for each y, we have the continuous right adjoint

Av∗,y : ShvGG((Bun
ωρ

N )∞x, good at y)→Whit((Bun
ωρ

N )∞x, good at y)

to the inclusion. Passing to the limit over y, we get the continuous right adjoint

Av
Nglob,χN
∗ : ShvGG((Bun

ωρ

N )∞x)→Whitq,glob(G) to the inclusion.

1.2.55. For 7.3.10. It is not clear if ShvGG(((Bun
ωρ

N )≤µx) is compactly generated for
D-modules. However, it is compactly generated in the constructible context. Namely,
for any Y ∈ PreStklft, Shv(Y ) is compactly generated in the constructible context by
([2], C.1.1).

Note that Whitq,glob(G) is compactly generated by objects of the form W λ,!
glob for

λ ∈ Λ+. We check that

(16) Whitq,glob(G)
c ⊂ ShvGG((Bun

ωρ

N )∞x)
loc.c

Consider the smallest stable subcategory C ⊂Whitq,glob(G) containing W
λ,!
glob for all

λ ∈ Λ+. Then Ind(C)→Whitq,glob(G) is an equivalence, so any object of Whitq,glob(G)
c

is a direct summand in Whitq,glob(G) of someK ∈ C. So, over the connected component

of (Bun
ωρ

N )∞x given by µ̄ ∈ π1(G), K ∈Whitq,glob(G)≤µ for some µ ∈ Λ+ over µ̄, and its

!-restriction to each (Bun
ωρ

N )=λx lies in Whitq,glob(G)
c
=λ. We see that C ⊂Whitq,glob(G)

is stable under direct summands, so C = Whitq,glob(G)
c.

Let us check that λ ∈ Λ+, W λ,!
glob ∈ ShvGG((Bun

ωρ

N )∞x)
loc.c. It is reduced to showing

that its restriction to (Bun
ωρ

N )=λ lies in (ShvGG((Bun
ωρ

N )=λ)
c. However, (Bun

ωρ

N )=λ is
isomorphic to Am/Ar for some m, r ≥ 0, where we view Ar as a group scheme. Since
it is smooth, for the projection p : Am/Ar → Spec k the functor p∗ is continuous?

We claim that for Y ∈ PreStklft equipped with a trivial action of a unipotent group

scheme U for the projection q : Y → Y/U the functor q! : Shv(Y/U) → Shv(Y ) is an
equivalence. Indeed, it is fully faithful as invariants under Shv(U) with U unipotent

group scheme. The composition Y
q→ Y/U

pr→ Y is id, where pr is the projection, so
q! pr! →̃ id. Thus, q! is essentially surjective.

Since for p̄ : Am → Spec k the functor p∗ : Shv(Am) → Vect is continuous, p∗ is
continuous. Thus, we proved the inclusion (16).

Now the equivalence (7.15) should be the claim that under the Verdier duality equiv-
alence

(ShvGG((Bun
ωρ

N )∞x)
loc.c)op →̃Shv(GG)−1((Bun

ωρ

N )∞x)
loc.c

the category (Whitq,glob(G)
c)op is identified with Whitq−1,glob(G)

c.
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1.2.56. For 7.4.1. The proof of ([24], 5.4.1(a)) uses a remark: for a finite subset y ⊂ X,
X − y is affine. (If X is smooth proper then X − x is affine. Indeed, the line bundle

OX(nx) for n large enough defines an inclusion X ↪→ PN for some N , and the section
1 ∈ OX(nx) vanishes only at x, its complement is an affine open embedding).

As in ([24], 5.2.4), we have the following. For µ ∈ Λ the map πµ : Sµ → (Bun
ωρ

N )=µx
is a torsor under NX−x. The action maps

(17) Ly(N)/L+
y (N)× Sµ → (Bun

ωρ

N )=µx

and Ly(N)×Sµ → (Bun
ωρ

N )
N−level∞y
=µx are torsors under NX−{x,y}. Here the condition =

µx includes the property ”good elsewhere” by the definitions from [32]. It is understood
here that NX−{x,y} acts diagonally on Ly(N)/L+

y (N)× Sµ.
For example, BunN →̃NX−{x,y}\(GrN,y ×GrN,y) with respect to the diagonal action.

This corresponds to a trivialization of a given N -torsor over X − {x, y}.
The group NX−{x,y} acts here on Ly(N)×Sµ diagonally, where on the factor Ly(N)

it acts by left multiplication. Recall that (Bun
ωρ

N )
N−level∞y
=µx is equipped with a left

action of Ly(N) by regluing. We let v ∈ Ly(N) act on (z, gG(Ox)) ∈ Ly(N) × Sµ as
(zv−1, gG(Ox)). Then the map

πlevely,µ : Ly(N)× Sµ → (Bun
ωρ

N )
N−level∞y
=µx

is Ly(N)-equivariant. Taking the quotient under L+
y (N) (acting by right translations

on the Ly(N)-factor and trivially on Sµ) in the map πlevely,µ one gets the map (17).
This is why in ([24], (a’) and (b)) the character −χy appears!! (Because when we

talk about action by right translations, we still mean a left action!)

Consider the perverse irreducible sheaf W λ
glob on (Bun

ωρ

N )=µx, which is a generator

of Whitq,glob(G)=µ. That is, we have a map evµ : (Bun
ωρ

N )=µx → A1 and W λ
glob =

ev∗µLψ[dim], where

dim = dim(Bun
ωρ

N )=µx = (g − 1)(d− ⟨2ρ̌, 2ρ⟩) + ⟨2ρ̌, µ⟩

with d = dim n. For the map πµ : Sµ → (Bun
ωρ

N )=µx we verify that π!µW
λ
glob[dg] →̃

◦
Wµ,

where dg = dimBunω
ρ

N is that of thm. 7.4.2.
In Thm. 7.4.2 the shift is correct. Here is a detailed explanation. Let µ ∈ Λ+.

Consider the composition Spec k
i0→ Sµ

πµ→ (Bun
ωρ

N )=µx
evµ→ A1. Recall that

dim(Bun
ωρ

N )=µx = dg + ⟨2ρ̌, µ⟩
with d = dim n and dg = (g − 1)(d− ⟨2ρ̌, 2ρ⟩). Let

Wµ
glob = ev∗µLψ[dg + ⟨2ρ̌, µ⟩] = ev !µLψ−1 [2− dg − ⟨2ρ̌, µ⟩]

so Wµ
glob is perverse.

We know from the proof of 6.2.9 in the paper that the composition Whitq,x(G)=µ →

ShvGG(Sµ)
i!0→ Vect is an equivalence and has a left adjoint sending e to

Av
L(N)ω

ρ
x ,χN

! (δtλ,Gr)
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By definition,
◦
Wµ = Av

L(N)ω
ρ

x ,χN

! (δtµ,Gr)[−⟨µ, 2ρ̌⟩]

So, i!0(
◦
Wµ) →̃ e[−⟨µ, 2ρ̌⟩]. Now to verify the isomorphism

(18) π!µW
µ
glob[dg] →̃

◦
Wµ,

it suffices to apply i!0 to both sides. The result follows now from the fact that for

i : Spec k
0→ A1 one has i!Lψ →̃ e[−2].

1.2.57. For 7.4.1. The following observation from ([24], 2.3.5) is used essentially in
the proof. For µ ∈ Λ, let Nµ be the stabilizer of tµ ∈ GrG in L(N). There is an
ind-group scheme N ′ with a closed immersion N ′ ⊂ L(N) such that N ′Nµ = L(N) and
N ′ ∩Nµ = {1}.

1.2.58. For 7.4.3. The fact that π!xW
µ,∗
glob[dg] →̃Wµ,∗

glob follows by base change from (18).

The map (7.16) is defined as follows. If f : X → X ′ is obtained from g : Y → Y ′ by
the base change via f ′ : X ′ → Y ′ let f : X → Y be the corresponding map. We have a
canonical map g′!f

! → (f ′)!g! and apply it to Wµ
glob[dg].

Assume π!x is fully faithful. Then (7.16) indeed induces an isomorphism on all
HomWhitq,x(G)(·,W λ,∗). Indeed, the functor π!µ : Whitq,glob(G)=µ → Whitq,x(G)=µ
is then also fully faithful, namely obtained by restricting π!x to a full subcategory via
(iµ)! : Whitq,glob(G)=µ →Whitq,glob(G). We have

HomWhitq,glob(G)(W
µ,!
glob[dg],W

λ,∗
glob[dg]) →̃HomWhitq,glob(G)=µ

(Wµ
glob[dg], (i

µ)!W λ,∗
glob[dg])

π!
x→

HomWhitq,x(G)=µ
(
◦
Wµ, (iµ)

!W λ,∗) →̃HomWhitq,x(G)(W
µ,!,W λ,∗)

which is an isomorphism in Vect, because the arrow with π!x over it is an isomorphism.
We see also directly that

π!x[dg] : Whitq,glob(G)
≤0 →̃ Whitq,x(G)

≤0

Moreover K ∈Whitq,glob(G) lies in Whitq,glob(G)
≥0 iff π!xK[dg]K lies in Whit q, x(G)≥0.

So, π!x[dg] is t-exact.

1.2.59. The !-pullback functors for maps Z ′ → Z are missing, where Z ∈ PreStklft,
and Z ′ is a placid ind-scheme.

Important phenomenon for (Bun
ωρ

N )∞x. If µ ∈ Λ and K ∈ Shv((Bunω
ρ

N )≤µx is the

extension by zero from a quasi-compact open substack of (Bun
ωρ

N )≤µx then

Shv((Bun
ωρ

N )∞x)→ Vect, L 7→ RΓ((Bun
ωρ

N )∞x, (̄iµ)∗K ⊗! L)

is continuous! This is essentially because ”there are Gm factors in the stabilizors of
points of this stack”.

For this reason, an object of Whitq,glob(G) is compact iff it is an object of the smallest

full stable subcategory containing W λ,!
glob for all λ ∈ Λ+.
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Let K ∈Whitq,glob(G). Then the functor

ShvG−1((Bun
ωρ

N )∞x)→ Vect, L 7→ RΓ((Bun
ωρ

N )∞x,K ⊗! L)

is continuous. Indeed, K →̃ colim
µ∈Λ

(̄iµ)∗(̄iµ)
!L, and for any F ∈ Shv((Bunω

ρ

N )∞x),

RΓ((Bun
ωρ

N )∞x,F) →̃ colimµRΓ((Bun
ωρ

N )≤µ, (̄iµ)
!F)

Comment to the proof of ([24], 4.8.3). The formula (4.7) there is proved for F ∈
Whit((BunN )

G−levelnx
∞x )c only. It holds for non-compact objects also. Indeed, let us

show that for any F ∈ ShvG−1((Bun
ωρ

N )∞x) the functor

Whitq,glob(G)→ Vect, K 7→ RΓ(((Bun
ωρ

N )∞x,K ⊗! F)

is continuous. Write F →̃ colimi∈I Fi with I is small filtered, Fi ∈ ShvG−1((Bun
ωρ

N )∞x)
c.

Then
RΓ(((Bun

ωρ

N )∞x,K ⊗! F) →̃ colim
i∈I

RΓ(((Bun
ωρ

N )∞x,K ⊗! Fi)

by the above. Our stacks appearing are duality adapted, to D(Fi) ∈ ShvG−1((Bun
ωρ

N )∞x)
c

for each i. So, for each i the functor

K 7→ RΓ(((Bun
ωρ

N )∞x,K ⊗! Fi)

is continuous, hence their colimit is also continuous.

Conclusion: for any K ∈Whitq,glob(G),F ∈ ShvG−1((Bun
ωρ

N )∞x) one has

RΓ((Bun
ωρ

N )∞x),K ⊗! F) →̃ RΓ((Bun
ωρ

N )∞x),K ⊗! Av
Nglob,χN
∗ F)

1.2.60. For 7.4.4. For completeness, NX−x is a group ind-scheme, for S ∈ Schaffft , its

S-points is the set of maps S × (X − x) → N . This shows that πx is ind-schematic.
The group NX−x can be written as a colimit of unipotent group schemes. Namely,
for a faithful representation N ⊂ GL(V ) we may take those sections of NX−x which
gives regular maps V → V (mx) over the whole of X and vary m. So, Shv(Sµ)NX−x ⊂
Shv(Sµ) is a full subcategory.

To calculate the functor dual to Whitq−1,glob(G)
π!
x→Whitq−1,x(G) ↪→ Shv(GG)−1(Grω

ρ

G,x),

note that for F1 ∈Whitq−1,glob(G), F2 ∈ ShvGG(Grω
ρ

G,x) one has

RΓ(π!xF1 ⊗! F2) →̃ R(F1 ⊗! (πx)∗F2) →̃Hom
Shv

GG
((Bun

ωρ

N )∞x)
(D(F1), (πx)∗F2) →̃

HomWhitq,x(G)(D(F1),Av
Nglob,χN
∗ ) →̃ RΓ(F1 ⊗! Av

Nglob,χN
∗ )

Thus, the above dual is the composition

ShvGG(Grω
ρ

G,x)
(πx)∗→ ShvGG((Bun

ωρ

N )∞x)
Av

Nglob,χN
∗→ Whitq,x(G)

Now the dual to the inclusion Whitq−1,x(G) ↪→ Shv(GG)−1(Grω
ρ

G,x) is the projection

ShvGG(Grω
ρ

G,x)→Whitq,x(G)co.

([24], 5.4.2(a)) in our setting reduces to the following claim: let N ′ ⊂ L(N)ω
ρ

x be a
group subscheme large enough such that N ′NX−x = L(N)ω

ρ

x . Then for any µ ∈ Λ the
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natural map Av
L(N)ω

ρ
x ,χN

∗ → AvN
′,χN
∗ of functors Shv(Sµ)NX−x →Whitq,x(G)=µ is an

isomorphism.
This is a claim like this: there are unipotent group schemes of finite type N ′′ ⊂ N ′,

a map π : S → Y , where Y is an affine space, S is an ind-scheme of ind-finite type, and
π is N ′-equivariant. So, we have a cartesian square

N ′′\S b→ N ′\S
↓ π ↓ π

N ′′\Y b→ N ′\Y

Then first b∗π
! →̃nπ!b∗. Combine this with the fact that Shv(S)N

′′ oblv→ Shv(S)
AvN

′
∗→

Shv(S)N
′
is b∗. This gives ([24], 5.4.2(a)) on each stratum.

Note that for the map πµ : Sµ → (Bun
ωρ

N )=µx the functor (πµ)
!(πµ)∗ : Shv(S

µ) →
Shv(Sµ) is the functor of action by ωNX−x

. It takes values in the full subcategory

Shv(Sµ)NX−x ⊂ Shv(Sµ).
Before commenting on ([24], 5.4.2(b)), which is badly explained, we claim that the

composition

Whitq,x(G) ↪→ ShvGG(Grω
ρ

G,x)→Whitq,x(G)co

vanishes. We will see this aposteriori from this section and ([24], 5.4.5). And the same
holds for each orbit: the composition

Whitq,x(G)=λ ↪→ ShvGG(Sλ)→ ShvGG(Sλ)L(N)ω
ρ

x ,χN

vanishes (this is probably also explained somewhere in Sam).

It is not true that AvWhit
∗,glob ◦π∗ identifies with π∗Av

L(N)ω
ρ

x ,χN
∗ . In fact, if we apply π∗ to

W λ,!, we will get zero! Indeed, by ([24], 5.2.4(a)) it suffices to show that π!π∗W
λ,! = 0.

The latter identifies with

ωNX−x
∗W λ,!,

where we mean the action of Shv(L(N)ω
ρ

x ) on Shv(Sλ) here. The result vanishes,
because the isomorphism

NX−x × Sλ →̃NX−x × Sλ, (z, y) 7→ (z, zy)

identifies ωNX−x
∗W λ,! with RΓ(NX−x, ω)⊗W λ,!, and RΓ(NX−x, ω) = 0, because NX−x

is a colimit of unipotent group schemes.
The composition

ShvGG(Grω
ρ

G,x)
Av

N′,χN
∗→ ShvGG(Grω

ρ

G,x)
(πx)∗→ ShvGG((Bun

ωρ

N )∞x)

takes values in Whitq,glob(G). It suffices to check that after applying i!µ for any µ ∈ Λ.

To check the latter, it suffices to apply π!µ and show that the composition

Shv(Sµ)
Av

N′,χN
∗→ Shv(Sµ)

(πµ)∗→ ShvGG((Bun
ωρ

N )=µ)
π!
µ→ Shv(Sµ)NX−x
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takes values in Shv(Sµ)L(N)ω
ρ

x ,χN . We know that π!µ ◦ (πµ)∗ is the action of ωNX−x
. So,

the composition is the action by χN ′ ∗ωNX−x
∈ Shv(L(N)ω

ρ

x ). In ([24], 5.4.5) he claims
in particular the following.

Lemma 1.2.61. One has

ωNX−x
∗ χN ′ →̃χN ′ ∗ ωNX−x

→̃E′[2d] ∈ Shv(L(N)ω
ρ

x )

with d = dimBunω
ρ

N . Here E′ is given by the formula (14) of this file.

Proof. We establish the second isomorphism, the first being similar. Recall that N0 =
L+(N)ω

ρ

x , and L(N)ω
ρ

x →̃ colimkNk. Write temporarily ik : Nk ↪→ L(N)ω
ρ

x for the
inclusion. Assume k is large enough so that N ′ ⊂ Nk. Then i!k(χN ′ ∗ ωNX−x

) →̃χN ′ ∗
ωNX−x∩Nk

by base change. Here NX−x ∩ Nk is a group scheme of finite type. Since

N ′NX−x = L(N)ω
ρ

x , we get N ′(NX−x ∩Nk) = Nk. Besides,

ωNX−x∩Nk
→̃ eωNX−x∩Nk

[2 dim(NX−x ∩Nk)]

So, χN ′ ∗ ωNX−x∩Nk
→̃χk[2 dim(ωNX−x∩Nk

)]. So, the claim is reduces to the equality

dim(NX−x ∩Nk) = d+ dim(Nk/N0)

for such k. The natural map Nk/Nk ∩ NX−x → L(N)ω
ρ

x /NX−x is an isomorphism by
assumption, so N0\Nk/Nk ∩NX−x →̃ Bunω

ρ

N as stack quotients. This gives an equality
dim(N0\Nk)− dim(Nk ∩NX−x) = dimBunω

ρ

N . □

This lemma shows finally that indeed the functor AvN
′,χN
∗ ◦π∗ from ([24], 5.4.2(b))

takes values in Whitq,glob(G).

It should be true that for an object of Shv(Sµ)NX−x the (N ′, χN )-equivariance implies
already (L(N)ω

ρ

x , χN )-equivariance.

The idea of the proof of ([24], Pp. 5.4.2(b)) is to check that ◦π∗ ◦ AvN
′,χN
∗ factors

through ShvGG(Grω
ρ

G,x) →Whitq,x(G)co. To see this let K ∈ ShvGG(Grω
ρ

G,x) and k ≥ 0.

We check that the map AvNk,χN
∗ (K) → K becomes an isomorphism after applying

π∗ ◦ AvN
′,χN
∗ . Since we will know later that π! is fully faithful, we may replace the

latter functor by π! ◦ π∗ ◦ AvN
′,χN
∗ = ωNX−x

∗ AvN
′,χN
∗ . By Lemma 1.2.61 above,

ωNX−x
∗ χN ′ →̃E′[2d], and we know that the action of E′ on ShvGG(Grω

ρ

G,x) factors

through ShvGG(Grω
ρ

G,x)→Whitq,x(G)co.

1.2.62. A general observation about categories of invariants. Let Y = colimj∈J Yj be
an ind-scheme of ind-finite type, here J is a filtered category, Yj is a scheme of finite
type, and for j → j′ in J the map Yj → Yj′ is a closed immersion.

Let α : H → G be a homomorphism of group schemes, which are placid schemes.
Assume I is a filtered category and H →̃ limi∈Iop Hi, G →̃ limi∈Iop Gi, where Hi, Gi is
a smooth group scheme of finite type, for i → j in I the transition maps Hj → Hi,
Gj → Gi are smooth, affine, surjective homomorphisms. Besides, we are given a
diagram Iop×[1]→ Grp(Sch), sending i to αi : Hi → Gi, where αi is a closed subgroup.
We assume α = limi∈Iop αi.
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Assume G acts on Y . Moreover, for any j ∈ J , Yj is G-stable, and G acts on Yj
through the quotient G → Gi for some i ∈ I. We claim that (for any of our 4 sheaf
theories) oblv : Shv(Y )G → Shv(Y )H admits a continuous right adjoint Av∗.

Proof. We have Shv(Y )G →̃ limj∈Jop Shv(Yj)
G with respect to the !-pullbacks, similarly

Shv(Y )H →̃ limj∈Jop Shv(Yj)
H , and oblv : Shv(Y )G → Shv(Y )H is the limit over

j ∈ Jop of oblvj : Shv(Yj)
G → Shv(Yj)

H . For given j ∈ J the functor oblvj admits
a continuous right adjoint Avj,∗. Indeed, pick i ∈ I such that G-action on Yj factors

through Gi. Then oblvj identifies with the functor f ! : Shv(Yj/Gi)→ Shv(Yj/Hi) for

the projection f : Yj/Hi → Yj/Gi. Since Gi/Hi is smooth, f is smooth. So, f ! admits
a continuous right adjoint (as f is schematic of finite type).

Let now j → j′ be a map in J . Pick i such that the G-action on Yj , Yj′ factors
through Gi. Then we get a cartesian square

Yj/Hi
h→ Yj′/Hi

↓ fj ↓ fj′
Yj/Gi

h′→ Yj′/Gi,

where h, h′ are closed immersions. We have (h′)!fj′,∗ →̃ fj,∗h
!. Since fj , fj′ are of the

same relative dimension, we see that the diagram commutes

Shv(Yj)
H h!← Shv(Yj′)

H

↓ Avj,∗ ↓ Avj′,∗

Shv(Yj)
G (h′)!← Shv(Yj′)

G

By ([20], ch. I.1, 2.6.4), oblv admits a right adjoint Av∗, and for the evaliation maps
ev j : Shv(Y )G → Shv(Yj)

G, ev j : Shv(Y )H → Shv(Yj)
H one gets ev j Av∗ →̃ Avj,∗ ev j .

So, Av∗ is continuous. □

An example of an application: if H1 ⊂ G1 is a closed subgroup, G1 is a smooth affine
group scheme of finite type then take α : H1(O)→ G1(O) for O = k[[t]].

Lemma 1.2.63. Let G be a smooth group scheme of finite type over Spec k, U ⊂ G be a
normal unipotent group subscheme. Then for F ∈ Shv(G) one has F ∗eU →̃ eU ∗F ∗eU .
So, if C ∈ Shv(G) − mod then Shv(G)-action on C preserves the full subcategory
CU ⊂ C, so we get a Shv(G)-action on CU .

Proof. We have a cartesian square

G
pr← G× U

↓ q ↓ m
G/U

q← G,

where q is the quotient map, and m is the product. Thus, F ∗ eU →̃ q∗q∗F . Similarly,
eU ∗ F →̃ q∗q∗F . The claim follows from q∗q

∗F →̃F for F ∈ Shv(G/U). The category
CU ⊂ C is the essential image of the functor C → C, c 7→ eU ∗ c. The second claim
follows. □
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Lemma 1.2.64. Let H be a pro-smooth placid group scheme, U be a priounipotent
group scheme with an action of H by automorphisms of U such that the semi-direct
product G = U ⋊ H is a pro-smooth placid group scheme. Then for F ∈ Shv(G) we
have F ∗ eU →̃ eU ∗ F ∗ eU . Let C ∈ Shv(G) − mod(DGCatcont). Then CU is stable
under the Shv(G)-action of C, so inherits such an action (where U acts trivially).

Similarly, eU ∗ F →̃ eU ∗ F ∗ eU .

Proof. It suffices to show the desired isomorphism for F ∈ Shv(G)c. We have the
cartesian square

G
pr← G× U

↓ q ↓ m
H

q← G,

where q is the quotient map, and m is the product. By ([46], Lm. 0.0.19), we have
the base change q∗q∗(F) →̃m∗ pr

∗(F) for any F ∈ Shv(G)c. Indeed, we may assume
given an exact sequence 1→ H ′ → H → H̄ → 1, where H′ is prounipotent, and H̄ is a
smooth group scheme of finite type with F ∈ Shv(G/H ′). Then we actually deal with
the diagram

G
pr← G× U

↓ q ↓ m
H

q← G
↓ ↓
H̄ ← G/H ′

(Here H ′ is not necessarily normal in G). So, we may repeat the argument of the
previous lemma. □

In the situation of the above lemma for C ∈ Shv(G)−mod(DGCatcont) the category
CU inherits an action of Shv(H).

Lemma 1.2.65. In the situation of Lemma 1.2.64 given C ∈ Shv(G)−mod(DGCatcont),
the functor (CU )H → CH (obtained from oblv : CU → C by functoriality of invariants)
is fully faithful.

Proof. We have a morphism of cosimplicial diagrams

Fun(Shv(H)⊗n, CU )→ Fun(Shv(H)⊗n, C)

for [n] ∈ ∆ whose limit is the desired functor. Each functor in the diagram is fully
faithful, because Shv(H) is dualizable, so that we may apply ([23], 1.5.1). So, passing
to the limit we get a fully faithful embedding by ([43], Lemmas 2.2.16, 2.2.17), because
DGCatcont → 1− Cat preserves limits. □

In the situation of the last lemma (CU )H →̃CG?

Remark 1.2.66. Let G be a placid group scheme, 1 → U → G
q→ H → 1 be a

surjective group homomorphism, where H is a smooth group scheme of finite type, U
is prounipotent. Then for Ki ∈ Shv(H) one has q∗K1 ∗ q∗K2 →̃ q∗(K1 ∗K2) naturally.
However, q∗ is not monoidal.
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1.2.67. Let P ⊂ G be a parabolic in a connected reductive group with Levi M and
unipotent radical U . Let F = k((t)),O = k[[t]]. Let H = M(O)U(F ). This is a placid
ind-scheme, closed in P (F ). We have also P (F )/H →̃M(F )/M(O). Since the object
δ1 ∈ Shv(GrM ) isH-invariant, the functor Vect→ Shv(GrM ), e 7→ δ1 is Shv(H)-linear.
Now the Shv(H)-action on Shv(GrM ) comes as the restriction of a Shv(P (F ))-action,
hence we get by adjointness a canonical functor

Shv(P (F ))⊗Shv(H) Vect→ Shv(GrM )

Let us show this is an equivalence.

Proof. Pick a presentation U(F ) = colimn∈N Un, where Un is a placid group scheme,
for n ≤ m, Un → Um is a placid closed immersion. Assume M(O) normalizes each
Un, so M(O)Un =: Hn is a placid group scheme, and M(F ) = colimn∈NHn. We have
P (F ) →̃ colimn∈NM(F )Un in PreStk, as colimits in PreStk are universal. It should
ne true that now Shv(P (F )) →̃ colimn∈N Shv(M(F )Un) with respect to the ∗-push-
forwards. This gives

Shv(P (F ))⊗Shv(H) Vect→ Shv(GrM ) →̃ colim
(n≤m)∈Fun([1],N)

Shv(M(F )Um)⊗Shv(Hn) Vect

The diagonal map N→ Fun([1],N) is cofinal, so the above identifies with

colimn∈N Shv(M(F )Un)⊗Shv(Hn) Vect

Now each term of the latter diagram identifies with Shv(M(F )/M(O)) using ([46],
0.0.36), and we are done. Indeed, for any I ∈ 1 − Cat the natural map I →| I | is
cofinal, and for I filtered we get | I | →̃ ∗. □

Further, let C ∈ Shv(P (F ))−mod(DGCatcont). We get

CH = FunShv(H)(Vect, C) →̃FunShv(P (F ))(Shv(P (F ))⊗Shv(H) Vect, C)

Thus, FunShv(P (F ))(Shv(GrM ), Shv(GrM )) acts on CH . Now

FunShv(P (F ))(Shv(GrM ), Shv(GrM )) →̃Shv(GrM )H →̃Shv(GrM )M

1.3. For Section 8.

1.3.1. For 8.1.4. If f : X1 → X2 is a map in PreStklft which is universally homologi-

cally contractible, G is a gerbe on X2 then f ! : ShvG(X2)→ ShvG(X1) is fully faithful.
Indeed, pick an etale schematic cover Y2 → X2 such that G trivializes over Y2, let

f̄ : Y1 → Y2 be obtained by base change. Then ShvG(X2) →̃ TotShvG((Y2)
•
X2
) and

similarly for X1. Since for each n ≥ 0, ShvG((Y2)
n
X2
) → ShvG((Y1)

n
X1
) is fully faithful,

passing to the limit we get the desired claim.
In fact, the map (8.2) is universally homologically contractible.
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1.3.2. For 8.2.2. More details on the definition of Whitq,Ranx(G). First, recall that

Ranx = colimI(X
I ×X {x}), where the colimit is taken over (fSets∗)

op, here fSets∗ is
the category of pointed finite sets, and surjections preserving the distinguished point
([28], 2.5.2). It is understood that the projection XI → X is given by the distinguished
point. Now for I ∈ fSets∗ we let

L(N)ω
ρ

I = L(N)ω
ρ

Ranx ×Ranx (XI ×X {x})
We have a canonical character ev : L(N)ω

ρ

Ranx
→ A1. It gives the functor Shv(L(N)ω

ρ

Ranx
)→

Vect, K 7→ HomShv(A1)(ev∗K,Lψ). By definition, χN is this functor, which is an object
of the dual category.

Now Grω
ρ

G,Ranx = colim
I∈(fSets∗)

Grω
ρ

G,I with

Grω
ρ

G,I = Grω
ρ

G,Ranx ×Ranx(X
I ×X {x})

and
Whitq,Ranx(G) →̃ lim

I∈(fSets∗)op
ShvGG(Grω

ρ

G,I)
L(N)ω

ρ

I ,χN

Here
ShvGG(Grω

ρ

G,I)
L(N)ω

ρ

I ,χN ⊂ ShvGG(Grω
ρ

G,I)

is a full subcategory (compare with ([47], 1.2.1) for incorporating the character). We
used here the formalism from Sections 1.3.3-1.3.13.

Namely, L(N)ω
ρ

I ∈ Grp(PreStk/XI ) is a placid ind-scheme over XI written as

colimα∈AN
α
I ,

where Nα
I is a placid group scheme over XI , for α → α′ in A the map Nα

I → Nα′
I is

a placid closed immersion and a homomorphism of group schemes over XI , and A is
filtered (we may take A = N). Then for each α we have the full subcategory

ShvGG(Grω
ρ

G,I)
Nα

I ,χN ⊂ ShvGG(Grω
ρ

G,I)

and
ShvGG(Grω

ρ

G,I)
L(N)ω

ρ

I ,χN = ∩
α∈A

ShvGG(Grω
ρ

G,I)
Nα

I ,χN

1.3.3. In the rest of Section 1.3 we develop the theory of group schemes over a base
S acting on categories (for any of our 4 sheaf theories) extending some results of ([33],
Appendix B) established for D-modules.

Let S be a scheme of finite type, f : G → S be a group scheme of finite type and
smooth over S. Then Shv(G) is a monoidal category with the convolution given by

Shv(G)⊗ Shv(G) ⊠→ Shv(G×G) q!→ Shv(G×S G)
m∗→ Shv(G),

for the diagram G×G q← G×SG
m→ G. Herem is the product. Let i : S → G be the unit

section. Recall that (Shv(S),⊗!) is monoidal. Then i∗ : (Shv(S),⊗!) → (Shv(G), ∗)
and f∗ : (Shv(G), ∗)→ (Shv(S),⊗!) are monoidal functors.

Let PreStkind−sch,/S ⊂ (PreStklft)/S be the 1-full subcategory where we restrict the
morphism to be ind-schematic of ind-finite type. Consider the functor PreStkind−sch,/S →
DGCatcont sending Y → S to Shv(Y ), and a map f : Y → Y ′ over S to f∗ : Shv(Y )→
Shv(Y ′). Then this functor is right-lax symmetric monoidal. For Yi ∈ PreStkind−sch,/S
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the corresponding morphism Shv(Y1) ⊗ Shv(Y2) → Shv(Y1 ×S Y2) is the composition
q! ◦ ⊠, where q : Y1 ×S Y2 → Y1 × Y2 is the natural map. So, the above functor
sends algebras to algebras. We could also instead consider the above functor with val-
ues in Shv(S) − mod(DGCatcont), then it is still right-lax symmetric monoidal. So,
Shv(G) ∈ Alg(Shv(S)−mod).

For K ∈ Shv(G), F ∈ Shv(S) one has canonically K ∗ i∗F →̃K ⊗! f !F →̃ i∗F ∗K.
So, the two possible structures of a Shv(S)-module on Shv(G) coincide, and Shv(S)
is central in (Shv(G), ∗).

My understanding is that the following actually is true. Let Corr(PreStklft /S)ind−sch,all
be the category of correspondences, whose objects are (Y → S) ∈ PreStklft /S, and a

morphism from Y1 to Y2 is a diagram Y1
g← Y12

f→ Y2 in PreStklft /S with g any and f
ind-schematic of ind-finite type. Then in the constructible context we get the functor

ShvCorr : Corr(PreStklft /S)ind−sch,all → DGCatcont

sending Y to Shv(Y ), and sending the above map to f∗g
! : Shv(Y1)→ Shv(Y2). Then

this functor has a natural right-lax symmetric monoidal structure. In the case S = pt
this is ([19], A.1.7).

If now H → S is another group scheme smooth of finite type over S and α : G→ H is
a morphism of group schemes over S then α∗ : (Shv(G), ∗)→ (Shv(H), ∗) is monoidal
and moreover a morphism in Alg(Shv(S)−mod). So, α∗ is Shv(S)-linear.

Let now Y ∈ PreStklft with a map Y → S. Assume G acts on Y over S. Then
Shv(G) acts on Shv(Y ) on the left as follows. Consider the diagram

G× Y q̄← G×S Y
act→ Y,

where act is the action map. For F ∈ Shv(G),K ∈ Shv(Y ) let F ∗K = act∗(q̄
!(F⊠K)).

In fact, (Shv(G), Shv(Y )) ∈ Alg +mod(Shv(S)−mod).
Restricting this action under i∗ : Shv(S)→ Shv(G), we get the action of Shv(S) on

Shv(Y ) such that F ∈ Shv(S) sends K ∈ Shv(Y ) to (pr! F )⊗!K for pr : Y → S. Now
given C ∈ (Shv(G), ∗)−mod, we may consider

Fun(Shv(G),∗)(Shv(S), C) ∈ Shv(S)−mod

The theory of group ind-schemes (over a base) acting on categories is developed in ([33],
Appendix B), where it is explained that the latter is a good definition of invariants of
Shv(G) on C. By ([43], 9.2.36), the category of invariants is defined for (and depends
only on) a non-unital Shv(G)-module category C.

If h : Y → Y ′ is a morphism in (PreStklft)/S assume G acts on Y and Y ′ over

S, and h intertwines the G-actions. Then h! : Shv(Y ′) → Shv(Y ) commutes with
(Shv(G), ∗)-actions. A way to see it should be to say that the map Y ′ → Y in
Corr(PreStklft /S)ind−sch,all given by h : Y → Y ′ is a morphism of G-modules from Y ′

to Y in Corr(PreStklft /S)ind−sch,all. If h is ind-schematic (of ind-finite type) then h∗
commutes with the (Shv(G), ∗)-actions.

Write Y/G for the quotient of Y by G in the sense of prestacks over S, that is,

Y/G = colim
[n]∈∆op

G×S G×S . . .×S Y
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Let τ : Y → Y/G be the natural map, p̄ : Y/G → S be the projection. The functor
Shv(S)⊗Shv(Y/G)→ Shv(Y ), (F,K) 7→ τ !(K⊗! p̄!F ) by the universal property gives
a functor

(19) Shv(Y/G)→ Fun(Shv(G),∗)(Shv(S), Shv(Y ))

(by [43], 9.2.56).

Proposition 1.3.4. The functor (19) is an equivalence.

Proof. Let GnS = G ×S G ×S . . . ×S G product over S taken n times. Recall that
Y/G = colim[n]∈∆op GnS ×S Y . Consider

Shv(Y/G) →̃ lim
[n]∈∆

Shv(GnS ×S Y ),

limit in DGCatcont. As in the case when S is Spec k, this cosimplicial diagram satis-
fies the comonadic Beck-Chevalley conditions, so that the functor ev0 : Shv(Y/G) →
Shv(Y ) is comonadic. Indeed, for any n ≥ 0 assume the map attached to the last face
map ∂n : [n] → [n + 1] avoiding n + 1 is id× act : GnS ×S G ×S Y → GnS ×S Y . The

functor (id× act)! admits a right adjoint, because G is smooth over S of some relative
dimension d. For any α : [m]→ [n] in ∆ then the diagram

GnS ×S Y
fα→ GmS ×S Y

↑ δn ↑ δm
Gn+1
S ×S Y

fα+1→ Gm+1
S ×S Y

is cartesian, where we denoted by δn the map attached to ∂n, and by fα the map
attached to α. So, f !α(δm)∗ →̃ (δn)∗f

!
α+1. The corresponding comonad is (act!)R ◦ pr!

for the maps pr, act : G ×S Y → Y . Here (act!)R →̃ act∗[−2d] is the right adjoint to
act!, and f : G→ S is smooth of dimension d. The comonad is act∗ pr

∗, it is given by
the action of f∗ωS ∈ Shv(G) for f : G→ S.

Recall that Shv(G) has just one natural structure of a Shv(S)-module.
Write Shv(G)⊗nShv(S) for the n-th tensor power of Shv(G) over Shv(S). Let us check

that the cosimplicial category [n] 7→ FunShv(S)(Shv(G)
⊗n
Shv(S), Shv(Y )) satisfies the

comonadic Beck-Chevalley conditions. By ([43], 9.2.36) its totalization identifies with
the RHS of (19). For ∂n : [n]→ [n+ 1] the corresponding functor

T ∂n : FunShv(S)(Shv(G)
⊗n
Shv(S), Shv(Y ))→ FunShv(S)(Shv(G)

⊗n+1
Shv(S), Shv(Y ))

sends h to the functor

F1 ⊗ . . .⊗ Fn+1 7→ h(F1 ⊗ . . .⊗ Fn−1 ⊗ (Fn ∗ f∗Fn+1)),

where Fn ∗ f∗Fn+1 is the convolution in the monoidal category Shv(G). Note that
f∗ : Shv(G) → Shv(S) is a map of Shv(G)-modules, because it is monoidal. It has
a left adjoint f∗ : Shv(S) → Shv(G), which is a strict morphism of Shv(G)-modules
(this is just base change).

Since Shv(S)−mod(DGCatcont) is a 2-category, we get an adjoint pair

id⊗f∗ : Shv(G)⊗nShv(S) ⇄ Shv(G)⊗n+1
Shv(S) : id⊗f∗
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in Shv(S)−mod. Let (T ∂n)R be the functor obtained from id⊗f∗ by applying

FunShv(S)(·, Shv(Y ))

We get the adjoint pair in DGCatcont

T ∂n : FunShv(S)(Shv(G)
⊗n
Shv(S), Shv(Y )) ⇄ FunShv(S)(Shv(G)

⊗n+1
Shv(S), Shv(Y )) : (T ∂n)R

Let now α : [m]→ [n] be a map in ∆. Consider the corresponding diagram

FunShv(S)(Shv(G)
⊗n
Shv(S), Shv(Y ))

(T∂n )R← FunShv(S)(Shv(G)
⊗n+1
Shv(S), Shv(Y ))

↑ Tα ↑ Tα+1

FunShv(S)(Shv(G)
⊗m
Shv(S), Shv(Y ))

(T∂m )R← FunShv(S)(Shv(G)
⊗m+1
Shv(S), Shv(Y ))

We check that it commutes. It suffices to prove this for α injective, because of the
following. Let ∆s ⊂∆ be the full subcategory with the same class of object, where we
keep only injective maps. Then ∆op

s →∆op is cofinal by ([35], 6.5.3.7).
If α : [m]→ [n] is injective, and 0, n are in the image then the desired commutativity

follows from the commutativity of

Shv(G)⊗nShv(S)
id⊗f∗→ Shv(G)⊗n+1

⊗S
↓ (mα)∗ ↓ (mα+1)∗

Shv(G)⊗mShv(S)
id⊗f∗→ Shv(G)⊗m+1

Shv(S),

where (mα)∗ is the product along α in the monoidal category Shv(G). We used the
observation that the convolution in Shv(G) factors through a map

Shv(G)⊗Shv(S) Shv(G)→ Shv(G),

which is a morphism of Shv(S)-modules.
If α : [n− 1]→ [n] is the last face map then α+1 : [n]→ [n+1] avoids n then Tα+1

is the composition with

Shv(G)⊗n+1
Shv(S) → Shv(G)⊗nShv(S), K1 ⊗ . . .⊗Kn+1 7→ K1 ⊗ . . .⊗Kn−1 ⊗Kn ∗Kn+1

In this case the desired commutativity follows from K ∗ (f∗ωS) →̃ (i∗f∗K) ∗ (f∗ωS).
Indeed, one has K ∗ (f∗ωS) →̃m∗ pr

∗
1K →̃ f∗f∗K for the cartesian square

G
pr1← G×S G

↓ f ↓ m
S

f← G

Now we get f∗f∗K →̃ i∗(f∗K) ∗ (f∗ωS).
If α : [n− 1]→ [n] is injective and avoids 0 then Tα sends f to the functor

K1 ⊗ . . .⊗Kn 7→ K1 ∗ f(K2 ⊗ . . .⊗Kn)

and the commutativity is tautological. So, it always hold. Thus,

ev0 : Fun(Shv(G),∗)(Shv(S), Shv(Y ))→ Shv(Y )

is comonadic, and the corresponding comonad is (T ∂0)RTα for α : [0] → [1], α(0) = 1.
This is the functor Shv(Y )→ Shv(Y ), F 7→ f∗ωS ∗ F . □
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1.3.5. Let now G→ S be as in the previous section and χ be a character local system
on G, so m∗χ →̃ q∗(χ ⊠ χ), and i∗χ →̃ eS (at least in the constructible context). For
D-modules see the remark below.

We get the auto-equivalence Shv(G) → Shv(G) sending F to F ⊗ χ. This is a
monoidal functor. Indeed, (i∗ωS)⊗ χ →̃ i∗ωS , and for Fi ∈ Shv(Y ) we get

χ⊗ (F1 ∗ F2) →̃ (χ⊗ F1) ∗ (χ⊗ F2)

Now for C ∈ Shv(G) −mod we define Cχ−1 as the object of Shv(G) −mod equal to
C ∈ DGCatcont with the new action such that F ∈ Shv(G) acts on c ∈ C as (F ⊗χ)∗c.
Here ∗ denotes the original action of Shv(G). This definition agrees with ([47], 1.3.1).
Finally we set

CG,χ = Fun(Shv(G),∗)(Shv(S), Cχ−1) ∈ Shv(S)−mod

By Section 1.3.17 below, we may equivalently define it as

((f∗ωS)⊗ χ)− comod(C)

Now for any sheaf theory, maybe eS does not make sense. In this case by a character
local system on G we mean an object L ∈ Shv(G) invertible for the !-monoidal structure
on Shv(G) and satisfying: m!L →̃ q!(L ⊠ L) associatively, and i!L →̃ωS . Then the
functor Shv(G) → Shv(G),K 7→ K ⊗! L is a monoidal equivalence, which preserves
the full subcategory Shv(S) and induces the identity on Shv(S) (cf. also Remark 1.2.7).
If we actually in the constructible context and L is a character local system on G in
the initial sense then L := L⊗ ωG is a character local system in this new sense.

1.3.6. Let S ∈ Schft, p : G → S be a group scheme smooth of finite type over S. In
the constructible context the functor p∗ : Shv(G)→ Shv(S) admits a continuous right
adjoint pR∗ : Shv(S)→ Shv(G) equal to (p!)

∨. Since p∗ : (Shv(G), ∗)→ (Shv(S),⊗!) is
monoidal, pR∗ is right-lax monoidal. In particular, it is a right-lax morphism of Shv(G)-
module categories. That is, for V ∈ Shv(S),M ∈ Shv(G) we have a canonical map
M ∗ pR∗ (V)→ pR∗ (V⊗! p∗M).

Lemma 1.3.7. In general, this map is not an isomorphism, and pR∗ is not a strict
morphism in Shv(G)−mod.

Proof. The argument is due to Sam. Assume S = Spec k.
0) For F,M ∈ Shv(G) write ⟨F,M⟩ = RΓ(G,F ⊗! M). Let inv(F ) denote the

preimage of F under the inversion G→ G. Then i!0(inv(F ) ∗M) →̃ ⟨F,M⟩ for the unit
section i0 : Spec k → G. For V1, V2 ∈ Vect write also ⟨V1, V2⟩ = V1 ⊗ V2 ∈ Vect.

1) For F ∈ Shv(G), V ∈ Vect we have ⟨F, pR∗ (V )⟩ →̃ (p!F ) ⊗ V →̃ ⟨p!F, V ⟩. Indeed,
it suffices to prove this for F ∈ Shv(G)c and pass to filtered colimits, as Shv(G) is
compactly generated. For F compact, we get

RΓ(F ⊗! pR∗ (V )) →̃ Hom(D(F ), pR∗ (V )) →̃ Hom(p∗D(F ), V ) →̃ Hom(D(p!F ), V )

→̃ (p!F )⊗! V
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2) For F,M ∈ Shv(G), V ∈ Vect we have ⟨F,M ∗ pR∗ (V )⟩ →̃ ⟨inv(M) ∗ F, pR∗ (V )⟩.
Indeed, inv(F ∗M) →̃ inv(M) ∗ inv(F ), so

⟨F,M ∗ pR∗ (V )⟩ →̃ i!0(inv(F ) ∗M ∗ pR∗ (V )⟩ →̃ i!0(inv(inv(M) ∗ F ) ∗ pR∗ (V )⟩
→̃ ⟨inv(M) ∗ F, pR∗ (V )⟩

3) Assume our map M ∗ pR∗ (e) → pR∗ (p∗M) is an isomorphism for V = e. Then for
F ∈ Shv(G) we get

⟨F,M ∗ pR∗ (e)⟩ →̃ ⟨inv(M) ∗ F, pR∗ (e)⟩ →̃ p!(inv(M) ∗ F )

On the other hand, ⟨F, pR∗ (p∗M)⟩ →̃ (p!F )⊗p∗M . Taking F = (i0)!e, our map becomes
p!(inv(M)) → p∗M . This is not an isomorphism in general, for example, for U = An
abelian. □

However, if p : G → Spec k is proper, the same argument shows that the map pR∗ is
a strict morphism in Shv(G)−mod.

1.3.8. Assume now f : G→ S is a group scheme over S written as limi∈Iop Gi, where
I is small filtered category, Gi is a group scheme of finite type over S. For i → j in
I the map fij : Gj → Gi is smooth affine surjective homomorphism of group schemes
over S. By definition, Shv(G) →̃ limi∈Iop Shv(Gi) with the transition functors (fij)∗.
(If each Gi → S is smooth, we say that G is prosmooth over S).

Then for i → j the functor (fij)∗ : (Shv(Gj), ∗) → (Shv(Gi), ∗) is monoidal, so
Shv(G) →̃ limi∈Iop Shv(Gi) can be understood as a limit in Alg(DGCatcont), that is, a
monoidal category denoted (Shv(G), ∗).

The category Shv(Gi) is naturally a Shv(S)-module (both structures of Shv(S)-
module coincides as we have seen above). Then for i ∈ I, Shv(Gi) ∈ Alg(Shv(S) −
mod) naturally. Namely, the product on Shv(Gi) is Shv(S)-bilinear, and yields a
functor Shv(Gi) ⊗Shv(S) Shv(Gi) → Shv(Gi) in Shv(S) −mod. So we may think of
limi∈Iop Shv(Gi) as a limit in Alg(Shv(S) −mod), so Shv(G) ∈ Alg(Shv(S) −mod).
This structure comes of course from the monoidal functor i∗ : Shv(S) → Shv(G), the
push-out via the unit section i.

For a map i→ j in I, the adjoint pair f∗ij : Shv(Gi) ⇆ Shv(Gj) : (fij)∗ takes place

in Shv(S)−mod.
The functor f∗ : (Shv(G), ∗) → (Shv(S),⊗!) is monoidal. For the projection ev i :

G→ Gi the functor (ev i)∗ : (Shv(G), ∗)→ (Shv(Gi), ∗) is monoidal by construction.
We have G×S G →̃ limi∈Iop Gi ×S Gi, because I is sifted, so G×S G is also a placid

scheme. The map q : G ×S G → G × G is a placid closed embedding for S separated,
but even if it is not, the functor q! is defined.

