
1. Comments to: The stack of local systems with restricted variation
and geometric Langlands theory with nilpotent singular support

1.1. For version of Jan 24, 2022.

1.1.1. For 1.1.9. Let S be a scheme of finite type, X be a smooth scheme of finite type.
To see that QLisse(X) is left-complete, argue as follows. We know that Shv(X) is left
complete, so for x ∈ QLisse(X) the natiral map x → limn τ

≥−nx with limit taken in
Shv(X) is an isomorphism. So, this also holds in QLisse(X), hence QLisse(X) has con-

vergent Postnikov towers. Let now {cn} ∈ limnQLisse[−n,0] and c = limn c
n calculated

in Shv(X). Then we know already that for any n, τ≥−nc→ cn is an isomorphism. This
shows that c ∈ QLisse(X), so the limit of the diagram {cn} taken in QLisse(X) and in
Shv(X) are the same. Moreover, the truncation functor for QLisse(X) is the restriction
of the truncation functor for Shv(X). So, the natural map τ≥−nc → cn in QLisse(X)

is an isomorpism. That is, their functor Ĉ → C given by (B.2) is fully faithful. So,
QLisse(X) is left complete. We did not need the fact that QLisse(X)≤0 ⊂ QLisse(X)
is closed under countable product, nor to apply (HA, 1.2.1.19).

The t-structure on Shv(S) is accessible and compatible with filtered colimits (see [11],
ch. II.1, Lm. 1.2.4) proved in ([16], 10.3.3). Moreover, the t-structure on Shv(S) is
compactly generated in the sense of ([21], 6.3.8). Recall that each object of Shv(S)constr

is bounded. So, by ([18], 1.2.36), Shv(S) is right complete. We also know it is left
complete by ([1], Th. 1.1.4).

QLisse(X) is equipped with a t-structure. By ([13], 5.3.5.11), Ind(Lisse(X)) ⊂
QLisse(X) is a full subcategory. We equip Ind(Lisse(X)) with the t-structure defined
by ([11], ch. II.1, Lm. 1.2.4) by ind-extention of the t-structure on Lisse(X). Then
Ind(Lisse≤0(X)) ⊂ Ind(Shv(X)≤0,constr) and Ind(Lisse≥0(X)) ⊂ Ind(Shv(X)≥0,constr),
so the inclusion Ind(Lisse(X)) → QLisse(X) is t-exact. In particular, for n ∈ Z the
functor

(1) IndLisse(X)≥−n ⊂ QLisse(X)≥−n

is fully faithful. Let us show it is essentially surjective. Its image is closed under
filtered colimits and clearly containes QLisse(X)♡[m] for m ≤ n. Finally, for any z ∈
QLisse(X)≥−n we have z →̃ colim

m∈Z
τ≤mz in Shv(X), because Shv(X) is right complete,

see ([16], 4.0.10). But τ≤mz ∈ IndLisse(X)≥−n, and (1) is closed under filtered colimits,
so (1) is an isomorphism.

1.1.2. Let S be a scheme of finite type, work in the constructible context.
If K ∈ Shv(S)constr let K∨ = Hom(K, e), where e is the constant sheaf on S.

We have a natural map K → Hom(K∨, e) corresponding to the natural map K ⊗
Hom(K, e) → e. The full subcategory of K ∈ Shv(S)constr for which this map is
an isomorphism is closed under extensions and shifts and contains local systems. So,
it contains the full subcategory Lisse(S) ⊂ Shv(S)constr. So, for E ∈ Lisse(S), the
map E ⊗ ω → D(E∨) is an isomorphism. Recall that Lisse(S) ⊂ Shv(S) is the full
subcategory of objects dualizable with respect to the ⊗-monoidal structure, and E∨ is
the dual of E ∈ Lisse(S) with respect to this monoidal structure. Let E ∈ Lisse(S),
K ∈ Shv(S). Then the above easily gives K ⊗! (E ⊗ ω) →̃K ⊗ E.

1

2

Let us show that E ⊗ ω is dualizable with respect to the ⊗!-monoidal structure on
Shv(S). For Fi ∈ Shv(S) we get

Hom(F1, F2 ⊗! (E ⊗ ω)) →̃Hom(F1,Hom(E∗, F2)) →̃Hom(F1 ⊗ E∗, F2) →̃

Hom(F1 ⊗! (E∗ ⊗ ω), F2),

here Hom(F1, F2) ∈ Vect means relative inner hom for Vect-action on Shv(S). I don’t
see why the dualizability of K ∈ Shv(S) for the ⊗!-monoidal structure implies that
K ∈ Lisse(S).

Note that IndLisse(S)c = Lisse(S), and each object of Lisse(S) is dualizable in
(IndLisse(S),⊗!). Besides, ⊗! sends Lisse(S)×Lisse(S) to Lisse(S), and ω ∈ IndLisse(S)c

because ω ∈ Lisse(S). So, by ([11], ch. I.1, 9.1.5), IndLisse(S) is rigid.

1.1.3. For the proof of B.1.9. The presentation changed in the new version.
If C is a stable category with a t-structure, a ∈ C♡, c ∈ C then ExtkC(a, c) =

HomhC(a[−k], c) →̃ HomhC(a[−k], τ≥kc).
Let now C = Ind(Db(A)), where A is an abelian category, say with enough projective

objects. Let a ∈ A, c ∈ Ind(Db(A)) and k > 0. Then a map a→ Hk(c) is the same as
a map a[−k]→ τ≥kc in C, and H0(Hom(a[−k], τ≥kc) is a nonzero vector space. Pick a

surjection a′ → a, where a′ is projective. Then Extk+1
C (a′, τ<k(c)) = 0 by ([14], 1.3.3.7),

so the map Extk(a′, c) → Extk(a′, τ≥k(c)) is surjective, in particular, Extk(a′, c) ̸= 0.
This constradicts the fact that HomInd(Db(A))(a

′, c) ∈ Vect≤0.

1.1.4. It follows from Appendix C about categorical K(π, 1) that the t-structure on
QLisse(X) is compactly generated for any smooth complete curve X.

1.1.5. in 8.1.1, QLisse(X) is considered with respect to the ∗-monoidal structure. In
the definition of a smooth action in 8.1.1, fSet is the category of finite sets (possibly
empty) and any maps between them. The functor fSet→ DGCatMon

cont , I 7→ Rep(G)⊗I

sends α : I → J to the product map along α, similarly for I 7→ QLisse(X)⊗I .

1.1.6. In 11.1.1, fSet denotes the category of finite sets (maybe empty) and all mor-
phisms between them. We have an adjoint pair l : (fSet)op ⇆ Tw(fSet) : r, where
l(J) = (∅ → J) and r(I → J) = J .