Let qi : Gi ×S Gi → Gi ×Gi be the natural map. In fact, the system of functors q!i
is compatible with the transition functors f∗ij , hence in the colimit over i ∈ I yields the

functor q! : Shv(G×G)→ Shv(G×S G).
(More generally, for a placid scheme Y over S ∈ Schft and a map S′ → S in Schft,

let h : Y ′ → Y be obtained by base change S′ → S. Then h! is defined, cf. [46], 0.0.43).
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The convolution on Shv(G) is finally given by the diagram G × G q← G ×S G
m→ G

and the product is the composition

Shv(G)⊗ Shv(G)→ Shv(G×G) q!→ Shv(G×S G)
m∗→ Shv(G)

where the first functor is that of ([24], C.2.8), the exteriour product. Sincem : G×SG→
G is a morphism of placid schemes over S, m∗ is well-defined by ([24], Appendix C).

Assume G prosmooth. Then m∗ : Shv(G) → Shv(G ×S G) is well-defined. Indeed,
for each i ∈ I, the product mi : Gi ×S Gi → Gi is smooth, so we have m∗i : Shv(Gi)→
Shv(Gi ×S Gi). These functors are compatible with the transition functors f∗ij in the
corresponding colimit systems, and yield m∗ in the colimit.

Consider the map ν : G→ G× S. For F ∈ Shv(G),K ∈ Shv(S), one has

ν!(F ⊠K) →̃ (i∗K) ∗ F →̃F ∗ (i∗K),

and Shv(S) is central in (Shv(G), ∗).

1.3.9. Let us for simplicity understand by a character local system on G a character
local system on Gi for some i, that is, its ∗-pull-back to G. Assume G placid prosmooth
over S.

Let χ be a character local system on G and C ∈ Shv(G) −mod. Consider Cχ−1 ∈
Shv(G) − mod as in the previous subsection. To be more precise, for a map i → j
in I recall the morphism of group schemes fij : Gj → Gi. For K ∈ Shv(Gj) one has
canonically (fij)∗(K ⊗ f∗ijχ) →̃ ((fij)∗K) ⊗ χ. So, the collection of monoidal functors

Shv(Gj) → Shv(Gj),K 7→ K ⊗ f∗ijχ is compatible with the transition maps given by

∗-direct images, and we may pass to the limit over (Ii/)
op. Now the limit of the above

functors becomes a monoidal functor Shv(G)→ Shv(G) still denoted K 7→ K⊗ ev∗iK.
Here ev i : G → Gi is the evaluation map. Then Cχ−1 ∈ Shv(G) −mod is defined as
C, where the new action of Shv(G) is given as above: F ∈ Shv(G) acts on c ∈ C as
(F ⊗ ev∗iχ) ∗ c.

We have the adjoint pair

(20) f∗ : Shv(S) ⇄ Shv(G) : f∗

If G is prosmooth, this is an adjoint pair in Shv(G)−mod and also in Shv(G)−modr
by Lemma 1.3.16 below. Applying the functor FunShv(G)(•, Cχ−1), we get an adjoint
pair

oblvG,χ : CG,χ ⇄ C : AvG,χ∗

in Shv(S)−mod. The composition oblvG,χAv
G,χ
∗ is the functor c 7→ ((f∗ωS)⊗ χ) ∗ c,

where we use the original action of Shv(G) on C.
Applying the functor • ⊗Shv(G) C, we get an adjoint pair in DGCatcont

oblvG : CG := Shv(S)⊗Shv(G) C ⇆ C : AvG∗

Since f∗ is a map of Shv(G)-bimodules, oblvG inherits a structure of a morphism in

Shv(G)−mod, hence factors as CG → CG
oblv→ C. Dennis claims the so obtained map

CG → CG is always an equivalence (for all the 4 sheaf theories) for any placid group
scheme G over S.
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Lemma 1.3.10. In the situation of Section 1.3.8 assume each Gi is a unipotent group
scheme over S. Then the functor oblvG,χ : CG,χ → C is fully faithful.

Proof. Recall the adjoint pair (20). The unit of this adjunction is an isomorphism

id→ f∗f
∗. Thus, f∗ is fully faithful. This gives AvG,χ∗ ◦ oblvG,χ →̃ id. □

1.3.11. Let S be a scheme of finite type, f : G→ H be a morphism of group schemes
over S, both being as in the previous subsection. The functor f∗ : Shv(G)→ Shv(H)
is monoidal.

Indeed, write H = limj∈Jop Hj and G = limi∈Iop Gi as in the previous section. It

suffices to show that for any i the composition Shv(G)
f∗→ Shv(H)

(evj)∗→ Shv(Hj) is
monoidal. Pick i ∈ I such that this composition factors through ev i : G → Gi. Such
factorization exists by ([47], 1.1.3). The induced map f̄ : Gi → Hj is automatically a
morphism of group schemes over S, hence f̄∗ : (Shv(Gi), ∗)→ (Shv(Hj), ∗) is monoidal
by Section 1.3.3. We are done.

If H is a placid group scheme over S, f : G→ H is a placid closed immersion over S,
and a group subscheme over S then in the constructible context f∗ : Shv(H)→ Shv(G)
is defined. Moreover, f∗ is left-lax monoidal.

1.3.12. Let S be a scheme of finite type, G→ S be an object of Grp(PreStk/S) written
as G = colimi∈I Gi with Gi a placid group scheme over S, I small filtered, and for i→ j
in I the map hij : Gi → Gj is a placid closed immersion and a homomorphism of group
schemes over S. Then for i → j in I the functor (hij)∗ : (Shv(Gi), ∗) → (Shv(Gj), ∗)
is monoidal. Indeed, the square is cartesian

Gj ×Gj ← Gj ×S Gj
↑ hij×hij ↑

Gi ×Gi ← Gi ×S Gi
So, Shv(G) = colimi∈I Shv(Gi) taken in Alg(DGCatcont) in view of (HA, 3.2.3.1)
equips Shv(G) with a monoidal structure (the convolution). Namely, the projection
Alg(DGCatcont)→ DGCatcont preserves filtered colimits.

Moreover, if H → S is another object of Grp(PreStk/S) with the same properties
(thus, a placid ind-scheme) and α : G → H is any morphism in Grp(PreStk/S) then
α∗ : Shv(G)→ Shv(H) is monoidal. Indeed, write G →̃ colimi∈I Gi, H →̃ colimj∈J Hj

as above. Then for any i ∈ I the map Gi → G→ H factors through Hj ↪→ H for some
j by ([47], 1.2.6). Besides, the functors Shv(Gi)→ Shv(Hj)→ Shv(H) are monoidal,
and form a compatible family giving a monoidal functor α∗.

For C ∈ Shv(G)−mod and a character local system χ on C we have

CG,χ = FunShv(G)(Shv(S), Cχ−1) →̃ lim
i∈Iop

CGi,χ

as in ([47], 1.3.8). (It is more convenient to twist the action of Shv(G) on Shv(S), that
is, get a new monoidal functor Shv(G) → Shv(S) using a character local system on

G. Namely, if G
v→ H

u→ S is a homomoprhism of group prestacks over S, where H
is a group scheme of finite type, and χ is a character local system on H, we get the
monoidal functor K 7→ u∗(v∗(K)⊗ χ)).
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Assume in addition that each Gi is a prounipotent group scheme over S. Then each
oblvGi,χ : CGi,χ → C is fully faithful, and for i→ j in I the corresponding functors

CGj ,χ → CGi,χ oblv→ C

are fully faithful, and limi∈Iop C
Gi,χ amounts to the intersection ∩i∈ICGi,χ in C by

([43], 2.7.7), because the forgetful functor DGCatcont → 1− Cat preserves limits. The
natural functor oblvG,χ : CG,χ → C is fully faithful, it admits a (maybe discontinuous)

right adjoint given by lim
i∈Iop

AvGi,χ
∗ by Lemma 1.2.12 of this file.

1.3.13. Let α : S′ → S be a morphism in Schft, Y → S be a prestack locally of finite
type over S, G be a group scheme of finite type and smooth over S. Assume G acts
on Y over S. Let G′, Y ′ be obtained from G,Y by the base change via α. Let χ be a
character local system on G, χ′ its ∗-restriction to G′. Let ᾱ : Y ′ → Y , β : G′ → G be
natural maps.

The functor β! : Shv(G) → Shv(G′) is monoidal, it actually induces a functor
Shv(S′)⊗Shv(S) Shv(G)→ Shv(G′). For D-modules this kind of sheaves was discussed
in ([31], Sect. 1.6).

The functor ᾱ! : Shv(Y )→ Shv(Y ′) commutes with the actions of Shv(G), where it
acts on Shv(Y ′) via β! : Shv(G)→ Shv(G′).

It is not true in the constructible context that Shv(G) ⊗Shv(S) Shv(S′) →̃Shv(G′),
already for S = Spec k.

The functor Shv(Y )G,χ → Shv(Y ′)G
′,χ′ can be defined as the functor

(21) ((f∗ωS)⊗ χ)− comod(Shv(Y ))→ ((f ′∗ωS′)⊗ χ′)− comod(Shv(Y ′))

Here f : G → S, f ′ : G′ → S are the projections. The latter functor is induced by ᾱ!.
Indeed,

β!(f∗ωS)⊗ χ) →̃ (f ′∗ωS′)⊗ χ′

naturally. In details, ᾱ! : Shv(Y )→ Shv(Y ′) is a map of Shv(G)-modules. So, for any
coalgebra A in Shv(G), the functor ᾱ! upgrades to a functor A − comod(Shv(Y )) →
A− comod(Shv(Y ′)) by ([43], 3.0.49).

Since the colimits in a topos are universal, Y ′/G′ →̃ (Y/G)×S S′ in PreStklft canon-
ically. In particular, we have the projection α̃ : Y ′/G′ → Y/G. It gives the functor
α̃! : Shv(Y/G)→ Shv(Y ′/G′). For χ trivial the functor α̃! identifies with (21).

We may also consider the Shv(S′)-linear functor

u : Shv(S′)⊗Shv(S) FunShv(G)(Shv(S), Shv(Y ))→ Shv(Y ′)

coming from the Shv(S)-linear functor

FunShv(G)(Shv(S), Shv(Y ))
◦f∗→ FunShv(G)(Shv(G), Shv(Y )) →̃Shv(Y )

ᾱ!

→ Shv(Y ′)

Here f : G→ S. Then u is Shv(G′)-linear? I think so, but don’t see a formal proof!!!
Then by adjointness ([43], 9.2.56), it gives a Shv(S)-linear functor

FunShv(G)(Shv(S), Shv(Y ))→ FunShv(G′)(Shv(S
′), Shv(Y ′))
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1.3.14. Let us convent that by a unipotent group scheme over S ∈ Schft we mean in
particular, that this group scheme is smooth over S. The analog of Lemma 1.2.14 holds
also over a base:

Lemma 1.3.15. Let S ∈ Schft, U be a pro-unipotent group scheme over S, U =
limi∈Iop Ui, where Ui is a unipotent smooth group scheme of finite type over S, I is
filtered, for i→ j in I, the map fij : Uj → Ui is smooth affine surjective homomorphism
of group schemes over S. Let p : U → S be the projection. Then p∗ : Shv(S)→ Shv(U)
in the constructible context admits a left adjoint (p∗)L : Shv(U)→ Shv(S). Moreover,
((p∗)L)∨ : Shv(S)→ Shv(U) identifies with the right adjoint to p∗ : Shv(U)→ Shv(S).
We used here the self-duality on Shv(U) from ([47], 1.1.10). In addition, (p∗)L◦p∗ → id
is the identity, so p∗ ◦ (p∗)R → id is the identity.

Proof. Same proof, we have to replace dimUi by di, where Ui → S is smooth of relative
dimension di. □

Lemma 1.3.16. Let S ∈ Schft, p : G→ S be a placid pro-smooth group scheme over

S. We have for K ∈ Shv(G), F ∈ Shv(S) naturally (p∗F ) ∗ K →̃ p∗(F ⊗! p∗K). So,
p∗ : Shv(S)→ Shv(G) is a morphism in Shv(G)−mod naturally (that is, the left-lax
Shv(G)-monoidal structure on p∗ is strict).

Similarly for the left action of Shv(G), we have K ∗ (p∗F ) →̃ p∗(F ⊗! p∗K), so we
may view p∗ as a map in Shv(G)−mod− Shv(G), the category of bimodules.

Proof. 1) First, assume p : G → S is a smooth group scheme of finite type over S, of
relative dimension d over S. Then m × pr2 : G ×S G → G ×S G is an isomorphism.
Here m : G ×S G → G is the product. So, for K ∈ Shv(G), m∗ pr

∗
2K →̃ p∗p∗K.

For K ∈ Shv(G), F ∈ Shv(S) we get for q : G ×S G → G × G the isomorphism
q!((p∗F )⊠K) →̃ pr∗2((p

!F )⊗! K). It gives

(p∗F ) ∗K →̃m∗q
!((p∗F )⊠K) →̃m∗ pr

∗
2((p

!F )⊗! K) →̃ p∗p∗((p
!F )⊗! K)

By the projection formula, p∗((p
!F )⊗! K) →̃F ⊗! (p∗K), and we are done.

2) The general case. The map p∗ is left-lax monoidal. This gives a canonical map
p∗(F ⊗! p∗K)→ (p∗F ) ∗K. We check it is an isomorphism. We have a diagram, where
both squares are cartesian

G×G q← G×S G
m→ G

↓ p×id ↓ pr2 ↓ p
S ×G ← G

p→ S

Now we apply ([46], Lemma 0.0.19, 0.0.20) to get the desired base change. To see that
the assumptions of Lemma 0.0.20 holds, we may write G = limi∈Iop Gi, Gi is a smooth
group scheme of finite type over S, I is filtered, and for i → j the transition map
Gj → Gi is a smooth affine surjective morphism of group schemes over S. Then the
left square is a limit over Iop is the cartesian squares

Gi ×Gi
q← Gi ×S Gi

↓ pi×id ↓ pr2

S ×Gi
b← Gi
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So, q!(p∗F ⊠K) →̃ pr∗2 b
!(F ⊠K). We have b!(F ⊠K) →̃ (i∗F ) ∗K, where i : S → G

is the unit section (this is the usual Shv(S)-module structure on Shv(G)). Further,
m∗ pr

∗
2 →̃ p∗p∗. Finally, p∗((i∗F )∗K) →̃F ⊗! p∗K, as p∗ is monoidal. We are done. □

Let now U → S be as in Lemma 1.3.15 . Consider the adjoint pair p∗ : Shv(U) ⇄
Shv(S) : (p∗)

R in the constructible context. This is not an adjoint pair in Shv(U)−mod
in general, as we have seen above. Let C ∈ Shv(U)−mod.

The functor oblvU : CU → C does not admit a left adjoint in the constructible
context in general. This happens already for S = Spec k and U = Ga.

1.3.17. Let S ∈ Schft, f : G → S be a placid prosmooth group scheme over S, C ∈
Shv(G) −mod. Arguing as in Proposition 1.3.4 and using Lemma 1.3.16 in addition,
one shows that cosimplicial category [n] 7→ FunShv(S)(Shv(G)

⊗n
Shv(S), C) satisfies the

comonadic Beck-Chevalley conditions. So, the functor oblvG : CG → C is comonadic,
and the corresponding comonad is c 7→ (f∗ωS) ∗ c.

More generally, if f : G → S is a placid group ind-scheme over S, C ∈ Shv(G) −
mod then CG → C is comonadic by ([36], 4.7.5.1), but we can say less about the
corresponding comonad.

1.3.18. Let S ∈ Schft, I filtered, U ∈ Grp(PreStk/S) a placid ind-scheme over S
written as U →̃ colimi∈I Ui, where Ui → S is a pro-unipotent placid group scheme over
S, for i→ j in I the map Ui → Uj is a placid closed immersion, and a homomorphism
of group schemes. Let C ∈ Shv(U)−mod.

The forgetful functor oblvUi : C
Ui → C is fully faithful for any i. If it admits a left

adjoint AvUi
! then the fully faithful embedding CU →̃ limi∈Iop C

Ui → C also admits a

left adjoint AvU! by (HTT, 5.5.4.18) as in Section 1.2.14-1.2.15 of this file. In this case

by Lemma 1.2.15, AvU! →̃ colimi∈I Av
Ui
! .

1.3.19. Let S be a scheme of finite type, f : Y → S a map in PreStklft which is ind-
schematic of ind-finite type say. Let U ∈ Grp(PreStk/S) be written as U = colimi∈I Ui,
where Ui is a prounipotent placid group scheme over S, for i → j in I, fij : Ui → Uj
is a placid closed immerion and a homomorphism of group schemes over S. Assume U
acts on Y over S, and the action is transitive on each fibre of f . Besides, there is a
section s : S → Y , whose stabilizer is a prounipotent placid closed subscheme of U .

Then f ! : Shv(S) → Shv(Y )U is an equivalence? This kind of claim was used in
([26], 1.4.2). What are the precise assumptions to require???

We apply Proposition 1.3.4 of this file. Namely, consider first the following case: let
f : Y → S be a morphism in Schft, p : U → S a unipotent group scheme of finite
type over S, U acts on Y over S, and the action is transitive over each fibre of f . Let
s : S → Y be a section of f , whose stabilizer in U is a closed subgroup scheme U ′ ⊂ U
over S. Here U ′ is defined as U ×Y×Y Y , namely by the ”equation” us(ū) = s(ū) for
u ∈ U , here ū ∈ S is the projection of u. By Proposition 1.3.4, Shv(Y )U →̃Shv(Y/U).

The diagram U → Y → S yields by passing to the stack quotients the diagram S
s̄→

Y/U
f̄→ S with f̄ s̄ = id. By the assumption, Y/U →̃S/U ′, where the action of U ′ on S

trivial. Since U ′ is unipotent, the map s̄ yields an equivalence s̄! : Shv(S/U ′) →̃Shv(S).
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We want a version of this result for U ∈ Grp(PreStk/S) a placid ind-scheme over S
as in the beginning of this section.

1.3.20. Let S ∈ Schft separated, G ∈ Grp(PreStk/S) be a relative placid ind-scheme
over S written as G = colimi∈I Gi in PreStk/S , where I is filtered, Gi is a placid
prounipotent group scheme over S, for i → j in I the map Gi → Gj is a placid
closed immersion, and a homomorphism of group schemes over S. Assume 0 ∈ I is
an initial element, and G0 → S is a prounipotent group scheme over S. Recall that
Shv(G/G0)

G ⊂ Shv(G/G0) is fully faithful. Let ī : S → G/G0 be the canonical section.

Lemma 1.3.21. Under the assumptions of Section 1.3.20, the composition

Shv(G/G0)
Shv(G) ↪→ Shv(G/G0)

ī!→ Shv(S)

is an equivalence.

Proof. (compare with [33], Lemma B.4.1). We have Shv(G/G0) →̃ limi∈Iop Shv(Gi/G0)
with respect to the !-pullbacks, and Shv(G/G0) →̃ colimi∈I Shv(Gi/G0) via ∗-pushforwards.
So,

Shv(G/G0)
Shv(G) →̃ lim

[n]∈∆
lim
j∈Iop

Fun(Shv(Gj)
⊗n ⊗ Shv(S), Shv(G/G0))

Consider the category Fun([1], I). Note that the map I → Fun([1], I) sending i to

(i
id→ i) is cofinal. Indeed, for any i, Ii/ is contractible. For each j we may write

Shv(G/G0) →̃ limi∈(Ij/)op Shv(Gi/G0), and the above limit identifies with

lim
[n]∈∆

lim
j∈Iop,i∈(Ij/)op

Fun(Shv(Gj)
⊗n ⊗ Shv(S), Shv(Gi/G0)) →̃

lim
[n]∈∆

lim
j∈Iop

Fun(Shv(Gj)
⊗n ⊗ Shv(S), Shv(Gj/G0))

Now fix j and calculate

lim
[n]∈∆

Fun(Shv(Gj)
⊗n ⊗ Shv(S), Shv(Gj/G0)) →̃Shv(Gj/G0)

Gj

By assumption, Gj/G0 is a scheme of finite type over S. Pick a placid closed subgroup
H ⊂ G0 such that H ⊂ Gj is normal. So, Gj/H is a group scheme of finite type
over S, and the Gj-action on Gj/G0 factors through an action of Gj/H. Then H is
also prounipotent placid group scheme over S. For the projection p : Gj → Gj/H the
functor p∗ : Shv(Gj)→ Shv(Gj/H) is monoidal. The Shv(Gj)-action on Shv(Gj/G0)
factors through a Shv(Gj/H)-action. The prestack quotient of Gj/G0 by Gj/H iden-
tifies with B(G0/H), and Shv(B(G0/H)) →̃Shv(S). Our claim follows from the next
lemma. □

Lemma 1.3.22. Let S ∈ Schft, 1 → U → G → G1 → 1 an exact sequence of placid
prosmooth group schemes over S, where U ↪→ G is a placid closed immersion, and U
is a prounipotent group scheme over S. Let E ∈ Shv(G1) − mod, which we view by
restriction as Shv(G)-module. Then CG →̃CG1 canonically.
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Proof. Let p : G → S and p1 : G1 → S be the projections. By Section 1.3.17,
CG1 →̃ p∗1ωS − comod(E) and CG →̃ p∗ωS − comod(E). We have a canonical isomor-
phism of the corresponding comonads on E, because for the projection h : G→ G1 we
have h∗h

∗p∗1ωS →̃ p∗1ωS . □

1.3.23. We generalize the situation of Section 1.3.13 as follows. Let α : S′ → S be a
map in Schft, Y → S be a prestack locally of finite type over S. Let G ∈ Grp(PreStk/S)
be a placid ind-scheme written asG = colimi∈I Gi, where I is filtered, Gi → S is a placid
prosmooth group scheme over S, for i → j in I the map Gi → Gj is a placid closed
immersion, and a homomorphism of group schemes. Let ᾱ : Y ′ → Y and β : G′ → G be
obtained by the base change via α. Set G′i = Gi ×S S′, so G′ →̃ colimi∈I G

′
i in PreStk.

Assume G acts on Y over S.
The functor ᾱ! yields a functor Shv(Y )G → Shv(Y ′)G

′
defined as follows. First, for

each i ∈ I, we have a functor Shv(Y )Gi → Shv(Y ′)G
′
i defined as in Section 1.3.13 by

(21). Namely, let pi : Gi → S, p′i : G
′
i → S′ be the projections, βi : G

′
i → Gi be obtained

from Gi by the base change S′ → S. Since Gi is prosmooth over S, β!ip
∗
iωS →̃ (p′i)

∗ωS′

by ([46], 0.0.21). The functor ᾱ! is Shv(Gi)-linear, where Shv(Gi) acts on Shv(Y
′) via

β!i : Shv(Gi)→ Shv(G′i). This gives the functor

Shv(Y )Gi →̃ p∗iωS − comod(Shv(Y ))→ (p′i)
∗ωS′ − comod(Shv(Y ′)) →̃Shv(Y ′)G

′
i

Set vi = p∗iωS , this is a coalgebra in Shv(G). The coalgebra structure comes from
the fact that p∗i is left-lax monoidal. For i→ j in I write fij : Gi ↪→ Gj for the closed
immersion. If i→ j is a map in I then we have a morphism of coalgebras vj → (fij)∗vi
in Shv(G) for any of the 4 sheaf theories. In the constructible context it is given by
id→ (fij)∗(fij)

∗. In other contexts it comes from the natural map

ωS → (pj)∗(fij)∗p
∗
iωS →̃ (pi)∗p

∗
iωS

The fact that this is indeed a morphism of coalgebras comes from the fact that the
morphism p∗j → (fij)∗p

∗
i is a morphism of left-lax functors, so automatically gives a

morphism of coalgebras when evaluated on a coalgebra by ([43], Example in 3.0.12).
It yields a functor (vj) − comod(Shv(Y )) → (vi) − comod(Shv(Y )). The diagram

commutes

(vi)− comod(Shv(Y )) → (β!vi)− comod(Shv(Y ′))
↑ ↑

(vj)− comod(Shv(Y )) → (β!vj)− comod(Shv(Y ′))

So, we get a morphism of inverse systems and passing to the limit, we get a functor

Shv(Y )G →̃ lim
i∈Iop

Shv(Y )Gi → lim
i∈Iop

Shv(Y ′)G
′
i →̃Shv(Y ′)G

′

1.3.24. In practice, we deal especially with the following case. Let α : S′ → S be a
map in Schft, G ∈ Grp(PreStk/S) be a placid ind-scheme written as G = colimi∈I Gi,
where I is filtered, Gi → S is a placid prounipotent group scheme over S, for i → j
the map Gi → Gj is a placid closed embedding and a homomorphism of group schemes
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over S. Let Y → S be an ind-scheme of ind-finite type with an action G×S Y → Y of
G over S. Let G′ = G×S S′, Y ′ = Y ×S S′. Recall that

Shv(Y )G →̃ lim
i∈Iop

Shv(Y )Gi .

Here Shv(Y )Gi ⊂ Shv(Y ) is a full subcategory, and the above limit amounts to the
intersection (by [43], 2.7.7).

For each i we may write Y →̃ colimj∈J Yj , where Yj ⊂ Y is a closed subscheme of
finite type, for j → j′ in J the map hjj′ : Yj → Yj′ is a closed immersion, and Yj is

stable under the Gi-action on Y . Then Shv(Y )Gi →̃ limj∈Jop Shv(Yj)
Gi . For j → j′

in J the functor h!jj′ : Shv(Yj′) → Shv(Yj) sends Shv(Yj′)
Gi to Shv(Yj)

Gi as for any

(C ′ → C) ∈ Shv(Gi)−mod. Let G′i = Gi ×S S′, Y ′j = Yj ×S S′ for j ∈ J .
The additional phenimenon is that on each Yj the Gi-action factors through an action

of some finite dimensional quotient group scheme Gi → Gi,m, so that by Lemma 1.3.22

Shv(Yj)
Gi →̃Shv(Yj)

Gi,m

Assume that on both Yj , Yj′ the Gi-action factors through Gi → Gi,m. Then we have
the cartesian square

Yj
hjj′→ Yj′

↓ ↓

Yj/Gi,m
h̄jj′→ Yj′/Gi,m,

and the functor Shv(Yj′)
Gi → Shv(Yj)

Gi idenifies with

h̄!jj′ : Shv(Yj′/Gi,m)→ Shv(Yj/Gi,m)

In this case the functor Shv(Y )Gi → Shv(Y ′)G
′
i is also geometric essentially. Namely,

it suffices to understand each functor Shv(Yj)
Gi → Shv(Y ′j )

G′i . Let G′i,m = Gi,m×S S′.
Then we have a canonical isomorphism of prestacks (Yj/Gi,m) ×S S′ →̃Y ′j /G

′
i,m. So,

for the projection h̄ : Y ′j /G
′
i,m → Yj/Gi,m we get the desired functor

h̄! : Shv(Yj)
Gi →̃Shv(Yj/Gi,m)→ Shv(Y ′j /G

′
i,m) →̃Shv(Y ′j )

G′i

Important addition: assume that α : S′ → S is a closed immersion in Schft. Let
Y → S be an ind-scheme of ind-finite type over S, Y →̃ colimi∈I Yi with I small filtered,
Yi ↪→ Yj a closed immersion in Schft. Let G be a placid prosmooth group scheme over
S acting on Y over S. Set G′ = G×S S′, Y ′ = Y ×S S′. Then the so obtained functor

Shv(Y )G ⊗Shv(S) Shv(S′)→ Shv(Y ′)G
′

is an equivalence (for both D-modules and the constructible context).
Proof: we may assume each Yi is G-stable. The G-action on each Yi factors through

some finite type smooth quotient group scheme Gi over S such that Ker(G → Gi) is
prounipotent over S. Then (Yi/Gi)×S S′ →̃Y ′i /G

′
i, so

Shv(Yi/Gi)⊗Shv(S) Shv(S′)→ Shv(Y ′i /G
′
i)

is an equivalence by ([46], 0.3.1). Here G′i = Gi ×S S′. Thus,

Shv(Yi)
G ⊗Shv(S) Shv(S′)→ Shv(Y ′i )

G′
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is an equivalence. Since Shv(S′) is dualizable in Shv(S)−mod, we get

Shv(S′)⊗Shv(S) lim
i∈Iop

Shv(Yi)
G →̃ lim

i∈Iop
Shv(S′)⊗Shv(S) Shv(Yi)G →̃

lim
i∈Iop

Shv(Y ′i )
G′ →̃Shv(Y ′)G

′

We are done. □

Claim 1 Let S ∈ Schft, f : Y → S be a map in PreStklft. Let G be a placid
prosmooth group scheme over S acting on Y over S. Let α : S′ → S be a closed
immersion, G′ = G×S S′, Y ′ = Y ×S S′. Then one has canonically in Shv(S′)−mod

Shv(Y )G ⊗Shv(S) Shv(S′) →̃Shv(Y ′)G
′
.

Proof. Let f ′ : Y ′ → S′ be obtained from f by the base change α : S′ → S. Let
ᾱ : Y ′ → Y and β : G′ → G be the natural maps. By Section 1.3.17, one has
canonically Shv(Y )G →̃ f∗ωS − comod(Shv(Y )). By ([46], 0.3.1), one has canonically

Shv(Y )⊗Shv(S) Shv(S′) →̃Shv(Y ′).

The comonad f∗ωS on Shv(Y ) is Shv(S)-linear. Now apply ([46], Lemma 0.3.6). It
gives

(f∗ωS − comod(Shv(Y )))⊗Shv(S) Shv(S′) →̃β!f∗ωS − comod(Shv(Y ′))

Finally, β!f∗ωS →̃ (f ′)∗ωS′ by ([46], 0.0.21), and

(f ′)∗ωS′ − comod(Shv(Y ′)) →̃Shv(Y ′)G
′

canonically by Section 1.3.17. □

Corollary 1 Assume S →̃ colimj∈J Sj in PreStk with Sj ∈ Schft such that for
j → j′ in J the transtion map Sj → Sj′ is a closed immersion. Let Y → S be a map
in PreStklft. Assume G is a placid prosmooth group scheme over S, which means by
definition that for each j, G×S Sj → Sj is a placid prosmooth group scheme over Sj .
Assume G acts on Y over S. Then we get a sheaf of categories on S given by the
compatble collection of Shv(Y ×S Sj)G×SSj ∈ Shv(Sj) − mod. This works for both
D-modules and the constructible context.

Claim 2. Let S ∈ Schft, f : Y → S be a map in PreStklft. Let G → S be a placid
group ind-scheme written as G →̃ colim

i∈I
Gi, where I is small filtered, Gi is a placid

prosmooth group scheme over S, and for i→ j in I the map Gi → Gj is a placid closed
immersion and a homomorphism of group schemes over S. Assume G acts on Y over
S. Let α : S′ → S be a closed immersion. Set Y ′ = Y ×S S′, G′ = G×S S′. Then one
has canonically

Shv(Y )G ⊗Shv(S) Shv(S′) →̃Shv(Y ′)G
′

in Shv(S′)−mod.

Proof. One has Shv(Y )G →̃ lim
i∈Iop

Shv(Y )Gi by ([47], 1.3.8). Recall that Shv(S′) is du-

alizable in Shv(S)−mod. So,
Shv(Y )G ⊗Shv(S) Shv(S′) →̃ lim

i∈Iop
Shv(Y )Gi ⊗Shv(S) Shv(S′)
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For each i by Claim 1 just above we get

Shv(Y )Gi ⊗Shv(S) Shv(S′) →̃Shv(Y ′)G
′
i

with G′i = Gi ×S S′. Finally,

lim
i∈Iop

Shv(Y ′)G
′
i →̃Shv(Y ′)G

′

in Shv(S′)−mod. □

Claim 3 Let α : S′ → S be a closed immersion in Schft, Y → S be a ind-scheme of
ind-finite type over S, Y ′ = Y ×S S′. Let G be a placid prosmooth group scheme over
S acting on Y over S. Assume Y →̃ colim

i∈I
Yi, where I is small filtered, and for i → j

in I the map Yi → Yj is G-equivariant closed immersion in Schft. Let ᾱ : Y ′ → Y be
obtained by base change from α. Let G′ = G×S S′. Then the diagram commutes

Shv(Y )G
ᾱ!

→ Shv(Y ′)G
′

↓ oblv[dimrel] ↓ oblv[dimrel]

Shv(Y )
ᾱ!

→ Shv(Y ′)

Proof. The functor in the top row is obtained by passing to the limit over i ∈ Iop with

respect to the !-restrictions in the functors Shv(Yi)
G ᾱ!

i→ Shv(Y ′i )
G, where ᾱi : Y

′
i → Yi

is obtained from α by the base change Yi → S. So, the claim follows from the fact that
forr each i the diagram commutes

Shv(Yi)
G ᾱ!

i→ Shv(Y ′i )
G′

↓ oblv[dimrel] ↓ oblv[dimrel]

Shv(Yi)
ᾱ!
i→ Shv(Y ′i )

Indeed, give i pick a quotient smooth group scheme of finite type G → G0 such that
Ker(G → G0) is prounipotent group scheme over S, and the G-action on Yi factors
through G0. Then for G′0 = G0 ×S S′ the square is cartesian

Y ′i
ᾱi→ Yi

↓ ↓
Y ′i /G

′
0

ᾱi→ Yi/G0

and dim. rel(G0/S) = dim. rel(G′0/S
′). □

1.3.25. More general character local systems. Let S ∈ Schft, let G → S be a placid
group ind-scheme over S written as G →̃ colimi∈I Gi, where Gi is a placid group scheme
over S, and for i → j in I the map βij : Gi → Gj is a placid closed immersion (over
S), and a homomorphism of group schemes over S.

Assume we are in the constructible context. By ([46], 0.0.53), each (Shv(Gi),⊗) ∈
CAlg(DGCatcont). Pick a map i → j in I, let βij : Gi → Gj be the transition map.
Let E be a character local system on Gj in the usual sense, so for m : Gj ×S Gj → Gj
one has m∗E →̃ pr∗1E ⊗ pr∗2E, and for the unit section u : S → Gj the local system
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u∗E is trivialized. Then β∗ijE is a character local system on Gi. Moreover, the functor

Shv(Gj)→ Shv(Gj),K 7→ K ⊗ E is monoidal??
Assume for each i we are given a character local system Ei on Gi with an isomor-

phism β∗ijEj →̃Ei of character local systems. Consider the self-functors Shv(Gi) →
Shv(Gi),K 7→ K ⊗ Ei. These functors are compatible with the direct images transi-
tion functors (βij)∗, because for K ∈ Shv(Gi) we have ((βij)∗K)⊗Ej →̃ (βij)∗(K⊗Ei)
canonically by ([46], 0.0.55). So, passing to the colimit, they yield a functor of the
tensor product on Shv(G) by the projective system {Ei}. My hope is that the latter
functor is monoidal.

For example, if each Gi is a scheme of finite type then each functor Shv(Gi) →
Shv(Gi),K 7→ K ⊗ Ei is monoidal. In this case passing to the colimit over i ∈ I in
Alg(DGCatcont) the above functors yield the monoidal functor of the tensor product
on Shv(G) by the projective system {Ei}.

1.3.26. An idea coming from ([24], 2.5.7). Let Y be an ind-scheme of ind-finite type,
G be a placid group scheme acting on Y . Write G →̃ limi∈Iop Gi, where I is small
filtered, Gi is a group scheme of finite type, and for i → j in I, Gj → Gi is smooth
affine surjective. Let Ki = Ker(G→ Gi). We assume Ki prounipotent for i ̸= 0, where
0 ∈ I is initial (it seems this is automatic). Then the essential images of the functors
oblv : Shv(Y )Ki → Shv(Y ) for i ∈ I generate Shv(Y ).

Indeed, let Y ′ ⊂ Y be a closed G-invariant subscheme of finite type. Then G acts
on Y ′ through a quotient Gi for some i. So, Ki acts trivially on Y ′. We see that
Shv(Y ′) →̃Shv(Y ′)Ki ⊂ Shv(Y )Ki a full subcategory. The claim follows.

For each i consider the right adjont AvKi
∗ : Shv(Y )→ Shv(Y )Ki . We conclude that

the functor Shv(Y )→
∏
i Shv(Y )Ki whose i-th component is AvKi

∗ is conservative, so

the intersection of kernels of AvKi
∗ is zero.

1.3.27. For 8.2.7. The following points from [24] need an explanations. In the nota-
tions of [24] it is claimed in (loc.cit., 2.5.3) that if j ≥ 1 then Ij = (Ij ∩ L+(B−))(Ij ∩
L(N)). This follows from the Iwahori decomposition of ([34], Section 3). Namely,

◦
Ij = (L+(N−) ∩Kj)(L

+(T ) ∩Kj)L
+(N)

(see also [57], 2.2.6). Recall that here Kj = Ker(L+(G) → L+(G)j), and L+(G)j has

k-points Hom(k[t]/tj , G). By definition,
◦
Ij is the preimage of L+(N)j under L

+(G)→
L+(G)j and I

j = Adt−jρ(
◦
Ij). Note also that

◦
Ij = KjL

+(N). Now

Adt−jρ(L+(N−) ∩Kj) ⊂ L+(N−)

because for any negative root α̌ and the corresponding root subgroup xα̌ : A1 → N−

for y ∈ tjO we have t−jρxα̌(y)t
jρ = xα̌(t

−⟨α̌,jρ⟩y) ∈ xα̌(O). So,
Ij ⊂ L+(N−)(L+(T ) ∩Kj)Adt−jρ(L+(N))

1.3.28. in ([24], 2.5.7) the following is used. If D,Cj ∈ DGCatcont for j ∈ J , where
J is a small set, let fj : Cj → D be continuous functors with right adjoints fRj . Then∏
j f

R
j : D →

∏
j Cj is the right adjoint to the functor f : ⊕jCj → D whose j-th

component is fj .
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1.3.29. Assume given a diagram X
i→ Y

p→ X
π→ Z in PreStklft with pi →̃ id. Let

f = πp. Here X is a retract of Y . If f ! : Shv(Z) → Shv(Y ) is fully faithful then
π! : Shv(Z)→ Shv(X) is also fully faithful as a retract of f !. A similar idea may work
when instead of usual sheaves, we consider sheaves that change under the action by
some group scheme by a given character local system.

1.4. For 8.3.3. The argument about the ”retract of a fully faithful functor” is wrong.
We should say instead: Ranx is universally homologically contractible, hence the !-
pullback along the projection Ranx×Grω

ρ

G,x → Grω
ρ

G,x is fully faithful. The claim follows.

1.4.1. For 8.4.1. We may introduce S0
Ran ⊂ S̄0

Ran, the open subfunctor given by the

property that each map ω⟨ρ,λ̌⟩ → Vλ̌FG
is regular and has no zeros over X. So, we have

the projections S̄0
Ran → Bun

ωρ

N and S0
Ran is the preimage of Bunω

ρ

N under this map. Any
object of Whitq,Ran(G)

≤0 is the extension by zero under S0
Ran ⊂ S̄0

Ran.
Verification of the shift in the formula: The claim that !-restriction of VacWhit,Ran

to Grω
ρ

G,x is W 0,! is equivalent to δ!t0W
0,! →̃ e. For the corresponding map χ̄λ : Sλ → A1

one has
◦
W λ →̃ (χ̄λ)!Lψ[2− ⟨2ρ̌, λ⟩],

where Lψ is the Artin-Schreier sheaf (by Thm. 7.4.2). So, δ!t0W
0,! →̃ e indeed.

1.4.2. Recall that for a prestack X ∈ PreStklft the property of X → pt being univer-
sally homologically contractible is equivalent to homologically contractible, that is, to
the fact that the !-pullback Vect→ Shv(X) is fully faithful (equivalently, RΓc(X, ω)→ e
is an isomorphism).

Let us prove ([26], Lemma A.2.5). Let f : X1 → X2 be a map in PreStklft, which is
pseudo-proper. We claim that f is universally homologically contractible iff all its fibres
(over field valued points including extensions of fields) are homologically contractible.

In one direction this is clear: after base change for x ∈ X2 the map (X2)x → x
is universally holologically contractible. Conversly, assume each fibre is homologically
contractible. Let Y → X2 be a map with Y ∈ Schft. Let fY : Y → Y ×X2 X1

be obtained by base change. By the projection formula, it suffices to show that the
map (fY )!f

!
Y ω → ω is an isomorphism on Y ×X2 X1. For this it suffices to show that

it becomes an isomorphism after any base change by a field valued point Spec k′ →
Y ×X2 X1. Our claim follows from the fact that the pseudo-proper maps f satisfy the
base change (f!, g

!) for any map g.

1.5. For Section 9.

1.5.1. For 9.1.1. The quotients L+(G)x\GrG,x and L+(G)ω
ρ

x \Grω
ρ

G,x are naturally
isomorphic.

About the normalization of the action, is it canonical? Example: let G ⊂ G′ be a
closed subgroup of an algebraic group G′, G′ acts on Z ∈ PreStklft on the right. Here

say G,G′ ∈ Schft. Then Shv(G′/G)G acts on the right on Shv(Z/G) as follows. Write
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G\G′/G for the quotient of G′/G by G in the sense of prestacks. We have the diagram

Z/G
p1← Z ×G (G′/G)

act→ Z/G
↓ p2

G\G′/G

Given F ∈ Shv(Z/G),K ∈ Shv(G\G′/G) one may let F ∗K = act∗(p1×p2)!(F⊠K).
A similar convolution gives a monoidal structure on Shv(G\G′/G), so Shv(G\G′/G) ∈
Alg(DGCatcont). This defines a right action of Shv(G\G′/G) on Shv(Z/G).

But we actually mean a different normalization, which is well-adapted to the perverse
t-structure on G′/G. Namely, assume now G′ is a placid ind-scheme, G a placid group
scheme closed in G′. For F ∈ Shv(Z/G) and K ∈ Shv(G′/G)♡ for the perverse t-

structure, which is G-equivariant, we first define F ⊠̃K ∈ Shv(Z ×G (G′/G)) by the
property that for the diagram of projections

(Z/G)× (G′/G)
α← Z ×G′/G β→ Z ×G (G′/G)

and has α∗(F ⊠K) →̃β∗(F ⊠̃K). Then we let

F ∗K →̃ act∗(F ⊠̃K)

This definition is well-adapted to the case when G′ is a placid ind-scheme, and G a
placid group scheme, because the functors α∗, β∗ are well-defined.

Let p : G′/G → G\G′/G be the natural map. The functor p∗ is well-defined. Our
normalization is for K ∈ Shv(G\G′/G), F ∈ Shv(Z/G) to let F ∗K = act∗ p̄

∗(F ⊠K),
where p̄ : Z ×G (G′/G)→ (Z/G)× (G\G′/G) is the natural map.

1.5.2. For 9.2.2. The action of E′ given by (14) in this file satisfies (E′ ∗F )∗K →̃E′ ∗
(F ∗K). Thus, Ps-Id intertwines the desired actions.

1.5.3. For 9.2.3 and 9.2.4 the tensor product in the left columns makes no sense, write
× instead.

Maybe instead of ”proper push-forward” say ind-proper?
The explanation of the commutativity of the square: given S ∈ Shvq,x(G)

c,K ∈
Whitq,x(G)

c, L ∈Whitq,x(G), one has Hom(K ∗ S, L) →̃Hom(K,L ∗DV erdier invG(S)).
So,

RΓ(GrG, L⊗! Ps-Id−1(D(K ∗ S))) →̃Hom(K ∗ S, L) →̃Hom(K,L ∗ (D invG(S)))

→̃ RΓ(GrG, (L∗(D invG(S)))⊗!Ps-Id−1(DK)) →̃ RΓ(GrG, L⊗!Ps-Id−1((DK)∗D(S)))

We used that D invG(S) →̃ invGD(S). This shows that (DK) ∗ (DS) →̃D(K ∗ S).

1.5.4. For 9.3.3. Recall that χN is an object in Shv(L(N))∨, so is χλN . This is not a
problem, of course.

Line 8: we say ”χλN descends...”, this is not precise, because the map under which it
descends is not indicated. Say that λ is arbitrary, and we consider the map L(N) →
Sµ−λ, z 7→ ztµ−λ. Our nondegenerate character ev : L(N) → A1 descends under this
map to a morphism ēv : Sµ−λ → A1, and we get the object χλN ∈ Shv(Sµ−λ)∨ given

by ēv∗(Lψ). Over each closed subscheme of Sµ−λ it is a true object (the corresponding



78

functor is representable). We may also refer to ([17], 7.1.5) to explain this. So, χλN is

the analog of the function denoted by χµ−λλ in ([17], 7.1.5).
In (9.3) we again do not precise which restriction in Satq,G(V ) |Sµ−λ is meant!
By F |tµ we denote the !-fibre in (9.3).

To verify the formula (9.3) it is easier to establish it for Shv((Bun
ωρ

N )∞x) first using
the definition of the Hecke action from ([17], 5.3.6-5.3.8). We will see below that for

πx : Grω
ρ

G,x → (Bun
ωρ

N )∞x the functor π!x commutes with the right actions of Rep(H).

Let Hx be the Hecke stack classifying (FG,F
′
G, β), where FG,F

′
G are G-torsors on

X, β : FG →̃F′G is an isomorphism over X − x. We have the diagram of projections

BunG
h←← Hx

h→→ BunG

where h← (resp., h→) sends the above point to FG (resp., F′G). Set

Z = Hx ×BunG (Bun
ωρ

N )∞x,

where we used the map h→ to define the fibre product. We have the projections

(Bun
ωρ

N )∞x
′h←← Z

′h→→ (Bun
ωρ

N )∞x

extending the above projections h←, h→. Using these projections for S ∈ Sphq(G)

which is perverse on GrG and T ∈ Shv((Bun
ωρ

N )∞x) one defines (T⊠̃S)l, (T⊠̃S)r on

(Bun
ωρ

N )∞x as in ([17], 5.3.6).

For S ∈ Sphq(G) which is perverse on GrG and T ∈ Shv((Bunω
ρ

N )∞x) by definition

T ∗ S = ′h←∗ ((T⊠̃S)r)

We calculate the !-restriction of W λ,∗
glob ∗ Satq,G(V ) to (Bun

ωρ

N )=µx. To do this apply

([17], Lemma 7.2.4). As in [17], we have the substacks Zµ,?, Z?,µ′ , Zµ,µ
′
, Zµ,µ

′,λ and so
on given in ([17], 7.2.2), here µ, µ′ ∈ Λ and λ is dominant.

Let W λ
glob be the perverse sheaf on (Bun

ωρ

N )=λx for which W λ,∗
glob is its ∗-extension.

Then W λ,∗
glob ∗ Satq,G(V ) is the ∗-extension of W λ

glob ∗ Satq,G(V ), so we are calculating

the !-restriction to (Bun
ωρ

N )=µx of W λ
glob ∗ Satq,G(V ). The map

(22) ′h← : Zµ,λ → (Bun
ωρ

N )=µx

is a fibration with fibre Sλ−µ by ([17], Lemma 7.2.4). That is, if we trivialize FG
over Dx then the resulting (F′G, β) lies in Sλ−µ. On the other hand, the fibre of
′h→ : Zµ,λ → (Bun

ωρ

N )=λx identifies with Sµ−λ. Further, write Zµ,λFG
for the fibre of (22)

over (FG, κ).
We apply ([17], Lemma 7.2.7) to understand the composition

Zµ,λFG
↪→ Zµ,λ

′h→→ (Bun
ωρ

N )=λx
ev→ A1

When we identify Zµ,λFG
→̃Sλ−µ then the above function becomes χ̄λ−µµ in the notations

of ([17], 7.2.7(2)).
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So, the !-restriction to (Bun
ωρ

N )=µx of W λ
glob ∗ Satq,G(V ) is

Wµ
glob ⊗ RΓ(Sλ−µ, (∗Satq,G(V )) |Sλ−µ ⊗(χ̄λ−µµ )∗Lψ)[⟨µ− λ, 2ρ̌⟩]

for µ dominant and vanishes otherwise. Here χ̄λ−µµ : Sλ−µ → A1 is the function sending
ztλ−µG(O) to χ(µ(t)zµ(t)−1) for z ∈ L(N), and by

(∗Satq,G(V )) |Sλ−µ

we mean the !-restriction. Here Lψ is the Artin-Schreier sheaf.