For 11.1.5. Let C ∈ CAlg(DGCatcont), let us show that CRan →̃ Vect. We have the
functor q : (fSet)op → DGCatcont, J 7→ Shv(XJ). For a map α : J2 → J1 in fSet, that
is, to α : J1 → J2 in (fSet)op it attached the morphism △∗: Shv(XJ1)→ Shv(XJ2) for
△: XJ1 → XJ2 . By ([16], 2.2.39), qr is the LKE of q along l : (fSet)op → Tw(fSet).
So,

colim
(I→J)∈Tw(fSet)

qr(I → J) →̃ colim
J∈(fSet)op

q(J) →̃ q(∅) →̃ Vect,

because ∅ ∈ fSet is initial.
For 11.1.6. The symmetric monoidal structure on Tw(fSet) is given by sending

(I1 → J1), (I2 → J2) to (I1 ⊔ I2 → J1 ⊔ J2), see ([19], 1.2.3). Their functor (11.1) is
indeed right-lax symetric, and sends the unit object (∅ → ∅) to Vect ∈ DGCatcont. So,
by their B.1.8, its colimit lies in CAlg(DGCatcont). In case, this could use the fact
that X is proper, as we need that for two maps of finite sets J2 → J1, J

′
2 → J ′1 and the

3

corresponding △: XJ1 → XJ2 ,△′: XJ ′1 → XJ ′2 and s : XJ1⊔J ′1 → XJ2⊔J ′2 the diagram
commutes

Shv(XJ1)⊗ Shv(XJ ′1)
⊠→ Shv(XJ1⊔J ′1)

↓ △∗⊗△′∗ ↓ s∗
Shv(XJ2)⊗ Shv(XJ ′2)

⊠→ Shv(XJ2⊔J ′2)

1.1.7. For B.1.1: my understanding is that the notation Funrlax(O,A) means non-
unital right-lax monoidal functors, that is, the map 1 → f(1) is not necessarily an
isomorphism.

Their Pp. B.2.9 is precisely ([19], 1.3.4).

1.1.8. For 8.2.3. Let O be a symmetric monoidal presentable category, in which the
tensor product preserves colimits separately in each variable. Let A ∈ CAlg(O), B be a
unital cocommutative coalgebra in O, which is dualizable in O. Then the commutative
algebra structure on coEnd(A,B) = colim(I→J)∈Tw(fSet)A

⊗I ⊗B⊗J in O is as follows.

Let ins(I→J) : A
⊗I ⊗ B⊗J → coEnd(A,B) be the natural map. For (I1 → J1), (I2 →

J2) ∈ Tw(fSet) the composition

A⊗I1⊗B⊗J1⊗A⊗I2⊗B⊗J2
ins(I1→J1)⊗ins(I2→J2)→ coEnd(A,B)⊗coEnd(A,B)

mult→ coEnd(A,B)

coincides with

ins(I1⊔I2→J1⊔J2) : A
⊗I1⊔I2 ⊗B⊗J1⊔J2 → coEnd(A,B)

The unit of coEnd(A,B) is ins(∅→∅) : 1→ coEnd(A,B).

1.1.9. In 8.2.4 they claim the following. Let O ∈ CAlg(1 − Cat), which is cocomplete
and such that the monoidal product preserves colimits separately in each variable. Let
B be a unital cocommutative coalgebra in O, which is dualizable, so B∨ is a unital
commutative algebra. The functor R : O → B∨ − mod(O), M 7→ B∨ ⊗M admits
a left adjoint L sending N to B ⊗B∨ N by ([16], 3.2.5). Now, the functor R gives
R : CAlg(O) → CAlg(B∨ −mod(O)). The left adjoint L to R is given by their Pp.
B.2.9. So,

L(N) →̃ colim
(I→J)∈Tw(fSet)

⊗
j∈J

L(N⊗Ij),

where the tensor power of N is taken in B∨ −mod(O). Here fSet is the category of
finite sets. Now for A ∈ CAlg(O) we get

L(B∨ ⊗A) →̃ colim
(I→J)∈Tw(fSet)

B⊗J ⊗A⊗I

Indeed, B ⊗B∨ (B∨ ⊗ A) →̃B ⊗ A. They define coEnd(A,B) := L(B∨ ⊗ A) and use
the fact that

MapCAlg(O)(A,A
′⊗B∨) →̃ MapCAlg(B∨−mod(O))(B

∨⊗A,A′⊗B∨) →̃ MapCAlg(O)(L(B
∨⊗A), A′)

They also write coHom(A,B∨) = L(B∨ ⊗A).

4

Let us describe the counit map of the adjunction L(B∨ ⊗ A)→ A in CAlg(O). We
do this using ([19], 1.3.6). It is given by a compatible system of maps B⊗J ⊗A⊗I → A

for (I
ψ→ J) ∈ Tw(fSet), which are the compositions

(2) B⊗J ⊗A⊗I
counit⊗J⊗id→ A⊗I

m→ A,

where the first map comes from the J-th tensor power of the counit B → 1O of B. The
second map in (2) is the product m : A⊗I → A.

1.1.10. In Lemma 8.2.7, the coalgebra B and algebra C are assumed unital. By a
compatible collection of maps A⊗I → C ⊗ (B∨)⊗I in (a) they mean the space of
natural transformations of functors fSet → Alg(DGCat) (or fSet → CAlg(DGCat)
respectively) from I 7→ A⊗I to the functor I 7→ (B∨)⊗I , I think.

1.1.11. For 11.1. Let C ∈ CAlg(DGCatcont). To see why in the definition of CRan

they use the ∗-direct image note the following. The formlula is analogous to the def-
inition of coEnd(A,B) in their Section 8.2.3. For a scheme of finite type S, it is
understood that Shv(S) is always considered with the ⊗!-symmetric monoidal struc-
ture. Dualizing, Shv(S) is a cocommlutative unital coalgebra with the coproduct
given by △∗ for △: S → S × S. So, in the formula for CRan, we consider the functor
TwArr(fSet)→ DGCatcont, (I → J) 7→ C⊗I ⊗Shv(XJ), and Shv(XJ) secretely plays
the role of the tensor power Shv(X)⊗J (this is litterally true for D-modules, but not in
the constructible context). So, the functor (fSet)op → DGCatcont, J 7→ Shv(XJ) for
the ∗-direct images is analogous to a unital cocommutative coalgebra in DGCatcont.

1.1.12. For 11.1.7, let first A ∈ DGCatcont. They consider the functors F1, F2 : fSet→
DGCatcont, I 7→ C⊗I and I 7→ A ⊗ Shv(XI). The second functor here sends a map
I → J to id⊗ △!: A⊗ Shv(XI)→ A⊗ Shv(XJ) for the map △: XJ → XI . The claim
is that

MapFun(fSet,DGCatcont)(F1, F2) →̃ MapDGCatcont(CRan, A)

If now A ∈ CAlg(DGCatcont) they get a map

MapFun(fSet,CAlg(DGCatcont))(F1, F2)→ MapCAlg(DGCatcont)(CRan, A)

For A ∈ Alg(DGCatcont) they get a map

MapFun(fSet,Alg(DGCatcont))(F1, F2)→ MapAlg(DGCatcont)(CRan, A)

1.1.13. For 11.1.9. Let X be a scheme of finite type. We have the functors F1, F2 :
fSet → CAlg(DGCatcont), F1(I) = Shv(X)⊗I and F2(I) = Shv(XI). Here for α :
I → J the map F1(α) : Shv(X)⊗I → Shv(X)⊗J is given by the algebra structure
(Shv(X),⊗!), this is the product along α, and the map F2(α) : Shv(X

I) → Shv(XJ)
is △! for △: XJ → XI . Then the map ⊠ = h : Shv(X)⊗I → Shv(XI) is the natural
transformation lying in MapFun(fSet,CAlg(DGCatcont))(F1, F2).

Consider the unital cocommutative coalgebra (Shv(X),△∗) in DGCatcont obtained
by the canonical self-duality from (Shv(X),⊗!). Cosider the functorsG1, G2 : fSet

op →
DGCatcont, where G1(I) = Shv(X)⊗I , G2(I) = Shv(XI). Here for α : I → J in
fSet the corresponding map G1(α) : Shv(X)⊗J → Shv(X)⊗I is given by the coalgebra

5

structure (Shv(X),△∗), that is, the coproduct. The map G2(α) : Shv(X
J)→ Shv(XI)

is △∗ for △: XJ → XI .
We have the natural transformation h∨ from G2 to G1, it is given on I ∈ fSet by

the functor h∨ : Shv(XI)→ Shv(X)⊗I .
Let C ∈ CAlg(DGCatcont). This gives a natural transformation of functors from

Tw(fSet) to DGCatcont, from

(I → J) 7→ C⊗I ⊗ Shv(XJ)

to

(I → J) 7→ C⊗I ⊗ Shv(X)⊗J .

Moreover, it is compatible with the right-lax structures on these functors, because h
is fully faithful. Passing to the colimit over Tw(fSet), this gives a morphism CRan →
coHom(C, Shv(X)) given by their (11.6). It is actually a map in CAlg(DGCatcont).

1.1.14. In 11.2.3 they consider QLisse(X) with the ⊗!-monoidal structure. More pre-
cisely (probably even without the smoothness assumption of X), they consider the
embedding QLisse(X)→ Shv(X), E 7→ E ⊗ ωX , so that the ⊗!-monoidal structure on
Shv(X) restricts to the ⊗∗-symmetric monoidal structure on QLisse(X). In this case
the map

Shv(XJ)→ (QLisse(X)∨)⊗J

becomes indeed a natural transformation of functor (fSet)op → DGCatcont.

1.1.15. For Pp. 11.2.6. They use ([12], Lemma 6.4) and the fact that DGCatcont is
naturally an (∞, 2)-category, so Fun(fSet,DGCatcont) is also an (∞, 2)-category.

We get

Fune,cont(C
X−lisse, A) →̃ lim

(I→J)∈Tw(fSet)op
Fune,cont(C

⊗I , A⊗ (QLisse(X)⊗J))→

lim
(I→J)∈Tw(fSet)op

Fune,cont(C
⊗I , A⊗ Shv(XJ)) →̃Fune,cont(CRan, A)

They also use ([16], 2.2.16, 2.2.17) to conclude. Namely, for each (I → J) ∈ Tw(fSet),
Fune,cont(C

⊗I , A⊗ (QLisse(X)⊗J))→ Fune,cont(C
⊗I , A⊗ Shv(XJ)) is fully faithful.

1.1.16. For 11.2.8. My understanding is as follows. Let B,A ∈ Alg(DGCatcont). Write
A⊗, B⊗ for the corresponding functors ∆op → DGCatcont. Then

MapAlg(DGCatcont)(B,A) →̃ lim
([n]

α→[m])∈Tw(∆op)op
MapDGCatcont(B

⊗([m]), A⊗([n])),

here α is a map in ∆. This follows from ([9], 1.3.12). Let now B1 → B2 be a map
in Alg(DGCatcont) such that for any A ∈ DGCatcont) dualizable and any n ≥ 0,
Fune,cont(B

⊗n
2 , A) → Fune,cont(B

n
1 , A) is fully faithful. Then for A ∈ DGCatcont) du-

alizable the induced map MapAlg(DGCatcont)(B2, A)→ MapAlg(DGCatcont)(B1, A) is fully
faithful map of spaces, that is, a monomorphism.

A similar argument in the commutative case.

6

In 11.2.8 c) they assume M2 is dualizable in DGCatcont. For A → B a map in
Alg(DGCatcont) andM1,M2 ∈ B−mod(DGCatcont) we have a natural map FunB(M1,M2)→
FunA(M1,M2). Assume that for any n ≥ 0,

Fune,cont(B
⊗n ⊗M1,M2)→ Fune,cont(A

⊗n ⊗M1,M2)

is fully faithful. Then FunB(M1,M2) → FunA(M1,M2) is fully faithful, as the limit
over [n] ∈∆ of the fully faithful functors. This is what happens in our case.

Namely, one first shows that for any n ≥ 0,

Fune,cont((C
X−lisse)⊗n ⊗M1,M2)→ Fune,cont(C

⊗n
Ran ⊗M1,M2)

is fully faithful, for this one repeats the argument from their Pp. 11.2.6. Then pass
to the totalization. This gives fully faithfulness. This is an isomorphism now by ([16],
2.7.18).

1.1.17. For 11.3.4, 11.3.6. If F ∈ Shv(S)c for S ∈ Schft, we have a natural map
F⊠D(F)→△∗ ωS coming from the composition F⊗Hom(F, ω)→ ω, whereHom(·, ·) ∈
Shv(S) denotes the inner hom for the (Shv(S),⊗)-monoidal structure. Here △: S →
S × S is the diagonal. On the other hand, we have a map △! eS → F ⊠ D(F), that is,
eS → F ⊗! D(F) in Shv(S). It comes from the characterization

HomShv(D(F1), F2) →̃ RΓ(S, F1 ⊗! F2)

of D(F1) for F1 ∈ Shv(S)c, F2 ∈ Shv(S). Here HomShv ∈ Vect denotes the relative
inner hom for the Vect-action on Shv(S).

Remark 1.1.18. Let CI : I → DGCatcont be a diagram i 7→ Ci, where for i→ j the cor-
responding functor ϕij : Ci → Cj admits a continuous right adjoint ϕRij. Assume each Ci

dualizable. Assume given a self-diality C∨i →̃Ci for each i. Let CR
Iop : I

op → DGCatcont
be obtained from CI by passing to right adjoints. Let C∨Iop : Iop → DGCatcont be ob-
tained from CI by passing to the duals. Assume the functor (CR

Iop)
∨ : I → DGCatcont

obtained from CR
Iop by passing to the duals is identified with CI via the self-dualities

on Ci. In particular, for each i → j in I, the dual to ϕRij : Cj → Ci identifies with
ϕij : Ci → Cj. Then D := colimCI is naturally equipped with a self-duality. This is
used in 11.3.9. Moreover, for any i by ([11], ch. I.1, 6.3.6) the diagram commutes

Vect
u→ D ⊗D

↓ ui ↓ ev i⊗id

Ci ⊗ Ci
id⊗insi→ Ci ⊗D,

where ui is the unit of the self-duality for Ci, and u is the unit of the self-duality for
D. Note that u →̃ colim

i∈I
(insi ⊗ insi)(ui) in D.