Thus, the !-fibre of W λ,∗ ∗ Satq,G(V ) ∈Whitq,x(G) at t
µ is

(23) RΓ(Sλ−µ, (∗Satq,G(V )) |Sλ−µ ⊗(χ̄λ−µµ )∗Lψ)[−⟨λ, 2ρ̌⟩],

because the !-fibre of
◦
Wµ at tµ is e[−⟨µ, 2ρ̌⟩]. As in Section 9.3.4 of the ”small FLE”

paper, it is easy to see that (23) isn placed in degrees ≥ ⟨µ, 2ρ̌⟩. This means that the
functor ∗ Satq(V ) is left t-exact.

We may also compare with the 2nd displayed formula on p. 747 of the published
version of [17].

Let us calculate the ∗-restriction of W λ,!
glob ∗Satq,G(V ) to (Bun

ωρ

N )=µ. The calculation

is done in ([44], after Lemma 2.1.4). The answer is

Wµ
glob ⊗ RΓc(S

λ−µ, (∗Satq,G(V )) |Sλ−µ ⊗(χλ−µµ )∗Lψ)[⟨λ− µ, 2ρ̌⟩],

where (∗Satq,G(V )) |Sλ−µ denotes the ∗-restriction. Here

χλ−µµ (ztλ−µ) = χ(µ(t)zµ(t)−1)χλ−µµ (tλ−µ)

The complex

RΓc(S
λ−µ, (∗Satq,G(V )) |Sλ−µ ⊗(χλ−µµ )∗Lψ)[⟨λ− µ, 2ρ̌⟩]

is placed in cohomological degrees ≤ 0, this shows that W λ,!
glob ∗ Satq,G(V ) is placed in

perverse degrees ≤ 0.
The same calculated is also done in ([48], Theorem 7.1.1).
Our Grω

ρ

G,x classifies (FG, η), where FG is a G-torsor on X, η : ωρ → FG is an

isomorphism over X − x. The map πx : Grω
ρ

G,x → (Bun
ωρ

N )∞x sends it to (FG, κ), where
κ is the collection of maps

κλ̌ : ω⟨ρ,λ̌⟩ → Vλ̌FG
(∞x)

for λ̌ ∈ Λ̌+ given as

ω⟨ρ,λ̌⟩ → Vλ̌ωρ
η→ Vλ̌FG

(∞x)
We sometimes write GrG, G(O), G(F ) meaning actually their twists by ωρ. We iden-

tify GrG →̃G(F )/G(O) by the map sending FG with a trivialization η : ωρ → FG over
X − x to η−1γ ∈ G(F )/G(O) for a given γ : ωρ →̃FG |Dx .

The convolution diagram is ConvG, it is the prestack classifying G-torsors F,F′ on
X and isomorphisms η1 : ωρ→̃F′ |X−x, η2 : F′→̃F |X−x. The map m : ConvG → GrG
sends this point to (F, η2 ◦ η1).

Let C̃onvG be the prestack classifying a point of ConvG as above together with a

trivialization µ1 : ω
ρ → F′ |Dx . Let q : C̃onvG → ConvG be the map forgetting µ1.
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We identify C̃onvG →̃G(F ) × GrG via the map sending the above collection to
(η−11 µ1 ∈ G(F ), (η2µ1,F) ∈ GrG). We identify

ConvG →̃G(F )×G(O) GrG

as follows. Let G(O) act on G(F ) × GrG so that h ∈ G(O) sends (g1, gG(O)) to

(g1h
−1, hgG(O)). This gives via the above isomorphism an action of G(O) on C̃onvG.

Namely, h ∈ G(O) sends the above collection to the same collection with µ1 replaced
by µ1h

−1.
Write m1 : ConvG → GrG for the map sending the above collection to (F′G, η1). We

get the commutative diagram

GrG
m1← ConvG

m→ GrG
↓ πx ↓ ↓ πx

(Bun
ωρ

N )∞x
′h→← Z

′h←→ (Bun
ωρ

N )∞x,

where both squares are cartesian. This diagram shows that for T ∈ Shv((Bunω
ρ

N )∞x), S ∈
Shv(GrG)

L+(G) one gets π!x(T ∗ S) →̃ (π!xT) ∗ S.
If I pick a trivialization τ : ωρ →̃FG |Dx then our fibre of ′h← over (FG, κ) identifies

with Gr via the map sending a point of Z to (F′G, η
−1
2 τ). This way we get the subscheme

Sλ−µ ⊂ GrG over which we integrate.
How can we get Sµ−λ as the fibre? Consider λConvG ⊂ ConvG given by imposing

the condition that (F′G, η1) ∈ Sλ. For a point of λConvG, F
′
G gets a B-structure F′B on

X together with an isomorphism F′B ×B T →̃ωρ(−λx) on X.
The scheme m−1(tµ) classifies F′ ∈ BunG and isomorphisms η1 : ωρ →̃F′ |X−x,

η2 : F
′ →̃ωρ(−µx) |X−x such that η2η1 : ω

ρ →̃ωρ(−µx) |X−x is the identity.
For a point of λConvG ∩m−1(tµ) pick any trivialization

µ̄1 : ω
ρ(−λx) →̃F′B |Dx

of B-torsors inducing the identity on the corresponding T -torsors and define µ1 as the

composition ωρ
tλ→ ωρ(−λx) µ̄1→ F′B |Dx . Then

(F = ωρ(−µx), η2µ1) ∈ Sµ−λ

Here we view (η2µ1 : ωρ →̃F |X−x) ∈ GrG according to our above convention. This
is how you Dennis wants to identify the fibre with Sµ−λ, and gets the !-restriction
Satq,G(V ) |Sµ−λ in (9.3).

Another idea to get (9.3). The inclusion Whitq,x(G) ↪→ ShvGG(Grω
ρ

G,x) is a map of

right Rep(H)-modules, and in the constructible context has a left adjoint Av
L(N)ω

ρ
x ,χN

! .

Since Rep(H) is rigid, in the constructible context Av
L(N)ω

ρ
x ,χN

! is a strict morphism of
Rep(H)-modules, not just a left-lax morphism. So,

W λ,! ∗ Satq,G(V ) →̃ Av
L(N)ω

ρ
x ,χN

! (δtλ,Gr ∗ Satq,G(V ))[−⟨λ, 2ρ̌⟩]
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1.5.5. One more way to calculate the same expression. In the formula below we write
Sat(V ) for brevity instead of Satq,G(V ). Recall that iλ : Sλ ↪→ GrG is the inclusion.
Assume V ∈ Rep(H)c. We have

Hom(e, i!tµ(W
λ,∗ ∗ Sat(V ))) →̃Hom(δtµ ,W

λ,∗ ∗ Sat(V )) →̃

Hom(δtµ ∗ Sat(V ∗), (iλ)∗
◦
W λ) →̃HomShv(Sλ)((iλ)

∗(δtµ ∗ Sat(V ∗)),
◦
W λ)

Recall that for our χ̄λ : Sλ → A1 one has
◦
W λ →̃ (χ̄λ)!Lψ[2− ⟨2ρ̌, λ⟩]

Here χ̄λ is what is χλ0 in ”Whittaler patterns”. The composition Sλ−µ
tµ→ Sλ

χ̄λ

→ A1

equals χλ−µµ . The isomorphism Sλ−µ→̃Sλ given by multiplication by tµ identifies the
above object of Vect with

HomShv(Sλ−µ)(i
∗
λ−µ(Sat(V

∗)), (χλ−µµ )!Lψ)[2− ⟨2ρ̌, λ⟩]
The latter identifies with the Verdier dual of

RΓc(S
λ−µ, i∗λ−µ(Sat(V

∗))⊗ (χλ−µµ )∗L−1ψ )[⟨λ, 2ρ̌⟩]

Recall that D(∗Sat(V )) →̃Sat(V ∗). Thus, the result becomes

RΓ(Sλ−µ, i!λ−µ(∗Sat(V ))⊗ (χλ−µµ )∗Lψ)[−⟨λ, 2ρ̌⟩]
We recovered my formula (23) from the previous section once again.

1.5.6. For 9.3.3. Here is the proof of (9.3) of Dennis up to shift. Recall that iλ : Sλ ↪→
GrG is the inclusion. Write Nout for the group of maps X−x→ Nωρ

. Recall that Nout

is an ind-scheme of ind-finite type, and it acts transitively on Sλ. We ignore the twist
by ωρ in the notation below for this subsection.

Write χout for the composition Nout ↪→ N(F )
χ→ A1. Note that Nout ∩ tλN(O)t−λ is

the global sections onX of the group scheme of automorphisms of the B-torsor ωρ(−λx)
acting trivially on the induced T -torsor. This is also the stabilizor of tλ ∈ GrG in Nout.
Let nλ = dimNout ∩ tλN(O)t−λ. If λ ∈ Λ+ then Nout ∩ tλN(O)t−λ = N(Mλ) is the
unipotent radical of the Borel of Mλ, where Mλ ⊂ G is the standard Levi whose set of
simple roots is the set of those α̌i satisfying ⟨λ, α̌i⟩ = 0.

First, we claim that

χ!
outLψ ∗ δtλ →̃W λ,∗[⟨2ρ̌, λ⟩ − 2 + 2nλ]

Indeed, it suffices to prove this over Sλ. Let ᾱ : Nout → GrG, z 7→ ztλ. By definition,
χ!
outLψ ∗ δtλ →̃ ᾱ∗χ

!
outLψ. Consider the commutative diagram

Nout
χout→ A1

↓ α ↗ χ̄λ

Sλ,

where α(z) = ztλ ∈ Sλ, and χ̄λ(ntλ) = χ(n) for n ∈ N(F ). We have α∗ω →̃ω[2nλ].
So, over Sλ we get

χ!
outLψ ∗ δtλ →̃α∗χ

!
outLψ →̃α∗α

!(χ̄λ)!Lψ →̃ (χ̄λ)!Lψ[2nλ],
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and our formula follows.
For V ∈ Rep(H) and F = Sat(V ) consider χ!

outLψ∗δtλ ∗F . We have the associativity

and can put the parenthesis as we like here. Write Nλ
out = t−λNoutt

λ. Let χout,λ :

Nλ
out → A1 be the map sending t−λztλ to χ(z) for z ∈ Nout. Write a : GrG → GrG for

the multiplication by tλ.
Next step is the isomorphism

χ!
outLψ ∗ δtλ ∗ F →̃ a∗(χ

!
out,λLψ ∗ F )

Now the !-fibre of this complex at tµ is

i!tµ−λ(χ
!
out,λLψ ∗ F ) →̃ i!tµ−λi

!
µ−λ(χ

!
out,λLψ ∗ F )

By base change, we have

i!µ−λ(χ
!
out,λLψ ∗ F ) →̃ i!µ−λ(χ

!
out,λLψ ∗ F ′),

where F ′ is the !-restriction of F to Sµ−λ.
Note that the expression χ!

out,λLψ ∗F ′ makes sense for any sheaf on Sµ−λ, no equiv-

ariance condition on F ′ is needed. The object χ∗out,λLψ makes sense naturally as an

object of Shv(Nλ
out)
∨, or a projective system of local systems on subschemes of finite

type, cf. Sect. 1.3.25.
We have χ!

out,λLψ[2] →̃ωNλ
out
⊗ χ∗out,λLψ, where the tensor product in the RHS is in

the sense of Section 1.3.25.
Let α : Nλ

out → Sµ−λ be the map z 7→ ztµ−λ.

Lemma 1.5.7. For F ′ ∈ Shv(Sµ−λ) one has i!µ−λ(ωNλ
out
∗F ′) →̃ (α∗ω)⊗RΓ(Sµ−λ, F ′)

canonically.

Proof. The group Nλ
out acts transitively on Sµ−λ. Write Nλ

out = colimkNk, where Nk

is a unipotent group of finite type. Then ωNλ
out

= colimk ωNk
in Shv(Nλ

out). It suffices

to prove our claim after !-restriction to Nkt
µ−λ for each k. Fix such k. We may

assume that F ′ is the extension by zero under Nk′t
µ−λ ↪→ Sµ−λ for some k′. Moreover,

we assume the stabilizor of tµ−λ in Nλ
out, which is finite-dimensional, is contained in

Nk′ . We may and do assume k > k′. The inductive system m 7→ i!
Nktµ−λ(ωNm ∗ F ′)

stabilizes starting from m = k, and it suffices to calculate the !-restriction of (ωNk
∗F ′)

to Nkt
µ−λ. We have ωNk

= eNk
[2 dimNk], where eNk

is the constant sheaf on Nk, and
the !-restriction of eNk

∗ F ′ to Nkt
µ−λ is eNktµ−λ ⊗RΓ(F ′). So, for the map αk : Nk →

Nkt
µ−λ, z 7→ ztµ−λ we get ((αk)∗ω) ⊗ RΓ(F ′) →̃ i!

Nktµ−λ(ωNm ∗ F ′) for all m ≥ k, so

((αk)∗ω)⊗ RΓ(F ′) →̃ i!
Nktµ−λ(ωNλ

out
∗ F ′). The claim follows, as Nλ

out ×Sµ−λ Nkt
µ−λ →

Nkt
µ−λ identifies with αk. □

A version of the above lemma with a character is as follows. Recall that for µ ∈ Λ+,

χµ−λλ is the composition Sµ−λ
tλ→ Sµ

χ̄µ

→ A1. This is the map sending ztµ−λ to χ(tλzt−λ)

for z ∈ N(F ). Then χµ−λλ α = χout,λ.

Lemma 1.5.8. For F ∈ Shv(Sµ−λ) and µ ∈ Λ+ one has canonically

i!µ−λ(χ
!
out,λLψ) ∗ F ) →̃ (α∗α

!(χµ−λλ )!Lψ)⊗ RΓ(Sµ−λ, F ⊗! ((χµ−λλ )!DLψ))
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Proof. This follows from the general claim below. □

Lemma 1.5.9. Let N →̃ colimi∈I Ni, where Ni is a smooth group scheme of finite type,
I is small filtered, for i → j in I the map Ni → Nj is a closed subgroup scheme. Let
S be a N -homogeneous space with a k-point s ∈ S, whose stabilizor in N is a closed
unipotent subgroup of finite type. Let χ : S → H be a map, where H is a group scheme
of finite type. Let E be a character local system on H. Let q : N → S, z 7→ zs and
F ∈ Shv(S). Assume χq is a homomorphism of group ind-schemes. Then

q!χ!E ∗ F →̃ (q∗(q
!χ!E))⊗ RΓ(S, (χ!DE)⊗! F )

Proof. We may and do assume that F is the extension by zero under Nks ↪→ S for some
fixed k, as both sides are continuous functors of F . We may aslo assume the stabilizor
of s in N is contained in Nk.

Let ii : Ni ↪→ N be the embedding. Let Ni
qi→ Nis

χi→ H be obtained by restriction.
Then q∗i χ

∗
iE is a character local system on Ni, and q

!
iχ

!
iE →̃ q∗i χ

∗
iE[2 dimNi − 2 dimH].

From the cartesian square

Ni ×Ni
m→ Ni

↓ id×qi ↓ qi
Ni ×Nis

act→ Nis

For i ≥ k we see that

(q∗i χ
∗
iE) ∗ F →̃χ∗iE⊗ RΓ(Nis, F ⊗ χ∗iE−1) →̃χ∗iE⊗ RΓ(Nis, (χ

!
iDE)⊗! F )

We get RΓ(S, (χ!DE) ⊗! F ) →̃ RΓ(Nis, (χ
!
iDE) ⊗! F ), and the above isomorphism be-

comes

(q!iχ
!
iE)∗F →̃ ((qi)∗ωNi⊗!χ!

iE)⊗RΓ(S, (χ!DE)⊗!F ) →̃ ((qi)∗(q
!
iχ

!
iE))⊗RΓ(S, (χ!DE)⊗!F )

Since q!χ!E →̃ colimi∈I(ii)!i
!
iq

!χ!E →̃ colimi∈I q
!
iχ

!
iE in Shv(N), we get passing to the

colimit over i

q!χ!E ∗ F →̃ (q∗(q
!χ!E))⊗ RΓ(S, (χ!DE)⊗! F )

□

Combining with the above we obtain the following.

Proposition 1.5.10. For V ∈ Rep(H), λ ∈ Λ+, µ ∈ Λ the complex i!tµ(W
λ,∗∗Satq(V ))

vanishes unless µ ∈ Λ+. In the latter case it identifies with

RΓ(Sµ−λ, (i!µ−λSatq(V ))⊗! (χµ−λλ )!DLψ)[−⟨λ, 2ρ̌⟩ − 2nλ + 2nµ].

□

For λ, µ dominant in the above Proposition we get nλ = dimN(Mλ), nµ = dimN(Mµ).
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1.5.11. Note the following. Let λ ∈ Λ+, µ ∈ Λ, V ∈ Rep(H)♡ finite-dimensional.
Using the notations of (23), since W λ,∗ ∗ (∗Sat(V )) is not compact in Shv(GrG),

(24) i!tµ(W
λ,∗ ∗ (∗Sat(V ))

does not identify with

HomVect(i
∗
tµ(W

λ,! ∗ Sat(V ∗)), e) →̃HomShv(GrG)(W
λ,! ∗ Sat(V ∗), δtµ)

→̃HomWhitq,x(G)(W
λ,! ∗ Sat(V ∗),AvL(N)ω

ρ
x ,χN

∗ (δtµ)).

In fact, the latter complex vanishes by lemma below.

Lemma 1.5.12. For any µ ∈ Λ, Av
L(N)ω

ρ
x ,χN

∗ (δtµ) = 0.

Proof. It suffices to show that Hom(W ν,!,Av
L(N)ω

ρ
x ,χN

∗ (δtµ)) = 0 for all ν ∈ Λ+. This
is clear for ν ̸= µ. For ν = µ we show that HomShv(Sµ)(ωSµ , δtµ) = 0.

Indeed, let N(F ) = colimkNk, where Nk is a pro-unipotent group scheme, and each
Nk → Nk′ is a placid closed immersion. For each k consider Nkt

µ ⊂ Sµ. Then ωSµ =
colimk ωNktµ , and ωNktµ = e[2 dim(Nkt

µ)], so Hom(ωNktµ , δtµ) →̃ e[−2 dim(Nkt
µ)]. Thus,

HomShv(Sµ)(ωSµ , δtµ) = limk Hom(ωNktµ , δtµ) = 0.

Since
◦
Wµ →̃ (χ̄µ)∗Lψ ⊗ ωSµ up to a shift, we get HomShv(Sµ)(

◦
Wµ, δtµ) = 0. □

1.5.13. For 9.4.2. We may introduce Λ♯0 = {λ ∈ Λ♯ | ⟨λ, α̌i⟩ = 0 for all i}. Then we
may add in Lemma 9.4.2 that for λ ∈ Λ+ the elements µ, γ are defined uniquely up to

an action of Λ♯0.

1.5.14. For 9.4.6. When you write in line 5 ”expression”

W λ,∗ ∗ Satq,G(V γ) |tµ ,
precise that this is the !-fibre.

1.5.15. For 9.5.1. For the convenience of the reader, recall the following. Let A be
a torsion abelian group whose elements are of orders coprime to chark. To describe
the multiplicative A-torsors on T (also known as Kummer local systems), we have to
analyse

MapGrp(PreStk)(T,Bet(A)) →̃MapPtd(PreStk)(B(T ), B2
et(A))

This is the relative cohomology MapPreStk(B(T ), B2
et(A)) ×MapPreStk(∗,B2

et(A))
∗. Let q :

∗ → B(T ) be the natural map in PreStk. DefineK by the fibre sequenceK → A→ q∗A
in the corresponding stable category of sheaves on B(T ). The corresponding long exact
sequence in cohomology gives 0 → H2

et(B(T ),K) → H2
et(B(T ), A) → 0. The map in

the middle is an isomorphism, so

H2
et(B(T ),K) →̃ Hom(Λ, A(−1))

by ([31], Th. 3.2.6). So,

π0MapGrp(PreStk)(T,Bet(A)) →̃ Hom(Λ, A(−1))
If G is an A-gerbe over ∗, to provide its descent datum under the map ∗ → B(T ) means
essentially to provide a point of MapPtd(PreStk)(B(T ), B2

et(A)). Indeed, we may assume
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our gerbe on ∗ trivial. The corresponding multiplicative A-torsor on T is obtained as
follows: we have ΩB(T ) →̃T . So, for h : T → ∗ we get an automorphism of h∗G, which
is given by a A-torsor on T .

If E : T → Bet(A) is a Kummer local system corresponding to f : Λ → A(−1) then
for λ : Gm → T with λ ∈ Λ its restriction to Gm is a local system corresponding to
f(λ) ∈ A(−1). Namely, for n ≥ 1 coprime with chark, Gm → Gm, z 7→ zn defines
a map Gm → Bet(µn), and an element f ∈ Hom(µn, A) allows to compose it with
Bet(µn)→ Bet(A).

1.5.16. For 9.5.2, line 2: χµ0 : Sµ → Ga is Gm-equivariant, where Gm acts on Ga

by multiplication by scalars and on Sµ via ρ : Gm → T and the T -action. Here
χµ0 (zt

µ) = χ(z)χµ0 (t
µ).

In line 3 we consider the push-forward of Ψq under S
µ ∩ S−,ν → Ga, but it is better

to say here along b→ Ga, where b ⊂ Sµ∩S−,ν is a given irreducible component. Recall
here the following. Let ev : Sµ → A1 be the map sending ztµG(O) to χ(z), where
χ : L(N)ω

ρ

x → A1 is our nondegenerate character. Then for any irreducible component
b of Sµ ∩ S−,ν , the map ev : b → A1 is dominant?? For this ([25], Section 5.6) is not
sufficient.

If Ψq is trivial on a given irreducible component b ⊂ Sµ ∩ S−,ν then µ − ν ∈ Λ♯,
because Ψq is twisted T -equivariant under the Kummer local system corresponding to
b(µ− ν, ·) : Λ→ e∗(−1).

Let χµ0 : Sµ → A1 be the map sending ztµG(O) to χ(z), where χ : L(N)ω
ρ

x → A1

is our nondegenerate character. Let µ ̸= ν and b be an irreducible component of
Sµ∩S−,ν . If the map χµ0 : b→ A1 is dominant then χ0

N ⊗Ψq is nontrivial on b. Indeed,
for χµ0 : b→ A1 the complex ((χµ0 )!Ψq)⊗Lψ in usual degree ⟨µ−ν, 2ρ̌⟩−2 is twisted Gm-
equivariant under the Kummer local system corresponding to b(µ−ν, ρ) ∈ e∗(−1). This
Kummer local system can not be Lψ at the generic point. So, H⟨µ−ν,2ρ̌⟩−2(Lψ⊗(χµ0 )!Ψq)

is nontrivial over the generic point of A1. So, H
⟨µ−ν,2ρ̌⟩
c (b, χ0

N ⊗Ψq) = 0.
This shows that if χ0

N ⊗Ψq is trivial on b then both χ0
N , Ψq are trivial on b.

By ([48], Lemma 4.12.4), for an irreducible component b ⊂ Sµ ∩ S−,ν the map
χµ0 : b → A1 is dominant iff there is a vertex i of the Dynkin diagram such that
ϕi(b̄) > ⟨µ, α̌i⟩.

1.6. For Section 10.

1.6.1. For 10.1, last line. I propose to add that H is of finite type, this is the only
needed case, right? Recall that Rep(H) is rigid.

Namely, by [7], B(H) is perfect in the sense of [GR1, ch. I.3, 3.6], hence also passable
by [GR1, ch. I.3, 3.5], hence rigid by [GR1, ch. I.3, 3.4].

1.6.2. For 10.1.2. Refer to [GR1, Chapter 1, 9.3.3] for the existence of the continuous
right adjoint Ψuniv to C⊗D → C⊗Rep(H)D. The fact that Ψuniv is conservative follows
from the fact that the essential image of C ⊗D → C ⊗Rep(H)D generates C ⊗Rep(H)D
under colimits by [GR1, ch. 1, Lemma 5.4.3]. The generation claim is [GR1, ch. 1,
Lemma 8.2.6].
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1.6.3. For 10.1.2. By [GR1, ch. I.1, 3.7.7], the functor Ψuniv : C ⊗Rep(H) D → C ⊗D
is monadic. The standard totalization complex representing

FunRep(H)⊗Rep(H)(Rep(H), C ⊗D) →̃C ⊗Rep(H) D

gives the description of C ⊗Rep(H) D from 10.1.2.
For the diagonal map △: B(H)→ B(H)×B(H) one may define Reg(H) ∈ Rep(H)⊗

Rep(H) →̃ QCoh(B(H) × B(H)) as △∗ O. The functor △∗ is right-lax symmetric
monoidal, so sends algebras to algebras. So, △∗ O is an algebra.

Consider the adjoint pair m : Rep(H) ⊗ Rep(H) ⇄ Rep(H) : mR. Applying
FunRep(H)⊗Rep(H)(•, C ⊗D), we get the adjoint pair

Φuniv : C ⊗D ⇆ C ⊗Rep(H) D : Ψuniv

Now mR ◦m is the monad on A⊗A for A = Rep(H) given by the action of the algebra
mR(1). These results hold for any symmetric monoidal rigid A ∈ CAlg(DGCatcont).

1.6.4. For 10.1.4. If C,D are compactly generated then C⊗D is compactly geberated
by objects of the form c⊠ d with c ∈ Cc, d ∈ Dc by ([20], ch. I.1, 7.4.2). By ([20], ch.
I.1, 7.1.5), the functor C ⊗D → C ⊗Rep(H) D sends compact objects to compact ones,
so C ⊗Rep(H) D is compactly generated by the above.

1.6.5. For 10.1.5. Let C ∈ Rep(H) − modr, D ∈ Rep(H) − mod. Assume C,D
dualizable in DGCatcont. Then we have a canonical isomorphism

D∨ ⊗Rep(H) C
∨ →̃ (C ⊗Rep(H) D)∨

by ([20], ch. I.1, 9.5.4). Namely, since Rep(H) is symmetric monoidal, the correspond-
ing automorphism denoted ϕ in loc.cit is the identity.

The fact that the adjoint pair Φuniv : D
∨⊗C∨ ⇆ D∨⊗Rep(H)C

∨ : Ψuniv is obtained
by passing to the duals in the adjoint pair C ⊗D ⇆ C ⊗Rep(H) D follows from ([43],
9.2.37) for example.

1.6.6. For 10.1.7. Let C,D ∈ DGCatcont be compactly generated equipped with t-
structures. Assume the t-structures compactly generated for C,D (see Sect. 6.3.8 of
the paper). That is, Ind(Cc ∩ C≤0) →̃C≤0 naturally. By ([36], 1.4.4.11) this implies
that the t-structure is accessible, that is, C≤0 is presentable.

We equip C ⊗ D with the t-structure declaring (C ⊗ D)≤0 to be the smallest full
subcategory containing c⊠d for c ∈ Cc∩C≤0, d ∈ Dc∩D≤0, closed under extensions and
small colimits. This is indeed an accessible t-structure by ([36], 1.4.4.11). Moreover,
C⊗D is compactly generated by objects of the form c⊠d with c ∈ Cc, d ∈ Dc by ([20],
ch. I.1, 7.4.2).

By ([43], Section 9.3) the t-structure on C ⊗D is compactly generated. Moreover,
the t-structure on C and on D are compatible with filtered colimits.

By ([20], ch. I.3, 3.6.4), V ∈ Rep(H) is perfect iff its ∗-restriction under q : Spec k →
B(H) is compact in Vect, that is, bounded with finite-dimensional cohomologies. Be-
sides, V ∈ Rep(H) is pefect iff V is compact by ([20], ch. I.1, Sect. 9). The functor
q∗ is t-exact. Clearly, the truncation functors on Rep(H) preserve Rep(H)c. Besides,
the t-structure on Rep(H) is compatible with filtered colimits by ([20], ch. I.3, 1.5.7).
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So, the t-structure on Rep(H) is compactly generated and coherent. Moreover, the
product functor m : Rep(H)⊗ Rep(H)→ Rep(H) is t-exact.

Assume H affine. Then the right adjoint mR : Rep(H)→ Rep(H)⊗ Rep(H) is also
t-exact. Indeed, this follows by base change as H is affine: for any S a classical affine
scheme, RΓ : QCoh(S)→ Vect is t-exact.

If H is reductive then the t-structure on Rep(H) is Artinian (as char(e) = 0).
The shortest way to get the desired claim about t-structure on C⊗Rep(H)D is to refer

to ([43], Lemma 9.3.11) using the presentation C ⊗RepH D →̃ Reg(H)−mod(C ⊗D).
The t-structure on C ⊗Rep(H) D can also be defined by ([36], 1.4.4.11). Namely,

(C ⊗Rep(H) D)≤0 ⊂ C ⊗Rep(H) D

is the smallest full subcategory containing Φuniv(c⊠ d) for c ∈ Cc ∩C≤0, d ∈ D≤0 ∩Dc

stable under colimits and extensions. We see that the t-structure on C ⊗Rep(H) D is

accessible. One gets immediately that (C ⊗Rep(H) D)>0 = Ψ−1univ((C ⊗D)>0). Besides,
the t-structure on C ⊗Rep(H) D is compactly generated by construction: for c ∈ Cc ∩
C≤0, d ∈ D≤0 ∩Dc the object Φuniv(c⊠ d) is compact in C ⊗Rep(H) D.

Assume the action functors a : C ⊗ Rep(H)→ C, b : Rep(H)⊗D → D are t-exact.
Why both Φuniv and Ψuniv are t-exact?

We may try to apply ([20], ch. I.3, 1.5.8). Namely, via the usual bar construction
write V ⊗Rep(H) D →̃ colim

[n]∈∆op
C ⊗ Rep(H)⊗nD. Passing to right adjoint, this rewrites

as

lim
[n]∈∆

C ⊗ Rep(H)⊗nD

Let aR : C → C ⊗ Rep(H), bR : D → Rep(H) ⊗ D be the right adjoints to a, b.
Recall that aR, bR are continuous by ([20], ch. I.1, 9.3.2). By ([43], Remark 10.1.6),
they are left t-exact. Recall also that there is an explicit formula for aR given in ([20],
ch. I.1, 9.3.2). Let A = Rep(H). Then aR is the composition

Vect⊗C µ⊗id→ A⊗A⊗ C id⊗ act→ A⊗ C

Here µ is the unit for the self-duality on the rigid symmetric monoidal category A as
in ([20], ch. I.1, 9.2.1). So, to check that aR is right t-exact, it is sufficient to check
that µ : Vect→ A⊗A is right t-exact in view of ([43], 9.3.10). This is true, because µ
is the composition

Vect
1A→ A

mR

→ A⊗A,
and both functors here are t-exact. The first is the pull-back along smooth mapB(H)→
Spec k.

A better idea. Recall that for A = Rep(H) the functor mR : A→ A⊗A is t-exact, so
Reg = mR(1) ∈ (A⊗A)♡. View C⊗D as a A⊗A-module, and consider the projection
Ψuniv : Reg−mod(C⊗D)→ C⊗D. Its left adjoint Φuniv : C⊗D → Reg−mod(C⊗D)
sends z to Reg ∗z with its natural Reg-module structure.

The tensor product of actions A⊗A⊗ C ⊗D → C ⊗D,

(a1 ⊠ a2 ⊠ c⊠ d) 7→ (a1 ∗ c)⊠ (a2 ∗ d)
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is t-exact by ([43], 9.3.10). Since the functor ΨunivΦuniv is t-exact, we apply ([43],
Lemma 9.3.11) and get the desired t-structure on C ⊗Rep(H) D →̃ Reg−mod(C ⊗D).

1.6.7. For 10.2.2. Say a more standard thing here: for a morphism A → B in
Alg(DGCatcont),M ∈ A−mod, N ∈ B−mod we get FunA(M,N) →̃FunB(B⊗AM,N)
by adjointness.

1.6.8. For 10.2.5. We must assume H affine of finite type here, as we need B(H) to
be 1-affine in the sense of ([22], Th. 2.2.2).

Note that QCoh(H) is naturally a coalgebra in DGCatcont, and we define the category
of categories ”acted on by H” as QCoh(H) − comod(DGCatcont), as in ([22], Section
10.2.1). Moreover, by ([22], Section 10.2.1) one has the equivalence

(25) Rep(H)−mod →̃ QCoh(H)− comod

The map of coalgebras Vect→ QCoh(H), e 7→ OH defines an augmentation of the coal-
gebra QCoh(H), and the corresponding cobar complex co-Bar•(QCoh(H)) is obtained

from [. . .H2 −→−→−→ H −→−→ pt] by applying the functor QCoh(·). We get

Tot(co-Bar•(QCoh(H))) →̃ QCoh(B(H)),

as QCoh : PreStkop → DGCatcont preserves limits. According to ([43], Section 3.3.1),
this totalization gets a structure of an augmented algebra in DGCatcont. Is this the
pointwise tensor product on B(H)? I think so, because in ([22], 10.2.2) the obtained
category QCoh(B(H)) is denoted Rep(H).

The equivalence (25) sends Vect ∈ QCoh(H)− comod to QCoh(B(H)) ∈ Rep(H)−
mod. More generally, it sends M ∈ QCoh(H)− comod to

Tot(co-Bar•(QCoh(H),M)) ∈ QCoh(B(H))−mod

In particular, it sends QCoh(H) ∈ QCoh(H)− comod to Vect ∈ Rep(H)−mod.
Note also that QCoh(H)−comod(DGCatcont) is naturally an (∞, 2)-category. Recall

that QCoh(H) is naturally a commutative Hopf algebra in the sense of ([22], Appen-
dix E), the algebra structure is given by the pointwise tensor product QCoh(H) ⊗
QCoh(H)→ QCoh(H ×H)

△∗→ QCoh(H) for △: H → H ×H. The coalgebra structure
is given by

m∗ : QCoh(H)→ QCoh(H ×H) →̃ QCoh(H)⊗QCoh(H)

for the product m : H × H → H. For this reason, QCoh(H) − comod(DGCatcont)
gets a monoidal structure: for C,D ∈ QCoh(H) − comod(DGCatcont), C ⊗ D is a
QCoh(H)⊗QCoh(H)-comodule, and the QCoh(H)-comodule structure is given by the

extension of scalars via the map of coalgebras QCoh(H) ⊗ QCoh(H)
△∗→ QCoh(H).

That is, C ⊗D is equipped with the composition map

C ⊗D → C ⊗D ⊗QCoh(H)⊗QCoh(H)
id⊗△∗→ C ⊗D ⊗QCoh(H)

We also have the antipode inv∗ : QCoh(H) →̃ QCoh(H) for the inversion map inv :
H → H. The unit object of QCoh(H)− comod is Vect.
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On the other hand, Rep(H) − mod also has a symmetric monoidal structure, as
QCoh(B(H)) is symmetric monoidal. This is the symmetric monoidal structure of
ShvCat(B(H)). My understanding is that it corresponds to the above symmetric
monoidal structure on QCoh(H)− comod via the equivalence (25).

For C,D ∈ QCoh(H)−comod(DGCatcont) we may consider the inner homHom(C,D)
in this monoidal category. According to ([22], 10.2.2), one has Rep(H) →̃Hom(Vect,Vect),
where Vect is considered as an object of QCoh(H)− comod(DGCatcont). (This comes
from the fact that in the symmetric monidal category Rep(H)−mod the inner hom from
Rep(H) to iself is Rep(H)). Besides, the functor QCoh(H)− comod →̃Rep(H)−mod
can be understood as the functor C 7→ Hom(Vect, C), which is naturally a right
Hom(Vect,Vect)-module.

Now Vect has commuting structures of Rep(H)-module and QCoh(H)-comodule,
hence the functor C 7→ C ⊗Rep(H) Vect can be seen as the functor Rep(H) −mod →
QCoh(H)− comod.

Note also that Vect⊗Rep(H)Vect →̃ QCoh(H) by ([43], ch. I.3, 3.3.5).

1.6.9. For 10.2.8. By ΛH -graded algebra A we mean A ∈ Alg(Rep(H)). The only
case needed in that A ∈ Rep(H)♡ I think.

Let H be a torus with weight lattice ΛH . Given A a ΛH -graded algebra in Vect♡,
the isomorphism

•
A−mod⊗Rep(H) Vect →̃A−mod

follows from ([20], ch. I.1, 8.5.7). Namely, A ∈ Alg(Rep(H)) and by definition
•
A −

mod = A−mod(Rep(H)). Now Vect is a Rep(H)-module, so

A−mod(Rep(H))⊗Rep(H) Vect →̃A−mod(Vect)

The functor oblvHecke : A−mod→
•
A−mod sends V to V ⊗OH = ⊕λ∈ΛH

Vλ, where
OH is the ring of functions on H and Vλ = V . Write A = ⊕λAλ. The A-action on Vλ
is given by the old one Aµ ⊗ Vλ → Vλ+µ with the difference that it changes the graded
component.

1.6.10. Recall that for H reductive, Rep(H) →̃
∏
λ∈Λ+

H
Vect according to ([22], 7.2.4).

For 10.4.1. It is understood that Rep(H) ⊗ Rep(TH) → Rep(TH) is the map of
algebras sending V ⊠W to ResTH (V )⊗W .

1.6.11. For 10.5.1, line 1: add C ∈ DGCatcont.
Recall here the equivalence (Cc)op → (C∨)c, c 7→ c∨ from Section 10.1.5. So, for

c ∈ Cc, c∨ : C → Vect is the functor HomC(c, ·). Mention that the Rep(H)-action
on C∨ is the natural one in the sense of ([20], ch. I.1, 4.1.7). The first displayed
formula in this Section 10.5.1 is wrong. Indeed, we want to consider the natural action
of Rep(H) on C∨, as the formula Hecke(C)∨ →̃ Hecke(C∨) from 10.1.5 is established
for the natural action.

Given c ∈ C∨, the natural action by V ∈ Rep(H) sends c∨ to c∨ ∗ V : C → Vect,
x 7→ HomC(c, V ∗x). By ([36], 4.6.2.1), for V ∈ Rep(H)c the functor C → C, c 7→ c∗V
is both left and right adjoint to C → C, c 7→ V ∗ ∗ c. So, for the natural actions
c∨ ∗ V →̃ (c ∗ V ∗)∨.
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In general, I think there is no reason for an isomorphism

HomC(τ
H(V ∗) ∗ c, x) →̃HomC(c, V ∗ x)

The square given by the displayed formula commutes for the following reason: write
RegH = (id⊗ResH)(Reg(H)) ∈ Alg(Rep(H)). Then for c ∈ Cc, M ∈ RegH −mod,

HomRegH −mod(RegH ∗c,M) →̃HomC(c, oblv(M))

1.6.12. For 10.5.2, the formulation is very bad! We just apply the 2nd displayed
formula from 10.1.5 identifying Rep(TH)

∨ →̃Rep(TH) via the natural pairing that we
have since Rep(TH) is rigid.

Lemma 1.6.13. Let Rep(H) act naturally on Rep(TH) via the restriction, consider
then the induced Rep(H)-action on Rep(TH)

∨. Let us transfer the latter Rep(H)-action
to a Rep(H)-action on Rep(TH) by the canonical equivalence Rep(TH) →̃Rep(TH)

∨

coming from the fact that Rep(TH) is rigid. We claim that the so obtained Rep(H)-
action on Rep(TH) is the natural one. Namely, V1 ∈ Rep(H) sends V ∈ Rep(TH) to
V ⊗ ResTH (V1).

Proof. We identify Rep(TH) →̃Rep(TH)
∨ sending V to fV : Rep(TH) → Vect, where

fV (V
′) = HomRep(TH)(k, V ⊗ V ′). The natural action of Rep(H) on Rep(TH) induces

an action of Rep(H) on Rep(TH)
∨, namely V1 ∈ Rep(H) sends fV to the functor

V ′ 7→ fV (Res
TH (V1)⊗ V ′) = HomRep(TH)(k, V ⊗ ResTH (V1)⊗ V ′)

So, (fV ) ∗ V1 →̃ fV⊗ResTH (V1)
. □

On the other hand, we have the map (Rep(H)c)op → (Rep(H)∨)c, V 7→ V ∨ as
for any compactly generated category. We have (V ∗)∨ →̃ fV for V ∈ Rep(H)c. Here
fV : Rep(H)→ Vect denotes the functor fV (W ) = HomRep(H)(e, V ⊗W ).

Apply 10.1.5 for C any and D = Rep(TH), we get the equivalence
•

Hecke(C)∨ →̃C∨ ⊗Rep(H) Rep(TH)
∨

and the commutative square

((C ⊗ Rep(TH))
c)op

ind •
Hecke→ (

•
Hecke(C)c)op

↓ ↓

(C∨ ⊗ Rep(TH)
∨)c

ind •
Hecke→ (C∨ ⊗Rep(H) Rep(TH)

∨)c,

where the left vertical arrow sends c⊠V to c∨⊠V ∨, and the right vertical arrow sends
z to z∨.

By lemma, the pairing coming from rigidity is an equivalence of Rep(H)-modules

Rep(TH) →̃Rep(TH)
∨, so gives the equivalence (

•
Hecke(C))∨ →̃

•
Hecke(C∨).

The square that you wrote in 10.5.2 commutes if the left vertical arrow sends c⊠V to
c∨ ⊠ V ∗, and we use evrywhere the natural actions! That is, for c ∈ Cc, V ∈ Rep(TH)

c

we get

(ind •
Hecke

(c⊠ V ))∨ →̃ ind •
Hecke

(c∨ ⊠ V ∗)



91

I propose to add this formula and remove the twisted actions. For example, in the
spacial case G = T it is particularly clear that we get the formula I have just written
above for the natural actions.

1.6.14. For 10.6, line 5: I think you meant Hecke(C)♡ instead of Hecke(C).
We must assume H reductive in Section 10.6.

1.6.15. For 10.6.3. If c′ ∈ Hecke(C)♡ then the natural map indHecke oblvHecke(c
′)→ c′

is surjective. Indeed, viewing Hecke(C) as RegH −mod(C), where
RegH = (id⊗Res)(Reg(H)) ∈ Alg(Rep(H)),

the corresponding map RegH ∗c′ → c′ is the action map for this RegH -module. It is
surjective, as the composition c′ →̃ k ∗ c′ → RegH ∗c′ → c′ is the identity.

Recall that

RegH →̃ ⊕V ∈Irrep(H) V ⊗ V ∗

Indeed, for V ∈ Irrep(H) and q : Spec k → B(H) we have Hom(V, q∗O) →̃Hom(V , k).
This gives a map V ⊗ V ∗ → q∗O, hence taking the direct sum over V ∈ Irrep(H), we
get a morphism

ϵ : ⊕
V ∈Irrep(H)

V ⊗ V ∗ → RegH →̃ q∗O

For any V ′ ∈ Irrep(H) the map ϵ induces an isomorphism

Hom(V ′,⊕V ∈Irrep(H)V ⊗ V ∗)→ Hom(V ′,RegH)

Assume now H reductive. Then for any V ′ ∈ Rep(H)c the latter map is an isomor-
phism. Thus, ϵ is an isomorphism.

In (10.7) there is V ∈ Irrep(H) such that the component c1 → (c ∗ V ) ⊗ V ∗ is
nonzero, because otherwise the map ind(c1)→ ind(c) would vanish.

For each V ∈ Irrep(H) we have a canonical isomorphism αV : V ∗RegH →̃RegH⊗V .
Indeed, consider the Rep(H)-action on itself coming from the symmetric monoidal
structure. We get the adjoint pair

indHecke : Rep(H) ⇆ RegH −mod(Rep(H)) : oblvHecke

Then for k ∈ Rep(H) we get indHecke(k) = RegH , so according to Section 10.2.4 of
the paper, we get the desired isomorphisms. As in ([5], Sect. 2.2) it is constructed
explicitly as follows. We have the inclusion V ⊗V ∗ ↪→ RegH via the matrix coefficient,
now the composition

RegH ∗(V ⊗ V ∗) ↪→ RegH ∗RegH
m→ RegH

yields by adjointness the map αV : RegH ∗V → RegH ⊗V , which is an isomorphism.
Here m is the product in the algebra RegH .

The desired map indHecke(c ∗ V ) →̃V ⊗ indHecke(c) → indHecke(c) identifies indeed
with ξ × id. This follows from the commutativity of the diagram

V ⊗ RegH
id⊗ξ⊗id→ V ⊗ V ∗ ⊗ RegH ⊂ RegH ⊗RegH

↓ αV ↓ m
RegH ⊗V

ξ→ RegH
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This is general: let Ei be vector spaces and α : E1 → E2⊗V correspond by adjointness
to ᾱ : E1 ⊗ V ∗ → E2. Then for ξ ∈ V ∗ the diagram commutes

E1
ξ→ E1 ⊗ V ∗

↓ α ↓ ᾱ
E2 ⊗ V

ξ→ E2

1.6.16. For 10.6.6. Let c′ ∈ Hecke(C)♡ be irreducible. Then indHecke(oblvHecke(c
′)→

c′ is nonzero. Since the t-structure on C♡ is Artinian, we may pick a presentation
oblvHecke(c

′) →̃ colimi∈I ci, where ci ∈ C♡∩Cc, and I is small filtered. So, there is i ∈ I
and a nonzero map ci → oblvHecke(c

′), hence the corresponding map indHecke(ci) → c′

in Hecke(C)♡ is nonzero.
For the end of the proof of (b): assume V ∈ Rep(H)♡, c1 ∈ C♡ restricted irreducible

with an isomorphism c1∗V →̃ c1. So, V ⊗ indHecke(c1) →̃ indHecke(c1∗V ) →̃ indHecke(c1)
is an irreducible object of Hecke(C)♡ by Pp. 10.6.3. So, V is 1-dimensional.

1.6.17. For 10.6.7. We may apply Proposition 1.2.38 of this file. Indeed, we know
by ([43], Lemma 9.3.7) that Hecke(C) is compactly generated and its t-structure is
compactly generated, so the t-structure on Hecke(C) is in particular compatible with
filtered colimits by ([43], 9.3.5).

By 10.6.6 of the paper we know that each irreducible object of Hecke(C)♡ is compact.
So, it suffices to show they generate Hecke(C). Since oblvHecke : Hecke(C) → C is
conservative, the essential image of indHecke : C → Hecke(C) generates Hecke(C) under
colimits. Thus, Hecke(C) is compactly generated by objects of the form indHecke(c) for
c ∈ Cc. By 6.3.8 of the paper, such c is cohomologically bounded, its cohomologies lie
in Cc ∩ C♡. Moreover, each object of Cc ∩ C♡ is of finite length. Thus, Hecke(C) is
generated by objects of the form indHecke(c) with c ∈ Cc∩C♡ such that c is irreducible in
C♡. So, Hecke(C) is generated by objects of the form indHecke(c∗V ) →̃ indHecke(c)⊗V
with c restricted and V ∈ Rep(H)♡ irreducible. So, irreducible objects of Hecke(C)♡

generate Hecke(C).

1.6.18. For 10.7.3. Our assumptions are: C is compactly generated with compactly
generated t-structure, the action C⊗Rep(H)→ C is t-exact, H is reductive. Then both

Hecke(C),
•

Hecke(C) are compactly generated with compactly generate t-structures

by ([43], Lemma 9.3.13). Now any irreducible object of
•

Hecke(C)♡ is restricted.

So, by Prop. 10.6.3, ResTH (c) ∈ Hecke(C)♡ is irreducible for c ∈
•

Hecke(C)♡ irre-

ducible. The functor ResTH :
•

Hecke(C) → Hecke(C) is the induction:
•

Hecke(C) →
•

Hecke(C)⊗Rep(TH) Vect, and coIndTH : Hecke(C)→
•

Hecke(C) is its right adjoint (that

is, oblvHecke for the Rep(TH)-action on
•

Hecke(C)). Both ResTH , coIndTH are t-exact by
10.1.7 of the paper. So, 10.7.3(a) is proved.