1.1.19. For 11.3.8. We use ([16], 4.1.2) and ([11], ch. I.1, 6.3.4).
If C is a rigid symmetric monoidal category in CAlg(DGCatcont) then for any α :

I → J in fSet, let m : C⊗I → C⊗J be the product along α. Then (αR)∨ →̃α with
respect to the canonical self-duality on C, see ([11], ch. I.1, 9.2.6). Moreover, the dual
of the counit map c : C ⊗ C → Vect is the unit u : Vect → C ⊗ C via the canonical
self-duality on C.

7

Their isomorphism (11.12) is given in my ([16], 9.2.6). Their claim at the end of
11.4.3 is my ([16], 9.2.37). Their formula (11.14) comes from my Remark 1.1.18 above,
namely it gives a commutative square

Vect
RC,Ran→ CRan ⊗ CRan

↓ u ↓ insR
(I→J)⊗id

(C⊗I ⊗ Shv(XJ))⊗ (C⊗I ⊗ Shv(XJ))
id⊗ins(I→J)→ (C⊗I ⊗ Shv(XJ))⊗ CRan,

where u is the unit of the self-duality on (C⊗I ⊗ Shv(XJ)). So, u →̃R⊠I
C ⊗ uShv(XJ),

where uShv(XJ) is the unit of the self-duality on Shv(XJ), and RC ∈ C⊗ C is the unit
of the self-duality on C.

1.1.20. For 11.4.2. The object RC,Ran ∈ CRan⊗CRan has a structure of a unital algebra,

that is, RC,Ran ∈ Alg(CRan ⊗ CRan), because RC,Ran = mRm(1 ⊗ 1) is a monad in
FunCRan⊗CRan

(CRan ⊗ CRan,CRan ⊗ CRan). This is used later.

1.1.21. For 11.4.6. Let Y ∈ Schft. Then the unit of the canonical self-duality on

Shv(Y) is indeed uShv(Y) := hR(△∗ ωY), where △: Y → Y × Y is the diagonal, and
h : Shv(Y) ⊗ Shv(Y) → Shv(Y × Y) is the exteriour product. Indeed, the counit is
given by Shv(Y) ⊗ Shv(Y) → Vect, (K1,K2) 7→ RΓ(Y,K1 ⊗! K2). Then the unit is
obtained by dualizing the counit map by ([16], 3.1.2.1), as hR is the dual of h.

Note that for Z ∈ Schft and K ∈ Shv(Z) the functor Shv(Z)→ Shv(Z), L 7→ L⊗!K
is canonically self-dual with respect to the canonical duality on Shv(Z). So, the dual

to the composition Shv(Y) ⊗ Shv(Y)
h→ Shv(Y × Y)

⊗!△∗ωY→ Shv(Y × Y)
RΓ→ Vect is

the composition

Vect
⊗ωY×Y→ Shv(Y × Y)

⊗!△∗ωY→ Shv(Y × Y)
hR→ Shv(Y)⊗ Shv(Y)

If K ∈ Shv(Y) then we have uShv(Y)⊗! (ωY ⊠K) →̃ (ωY ⊠K)⊗! uShv(Y) canonically.

Indeed, we derive this from ([20], Claim in 0.0.7) saying that hR is a strict morphism
of Shv(Y)-bimodules. So, one has canonically

uShv(Y) ⊗! (ωY ⊠K) →̃hR((△∗ ωY)⊗! (ωY ⊠K)) →̃hR(△∗ K)

and similarly (ωY ⊠K)⊗! uShv(Y) →̃hR(△∗ K).
This is used in their Section 11.5.1.

1.1.22. In 11.4.8 they mean the unit map 1A → comult(mult(1A) and the counit map
mult(comult(1A)) → 1A for a rigid symmetric monoidal category A, where A = CRan,
using the adjunction mult : A⊗A ⇆ A : comult.

1.1.23. The category Tw(fSet) does not seem to satisfy the assumptions of ([8], Lm.
1.3.6).

The natural map 1CRan
→ RC,Ran is the natural map 1CRan

→̃ ins(∅→∅)(e)⊗ins(∅→∅)(e)→
RC,Ran.

For (11.16). First, they use the map h(uShv(XJ))→△∗ ωXJ for △: XJ → XJ ×XJ ,

this is hhR(△∗ ωXJ)→△∗ ωXJ .

8

1.1.24. For 11.5.1. For C ∈ CAlg(DGCatcont) rigid and the unit of the self-duality
RC ∈ C⊗C, the object R⊠I

C ∈ C⊗I⊗C⊗I gives a maps of C⊗I -bimodules C⊗I → C⊗I⊗C⊗I .

1.1.25. For 11.6.3. This seems to be the following abstract claim. Let O be a symmetric
monoidal presentable category in which the tensor product preserves colimits separately
in each variable. Let A ∈ CAlg(O), B be a unital cocommutative coalgebra in O, which
is dualizable, so B∨ ∈ CAlg(O).

Let fSet→ O, I 7→ EI be a functor sending ∅ to 1, it plays a role of a commutative
algebra, to the exception that EI is not necessarily a tensor power. Assume EI self-dual
in O, so the functor obtained by dualization fSetop → O is plays a role of a ”unital
cocommutative coalgebra”. Assume given a morphism of functors fSet→ O from the
commutative algebra I 7→ (B∨)⊗I to the functor I 7→ EI . Write αI : (B

∨)⊗I → EI for
the corresponding morphism in O, let α∨I : EI → B⊗I be its dual.

Let now C ∈ CAlg(O) and let F : C → A ⊗ B∨ be a map in CAlg(O). For each

I ∈ fSet let F I : C⊗I → A ⊗ (B∨)⊗I be the composition C⊗I
F⊗I→ (A ⊗ B∨)⊗I

mI⊗id→
A⊗ (B∨)⊗I , where mI : A

⊗I → A is the product. Then F gives rise to a map

colim
(I→J)∈Tw(fSet)

C⊗I ⊗ EJ → colim
(I→J)∈Tw(fSet)

C⊗I ⊗B⊗J → A

in O. The composition is given by a compatible system of maps C⊗I ⊗ EJ → A

for (I
ψ→ J) ∈ Tw(fSet). Given (I

ψ→ J), the desired map C⊗I ⊗ EJ → A is the
composition

(3) C⊗I ⊗ EJ → C⊗J ⊗ EJ → (B ⊗ C)⊗J → A

The first map in (3) comes from the product C⊗I → C⊗J in C, the second one comes
from α∨J : EJ → B⊗J . The map F gives rise by functoriality to a morphism F̄ :

B ⊗ C → B ⊗ A defined as id⊗F̃ : B ⊗B∨ (B∨ ⊗ C) → B ⊗B∨ (B∨ ⊗ A), where

F̃ : B∨⊗C → B∨⊗A is B∨-linear, and the composition C → B∨⊗C
F̃→ B∨⊗A is F .