For γ ∈ ΛH write eγ ∈ Rep(TH) for the corresponding 1-dim representation of TH .
For V ∈ Rep(H) write V := ResTH (V ) ∈ Rep(TH) for brevity. Let

RegH,TH = (id⊠ResTH )Reg(H) ∈ Rep(H)⊗ Rep(TH)
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So, RegH,TH →̃ ⊕V ∈Irrep(H) V ⊗ V̄ ∗. For the adjoint pair

ind •
Hecke

: Rep(H)⊗ Rep(TH) ⇆ RegH,TH −mod(Rep(H)⊗ Rep(TH)) : oblv •
Hecke

we get ind •
Hecke

(k⊠k) →̃ RegH,TH . By 10.3.4 of the paper for V ∈ Rep(H) it is equipped

with an isomorphism

V ∗ RegH,TH →̃ RegH,TH ∗Res
TH (V ),

where we write the Rep(TH) action on the right, and Rep(H)-action on the left.
Let c ∈ C♡ be restricted, let us first show that for γ ∈ ΛH , ind •

Hecke
(c ⊠ eγ) is

irreducible in
•

Hecke(C)♡. This is similar to 10.6.3. Let c′ ∈
•

Hecke(C)♡ with a given
nonzero map c′ → ind •

Hecke
(c ⊠ eγ). We must show it is surjective. We may assume it

comes from some nonzero map

c′′ → oblv •
Hecke

ind •
Hecke

(c⊠ eγ) = ⊕
V ∈Irrep(H)

(V ∗ c)⊠ (eγ ⊗ V̄ ∗)

for some c′′ ∈ (C ⊗Rep(TH))
♡ by adjointness. Since the t-structure on C is compactly

generated, we may pick c1 ∈ C≤0 ∩ Cc and µ ∈ ΛH and a nonzero map

c1 ⊠ eµ → ⊕
V ∈Irrep(H)

(V ∗ c)⊠ (eγ ⊗ V̄ ∗)

So, there is V ∈ Irrep(H) such that its component

c1 ⊠ eµ → (V ∗ c)⊠ (eγ ⊗ V̄ ∗)

is nonzero. Replace c1 by τ≥0c1, the latter map is still nonzero. We may assume
c1 = V ∗ c and the first component is the identity, and the weight γ − µ appears in V̄ .
Recall that V ∗ c ∈ C♡ is irreducible. The corresponding map

ind •
Hecke

((V ∗ c)⊠ eµ) →̃ (ind •
Hecke

(c⊠ eµ)) ∗ V̄ → ind •
Hecke

(c⊠ eγ)

is surjective, because when we apply id⊠ResTH it becomes surjective.

Note that for z ∈
•

Hecke(C)♡ if ind •
Hecke

(z) = 0 then z = 0. Indeed, RegTH = ⊕µeµ,
and z ∗RegTH →̃ ⊕µ z ∗e

µ. Since each eµ is one-dimensional, this means that z ∗eµ = 0
for all µ ∈ ΛH , so z = 0.

Let us verify 10.7.3(b) now. Let c′ ∈ Hecke(C)♡ be irreducible. Then there is

c1 ∈
•

Hecke(C)♡ with a nonzero map c1 ∗ RegTH → c′. Here we view

Hecke(C) →̃ RegTH −mod(
•

Hecke(C))

The above map comes from a nonzero map c1 → coIndTH (c′) in
•

Hecke(C)♡. Since the

t-structure on
•

Hecke(C) is compactly generated, we may assume c1 ∈
•

Hecke(C)c.
We could finish if we new that we may assume c1 irreducible in addition. This is not

clear in general, and maybe wrong.
So, let us make for 10.7.3(b) and (c) and for 10.7.4(b) the assitional as-

sumption: the t-structure on C is Artinian, and the Rep(H)-action on C is accessible.
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Then by 10.6.6 we may assume c′ →̃ indHecke(c) for some c ∈ C♡ restricted. The
diagram commutes

C ⊗ Rep(TH)
ind •

Hecke→
•

Hecke(C)
↓ id⊗Res ↓ ResTH

C
indHecke→ Hecke(C)

This is just the functoriality of the relative tensor product. We have already shown
that ind •

Hecke
(c ⊠ e) is irreducible. We get ResTH (ind •

Hecke
(c ⊠ e)) →̃ indHecke(c). So,

10.7.3(b) is proved.

Proof of 10.7.3(c). Let c1 ∈
•

Hecke(C)♡ be irreducible with ResTH (c1) →̃ indHecke(c0)
for some c0 ∈ C♡ restricted. Recall that ResTH (ind •

Hecke
(c ⊠ e)) →̃ indHecke(c). So, we

may take c2 = ind •
Hecke

(c0 ⊠ e), and we get an isomorphism c1 ∗ RegTH →̃ c2 ∗ RegTH
in RegTH −mod(

•
Hecke(C)). It comes from a nonzero morphism c2 → c1 ∗ RegTH =

⊕µc1 ∗ eµ in
•

Hecke(C)♡. Since c2 is compact in
•

Hecke(C), there is a nonzero map
c2 → c1 ∗ eµ for some µ ∈ ΛH . It is an isomorphism, as both objects are irreducible.
The claim 10.7.3(c) is proved. This also proves 10.7.4(b)(ii), because ind •

Hecke
is a map

of Rep(TH)-modules.
We verify 10.7.4(b)(iii). Let ci ∈ C♡ be restricted irreducible, γi ∈ ΛH and

ind •
Hecke

(c1 ⊠ eγ1) →̃ ind •
Hecke

(c2 ⊠ eγ2)

in
•

Hecke(C). Such an isomorphism comes from a nonzero map

c1 ⊠ eγ1 → oblv •
Hecke

ind •
Hecke

(c2 ⊠ eγ2)

in C ⊗ Rep(TH). As the t-structure on C is Artinian, c1 ⊠ eγ1 ∈ (C ⊗ Rep(TH))
c, so

there is V ∈ Irrep(H) and a nonzero map c1 ⊠ eγ1 → (V ∗ c2) ⊠ (eγ2 ⊗ V̄ ∗). The
latter is the tensor product of an isomorphism c1 →̃V ∗ c2 in C♡ with a nonzero map
eγ1 → eγ2⊗V̄ ∗ in Rep(TH). Since V ∗c2 is restricted, for any V ′ ∈ Rep(H), (V ′⊗V )∗c2
is irreducible in C♡, hence V is 1-dimensional. Indeed, V ⊗V ∗ must be irreducible and
contains e. So, γ1 − γ2 is a character of H, and 10.7.4(b)(iii) is proved.

We verify 10.7.4(b)(i). For c ∈ C♡ restricted irreducible, γ ∈ ΛH , ind •
Hecke

(c⊠ eγ) ∈
•

Hecke(C)c, because c ∈ Cc. So, each irreducible object of
•

Hecke(C)♡ is compact

in
•

Hecke(C). We know already by ([43], 9.3.13) that the t-structure on
•

Hecke(C)
is compactly generated. We check that the objects ind •

Hecke
(c ⊠ eγ) for c restricted

irreducible in C♡ and γ ∈ ΛH generate
•

Hecke(C). Let z ∈
•

Hecke(C) with

MapC⊗Rep(H)(c⊠ eγ [n], oblv •
Hecke

(z)) →̃ Map •
Hecke(C)

(ind •
Hecke

(c⊠ eγ)[n], z) →̃ ∗

for any c, γ as above and n ∈ Z. Since the t-structure on C is Artinian, the objects
c ⊠ eγ for c, γ as above generate C ⊗ Rep(H), so oblv •

Hecke
(z) →̃ 0. Since oblv •

Hecke
is

conservative, z →̃ 0. We are done by Proposition 1.2.38 of this file.
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1.7. For Section 11.

1.7.1. For 11.1.3, in the displayed square remove τTH .
This section should be rewritten as follows. I assume that no twisted actions have ap-

peared in 10.5.1-10.5.2 according to my suggestions above. First,
•

Hecke(Whitq,x(G))
∨

identifies with Whitq,x(G)
∨ ⊗Rep(H) Rep(TH)

∨, where we use everywhere the actions
through Satq,x. By Lemma 1.6.13 of this file, we identify Rep(TH)

∨ →̃Rep(TH) via the
canonical self-diality coming from the rigidity of Rep(TH), and the Rep(H)-action on
Rep(TH) becomes the natural one. Now we identify Whitq,x(G)

∨ →̃ Whitq−1,x(G) via
(7.9) in the paper. Under this equivalence the above Rep(H)-action on Whitq,x(G)

∨

identifies not with the Rep(H)-action via Satq−1,G but by a twist of the latter. Namely,
for F ∈Whitq−1,x(G), V ∈ Rep(H) we have (according to Section 1.7.15 of this file)

F ∗ Satq−1,G(V ) →̃F ∗ Satq,G(τH(V ))

1.7.2. For 11.2.1. In general, the composition Λ♯ ↪→ Λ → Λ̃ does not factor through
Λ̃♯.

Example: take G̃ = T̃ = G2
m, T = Gm given by the first factor. Let α ∈ e∗,tors(−1).

We get Λ̃ = Z2. Let q̃ : Λ̃→ e∗,tors(−1) be given by q̃(a1, a2) = αa1a2 for (a1, a2) ∈ Z2.

Then Λ♯ = Λ with base e1. However, e1 /∈ Λ̃♯ if α is nontrivial, because b̃(e1, e2) = α.

As we discussed by email, I suppose we include the property Λ♯ ⊂ Λ̃♯ in the definition
of strictly compatible with the geometric metaplectic data from 11.2.2.

In addition, H̃ → H is a surjection, and its kernel is a torus equal to Ker(T̃H → TH),

so Rep(H) ⊂ Rep(H̃) is fully faithful.

The reference for the existence of the map H̃ → H attached to the the corresponding
morphism of root data is (SGA3, XXV, 1.1). This reference uses the notion of données
radicielles réduites épinglées defined in (SGA3, XXIII, 1.5). The usual references like
Springer, Linear Alegbraic groups, 2nd edition (2009) only treat the case of isogenies
with a finite quotient of lattices!

Note also that the cocartesian square in 11.2.2 is needed to garantee that the natural
inclusion Λ/ΛH → Λ̃/ΛH̃ is bijective. Later we will identify Λ/ΛH with the set of
irreducible objects of Hecke(Whitq,x(G)). So, this condition assures that the irreducible
do not augment when we make our ”generalized isogeny”.

1.7.3. For 11.2.3. The image of Grω
ρ

G,x → Grω
ρ

G̃,x
is the union of some connected com-

ponents (up to nilpotents). Just after (11.4) you claim that Sphq,x(G)→ Sphq,x(G̃) is
fully faithful. In fact, there is no such natural functor at all.

Indeed, we may consider the local version of the Hecke stack HeckelocG,x classifying

FG,F
′
G overDx together with an isomorphism FG →̃F′G over

◦
Dx. Then we have the nat-

ural map f : HeckelocG,x → Heckeloc
G̃,x

compatible with the corresponding gerbes GG,G,ratio,

GG̃,G̃,ratio. One could try to define the desired functor as f∗, this is a bad approach
as already the case G = 1, G̃ = T shows. Namely, this would produce RΓ(L+(T )x, e)
instead of the constant sheaf.

There is no natural map L+(G)ω
ρ

x \Grω
ρ

G,x
a← L+(G̃)ω

ρ

x \Grω
ρ

G,x in general, so no hope
to define it as a pull-back.
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The only thing we need is the following. Let h : Grω
ρ

G,x → Grω
ρ

G̃,x
be the natural

map. Then h∗ commutes with Rep(H)-actions on both sides. Here on the target it

acts through the morphism Rep(H) → Rep(H̃), which we have because we do have a

morphism H̃ → H.
This is general: let Y = Y1⊔Y2 be a disjoint union of two prestacks. Assume Rep(H̃)

acts on Shv(Y ), and the induced Rep(H)-action preserves the full subcategory Shv(Y1).
Then the inclusion Shv(Y1) ⊂ Shv(Y ) commutes with Rep(H)-actions.

We have however the fully faithful functor Sphq,x(G)
♡ → Sphq,x(G̃)

♡.

1.7.4. For 11.2.4. Given a morphism of algebraic groups H̃ → H, we get a monoidal
functor Rep(H)→ Rep(H̃). Let now C ∈ Rep(H)−mod(DGCatcont), C̃ ∈ Rep(H̃)−
mod(DGCatcont) and C → C̃ be a map in Rep(H) − mod(DGCatcont). It yields a

morphism Hecke(C)→ C̃ ⊗Rep(H) Vect→ C̃ ⊗Rep(H̃) Vect.

If H is reductive then Rep(H) →̃
∏
V ∈Irrep(H)Vect. This is obtained from ([20], ch.

I.3, 2.4.2) by taking left completions on both sides. Indeed, QCoh(H) is left-complete
by ([20], ch. I.3, 1.5.7).

If we think of an object of Hecke(Shv
GG̃(Grω

ρ

G̃,x
)) as F ∈ Shv

GG̃(Grω
ρ

G̃,x
) with a Hecke

property then the isomorphism (11.5) says in words then when restricting it to Grω
ρ

G,x,
it inherits the Hecke property with respect to H.

1.7.5. For 11.2.5. Assume that ΛH ⊂ Λ̃H̃ , so we have the functor (11.5). In-
deed, to show it is fully faithful, it suffices to show that it induces an isomorphism
on the map spaces for any pair of objects indHecke(F0), indHecke(F1) with F0,F1 ∈
ShvGG(Grω

ρ

G,x)
c. The reason is that Hecke(ShvGG(Grω

ρ

G,x)) is compactly generated by

the image of indHecke : ShvGG(Grω
ρ

G,x)
c → Hecke(ShvGG(Grω

ρ

G,x)). So, any object of

Hecke(ShvGG(Grω
ρ

G,x)) writes as filtered colimit of objects of the form indHecke(F ) for

F ∈ ShvGG(Grω
ρ

G,x)
c.

Assume now the isogeny strictly compatible with the geometric metaplectic data in
the sense that ΛH ⊂ Λ̃H̃ and the square in 11.2.2 is cocartesian. Then indeed we get

an exact sequence 1→ Ť0 → H̃ → H → 1.
For (b): by ([20], ch. I.1, 5.4.5), it suffices to show that for 0 ̸= F ′ ∈ Hecke(ShvGG(Grω

ρ

G̃,x
)

there is F ∈ ShvGG(Grω
ρ

G,x) and a nonzero map indHecke(F )→ F ′ in Hecke(ShvGG(Grω
ρ

G̃,x
).

”For point (b) we note that the condition in Sect. 11.2.2 imply that for every

0 ̸= F1 ∈ ShvFG̃(Grω
ρ

G̃,x
) there is V ∈ Irrep(H̃) so that F1 ∗Satq,G(V ) is non-zero when

restricted to Grω
ρ

G,x”. The explanation of this: let γ ∈ π1(G̃) whose image γ0 in Λ0 is

such that F1 is nonzero over the component Grω
ρ,γ

G̃,x
. Pick V ∈ Irrep(H̃) such that Ť0

acts on V by −γ0 then F1 ∗ Satq,G(V ) is non-zero hen restricted to Grω
ρ

G,x. Indeed, e
appears in V ∗⊗V , so F1 appears in (F1 ∗Satq,G(V ))∗Satq,G(V ∗) as a direct summand.

Remark: let H̃ be a split reductive group with a central torus Ť0 ⊂ H̃. Then for
any character λ : Ť0 → Gm there is a dominant weight of H̃ whose restriction to Ť0 is
λ. Indeed, let λ̃ : T̃H → Gm be any extension of λ. If necessary, correct λ̃ by adding a
dominant character of H = H̃/Ť0.
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1.7.6. For 11.2.6. First, let C ∈ DGCatcont be compactly generated equipped with a
Rep(T )-action, where T is a torus. Then indHecke : C → Hecke(C) = C ⊗Rep(T ) Vect is
1-fully faithful.

Indeed, for c ∈ Cc, c′ ∈ C the map

MapC(c, c
′)→ MapHecke(C)(indHecke(c), indHecke(c

′)) →̃ MapC(c,⊕
µ
c′∗eµ) →̃⊔µMap(c, c′∗eµ)

is a full subspace, where µ runs through the weights of T . Now for any c = colimi∈I ci,
where I is small filtered and ci ∈ Cc we get

MapC(c, c
′) →̃ lim

i
MapC(ci, c) ⊂ lim

i
MapHecke(C)(indHecke(ci), indHecke(c

′))

is also a full subspace.

Lemma 1.7.7. Let f : C1 → C2 be a map in Rep(T )−mod(DGCatcont). If the induced
functor ind(f) : Hecke(C1)→ Hecke(C2) is an equivalence then f is an equivalence.

Proof. The functor Rep(T ) − mod(DGCatcont) → T − mod, C 7→ Hecke(C) is an
equivalence, see Section 10.2.6 of the paper. □

We apply the lemma to get Cor. 11.2.6. Namely, applying Vect⊗Rep(TH̃)· to both

sides of (a), one gets an equivalence by 11.2.5, so (a) itself is an equivalence.
11.2.6(b) follows from 11.2.6(a). Namely, if we pick any splitting of (11.3), this

gives a splitting of the exact sequence 1 → Ť0 → TH̃ → TH → 1 and an equivalence

Rep(TH̃) →̃Rep(Ť0)⊗ Rep(TH), hence the desired equivalence by base change.

1.7.8. For 11.2.8(a). The same proof as in 11.2.5 applies and gives 11.2.8(a). As a
consequence, 11.2.8(b,c) are obtained in the same way as Cor. 11.2.6 (using my above
Lemma 1.7.7).

1.7.9. For 11.3.4. Here we assume [H,H] simply-connected. The bijection between

the irreducible objects of
•

Hecke(Whitq,x(G)) and Λ is as follows. To a pair (λ, γ), where
λ ∈ Λ+ is restricted and γ ∈ ΛH we associate λ+γ ∈ Λ. The corresponding irreducible

is ind •
Hecke

(W λ,!∗⊠ eγ). We have an action of Λ♯0 on pairs (λ, γ) such that τ ∈ Λ♯0 sends

(λ, γ) to (λ + τ, γ − τ). The orbits identify with Λ. Here Λ♯0 = {λ ∈ Λ♯ | ⟨λ, α̌i⟩ =
0 for all i}.

Now the irreducible of Hecke(Whitq,x(G)) are in bijection with M/Λ♯0, here M =

{λ ∈ Λ+ | λ is restricted}. Namely, to λ ∈ M is assocated the object indHecke(W
λ,!∗).

If τ ∈ Λ♯0 then indHecke(W
λ+τ,!∗) →̃ indHecke(W

λ,!∗). The functor

ResTH :
•

Hecke(Whitq,x(G))→ Hecke(Whitq,x(G))

sends ind •
Hecke

(W λ,!∗ ⊠ eγ) to indHecke(W
λ,!∗).
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1.7.10. For 11.3.5. Suppose we know that the t-structure on
•

Hecke(Whitq,x(G̃)) is

Artinian. We check that the t-structure on
•

Hecke(Whitq,x(G)) is also Artinian. Pick a
splitting of (11.3), so that we get an equivalence of 11.2.8(c)

Rep(Ť0)⊗
•

Hecke(Whitq,x(G)) →̃
•

Hecke(Whitq,x(G̃))

Using the forgetful functor Rep(Ť0)→ Vect, we get
•

Hecke(Whitq,x(G)) →̃
•

Hecke(Whitq,x(G̃))⊗Rep(Ť0)
Vect

The Rep(Ť0)-action on
•

Hecke(Whitq,x(G̃)) is automatically accessible (as in 10.7.1 of

the paper). So, the t-structure on
•

Hecke(Whitq,x(G)) is Artinian by Cor. 10.7.4(b).

Assume [H̃, H̃] simply-connected. Then we know already by (11.3.3, first case) that

the irreducibles of
•

Hecke(Whitq,x(G̃))
♡ are in bijection with Λ̃, that is, with pairs (σ, γ),

where σ ∈ Λ̃+ is restricted and γ ∈ ΛH̃ up to the action of the lattice ΛH̃,0 of characters

of H̃ab. Namely, for such pair (σ, γ) the object ind •
Hecke

(W σ,!∗ ⊠ eγ) is irreducible in
•

Hecke(Whitq,x(G̃))
♡, here eγ ∈ Rep(TH̃) is 1-dimensional. We pick a splitting of (11.3)

given by s : Λ0 ↪→ Λ̃♯ = ΛH̃ . Then the forgetful functor Rep(Ť0) → Vect yields a
functor

•
Hecke(Whitq,x(G̃))→

•
Hecke(Whitq,x(G)),

we may view the target as the Hecke category of the source with respect to the Rep(Ť0)-

action. Now we apply 10.7.3 to describe the irreducibles of
•

Hecke(Whitq,x(G))
♡. We

see that every irreducible object of the target is the image of some irreducible object
ind •

Hecke
(W σ,!∗ ⊠ eγ) of the source. More over, the pairs (σ1, γ1) and (σ2, γ2) give iso-

morphic irreducible objects in
•

Hecke(Whitq,x(G))
♡ iff there is ν ∈ Λ0 = Hom(Ť0,Gm)

such that σ1 = σ2 and γ2 = γ1 + s(ν).
We underline that the splitting of (11.3) in general is not compatible with root

systems, it is just a splitting of an exact sequence of abelian groups.
Write M = {λ ∈ Λ+ | λ is restricted}. In general, the map M → Λ/Λ♯ is not

surjective, this is why we need isogenies. Write M̃ = {λ ∈ Λ̃+ | λ is restricted}. We

have a bijection between equivalence classes of pairs (σ, γ) ∈ M̃×ΛH̃ and Λ̃. Here the
pairs (σ1, γ1) and (σ2, γ2) here are equivalent if there is τ ∈ ΛH̃,0 such that σ2 = σ1+τ ,

γ2 = γ1 − τ . Consider inside the set of equivalence classes of pairs (σ, γ) ∈ M̃ × ΛH̃
such that σ+ γ ∈ Λ. Under the above bijection it identifies with Λ. This is the desired

bijection between Λ and irreducibles of
•

Hecke(Whitq,x(G)). In the notations of 11.3.7

of the paper the image of ind •
Hecke

(W σ,!∗⊠eγ) in
•

Hecke(Whitq,x(G)) is M
σ+γ,!∗
Whit provided

that σ + γ ∈ Λ.
To have a notation independent of s, let’s adopt the following. Given σ ∈ M̃, γ ∈ ΛH̃

with σ + γ ∈ Λ write

M
σ+γ,!∗
Whit ∈

•
Hecke(Whitq,x(G))

♡
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for the unique irreducible object such that the image of

e⊠M
σ+γ,!∗
Whit ∈ Rep(TH̃)⊗

•
Hecke(Whitq,x(G))

under

Rep(TH̃)⊗Rep(TH)

•
Hecke(Whitq,x(G))→

•
Hecke(Whitq,x(G̃))

is ind •
Hecke

(W σ,!∗ ⊠ eγ). Then for λ ∈ Λ, γ ∈ ΛH we have indeed

M
λ,!∗
Whit ∗ e

γ →̃M
λ+γ,!∗
Whit ,

because the previous functor is Rep(TH̃)-linear.

Similarly, there is a unique M
σ+γ,∗
Whit ∈

•
Hecke(Whitq,x(G))

♡ such that the image of

e⊠M
σ+γ,∗
Whit ∈ Rep(TH̃)⊗

•
Hecke(Whitq,x(G))

under

Rep(TH̃)⊗Rep(TH)

•
Hecke(Whitq,x(G))→

•
Hecke(Whitq,x(G̃))

is ind •
Hecke

(W σ,∗ ⊠ eγ).

Another way: we have canonically Rep(TH) ⊂ Rep(TH̃). It yields a canonical fully
faithful functor

•
Hecke(Whitq,x(G))→ Rep(TH̃)⊗Rep(TH)

•
Hecke(Whitq,x(G))→̃

•
Hecke(Whitq̃,x(G̃))

The composition is t-exact, so
•

Hecke(Whitq,x(G))
♡ →

•
Hecke(Whitq̃,x(G̃))

♡

is a full abelian subcategory stable under extensions. My understanding is that given
(σ, γ) ∈ M̃× ΛH̃ , we have

ind •
Hecke

(W σ,!∗ ⊠ eγ) ∈
•

Hecke(Whitq,x(G))
♡

iff σ + λ ∈ Λ, and this way we get all the irreducibles of the latter abelain category.

Proof of the existence of Mσ+γ,∗
Whit . Let. σ ∈ M̃, γ ∈ ΛH̃ with σ + γ ∈ Λ. Then the

cokernel of W σ,!∗ → W σ,∗ admits a finite filtration by objects of the form W σ′,!∗ with
σ′ ≤ σ. For any such σ′ we have σ′ + γ ∈ Λ. So, the cokernel of

ind •
Hecke

(W σ,!∗ ⊠ eγ)→ ind •
Hecke

(W σ,∗ ⊠ eγ)

has a finite filtration with subquotients of the form ind •
Hecke

(W σ′,!∗ ⊠ eγ) for σ′ ≤
σ, σ′ ∈ Λ+

H̃
. For such σ′ pick a presentation σ′ = σ1 + γ1 with σ′ ∈ M̃, γ1 ∈ Λ+

H̃
. Then

W σ′,!∗ →̃W σ1,!∗ ∗ V γ1 . This gives

ind •
Hecke

(W σ′,!∗ ⊠ eγ) →̃ ind •
Hecke

(W σ1 ⊠ eγ ⊗ ResTH̃ (V γ1))

We see that all the irerducible subquotient of the latter lie in the subcategory
•

Hecke(Whitq,x(G))
♡ ⊂

•
Hecke(Whitq̃,x(G̃))

♡
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Thus, ind •
Hecke

(W σ,∗⊠ eγ) also lies in this subcategory, as it is closed under extensions.

□

Maybe M
σ+γ,∗
Whit is a bad notation...

1.7.11. For 11.3.7. The displayed formula should be: if σ ∈ Λ+ is restricted, γ ∈ ΛH

then ind •
Hecke

(W σ,!∗ ⊠ eγ) →̃M
σ+γ,!∗
Whit in

•
Hecke(Whitq,x(G)).

More generally, the diagram commutes

Rep(TH)⊗Whitq,x(G) → Rep(TH̃)⊗Whitq̃,x(G̃)
↓ ind •

Hecke
↓ ind •

Hecke•
Hecke(Whitq,x(G)) →

•
Hecke(Whitq̃,x(G̃)),

where the vertical arrow denotes respectivly the induction for G and G̃.

1.7.12. For 11.3.8, line 1: ind •
Hecke

(W λ,∗) does not make sense, we meant ind •
Hecke

(W λ,∗⊠

e?) I think. The same for line 1 of the proof: we meant ind •
Hecke

(W λ,!∗ ⊠ e?).

The functor

ind •
Hecke

: Whitq,x(G)⊗ Rep(TH)→
•

Hecke(Whitq,x(G))

is t-exact, so ind •
Hecke

(W σ,!∗⊠eγ)→ ind •
Hecke

(W σ,∗⊠eγ) is injective for any σ ∈ Λ+, γ ∈
ΛH , and the quotient admits a finite filtration with the subquotients

ind •
Hecke

(W σ′,!∗ ⊠ eγ)

for σ′ < σ.
The displayed formula in the proof of 11.3.8 is wrong, it should be

ind •
Hecke

(W λ1,!∗ ⊠ eγ) →̃M
λ,!∗
Whit

What is the correct formulation? First case is as follows.

Lemma 1.7.13. Assuming [H,H] simply-connected. Let λ ∈ Λ be written as λ = λ1+γ
with λ1 ∈ Λ+ restricted and γ ∈ ΛH . Then in the notations of Section 1.7.10 of this
file,

M
λ,∗
Whit = ind •

Hecke
(W λ1,∗ ⊠ eγ) ∈

•
Hecke(Whitq,x(G))

♡

receives a non-zero map from M
λ,!∗
Whit, and the Jordan-Holder constituents of the quotient

are of the form M
λ′,!∗
Whit for λ

′ < λ.

Proof. The object ind •
Hecke

(W λ1,!∗ ⊠ eγ) is irreducible in
•

Hecke(Whitq,x(G))
♡, now

W λ1,!∗ → W λ1,∗ gives the desired injection, and the quoitient is equipped with a fi-
nite filtration whose subquotients are

ind •
Hecke

(W λ′1,!∗ ⊠ eγ)

for some λ′1 < λ1 with λ′1 ∈ Λ+. Let now λ′1 < λ1 with λ′1 ∈ Λ+. It suffices to show

that ind •
Hecke

(W λ′1,!∗ ⊠ eγ) has a finite filtration with the successive quotients M
λ′,!∗
Whit
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for some λ′ < λ. Pick a decomposition λ′1 = λ′2 + γ2, where λ
′
2 ∈ Λ+ is restricted and

γ2 ∈ Λ+
H . Then

W λ′1,!∗ →̃W λ′2,!∗ ∗ V γ2

in Whitq,x(G)
♡. Here V γ2 ∈ Irrep(H) with h.w. γ2. We get

ind •
Hecke

(W λ′1,!∗ ⊠ eγ) →̃ ind •
Hecke

(W λ′2,!∗ ⊠ (eγ ⊗ ResTH (V γ2)))

Clearly, this object has the desired finite filtration. □

Let now [H,H] by any. We apply 11.3.6 and chose an isogeny strictly compatible with
the geometric metaplectic data. Then as in 11.2.8(c), we have a fully faithful embedding
•

Hecke(Whitq,x(G))
♡ ↪→ (Rep(Ť0)⊗

•
Hecke(Whitq,x(G)))

♡ →̃
•

Hecke(Whitq,x(G̃))
♡. Then

the above lemma for G̃ gives the following for G.

Lemma 1.7.14. By Prop. 11.3.6 pick an isogeny strictly compatible with the geometric
metaplectic data such that [H̃, H̃] is simply-connected. Let λ ∈ Λ be written as λ = λ1+

γ with λ1 ∈ Λ̃+ restricted for G̃, and γ ∈ ΛH̃ . Then in the notations of Section 1.7.10

of this file, Mλ,∗
Whit receives an injective map from M

λ,!∗
Whit, and the quotient has a finite

filtration with the sucessive quotients of the form

M
λ′,!∗
Whit

with λ′ < λ.

Proof. We may pick a splitting s : Λ0 → ΛH̃ of (11.3) if necessary. The proof of the

previous lemma goes though, since given λ′1 ∈ Λ̃+ with λ′1 < λ1 in Λ̃+ we still have
λ′1 + γ ∈ Λ. □

1.7.15. For 11.3.9. In the very beginning of this section the following should be ex-
plained first. Consider G equipped with the factorizable gerbe (GG)−1. Then the cor-
responding metaplectic Langlands dual group is again H canonically. We considered
before the equivalence Whitq,x(G)

∨ →̃ Whitq−1,x(G) given by (7.9) in the paper.
Under this equivalence the action of Rep(H) via Satq−1,G on Whitq−1,x(G) corre-

spond not to the natural action of Rep(H) on Whitq,x(G)
∨ via Satq,G but to a twist

of this natural action. This is the true reason to introduce twists, and this should be
well-explained! Namely, we have for F ∈Whitq,x(G)

∨, V ∈ Rep(H)

F ∗ Satq−1,G(V ) →̃F ∗ Satq,G(τH(V ))

where in the RHS we mean the action of Rep(H) coming from its action on Whitq,x(G)
via Satq,G by passing to the dual category.

Using 11.1.3 of the paper we get in the notations of Section 1.7.10 of this file the
following. Given σ ∈ Λ̃+ restricted, γ ∈ ΛH̃ with σ + γ ∈ Λ we get

D(ind •
Hecke

(W σ,!∗ ⊠ eγ)) →̃ ind •
Hecke

(W σ,!∗ ⊠ eγ)

in
•

Hecke(Whitq−1,x(G̃)) first. So, D(Mσ+γ,!∗
Whit ) →̃M

σ−γ,!∗
Whit in the case when [H,H] is

simply-connected.
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Now let [H,H] be any. Then we apply the recipe of Sections 1.7.10 and Sect. 11.1.3
of the paper (and Section 1.7.1 of this file) to calculate the dual. For this we first need
to answer

Question: how the equivalence 11.2.8(b) interacts with passing to dual categories?
I think this should be explained in the paper, this is not clear!

Your formula for D(Mλ,!∗
Whit) is not clear in the case when [H,H] is not simply-

connected. Indeed, for the definition of an irreducible we used the full subcategory
ShvGG(Grω

ρ

G,x) ⊂ ShvGG̃(Grω
ρ

G̃,x
), and also a canonical functor

•
Hecke(Whitq,x(G))→ Rep(TH̃)⊗Rep(TH)

•
Hecke(Whitq,x(G))

sending z to the image of e⊠ z. How this interacts with the duality?
Namely, consider for the dual metaplectic data the natural inclusion Whitq−1,x(G) ↪→

Whitq−1,x(G̃) commuting with Rep(H)-actions via Satq−1,G and pass to the dual cat-

egories, we get a functor Whitq,x(G̃) → Whitq,x(G) commuting with the induced
Rep(H)-actions via Satq−1,G. Since it commutes with Rep(H)-actions via Satq−1,G,
it also commutes with Rep(H)-actions via Satq,G. So, we get a diagram

Whitq,x(G)→Whitq,x(G̃)→Whitq,x(G)

of functors commuting with Rep(H)-actions via Satq,G. Is the composition the identity?
The formula

DV erdier(Mλ,!∗
Whit) →̃M

λ,!∗
Whit

should be better explained in the case when [H,H] is not simply-connected. One can
simply say the following I hope. Assume we have chosen the isogeny strictly compatible
with the metaplectic data for G. Then the diagram commutes

(
•

Hecke(Whitq,x(G))
c)op ↪→ (

•
Hecke(Whitq̃,x(G̃))

c)op

↓ D ↓ D
•

Hecke(Whitq−1,x(G))
c ↪→

•
Hecke(Whitq̃−1,x(G̃))

c,

the horizontal arrows being natural fully faithful embeddings.

For 11.3.10: the category
•

Hecke(Whitq,x(G))
≤0 is the smallest full subcategory of

•
Hecke(Whitq,x(G)) containing M

µ,!∗
Whit for µ ∈ Λ and closed under extensions and col-

imits. This implies 11.3.10.

1.7.16. For 11.4.2. Let us show that for a coroot α of G the element ˜̌α := ℓα ˜̌αH , which
is apriori a map Λ̃→ Q takes values in Z. Since ˜̌αH is a coroot of H̃, ℓα ˜̌αH : ΛH̃ → Z.
So, it remains to show that for λ ∈ Λ, ⟨ℓα ˜̌αH , λ⟩ ∈ Z. However, the composition

ΛH ⊂ ΛH̃
˜̌αH→ Z equals α̌H , the corresponding coroot of H and α̌H = α̌

ℓα
by construction

of H. We get

⟨ℓα ˜̌αH , λ⟩ = ⟨α̌, λ⟩ ∈ Z,
we are done.

Why {α̃ ∈ Λ̃, ˜̌α ∈ ˜̌Λ}, as α runs through the coroots of G, forms a root datum?

The equality ⟨α̃, ˜̌α⟩ = 2 is clear. Now, to see that s ˜̌α : Λ̃ → Λ̃ preserves the set {α̃}
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(as α runs through the coroots of G), we use the following. First, this is clear for the

root datum of (ΛH̃ , α̃H , Λ̌H̃ ,
˜̌αH) of H̃. Now, to check an equality in some lattice N, it

suffices to check it in N ⊗Q, so this is automatic.

1.7.17. For 11.4.4. It is not true that for an affine curve the geometric metaplectic
data are classified up to an isomorphism by the associated quadratic form. Namely, by
[GLys, Cor. 3.3.6],

Map(X,B2
et(Hom(π1,alg(G), e

×,tors))) →̃ FactGe0(GrG)

For an affine curve H2
et(X,Hom(π1,alg(G), e

×,tors)) is nonzero in general. So, in addi-
tion to the construction of q̃, we should extend some gerbe from the structure group
Hom(π1,alg(G), e

×,tors) to a gerbe with the structure group Hom(π1,alg(G̃), e
×,tors).

However, since Ext1(Λ0, e
×,tors) = 0, the map

Hom(π1,alg(G̃), e
×,tors)→ Hom(π1,alg(G), e

×,tors)

is an isomorphism, and we are done.

1.7.18. For 11.4.5 line 4: replace ”a map q̃♯ : Λ̃♯ → ±1...” by ”a linear map...”.
Correct the last displayed formula, it should be

Quad(Λ̃, e×,tors(−1))Wrestr ⊂ Quad(Λ̃, e×,tors(−1))

If you want to write q(λ) + q̃♯(λ̃♯) then you should say that we denote the operation
on e×,tors(−1) additively, apriori it is the product.

If we take for q̃♯ : Λ̃♯ → ±1 any linear map extending q♯ then it is indeedW -invariant.
It suffices to show that q̃♯(sα(λ̃

♯)) = q̃♯(λ̃♯) for any simple coroot α of G. We denote

by αH = ℓαα the corresponding root of H, this is also the corresponding root of H̃ via
Λ♯ ⊂ Λ̃♯. Write ˜̌αH for the corresonding coroot of H̃. Then sα(λ̃

♯) = λ̃♯ − ⟨λ̃♯, ˜̌αH⟩αH .
Since q̃♯ is linear, it suffices to show that q̃♯(αH) = 1 in the multiplicative notation.

But we have q̃♯(ℓαα) = q(αH) = q(α)ℓ
2
α = 1, as ℓα = ord(q(α)).

By the way, for any central extension 1→ Ť0 → H̃ → H → 1 the map

Hom(Λ̃♯,Z/2Z)W → Hom(Λ♯,Z/2Z)W

is surjective. Indeed, we may view Hom(Λ♯,Z/2Z)W as the subgroup Z2 of elements

of order 2 in the center Z ⊂ H. Similarly, Hom(Λ̃♯,Z/2Z)W is the subgroup Z̃2 of

elements of order 2 in the center Z̃ of H̃.
We view q♯ : Λ♯ → ±1 ⊂ e∗ as an element ϵ ∈ Z2. We have an exact sequence 1 →

Ť0 → Z̃ → Z → 1 of algebraic groups over e. We must show that Z̃2 → Z2 is surjective.
This follows from ([12], Theorem 1.1). Namely, any extension 1 → Ť0 →? → µ2 → 1
splits.

So, we assume now q̃♯ : Λ̃♯ → ±1 isW -invariant and extending q♯. Then q̃ is correctly
defined, extends q and q̃ ∈ Quad(Λ̃, e×,tors(−1))W . Let b̃ : Λ̃× Λ̃→ e×,tors(−1) be the

attached bilinear form. For λi ∈ Λ, λ̃♯i ∈ Λ̃♯ we get

b̃(λ1 + λ̃♯1, λ2 + λ̃♯2) = b(λ1, λ2)

So, the kernel of b̃ is indeed Λ̃♯.
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It remains to verify that q̃ is restricted. We must show that for every coroot α of G,
λ ∈ Λ, λ̃♯ ∈ Λ̃♯ we have

b̃(α, λ+ λ̃♯) = ⟨ℓα ˜̌αH , λ+ λ̃♯⟩q̃(α)

Here q̃(α) = q(α) and b̃(α, λ + λ̃♯) = b(α, λ) = ⟨α̌, λ⟩q(α). Since ˜̌αH : Λ̃♯ → Z,
⟨ ˜̌αH , λ̃♯⟩ ∈ Z and ℓαq(α) = 1. We have ⟨α̌, λ⟩ = ⟨ℓα ˜̌αH , λ⟩, because the restriction of ˜̌α

to Λ ⊂ Λ̃ is α̌ by definition. Prop. 11.3.6 is proved.

1.8. For Part IV.

1.8.1. For 12.1. Write L(N)ω
ρ

x as a union of closed subschemes Nk, k ≥ 1. We assume
Nk is a placid group scheme, and for i < j, Ni ⊂ Nj is a placid closed immersion. As

in ([47], 1.2.8), we get the full embedding ShvGG(Grω
ρ

G,x)
Nk ⊂ ShvGG(Grω

ρ

G,x) admitting

a continuous right adjoint AvNk
∗ , and

∩
k
ShvGG(Grω

ρ

G,x)
Nk →̃ SIq,x(G)

Note that ShvGG(Grω
ρ

G,x)
Nk →̃ eNk

− comod(ShvGG(Grω
ρ

G,x)) by ([47], 1.3.12).

The full subcategory ShvGG(Grω
ρ

G,x)
Nk consists of F ∈ ShvGG(Grω

ρ

G,x) such that AvNk
∗ (F )→

F is an isomorphism, as for any colocalization. By Lemma 1.2.12 of this file, the in-

clusion SIq,x(G) ⊂ ShvGG(Grω
ρ

G,x) admits a maybe discontinuous right adjoint Av
L(N)ω

ρ
x

∗

given by Av
L(N)ω

ρ
x

∗ = limk∈Nop AvNk
∗ .

By Lemma 1.2.14 and the section just after it of this file, in the constructible context
we have the left adjoint

AvNk
! : ShvGG(Grω

ρ

G,x)→ ShvGG(Grω
ρ

G,x)
Nk

to the inclusion. Moreover, the left adjoint

Av
L(N)ω

ρ
x

! : ShvGG(Grω
ρ

G,x)→ ShvGG(Grω
ρ

G,x)
L(N)ω

ρ
x

to the inclusion also exists and is given by Av
L(N)ω

ρ
x

! →̃ colimk∈NAvNk
! by Lemma 1.2.15

of this file.
For λ ≤ λ′ ∈ Λ we have the commutative diagram

ShvGG(S̄λ
′
) ← ShvGG(S̄λ

′
)L(N)ω

ρ
x

↓ ↓
ShvGG(S̄λ) ← ShvGG(S̄λ)L(N)ω

ρ
x ,

where the vertical arrows are !-pull-backs, and the diagram

ShvGG(S̄λ
′
) ← ShvGG(S̄λ

′
)L(N)ω

ρ
x

↑ ↑
ShvGG(S̄λ) ← ShvGG(S̄λ)L(N)ω

ρ
x ,

where the vertival arrows are ∗-pushouts. Now SIq,x(G) →̃ limλ ShvGG(S̄λ)L(N)ω
ρ

x with
respect to the !-pullbacks. Passing to left adjoints, this rewrites as

SIq,x(G) →̃ colimλ ShvGG(S̄λ)L(N)ω
ρ

x
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with respect to the ∗-pushouts. The functor (̄iλ)! : SIq,x(G)≤λ := ShvGG(S̄λ)L(N)ω
ρ

x →
SIq,x(G) is fully faithful, as this is so before taking the invariants.

For jλ : Sλ → S̄λ we get the adjoint pair

j∗λ : SIq,x(G)≤λ ⇆ ShvGG(Sλ)L(N)ω
ρ

x =: SIq,x(G)=λ : (jλ)∗

with (jλ)∗ fully faithful.
As in Section 1.2.22 of this file, the subcategories SIq,x(G)≤λ−αi

⊂ SIq,x(G)≤λ for all
simple coroots αi, generate the full subcategory SIq,x(G)<λ ⊂ SIq,x(G)≤λ consisting of

F such that F is the extension by zero under S̄λ − Sλ ↪→ S̄λ. The essential image of
(jλ)∗ : SIq,x(G)=λ → SIq,x(G)≤λ is the right orthogonal to SIq,x(G)<λ.

As in the proof of 6.2.9, for any λ ∈ Λ and k ≥ 1 we have

AvNk
! (δtλ,Gr) →̃ eNktλ

[2 dimNkt
λ] →̃ωNktλ

,

and the corresponding monad on Vect is the identity. So, the functor Vect→ SIq,x(G)=λ

sending e to
◦
Wλ,! := Av

L(N)ω
ρ

x
! δtλ,Gr →̃ colimk(Av

Nk
! δtλ,Gr) →̃ωSλ is an equivalence.

Since e ∈ V ectc,
◦
Wλ,! ∈ SIq,x(G)=λ is compact.

LetWλ,! = (jλ)!
◦
Wλ,! ∈ SIq,x(G)≤λ. ThenWλ,! ∈ SIq,x(G)

c, because (jλ)! : SIq,x(G)=λ →
SIq,x(G)≤λ preserve compact objects. Similarly, (iλ)! : SIq,x(G)=λ → SIq,x(G) preserves

compact objects, it has a continuous right adjoint (iλ)
!. (This is both for the con-

structible context and for D-modules, as ω is holonomic on a scheme of finite type).
The existence of (jλ)! : SIq,x(G)=λ → SIq,x(G)≤λ is explained in. ([27], 1.4.2).

1.8.2. For 12.1.3. In Sect. 6.2.2 of the paper we have chosen trivializations of the
fibres of the gerbe GG at tλ for λ ∈ Λ. For λ = 0 this gerbe is already trivialized, for
this reason the equivalence SIq,x(G)=0 →̃ Vect is canonical.

1.8.3. For 12.1.4. For λ ∈ Λ consider Wλ,∗ := (jλ)∗
◦
Wλ,! ∈ SIq,x(G)≤λ. Why they are

not compact? (This is affirmed in [27]).

Let A = {µ ∈ Λ | µ ≤ λ} with the usual order. If µ′ ≤ µ ≤ λ then S̄λ−S̄µ ⊂ S̄λ−S̄µ′

is open, and S̄λ = ∪µ∈AS̄λ − S̄µ. Let τµ : S̄λ − S̄µ ⊂ S̄λ be the open immersion. The
natural map

Wλ,∗ → colim
µ∈Aop

(τµ)!τ
∗
µW

λ,∗

is an isomorphism in SIq,x(G), because the property of being an isomorphism of sheaves
is local in Zariski topology. Recall that S 7→ Shv(S) satisfies the etale descent for any
sheaf theory.

Here Aop is filtered. Is the natural map

Map(Wλ,∗, colim
µ∈Aop

(τµ)!τ
∗
µW

λ,∗)← colim
µ∈Aop

Map(Wλ,∗, (τµ)!τ
∗
µW

λ,∗)

in Spc an isomorphism? Any object in the RHS comes from some map Wλ,∗ →
(τµ)!τ

∗
µW

λ,∗ for some µ ≤ λ by ([43], 13.1.4). Assume the canonical map Wλ,∗ →
colim
µ∈Aop

(τµ)!τ
∗
µW

λ,∗ factors through (τµ)!τ
∗
µW

λ,∗. This would mean that (̄iµ)
∗Wλ,∗ = 0,

and probably this is wrong.
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It is affirmed in [27] that Wλ,∗ are not compact. Maybe this can be done using the
relation with the global geometry and using the resulutions from [11].

1.8.4. For 12.1.5. The definition of SIq,Ran(G) is similar to the case of Whitq,Ran(G)

discussed in Sections 1.3.3-1.3.13 of this file. Recall that Ran →̃ colimI X
I taken over

the category (Finsurj)op, here Finsurj is the category of finite nonempty sets and surjec-
tive maps. For I ∈ Finsurj let Grω

ρ

G,I = XI×RanGrω
ρ

G,Ran, so Grω
ρ

G,Ran →̃ colim
I∈(Finsurj)op

Grω
ρ

G,I .

For each I we have a full subcategory

SII = ShvGG(Grω
ρ

G,I)
L(N)ω

ρ

I ⊂ ShvGG(Grω
ρ

G,I)

and by definition

SIq,Ran(G) →̃ lim
I∈(Finsurj)

SII ⊂ lim
I∈(Finsurj)

ShvGG(Grω
ρ

G,I)) →̃ShvGG(Grω
ρ

G,Ran)

Here we used ([46], 0.0.42).

1.8.5. For 12.1.6. The definition of S̄0
Ran should be corrected as follows. This correction

is essential in the case when [G,G] is not simply-connected in view of Schieder’s paper

([58], Section 7.2). Fix an exact sequence 1 → Z → G̃ → G → 1 with [G̃, G̃] simply-

connected and Z a connected central torus in G̃. The coroots lattices for G̃ and G are
naturally isomorphic, so ωρ can be seen as a G̃-torsor on X. We have a natural map
Grω

ρ

G̃,Ran
→ Grω

ρ

G,Ran, and the prestack S̄0
Ran defined for G̃ as in the paper. By definition,

for G the prestack S̄0
Ran is defined as the same prestack for G̃. It is independent of a

choice of G̃.

1.8.6. For 12.2.1. When you say in • PG is a G-bundle. Say G-torsor on what...
We should explain somewhere the following. Given S ∈ Schft and S → Conf, we may

talk about (S ×X)− suppD. Namely, it is understood that we pick a homomorphism
τ : Λneg → Z sending each negative simple coroot to a strictly positive integer. Applying
this gives an S-point of X(n) (or maybe of finite union of such for several n). Now for

S → X(n) we get the corresponding relative effective Cartier divisor D′ ↪→ S×X, here
D is flat over S, then (S × X) − D′ is the desired scheme. It does not depend on a
choince of τ .

1.8.7. For 12.2.2. Given D =
∑

k µkxk ∈ Conf, the fibre of S̄Conf
Conf → Conf over D is∏

k S̄
µk
xk . The fibre of SConf

Conf → Conf over D is
∏
k S

µk
xk .

1.8.8. For 12.2.3. The section of Grω
ρ

T,Conf → Conf used in 12.2.3 sends D to ωρ(−D).