Then the third map in (3) is the compositon

(B ⊗ C)⊗J
F̄⊗J→ (B ⊗A)⊗J

counit→ A⊗J
m→ A,

where m : A⊗J → A is the product, and we also used the counit B → 1O of the
coalgebra B.

They propose a different description of the composition C⊗J ⊗ EJ
ϵ→ A in (3).

Namely, they claim that ϵ is the composition

C⊗J ⊗ EJ
FJ⊗id→ A⊗ (B∨)⊗J ⊗ EJ

id⊗αJ⊗id→ A⊗ EJ ⊗ EJ
id⊗m→ A⊗ EJ

id⊗counit→ A

Here m : EJ ⊗ EJ → EJ is the product in this ”algebra”, and counit : EJ → 10 is the
”counit” of this ”coalgebra”. This gives indeed the same answer.

1.1.26. For 11.6.5. Let Z ∈ PreStk with a symmetric monoidal functor F : C →
QCoh(Z)⊗QLisse(X), so we get a symmetric monoidal functor F̃ : CRan → QCoh(Z).
Let in additionM ∈ CRan−mod(DGCatcont). The functor oblvHecke,Z : Hecke(Z,M)F →
M ⊗QCoh(Z) is conservative by ([16], 4.0.30).

9

For 11.6.6. The composition CRan ⊗ CRan
m→ CRan

mR→ CRan ⊗ CRan is a map of CRan-
bimodules sending 1 ⊗ 1 to RC,Ran. So, it acts on M ⊗ QCoh(Z) via (id⊗F̃)(RC,Ran)
indeed.

1.1.27. Consider an adjoint pair l : B1 ⇆ B2 : r in Alg(DGCatcont), so l, r are maps of
algebras. Assume r is fully faithful, so l is a localization. Then for any n ≥ 0 the induced
map B⊗n1 → B⊗n2 is also a localization. We claim that for any C ∈ Alg(DGCatcont)
the natural map

MapAlg(DGCatcont)(B2, C)→ MapAlg(DGCatcont)(B1, C)

is a monomorphism of spaces (and a similar claim for commutative algebras).
Proof: argue as in Section 1.1.16 of this file. Let B⊗i , C

⊗ : ∆op → DGCatcont be the

corresponding functors. For each m,n ≥ 0 the adjoint pair B⊗1 ([m]) ⇆ B⊗2 ([m]) gives
rise to an adjoint pair

L : Fune,cont(B
⊗
2 ([m]), C⊗([n])) ⇆ Fune,cont(B

⊗
1 ([m]), C⊗([n]))

in DGCatcont with L fully faithful. So, in

MapAlg(DGCatcont)(B1, C) →̃ lim
([n]

α→[m])∈Tw(∆op)op
MapDGCatcont(B

⊗
1 ([m]), C⊗([n])),

we replace each term in the limit by a full subspace MapDGCatcont(B
⊗
2 ([m]), C⊗([n])),

hence get a full subspace in the limit.
This is used for De Rham and Betti versions in Version Jan 24, 2022 of this paper,

Remark 11.8.3.

1.2. For Version of March 5, 2022.

1.2.1. For 1.7.3. Let Hacces,c ⊂ H be the full subcategory of bounded objects, whose all
cohomologies lies in Hc ∩H♡. Then Hacces,c is a small stable Vectc-module category,
it is closed under the tensor products (under the assumptions of 1.7.2). Indeed, if
hi ∈ Hacces,c then oblv(h1h2) →̃ oblv(h1) oblv(h2) ∈ Vectc, so each cohomology of
h1h2 is sent by oblv to a finite-dimensional vector space, so each cohomology of h1h2
lies in Hc ∩ H♡. Moreover, if h ∈ Hc ∩ H♡ then h is dualizable in H, and h∨ ∈
H♡ ∩Hc. Indeed, since oblv is symmetric monoidal, oblv(h∨) is the dual of oblv(h).
Since oblv(h) ∈ Vect♡ ∩Vectc and h conservative, h∨ ∈ H♡ ∩Hc by the assumptions
of 1.7.2.

Let hi ∈ H with h1 dualizable in H. Then HomH(1, h
∨
1 ⊗ h2) →̃HomH(h1, h2).

Indeed, for V ∈ Vect,

MapVect(V,HomH(1, h
∨
1 ⊗ h2)) →̃ MapH(V ⊗ 1H , h

∨
1 ⊗ h2)

→̃ MapH(V ⊗ h1, h2) →̃ MapVect(V,HomH(h1, h2))

So, the assumptions of 1.7.2 imply that for hi ∈ Hc ∩H♡ one has HomH(h1, h2) ∈
Vectc, because h∨1 ∈ Hc ∩H♡, and h∨1 ⊗ h2 ∈ Hc ∩H♡ also.

The claim in their Section 1.7.2 in the opposite direction is wrong as stated: it is
corrected in version of Apr 3, 2022.

10

1.2.2. For 12.1.4. Note that Hecke(Z,M) →̃FunCRan⊗QCoh(Z)(QCoh(Z),M ⊗QCoh(Z))
by adjointness.

Note that for Z ∈ PreStk with a symmetric monoidal functor F : C → QCoh(Z) ⊗
QLisse(X) the object RZ = RZ,F ∈ CRan ⊗ QCoh(Z) of 12.1.6 satisfies a system of

isomorphisms V∗RZ →̃RZ∗F̃ (V) for V ∈ CRan. Recall that RZ ∈ Alg(CRan⊗QCoh(Z)).

1.2.3. In Section 12.1.11 we need to calculate the following.
Step 1 Let K ∈ Shv(XJ), uShv(XJ) ∈ Shv(XJ)⊗ Shv(XJ) be the unit of the Verdier

self-duality on Shv(XJ). Then let us understand by ω⊠K the corresponding object of
Shv(XJ)⊗Shv(XJ), so uShv(XJ)⊗ (ω⊠K) is the product in the commutative algebra

Shv(XJ)⊗ Shv(XJ) (with the !-monoidal strucrures on each factor). Then

(4) (id⊗RΓ(XJ , ·))(uShv(XJ) ⊗ (ω ⊠K)) →̃K

Indeed, write h for the exteriour product. Both sides being continuous and exact as
functors of K, we may and do assume K compact. Then the composition

Vect
△∗ωXJ→ Shv(XJ ×XJ)

hR→ Shv(XJ)⊗ Shv(XJ)
id⊗(•⊗!K)→

Shv(XJ)⊗ Shv(XJ)
id⊗RΓ(XJ ,•)→ Shv(XJ)

denoted R admits the left adjoint Shv(XJ) → Vect, M 7→ RΓ(XJ ,M ⊗ D(K)), be-
cause X is proper. Now Hom(RΓ(XJ ,M ⊗ D(K)), e) →̃HomShv(XJ)(M,K) canoni-
cally, where HomShv(XJ) denotes the inner hom with respect to the Vect action on

Shv(XJ). So, R(e) →̃K, and (4) follows.