1.8.9. For 12.2.4. Consider the closed subscheme in XI ×X(n) given by the property
that for the collection ((xi), D) we have D ≤ n(

∑
i xi). On the other hand, for S ∈

Schaff and a pair S
J→ XI , S

D→ X(n) we may consider the closed subscheme D̃ ⊂ S×X
defined by D and require that D̃ factors through DJ ⊂ S × X. Does this define the

same subfunctor of XI × X(n)? Recall that DJ is the affine scheme corresponding to

the formal scheme D̂J.
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The final definition of (Conf × Ran)⊂ is as follows. Pick a homomorphism Λ → Z
sending each simple coroot to a positive integer. Let S ∈ Schaff and we are given
J ⊂ Hom(S,X), D ∈ Hom(S,Conf). Let ConfZ be similarly defined scheme for Λ
replaced by Z, DZ : S → ConfZ the corresponding point. Then DZ yields a closed
subscheme D̃ ⊂ S ×X, and we require that (S ×X)−DJ ⊂ (S ×X)− D̃.

The formula (12.2) is wrong, in the LHS there are additional factors GrG,x for some
points x which are in the collection J but not in the support of the divisor D. But I
think we don’t need this isomorphism. The ”consequence” of it in 12.2.5 is correct, I
think.

1.8.10. For 12.2.5. Note that S̄Conf
Ran ↪→ S̄0

Ran×Ran(Conf ×Ran)⊂ is a closed subfunctor.
First, a point of S̄0

Ran ×Ran (Conf ×Ran)⊂ is (D, (xi)) ∈ (Conf ×Ran)⊂, FG on X
with β : FG →̃ωρ |X−(xi) such that ωρ ⊂ FG defines a generalized B-structure on X.

This points lies in S̄Conf
Ran if the trivialization β extends to β : FG →̃ωρ |X−supp(D) first,

and moreover β defines a generalized B-structure ωρ(−D) ⊂ FG. Both conditions are
closed.

The map īConf
Ran is ind-proper (or pseudo-proper).

1.8.11. For 12.2.7. Now an IMPORTANT change of notations: as we discussed
by skype, I will assume from now on that the objects denoted by SλRan, S̄

λ
Ran in Section

12.2.7 for λ < 0 are denoted, say by SλRan, S̄
λ
Ran respectively.

Now we denote for λ ≤ 0 by S̄λRan the following prestack. Pick G̃ as above, so that

[G̃, G̃] is simply-connected. Then S̄λRan classifies J ∈ Ran, (D, J) ∈ (Confλ×Ran)⊂, a

G̃-torsor F on X with an isomorphism F →̃ωρ |X−ΓJ
such that for each λ̌ ∈ Λ̌+

T̃
the

map

λ̌(ωρ(−D))→ Ṽλ̌F

is regular over X. Here Ṽλ̌ is the corresponding Weyl module for G̃, and the above
map is over (Confλ×Ran)⊂ ×X.

The difference with S̄λRan is that for this new S̄λRan we do not require the trivialization
F →̃ωρ |X−ΓJ

to extend to X − supp(D).

Now SλRan ⊂ S̄λRan is defined by requiring that the above map has no zeros, so that

it defines a B̃-structure on F with the corresponding T -torsor ωρ(−D).
It would help also to add the following. If D =

∑
x λxx ∈ Confλ for some λx ∈ Λneg

and (D, J) ∈ (Conf ×Ran)⊂ is a k-point then the fibre of the projection S̄λRan →
(Conf ×Ran)⊂ over this point identifies with

∏
x S̄

λx , and a similar claim for SλRan.

I propose not to define S̄λRan for λ = 0. However, for λ = 0, we may set S0Ran = Ran.

For convenience, for λ ∈ Λneg−0 the prestack S̄λRan classifies: (D, (xi)) ∈ (Conf ×Ran)⊂,
FG on X with β : FG →̃ωρ |X−supp(D) such that β defines a generalized B-structure

ωρ(−D) ⊂ FG lying in the true BunB. The open immersion jλRan : SλRan → S̄λRan is
given by the condition that the generalized B-structure ωρ(−D) ⊂ FG is in fact a true
B-structure.
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1.8.12. For 12.2.10. After the correction of the definitions of S̄0
Ran, Lemma 12.2.10 is

true in general. Recall that if µ ∈ Λ and ⟨µ, λ̌⟩ ≤ 0 for all λ̌ dominant, this does not
imply that µ ∈ Λneg. I assume the definition of S̄0

Ran is corrected in in the style of
Schieder’s paper ([58], Section 7).

1.8.13. For 12.3.3. The reference [Ga7, Cor. 1.4.5] should be [Ga7, Cor. 1.5.3] for the
last version of [Ga7]. It is important for using [26] that for a finite nonempty set I the

projection pλI : SλI → (Confλ×XI)⊂ is ind-schematic of ind-finite type, so the functor

(pλI )
! is defined, we remain in the category PreStklft. For F ∈ Shv((Confλ×XI)⊂),K ∈

Shv(SλI ) we have the projection formula (pλI )∗((p
λ
I )

!F ⊗! K) →̃F ⊗! (pλI )∗K. This was
used in ([26], 1.5.3).

In the constructible context the existence of (iλRan)
∗ follows from the fact that iλRan

is schematic of finite type.
In ([26], proof of 1.7.3) Dennis claimed that any object of Shv(S̄0

I ) isGm-monodromic.

He meant instead that any object of SI≤0I is Gm-monodromic (here Gm-action comes
from T -action by restricting via a regular character).

Definition: if G is an algebraic group of finite type acting on Z ∈ PreStklft then

Shv(Z)G−mon is the full subcategory generated by the essential image of Shv(Z/G)→
Shv(Z) in the case of D-module. In the constructible context according to ([16], Sect.
0.4), the definition changes as follows: Shv(Z)G−mon ⊂ Shv(Z) is obtained from the
essential image of Shv(Z/G)→ Shv(Z) by adding objects obtained by finite iteration
of the procedure of taking cone of a morphism.

In ([26], Pp. 1.5.3) the following is proved. For a finite set consider the corresponding

versions SλI , S
−,λ
I , (Xλ ×XI)⊂ as in loc.cit. and the diagram

(Xλ ×XI)⊂
p−,λ
I← S−,λI

i−,λ

→ GrG,I
iλ← SλI

pλI→ (Xλ ×XI)⊂

Then iλ∗ : SI
=λ
I → SI≤0I has a left adjoint given by (pλI )

!(p−,λI )∗(i
−,λ)!. This immediately

gives the base change property in ([26], Pp. 1.5.3, (c)).

1.8.14. For 12.3.4. We meant here the reference to ([26], 1.5.6). The explanation in
([26], 1.5.6) is insufficient, Dennis should explain what he means by ”a formal Cousin ar-
gument” in ([26], 1.5.3). In the case of stratification with two strata this is Lemma 1.8.16
below.

One has the following.

Lemma 1.8.15. Let i∗ = i! : C
′ → C be a fully faithful functor in DGCatcont.

1) The following conditions are equivalent:
A) i! is a colocalization, that is, admits a right adjoint i! such that id → i!i! is an
isomorphism;
B) for any c ∈ C there is an exact triangle c′ → c→ d in C with c′ ∈ C ′ such that for
each c1 ∈ C ′, Hom(c1, d) = 0 in Vect.

If these conditions hold, we may identify C/C ′ with the right orthogonal

C ′r = {z ∈ C | for any c1 ∈ C ′,Hom(c1, z) = 0 ∈ Vect}
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and obtain a pair of adjoint functors j∗ : C ⇄ C ′r : j∗ such that j∗j∗ → id is an
isomorphism, here j∗ is the inclusion. The exact triangle from B) then becomes i!i

!c→
c→ j∗j

∗c.

2) Dually, the following conditions are equivalent.
A’) i∗ is a localization, that is, admits a left adjoint i∗ such that i∗i∗ → id is an
isomorphism;
B’) for any c ∈ C there is an exact triangle d→ c→ c′ with c′ ∈ C ′ such that for each
c1 ∈ C ′, Hom(d, c1) = 0 in Vect.

If these conditions hold, we identify the left orthogonal C ′l = {z ∈ C | for any c1 ∈
C ′,Hom(z, c1) = 0 ∈ Vect} with C/C ′ and obtain an adjoint pair j! : C

′l ⇆ C : j! such
that id→ j!j! is an isomorphism, here j! is the inclusion. The exact triangle from B’)
then becomes j!j

!c→ c→ i∗i
∗c. □

Proof. In 2) it is clear that A’) and B’) are equivalent, and we get the functors j! :
C ′l ⇆ C : j!, where j! is maybe discontinuous. Besides, for each c ∈ C the fibre
sequence from B’) becomes j!j

!c→ c→ i∗i
∗c. In partcular, j!i∗ = 0. The functor j! is

continuous. To see this, it suffices to show that j!j
! : C → C is continuous. However,

j!j
! is c 7→ Cofib(c[−1]→ i∗i

∗c[−1]). Since i∗, i∗ are continuous, we conclude that j! is
continuous.

Since j!i∗ = 0, the functor j! factors as C
h→ C/C ′

τ→ C ′l, where τ is continuous, and
h is the projection. Let η = hj!. Now id →̃ j!j! gives an isomorphism τη →̃ id. Since
hR is fully faithful, h is a localization functor, so is essentially surjective. For c ∈ C
the above fibre sequence gives ηj!(c) →̃hj!j

!(c) →̃h(c), so η is essentially surjective.
We have ητh →̃hj!j

! →̃h naturally as functors C → C/C ′. Indeed, the above fibre
sequence gives hj!j

!(c) →̃h(c) fucntorially for c ∈ C. Since hR is fully faithful, multiply-
ing the above isomorphism by hR on the right, we get an isomorphism ητhhR →̃hhR.
Now, hhR →̃ id, so this gives an isomorphism ητ →̃ id. Thus, τ and η are mutually
inverse equivalences. □

In Lemma 1.8.15 1), the functor j∗ is a map in DGCat, it is not necessarily continuous
(if i! is continuous then j∗ is also continuous).

Lemma 1.8.16. Let C0, C, C ′ ∈ DGCatcont and we are given adjoint pairs j! = j∗ :
C ⇆ C0 : j∗, i! = i∗ : C

′ ⇆ C : i!, and i∗ : C ⇆ C ′ : i∗. Assume that for any F ∈ C the
triangle is exact i∗i

!F → F → j∗j
∗F . Assume in addition that i∗i∗ → id, and id→ i!i!,

and j∗j∗ → id are isomorphisms, so i∗ and j∗ are fully faithful. Consider the functor
h : C0 → C sending F to

Fib(j∗F → i∗i
∗j∗F )

Then h is left adjoint to j!.

Proof. Note that Cofib(C ′
i!→ C) in DGCatcont identifies with C0, namely we may pass

to left adjoint in the diagram C0→̃Fib(C
i!→ C ′) in DGCatcont. So, we may think the

input datum is just a fully faithful embedding i! : C
′ → C admitting a continuous right

adjoint i! and a left adjoint i∗ such that both A,A′ of Lemma 1.8.15 hold.
Note that j∗ : C0 →̃ {F ∈ C | i!F = 0} = C ′r is an equivalence. So, we identify C0

with C ′r via j∗. From now on, j∗ : C ⇄ C ′r : j∗, and h : C ′r → C.
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By Lemma 1.8.15, we get the adjoint pair j! : C ′l ⇄ C : j! such that id → j!j!
is an isomorphism. The functor C ′r → C ′l sending c ∈ C ′r to Fib(c → i∗i

∗c) is an
equivalence, we are done. □

If in addition A ∈ CAlg(DGCatcont) and all the categories and functors in the
inputs of Lemma 1.8.16 are maps in A − mod(DGCatcont) then h is also a map in
A −mod(DGCatcont). This is why in ([26], Cor. 1.5.6(b)) the functor (iλ)! commutes
with the actions of Shv(XI).

We used here the fact that oblv : A−mod(DGCatcont)→ DGCatcont preserves limits
and colimits.

In the constructible context the existence of (iλRan)! : SI
=λ
q,Ran → SI≤0q,Ran is automatic,

this is the usual !-extension for sheaves, and it preserves the equivariance condition.

Lemma 1.8.17. Let C ∈ DGCat, assume given an adjoint pair i : B ⇆ C : i! in
DGCatcont with i fully faithful. Set A = ii!, this is a continuous e-linear comonad on

C. Let D = Ker(i!). . Then i! factors naturally as C
h→ C/D

a→ B, where a is an
equivalence.

Proof. By assumptions, i! is continuous. We have an equvalence C/D →̃ Ker(jR), where
j : D → C is the inclusion, and jR : C → D is the right adjoint of j.

We claim that a and hi are quasi-inverses of each other. Indeed, on one hand, the
natural map id→ i!i →̃ ahi is an isomorphism, because i is fully faithful. To show that
(hi)a is isomorphic to id, it suffices to show that hiah →̃h, because h is a localization
functor. For x ∈ C we have a functorial in x ∈ C fibre sequence ii!x → x → y with
y ∈ D, hence h(ii!x) → h(x) → h(y) is a fibre sequence in C/D. Here h(y) = 0, so
hii! →̃h. □

Any idempotent continuous e-linear comonad on C is of the form ii! as in the previous
lemma, where B = A− comod(C).

Lemma 1.8.17 can be strenthened as follows.

Lemma 1.8.17’: Let L : C ⇆ D : R be an adjoint pair in DGCat with R fully
faithful, so L is a map in DGCatcont. Let C0 = Ker(L). Then L factors naturally as

C
h→ C/C0

a→ D, where a is an equivalence.

Proof. First, h has a fully faithful right adjoint hR, because C/C0 = Ker(jR), where
j : C0 → C is the inclusion. Now a also has a right adjoint aR and hRaR →̃R is fully
faithful, so aR is fully faithful. We claim that hR and a are quasi-inverse to each other.
Indeed, on one hand, ahR →̃LR →̃ id. Now we have to show that (hR)a →̃ id. For
this it suffices to show that hRah →̃h, because h is a localization functor. For c ∈ C
we have a functorial fibre sequence x → c → RL(c) in C with x ∈ C0. Applying h we
get a fibre sequence h(x) → h(c) → hRL(c) in C/C0, here h(x) = 0. Thus, h →̃hRL
as desired. □

1.8.18. For 12.4.2. In Section 1.1.15 of this file I explained that one has to correct
the definition of the gerbe GG on Grω

ρ

G,x. Proposition 12.4.2 can be true only after my

correction of the definition of GG. In (12.4), pRan should be pConf
Ran .
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Prop. 12.4.2 is however wrong as stated, the corresponding gerbes are opposite, not
the same.

Indeed, recall the isomorphism (Conf ×Ran)⊂ →̃ (Grω
ρ

T,Ran)
neg, it sends (D, (xi)) with

supp(D) ⊂ (xi) to FT = ωρ(D). So, by the actual definition the fibre of GΛ at D is the
fibre of GG at

(FT = ωρ(D), (xi), α : FT →̃ωρ |X−(xi)) ∈ Grω
ρ

T,Ran

Consider a point of SConf
Ran given by (D, (xi), suppD ⊂ (xi)),FB a B-torsor on X with

the corresponding T -torsor identified with ωρ(−D). The image of this point under
SConf
Ran → Grω

ρ

B,Ran → Grω
ρ

T,Ran is

FT = ωρ(−D), α : FT →̃ωρ |X−(xi), (xi) ∈ Ran

What seems natural is to ask that whatever definitions are, the pullback of GΛ under
SConf
Ran → Conf identifies with GG. This is assumed in 12.4.3 for example.
The proof of 12.4.2 should be simplified. The proof is simply the fact that the

diagram should commute (if you change the definition of Grω
ρ

T,Ran)
neg replacing FT by

its opposite torsor):

SConf
Ran → (Conf ×Ran)⊂ →̃ (Grω

ρ

T,Ran)
neg

↓ ↓
Grω

ρ

B,Ran → Grω
ρ

T,Ran

To be able to continue reading, from now on I assume that the definition of
(Grω

ρ

T,Ran)
neg is corrected as follows: we assume for this definition G = Gsc. Then its

S-point is a collection: J ∈ Hom(S,Ran),FT on S×X with a trivialization ωρ |S×X−ΓJ

→̃FT such that for any λ̌ ∈ Λ̌+ the map ω⟨ρ,λ̌⟩ → λ̌(FT ) is regular over S ×X.
I also assume that GΛ is defined as the descent of GG under (Grω

ρ

T,Ran)
neg → Conf.

Now Prop. 12.4.2 is correct, but is not sufficient to get the functor (pλRan)
! :

ShvGΛ((Confλ×Ran)⊂)→ ShvGG(SλRan) in Section 12.4.3 of the paper. For such appli-
cations, it is better to change the formulation of Prop. 12.4.2 to adopt it to S-versions
as opposed to S-versions. Namely, we have a commutative diagram

SλRan → (Conf ×Ran)⊂ →̃ (Grω
ρ

T,Ran)
neg

↓ ↓
Grω

ρ

B,Ran → Grω
ρ

T,Ran

1.8.19. For 12.4.3. The map pRan in the 1st displayed fromula was instead denoted
pConf
Ran in 12.2.6. Chose one of the two notations to use throughout.

1.8.20. For 12.4.4. The proof of [Ga7, 1.4.8] is not given in [Ga7]. I have written a
proof in ([44], Lemma 1.3.19) for any sheaf theory. For D-modules a closed claim is
([33], Lemma B.4.1). Some reference for the proof is needed here. Maybe the upcoming
paper by Lin Chen generalizing [33] will be already available at the moment of revising
of our paper, and we could refer to his upcoming paper.
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1.8.21. For 12.5.1. Replace ϕsmall by ϕ
!
small in the 1st displayed formula.

The prestack Grω
ρ

G,(Ran×Ran)⊂ has never been defined. It has appeared in the proof

of 12.4.2 but without a definition. You should write what you mean: this is the
prestack classifying (J ⊂ J′) ∈ (Ran×Ran)⊂, PG a G-torsor on X and an isomor-
phism PG →̃ωρS×X−ΓJ

. Then the map ϕbig : Grω
ρ

G,(Ran×Ran)⊂ → Grω
ρ

G,Ran is the one

denoted by ϕbig in Sect. 1.6 of the paper.

The definition of ShvGG(Grω
ρ

G,Ran)untl should be corrected I think. This is just the
limit in DGCatcont of the diagram

ShvGG(Grω
ρ

G,Ran)
ϕ!small→ Grω

ρ

G,(Ran×Ran)⊂
ϕ!big← ShvGG(Grω

ρ

G,Ran)

I mean one should not impose in addition the property that △! applied to the iso-
moprhism ϕ!small(F)→̃ϕ!big(F) gives the identity. Indeed, if F ;F ′ ∈ ShvGG(Grω

ρ

G,Ran)

and ϕ!small(F
′)→̃ϕ!big(F ) then applying △! this yields an isomorphism F ′ →̃F , and we

identify F ′ with F .
In 1.6.5 we defined a unital structure for any prestack Z → Ran over Ran. It would

be easier to understand the definition if you give it in this generality. I propose to define
the following more general notion making things clearer. The next section justifies the
fact that the unital category should indeed be a full subcategory of Shv(Grω

ρ

G,Ran).

1.8.22. Generality about invariants under category objects. Let X : ∆op → PreStklft
be a category object with S = X[0], H = X[1], so H acts on S. Then one may de-
fine the category of H-equivariant objects Shv(S)H of Shv(S) as Tot(Shv(X([•])).
Here we applied the functor Shv : (PreStklft)

op → DGCatcont to X. Namely, denote
colim[n]∈∆op X[n] by S/H, we think of it as the quotient of S by H. Then by definition

Shv(S)H →̃Shv(S/H).
In this generality, Shv(S)H → Shv(S) is comonadic by ([36], 4.7.5.1).
Let’s call the unit category object acting on S the constant functor ∆op → PreStklft

with value S. The unit section yields a morphism from the unit category object acting
on S to H. Note that Shv(S)S →̃Shv(S). Applying the invariants, we get a functor
Shv(S)H → Shv(S)S →̃Shv(S).

Is your definition of the unital category equivalent to the above definition of the
category of invariants under the action of (Ran×Ran)⊂ on Grω

ρ

G,Ran?
As in Section 1.1.12 of this file, we have a natural right action of H on itself, so that

the map t : H → S attached to [0]
1→ [1] is H-equivariant.

Recall from ([43], 3.0.73) the category ∆−∞ and the map ϕ : ∆op
−∞ → ∆op. Re-

stricting X along this map, we get a split augmented simplicial object. The corre-
sponding augmented simplicial object is a colimit diagram by ([36], 4.7.2.3), namely,
colim
[n]∈∆op

H ×t,S,s Hn
S →̃S in PreStklft. This says that the quotient of H by the natural

right action of H on itself identifies with S. Here Hn
S = H ×t,S,s H ×t,S,s . . . ×t,S,s H,

where H appears n times.
Consider the inclusion [n] ↪→ {−∞} ⋆ [n] functorial in [n] ∈ ∆, it gives a morphism

of simplicial diagrams αn : H ×t,S,s Hn
S → Hn

S (functorial in [n] ∈ ∆). Passing to the
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colimit, this gives the map

S →̃ colim
[n]∈∆op

H ×t,S,s Hn
S → colim

[n]∈∆op
Hn
S →̃S/H

which is the natural map f : S → S/H. Now for s, t : [0]→ [1] write αs, αt : H → S for
the corresponding maps. Assume αt : H → S universally homologically contractible.
So, for any n ≥ 0 the functor α!

n : Shv(Hn
S ) → Shv(H ×t,S,s Hn

S ) is fully faithful.

Passing to the limit we conclude that f ! : Shv(S/H)→ Shv(S) is fully faithful.
My understanding is that an objectK ∈ Shv(S) lies in the full subcategory Shv(S/H)

iff α!
s(K) lies in the essential image of the full embedding α!

t : Shv(S) → Shv(H). Is
this correct?

Remark: assume now X is such that the source map αs : H → S attached to [0]
0→ [1]

is universally homologically contractible. Then consider Xrm, which is X with reversed
multiplication. Applying the above, we also see that f ! : Shv(S/H)→ Shv(S) is fully
faithful.

1.8.23. For 12.5.3. The right action of the category object (Ran×Ran)⊂ on GrG,Ran

preserves S̄0
Ran. It also acts naturally on S̄λRan for λ ≤ 0 preserving the open part SλRan.

The inclusions SIq,Ran(G)
≤0
untl ⊂ SIq,Ran(G)

≤0, SIq,Ran(G)
≤λ
untl ⊂ SIq,Ran(G)

≤λ,

SIq,Ran(G)
=λ
untl ⊂ SIq,Ran(G)

=λ

are full subcategories.
We may define the full subcategories Shvq(S̄

λ
Ran)untl ⊂ Shvq(S̄λRan)), Shvq(S

λ
Ran)untl ⊂

Shvq(S
λ
Ran), and the corresponding semi-infinite categories are by definition the inter-

sections

SIq,Ran(G)
≤λ
untl = SIq,Ran(G)

≤λ ∩ Shvq(S̄λRan)untl,

SIq,Ran(G)
=λ
untl = SIq,Ran(G)

=λ ∩ Shvq(SλRan)untl.

For example, Shv(S̄λRan)untl is the full subcategory of those K ∈ Shv(S̄λRan) such
that for the diagram

S̄λRan
ϕs← S̄λ(Ran×Ran)⊂

ϕb→ S̄λRan

the object ϕ!bK lies in the essential image of the fully faithful functor ϕ!s : Shv(S̄
λ
Ran)→

Shv(S̄λ(Ran×Ran)⊂)

The fact that for λ < 0 the functor (̄iλ)∗ preserves unital subcategories follows from
the fact that both diagrams are cartesian

S̄λ(Ran×Ran)⊂
īλRan→ S̄0

(Ran×Ran)⊂

↓ φsmall ↓ φsmall

S̄λRan

īλRan→ S̄0
Ran,

S̄λ(Ran×Ran)⊂
īλRan→ S̄0

(Ran×Ran)⊂

↓ φbig ↓ φbig

S̄λRan

īλRan→ S̄0
Ran

Similar thing happens for (jλRan)∗.
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The fact that (̄iλ)! preserves unital subcategories follows from the fact that the
diagram commutes

S̄λRan

īλRan→ S̄0
Ran

↑ ϕbig ↑ ϕbig
S̄λ(Ran×Ran)⊂

īλRan→ S̄0
(Ran×Ran)⊂

↓ ϕsmall ↓ ϕsmall

S̄λRan

īλRan→ S̄0
Ran

Similar thing happens for (jλ)!.

We may similarly define the prestack (Confλ×Ran×Ran)⊂, it classifies (D, (xi)) ∈
(Confλ×Ran)⊂, ((xi) ⊂ (xj)) ∈ (Ran×Ran)⊂. Then define ShvGλ((Confλ×Ran)⊂)untl
in a similar way.

For λ ≤ 0 we have the diagram, where both squares are cartesian

SλRan

φsmall← Sλ(Ran×Ran)⊂
φbig→ SλRan

↓ pλRan ↓ pλRan ↓ pλRan

(Confλ×Ran)⊂
φsmall← (Confλ×Ran×Ran)⊂

φbig→ (Confλ×Ran)⊂

However, the corresponding diagram for S-versions is not cartesian!
For this reason for λ < 0 the functor

(pλRan)∗ : SIq,Ran(G)
=λ → ShvGΛ((Confλ×Ran)⊂)

preserves the corresponding unital categories. We prove this using the S-versions!
Besides, (pλRan)

! and (sλRan)
! preserve unital subcategories for λ < 0, here sλRan :

(Confλ×Ran)⊂ → SλRan is the canonical section sending (D, (xi)) to F = ωρ(−D)
with F →̃ωρ |X−supp(D). This first implies that (12.6) is indeed an equivalence for

λ < 0. It is easy to see that the functor (s0Ran)
! : SIq,Ran(G)

=0 → ShvGG(Ran) preserves

unital subcategories, hence gives an equivalence (s0Ran)
! : SIq,Ran(G)

=0→̃Vect, where
ωS0

Ran
goes to ωRan. Here ShvGG(Ran)untl →̃ Vect with the canonical generator ωRan.

1.8.24. For ([26], 4.2.2): it is correct. Namely, S̄0
Ran ∈ PreStklft. Let us be given

K ∈ ShvGG(S̄0
Ran). For any finite collection λi ≤ 0, the union of ⊔iS̄λiRan maps to S̄0

Ran,

write S̄
≤{λi}
Ran for the image. Then this image and its complement in S̄0

Ran are stable

under the action of (Ran×Ran)⊂. So, we have the category ShvGG(S̄0
Ran− S̄

≤{λi}
Ran )untl.

Claim: let K ∈ ShvGG(S̄0
Ran). Let {λi} be a finite collection of elements of Λneg such

that

Λneg − ∪i{µ ∈ Λ | µ ≤ λi}

is finite. Assume that for each such collection the restriction of K to S̄0
Ran − S̄

≤{λi}
Ran is

unital. Then K ∈ ShvGG(S̄0
Ran)untl.

Proof. Consider the diagram S̄0
Ran

ϕs← S̄0
(Ran×Ran)⊂

ϕb→ S̄0
Ran. By our assumption, for

each finite collection of elements of Λneg such that Λneg − ∪i{µ ∈ Λ | µ ≤ λi} is finite,



115

the restriction of ϕ!bK to

(S̄0
Ran − S̄

≤{λi}
Ran )×Ran,ϕs (Ran×Ran)⊂

descends under ϕs to an object of ShvGG((S̄0
Ran − S̄

≤{λi}
Ran ).

We have cup{λi}S
0
Ran−S̄

≤{λi}
Ran = S̄0

Ran, as this is an open covering. Since Shv satisfies
Zariski descent,

ShvGG(S̄0
Ran) →̃ limShv(S̄0

Ran − S̄
≤{λi}
Ran )

The objects we get on S̄0
Ran − S̄

≤{λi}
Ran clearly organize into an object of the above

limit. □

The above claim implies ([26], 4.2.2).
To obtain ([26], 4.2.5), argue as follows. Consider the diagram

(Xλ × Ran)⊂
pλRan← SλRan

sλRan← (Xλ × Ran)⊂

Since (pλRan)
! and (sλRan)

! preserve unital subcategories, we get the diagram

(26) Shv((Xλ × Ran)⊂)untl
(pλRan)

!

→ Shv(SλRan)untl
(sλRan)

!

← Shv((Xλ × Ran)⊂)untl,

where the first functor is fully faithful, because (pλRan)
! : Shv(Xλ ×Ran)⊂) →̃ SI(G)=λ

is an equivalence. This implies that

(pλRan)
! : Shv((Xλ × Ran)⊂)untl → SI(G)=λuntl

is fully faithful. Let us show it is an equivalence. Since (sλRan)
! : SI(G)=λ → Shv((Xλ×

Ran)⊂) is an equivalence, the functor

(sλRan)
! : SI(G)=λuntl → Shv((Xλ × Ran)⊂)untl

is fully faithful. The latter is an equivalence, because (sλRan)
!(pλRan)

! = id. Now since
the composition in (26) is an equivalence, the first functor in (26) is also an equivalence.

1.8.25. For 12.5.4 and for ([26], Cor. 4.2.3). We check that (iλ)∗ : SI(G)≤0Ran →
SI(G)=λRan preserves the unital subcategories, then for iλ! this is a formal consequence.

Recall the definition of S̄−,λRan. It is the subfunctor of (Xλ ×Ran)⊂ ×Ran GrG,Ran. Its

S-point is a collection (D, I,FG̃) with an ismorphism FG̃ →̃F0
G̃
|(S×X)−DI

of G̃-torsors

such that for any λ̌ dominant for G̃, the map Vλ̌FG̃
→ O(−⟨λ̌, D⟩) is regular over S×X.

Here Vλ̌ is the Weyl module for G̃ (cf. [49], 0.5).
Using ([26], proof of 1.5.3) let us show that the functor (iλRan)

∗ preserves unital
subcategories for λ < 0. One has

(iλ)∗ →̃ (pλRan)
!(p−,λRan)∗(i

−,λ)!

for the diagram

SλRan

pλRan← (Xλ × Ran)⊂
p−,λ
Ran← S−,λRan ∩ S̄

0
Ran

i−,λ

→ S̄0
Ran,

here of course we mean the intersection over Ran.
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Since (i−,λ)!, (pλRan)
! preserve the unital categories, it suffices to show that the functor

(p−,λRan)∗ : ShvGG(S
−,λ
Ran ∩ S̄0

Ran)→ ShvGG(Confλ×Ran)⊂ preserves the unital categories.
In the diagram

S−,λRan ∩ S̄0
Ran

ϕs← (S−,λRan ∩ S̄0
Ran)×Ran,ϕs (Ran×Ran)⊂

ϕb→ S−,λRan ∩ S̄0
Ran

↓ p−,λ
Ran ↓ ↓ p−,λ

Ran

(Xλ × Ran)⊂
ϕs← (Xλ × Ran×Ran)⊂

ϕb→ (Xλ × Ran)⊂

both squares are cartesian.1 Indeed, for an S-point (D, J ⊂ J′),FG̃,FG̃ →̃F0
G̃
|(S×X)−DJ′

lying in the fibred product the trivialization automatically extends to (S × X) − DJ,
because at a point x ∈ X one has S−,0 ∩ S̄≤0 = t0 ∈ GrG,x. We apply this to points of
J′ not lying in J.

Since (iλRan)
∗ : SIq,Ran(G)

≤λ → SIq,Ran(G)
=λ preserves unital subcategories, this

should imply that (iλRan)! preserves unital categories for λ < 0 formally via Lemma 1.8.16
of this file, because there is an explicit formula for this functor in terms of other func-
tors, which are already known to preserve unital categories.

One has separately to verify all the claims from 12.5.3-12.5.7 for λ = 0. It is clear
that (p0Ran)

!, (p̄0Ran)
!, (j0Ran)

!, (j0Ran)∗ preserve unital subcategories.

1.8.26. In ([26], Cor. 4.2.2) it is claimed that F ∈ SI≤0Ran lies in SI≤0Ran,untl iff for any

λ ≤ 0, (iλRan)
!F ∈ SI=λRan,untl.

To prove this, we present S̄0
Ran →̃ colimk≥0 Yk in PreStk, where Yi ⊂ S̄0

Ran is the

union those SλRan for which ht(λ) ≤ k. Here for λ =
∑

α nαα, the sum being over
simple coroots, we let ht(λ) =

∑
α−nα ∈ Z+. This holds, because τ≤0 Spc ⊂ Spc is

closed under filtered colimits, so for S ∈ Schaff , Map(S, colimk Yk) is the union of the
sets Map(S, Yk). Now any element in Map(S, S̄0

Ran) lies in some Map(S, Yk), because S
is quasi-compact.

The complement of Yk in S̄0
Ran is closed, and Yk ⊂ Yk+1. So,

ShvGG(S̄0
Ran) →̃ lim

k∈Zop
+

ShvGG(Yk)

For each Yk we have the unital subcategory ShvGG(Yk)untl defined similarly. For F ∈
ShvGG(Yk) the already establised results show that F lies in SIq(Yk)untl iff for any λ ≤ 0

with ht(λ) ≤ k, (iλRan)
!F lies in the unital category.

Let now F ∈ SI≤0Ran with (iλRan)
!F ∈ SIq,Ran(G)

=λ
untl for any λ ≤ 0. Its restriction to the

open part Yk is unital for any k. So, over Yk ×Ran,φsmall
(Ran×Ran)⊂ ⊂ S̄0

(Ran×Ran)⊂

we get the desired isomorphism φ!
smallF →̃φ!

bigF , they are automatically compatible
and yield in the limit over k the desired isomorphism.

Another thing, the proof of ([26], 4.2.7) is correct, but we need to know that Shv
satisfies the descent for a morphism f : Y → Z in Schft, which is finite and surjective.
This follows from ([46], 0.0.30).

1The right square would not be cartesian if we considered S−,λ
Ran instead of the intersection S−,λ

Ran∩S̄
0
Ran.
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1.8.27. t-structures on gluings of categories. Let us be in the situation of Lemma 1.8.16.
Assume both C0, C ′ are equipped with accessible t-structures. Then we define C≥0 ⊂ C
as the full subcategory of those F ∈ C for which i!F ∈ C ′≥0 and j!(F ) ∈ (C0)≥0.
Then F ∈ C<0 iff both i∗F ∈ (C ′)<0 and j∗F ∈ (C0)<0. Indeed {F ∈ C | i∗F ∈
(C ′)<0 and j∗F ∈ (C0)<0} contains i∗(C

′<0), j!((C
0)<0) and is closed under colimits

and extensions. Since both C ′<0 and (C0)<0 are presentable, each of them is generated
by a small set of objects. Now C<0 ⊂ C is the smallest full subcategory closed under
colimits, closed under extensions and containing j!F1 for F1 ∈ (C0)<0 and i∗F2 for
F2 ∈ C ′<0. Thus, by ([36], 1.4.4.11), C<0 is presentable and defines an accessible
t-structure on C. Besides, i! : C

′ → C is t-exact.
Let K ∈ C♡. Then i∗K ∈ C ′≤0, and j∗K ∈ (C0)♡. So, i∗i

∗K ∈ C≤0. The exact
triangle j!j

∗K → K → i∗i
∗K gives an exact sequence H0(j!j

∗K)→ K → H0(i∗i
∗K)→

0 in C♡. If i∗K ∈ C<0 then the map H0(j!j
∗K) → K in C♡ is surjective. We have

j∗j
∗K ∈ C≥0 and i!K ∈ C ′≥0. The exact triangle i!i

!K → K → j∗j
∗K gives an exact

sequence 0 → H0(i!i
!K) → K → H0(j∗j

∗K). So, if i!i
!K ∈ C>0 then K → H0(j∗j

∗K)
is injective.

In particular, if K ∈ C♡ is such that i!K ∈ C>0 and i∗K ∈ C<0 then K is the
intermediate extension of j∗K, which is defined as the image of the map H0(j!j

∗K)→
H0(j∗j

∗K).
If the t-structures on C ′, C0 are compatible with fltered colimits, the same holds for

the t-structure on C.

1.8.28. t-structures on gluings of categories: more. Assume we are given C = C≤0 ∈
DGCatcont and for any λ ∈ Λneg a full embedding (̄iλ)∗ = (̄iλ)! : C≤λ → C, which
admits a continuous right adjoint (̄iλ)!. Assume that for λ ≤ µ we have C≤λ ⊂ C≤µ, that
is, (̄iλ)! factors through (̄iµ)!. Assume also given a full embedding (jλ)∗ : C=λ → C≤λ
admitting a left adjoint (jλ)∗ = (jλ)! : C≤λ → C=λ in DGCatcont. Assume also
(jλ)! has a left adjoint (jλ)!, then this left adjoint is automatically fully faithful. Set
(iλ)! = (jλ)!(̄iλ)!. Assume the composition (̄iλ)∗(j

λ)∗ admits a left adjoint (iλ)∗.
For λ ∈ Λneg let C<λ be the full DG-subcategory generated by C≤λ−αi

for all simple
coroots αi. We assume in addition that (jλ)∗C=λ is the right orthogonal to C<λ in
C≤λ, and C<λ is the left orthogonal to (jλ)∗C=λ. In particular,

C<λ = Ker(C≤λ
(jλ)∗→ C=λ)

by Lemma 1.8.15. To be safe, assume that if λ ̸= µ, F ∈ C=µ then (iλ)!jµ∗F = 0 (is it

automatic??). Let us also assume that if λ ̸= µ, F ∈ C=µ then (iλ)∗(jµ)!F = 0.
Assume now each C=λ is equipped with an accessible t-structure. Let C≤0 be the

smallest full subcategory closed under colimits, closed under extensions and containing
for each λ ∈ Λneg and F ∈ C≤0=λ the object (̄iλ)!(j

λ)!F . Since each C≤0=λ is presentable,

by ([36], 1.4.4.11), C≤0 is presentable and defines an accessible t-structure on C.

Lemma 1.8.29. Under the assumptions of the previous subsection, we have the fol-
lowing.
1) For F ∈ C we have F ∈ C≥0 iff for any λ ∈ Λneg one has (iλ)!F ∈ C≥0=λ.
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2) If for any λ the t-structure on C=λ is compatible with filtered colimits then the
t-structure on C is also compatible with filtered colimits.

Proof. 1) is immediate from definitions.
2) follows from 1). □

The functors iλ! : C=λ → C are right t-exact, the functors (iλ)∗ : C=λ → C are left

t-exact, hence (iλ)∗ : C → C=λ are right t-exact.
In our special case the following holds in addition. For k ≥ 0 let ≥kC ⊂ C be the full

subcategory generated by C≤λ for λ ∈ Λneg with ht(λ) ≥ k. Note that ≥k+1C ⊂ ≥kC,
so we get the functor (Z+)

op → DGCatcont, k 7→ C/≥kC. Then

C → lim
k∈(Z+)op

C/≥kC

is an equivalence. This additional assumption allows to conclude the following: if F ∈ C
and (iλ)!F = 0 for all λ ≤ 0 then F = 0. Indeed, the image of F in C/≥kC vanishes
for each k, hence F = 0. We used that the right orthogonal (≥kC)

r to ≥kC in C is the
full subcategory generated by the objects of the form (iλ)∗F for ht(λ) < k, F ∈ C=λ.
Then C/≥kC →̃ (≥kC)

r. Note that the set {µ ∈ Λneg | ht(µ) = n} is finite for any n.
Each category (≥kC)

r has a similar filtration indexed by λ with ht(λ) < k. We also
define a t-structure on (≥kC)

r similarly. Then the evaluation C → C/≥kC is t-exact,
and the t-structure on C can be seen as the t-structure obtained from the t-structures
on each C/≥kC via ([20], ch. I.3, Lm. 1.5.8).

Then, I think, as in Section 1.8.27 of this file one gets the following. LetK ∈ C♡ such
that for any λ ̸= 0 one has (iλ)!K ∈ C>0

=λ and (iλ)∗K ∈ C<0
=λ then K is the intermediate

extension of (j0)!K ∈ C♡=λ.
Under our additional assumption, we also get the following. If (iλ)∗F = 0 for all λ

then F = 0. This gives in turn: an object F ∈ C is connective iff (iλ)∗F ∈ C=λ is
connective for any λ ≤ 0. Indeed, one direction is evident. Assume that (iλ)∗F ∈ C=λ

is connective for any λ ≤ 0. Assume F ∈ C>0, we have to show that F = 0. Assume
F ̸= 0. By the above, there is λ ≤ 0 such that (iλ)∗F ̸= 0. Take λ maximal with this
property. Then (iλ)∗F →̃ (iλ)!F , a contradiction.

1.8.30. Let Λ be any partially ordered set, assume given a diagram Λ → DGCatcont,
λ 7→ C≤λ such that for λ < µ, (̄iλ,µ)! : C≤λ ⊂ C≤µ is fully faithful and has a continuous

right adjoint (̄iλ,µ)
!. Assume also given a full embedding jλ∗ : C=λ ↪→ C≤λ admitting a

left adjoint (jλ)∗ = (jλ)! in DGCatcont. Assume also (jλ)! has a left adjoint jλ! : C=λ ↪→
C≤λ, this j

λ
! is automatically fully faithful.

For λ ∈ Λ let C<λ be the full subcategory generated by C≤µ for µ < λ. Assume

the inclusion (i<λ)! : C<λ → C≤λ admits a continuous right adjoint (i<λ)
!, and the

essential image of jλ∗ is the right orthogonal to C<λ in C≤λ. So, for each K ∈ C≤λ we
get a fibre sequence (i<λ)!(i<λ)

!K → K → jλ∗ (j
λ)∗K in C≤λ with K<λ ∈ C<λ.

Let C = colimλ∈ΛC≤λ with respect to the transition functor (̄iλ,µ)!, equivalently

C →̃ limλ∈Λop C≤λ with respect to the functors (̄iλ,µ)
!. Let īλ! : C≤λ → C be the

natural functor, it is fully faithful (by [23], Lemma 1.3.6), write (̄iλ)! : C → C≤λ for its
right adjoint, this is the projection in the above projective system.
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Assume each C=µ is equipped with an accessible t-structure. Let C≤0 ⊂ C be the
smallest full subcategory closed under extensions and small colimits and containing for
λ ∈ Λ the objects īλ! j

λ
! (K) for K ∈ C≤0=λ. By ([36], 1.4.4.11), C≤0 is presentable and

defines an accessible t-structure. Let (iλ)∗ = (jλ)∗(̄iλ)! for λ ∈ Λ.

Is it true that for K ∈ C one has K ∈ C≤0 iff for any λ, (iλ)∗K ∈ C≤0=λ?

1.8.31. Example. (Sam). Consider Y = colimn∈NAn with respect to the closed im-
mersions An ↪→ An+1. Let in : An ↪→ Y be the natural embedding. Then for any n,
i∗nω = 0. Indeed, ω →̃ colimn∈N(in)!i

!
nω. So, for any K ∈ Shv(An),

Hom(ω, (in)∗K) →̃ lim
m∈Nop

Hom((im)!ωAn , (in)∗K)

is placed in degrees > N for any N ∈ Z. Note that ω[r] ∈ Shv(Y )≤0 for any r.
If K ∈ Shv(Y ) and i∗nK ∈ Shv(An)≤0 for all n, does it imply that K ∈ Shv(Y )≤0?

1.8.32. The full subcategory of connective objects in SIq,Ran(G)
≤0
untl is the smallest full

subcategory containing for each λ ∈ Λneg and a connective F ∈ SIq,Ran(G)
=λ
untl the

object (iλRan)!F , closed under colimits and extensions. The previous section shows that

the t-structure on SIq,Ran(G)
≤0
untl is accessible and compatible with filtered colimits.

1.8.33. For 13.2.2 line 1: replace Rep(H) by Rep(H)♡.
The objects V γ for γ ∈ Λ♯ dominant were already defined in 2.4.6 of the paper.
It is claimed that we get (13.2) by adjunction. This is not correct, it it obtained by

appying the functor F 7→ δt−γ ,Gr ∗ F to (13.1).

1.8.34. For 13.2.3. By (Λ♯)+ we mean dominant coweights of H. It is not true that
(Λ♯)+ becomes a poset with the definition γ1 ≺ γ2 iff γ2 − γ1 ∈ (Λ♯)+.

It is better to say that we get just a category (Λ♯,+ ≺), not a poset, and this category
is indeed filtered, this is all we need. The same correction for [27].

1.8.35. For ([26], 1.6.3). An example: let Y → S be a map with S ∈ Schft, Y an
ind-scheme of ind-finite type which can be written as Y →̃ colimi∈I Yi, where I is small
filtered, Yi ⊂ Y is a closed subscheme of finite type, if i→ j in I then Yi ↪→ Yj . Assume
each Yi smooth over S. Then ωY is ULA with respect to the Shv(S)-action on Shv(Y ).

1.9. Comments to the paper the semi-infinite IC-sheaf [27].

1.9.1. The description of compact objects in SI(GrG) in ([27], 1.4.10): by ([27], 1.4.7),
SI(GrG) →̃ Ind(C), where C ⊂ SI(GrG) is the smallest stable subcategory containing
∆λ for all λ ∈ Λ. Here C ⊂ SI(GrG) is idempotent complete, as any direct summand
K of an object of C satisfies: (iµ)∗K = 0 for all but finite number of µ, hence K is in
C. The description of Ind(C)c is given in [35].

any object of C is a finite extension objects of the form △λ [m] for some λ,m. Such
compact object F satisfies the property that i∗λF vanishes for all but finite number
of λ, and i∗λF is compact in SI(GrG)=λ. Conversely, let F ∈ SI(GrG) be such that
i∗λF vanishes for all but finite number of λ, and i∗λF is compact in SI(GrG)=λ. Then
there is a locally closed ind-subscheme i : U ⊂ GrG, which is a union of finite number
of the orbits Sλ such that F = i!FU for some FU ∈ SI(U). Moreover, FU admits a
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finite filtration in SI(U) with the successive quotients (iλ)!i
∗
λF . Since each (iλ)!i

∗
λF ∈

SI(GrG)
c, we get F ∈ SI(GrG)

c.
For ([27], 2.1.3). In my file [49] I explained that for λ dominant coweight for (G,B)

one has coindǦ
B̌
(e−λ) →̃ (V λ)∗. This implies formally that for λ dominant coweight for

(G,B) one has coindǦ
B̌−

(eλ) →̃V λ.

The map (2.1) from ([27], 2.1.4) is equally determined by requiring that e
vλ1⊗vλ2→

V λ1 ⊗ V λ2 → V λ1+Λ1 equals vλ1+λ2 .
For ([27], 2.3.1). His (Λ+,≤) is not a poset, but a filtered category, this is sufficient.
For ([27], 2.3.7). In point (c) we use the following fact. Given λi ∈ Λ+, we have a

canonical inclusion Aλ1+λ2 ↪→ Aλ1 ∗ Aλ2 , where Aλ ∈ Sph(G) is the IC-sheaf of Ḡr
λ
G.

It simply comes from the fact that the ∗-restriction of (Aλ1 ∗ Aλ2) |GrλG
is canonically

IC(GrλG).
Note that for g ∈ G(F ), K ∈ Sph(G), δg ∗K →̃ g ·K, where g : GrG → GrG is the

multiplication by g, and by g ·K we mean the direct image under this map. We apply
the functor • 7→ • ∗ Aλ2 for the canonical map Aλ1 → (δtλ1 )∗e[⟨λ1, 2ρ̌⟩], compose with
the map Aλ2 → (δtλ2 )∗e[⟨λ2, 2ρ̌⟩], and precompose with Aλ1+λ2 ↪→ Aλ1 ∗ Aλ2 . The
result is the same map for λ1 + λ2. This is why in ([27], 2.3.4) the two compositions
coincide in the homotopy category.

For ([27], 2.4.4). Their Section 2.4.4 he actually shows that

i∗µ IC
∞
2 →̃ i∗µ(△

µ)⊗ colimλ∈Λ+ V λ(λ+ µ)

Each term in this inductive system for λ deep enough in Λ+ is U(ň−)µ. However, it is

not clear if the transition maps are the identities. Here ň− is the Lie algebra of Ň−, and
U(ň−) is its envelopping algebra. Indeed, for λ deep enough in Λ+, V λ(λ+µ) →̃U(ň−)µ
via the action of U(ň−) on vλ. Compare with ([27], 2.5.4).

For ([27], 2.5.4), the answer is correct. Somehow, the map δtλ → Aλ[⟨λ, 2ρ̌⟩] ”cor-
responds” to the map e → V λ given by vλ. In the sense that the map δtλ ∗ Aλ1 →
Aλ∗Aλ1 [⟨λ, 2ρ̌⟩] obtained by applying •∗Aλ1 induces by applying RΓc(S

λ2+µ, i∗µ+λ2(•))
the morphism

V λ1(λ1 + µ) →̃V λ1(λ1 + µ)⊗ V λ(λ)→ (V λ1 ⊗ V λ)(λ2 + µ)

For v ∈ V λ1(λ1 + µ) with λ1 dominant for G, the function n 7→ ⟨(vλ1)∗, nv⟩ lies in
O(Ň)(µ), where t ∈ Ť acts on f ∈ O(Ň) as (tf)(n) = f(t−1nt).

The composition V λ1→̃V λ(λ) ⊗ V λ1 → V λ1 ⊗ V λ → V λ2 in the proof of ([27],
2.5.4) is a map of Ň -modules. So, colimλ∈Λ+ V λ is naturally a Ň -module. Such col-
imit is described more generally in ([44], 7.6.16). It is better to write this colimit as
colimλ∈Λ+ V λ ⊗ (V λ(λ))∗, where the transition map for λ2 = λ1 + λ with λi, λ ∈ Λ+ is
the composition

V λ1 ⊗ (V λ1(λ1))
∗ →̃V λ1 ⊗ (V λ(λ))⊗ (V λ2(λ2))

∗ → (V λ1 ⊗ V λ)⊗ (V λ2(λ2))
∗

→ V λ2 ⊗ (V λ2(λ2))
∗
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Then colim
λ∈Λ+

V λ ⊗ (V λ(λ))∗ →̃O(Ň) as Ň -module, this is a version of ([4], Proposition-

Construction 3.1.2).
For ([27], 2.8.2). We see moreover that for F ∈ Sph(G), λ ∈ Λ and any µ ∈ Λ,

i∗µ(△
λ ∗F) lies in SI(GrG)

♡
=µ actually.

The fact that for F ∈ Sph(G) the functor SI(GrG) → SI(GrG),K 7→ K ⋆ F is left
adjoint to K 7→ K ⋆ D(∗F) follows from ([17], 5.3.9). Here it is important that by
• ⋆ F we mean the right action of F ∈ Sph(G) on SI(GrG). Here ∗ denotes as in [17]
the functor Sph(G)→̃ Sph(G) induced by the map G(F )→ G(F ), g 7→ g−1. Note that
∗D(F) →̃D(∗F), because ∗D(•) is an involution.

1.9.2. For 13.2.5 of [32]. First, if A is a monoidal ∞-category, C ∈ 1− Cat then a lax
action of A on the left on C is a right lax monoidal functor A→ End(C), here End(C)
is the monoidal ∞-category Fun(C,C). So, for c ∈ C, ai ∈ A this gives functorial
morphisms c→ 1 ∗ c and a1 ∗ (a2 ∗ c)→ (a1 ∗ a2) ∗ c. Similarly for bimodules. This is
used in ([27], 2.7.1).

For bimodules this means that we are given a right-lax monoidal functor A×Arm →
End(C), here Arm is A with reversed multiplication.

In the situation of 2.7.1 either he means non-unital A or, if it is unital then it satisfies
in addition the property that the canonical map c → 1 ∗ c ∗ 1 is an isomorphism for
c ∈ C.

For ([27], 2.7.3), Ã in general is not monoidal, I think. Namely, if a map a1 → a2
in Ã is given by a2 →̃ a ∗ a1, b ∈ A then it does not induce a map b ∗ a1 → b ∗ a2. He
rather assumes each a admits a right dual, as 1→ a∨ ∗ a is given. But anyway this is
applied to a symmetric monoidal A.

His setting does not apply as is, because any 0 ̸= λ ∈ Λ+ is not dualizable in Λ+.
Actually a simplier thing is used. Let A be an abelian group in Sets, A+ ⊂ A be a

submonoid. Assume given a lax A × (A+)rm-action on C ∈ 1 − Cat. Assume the left
action of A on C is a strict action, not a lax one. Note that (A+)rm = A+ as A is
abelian (rm stands for the reversed multiplication).

Let c ∈ C be a lax central element in the sence of ([27], 2.7.1). We assume for any
a ∈ A+ the space MapC(ac, ca) is discrete. View now A+ as a category, where for
ai ∈ A+ we let

MapA+(a1, a2) =

{
a2a
−1
1 , if a2a

−1
1 ∈ A+

∅, otherwise

We want to check that the map A+ → C, a 7→ a−1ca is well-defined as a functor of
∞-categories. For ai ∈ A+ let a = a2 − a1 ∈ A+ also. Then the map a−11 ca1 → a−12 ca2
is defined as the composition

a−11 ca1 →̃ a−11 a−1aca1 →̃ (aa1)
−1(ac)a1

ϕ(a,c)→ a−12 (ca)a1 → a−12 ca2

Then this is well-defined as a functor of ∞-categories. There is ”no room for higher
homotopies”. In our situation for b ∈ A+, MapC(acb, (ca)b) is no more discrete possibly.
However, what really counts is the discreteness of spaces of the form MapC(b(ac), c(ba)),
and more generally, of the spaces MapC(a1 ⋆ (a2 ⋆ . . . (an ⋆ c) . . .), c ⋆ (a1 . . . an)) which
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we assume. They n-morphisms relating the compositions (for n ≥ 2) lie in the latter
spaces, so need not be provided. Thus, we get a functor.

For example, consider the composition of the morphisms a−11 ca1
α12→ a−12 ca2

α23→
a−13 ca3 and the map α13 : a−11 ca1 → a−13 ca3. Let a = a2a

−1
1 , b = a3a

−1
2 . They both lie

in MapC(b(a(ca1)), c(baa1)), because the multiplication by a−13 is an equivalence. Since
the latter space is discrete, we automatically get a 2-isomorphism α23α12 →̃α13.

1.9.3. For ([27], 1.2). The inclusion SI(GrG) ↪→ Shv(GrG) admits a partially defined

left adjoint Av
L(N)
! : Shv(GrG)→ SI(GrG), which is always defined in the constructible

context (by my claim after Lemma 1.2.15), and in the D-module context it is defined on
the holonomic objects. (This is similar to the situation with the Whittaker category).

For ([27], 1.5.2). He claims F ∈ SI(GrG) lies in SI(GrG)
≤0 iff for any λ, i∗λF ∈

SI(GrG)
≤0
=λ. This is probably wrong! The following is true: consider a closed ind-

subscheme Y ⊂ GrG stable under L(N) and such that if Sλ ⊂ Y then there is at most
a finite number of µ such that λ < µ and Sµ ⊂ Y . Then indeed F ∈ SI(Y ) lies in

SI(Y )≤0 iff for any Sλ ⊂ Y , i∗λF ∈ SI(GrG)
≤0
=λ. This is proved as in [26], Lemma 2.1.9).

1.9.4. For ([27], 2.6.2). In fact, G(F ) →̃ limn∈Nop G(F )/Kn as prestacks, here F =
k((t)) and Kn = Ker(G(O)→ G(O/tn)). This follows from ([42], 4.4.2). The category
Shv(G(F )) is defined in ([24], C.3.1), and G(F ) is a placid ind-scheme. For the map
f : G(F )→ GrG the functor f∗ is well-defined.

1.9.5. For ([27], 2.8.2). The argument is wrong as stated, because 1.5.2(iii) is wrong
as stated probably. To correct, one has to assume first that F ∈ Shv(G)♡ is compact
in Shv(G), that is, of finite length. Then the given argument garantees indeed that
∆λ ∗F ∈ SI(GrG)

♡, because i∗µ(∆
λ ∗F) = 0 for all but finite number of µ. Dennis has

corrected this in the revised version of Oct 31, 2021.
It is useful to note that for V ∈ Rep(Ǧ)♡ of finite length, ∆λ ∗ Sat(V ) has a finite

filtration in SI(GrG)
♡ with successive quotients ∆µ ⊗ V (µ− λ), µ ∈ Λ.

To get ([27], 2.8.2) note that any V ∈ Rep(Ǧ)♡ is a filtered colimit of objects Vi,
where Vi ∈ Rep(Ǧ)♡ is of finite length.

1.9.6. For ([27], 2.8.3). There we have to assume not Th. 1.5.5 but 1.5.7, that is, the
fact that each object △−λ lies in the heart SI(GrG)

♡. Moreover, the claim is that for

any λ ∈ Λ+, the functor Av
L(N)
! is defined on δt−λ ∗ Sat(V λ), and one has canonically

in SI(GrG)

Av
L(N)
! (t−λ ⋆ Sat(V λ)) →̃ Av

L(N)
! (t−λ) ⋆ Sat(V λ)

Indeed, for any K ∈ SI(GrG), one has

MapSI(GrG)(Av
L(N)
! (t−λ)⋆Sat(V λ),K) →̃ MapSI(GrG)(Av

L(N)
! (t−λ),K⋆(D(∗ Sat(V λ))))

→̃ MapShv(GrG)(δt−λ ,K ⋆ (D(∗Sat(V λ)))) →̃ MapShv(GrG)(δt−λ ⋆ Sat(V λ),K)

(We may also note that δt−λ ∗ Sat(V λ) is holonomic, hence Av
L(N)
! is defined on it).

So,

△−λ ⋆ Sat(V λ) →̃ Av
L(N)
! (t−λ)[⟨λ, 2ρ̌⟩] ⋆ Sat(V λ) →̃ Av

L(N)
! (t−λ ⋆ Sat(V λ))[⟨λ, 2ρ̌⟩]
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For g ∈ T (F ) consider the automorphism g : GrG →̃GrG. The functor g∗ : Shv(GrG)→
Shv(GrG) preserves SI(GrG), as T (F ) normalizes N(F ). Taking g = tµ for λ ∈ Λ we
get tµωSλ →̃ωSλ+µ . Consider the autoequivalence SI(GrG), K 7→ tµK[−⟨µ, 2ρ̌⟩]. It
sends ∆λ to ∆λ+µ, so is right t-exact. It is in fact t-exact: let F ∈ SI(GrG)

>0 and
λ ∈ Λ. It suffices to show that for any n ≥ 0, Hom(∆λ, tµF [−⟨µ, 2ρ̌⟩]) = 0. The latter
Hom identifies with Hom(∆λ−µ[n],F) = 0. So, if we know that ∆0 ∈ SI(GrG)

♡ then
the same holds for all ∆ν , ν ∈ Λ.

1.9.7. For ([27], 3.1). Schieder’s correction is needed in the definition of the stacks
BunN , (BunN )∞x, (BunN )≤λx.

Let us mean by BunN the corrected definition now. The map GrG → (BunN )∞x
from ([27], 3.1.6) is defined as follows. Pick an exact sequence 1 → Z → G̃ → G → 1,

where Z is a central torus in G̃, [G̃, G̃] is simply-connected. Let Ñ ⊂ G̃ be the preimage
of N . The correct definition of BunN is just BunÑ , where the latter is attached to the

pair (Ñ ⊂ G̃). In other words, this is Mapgen(X,B(Ñ) ⊂ G̃\(G̃/Ñ)).

Then BunB̃ ×BunT̃
BunZ →̃ BunÑ ×BunZ naturally. Consider the prestack X clas-

sifying FG̃ on X, FZ on X and an isomorphism FG →̃FZ |X−x. We have a natu-

ral map v : X → (BunN )∞x × BunZ commuting with BunZ-actions. Let X′ be the
prestack classifying FG̃ on X, FZ on X − x and an isomorphism FG →̃FZ |X−x. The
projection X′ → GrG is a BunZ-torsor in etale topology. We also have a projection
q : X → X′ commuting with BunZ-actions. The map q is a torsor under GrZ . Since

Z acts trivially on G̃\(G̃/Ñ), the map v is GrZ-invariant, hence yields a morphism
v̄ : X′ → (BunN )∞x × BunZ , which is still BunZ-equivariant. Taking the quotient by
BunZ , one gets the desired morphism GrG → BunN .

Note also that∆λ
glob,∇λglob from ([27], 3.1.4) are perverse, as the inclusion (BunN )=λx ↪→

(BunN )≤λx is affine by ([17], 3.3.1).

1.9.8. The map (3.1) in ([27], 3.2.3) comes from π!π
!ω → ω for π : Sλ → (BunN )=λx,

here π! is defined on ωSλ , because the latter is holonomic.
Writing temporary π̄ : S̄λ → (BunN )≤λx we see that iλ!π!ω[−⟨λ, 2ρ̌⟩] →̃ π̄!∆

λ. So, π̄!
is defined on ∆λ ∈ SI(S̄λ).

In ([27], 3.3.1) a misprint in the 1st displayed formula: it should be

colimλ∈Λ+ Htλ+µ(GrG, ICGr
λ
G
)[⟨λ, 2ρ̌⟩]

([27], 3.3.4) is proved only under the assumption that [G,G] is simply-connected,
while ([27], 2.5.2) is claimed without this assumption.

1.9.9. For ([27], 3.3.8). He wants to use ([29], 3.5.2). More precisely, here some Koszul
duality is need, so that the cited result should imply that j! ICBunB →̃ coBar(U∨(ň−X), ICBunB

).

Then we want to use the description of the complex i!µ ICBunB
given by ([27], 3.3.4)

essentially, though the latter is for B replaced by N .



124

1.9.10. For ([27], 3.4.1). My understanding is that he claims that π! is defined on
t−λSat(V λ), as the latter is holonomic. Note that for λ ∈ Λ the image of t−λ under
π : GrT → (BunN )∞x comes from the T -torsor F0

T (λx) by extending the structure
group to B.

For ([27], 3.4.3), there λ is dominant. His nonstardard notation Gr−λG means Gr
−w0(λ)
G ,

same for Gr
−λ
G . To help a reader, the stack (BunN )∞x×̃Gr

−w0(λ)
G here classified (FG,F

′
G),

where FG ∈ (BunN )∞x and F′G is in the position ≤ −w0(λ) w.r.t. FG at x. The map act

sends this point to F′G and pr sends it to FG. Then ICglob ∗ ICGr
−w0(λ)
G

→̃ act∗(IC⊠A
−w0(λ)
G )

by definition.

The preimage of t−λ under S̄≤0×̃Gr
−w0(λ)
G

act→ GrG over t−λ does not lies in S̄≤0×̃(Gr
−w0(λ)
G ∩

S−λ). In fact, it lies in many N(F )-orbits. Recall that Gr
−w0(λ)
G ∩S−λ is the point t−λ.

It is not true that

act−1(π(t−λ)) ∩ (BunN ×̃Gr
−w0(λ)
G ) = act−1(π(t−λ)) ∩ (BunN ×̃Gr

−w0(λ)
G )

However, the 0-th cohomology of the desired !-fibre is indeed e, and this gives the
desired map

δπ(t−λ) → ICglob ∗ ICGr
−w0(λ)
G

[(g − 1) dimN − ⟨λ, 2ρ̌⟩]

1.9.11. For ([27], 3.4.6). The inclusion Sets ↪→ Spc preserves limits. So if C ∈
1 − Cat, c →̃ colimi∈I ci in C, c′ ∈ C, assume MapC(ci, c

′) ∈ Sets for any i. Then
limi∈Iop MapC(ci, c

′) can be calculated in Sets. Its element is a collection of maps
ci → c′ such that for any i → j in I, the composition ci → cj → c′ is homotopic to
ci → c′. This gives a map c→ c′ in C.

For ([27], 3.4.8). We consider here the closed immersion is : S
0 ∩ t−λGrλG ↪→ S0 say.

Then the natural map is!i
!
sω → ω gives the desired morphism j!0(t

−λSat(V λ))[⟨λ, 2ρ̌⟩]→
ωS0 , and we apply (j0)∗ to the latter map.

1.9.12. For ([27], 3.5.3). If K ∈ Shv(S̄≤0) is the extension by zero from S≤µ for
any µ ≤ 0 then K = 0. Indeed, the open subschemes S≤0 − S≤µ for µ < 0 cover
S≤0, and Shv satisfies the Zarizki descent. In particular the functor Shv(S̄≤0) →∏
µ<0 Shv(S̄

≤0 − S̄≤µ) given by the product of restrictions, is conservative.

For ([27], 3.5.3 and 3.2.4). We have an action of Λ on GrG by automorphisms, namely
λ acts by tλ : GrG → GrG. Consider the action of Λ on Shv(GrG) such that λ sends
F to tλF [−⟨λ, 2ρ̌⟩], we mean here the direct image under tλ : GrG → GrG. Since this
action preserves the set of standard objects ∆µ with µ ∈ Λ, we get an action of Λ
on SI(GrG), because these are the compact generators. For λ ∈ Λ the corresponding
autoequivalence of SI(GrG) is t-exact, as we have seen above.

Similarly, consider the smallest full stable cocomplete DG-subcategory C generated
in Shv((BunN )∞x) by ∆λ

glob for λ ∈ Λ. Then C contains ICBunN
, also because Shv

satisfies the Zariski descent. We can consider the action of Λ on C coming from its

action on the set of objects ∆λ
glob for λ ∈ Λ. Namely, λ ∈ Λ sends ∆µ

glob to ∆µ+λ
glob .

Recall that for λ ∈ Λ we should have ∆µ →̃π!∆µ
glob[(g − 1) dimN ] according to ([27],
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Thm. 3.2.4). So, π! should induce a functor C → SI(GrG) commuting with Λ-actions
on both sides.

He claims that to prove Thm. 3.2.4, it suffices to show that (iµ)
∗π!(∆0

glob) = 0 for

µ ̸= 0. One should similarly prove actually that (iµ)
∗π!(∆λ

glob) = 0 for µ ̸= λ.

The group Λ acts on (BunN )∞x. Namely, µ ∈ Λ sends (FG, κ) ∈ (BunN )∞x to

(FG, κ
′), where for each λ̌ dominant, (κ′)λ̌ : OX → Vλ̌FG

equals t
−⟨µ,λ̌⟩
x κλ̌. This auto-

morphism tµ : (BunN )∞x → (BunN )∞x sends (BunN )≤λ to (BunN )≤λ+µ and identifies

(BunN )=λ to (BunN )=λ+µ. For µ ∈ Λ the diagram commutes

GrG
tµ→ GrG

↓ π ↓ π
(BunN )∞x

tµ→ (BunN )∞x

So, tµ∆λ
glob →̃∆λ+µ

glob and tµ∇λglob →̃∇
λ+µ
glob . We get π!∆λ

glob →̃ tλπ!∆0
glob. So,

(iµ)
∗π!(∆λ

glob) →̃ i∗µ−λπ
!∆0

glob

1.9.13. In ([27], 3.6.2) Dennis uses the description of Zastava spaces via Weyl modules
and dual Weyl modules, see ([49], 0.5) where I explain what they are.

The version of Zastava space from ([27], 3.6) is obtained from the usual one from [9]
by interchanging B and B−.

In his Prop. 3.6.6 he refers to ([9], Remark just after Pp. 5.7). By HFµ(Zµ, ICZµ)
he means RΓ(Fµ, i! ICZµ) for the closed immersion i : Fµ ↪→ Zµ. Then his Prop. 3.6.6
comes from ([9], Pp. 5.8).

For ([27], 3.6.7). It is used that the Gm-action on Zµ contracting it to Xµ can be

chosen so that it preserves the open subscheme
◦
Zµ.

1.9.14. For ([27], 3.7.2). First, for λ dominant and µ ≤ 0, S−,µ+λ ∩ Gr
λ
G is of pure

dimension −⟨ρ̌, µ⟩ by ([53], Th. 3.2). Further, Irr(S−,µ+λ∩Gr
λ
G) = Irr(S−,µ+λ∩GrλG)

again by ([53], Th. 3.2), because the complement is of smaller dimension. It is known
that Sλ ∩ S−,µ+λ is of pure dimension −⟨µ, ρ̌⟩. By Anderson’s theorem ([1], Pp. 3),
one has a bijection

{a ∈ Irr(Sλ ∩ S−,µ+λ) | a ⊂ Gr
λ
G} →̃ Irr(GrλG ∩S−,µ+λ)

sending a to the closure of a∩GrλG. So, indeed each irreducible component GrλG ∩S−,µ+λ
is the closure of a unique irreducible component of Sλ ∩ S−,µ+λ ∩GrλG.

Applying ([9], Pp. 6.4) with B and B− exchanged, we get that for µ fixed and λ
deep enough in the dominant chamber Λ+ one has Sλ ∩ S−,µ+λ ⊂ GrλG.

To obtain the last map in ([27], 3.7.2), he uses for any K on S−,µ ∩ (t−λGr
λ
G) the

natural map K → j∗j
∗K for the open immersion

j : S0 ∩ S−,µ ∩ (t−λGrλG)→ S−,µ ∩ (t−λGr
λ
G)

It induces his map on the level of cohomologies.



126

Recall that in his notations dimZµ = −⟨µ, 2ρ̌⟩ for µ ≤ 0, and dimS0∩S−,µ = −⟨µ, ρ̌⟩.
He uses several times the commutative diagram

S̄0 ← S̄0 ∩ S−,µ = Fµ

↓ π ↓ i
BunN

q← Zµ,

where i is the inclusion of the central fibre Fµ.

1.9.15. For ([27], 3.8.3). The action of NX−(x,y) on Sλx is transitive, as already the
action of NX−x is transitive.

Consider the category I whose objects are open subschemes U ⊂ S̄0 consisting
of finite number of N(F )-orbits, and maps are open immersions. The natural map
Shv(S̄0) → limU∈Iop Shv(U) is an equivalence. Indeed, let i : S ⊂ S̄0 be a closed sub-
scheme of finite type. It suffces to show that the natural map Shv(S)→ lim

U∈Iop
Shv(I∩S)

is an isomorphism. However, S is covered by a finite number of N(F )-orbits.

1.9.16. For ([27], 3.9). Two things have to be added here: first, the fact that j! ICBunN

is perverse on BunN , and similarly for j! IC◦
Zµ

on Zµ. The second one is the fact that

the fibres in the maps in the diagram (3.9) used for the descent of perverse sheaves are
connected.

1.9.17. For ([27], 4.1.1). Note that I is a placid group scheme over Spec k, so we
have an adjoint pair oblv : Shv(GrG)

I ⇆ Shv(GrG) : Av∗ in DGCatcont for the
usual category of invariants Shv(GrG)

I . Justin proposes to define the renormalized
version as Ind(C), where C = {K ∈ Shv(GrG)

I | oblv(K) ∈ Shv(GrG)
c}. Note

that C ∈ DGCatnon−cocmpl, so that Ind(C) ∈ DGCatcont by ([43], 9.2.14). Indeed,
DGCatnon−cocmpl admits limits, and the oblivion functor DGCatnon−cocmpl → 1 − Cat
preserves limits.

Let Shv(GrG)
I,constr ⊂ Shv(GrG)

I be the full subcategory of objects that pull-back
to a compact object of Shv(GrG). Then Shv(FlG)

I acts on Ind(Shv(GrG)
I,constr) by

left convolutions. Indeed, Shv(FlG)
I is compactly generated. Any compact object K of

Shv(FlG)
I is the extension by zero from some I-invariant closed subscheme of finite type

Y ⊂ FlG, and K restricts to a compact object in Shv(Y ). This is why (Shv(FlG)
I)c

acts on Shv(GrG)
I,constr. Passing to the ind-completion, we get an action of Shv(FlG)

I

on Ind(Shv(GrG)
I,constr).

Here is a model situation. Let Y ∈ Schft, G be a group scheme of finite type,
and H ⊂ G a closed group subscheme, assume G acts on Y . Consider f : Y →
Y/H. We then have an inclusion Shv(Y/H)c ⊂ Shv(Y/H)constr, which is not an
equality in general. Assume that we are in the constructible context or that G/H
is proper. Then Shv(H\G/H) acts on Ind(Shv(Y/H)constr). Namely, the monoidal
structure on Shv(H\G/H) is as in my Section 1.10.1. The action map m : G ×H

Y → Y identifies with the compositioin G ×H Y →̃ (G/H) × Y pr→ Y , where the first
map comes from the(g, y) 7→ (g, gy). In the constructible context the map pr∗ has
a continuous right adjoint, so preserves compactness. So, under our assumptions m∗
preserves compactness. If K ∈ Shv(H\G/H)c, L ∈ Shv(Y/H)constr then consider
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K⊠̃L ∈ Shv(G×HY ). Since its restriction to G×Y is compact, K⊠̃L ∈ Shv(G×HY )c.

So, m∗(K⊠̃L) ∈ Shv(Y )c. This defines an action of Shv(H\G/H)c on Shv(Y/H)constr,
and the desired action is then obtained by Ind-extension.

The t-structure on Shv(FlG)
I is defined in ([46], 0.0.40). However, Dennis wants to

use the renormalized version of Shv(FlG)
I instead.

1.9.18. The reference for ([27], 4.1.2) in ([3], Lemma 8).
For ([27], 4.1.2). He used without a proof the following. Let W aff denote the

extended affine Weyl group. For w ∈ W aff , jw,!, jw,∗ the standard and costandard
objects, w0 ∈W the longuest element of the finite Weyl group. On the orbit itself FlwG
we take the IC-sheaf and extend by ! or ∗. Recall that the length ℓ(w) of w ∈W aff is
the dimension of the I-orbit on FlG through w.

Lemma 1.9.19. Let λ ∈ Λ+. One has jw0,! ∗ jλ,∗ ∗ jw0,∗ →̃ jw0(λ),∗ for the convolution

on Shv(FlG)
I .

Proof. The rule of the game is that given w,w′ ∈ W with ℓ(w) + ℓ(w′) = ℓ(ww′) then
jw,∗ ∗ jw′,∗ →̃ jww′,∗. Besides, jw,∗ ∗ jw−1,! →̃ δ1. For any λ ∈ Λ, the set Eλ = {tλw | w ∈
W} has a unique element of minimal length, and dimOλ = minw∈Eλ

ℓ(w). Here Oλ is
the I-orbit on GrG through tλ. If λ is dominant then tλ is of minimal length in Eλ.

Assume λ dominant. Then ℓ(tλ) = ⟨λ, 2ρ̌⟩ and ℓ(w0) = dim(G/B), as Bw0B/B ⊂
G/B is open. Besides, Flt

λw0
G ⊂ π−1(GrλG) is open, where π : FlG → GrG is the

projection. So, ℓ(tλw0) = ℓ(tλ) + ℓ(w0), hence jtλw0,∗ →̃ jλ,∗ ∗ jw0,∗. One has tλw0 =

w0t
w0λ.
If µ is antidominant then tµ is the unique element of minimal length in Wtµ. For

this reason, tw0λ is minimal in Wtw0λ, hence similarly ℓ(w0) + ℓ(tw0λ) = ℓ(w0t
w0(λ)).

So, jw0,∗ ∗ jtw0λ,∗ →̃ jtλw0,∗. Multiplying on the left the isomorphism

jw0,∗ ∗ jtw0(λ),∗ →̃ jtλ,∗ ∗ jw0,∗

by jw0,!, we get the result. □

1.9.20. For ([27], 4.2.3). The reformulation of the main result of [ABG] is not clear,

should be explained. For λ ∈ Λ+ the projection Flt
λ

G → Oλ is an isomorphism. Here
for ν ∈ Λ we denote by Oν the I-orbit through tν on GrG, and FlwG is the I-orbit on
FlG through w in the extended affine Weyl group. So, the object jλ,∗ ∗ δ1,GrG is simply

j∗ IC for the open immersion Oλ ↪→ Gr
λ
G, hence a natural map IC

Gr
λ
G
→ jλ,∗ ∗ δ1,GrG in

Shv(GrG)
I .

The product ň− ×ǧ {0} is taken in the category of derived affine schemes. Then B̌−

acts on it in the sense of prestacks. I think by (ň−×ǧ {0})/B̌− he means the following:
first take the quotient in the sense of prestacks and then take etale sheafification. As
in ([20], ch. I.2, 4.3.8) the result is a 1-Artin stack.

1.9.21. For ([27], 4.2.4). Misha Finkelberg says that

colimλ∈Λ+ Htλ+µ(GrG, Sat(V
λ)[⟨λ+ µ, 2ρ̌⟩]

is calculated in [41] with the answer Sym((ǧ/b̌−)[−2])(−µ) as in ([27], Pp. 2.5.2).
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To understand Dennis’ calculation, recall first that for H an algebraic group of
finite type, Shv(B(H)) →̃C(H)− comod(Vect) →̃C.(H)−mod(Vect), where C(H) =
RΓ(H, e) is a coalgebra in Vect, and C.(H) = RΓc(H,ω) is the dual algebra in Vect.

For a split torus T we get C.(T ) →̃ Sym(t[1]), where t = LieT . We used here the
fact that for Vi ∈ Vect≤0 we have Sym(V1 ⊕ V2) →̃ Sym(V1) ⊗ Sym(V2) naturally in
Vect. Indeed, by ([43], 3.0.40), the functor oblv : CAlg(Vect≤0) → Vect≤0 admits a
left adjoint sending V to Sym(V ) = ⊕n≥0 Symn(V ). This implies that Sym(V1⊕ V2) is
the coproduct of Sym(V1) and Sym(V2) in CAlg(Vect

≤0).
We have C.(Gm) →̃ e[1]⊕ e →̃ Sym(e[1]), so if we pick an isomorphism T →̃Gn

m, we
get C.(T ) →̃ ⊗ni=1 Sym(e[1]) →̃ Sym(e⊕n[1]) →̃ Sym(t[1]) via the induced isomorphism
t →̃ e⊕n. I think the resulting isomorphism does not depend on a choice of T →̃Gn

m.
By HomShv(GrG)I (K1,K2) ∈ Vect in the formula (4.4) he means the relative inner

hom in Shv(GrG)
I with respect to the Vect-action. Further,

RG(B(T ), e) →̃HomShv(B(T ))(e, e) →̃ Sym(̌t[−2])

(the latter isomorphism holds even char(k) > 0 for Q̄ℓ-sheaves for example).
For λ, λ+ µ ∈ Λ+,

HomShv(GrG)I (Sat(V
λ), jλ+µ,∗∗δ1,GrG) →̃HomVect(i

∗
tλ+µSat(V

λ), e)⊗Sym(̌t[−2])[⟨λ+µ, 2ρ̌⟩]

Here itλ+µ : Spec k → GrG is the inclusion of the point tλ+µ. Indeed,

HomShv(Oλ+µ)I (e, e) →̃ Sym(̌t[−2])

Now HomVect(i
∗
tλ+µSat(V

λ), e) →̃ i!
tλ+µSat(V

λ). So,

HomShv(GrG)I (Sat(V
λ), jλ+µ,∗ ∗ δ1,GrG)⊗Sym(̌t[−2]) e →̃ i!tλ+µSat(V

λ)[⟨λ+ µ, 2ρ̌⟩]

Inside the proof in Sect. 4.2.4 in formula (4.6) inside the proof and ALL the remaining
formulas inside the proof of Pp. 2.5.2 replace g/b by ǧ/b̌. He gets the answer

Sym((ǧ/ň−)[−2])(−µ) →̃ Sym((ǧ/b̌−)[−2])(−µ)⊗ Sym(̌t[−2]),

which via extension of scalars Sym(̌t[−2])→ e gives the desired result.

1.9.22. For ([27], 4.3.1). For. q : Spec e → B(M) we have an adjoint pair q∗ :
Rep(M) ⇆ Vect : q∗ in Rep(M)-modules, see ([20], I.3). For this reason oblvHeckeM :
HeckeM (C)→ C is continuous.

For ([27], 4.3.2). For C ∈ Shv(B(M))−mod(DGCatcont) we have

C ⊗Rep(M) Vect →̃FunRep(M)(Vect, C)

by ([43], 9.2.43), as Vect is self-dual in DGCatcont, and Rep(M) is rigid, here M
is an algebraic group over e. For the natural map q : Spec k → B(M) under the
canonical self-dualities on the rigid categories Vect and QCoh(B(M)), the dual of
q∗ : QCoh(B(M)) → Vect identifies with q∗ : Vect → QCoh(B(M)). The functor
oblvHeckeM : FunRep(M)(Vect,C)→ FunRep(M)(Rep(M),C) comes from the composition
with q∗ : Rep(M)→ Vect. The same functor oblvHeckeM : C⊗Rep(M) Vect→ C⊗Rep(M)

Rep(M) equals id⊗q∗ for q∗ : Vect→ Rep(M).
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For ([27], 4.3.3). Let q : B(Ť ) → B(Ǧ) be the natural map then q∗ : Rep(Ǧ) ⇆
Rep(Ť ) : q∗ is an adjoint pair in Rep(Ǧ)-modules, because q is schematic and quasi-
compact. Tensoring with C ∈ Rep(Ǧ) − mod, this gives an adjoint pair ind : C ⇆
C ⊗Rep(Ǧ) Rep(Ť ) : oblv in DGCatcont. By ([43], 9.2.43) we similarly get

C ⊗Rep(Ǧ) Rep(Ť ) →̃FunRep(Ǧ)(Rep(Ť ), C)

By ([43], 6.1.10) we also get the following: consider the natural functor l : C⊗Rep(Ť )→
C⊗Rep(Ǧ)Rep(Ť ). Since Rep(Ǧ) is rigid, its right adjoint r is continuous and monadic.

So, C ⊗Rep(Ǧ) Rep(Ť ) →̃A−mod(C ⊗ Rep(Ť )) for A = rl.

For ([27], 4.3.4). The fact that C ⊗Rep(Ǧ) Rep(Ť ) is as described in 4.3.4 follows

from ([44], A.2.23). Note that C⊗ Rep(Ť ) →̃ ⊕λ∈Λ C. The we consider the graph Γπ :
B(Ť ) → B(Ť ) × B(Ǧ) of the natural map π : B(Ť ) → B(Ǧ). We have (Γπ)∗O →̃OǦ,

where Ǧ acts by right translations, and Ť by left translations. Here we have identified
OǦ →̃O(Ť×Ǧ)/Ť , where Ť acts diagonally on the product. Then

C⊗Rep(Ǧ) Rep(Ť ) →̃O(Ť×Ǧ)/Ť −mod(C ⊗ Rep(Ť ))

This gives the description as graded Hecke objects. In more details, we have an adjoint
pair Γ∗π : Rep(Ť × Ǧ) ⇆ Rep(Ť ) : (Γπ)∗ in Rep(Ť × Ǧ)-modules. Tensoring with C,
this gives an adjoint pair

l : C ⊗ Rep(Ť ) ⇆ C ⊗Rep(Ǧ) Rep(Ť ) : r

So, the monad A = rl on Rep(Ť × Ǧ) is tensoring with @(Γπ)∗O.

The functor oblvHeckeŤ
: HeckeǦ(C)→

•
HeckeǦ(C) is just the restriction of scalars

OŤ×Ǧ −mod(C ⊗ Rep(Ť ))→ O(Ť×Ǧ)/Ť −mod(C ⊗ Rep(Ť ))

with respect to the homomorphism of algebras O(Ť×Ǧ)/Ť → OŤ×Ǧ coming from the

quotient map Ť × Ǧ → (Ť × Ǧ)/Ť . The equivalence HeckeǦ(C) →̃OŤ×Ǧ −mod(C ⊗
Rep(Ť )) sends c with a Hecke property to the graded object {cλ}λ∈Λ with cλ = c for
all λ and the same Hecke property for Ǧ and the evident Hecke property along Ť . This
is why oblvHeckeŤ

sends c to the graded object {cλ}λ∈Λ with cλ = c for all λ.

For ([27], 4.3.5). Let C ∈ DGCatcont be equipped with an action of Rep(Ǧ)⊗Rep(Ť ).
Then C⊗Rep(Ǧ)⊗Rep(Ť )Rep(Ť ) →̃OǦ−mod(C), where OǦ is viewed as a Ǧ-module say

via right translations, and as Ť -module via left translations. This gives the description
from ([27], 4.3.5).

1.9.23. For ([27], 4.3.6), he continues to assume that Rep(Ť ) ⊗ Rep(Ǧ) acts on C.
In 4.3.6 line 1: Φ comes from the monoidal functor Rep(Ǧ) → Rep(Ť ) ⊗ Rep(Ǧ),
V 7→ e⊠ V , where e is the trivial Ť -module.

Consider C ⊗Rep(Ť )⊗Rep(Ǧ) Rep(Ť ) ⊗ Rep(Ť ), where we used the monoidal functor

id⊗ResǦ
Ť

: Rep(Ť ) ⊗ Rep(Ǧ) → Rep(Ť ) ⊗ Rep(Ť ) to form the tensor product. This

tensor product identifies canonically with C⊗Rep(Ǧ) Rep(Ť ). Now the dual pair (Φ,Ψ)
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comes from the dual pair in Rep(Ť )⊗ Rep(Ť )−mod

mult : Rep(Ť )⊗ Rep(Ť ) ⇆ Rep(Ť ) : multR,

where mult is the product in the symmetric monoidal category Rep(Ť ). The latter
dual pair identifies with

d∗ : QCoh(B(Ť × Ť )) ⇆ QCoh(B(Ť )) : d∗

for the diagonal map d : B(Ť )→ B(Ť × Ť ).
Let us describe Φ and Ψ. Think of

•
HeckeǦ(C) as the category of graded objects

{cλ}λ∈Λ of C equipped with isomorphisms cλ ⊗ V →̃ ⊕µ V (µ) ⊗ cλ−µ for any λ ∈ Λ
(Dennis used λ + µ instead in the latter formula, which is another normalization!).
Recall that C ⊗Rep(Ť )⊗Rep(Ǧ) Rep(Ť ) is identified with the category of c ∈ C together

with a collection of isomorphisms

(27) c ∗ V →̃ Res(V ) ∗ c

for V ∈ Rep(Ǧ), where Res : Rep(Ǧ) → Rep(Ť ) is the restriction, and we write the
Rep(Ť )-action (resp., Rep(Ǧ)-action) on the left (resp., on the right).

Then Φ sends the above object {cλ} to c := ⊕λ eλ ∗ cλ equipped with the isomor-
phisms (27) obtained as the composition

c ∗ V →̃ ⊕
λ
eλ ∗ (cλ ∗ V ) →̃ ⊕

λ
eλ ∗ (⊕

µ
V (µ)⊗ cλ−µ) →̃ ⊕

µ
V (µ)⊗ eµ ∗ (⊕

λ
eλ−µ ∗ cλ−µ)

→̃ ⊕
µ
V (µ)⊗ eµ ∗ c

Here the second isomorphism comes from the Hecke structure on {cλ}.
In this normalization the functor Ψ sends c to {cλ} with cλ = e−λ ∗ c with the Hecke

property obtained from that of c. (This normalization differs from that of Dennis).

Note that we have
•

HeckeǦ(C) →̃ (C ⊗ Rep(Ť ) ⊗Rep(Ť )⊗Rep(Ǧ) Rep(Ť ), where we do

not use the Rep(Ť )-action on C at all. Now act : C ⊗ Rep(Ť ) → C is a Rep(Ť ) ⊗
Rep(Ǧ)-linear functor, where on the source Rep(Ť ) acts via its action on the factor
Rep(Ť ). Applying • ⊗Rep(Ť )⊗Rep(Ǧ) Rep(Ť ) to act, we get Φ. The right adjoint to act

is continuous and given explicitly by ([20], ch. I.1, 9.3.2).

1.9.24. For ([27], 4.3.7). He continues to assume that Rep(Ť ) ⊗ Rep(Ǧ) acts on C.
Then on HeckeŤ (C) we consider the remaining action of Rep(Ǧ) and the trivial action

of Rep(Ť ), so we may form HeckeǦ,Ť (HeckeŤ (C)), and it identifies with

HeckeǦ(HeckeŤ (C)) →̃C ⊗Rep(Ť )⊗Rep(Ǧ) Vect

Indeed, in the diagram below both squares are cartesian

pt → B(Ǧ) → pt
↓ ↓ id×v ↓

B(Ť )
i×id→ B(Ǧ)×B(Ť )

pr→ B(Ť ),

here i comes from Ť ↪→ Ǧ, and v : pt→ B(Ť ) is the natural map.
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In the diagram (4.10) the map indHeckeŤ
sends {cλ}λ∈Λ to ⊕λcλ with the induced

Hecke property. Besides, the functor HeckeǦ(oblvHeckeŤ
) sends c to c, it forgets the

Hecke property with respect to Ť .

1.9.25. For ([27], 4.4.1) by ([20], ch. I.3, 3.3.5 one has

QCoh(B(B̌−))⊗Rep(Ǧ) Vect →̃ QCoh(Ǧ/B̌−)

The formula (4.13) was wrong, it should be QCoh(B(Ň−)) →̃ HeckeŤ (QCoh(B(B̌−))),
corrected in the version of Oct 31, 2021.

Taking the quotient of the cartesian square

(Ť\Ǧ)× (Ǧ/B̌−) → Ť\Ǧ
↓ ↓

Ǧ/B̌− → pt

by the action of Ǧ, we get Ť\Ǧ/B̌− →̃B(B̌−)×B(Ǧ) B(Ť ).

We do have

HeckeǦ(HeckeŤ (QCoh(pt/B̌−))) →̃ QCoh(Ǧ/Ň−)

Consider the diagonal embedding B̌− ↪→ Ť × Ǧ. Taking the quotient under the right
B̌−-action (via the diagonal embedding), we get a cartesian square

(Ť × Ǧ)/B̌− → pt
↓ ↓

B(B̌−) → B(Ť × Ǧ)

Let in addition Ť act on the left diagonally on (Ť × Ǧ)/B̌−. Taking the quotient by
this action, we get a cartesian square

Ť\(Ť × Ǧ)/B̌− → B(Ť )
↓ ↓ d

B(B̌−) → B(Ť × Ǧ),

where d comes from the diagonal inclusion Ť ↪→ Ť × Ǧ. One has naturally

Ť\(Ť × Ǧ)/B̌− →̃ (Ǧ/Ň−)/AdŤ

This justifies the formula (4.14). The last displayed diagram in 4.4.1 is correct, the
sense of the functor Ψ given by (4.9) is taking direct image along the quotient map
by the Ť -action, this is why along the horizontal arrows in that diagram we get direct
images. The last displayed diagram in 4.4.1 comes from the commutative diagram

Ť\(Ť × Ǧ)/B̌− pr→ Ť\Ǧ/B̌−
↑ ↑

(Ť × Ǧ)/B̌− pr→ Ǧ/B̌−,

where the vertical arrows are the stack quotients.
The direct image along Ť\(Ť × Ǧ)/B̌− → B(B̌−) is the forgetful functor

HeckeǦ,Ť (QCoh(pt/B̌−))→ QCoh(pt/B̌−)
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So, the image of MǦ,Ť under the latter functor is the direct image of Opt/Ť under

B(Ť )→ B(B̌−), it identifies with O(B̌−/Ť ) with the action of B̌− by left translations.
The diagonal embedding Ť ↪→ Ť × Ǧ gives a closed immersion

Ť\Ť /Ť → Ť\(Ť × Ǧ)/B̌−

Composing with pr : Ť\(Ť×Ǧ)/B̌− → Ť\Ǧ/B̌− we get the closed immersion Ť\B̌−/B̌− →
Ť\Ǧ/B̌−. Taking the direct image of O under this closed immersion and then the pull-
back under Ǧ/B̌− → Ť\Ǧ/B̌− we get the sheaf δ1 ∈ QCoh(Ǧ/B̌−), which corresponds
to MǦ in his Section 4.4.2.

1.9.26. For ([27], 4.4.3). Let q : B(Ť )→ B(B̌−) be the projection. The isomorphism
between the 2nd and 3rd line in the displayed formula is just the projection formula
W⊗(q∗e) →̃ q∗q

∗W forW ∈ QCoh(B(B̌−). Indeed, if we denote by eµ the 1-dimensional
representation of B̌− then q∗W →̃ ⊕µ (q∗eµ)⊗W (µ), and q∗q

∗eµ →̃ (q∗O)⊗ eµ.
For 4.4.4. To get an isomorphism

colim
λ∈Λ+

eλ ⊗ ResǦ
B̌−

(V λ)∗ →̃ q∗e,

let p : B(B̌−)→ B(Ǧ) be the natural map. The corresponding map eλ⊗p∗(V λ)∗ → q∗e
is by adjunction a map q∗eλ⊗q∗p∗(V λ)∗ → e on B(Ť ). The latter is just vλ : eλ ↪→ V λ.

This isomorphism is precisely ([4], Proposition-Construction 3.1.2).

1.9.27. The last displayed formula in ([27], 4.5.3) is wrong as stated in arxiv version
5. The problem here is that µ appearing in V is not necessarily dominant, so it is not
garanteed that jλ,∗ ∗ jµ,∗ →̃ jλ+µ,∗. It is clear how to correct. The correct formula in
the RHS is

⊕
µ
(j−λ−µ,! ∗ jλ,∗ ⊗ V (−µ))⊗ (jλ+µ,∗ ∗ Sat((V λ+µ)∗)

(corrected in the version of Oct 31, 2021).
In arxiv version 6: let λ be dominant coweight. By the monoidal dual of the map

IC
Gr

λ
G
→ jλ,∗ ∗ δ1,GrG he means the fact that if Rep(Ǧ) acts on some C on the right,

and Rep(Ť ) acts on it on the left, so that C ∈ Rep(Ǧ) ⊗ Rep(Ť )-module then for
c ∈ C, V ∈ Rep(G)c and λ ∈ Λ+ one has MapC(c ∗ V, eλ ∗ c) →̃ MapC(e

−λ ∗ c, c ∗ V ∨),
where V ∨ is the dual of V with respect to the monoidal structure on Rep(Ǧ) (see HA,
4.6.1.5). For any V ∈ Rep(Ǧ)♡ finite-dimensional, V is dualizable in Rep(Ǧ) with the
dual V ∗. Namely, the usual unit and counit maps e → V ∗ ⊗ V, V ∗ ⊗ V → e provide
this structure. Now take C = Shv(GrG)

I and c = δ1,GrG . We get the morphism

j−λ,! ∗ δ1,GrG → Sat((V λ)∗).

1.9.28. For ([27], 5.1.1). First, the category Shv(GrG)
L(N)L+(T ) is defined as the

category of L+(T )-invariants in SI(GrG) = Shv(GrG)
L(N). The category Shv(GrG)

L(N)

inherits an action of Shv(L+(T )) by my Lemma 1.2.64. On the other hand, L(N)L+(T )

is a placid ind-scheme, and one may also define Shv(GrG)
L(N)L+(T ) as the category of

invariants under this group.

But further he assumes that Shv(GrG)
L(N)L+(T ) is renormalized as follows. First,

we consider C ∈ DGCatnon−cocompl, where C ⊂ Shv(GrG)
L(N)L+(T ) is the full category
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of F whose image in Shv(GrG)
L(N) is compact. The renormalized category is defined

as Ind(C).
For ([27], 5.1.4). By my Section 1.9.6, for λ ∈ Λ the functor F 7→ tλF [−⟨λ, 2ρ̌⟩] is

t-exact.
Dennis claims first that Shv(GrG)

L(N)L+(T ) has a natural t-structure such that oblv :

Shv(GrG)
L(N)L+(T ) → SI(GrG) is t-exact. For any λ ∈ Λ, Sλ is L+(T )-invariant, so

ωSλ is naturally L+(T )-equivariant.
Write L(N) →̃ colimα∈ANα, where A is a filtered category, and Nα is a placid group

scheme, and for α→ α′ in A the map Nα → Nα′ is a placid closed immersion and a ho-
momorphism of group schemes. Moreover, we may assume each Nα is L+(T )-invariant.
Then L(N)L+(T ) →̃ colimαNαL

+(T ), here NαL
+(T ) is the semi-direct product of the

two factors. Moreover, NαL
+(T ) is a placid group-scheme.

We may equivalently define Shv(GrG)
L(N)L+(T ) via geometry I think. Before any

renormalization,

Shv(GrG)
L(N)L+(T ) →̃ lim

α∈Aop
Shv(GrG)

NαL+(T )

Fix α ∈ A. Pick a presentation GrG →̃ colimi∈I Yi, where I is filtered, and Yi ⊂ GrG
is a closed NαL

+(T )-invariant subscheme of finite type. We assume for i→ j in I the

map Yi → Yj is a closed immersion. Then Shv(GrG)
NαL+(T ) →̃ lim

i∈Iop
Shv(Yi)

NαL+(T ).

Now the group NαL
+(T ) acts on Yi through a quotient of finite type Gα,i such that

Ker(NαL
+(T )→ Gα,i) is prounipotent. Then we define Shv(Yi)

NαL+(T ) as Shv(Yi)
Gα,i .

This gives the desired category. The functor oblv : Shv(GrG)
L(N)L+(T ) → Shv(GrG)

L(N)

is also geometric given by !-pullback. We may similarly define ”the stratification by

L(N)-orbits” on Shv(GrG)
L(N)L+(T ) and the objects ∆λ,∇λ ∈ Shv(GrG)

L(N)L+(T )

equipped with oblv(∆λ) →̃∆λ, oblv(∇λ) →̃∇λ.
Then we define the t-structure on Shv(GrG)

L(N)L+(T ) in a way similar to that for
SI(GrG). Namely, connective objects is the smallest full subcategory stable under
extensions, colimits and containing ∆λ for all λ ∈ Λ. By definition, oblv is right t-

exact. It is also left t-exact. Indeed, let F ∈ Shv(GrG)
L(N)L+(T ) be coconnective.