Step 2 It suffices to show that for any (I
ψ→ J) ∈ Tw(fSet), one has

ins
(I
ψ→J)
⊗ (F̃ ins

(I
ψ→J)

)(R⊠I
C ⊗ uShv(XJ)) →̃ ins

(I
ψ→J)
⊗ (id⊗(F J ◦multψC))(R

⊠I
C)

This is now an immediate consequence of Step 1 and the formula for F̃ given in the
paper.

1.2.4. Let X be a complete smooth curve. Note that, according to the formula just
before Th. 11.10.2, the exteriour product map

QCoh(LocSysrestrG (X))⊗QCoh(LocSysrestrG (X))→ QCoh(LocSysrestrG (X)×LocSysrestrG (X))

is an equivalence.

1.2.5. For 12.3.1. If f : Z → LocSysrestrG (X) be a morphism, where Z is a prestack.
Then indeed we get a symmetric monoidal functor F : Rep(G)→ QCoh(Z)⊗QLisse(X),
because QLisse(X) is dualizable (as it is compactly generated by Appendix C of version
Jan 24, 2022). Here X is a smooth complete curve.

Let f : Z → LocSysrestrG (X) be a map of prestacks. Set for brevity C = Rep(G). If
M is a CRan-module then, since CRan is rigid,

Hecke(Z,M) →̃CRan ⊗CRan⊗CRan
(M ⊗QCoh(Z))

11

Assume in addition that M is a QCoh(LocSysrestrG (X))-module (so giving a structure
of a CRan-module). Then Hecke(Z,M) identifies with M ⊗QCoh(LocSysrestrG (X))QCoh(Z).

Indeed, the RHS of the above displayed formula becomes

(CRan ⊗(CRan⊗CRan) (A
′ ⊗A′))⊗A′⊗A′ (M ⊗QCoh(Z))

with A′ := QCoh(LocSysrestrG (X). Now CRan⊗(CRan⊗CRan) (A
′⊗A′) →̃A′ by their Prop.

11.11.6. So,

Hecke(Z,M) →̃M ⊗A′ QCoh(Z)

1.2.6. For 12.4.1. Let X be a smooth projective curve, C ∈ CAlg(DGCatcont) is a
compactly generated rigid symmetric monoidal category. The functor Tw(fSet) →
DGCatcont, (I → J) 7→ C⊗I ⊗ Shv(XJ × Y) is still right-lax monoidal, so its colimit is
an object of CAlg(DGCatcont).

1.2.7. For 12.4.5. Let F : C→ QCoh(Z)⊗QLisse(X) be a symmetric monoidal functor.
We get out of it a symmetric monoidal functor C⊗X−lisse → QCoh(Z) as in their Section
12.1.3.

Consider now the functor fSet→ DGCatcont, I 7→ QLisse(X)⊗I sending J ′ → J to

α : QLisse(X)⊗J
′ → QLisse(X)⊗J that fits into the commutative square

Shv(XJ)
β← QLisse(X)⊗J

↑ △! ↑ α
Shv(XJ ′) ← QLisse(X)⊗J

′

Here β is the composition QLisse(X)⊗J → Shv(X)⊗J
⊠→ Shv(XJ), where the first

map comes from the inclusion QLisse(X) → Shv(X), E 7→ E ⊗ ω, here QLisse(X) is

considered with the ∗-monoidal structure. We used △: XJ → XJ ′ . Let β∨ : Shv(XJ)→
(QLisse(X)∨)⊗J be the dual map. We have

C⊗X−lisse ⊗ Shv(Y) →̃ colim
(I→J)∈Tw(fSet)

C⊗I ⊗ (QLisse(X)∨)⊗J ⊗ Shv(Y)

Consider the natural transformation of right-lax functors Tw(fSet)→ DGCatcont from

(I → J) 7→ C⊗I ⊗ Shv(XJ × Y)

to the functor (I → J) 7→ C⊗I ⊗ (QLisse(X)∨)⊗J ⊗ Shv(Y) coming from

(5) Shv(XJ × Y)→ (QLisse(X)∨)⊗J ⊗ Shv(Y)

Here (5) is dual to the composition

QLisse(X)⊗J ⊗ Shv(Y)
β⊗id→ Shv(XJ)⊗ Shv(Y)

⊠→ Shv(XJ × Y)

Passing to the colimit over Tw(fSet), we get a symmetric monoidal functor CRan×Y →
C⊗X−lisse ⊗ Shv(Y). Composing with the symmetric monoidal functor C⊗X−lisse ⊗
Shv(Y)→ QCoh(Z)⊗Shv(Y) mentioned above, we get the symmetric monoidal func-
tor

F̃Y : CRan×Y → QCoh(Z)⊗ Shv(Y)

described in their Section 12.4.5. Question: is this correct?

12

Note that F̃Y is a morphism of Shv(Y)-algebras. By definition

HeckeY (Z,M) = FunCRan×Y ⊗Shv(Y)CRan×Y (CRan×Y ,M ⊗QCoh(Z))

Note also that

CRan×Y⊗(CRan×Y ⊗Shv(Y)CRan×Y)(CRan×Y⊗Shv(Y)(QCoh(Z)⊗Shv(Y))) →̃ QCoh(Z)⊗Shv(Y)

Therefore, by adjointness ([16], 9.2.30),

HeckeY (Z,M) →̃FunCRan×Y ⊗Shv(Y)(QCoh(Z)⊗Shv(Y))(QCoh(Z)⊗Shv(Y),M⊗QCoh(Z))

→̃FunCRan×Y ⊗QCoh(Z)(QCoh(Z)⊗ Shv(Y),M ⊗QCoh(Z))

The composition CRan ⊗ Shv(Y) → CRan×Y
F̃Y→ QCoh(Z) ⊗ Shv(Y) is the map of

Shv(Y)-algebras F̃ ⊗ id, where F̃ : CRan → QCoh(Z) is their functor (12.2).

1.2.8. For 12.5.1. This is indeed sufficient for the following reason. The adjoint pair

CRan×Y ⊗QCoh(Z) ⇆ QCoh(Z)⊗ Shv(Y) : RZ,Y

in CRan×Y ⊗ QCoh(Z)-modules with the corresponding monad RZ,Y gives an adjoint
pair

(6) ind : M ⊗QCoh(Z) ⇆ HeckeY (Z,M)

by functoriality (composing with the initial adjoint pair), and the monad obtained in
(6) is as desired.

1.2.9. For 12.5.2. The fact that Ψ : CRan×Y → CRan ⊗ Shv(Y) is right adjoint to
Φ : CRan ⊗ Shv(Y)→ CRan×Y follows from ([16], 9.2.39 last part).