Then for any λ ∈ Λ, i!λF is coconnective in Shv(Sλ)L(N)L+(T ), hence oblv(i!λF ) is
coconnective in SI(GrG)=λ. So, oblv(F ) is coconnective. My understanding is that

Shv(Sλ)L(N)L+(T ) →̃Shv(B(T )).

The renormalized version of Shv(GrG)
L(N)L+(T ) is similarly equipped with a t-

structure. Namely, we first equip the above C with a t-structure, which in turn gives
one on Ind(C) by Lemma 1.2.37 of this file.

Using the geometry as above we also see that Shv(GrG)
L(N)L+(T ) ⊂ Shv(GrG)

L+(T ) is

a full subcategory (before any renormalization). We then get (Shv(GrG)
L(N)L+(T ))constr ⊂

(Shv(GrG)
L+(T ))constr is a full subcategory, hence a natural functor between the renor-

malizations (=the ind-completions of the constructible subcategories). By ([35], 5.3.5.11(1))
the functor between the renormalizations is also fully faithful.
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1.9.29. For ([27], 5.2.1). The fact that oblv : Shv(GrG)
I → Shv(GrG)

L+(T ) (before
any renormalization) admits a continuous right adjoint follows from Section 1.2.62 of
this file.

1.9.30. For ([27], 5.2.3). By definition, Av
L(N)
! is the partially defined left adjoint to

the full embedding Shv(GrG)
L(N)L+(T ) ⊂ Shv(GrG)

L+(T ). In the constructible context

the functor Av
L(N)
! is everywhere defined. Indeed, in the notations of my Section 1.9.28,

pick α. Then for i ∈ I we may assume L+(T ) acts on Yi through its quotient L+(T )i
of finite type, and L+(T )i ⊂ Gα,i is a subgroup. Then we have the projection of stack
quotients f : Yi/L

+(T )i → Yi/Gα,i, and the left adjoint in question comes from f!,
which is everywhere defined in the constructible context.

To show that Av
L(N)
! is defined on the essential image of oblv : Shv(GrG)

I →
Shv(GrG)

L+(T ), use my Lemma 1.2.15. Namely, for each λ ∈ Λ+ setNλ = Adt−λ(L+(N)),
so NλL

+(T ) is a placid group scheme, and we get

Shv(GrG)
L(N)L+(T ) →̃ lim

λ∈(Λ+)op
Shv(GrG)

NλL
+(T )

The key thing is is the following. Let λ ∈ Λ+. Then it is known thatN(O)tλG(O)/G(O) ⊂
GrG is an affine space of dimension ⟨λ, 2ρ̌⟩, it coincides with the I-orbit Oλ on GrG
through tλ. For w̃ in the affine extended Weyl group write Flw̃G for the corresponding I-

orbit on FlG. It is well known that the natural projection Flt
λ

G → Oλ is an isomorphism.
So,

t−λItλI/I = NλG(O)/G(O)

is the Nλ-orbit of 1 on GrG. Here Nλ = t−λN(O)tλ.

Consider the functor AvNλ
! : Shv(GrG)

T (O) → Shv(GrG)
T (O)Nλ left adjoint to the

inclusion. Given K ∈ Shv(GrG)
T (O) the object AvNλ

! (K) is nothing but act!(e⊠̃K) for
the map

act : NλT (O)×T (O) GrG → GrG,

more precisely this is the image of AvNλ
! (K) under oblv : Shv(GrG)

T (O)Nλ → Shv(GrG).

Let now F ∈ Shv(GrG)
I . Note that IC = e[⟨λ, 2ρ̌⟩] is the IC-sheaf of the affine space

t−λItλI/I. Then the object

t−λjλ,! ∗ F [⟨λ, 2ρ̌⟩]

writes as a!(IC ⊠̃F ) for the action map

a : t−λItλI ×I GrG → GrG

So, the latter may be calculated as AvNλ
! (F ′), where F ′ is the image of F under oblv :

Shv(GrG)
I → Shv(GrG)

T (O).
The shift he uses does not mean too much, because a shift is an equivalence of

Shv(GrG)
I , and the way to identify abstract functors (such as oblv) with geometricn

ones is not made precise! Normalization of shifts is really not clear in his paper!
For ([27], 5.2.4). The 1st isomorphism in his Section 5.2.4 follows from the fact that

for the left adjoint Av
N(F )
! : Shv(GrG)

T (O) → Shv(GrG)
T (O)N(F ) to the inclusion, and
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any K ∈ Shv(GrG)
T (O) we have

t−λAv
N(F )
! (tλK) →̃ Av

N(F )
! (K)

Indeed, for L ∈ Shv(GrG)
N(F )T (O)

HomShv(GrG)T (O)(t−λAv
N(F )
! (tλK), L) →̃HomShv(GrG)T (O)(Av

N(F )
! (tλK), tλL)

→̃HomShv(GrG)T (O)(tλK, tλL) →̃HomShv(GrG)T (O)(K,L)

1.9.31. For ([27], 5.2.5). If F ∈ Shv(GrG)
I and λ ∈ Λ+ then t−λF is equivariant

under Iλ := t−λItλ. Now the composition

Shv(GrG)
Iλ oblv→ Shv(GrG)

T (O) Av
I/T (O)
∗→ Shv(GrG)

I

identifies with Shv(GrG)
Iλ oblv→ Shv(GrG)

Iλ∩I Av
I/I∩Iλ
∗→ Shv(GrG)

I , because for a prounipo-
tent group the inclusion of invariants is fully faithful. The latter functor writes as

K 7→ act∗(e⊠̃K) for the action map act : IIλ×IλGrG → GrG. Now for F ∈ Shv(GrG)
I

we get

(28) act∗(e⊠̃t
−λF ) →̃ j−λ,∗ ∗ F

up to a shift, because IIλ = It−λItλ, and due to the following. Consider the isomor-
phism

IIλ ×GrG →̃ It−λI ×GrG, (v, gG(O)) 7→ (vt−λ, tλgG(O))

Let y ∈ I act on It−λI × GrG diagonally, where on u ∈ It−λI it acts as uy−1, and
on gG(O) ∈ GrG it acts as ygG(O). Let also y ∈ I act on IIλ × GrG diagonally,
where on v ∈ IIλ it acts as vt−λy−1tλ, and on gG(O) as t−λytλgG(O). Then the above
isomorphism is I-equivariant, and this gives (28).

This proves that for F ∈ Shv(GrG)
I one has

(29) AvI/T (O)(t−λF ) →̃ j−λ,∗ ∗ F [−⟨λ, 2ρ̌⟩]
as claimed in his paper. I don’t understand the shift however!

For 5.2.6. He uses the fact from ([24], D.1.2) that for any C ∈ DGCatcont with an
action of Shv(G(F )), C →̃ colimnC

Kn , where Kn = Ker(G(O) → G(O/tn)). So, for
any c ∈ C, c →̃ colimn, oblvnAv

Kn
∗ (c), where oblvn : CKn → C and AvKn

∗ : C → CKn

are adjoint functors.
The reference for the Iwahori factorization N−(O)1T (O)(O) = I is ([14], Section 3).

Here N−(O)1 = Ker(N (O) → N−) is the first congruence subgroup. For λ ∈ Λ+ he

thinks of Av
t−λN−(O)1tλ

∗ here as a functor

Shv(GrG)
T (O) → Shv(GrG)

T (O)t−λN−(O)1tλ

In the end of the proof there are misprints. A correct argument: given F ∈ Shv(GrG)
N(F )T (O)

nonzero, there is λ ∈ Λ+ deep enough such that Av
t−λN−(O)1tλ

∗ (F ) ̸= 0, the latter is in

Shv(GrG)
Iλ . Now

Av
N−(O)1
∗ Av

t−λN−(O)1tλ

∗ (F ) →̃ j−λ,∗ ∗ (tλAv
t−λN−(O)1tλ

∗ (F ))[−⟨λ, 2ρ̌⟩]
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by formula (29) of this file.

1.9.32. Example. For ([56], 6.4.1). Let I ⊂ G(O) be the Iwahori. For λ ∈ Λ let
Iλ = Adt−λ(I). Let C ∈ Shv(G(F )) − mod. For any λ, µ ∈ Λ+ the composition

CI
λ oblv→ CI

λ∩Iµ Av∗→ CI
µ
is an equivalence.

Proof. Since Iλ/Iλ ∩ Iµ is contractible (a tower of A1-torsors), oblv : CI
λ → CI

λ∩Iµ

is fully faithful. Up to conjugation, we may assume λ = 0 and µ any. Then this
composition is the functor F 7→ t−µjµ,∗ ∗ F for F ∈ CI . Here jµ,∗ = jtµ,∗ is the
corresponding object in Shv(I\G(F )/I), the ∗-extension of the constant sheaf from
ItµI to G(F )/I. Note also that jµ,! exists for any sheaf theory, because I-orbit through
tµ is an affine space and the dualizing sheaf on an affine space is holonomic. So, the
inverse functor makes sense. The object jtµ,∗ is invertible in Shv(I\G(F )/I), its inverse
is jt−µ,!. The forgetting to I ∩ Iµ appears, because the stabilizer of 1 ∈ FlG inside Iµ

is I ∩ Iµ. □

1.9.33. Let V be a finite-dimensional e-vector space. Then e ⊗SymV e →̃ Sym(V [1])
canonically (the Koszul complex). Let now 0 → E → V → W → 0 be an exact
sequence of vector spaces, this gives a surjective map of algebras SymV → SymW .
Now SymW ⊗SymV e →̃ Sym(E[1]) canonically. Indeed, if we fix a splitting W → V
of the above exact sequence then it gives an isomorphism SymV →̃ SymW ⊗ SymE,
and SymW ⊗(SymW⊗SymE) e →̃ e ⊗SymE e. I think the so obtained isomorphism is
independent of a splitting. We used here ([43], 9.2.10).

1.9.34. For [27]. Remarks 6.1.5, 6.1.7 are correct in arxiv version 6. Their proof
is essentially as follows. Assume Rep(Ǧ) acts on C, and c ∈ O(Ǧ/Ň−) − mod(C),
where we view now O(Ǧ/Ň−) as an algebra in Rep(Ǧ). For each λi ∈ Λ+ we have a
commutative diagram

(c ∗ V λ1) ∗ V λ2 uλ1,λ2→ c ∗ V λ1+λ2

↓ aλ1 ↓ aλ1+λ2

c ∗ V λ2
aλ2→ c,

where aλ denotes the corresponding action map c ∗ V λ → c. We denote by uλ1,λ2 :
V λ1 ⊗ V λ2 → V λ1+λ2 and vλ1,λ2 : V λ1+λ2 → V λ1 ⊗ V λ2 the maps fixed in his Section
2.1.4 (as well as their duals). We must show that the diagram obtained by passing to
adjoints

c
bλ1+λ2→ c ∗ (V λ1+λ2)∗

↓ bλ1 ↑ vλ1,λ2

c ∗ (V λ1)∗
bλ2→ c ∗ (V λ2)∗ ⊗ (V λ1)∗

also commutes naturally, where bλ : c → c ∗ (V λ)∗ is the map obtained from aλ by
adjointness.
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This is easy to check. For this we use the following. First, the composition V λ1+λ2 vλ1,λ2→
V λ1 ⊗ V λ2 uλ1,λ2→ V λ1+λ2 is id. Second, the diagram commutes

V λ1 ⊗ V λ2 ⊗ (V λ1)∗ ⊗ (V λ2)∗
u⊗u← e

↓ uλ1,λ2 ↓ u
V λ1+λ2 ⊗ (V λ1)∗ ⊗ (V λ2)∗

uλ1,λ2← V λ1+λ2 ⊗ (V λ1+λ2)∗,

where u every time denotes the unit of the corresponding duality.
We may see here c as a lax central element, where the left Rep(Ť )-action on c is

trivial. For a nontrivial Rep(Ť )-action the situatioin is similar.

1.9.35. For 6.2.1. Let q : B(Ť )→ B(Ť × Ǧ) come from the diagonal map Ť → Ť × Ǧ.
We have an adjoint pair q∗ : QCoh(B(Ť × Ǧ)) ⇆ QCoh(B(Ť )) : q∗ in Rep(Ť ) ⊗
Rep(Ǧ) − mod. Tensoring by C over Rep(Ť ) ⊗ Rep(Ǧ), one gets the desired right
adjoint to C → HeckeǦ,Ť (C). This right adjoint is monadic, because q fits into a

diagram B(Ť )
q→ B(Ť × Ǧ) → B(Ť ), whose composition is id. So, C → HeckeǦ,Ť (C)

generates HeckeǦ,Ť (C) under colimits.

We may also use ([20], ch. I.1, 8.5.7) and the fact that q∗ : Rep(Ť ) → Rep(Ť ) ⊗
Rep(Ǧ) is monadic. So, for the algebra A = q∗q

∗O ∈ Rep(Ť ) ⊗ Rep(Ǧ) we have
A−mod(Rep(Ť )⊗ Rep(Ǧ)) →̃Rep(Ť ) and

C ⊗Rep(Ť )⊗Rep(Ǧ) A−mod(Rep(Ť )⊗ Rep(Ǧ)) →̃A−mod(C)

1.9.36. For 6.2.2. Consider the diagram

B(B̌−)
η← B(Ť )
↘ q ↓ p

B(Ť × Ǧ),

where we use the diagonal maps Ť → B̌− → Ť × Ǧ. Using ([20], ch. I.1, 3.3.3),
one has QCoh(B(B̌−)) →̃ q∗O − mod(QCoh(B(Ť × Ǧ))) and QCoh(B(Ť )) →̃ p∗O −
mod(QCoh(B(Ť ×Ǧ))). After the base change by pt→ B(Ť ×Ǧ) the diagram becomes

Ǧ/Ň−
η̄← Ǧ
↘ ↓

pt

The adjoint pair he considers comes from the adjoint pair η∗ : QCoh(B(B̌−) ⇆
QCoh(B(Ť )) : η∗.

The functor η∗ : O(Ǧ/Ň−) − mod → O(Ǧ) − mod, where modules are taken in
Rep(Ť )⊗ Rep(Ǧ) is given by

c 7→ O(Ǧ)⊗O(Ǧ/Ň−) c

This is why it is sufficient to present O(Ǧ) →̃ colim
λ∈Λ+

eλ ⊗ O(Ǧ/Ň−)⊗ (V λ)∗.
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1.9.37. For 6.2.4. The first two isomorphisms come from ([20], ch. I.1, 8.5.7). Let us
check that the maps eλ ⊗ O(Ǧ/Ň−)⊗ (V λ)∗ → O(Ǧ) that he suggests are compatible
with the transition maps in our inductive system. The above map sends eλ⊗f⊗u with
y ∈ (V λ)∗, f ∈ O(Ǧ/Ň−) to the function g 7→ f(g)⟨y, gvλ⟩ or maybe to f(g)⟨y, g−1vλ⟩

The map V λ ⊗ e−λ → O(Ǧ/Ň−) sends v ⊗ e−λ to ⟨(vλ)∗, g−1v⟩. These maps are
evidently compatible with the product in O(Ǧ/Ň−) = ⊕

µ∈Λ+
V µ ⊗ e−µ given in his

Section 6.1.2.
Similarly, we have the maps (V µ)∗ ⊗ eµ → O(Ǧ/Ň) sending y ⊗ eµ to ⟨y, g−1vλ⟩.

They are similarly compatible with the product in O(Ǧ/Ň) = ⊕
ν∈Λ+

(V ν)∗⊗ eν given by

(V ν1)∗ ⊗ eν1 ⊗ (V ν2)∗ ⊗ eν2 vν1,ν2→ (V ν1+ν2)∗ ⊗ eν1+ν2

The claim reduces to the commutativity for any λ1, λ2, µ ∈ Λ+ of the diagram

eλ1 ∗ [V µ ⊗ e−µ] ∗ (V λ1)∗ → O(Ǧ)
↓ unit

eλ1+λ2 ∗ e−λ2 ∗ [V µ ⊗ e−µ] ∗ V λ2 ⊗ (V λ2)∗ ⊗ (V λ1)∗ ↑
↓ uµ,λ2

eλ1+λ2 ∗ [V µ+λ2 ⊗ e−µ−λ2 ] ∗ (V λ2)∗ ⊗ (V λ1)∗
vλ1,λ2→ eλ1+λ2 ∗ [V µ+λ2 ⊗ e−µ−λ2 ] ∗ (V λ1+λ2)∗

Here we view parts in [ ] parenthesis as those of O(Ǧ/Ň−), the lowest vertical arrow
is the product in O(Ǧ/Ň−) with the term V λ2 ⊗ e−λ2 , and the remaining matrices
are taking the matrix coefficients. The decomposition of O(Ǧ) and related things
are discussed in Roe Goodman, Nolan R. Wallach, Symmetry, Representations, and
Invariants, 12.1.4.

1.9.38. In ([27], 6.3.2 line 5) he means the direct image of Opt/Ť under the closed

immersion B(Ť ) ↪→ (Ǧ/Ň−)/Ť .

1.9.39. In ([27], 5.3.3 and 5.3.4) there is a mistake: given λ dominant and regular,

it is not true that ℓ(t−w0(λ)) = ℓ(w0) + ℓ(t−λw0) as stated, so the isomorphism jw0,! ∗
j−w0(λ),∗ →̃ jt−λw0,∗ does not hold.

1.9.40. In ([27], diagram (3.9)) there is a mistake: the right vertical map q does not
exists, only the composition of q with (3.8) exists and is smooth. The argument holds
however.

1.10. FLE again.

1.10.1. Action of Hecke algebras on invariants. If G is a placid group scheme over
Spec k and C ∈ Shv(G)−mod(DGCatcont) then Dennis claims that the natural functor
CG → CG is an equivalence for any of the 4 sheaf theories (in [33] this is proved for
D-modules). Assume G prosmooth. Then oblv : CG → C admits a continuous right
adjoint AvG∗ : C → CG by Section 1.3.9. The composition C → CG → CG is AvG∗ .
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Let H ∈ Grp(PreStk) be a placid ind-scheme, and G its closed placid group sub-
scheme. By ([46], 0.0.37), Shv(H/G) →̃Shv(H)G, where G acts on H by right trans-
lations. Note that H/G is an ind-scheme of ind-finite type. So, we have naturally

Shv(H)G →̃Shv(H)G →̃Shv(H/G)

More precisely, the functor oblv : Shv(H)G → Shv(H) may be identified with a∗ :
Shv(H/G) → Shv(H) for a : H → H/G, so its right adjoint AvG∗ : Shv(H) →
Shv(H/G) is a∗. It factors as Shv(H) → Shv(H)G → Shv(H/G), where the second
arrow is an equivalence.

Let now C ∈ Shv(H)−mod(DGCatcont). This gives an equivalence

CG →̃FunShv(H)(Shv(H)⊗Shv(G) Vect, C) →̃FunShv(H)(Shv(H/G), C)

The monoidal category FunShv(H)(Shv(H/G), Shv(H/G)) acts on FunShv(H)(Shv(H/G), C)
by compositions. Now

FunShv(H)(Shv(H/G), Shv(H/G)) →̃Shv(H/G)G,

where G acts on H/G by left translations.
The so obtained monoidal structure on Shv(H/G)G is as follows. We accept the

convention of ([46], 0.0.40). So, Shv(H/G)G →̃Shv(G\H/G) in such a way that for
q : H/G → G\H/G the functor q∗ identifies with oblv : Shv(H/G)G → Shv(H/G).
Then the monoidal structure on Shv(G\H/G) is as in Section 1.5.1 I think. Namely,
consider the diagram

G\H/G p1← G\H ×G (H/G)
m→ G\H/G

↓ p2
G\H/G,

where pi is the projection on i-th term. GivenK1,K2 ∈ Shv(G\H/G), we getK1∗K2 =
m∗(p1×p2)∗(K1⊠K2). The functor (p1×p2)∗ makes sense, because p1×p2 is a G-torsor.
The needed base change result is ([46], Lemma 0.0.20).

1.10.2. Let G be a placid group scheme, H ⊂ G be a placid closed immersion and a
group subscheme. Let C ∈ Shv(G)−mod(DGCatcont). We claim that oblv : CG → CH

admits a continuous right adjoint AvGH∗.

Proof. For q : H → Spec k consider the dual pair q∗ : Vect ⇆ Shv(H) : q∗ in Shv(H)−
mod, where H acts on itself by left translations. Tensoring by Shv(G) over Shv(H),
we get a dual pair L : Shv(G)⊗Shv(H) Vect ⇆ Shv(G) : R in Shv(G), where G acts by
left translations on G. Here R is the natural functor appearing in the bar construction
of the tensor product, it sends K to K ⊠ e.

Consider the functor R : Shv(G) ⊗Shv(H) Vect → Vect corresponding under the
isomorphism FunShv(G)(Shv(G)⊗Shv(H) Vect,Vect) →̃FunShv(H)(Vect,Vect) to id. So,
R sends K ⊠ e to RΓ(G,K). By Section 1.10.1, γ : Shv(G)⊗Shv(H) Vect →̃Shv(G/H)
canonically. Here for a : G→ G/H we get γ(K ⊠ e) →̃ a∗K naturally for K ∈ Shv(G).
Now the functor R ◦ γ−1 identifies with RΓ(G/H, •) : Shv(G/H) → Vect. Since G/H
is a smooth scheme of finite type, R admits a continuous left adjoint L : Vect →
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Shv(G/H) sending e to eG/H . Moreover, the adjoint pair L : Vect ⇆ Shv(G/H) : R
takes place in Shv(G)−mod.

Applying the functor FunShv(G)(•, C) to the latter adjoint pair, we get an adjoint

pair oblv : FunShv(G)(Vect, C) ⇆ FunShv(H)(Vect, C) : Av
G
H∗ in DGCatcont. □

Note also that if G/H is isomorphic to an affine space then oblv : CG → CH is fully
faithful, because id→ AvGH∗ ◦ oblv is an isomorphism.

According to Section 1.10.1, Shv(H\G/H) acts on CH . The functor oblv ◦AvGH∗
identifies with the action of eG ∈ Shv(H\G/H) (maybe up to a shift).

1.10.3. Let G ∈ Grp(PreStk) be a placid indscheme, C ∈ Shv(G)−mod(DGCatcont).
Then Fun(C,Vect) is naturally a right Shv(G)-module category. One has naturally
Fun(GC,Vect) →̃Fun(C,Vect)G. Under this isomorphism the functor C → GC is dual
to oblv : Fun(C,Vect)G → Fun(C,Vect). If C is dualizable this gives Fun(GC,Vect) →̃ (C∨)G.

The notation GC is supposed to recall that G acts on C on the left.

Proof. One has GC →̃ colim[n]∈∆op Vect⊗Shv(G)⊗n ⊗ C, so

Fun(GC,Vect) →̃ lim
[n]∈∆

Fun(Shv(G)⊗n ⊗ C,Vect) →̃

lim
[n]∈∆

Fun(Shv(G)⊗n,Fun(C,Vect)) →̃Fun(C,Vect)G

Here Fun means FunVect □

Note that for anyD ∈ DGCatcont, if C ∈ Shv(G)−mod(DGCatcont) then Funk,cont(C,D)
is a right G-module.

More generally, let f : H → G be a homomorphism of placid group ind-schemes, C ∈
Shv(G) −mod. Under the above isomorphisms the functor oblvGH : Fun(C,Vect)G →
Fun(C,Vect)H is dual to the natural functor AvG,H∗ : HC → GC. Here ‘dual’ means
obtained by applying Funk,cont(•,Vect) (it is not necessarily the dual functor in the
sense of the monoidal structure on DGCatcont, but a weaker notion).

Assume in addition that AvG,H∗ admits a continuous left adjoint oblvG,H : GC →
HC. Then the dual to oblvG,H in the above sense is the right adjoint AvGH∗ : Fun(C,Vect)

H →
Fun(C,Vect)G of oblvGH .

1.10.4. Let G,H be placid group schemes and f : H → G a homomorphism of group
schemes (we do not assume it is a placid closed embedding). Let R : Shv(G) ⊗Shv(H)

Vect → Vect be the continuous e-linear functor sending F ⊠ e to RΓ(G,F ). This is
a morphism of Shv(G)-module categories. If R admits a continuous left adjoint L in
Shv(G)−mod then for C ∈ Shv(G)−mod applying FunShv(G)(•, C), we get the functor
AvGH∗ : C

H → CG right adjoint to oblv : CG → CH .

1.10.5. Let G = U ⋊ H be as in Lemma 1.2.64, C ∈ Shv(H) − mod. Recall that
CU ∈ Shv(G) − mod, and we have (CU )G →̃ (CU )H by ([47], Lemma 1.3.7). Since
oblv : CU → C is a map in Shv(G)−mod, its continuous right adjoint AvU∗ : C → CU

is a right-lax morphism of Shv(G)-module categories. We claim it is a strict morphism
of Shv(G)-module categories.
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Indeed, let F ∈ Shv(G), c ∈ C. We have to show that the natural map F ∗AvU∗ (c)→
AvU∗ (F ∗c) is an isomorphism in CU . It suffices to show this after applying oblv : CU →
C. We get oblv(F ∗AvU∗ (c)) →̃F ∗ eU ∗ c and oblvAvU∗ (F ∗ c) →̃ eU ∗ F ∗ c. Our claim
follows from Lemma 1.2.64.

Applying the functor FunShv(G)(Vect, •) to the adjoint pair oblv : CU ⇆ C : AvU∗ , we

get an adjoint pair L : (CU )G ⇆ CG : R. From id →̃ AvU∗ oblv we learn that id→ RL
is an isomorphism, so L is fully faithful. We check below that L : (CU )G → CG is an
equivalence.

The composition Vect
eH⊠eU→ Shv(H) ⊗ Shv(U)

h→ Shv(G) sends e to eG, here
h = ⊠. Each functor in this diagram has a continuous right adjoint, the diagram of

right adjoints is Shv(G)
hR→ Shv(H) ⊗ Shv(U)

RΓ⊗RΓ→ Vect, their composition is RΓ.

Moreover, RΓ : Shv(G)→ Vect factors naturally as Shv(G)→ Shv(G)⊗Shv(U)Vect
R→

Vect, here R(F ⊠ e) →̃ RΓ(G,F ) for F ∈ Shv(G). Since h is a map of Shv(U)rm-
modules, hr is a right-lax morphism in Shv(U)rm-modules. Is it strict? This looks
plausible, but here is a simplier argument.

Consider the map q : G = U ⋊ H → U sending (u, h) to u. The functor q∗ writes

as the composition Shv(G)
hR→ Shv(H) ⊗ Shv(U)

RΓ(H,·)⊗id→ Shv(U). The functor q∗
is a morphism of right Shv(U)-modules, where U acts by convolutions on the right.
So, we get a dual pair q∗ : Shv(U) ⇆ Shv(G) : q∗ in Shv(U) − modr(DGCatcont).
Passing to conivariants for U , we get a dual pair L : Vect ⇆ Shv(G)⊗Shv(U) Vect : R
in DGCatcont. The map L is a left-lax morphism of Shv(G)-modules by construction,
and L(e) →̃ eG ⊠ e canonically. For F ∈ Shv(G) we have F ∗ eG →̃ RΓ(G,F ) ⊗ eG
in Shv(G), so L is a strict morphism of Shv(G)-modules. Now by Section 1.10.4 we
learn that oblv : CG → CU admits a continuous right adjoint AvGU∗ : C

U → CG. The
composition oblvAvGU∗ sends c ∈ CU to eG ∗ c.

Now we claim that oblv : CG → CU is comonadic. Since the composition CG →
CU → C is conservative, oblv : CG → CU is conservative. Let V be a simplicial object
of (CG)op, which becomes a split simplicial object V ′ in (CU )op. Then V ′ has a colimit
in (CU )op and oblv : (CU )op → Cop preserves this colimit automatically. Let V ′′ be
the obtained split simplicial object in Cop. Since CG → C is comonadic, V admits
a colimit in (CG)op, and (CG)op → Cop preserves this colimit. Since (CU )op ⊂ Cop

is a full subcategory, the colimit of V ′′ lies in (CU )op. So, oblv : (CG)op → (CU )op

preserves the colimit of V . By ([36], Th. 4.7.3.5), oblv : CG → CU is comonadic, the
corresponding comonad is c 7→ eG ∗ c. This is the same comonad as for the comonadic
functor oblv : (CU )G → CU . Since we have a diagram (CU )G → CG → CU , and the
comonads are the same, the above functor L : (CU )G → CG is an equivalence for al
our 4 sheaf theories.

1.10.6. Let U,Q be group ind-schemes, whose underlying ind-schemes are placid. As-
sume Q acts on U by conjugation, set G = Q ⋊ U , the semi-direct product, so G is
a placid ind-scheme. We claim that Shv(G) ⊗Shv(U) Vect →̃Shv(Q) naturally. In the
setting of D-modules this should be in ([13], B.2).
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Proof. Pick a presentation U →̃ colimi∈I Ui, where I ∈ 1− Cat is small filtered, Ui is a
placid group scheme, for i→ j in I the morphism Ui → Uj is a placid closed immersion
and a homomorphism of group schemes. ThenG →̃ colimi∈I Q×Ui, because the colimits
in PreStk are universal. So, Shv(G) →̃ colimi∈I Shv(Q×Ui) with respect to the ∗-direct
images. Now

Shv(G)U →̃ colim
i∈I

Shv(G)⊗Shv(Ui) Vect →̃

colim
(i→j)∈Fun([1],I)

Shv(Q× Uj)⊗Shv(Ui) Vect →̃ colim
i∈I

Shv(Q× Ui)⊗Shv(Ui) Vect,

because the diagonal map N→ Fun([1],N) is cofinal. Finally,

Shv(Q× Ui)Ui →̃Shv(Q× Ui)Ui →̃Shv(Q),

and the corresponding maps are the identities. Since I →| I | is cofinal and I is
contractible, we are done. □

This gives the fact that for any C ∈ Shv(G) − mod(DGCatcont), C
U ∈ Shv(Q) −

modr(DGCatcont) naturally. Indeed,

FunShv(U)(Vect, C) →̃FunShv(G)(Shv(G)⊗Shv(U) Vect, C)

→̃FunShv(G)(Shv(Q), C)

The latter is a right Shv(Q)-module.
Similarly, CU ∈ Shv(Q)−mod(DGCatcont). Indeed,

Vect⊗Shv(U)C →̃ Vect⊗Shv(U)Shv(G)⊗Shv(G) C →̃Shv(Q)⊗Shv(G) C

Now if C → C ′ is a map in Shv(G)−mod then it yields morphisms CU → C ′U and
CU → C ′U in Shv(Q)−mod by the above.

1.10.7. Let H,G be placid group schemes, f : G → H be a closed subgroup scheme
such that H →̃Y ×G as right G-modules for some placid scheme Y . Then for q : H →
H/G the functor q∗ : Shv(H/G)→ Shv(H) is Shv(H)-linear. Here Y →̃H/G. So, the
dual pair q∗ : Shv(H/G) ⇆ Shv(H) : q∗ takes place in Shv(H)−mod.

Proof. We have a cartesian square

H ×H m→ H
↓ id×q ↓ q

H ×H/G act→ H/G,

where m is the mutliplication. Now we have m∗(id×q)∗ →̃ q∗ act∗ by ([46], 0.0.52).
Indeed, m identifies with the product act× idG. We are done. □

If now C ∈ Shv(H)−mod(DGCatcont), in the above situation applying the functor
FunShv(H)(·, C) gives an adjoint pair FunShv(H)(Shv(H/G), C) ⇆ C in DGCatcont.

Assume G prosmooth. Then Shv(H/G) →̃Shv(H)G →̃Shv(H)G, because G is placid.
So, we get canonically FunShv(H)(Shv(H/G), C) →̃CG. We reobtained the adjoint

pair oblv : CG ⇆ C : AvG∗ . Let p : G → Spec k. In fact, q∗ is obtained from
p∗ : Vect→ Shv(G) by applying Shv(H)⊗Shv(G) ·.
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1.10.8. Let G,H be pro-smooth placid group schemes, f : H → G a homomorphism
of group schemes and a placid closed immersion. Let C ∈ Shv(G)−mod(DGCatcont).
Recall that the canonical functor CG → CG is an equivalence, and similarly for H.
Consider the natural functor pr : CH → CG. Composing with the above equivalences,
it gives a functor F : CH → CG. Gurbir claims that F is the right adjoint to oblv :
CG → CH .

We check this under the additional assumptions thatH\G is smooth. Let q : H\G→
Spec k be the projection. Then the functor q∗ : Vect → Shv(H\G) is a map of right
Shv(G)-modules. This follows from ([46], Lemma 0.0.20) by base change, because H\G
is smooth. We get the dual pair q∗ : Vect ⇆ Shv(H\G) : q∗ in right Shv(G)-modules.
Applying the functor · ⊗Shv(G) C, this gives an adjoint pair

prL : CG ⇆ CH : pr

We used here the isomorphism Shv(H\G) →̃Vect⊗Shv(H)Shv(G) of right Shv(G)-
modules. (The functor pr exists for any morphism of placid group ind-schemesH → G).

Passing to the left adjoints in the diagram C
prH→ CH

pr→ CG with pr ◦ prH →̃ prG, one

gets CG
prL→ CH

prLH→ C with prLH prL →̃ prLG. The functor prLH : CH → C identifies with
oblvH : CH → C, and similarly for prLG. So, pr

L identifies with oblv : CG → CH .

1.10.9. Let U be a pro-unipotent group scheme, p : U → Spec k. The dual pair
p∗ : Vect ⇆ Shv(U) : p∗ and C ∈ Shv(U)−mod give an adjoint pair prL : CU ⇆ C : pr,
where pr is the natural functor (existing for any placid group ind-scheme). Clearly, prL

is fully faithful. Passing to the right adjoints in the isomorphism id →̃ pr ◦ prL, we see
that the right adjoint prR : CU → C of pr is also fully faithful. So, pr is a localization
functor.

More generally, let U →̃ colimi∈I Ui be an ind-pro-unipotent group scheme, here I is
small filtered, Ui is pro-unipotent, and for i→ j in I the map Ui → Uj is a placid closed
immersion and a homomorphism of group schemes. Then for any C ∈ Shv(U)−mod,
C → CU is a localizatoin functor (has a fully faithful right adjoint). By Lemma 1.8.17’
of this file, if C0 = Ker(C → CU ) then CU →̃C/C0 naturally. Here C0 is the smallest
full DG-subcategory of C containing Ker(C → CUi) for each i. If i → j is a map in I
then CUi → CUj is a localization functor.

Proof. For each i ∈ I, C → CUi is a localization functor by the above, it has a
fully faithful right adjoint. Recall that CU →̃ colimi∈I CUi in DGCatcont, hence also

in 1 − CatSt,cocmplcont and in PrL, here PrL is the notation from (HTT, 5.5.3.1). So,
CU →̃ limi∈Iop CUI

, where we passed to right adjoint in DGCat, these right adjoint

are maybe discontinuous, and the limit is taken in DGCat (or in 1 − CatSt,cocmpl). It
also coincides with ∩i∈UCUi taken inside C, because the corresponding limit can be
calculated in 1− Cat by ([20], ch. I.1, 2.5.7), so we apply ([43], 2.7.7).

For i → j is a map in I then C → CUi → CUj admits right adjoints, and the
composition of this right adjoints is fully faithful, so CUi → CUj is a localization
functor. □
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1.10.10. Let f : H → G be a homomorphism of placid group ind-schemes. Recall that
f∗ : Shv(H)→ Shv(G) is monoidal, hence gives the restriction functor Shv(G)−mod→
Shv(H)−mod. If C ∈ Shv(H)−mod then FunShv(H)(Shv(G), C) is naturally an object
of Shv(G) −mod, a left module. Moreover the functor C 7→ FunShv(H)(Shv(G), C) is
right adjoint to the above restriction functor.

Proof. We view here Shv(G) as a Shv(H)-module via the left action Shv(H)⊗Shv(G)→
Shv(G), (K,L) 7→ f∗(K) ∗L. Then the right action of Shv(G) on itself by right convo-
lutions yields the left Shv(G)-module structure on FunShv(H)(Shv(G), C). Now apply
([43], 9.2.56). □

The left adjoint to the restriction functor Shv(G)−mod→ Shv(H)−mod is given
by the induction functor Shv(H)−mod→ Shv(G)−mod, D 7→ Shv(G)⊗Shv(H) D.

1.10.11. Let G be a smooth group scheme of finite type, Y ∈ PreStklft. Recall that the
prestack quotient Y/G →̃ colim[n]∈∆op Gn×Y in PreStklft, so Shv(Y/G) →̃ lim[n]∈∆op Shv(Gn×
Y ) with respect to the corresponding !-restrictions.

Assume we are in the constructible context. The co-simplicial category [n] 7→
Shv(Gn × Y ) satisfies the comonadic Beck-Chevalley conditions, so Shv(Y/G) →̃A −
comod(Shv(Y )), where A(K) = act!(ωG⊠K) for act : G×Y → Y . We may also write
A = q!q! for q : Y → Y/G.

Let now C ∈ DGCatcont. Let Shv(G) act on Shv(Y )⊗ C via its action on Shv(Y ).

Lemma 1.10.12. The natural functor Shv(Y )G ⊗ C → (Shv(Y )⊗ C)G is an equiva-
lence.

Proof. For any n, Shv(G)⊗n is dualizable, so

Fun(Shv(G)⊗n, Shv(Y )⊗ C) →̃Fun(Shv(G)⊗n, Shv(Y ))⊗ C

Moreover, this is an isomorphism of co-simplicial categories in [n] ∈∆, where the RHS
is obtained from the co-simplicial category Fun(Shv(G)n, Shv(Y )) by tensoring with
C.

The co-simplicial category [n] 7→ Fun(Shv(G)n, Shv(Y ))⊗C satisfies the comonadic
Beck-Chevalley conditions, so

(Shv(Y )⊗ C)G →̃A− comod(Shv(Y ))⊗ C)

Here A ∈ Alg(Fun(Shv(Y )) ⊗ C, Shv(Y )) ⊗ C) equal to eG ⊗ id for id : C → C, here
eG is the constant sheaf on G.

Now Shv(Y )G →̃ Tot(Shv(G• × Y ) with the transition functors given by !-inverse
images. It also satisfies the comonadic Beck-Chevalley conditions with the comonad
eG ∈ Fun(Shv(Y ), Shv(Y )). We may pass to left adjoints in the latter totalization and
get Shv(Y )G →̃ colim[n]∈∆op Shv(Gn×Y ), because we are in the constructible context.

So, Shv(Y )G⊗C →̃ colim[n]∈∆op Shv(Gn×Y )⊗C. We may again pass to right adjoints

in the latter colimit and get Shv(Y )G ⊗ C →̃ Tot(Shv(G• × Y )⊗ C).
Since the co-simplicial category Tot(Shv(G• × Y ) satisfies the comonadic Beck-

Chevalley conditions, so does the co-smplicial category Tot(Shv(G• × Y ) ⊗ C) with
the comonad being A. □
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1.10.13. Let I be small filtered, N →̃ colimi∈I Ni, where Ni is a prounipotent group
scheme, for i→ j in I the map Ni → Nj is a placid closed immersion, a homomorphism
of group schemes. So, N is a placid ind-scheme. Let 0 ∈ I be initial.

We claim that Shv(N/N0)N →̃ Vect. Indeed, Shv(N/N0)N →̃ colimi Shv(N/N0)Ni

with respect to the natura maps Shv(N/N0)Ni → Shv(N/N0)Nj for i→ j in N . Then

colimi Shv(N/N0)Ni →̃ colimi colimi→j,j∈I Shv(Nj/N0)Ni →̃ colimi Shv(Ni/N0)Ni ,

because I → Fun([1], I) is cofinal. Here for j → j′ the map Shv(Nj/N0)Ni →
Shv(Nj′/N0)Ni comes from the ∗-extension under Nj/N0 → Nj′/N0. The functor
RΓ : Shv(Ni/N0) → Vect factors as Shv(Ni/N0) → Shv(Ni/N0)Ni →̃ Vect, and the
corresponding transition maps are identities. This gives Shv(N/N0)N →̃ Vect. In fact,
RΓ : Shv(N/N0)→ Vect factors as Shv(N/N0)→ Shv(N/N0)N →̃ Vect.

Besides, Vect →̃Shv(N/N0)
N , e 7→ ω. Compare with ([24], 3.4.6).

1.10.14. In my paper [52] the unital structures on chiral algebras and chiral categories
are not discussed, but they are useful.

For example, if A ∈ CAlg(Shv(X),⊗!) is a unital commutative algebra then A
1⊗!id→

A ⊗! A
m→ A is the identity. This implies that restriction of the diagram ωX ⊠ AX →

AX ⊠ AX
m̄→ AX2 to the diagonal X ↪→ X2 is the identity, where m̄ is the chiral

multiplication. Since A is unital, one gets a map ωRan → Fact(A) in Shv(Ran) by
functoriality of Fact(·) construction.

1.11. More about [26], arxiv version 5.

1.11.1. The detailed construction given in ([26], 2.3.5) is given in details in ([50], 1.8)
and works only in the constructible context.

The formula (2.3) there is simple: if S ∈ Schft, Ki ∈ Shv(S)c, I → Shv(S), i→ Ki

is given then if I is a finite diagram (defining a finite colimit) then K = colimi∈I Ki ∈
Shv(S)c, as Shv(S)c is closed under finite colimits by ([35], 5.3.4.15). So,

D(K) →̃ lim
i∈Iop

D(Ki),

where the limit can be understood in Shv(S)c or in Shv(S).

1.11.2. In ([26], Section 2.5.3) givenA ∈ CAlg(DGCatcont) Dennis defines Factalg(A)Ran

just as an object of DGCatcont. In fact, for any of our 4 sheaf categories, there is a sheaf
of categories Fact(A) defined as in ([31], 8.1.6) so that Factalg(A)Ran is the category of
its global sections over Ran.

Indeed, for any C ∈ ShvCat(Ran), Γ(Ran, C) →̃ lim
I∈fSet

Γ(XI , C) with respect to

restrictions. Here fSet is the category of finite nonempty sets and surjections. For each
I → J in fSet we have the adjont pair △!: Shv(X

J) ⇆ Shv(XI) :△! in Shv(XI)−mod,
here △: XJ → XI . Tensoring with Γ(XI , C) yields an adjoint pair

Γ(XI , C)⊗Shv(XI) Shv(X
J) ⇆ Γ(XI , C)

So, passing to left adjoint, we may rewrite Γ(Ran, C) →̃ colim
i∈(fSet)op

Γ(XI , C) taken in

DGCatcont (equivalently, in Shv(Ran)−mod).
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1.11.3. In 2.5.5 he means the following. Let A ∈ ComCoAlgnu(DGCatcont). We then
get a functor TwArr(A) : TwArrop → DGCatcont sending (I → J) to Shv(XJ)⊗A⊗I .
Given a map in TwArr from (I1 → J1) to (I2 → J2) given by the diagram

I1 → J1
↓ α ↑
I2 → J2,

the attached map

Shv(XJ2)⊗A⊗I2 → Shv(XJ1)⊗A⊗I1

in DGCatcont is the tensor product of △!: Shv(XJ2) → Shv(XJ1) with the coproduct
map A⊗I2 → A⊗I1 along α. Then he defines Factcoalg(A)Ran as lim

TwArrop
TwArr(A).

Does the result upgrades to a sheaf of categories on Ran?
In fact, each XJ is 1-affine for any sheaf theory, so given (I → J) ∈ TwArr,

Shv(XJ)⊗A⊗I ∈ ShvCat(XJ).

1.11.4. In ([26], 2.5.4(ii)) he means the following functor. Let A = ⊕Λneg−0Vect. For
each (J → K) ∈ TwArr we have a grading on A⊗J ⊗ Shv(XK) coming from the
Λneg − 0-grading on A via the product A⊗J → A. This grading is respected by the
transition functors in the diagram

Factalg(A)Ran →̃ colim
(J→I)∈TwArr

A⊗J ⊗ Shv(XK)

Since colimi∈I ⊕λAi
λ →̃ ⊕λ colimi∈I A

i
λ, it remains to calculate the colimit of the λ-

pieces. The latter becomes a colimit over the category TwArrλ of (J → K) ∈ TwArr
together with a map J → Λneg − 0, j 7→ λ(j) such that

∑
j λ(j) = λ. The map in the

category of indices is a map in TwArr such that for any j ∈ J2,

λ2(j) =
∑

j1∈J1,ϕ(j1)=j

λ1(j1).

Here ϕ : J1 → J2 is the corresponding surjection.

For each (J
q→ K,λ) of the category of indices, consider the map f : XK → Xλ,

(xk) 7→
∑
k∈K

xk
∑

j∈J,q(j)=k

λ(j).

The functors f∗ : Shv(X
K)→ Shv(Xλ) are compatible with the transition functors in

the diagram colim
TwArrλ

Shv(XK), so define a functor

colim
TwArrλ

Shv(XK)→ Shv(Xλ).

He claims the latter functor is an equivalence.
Example: take Λneg = Z+ and λ = 2. Then the colimit we are calculating is

colimB(S2) Shv(X
2), here S2 is the group of 2 elements acting on X2 by permuting the

elements.
More generally, let I = {1, . . . , n}, Sn be the symmetric group of automoprhisms of

I. We have an action of Sn on XI , hence a functor f : B(Sn) → PreStklft, ∗ 7→ XI .
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Let Y = colimB(Sn)X
I , note that Y is a pseudo-scheme in the sense of ([21], 7.4), and

the natural map π : Y → X(n) is pseudo-proper.
By definition, Shv(Y ) →̃ limB(Sn)op Shv(X

I) →̃ colimB(Sn) Shv(X
I), because we may

pass to the left adjoints in the formula for the limit. So, we are asking if π! : Shv(X(n))→
Shv(Y ) is an equivalence. It is an equivalence. First, colim

B(Sn)
XI → XI/Sn is an iso-

morphism, where we used the prestack quotient (cf. [43], 2.7.24). One has naturally

Shv(B(Sn)) →̃Rep(Sn), and each fibre of π : XI/Sn → X(n) is the classifying space of

a finite group. We get an adjoint pair π! : Shv(X
I/Sn) ⇆ Shv(X(n)) : π!. We may

check that the natural map π!ω → ω is an isomorphism by calculating the !-fibres. So,
π! is fully faithful by the projection formula.

However, π! is not an equivalence. Take a nontrivial representation V of Sn giving a
skscraper sheaf (ix)∗V at ix : B(Sn) ↪→ XI/Sn for some x ∈ X. Then π!(ix)∗V = 0.

1.11.5. For an affine algebraic group of finite type Γ over our field e of character-
istic zero, and D ∈ DGCatcont, oblv : Rep(Γ) ⊗ D → D is comonadic by (see [55],
Lemma 6.23.2). To see this quickly apply ([22], Lemma 5.5.2 and 5.5.4) to the cover
∗ → B(Γ) and the quasi-coherent sheaf of categories on B(Γ) given by Rep(Γ)-module
C := Rep(Γ)⊗D. Apply then ([36], 4.7.5.1) to the co-simplicial category Γ(Γ•,C), here
Γ• is the Cech nerve of ∗ → B(Γ). This gives Rep(Γ)⊗D →̃OΓ − comod(D).

Recall that for a map f : C1 → C2 in DGCatcont with Ci dualizable, D ∈ DGCatcont
the corresponding map C1 ⊗D → C2 ⊗D can be seen as

Fun(C∨1 , D)→ Fun(C∨2 , D)

given by the composition with f∨ : C∨2 → C∨1 . Now the dual of oblv : Rep(Γ) → Vect
is p∗ : Vect → Rep(Γ), for p : Spec e → B(Γ), so (p∗)(e) = OΓ. This explains why in
([55], 6.31.1) the equivalence

Fun(Rep(Γ), D) →̃OΓ − comod(D)

sends f to f(OΓ). The inverse functor sends A ∈ OΓ − comod(D) to the functor
V 7→ (V ⊗ A)Γ. By the functor of Γ-invariants OΓ − comod(D) → D he means the
functor q∗ ⊗ id : Rep(Γ)⊗D → D for q : B(Γ)→ Spec e.

Assume Γ reductive and not discrete, so the set of irreducible representations Λ+ is
infinite. Then the left adjoint to oblv : Rep(Γ) → Vect does not exists, though it is
defined in the compact part Vectc by V 7→ V ⊗ OΓ.