For each J the functor ⊠R : Shv(XJ × Y) → Shv(XJ) ⊗ Shv(Y) is Shv(XJ) ⊗
Shv(Y)-linear by ([20], 0.0.7). This is why Ψ is strictly CRan ⊗ Shv(Y)-linear. Indeed,
CRan×Y ,CRan are compactly generated, so it is enough to show that given (I1 → J1) ∈
Tw(fSet), V1 ∈ C⊗I1 ,F1 ∈ Shv(XJ1 × Y), and (I2 → J2) ∈ Tw(fSet), V2 ∈ CI2 ,F2 ∈
Shv(XJ2), M ∈ Shv(Y) when we act by the pair

(ins(I2→J2)(V2 ⊗ F2),M)

on Ψ(ins(I1→J1)(V1 ⊗ F1)) →̃ ins(I1→J1)(V1 ⊗ ⊠R(F1)), we get Ψ applied to the result
of the action of the pair

(ins(I2→J2)(V2 ⊗ F2),M)

on ins(I1→J1)(V1 ⊗ F1). This works because of ([20], 0.0.31)).

1.2.10. The claim in 12.5.3 follows from the commutativity of the diagram

Shv(XJ × Y)
q∗→ Shv(Y)

↓ ⊠R ↗ RΓ(XJ ,·)
Shv(XJ)⊗ Shv(Y)

for Y ∈ Schft, here q : XJ × Y → Y is the projection.

13

1.2.11. For 12.5.4. The morphisms VY ∗ RZ,Y → RZ,Y ⊗ F̃Y (VY) given by (12.22)
are defined as follows for any VY ∈ CRan×Y . First, we have the adjointness map
ΦΨ(VY) → VY . Now, ΦΨ(VY) ∗ Φ(RZ) →̃Φ(Ψ(VY) ∗ RZ) →̃RZ,Y ⊗ F̃Y (VY), here
Ψ(VY) ∗RZ is of course informal notation (it is understood that we tensor by Shv(Y)

the usual action). This gives the map VY ∗RZ,Y → RZ,Y ⊗ F̃Y (VY) denoted (12.22) in
their paper.

1.2.12. For 12.5.6. Their adjunction (12.24), that is, multQCoh(Z) ◦(F̃ ◦ id) : CRan ⊗
QCoh(Z) ⇆ QCoh(Z) : RZ is obtained from the adjoint pair m : CRan ⊗ CRan ⇆
CRan : mR by applying ⊗CRan

QCoh(Z) via the symmetric monoidal functor F̃ : CRan →
QCoh(Z). Here we use in the LHS the CRan-module structure via the product on the
second variable. It is understood that the above RZ is a map of QCoh(Z)-modules.

1.2.13. Their formula (11.21) is a property of the constructible sheaves theory, it is
used essentially (!!) in the proof of Prop. 12.5.5.

Proof of their (11.21). Let Y ∈ Schft. Let h : Shv(Y)⊗ Shv(Y)→ Shv(Y × Y) be

the exteriour product. The natural map hhR(△∗ ωY)→ ωY yields their map

(p2)∗(uShv(Y) ⊗! p!1F)→ (p2)∗(△∗ ωY ⊗! p!1F) →̃F

Let us show this is an isomorphism. We may and do assume F ∈ Shv(Y)c. For
K ∈ Shv(Y) we get

Hom(K, (p2)∗(uShv(Y) ⊗! p!1F)) →̃Hom(p∗2K,uShv(Y) ⊗! p!1F))

HomSvv(Y×Y)(p
∗
2K⊗D(p!1F), uShv(Y)) →̃HomShv(Y)⊗Shv(Y)((DF)⊗K,hRhhR(△∗ ωY))

We have hRh →̃h, because h is fully faithful, so the above complex identifies with

HomSvv(Y×Y)((DF)⊠K,△∗ ωY) →̃Hom(p∗2K,△∗ ωY⊗!(p!1F)) →̃Hom(K, (p2)∗(△∗ ωY⊗!(p!1F)))

We are done.

1.3. For version of April 3, 2022.

1.3.1. If Y is an algebraic stack locally of finite type (a classical one is sufficient, as we
are about constructible sheaves theories), then they do not really need to define T ∗Y ,
though this is done somewhere, I think. First, they use the notion of a closed Zarisky
subset in T ∗Y defined in ([9], A.3.6).

For ([9], A.3.6). Let Y is an algebraic stack locally of finite type, F be a coherent
sheaf on Y (placed in coholological degree zero). Then Tot(F) is defined in ([9], A.3.3).
My understanding is that a a Zariski-closed subset Z ⊂ Tot(F) is a compatible family
of Zariski closed subsets ZS ⊂ Tot(F |S) for any S → Y , where S is an affine scheme
of finite type. That is, for α : S′ → S a map of affine schemes of finite type, pick a
presentation Coker(E1 → E0) →̃F |S on S, where Ei are locally free sheaves on S.
So, α∗F →̃Coker(α∗E1 → α∗E0) on S′, and S′ ×S Tot(E0) →̃Tot(α∗E0). Our ZS is a
Tot(E1)-invariant closed subset in Tot(E0). We require that ZS ×S S′ identifies with
ZS′ under the above isomorphism.

1.4. For arxiv version 2.

14

1.4.1. For 1.7.1. If H ∈ CAlg(DGCatcont) is equipped with a t-structure and a sym-
metric monoidal conservative t-exact functor oblv : H → Vecte then the t-structure is
compatible with filtered colimits. It is also right complete: for any z ∈ C the natural
map colimn∈Z τ

≤nz → z is an isomorphism, so it is right complete by ([16], 4.0.10).
I think in the 3rd bullet point of 1.7.2 we have to require H♡ is generated under

filtered colimits by H♡ ∩Hc.

1.4.2. For 1.7.3. Let Hacces,c ⊂ H be the full subcategory of bounded objects, whose all
cohomologies lies in Hc ∩H♡. Then Hacces,c is a small stable Vectc-module category,
it is closed under the tensor products (under the assumptions of 1.7.2). Indeed, if
hi ∈ Hacces,c then oblv(h1h2) →̃ oblv(h1) oblv(h2) ∈ Vectc, so each cohomology of
h1h2 is sent by oblv to a finite-dimensional vector space, so each cohomology of h1h2
lies in Hc ∩ H♡. Moreover, if h ∈ Hc ∩ H♡ then h is dualizable in H, and h∨ ∈
H♡ ∩Hc. Indeed, since oblv is symmetric monoidal, oblv(h∨) is the dual of oblv(h).
Since oblv(h) ∈ Vect♡ ∩Vectc and h conservative, h∨ ∈ H♡ ∩Hc by the assumptions
of 1.7.2.

Let hi ∈ H with h1 dualizable in H. Then HomH(1, h
∨
1 ⊗ h2) →̃HomH(h1, h2).

Indeed, for V ∈ Vect,

MapVect(V,HomH(1, h
∨
1 ⊗ h2)) →̃ MapH(V ⊗ 1H , h

∨
1 ⊗ h2)

→̃ MapH(V ⊗ h1, h2) →̃ MapVect(V,HomH(h1, h2))

So, the assumptions of 1.7.2 imply that for hi ∈ Hc ∩H♡ one has HomH(h1, h2) ∈
Vectc, because h∨1 ∈ Hc ∩H♡, and h∨1 ⊗ h2 ∈ Hc ∩H♡ also.