For ([55], 6.31.2): Given D ∈ Alg(DGCatcont), OΓ − comod(D) is equipped with a
structure of an object of Alg(DGCatcont) via OΓ − comod(D) →̃Rep(Γ)⊗D, the RHS
is naturally an object of Alg(DGCatcont). The claim is that we have canonically

Funrlaxe,cont(Rep(Γ), D) →̃Alg(OΓ − comod(D))

This is just the claim that

Alg(Fune,cont(Rep(Γ, D))) →̃Alg(OΓ − comod(D))

coming from the fact that the monoidal categories theirself are isomorphic, see ([43],
9.2.68).
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1.11.6. Chiral Hecke algebra. Let us study the notion of chiral Hecke algebra from ([30],
7.5), which is needed for the definition of the factorizable Satake functor. It is used in
([55], Section 6.33).

For I ∈ fSet let GrG,XI be the corresponding version of the affine Grassmanian. As

in ([53], Section 5), let GXI be the group scheme over XI classifying (xi) ∈ XI and a
section of F0

G over DJ, where J is the corresponding point of Ran. We have the category

Perv(GrG,XI )GXI of equivariant perverse sheaves on GrG,XI . Recall the diagram from
([53], Section 5, diagram (5.2))

GrG,X ×GrG,X
p← ˜GrG,X ×GrG,X

q→ GrG,X ×̃GrG,X
m→ GrG,X2

π→ X2

Given Bi ∈ Perv(GrG,X)
GX , one has B1 ∗X B2 ∈ Shv(GrG,X2)GX2 defined by formula

(5.6) from [53]. Let also τ0 : Perv(GrG)
G(O) → Perv(GrG,X)

GX be the functor defined
as in ([53], Remark 5.1). Let j : U ↪→ X2 be the complement to the diagonal. The
pullback of m under j : U ↪→ X2 canonically becomes the identity map

id : (GrG,X ×GrG,X) |U→ (GrG,X ×GrG,X) |U
in view of the factorization structure of GrG,XI . By abuse of notations, we also write

(GrG,X ×GrG,X) |U
j
↪→ GrG,X ×̃GrG,X

i← (GrG,X ×̃GrG,X)×X2 X

for the corresponding closed immersion and its complement.
For V ∈ Rep(Ǧ)♡ write AV ∈ Perv(GrG)

G(O) for the usual Satake functor at one
point of our curve. Recall the convolution diagram

GrG×GrG
p← G(F )×GrG

q→ G(F )×G(O) GrG
m→ GrG

at one point of the curve. For V,W ∈ Rep(Ǧ)♡ write AV ⊠̃AW for the corresponding

perverse sheaf on G(F )×G(O) GrG equipped with

q∗(AV ⊠̃AW ) →̃ p∗(AV ⊠AW ),

so that AV ∗ AW = m∗(AV ⊠̃AW ) is the usual convolution. For V ∈ Rep(Ǧ)♡ set
TV = τ0(AV ). Write also by abuse of notations

τ0 : Perv(G(F )×G(O) GrG)
G(O) → Perv((GrG,X ×̃GrG,X)×X2 X)GX

for the corrresponding functor. Given V,W ∈ Rep(Ǧ)♡ we define the perverse sheaf

TV ⊠̃TW on GrG,X ×̃GrG,X by the property

q∗(TV ⊠̃TW ) →̃ p∗(TV ⊠ TW )

So, TV ∗X TW = m∗(TV ⊠̃TW ) by definition.

Given V,W ∈ Rep(Ǧ)♡ one has canonically i!(TV ⊠̃TW ) →̃ τ0(AV ⊠̃AW )[−1]. Now
the fibre sequence

i∗i
!(TV ⊠̃TW → TV ⊠̃TW → j∗j

∗(TV ⊠̃TW )

becomes an exact sequence of perverse sheaves on GrG,X ×̃GrG,X

0→ TV ⊠̃TW → j∗j
∗(TV ⊠̃TW )→ τ0(AV ⊠̃AW )→ 0
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Applying m∗ it yields an exact sequence of perverse sheaves on GrG,X2

(30) 0→ TV ∗X TW → j̄∗(TV ⊠ TW )→ ī∗TV⊗W → 0

Here we denoted by

(GrG,X ×GrG,X) |U
j̄
↪→ GrG,X2

ī← GrG,X

the corresponding closed immersion and its complement. Recall that TV ∗X TW is
perverse, the intermediate extension under j̄ by [53].

For I ∈ fSet set λI = (⊠
i∈I
e[1])[− | I |], so λI →̃ e, but the group AutI acts on it by

the sign character.
Let OǦ be the algebra of functions on Ǧ viewed as an object of Rep(Ǧ) via the

action of Ǧ on itself by left translations. Let RX = TOǦ
. Since OǦ ∈ CAlg(Rep(Ǧ)),

the product on OǦ gives a map TOǦ⊗OǦ
→ TOǦ

. Composing with the above morphism

j̄∗(RX ⊠ RX)→ ī∗TOǦ⊗OǦ

we get the map

(31) j̄∗(RX ⊠ RX)→ ī∗RX

on GrG,X2 denoted by (14) in ([30], Section 7.5). In fact, the construction of (31)

depended on the order on the set of two elements, because the prestack GrG,X ×̃GrG,X
is not symmetric. What we get canonically is rather the map

j̄∗(R
⊠I
X )⊗ λI → ī∗RX

for a set I of two elements.

Remark 1.11.7. If more generally V ∈ CAlg(Rep(Ǧ)), TV is equipped with a similar
chiral multiplication.

Gaitsgory claims essentially that RX gets a structure of a ”chiral algebra” on GrG,X ,
which is a synonym of a factorization algebra in Shv(GrG,Ran), and (31) is its chiral
multiplication. The chiral pairing (31) satisfies the Jacobi identity, we explain this in
Section 1.11.8 below.

Set SphG,I = Shv(GrG,XI )GXI for I ∈ fSet. According to the construction from
([6], 3.4.11), one forms the Chevalley-Cousin complex C(RX) of RX , it is a collections
C(RX)XI ∈ SphG,I for each I ∈ fSet together with isomorphisms

△(π)! C(RX)XJ →̃C(RX)XI

for each π : J → I in fSet. Here △(π): XI → XJ is the corresponding diagonal.
Moreover, C(RX)XI is placed in one perverse degree − | I | only, and the corresponding

perverse sheaf lies in Perv(GrG,XI )GXI . Let U (I) ↪→ XI be the complement to all the
diagonals. Recall the factorization isomorphism

GrG,XI ×XIU (I) →̃ (GrG,X)
I ×XI U (I)

There is a canonical injective GXI -equivariant map of perverse sheaves

H−|I|(C(RX)XI ) ↪→ j̄
(I)
∗ (⊠

i∈I
RX)⊗ λI ,
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where
j̄(I) : (GrG,X)

I ×XI U (I) ↪→ GrG,XI

is the open immersion. We used that j̄(I) is an affine open embedding.
Besides, C(RX) is equipped with the factorization isomorphisms: for any π : J → I

in fSet we have

(32) (⊠
i∈I
C(RX)XJi ) |U [J/I] →̃ j[J/I]∗C(RX)XJ

as in ([6], 3.4.11). Here j[J/I] : U [J/I] ↪→ XJ is the open subset {(xj) ∈ XJ | if π(j) ̸=
π(j′) then xj ̸= xj′}. We denoted by the same symbol the open immersion

j[J/I] :
∏
i∈I

GrG,XJi ×XJU [J/I] ↪→ GrG,XJ

1.11.8. Jacobi identity. For I = {1, . . . , n} write (GrG,X)
×̃I for the corresponding ver-

sion of the convolution diagram. The linear order on I is used for the definition of the

latter prestack. We still denote by m : (GrG,X)
×̃I → GrG,XI the convolution map. For

Vi ∈ Rep(Ǧ)♡ we get the perverse sheaf TV1⊠̃ . . . ⊠̃TVn on (GrG,X)
×̃I . For the diagram

(GrG,X)
×̃I ×XI X

i
↪→ (GrG,X)

×̃I j← (GrIG,X |(XI−X)

we get

i!(TV1⊠̃ . . . ⊠̃TVn) →̃ τ0(AV1⊠̃ . . . ⊠̃AVn)[1− n]
Applying m∗ to the fibre sequence

i∗i
!(TV1⊠̃ . . . ⊠̃TVn)→ (TV1⊠̃ . . . ⊠̃TVn)→ j∗(⊠

i∈I
TVi)

we get the fibre sequence

ī∗TV1⊗...⊗Vn [1− n]→ TV1 ∗X . . . ∗X TVn → j̄∗(⊠
i∈I

TVi)

for the diagram

(GrIG,X) |XI−X
j̄
↪→ GrG,XI

ī← GrG,X

This is precisely the property sufficient to get the exactness of the Cousin complex
on GrG,XI for the stratification coming from the diagonal stratification of XI .

The diagonal stratification of XI is as follows. Let for d ≥ 0,

Ȳd = ∪
I

π→T, |T |=n−d
△(π) (XT )

Here △(π): XT → XI . Let Yd = Ȳd− Ȳd+1. So, Yd is smooth of dimension n− d. Recall
that the inclusion Yd ↪→ XI is affine.

Let Zd = Yd ×XI GrG,XI . Let jd : Zd ↪→ GrG,XI be the inclusion. We apply ([51],
1.3.3) to the perverse sheaf TV1 ∗X . . . ∗X TVn on GrG,XI and the stratification {Zd} of
GrG,XI . The assumption of ([51], 1.3.3) says that j!d(TV1 ∗X . . . ∗X TVn) is placed in
perverse degree −d for all d ≥ 0. It is satisfied, so we get the exact sequence of perverse
sheaves on GrG,XI

(33) TV1 ∗X . . . ∗X TVn → F0 → F1 → F2 . . .
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with

Fd = (jd)∗j
!
d(TV1 ∗X . . . ∗X TVn)[d]

Remark 1.11.9. When G = Spec k, this is sufficient, as the Jacobi identity comes from
the fact that the square of the differential of the latter complex on GrG,X3 vanished for

V1 = V2 = V2 = e the trivial representation of Ǧ.

Let us write down the exact sequence (33) explicitly for n = 3. Write △(12,3),△(23,1)

,△(13,2): X2 → X3 for the closed embedding for the corresponding equivalence relations.
For example, (12, 3) is the equivalence relation on {1, 2, 3} identifying 1 and 2, and so
on. Let j2 : X2 −X ↪→ X2 be the embedding.

Now (33) for n = 3 becomes

TV1 ∗X TV2 ∗X TV3 → (j0)∗j
∗
0(TV1 ∗X TV2 ∗X TV3)→

△(12,3)
∗ j∗j

∗(TV1⊗V2 ∗X TV3)+ △(13,2)
∗ j∗j

∗(TV1⊗V3 ∗X TV2)+ △(23,1)
∗ j∗j

∗(TV2⊗V3 ∗X TV1)

→△∗ (TV1⊗V2⊗V3),

where we denoted temporarily j : X2 − X ↪→ X2, as well as its base changes, and
similarly for the main diagonal △: X ↪→ X3. The second term of this complex is
actually

(j0)∗(TV1 ⊠ TV2 ⊠ TV3) |U(3)

using the factorization structure of GrG,X3 .

Assume in addition V ∈ CAlg(Rep(Ǧ)). Equip TV with the chiral multiplication of
Remark 1.11.7.

Then TV becomes a Lie algebra with this multiplication, that is, satisfies the Jacobi
identity. Namely, the product in the algebra V commutes with chiral pairings. More
precisely, the diagram commutes

(34)
△(12,3)
∗ j∗j

∗(TV⊗V ∗X TV ) → △∗ (TV ⊗3)
↓ ↓

△(12,3)
∗ j∗j

∗(TV ∗X TV ) → △∗ (TV ),

where the vertical arrows come from the multiplication in V , and similarly for other
equivalence relations on {1, 2, 3}. Then we could get the Jacobi identity from the above
exact sequence by pushing out and getting the square of the differential equal to zero.
So, TV becomes a chiral algebra on GrG,X .

The commutativity of (34) follows from the more general claim: given V,W, V ′ ∈
Rep(Ǧ) and a map V → V ′, the diagram on GrG,X2 commutes

j̄∗j̄
∗(TV ∗X TW ) → ī∗TV⊗W
↓ ↓

j̄∗j̄
∗(TV ′ ∗X TW ) → ī∗TV ′⊗W ,

where the horizontal maps are as in (30) and the vertical arrows come from the func-
toriality.
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1.11.10. In fact, C(RX)XI lifts to an object of Rep(Ǧ)XI ⊗Shv(XI)SphG,I . To see this,

we use the definition of Rep(Ǧ)XI as

lim
(I

p→J→K)∈Tw(I)
Shv(XI

p,d)⊗ Rep(Ǧ)⊗K

So, Dennis’ definition as colimit seems insufficient for this, as anyway one needs to
rewrite it as the above limit.

The reason is that OǦ ∈ Rep(Ǧ × Ǧ), and moreover OǦ ∈ CAlg(Rep(Ǧ × Ǧ).

Namely, for the diagonal map q : B(Ǧ) → B(Ǧ × Ǧ) the functor q∗ : QCoh(B(Ǧ)) →
QCoh(B(Ǧ × Ǧ)) is right-lax symmetric monoidal, so sends the commutative algebra
e to the commutative algebra OǦ.

For this reason for I ∈ fSet the shifted perverse sheaf C(RX)XI is equipped with
an action of Ǧ, so it is an object of Rep(Ǧ) ⊗ SphG,I . Now for π : J → U the action

of ǦI on (32) comes as the product of actions of Ǧ on each factor C(RX)XJi for i ∈ I.
Thus, (32) lies in Rep(Ǧ)⊗I ⊗ SphG,J .

To get the above claim we need a version of Sam’s ([55], Lemma 6.18.1):

Lemma 1.11.11. Let C ∈ CAlgnu(DGCatcont) be dualizable such that m : C⊗2 → C
admits a continuous right adjoint. Then for any D ∈ Shv(XI)−mod the natural map

CXI ⊗Shv(XI) D → lim
(I

p→J→K)∈Tw(I)
(C⊗K ⊗ Shv(XI

p,d)⊗D)

is an equivalence. This is proved in ([52], 4.1.12). □

1.11.12. Let Γ be an affine algebraic group of finite type, C = Rep(Γ). We claim that
oblvXI : CXI → Shv(XI) has a continuous Shv(XI)-linear right adjoint oblvRXI .

By ([52], 2.5.10), CXI is ULA over Shv(X). Recall that by ([52], Lemma 2.2.2),

Loc : C⊗I ⊗ Shv(XI)→ CXI

generates CXI under colimits, it also has a continuous Shv(XI)-linear right adjoint by
([52], 2.5.2). If c ∈ C⊗I is compact then Loc(c ⊗ ωXI ) is ULA over Shv(XI). So, it
suffices to show that oblvXI Loc(c ⊗ ωXI ) is ULA over Shv(XI). The latter object
identifies with Loc(oblv(c)⊗ ωXI ) for the functor id = Loc : Shv(XI)→ Shv(XI) for
the category Rep(Γ) replaced by Vect, here oblv : C⊗I → Vect is the oblivion functor.
We are done.

Now ([55], 6.23.2) holds also in the constructible context. Namely, for any D ∈
Shv(SI)−mod

oblvXI : Rep(Γ)XI ⊗Shv(XI) D → D

is comonadic.
Indeed, use the definition of C̄XI from [52], as CXI →̃ C̄XI . By ([52], 4.1.12), we have

Rep(Γ)XI ⊗Shv(XI) D →̃ lim
(I

p→J→K)∈Tw(I)op
C⊗K ⊗ Shv(XI

p,d)⊗Shv(XI) D

By ([22], Lemma 5.5.4), each functor

C⊗K ⊗ Shv(XI
p,d)⊗Shv(XI) D → Shv(XI

p,d)⊗Shv(XI) D
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is comonadic, so is conservative and commutes with oblv-split totalizations. We used
that C⊗K →̃Rep(ΓK). By ([43], 2.5.3) we see that oblvXI is conservative. It suffices
now to show that if K is a simplicial object of (Rep(Γ)XI ⊗Shv(XI)D)op which becomes

split in Dop then K admits a colimit, which is preserved by (oblvXI )op. This follows
now from ([43], Lemma 2.2.68 1)).

In particular, oblvXI : C̄XI → Shv(XI) is comonadic.

Lemma 1.11.13. For C = Rep(Γ) and each I there is a natural t-structure on CXI

such that oblvXI : CXI → Shv(XI) is t-exact. It is accessible, compatible with filtered
colimits, left and right complete.

Proof. For each Σ = (I
p→ J → K) the forgetful functor

C⊗K ⊗ Shv(XI
p,d)→ Shv(XI

p,d)

is comonadic with the comonad given by the coalgebra OΓK ∈ coAlg(Vect). Since
OΓK is placed in degree zero, the functor · ⊗ OΓK : Vect → Vect is t-exact. We equip
C⊗K ⊗ Shv(XI

p,d) with a t-structure defined in ([43], 9.3.23). So, both functors in the
adjoint pair

oblv : C⊗K ⊗ Shv(XI
p,d) ⇆ Shv(XI

p,d) : coind

are t-exact. By definition, (C⊗K ⊗Shv(XI
p,d))

≤0 is the preimage of Shv(XI
p,d)
≤0 under

oblv, so the t-structure on C⊗K⊗Shv(XI
p,d) is accessible. Besides, (C

⊗K⊗Shv(XI
p,d))

≥0

is the preimage of Shv(XI
p,d)
≥0 under oblv. So, the t-structure on C⊗K ⊗ Shv(XI

p,d) is
compatible with filtered colimits.

By ([20], I.3, 1.5.8), there is a unique t-structure on

lim
(I

p→J→K)∈Tw(I)op
C⊗K ⊗ Shv(XI

p,d)

such that each evaluation functor to C⊗K ⊗ Shv(XI
p,d) is t-exact, because the tran-

sition functors in our limit diagram are t-exact. Moreover, the t-structure on CXI is
compatible with filtered colimits and accessible, as

lim
(I

p→J→K)∈Tw(I)op
C⊗K ⊗ Shv(XI

p,d)
≤0

is presentable.
It remains to show that the t-structure on CXI is left and right complete. For D-

modules this is ([55], 6.24.1). Assume we are in the constructible context. By ([20],

I.3, 1.5.8), it suffices to show that for each (I
p→ J → K) ∈ Tw(I) the t-structure on

C⊗K ⊗ Shv(XI
p,d) is both left and right complete.

The t-structure on Shv(XI
p,d) is right complete by ([46], 0.0.10). So, the t-structure

on C⊗K ⊗ Shv(XI
p,d) is right complete by ([43], 9.3.23). The t-structure on Shv(XI

p,d)

is left complete by ([2], Theorem 1.1.6).
To see that the t-structure on C⊗K ⊗ Shv(XI

p,d) is left complete, apply ([2], E.9.6).

Namely, Shv(XI
p,d) →̃ Ind(Db(Perv(XI

p,d))) by ([2], E.1.2). Now the t-structure on

QCoh(B(ΓK)) is left complete by ([20], I.3, 1.5.7), as B(ΓK) is an Artin stack. Now
by ([2], E.9.6), the t-structure on C⊗K ⊗ Shv(XI

p,d) is left complete.
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In turn, by ([20], I.3, 1.5.8) applied to the diagram

lim
(I

p→J→K)∈Tw(I)op
C⊗K ⊗ Shv(XI

p,d)⊗Shv(XI) D

we see that the t-structure on C̄XI is left complete. □

1.11.14. For 2.6.2. The sense of V λ = colim
(I→J→K)∈TwArrI/

V
λ
I→J→K in CXI with C =

Rep(Ǧ)? I would say a ”spread representation” of the highest weight λ?

The objects V
λ
I→J→K factorize naturally: if ϕ : I → I ′ is a surjection of finite

nonempty sets, XK ×XI XI
ϕ,d is empty unless I ′ ∈ Q(K), and in the latter case we get

(35) (V
λ
I→J→K) |XI

ϕ,d
→̃ ⊠

i∈I′
V
λi

Ii→Ji→Ki
|XI

ϕ,d
,

where λi : Ii → Λ+ is the restriction of λ. Here Ki, Ji are fibres over i ∈ I ′.
Simliarly, V λ factorize naturally: if ϕ : I → I ′ is a surjection of finite nonempty sets,

XK ×XI XI
ϕ,d is empty unless I ′ ∈ Q(K), and in the latter case we get

V λ |XI
ϕ,d
→̃ ( ⊠

i∈I′
V λi) |XI

ϕ,d

Proof: Write Tw(I) = TwArrI/. Recall the full subcategory Tw(I)ϕ ⊂ Tw(I) from
([52], 2.1.15). The latter inclusion is zero-cofinal, so the desired equivalence follows
from (35).

1.11.15. For ([26], 2.6.4). The section s
−,λ
I : XI → GrT,I sends (xi) to F

0
T (
∑

i∈I λ(i)xi)
with the natural trivialization outside ∪ixi.

1.11.16. For ([26], 5.2.3). If A,A′ ∈ CAlg(DGCatcont) and A → A′ is a right-lax
symmetric monoidal functor then there is a right-lax symmetric monoidal functor
AXI → A′

XI , Sam says so. Here is the construction under the assumption that A
is dualizable, and both the product map m : A⊗A→ A and u : Vect→ A admit con-
tinuous right adjoints. Apply ([52], C.0.3). Our right-lax symmetric monoidal functor
is a unital commutative algebra A in Fune,cont(A,A

′) →̃A∨ ⊗A′.
Recall that we first view A as a cocommutative coalgebra via mR : A → A ⊗ A,

uR : A→ Vect, so that its dual becomes an object of CAlg(DGCatcont).
Further, if I ∈ fSets then (A∨ ⊗A′)XI →̃ (A∨)XI ⊗Shv(XI) A

′
XI by ([52], 2.2.14). In

turn, by ([52], formula (35) after Lemma 2.6.7), we have

FunShv(XI)(AXI , A′XI ) →̃ (A∨)XI ⊗Shv(XI) A
′
XI →̃ (Fune,cont(A,A

′))XI

Then AXI is the desired functor AXI → A′
XI . Since AXI ∈ CAlg((Fune,cont(A,A′))XI ),

the functor (AXI ,⊗!)→ (A′
XI ,⊗!) is right-lax symmetric monoidal.

1.11.17. For ([26], 5.3.2). It is essential there that A is symmetric.
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1.11.18. For ([26], 5.3.5). Let A,A′ ∈ CAlg(DGCatcont), let F : A → A′ be a right-
lax symmetric monoidal functor. Let C be a (A′, A)-bimodule category, that is, C ∈
A′⊗A−mod. Write the A′ acton on the left, the A-action on the right. In ([26], 5.3.1)
he defines the ∞-category ZF (C) of right-lax central objects of C with respect to F .

Let m : A ⊗ A → A be the product, assume A rigid. Let mR : A → A ⊗ A be the
right adjoint to m. So, R := (F ⊠ id)mR(1) ∈ CAlg(A′ ⊗A).

Let us equip R with a structure of a right-lax central object of C with respect to F .
Here we view A′ ⊗A ∈ A′ ⊗A−mod naturally. For a ∈ A recall that

(a⊠ 1)⊗mR(1) →̃mR(a) →̃ (1⊠ a)⊗mR(1)

canonically. Define the map

(36) ϕ(a) : (F (a)⊠ 1)⊗ R→ R⊗ (1⊠ a)

in A′ ⊗A as follows. Note that (F ⊠ id)mR(a) →̃ ((F ⊠ id)mR(1))⊗ (1⊠ a). Now ϕ(a)
is the compostion

(F (a)⊠ 1)⊗ R = (F (a)⊠ 1)⊗ (F ⊠ id)mR(1)→
(F ⊠ id)((a⊠ 1)⊗mR(1)) = (F ⊠ id)mR(a) = R⊗ (1⊠ a),

where the arrow is given by the right-lax structure on F . The lax structure with
respecct to F comes now from the right-lax structure on the functor F itself.

For a, b ∈ A let Hom(a, b) ∈ A denote the inner hom, it exists because A is pre-
sentable. For a ∈ A the canonical map a ⊗ Hom(a, 1) → 1 yields by adjointness
a ⊠ Hom(a, 1) → mR(1) in A ⊗ A, hence further a map F (a) ⊠ Hom(a, 1) → RFA in
A′ ⊗ A. So, any c ∈ RFA − mod(C) we get a morphism (F (a) ⊠ Hom(a, 1)) ⊗ c → c
coming from the action map.

In particular, if a ∈ Adualizable then Hom(a, 1) →̃ a∨, and the latter map yields a
morphism F (a) ⊗ c → c ⊗ a by duality properties. Then I think for such dualizable
objects one may check hopefully the commutativity of the square defining the right-lax
central structure on c with respect to F .

Indeed, for ai ∈ Adualizable the diagram commutes

(F (a1)⊠ a∨1 )⊗ (F (a2)⊠ a∨2 ) → F (a1 ⊗ a2)⊠ (a1 ⊗ a2)∨
↓ ↓

RFA ⊗RFA
m→ RFA,

where the top horizontal arrow comes from the right-lax structure on F .
Now for an object c ∈ C we may define a ”version” of the notion of the right-lax

central object with respect to F requiring:
1) that for a ∈ Adualizable we are given the map ψ(a1) : (F (a1) ⊠ a∨1 ) ⊗ c → c such

that the corresponding map F (a1)⊗ c→ c⊗ a1 is functorial in a ∈ Adualizable;
2) For ai ∈ Adualizable we are given the commutativity datum for the diagram

(F (a1)⊠ a∨1 )⊗ (F (a2)⊠ a∨2 )⊗ c
ψ(a2)→ (F (a1)⊠ a∨1 )⊗ c

↓ ↓ ψ(a1)
(F (a1 ⊗ a2)⊠ (a1 ⊗ a2)∨)⊗ c

ψ(a1⊗a2)→ c,

where the left vertical arrow comes from the right-lax structure on F ;
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3) a coherent system of higher compatibilities.
If A is compactly generated then Adializable generate A under filtered colimits. In

this case given a ∈ A, assume c is a right-lax central in the ”version” sense. Write
a →̃ colimi∈I ai with ai ∈ Adualizable = Ac. Then the above maps F (ai)⊗ c→ c⊗ ai by
passing to the colimit over i ∈ I yield a map F (a)⊗c→ c⊗a, and the commutativity of
the corresponding square for arbitrary ai ∈ A is also obtained by passing to the limit.

So, in the case of A rigid compactly generated we see that any c ∈ RFA −mod(C)
gets a right-lax central structure with respect to F .

Let’s now drop the assumption that A is compactly generated. Clearly, for c ∈ C
the free R-module R ⊗ c is equipped with the right-lax central structure with respect
to F , it comes from the maps (36).

Recall that any m ∈ R−mod(C) writes as R⊗Rm →̃ colim
[n]∈∆op

R⊗n+1⊗m, the bar reso-

lution. For each [n] ∈∆op, viewing R⊗n+1⊗m as a free R-module via the multiplication
on the most left factor, the maps (36) yield morphisms

ϕn : (F (a)⊠ 1)⊗ R⊗n+1 ⊗m→ (R⊗n+1 ⊗m)⊗ (1⊠ a)

The claim is then then for any map α : [r]→ [n] in ∆ the diagram commutes

(F (a)⊠ 1)⊗ R⊗n+1 ⊗m ϕn→ (R⊗n+1 ⊗m)⊗ (1⊠ a)
↓ id⊗ᾱ ↓ ᾱ⊗id

(F (a)⊠ 1)⊗ R⊗r+1 ⊗m ϕr→ (R⊗r+1 ⊗m)⊗ (1⊠ a)

Here ᾱ is the corresponding morphism in the bar resolution. (It suffices to have this
for α injective for our purposes).

So, passing to the colimit over [n] ∈∆op the maps ϕn yield the desired map

ϕ(a,m) : (F (a)⊠ 1)⊗m→ m⊗ (1⊠ a)

The only nontrivial verification here seems for the map α : [0] → [1] corresponding
to R⊗R⊗m→ R⊗m given by the product on the algebra m tensored by the identity
on m.

Question: conversely, how the right-lax central structure on c gives the R-module
structure?

Remark 1.11.19. If in the above A = Vect then F : Vect → A′ defines an algebra
object F (1). In this case R = F (1) ∈ A′, and it is clear that ZF (C) →̃R−mod(C).
1.11.20. Let C ∈ CAlg(S(X)−mod). The for any surjection I → J of finite nonempty
sets, for △: XJ → XI the functor △!: (CXI ,⊗!) → (CXJ ,⊗!) is symmetric monoidal.
Besides, the dual pair

△!: CXJ ⇆ CXI :△!

is a dual pair in CXI − mod. In other words, for K ∈ CXJ , L ∈ CXI one has the
projection formula: (△! K)⊗! L →̃ △! (K⊗! △! L) canonically.

Indeed, first given a map A
v→ B in CAlg(Shv(X)−mod), the diagram commutes

AXI
v→ BXI

↑ ↑
AXJ

v→ BXJ
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So, the diagram commutes

CXI ⊗Shv(XI) CXI = (C ⊗ C)XI
⊗!

→ CXI

↑ ↑ ↑
CXJ ⊗Shv(XI) CXI = (C ⊗ C)XJ

⊗!

→ CXJ

Now given MI ∈ CXI −mod applying ⊗A
XI
MI , one get an adjoint pair

△!: CXJ ⊗C
XI
MI ⇆MI :△

!

in CXI −mod. Suppose we have a compatible system MI ∈ CXI −mod for I ∈ fSets.
That is, for I → J as above, we are given equivalences MJ →̃CXJ ⊗C

XI
MI together

with higher compatibilities.
We have (Fact(C),⊗!) →̃ lim

I∈fSets
(CXI ,⊗!) in CAlg(Shv(Ran)−mod). Then lim

I∈fSets
MI

calculated in (Fact(C),⊗!)−mod is the same as in Shv(Ran)−mod or in DGCatcont.
Moreover, we see that we may pass to the left adjoints and get lim

I∈fSets
MI →̃ colim

I∈fSetsop
MI ,

where the colimit is calculated in DGCatcont or equivalently, in Shv(Ran) − mod or
equivalently in (Fact(C),⊗!)−mod.

Let
LocC : (Fact(C),⊗!)− mod → lim

I∈fSets
CXI −mod

be the functor sendingM to the compatible family {MI} withMI =M⊗(Fact(C),⊗!)CXI

for I ∈ fSets. The functor LocC has a right adjoint

{MXI} 7→ Γ(Ran,M) = lim
I∈fSets

MXI

calculated in (Fact(C),⊗!)− mod or equiivalently in Shv(Ran)−mod.

Lemma 1.11.21. The functor LocC (hence also its right adjoint) is an equivalence.

Proof. This is done as in ([52], Lemma 2.2.8). Namely, let E ∈ Fact(C) − mod and
EI = E ⊗Fact(C) CXI for I ∈ fSets. Then E →̃ lim

I∈fSets
EI →̃ colim

I∈fSetsop
EI calculated in

(Fact(C),⊗!)−mod, because colim
I∈fSetsop

CI →̃C. So, LocC is fully faithful.

We now check that its right adjoint is fully faithful. For this it suffices to prove the
following. Let {EI} in the RHS then the canonical map

Γ(Ran, E)⊗(Fact(C),⊗!) CXI → EXI

in CXI −mod is an equivalence. This follows from ([52], Lemma 2.2.8), because CXI −
mod→ Shv(XI)−mod is conservative. □

1.11.22. For ([26], 5.3.9) a precise definition is needed. I think he defines ZF (CRan)
as Fact(RFA)−mod(CRan). Here we use that CRan is a Fact(A′ ⊗A)−mod. Then it is
better to say so. We use here ([52], Lemma 2.2.22).

We have the functor CAlg(A′ ⊗ A) → CAlg((A′ ⊗ A)I ,⊗!),B 7→ BXI . The natural
right-lax symmetric monoidal transformation of functors F → F ′ from A to A′ yields
a map RFA → RF

′
A of commutative algebras in A′ ⊗A, hence a map (RFA)I → (RF

′
A )I of
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commutative algebras in ((A′ ⊗ A)I ,⊗!), and similarly a map Fact(RFA) → Fact(RF
′

A )

of commutative algebras in (Fact(A′ ⊗A),⊗!).
So, we have the adjoint pair

Fact(RFA)−mod(CRan) ⇆ Fact(RF
′

A )−mod(CRan),

where the right adjoint is the restriction of scalars under Fact(RFA) → Fact(RF
′

A ), and

the left adjoint is the base change L 7→ Fact(RF
′

A )⊗Fact(RF
A) L.

1.11.23. In 2.2.1-2.2.2 there is a misprint, it should be as follows: (iλ)!ωSλ
Ran

[−⟨λ, ρ̌⟩]
lies in (SI≤0Ran)

≤0, and (iλ)∗ωSλ
Ran

[−⟨λ, ρ̌⟩] lies in (SI≤0Ran)
≥0.

([26], Prop. 2.2.2) allows to define the semi-infinite IC-sheaf of each T (O)N(F )-orbit
attached to λ ∈ Λneg on GrG,Ran. Do we get a formula as a colimit????

1.12. Spreading right lax symmetric monoidal functors.

1.12.1. The following construction is maybe useful in general. Let’s use the notations
of [52]. Let Λ ∈ CAlg(Sets). We think of it as the ”category of highest weights”. For
λi ∈ Λ the operation in Λ is denoted λ1 + λ2, the neutral object is denoted 0 ∈ Λ.

Let (C(X),⊗!) ∈ CAlg(Shv(X)−mod). Assume given a right-lax symmetric monoidal
functor

Irr : Λ→ (C(X),⊗!), λ 7→ V λ

In particular, V 0 →̃ 1C . We write IrrC , V
λ
C if we need to express the dependence on

C(X). We think of V λ as an analog of the irreducible representation of h.w. λ. For
λi ∈ Λ we have by definition a canonical map in C(X)

u : V λ1 ⊗! V λ2 → V λ1+λ2 .

Let now I ∈ fSets. So, we have CXI ∈ Shv(XI) −mod. Let λ : I → Λ be a map.
We define the object V λ ∈ CXI as follows. We think of it as a ”spread representation
of h.w. λ”.

We write C⊗J(X) for the tensor power of C(X) in Shv(X) −mod. Given objects
Vj ∈ C(X), our notation ⊗

j∈J
Vj means the corresponding object of C⊗J(X) not to be

confused with

⊗!

j∈J
Vj ∈ C(X)

First, define a functor Fλ,Irr : Tw(I)→ CXI , it sends (I → J
ϕ→ K) to the image of

V ⊗ϕ := ⊠
k∈K

( ⊗
j∈Jk

V λj )

under ⊠
k∈K

(C⊗Jk(X)) → CXI , where λj =
∑
i∈Ij

λ(i) for j ∈ J . Given a map from

(I → J1 → K1) to (I → J2 → K2) in Tw(I), we get the corresponding transition

morphism in ⊠
k∈K2

C⊗(J2)k(X) and hence in CXI

Fλ,Irr(I → J1 → K1)→ Fλ,Irr(I → J2 → K2)
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as follows. First, for the diagram (defining the transition functor for FI,C)

⊠
k∈K1

C⊗(J1)k(X)
m→ ⊠

k∈K1

C⊗(J2)k(X)→ ⊠
k∈K2

C⊗(J2)k(X)

we get a natural map

(37) m( ⊠
k∈K1

( ⊗
j∈(J1)k

V λj )) →̃ ⊠
k∈K1

( ⊗
j∈(J2)k

( ⊗!

j′∈(J1)j
V λj′ ))→ ⊠

k∈K1

( ⊗
j∈(J2)k

V λj )

in ⊠
k∈K1

C⊗(J2)k(X). Here the second arrow in (37) comes from the right-lax structure

on Irr giving the maps

⊗!

j′∈(J1)j
V λj′ → V λ

j

for j ∈ J2.
Further, for △: XK1 → XK2 we have

△! ( ⊠
k∈K2

( ⊗
j∈(J2)k

V λj )) →̃ ⊠
k∈K1

( ⊗
j∈(J2)k

V λj )

So, we compose the previous map with

△! ⊠
k∈K1

( ⊗
j∈(J2)k

V λj ) →̃ △!△
! ( ⊠
k∈K2

( ⊗
j∈(J2)k

V λj ))→ ⊠
k∈K2

( ⊗
j∈(J2)k

V λj )

Everywhere for j ∈ J2,
λj =

∑
j′∈(J1)j′

λj′

This concludes the definition of Fλ,Irr. We write Fλ,IrrC if we need to express the
dependence on C(X).

Finally, we set

V λ = colim
Tw(I)

Fλ,Irr

in CXI . That is,

V λ →̃ colim
(I→J→K)∈Tw(I)

⊠
k∈K

( ⊗
j∈Jk

V λj ).

The construction explains the meaning of the objects V λ used by Dennis in [26].

Lemma 1.12.2. Let I ∈ fSets. The object V λ ∈ CXI factorizes naturally. Namely, if
ϕ : I → I ′ is a map in fSets we get canonically

V λ |XI
ϕ,d
→̃ ( ⊠

i∈I′
V λi) |XI

ϕ,d
.

Here for i ∈ I ′, λi : Ii → Λ is the restriction of λ.

Proof. Recall the full subcategory Tw(I)ϕ ⊂ Tw(I) from ([52], Sect. 2.1.15). The

latter inclusion is zero-cofinal. Now for (I → J → K) ∈ Tw(I), XK ×XI XI
ϕ,d is empty

unless I ′ ∈ Q(K), so V λ |XI
ϕ,d

rewrites as

colim
(I→J→K)∈Tw(I)ϕ

⊠
i′∈I′

( ⊠
k∈Ki′

⊗
j∈(Ji′ )k

V λj ) |XI
ϕ,d
,

which identifies with the RHS. □
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1.12.3. For I ∈ fSets view Map(I,Λ) as an object of CAlg(Sets) with the pointwise
operation. Consider the functor

fSets→ CAlg(Sets), I 7→ Map(I,Λ).

It sends f : I → I ′ in fSets to the direct image map f∗ : Map(I,Λ) → Map(I ′,Λ).
That is, (f∗λ)(i

′) =
∑
i∈Ii′

λ(i). Let Λ = lim
I∈fSets

Map(I,Λ) be the limit of this functor in

CAlg(Sets) or, equivalently, in Sets or in Spc.

1.12.4. If ϕ : I → I ′ is a map in fSets then for △: XI′ → XI under the equivalence
CXI ⊗Shv(XI) Shv(X

I′) →̃CXI′ one has canonically

△! V λ →̃ V λ′

in CXI′ , where λ′ : I ′ → Λ is given by λ′ = ϕ∗λ. This is proved as in ([52], 2.1.7).

Moreover, for λ = {λI}I∈fSets ∈ Λ with λI ∈ Map(I,Λ), the collection {V λI}I∈fSets
is equipped with a coherent system of higher compatibilites, so defines as object of
lim

I∈fSets
CXI →̃ Fact(C). We denote this section by

V λ ∈ Fact(C)

1.12.5. There is also a direct definition of V λ along the lines of ([52], 2.1.8). Namely,
one defines a functor

Fλ,Irr : Tw(fSets)→ Fact(C)

sending (J → K) ∈ Tw(fSets) to

⊠
k∈K

( ⊗
j∈Jk

V λJ (j)).

The transition morphisms are defined in the same way as for Fλ,Irr. One has canonically

V λ →̃ lim
Tw(fSets)

Fλ,Irr

in Fact(C).

1.12.6. Example. For C(X) = Shv(X) let I ∈ fSets and let λ : I → Λ be the constant
zero map, which we will denote 0. Then V 0 →̃ωXI .

1.12.7. Let C(X) → D(X) be a map in CAlg(Shv(X) − mod) and I ∈ fSets, λ ∈
Map(I,Λ). Let IrrD be the composition Λ

IrrC→ C(X) → D(X). We get the functor
Fλ,IrrD : Tw(I)→ DXI as above and the corresponding objects

V
λ
D = colim

Tw(I)
Fλ,IrrD ∈ DXI .

Then the image of V
λ
C under CXI → DXI identifies canonically with V

λ
D .

In particular, V 0 ∈ CXI is the unit of (CXI ,⊗!).
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1.12.8. Let us be in the situation of Section1.12.1. Since Map(I,Λ) is a set, we defined
a functor

Map(I,Λ)→ (CXI ,⊗!), λ 7→ V λ

Let us equip this functor with a right-lax symmetric monoidal structure. This is done
in [52].

1.12.9. Let G be connected reductive over k, use notations of [52]. Let I ∈ fSets, λ :
I → Λ+. We have the object V λ ∈ Rep(Ǧ)XI defined in ([26], 2.6.2). The more general
pattern is proposed in ([52], Section 6). Consider now the functor Λ+ → Rep(Ǧ),
λ 7→ (V λ)∗. We equip is with the right-lax symmetric monoidal structure via the maps

vλ,µ : (V λ)∗ ⊗ (V µ)∗ → (V λ+µ)∗.

Applying the construction of ([52], Section 6) to this functor, we get an object of
Rep(Ǧ)XI that we denote by (V λ)∗.

Let us show that (V λ)∗ and V λ are canonically dual to each other in the symmetric
monoidal category (Rep(Ǧ)XI ,⊗!).

View the map Λ+ → Rep(Ǧ), λ 7→ V λ ⊗ (V λ)∗ as a right-lax symmetric monoidal
functor (tensor product of two such). Similarly, the constant map λ 7→ e is symmetric
monoidal. Now the unit of the duality e → V λ ⊗ (V λ)∗ becomes a morphism in
Funrlax(Λ+,Rep(Ǧ)). Here we used the commutativity of the diagram in ([15], proof
of Lemma 2.2.11).

By ([52], Section 6) for any λ : I → Λ+ the functor Funrlax(Λ+,Rep(Ǧ)) →
CXI , IrrV 7→ V λ is symmetric monoidal. It is easy to see also that the functor Λ →
Rep(Ǧ), λ 7→ V λ is dualizable in the symmetric monoidal category Funrlax(Λ+,Rep(Ǧ)),
its dual is the functor λ 7→ (V λ)∗. It follows that V λ and (V λ)∗ are canonically dual
to each other in (CXI ,⊗!) for C = Rep(Ǧ).

1.12.10. For the proof of ([26], 5.4.7). Here I ∈ fSets, C ∈ Rep(Ť × Ǧ)XI −mod. We
want to show that the composition

O(Ň\Ǧ)XI −mod(C)→ O(Ǧ)XI −mod(C) oblv→ C

which is defined as c 7→ O(Ǧ)XI ⊗O(Ň\Ǧ)
XI
c can be rewritten as

colim
λ∈Map(I,Λ+)

e−λ ∗ c ∗ V λ

It is understood that Map(I,Λ+) is equipped with the relation: λ1 ≤ λ2 iff λ2−λ1 ∈
Map(I,Λ+), here Map(I,Λ+) is equipped with the pointwise sum.

Proof. Recall that

O(Ǧ)XI −mod(C) →̃O(Ǧ)XI −mod(Rep(Ǧ× Ť )⊗Rep(Ǧ×Ť ) C.

It siffuces to do the universal case and show that

colim
λ∈Map(I,Λ+)

e−λ ∗ O(Ň\Ǧ)XI ∗ V λ →̃O(Ǧ)XI
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in Rep(Ǧ× Ť ). Indeed, then

O(Ǧ)XI ⊗O(Ň\Ǧ)
XI
c →̃ colim

λ∈Map(I,Λ+)
(e−λ ∗ O(Ň\Ǧ)XI ∗ V λ)⊗O(Ň\Ǧ)

XI
c →̃

colim
λ∈Map(I,Λ+)

e−λ ∗ c ∗ V λ

We used here that O(Ň\Ǧ)XI ⊗O(Ň\Ǧ)
XI
c →̃ c.

The proof is in the next section, where a more general fact is established. □

1.12.11. The BunP -case from [15]. Pick I ∈ fSets. Let C ∈ Rep(Ǧ× M̌ab)XI −mod.
We want to show that the composition

O(Ǧ/[P̌−, P̌−])XI −mod(C)→ O(Ǧ/[M̌, M̌ ])XI −mod(C) oblv→ C

defined as
c 7→ O(Ǧ/[M̌, M̌ ])XI ⊗O(Ǧ/[P̌−,P̌−])

XI
c

identifies with the functor

c 7→ colim
λ∈Map(I,Λ+

M,ab)
eλ ∗ c ∗ (V λ)∗

Proof. As in the previous subsection, it suffices to do the universal case and show that

colim
λ∈Map(I,Λ+

M,ab)
eλ ∗ O(Ǧ/[P̌−, P̌−])XI ∗ (V λ)∗ →̃O(Ǧ/[M̌, M̌ ])XI

in Rep(Ǧ× M̌ab). Here we used the notations of ([52], Section 6). Set for brevity

A = O(Ǧ/[P̌−, P̌−]), B = O(Ǧ/[M̌, M̌ ]) ∈ CAlg(Rep(Ǧ× M̌ab)).

By ([52], 6.1.17) applied to C(X) = Rep(Ǧ×M̌ab)⊗Shv(X), for any λ ∈ Map(I,Λ+
M,ab)

we have canonically

eλ∗O(Ǧ/[P̌−, P̌−])XI∗(V λ)∗ →̃ colim
(I→J→K)∈Tw(I)

(
( ⊗
j∈Jk

eλj )⊗A⊗Jk ⊗ ( ⊗
j∈Jk

(V λj )∗)

)
⊗ωXK ,

here the tensor product in big brackets is taken in Rep(Ǧ× M̌ab).
For each j ∈ Jk in the above formula take the natural map

eλj ⊗A⊗ (Vλj )
∗ → B

given by ([15], formula (22) in the proof of 2.2.13) and tensor them over j ∈ Jk. The
resulting map(

( ⊗
j∈Jk

eλj )⊗A⊗Jk ⊗ ( ⊗
j∈Jk

(V λj )∗)

)
⊗ ωXK → B⊗Jk ⊗ ωXK

is a morphism in Fun(Tw(I), CXI ). Taking the colimit over Tw(I) this gives a mor-
phism

eλ ∗ O(Ǧ/[P̌−, P̌−])XI ∗ (V λ)∗ → BXI

in CXI . It remains to show this is an isomorphism.
Since all the involved objects here factorize, our claim follows from the same claim

as a point given by ([15], 2.2.13). □
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1.13. For [26] again.

1.13.1. The claim in his 3.5.3 that MapY (X − I,A1) is represented by A∞ × Y is
wrong.

Here is the correct version.

Proposition 1.13.2. Let Y ∈ Schft, I ⊂ Map(Y,X) be a finite subset defining a Y -
point of Ran, so we have ΓI ⊂ Y ×X. Let UI = Y ×X − ΓI. Consider the prestack

Y : (Schaff/Y )op → Spc, sending S → Y to MapY (S ×Y UI ,A1). Then Y → Y is

universally homologically contractible.

Proof. There is I filtered and a diagram i 7→ Ei for i ∈ I, where Ei is a vector bundle
on Y , and for i → j in I the map Ei → Ej is a map of vector bundles on Y such that
π∗O →̃ colimi∈I Ei. Here π : UI → Y .

Indeed, take I = {n ∈ N | n ≥ n0} for n0 large enough, and En = π̄∗O(nΓI), where
ΓI is viewed as an effective relative Cartier divisor on Y ×X, and π̄ : Y ×X → Y . Our
functor Y is colim

i∈I
SpecY (SymE∗i ). The claim follows now from ([23], Lemma 1.3.6). □

1.13.3. In the proof of 3.2.5 in the 3rd displayed formula the correct answer is

(jλglob)!(p
λ
glob)

!F →̃ (p̄λglob)
!(F)⊗! (jλglob)!ω

Indeed, this is a general phenomenon. Let j : Y0 ↪→ Y be an open immersion, f : Y → S
be a map with S ∈ Schft smooth, assume f0 = f ◦ j smooth. Assume that j!ω is ULA
over S. Then for L ∈ Shv(S)c one has

j!f
!
0L →̃ (j!ω)⊗! f !L

This follows from the the consequences of ULA properties in [10].

Appendix A. About Schieder’s correction

A.0.1. Example: G = PGL2, B standard Borel, N = [B,B]. Then G/N is the variety

of nilpotent 2 × 2 non-zero matrices N − 0, so G/N is the variety of nilpotent 2 × 2
matrices.

Let G̃ = GL2, B̃ the standard Borel in G̃. Then G̃/N = (E − {0})× (detE − {0}),
where E is the srandard representation of G. So, the affine closure is G̃/N = E ×
(detE − {0}) ⊂ E × detE →̃A3. The complement of G̃/N in E × (detE − {0}) is
{0}×(detE−{0}), and the center Gm →̃Z of GL2 acts on detE−{0} by the character
z 7→ z2. Now (detE − {0})/Z is not a point.
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