1.4.3. For 1.7.6. They use ([11], ch. II.1, Lm. 1.2.4) to see that Hacces → H is t-exact.
The map Hacces → H is fully faithful by (HTT, 5.3.5.11).

I think in the 3rd bullet point of 1.7.2 we have to require H♡ is generated un-
der filtered colimits by H♡ ∩ Hc. Let us then show that for any n, the functor
(Haccess)≥−n → H≥−n is an equivalence. We know it is fully faithful, also its im-
age is closed under filtered colimits. So, for each m ≤ n, H♡[m] is in the essential
image. For each z ∈ H≥−n now z →̃ colimm∈Z τ

≤mz in H by ([16], 4.0.10), because H
is right complete. Now τ≤mz ∈ (Haccess)≥−n, and (Haccess)≥−n is closed under filtered
colimits in H. So, z ∈ (Haccess)≥−n.

1.4.4. For 1.7.10. They assume in this lemma that H is a gentle Tannakian category.
If h ∈ Hc ∩H♡ then for V ∈ Vectc we get

MapH(h, V ⊗ 1) →̃ MapH(V
∨ ⊗ h, 1H) →̃ MapVect(V

∨,HomH(h, 1H))

→̃ MapVect(HomH(h, 1H)
∨, V)

Both functors V 7→ MapH(h, V ⊗1), V 7→ MapVect(HomH(h, 1H)
∨, V) preserve filtered

colimits, so this also holds for V ∈ Vect. We used (HA, 4.6.2.1).
Let h ∈ H<0. Then HomH(h, 1) ∈ Vect>0. Indeed, for W ∈ Vect≤0 we get

MapVect(W,HomH(h, 1)) →̃ MapH(W ⊗ h, 1) = ∗, because 1 ∈ H♡, as oblv is con-
servative and t-exact.

15

Let now h ∈ (Haccess,c)<0, in particular h is bounded and each cohomology is in
Hc ∩H♡. Then HomH(h, 1) ∈ Vectc ∩Vect>0, so HomH(h, 1)

∨ ∈ Vect<0. This shows
that for any n the functor coinvH sends H≥−n ∩H≤0 to Vect≤0.

Fort any z ∈ H, z →̃ limn τ
≥−nz inH by ([16], 4.0.10 Remark). Now let h ∈ H. Then

for any m, τ≥−m(limn coinvH(τ
≥−nh)) →̃ τ≥−m(coinvH(τ

≥−mh)). Now for W ∈ Vect,

MapVect(limn
coinvH(τ

≥−nh),W) →̃ lim
m∈Z

MapVect≥−m(τ
≥−m(lim

n
coinvH(τ

≥−nh)), τ≥−mW)

→̃ lim
m∈Z

MapVect≥−m(τ
≥−m(coinvH(τ

≥−mh)), τ≥−mW) →̃ lim
m∈Z

MapVect(coinvH(τ
≥−mh), τ≥−mW)

→̃ lim
m∈Z

MapH(τ
≥−mh, (τ≥−mW)⊗ 1H) →̃ MapH(h,W ⊗ 1H),

because H is left complete.

1.4.5. For 14.1.2. The nilpotent cone N ⊂ g is the zero fibre of g → g//G. Here
g//G = Spec k[g]G.

Question What the nilpoitence of (FG, A ∈ H0(X, g∨FG ⊗ Ω)) means if there is no
G-invariant bilinear form on g?

1.4.6. For 14.1.5. This means that BunG is Nilp-trancatable in the sense of F.8.6.
Recall that for N ⊂ T ∗(Y) a Zariski-closed subset in a classical algebraic stack Y locally
of finite type with an affine diagonal, ShvN(Y)

constr = ShvN(Y) ∩ Shv(Y)constr.
For 14.1.9. Let Ui ⊂ BunG for i ∈ I be as in Thm. 14.1.5, so I is a filtered poset.

Then we may consider colimi ShvNilp(Ui) ∩ Shv(Ui)
c in DGCatnon−cocmpl and get

Ind(colimi ShvNilp(Ui) ∩ Shv(Ui)
c) →̃ShvNilp(BunG)

access,

by my Section 1.4.46. Note also that we get an adjoint pair

renBunG,Nilp : ShvNilp(BunG)
access ⇆ ShvNilp(BunG)

ren : un− renBunG,Nilp

by my Section 1.4.46.

1.4.7. For D.1.1. Let G be reductive group over an algebraically closed field k of
characteristic p, (T ⊂ B ⊂ G) be a maximal torus and Borel. Then p is called good
for G if p is greater than any coefficient of any positive root expressed as a linear
combination of simple roots. The bad primes, that is, those which are not good, are as
follows: 2 in type Bn, Cn, Dn; 2 and 3 in types G2, F4, E6, E7; 2,3,5 in type E8.

Assume first D simple. Then a prime p is called very good for G if it is good for G,
and if G is of type An−1 then p does not divide n.

1.4.8. For E.1.6. Let C ∈ DGCatcont with a t-structure, c ∈ C. By definition, c
has cohomological dimension ≤ n iff for any z ∈ C<−n one has HomC(c, z) = 0,
here HomC = H0(HomC)), and HomC denotes the relative inner hom with respect
to Vect action. In other words, this is equivalent to: for any z ∈ C<−n one has
HomC(c, z) ∈ Vect<0.

1.4.9. For E.2.10. This is close to ([11], ch. I.3, Lm. 2.4.5). I think in (a) they meant
injective map c0 → c, and not just a non-zero map.

16

1.4.10. Attention! In the version of April 3, 2022 a nonstandard definition of a com-
pactly generated t-structure is used!!! (see their E.7.4).

1.4.11. For E.4.4. Let Y be a smooth scheme of finite type. By naive duality they
mean the duality K 7→ Hom(K, eY), where Hom is the inner hom with respect to the
⊗-monoidal structure.

1.4.12. For E.5.4. Let Y be a smooth scheme of finite type, N ⊂ T ∗(Y) be a con-
ical Zariski closed subset of T ∗(Y). The functor ShvN(Y)access → ShvN(Y) is fully
faithful as it composition with ShvN(Y) → Shv(Y) is fully faithful. To see that
ShvN(Y)access → ShvN(Y) given by (E.9) is t-exact, they use ([11], II.1, Lemma 1.2.4).

To see that (ShvN(Y)access)≥−n → ShvN(Y)≥−n we use the right completeness of
Shv(Y). Namely, for any F ∈ Shv(Y), F →̃ colimn τ

≤nF by ([16], 4.0.10). Since
this isomorphism holds in Shv(Y), for any F ∈ ShvN(Y) it also holds if the colimit is
understood in ShvN(Y) by the way. Since the essential image of (ShvN(Y)access)≥−n →
ShvN(Y)≥−n contains ShvN(Y)[−n,m] for m ≥ −n, the functor (ShvN(Y)access)≥−n →
ShvN(Y)≥−n is indeed an equivalence.

1.4.13. Let us try to formalize this situation. Let Cconstr ∈ DGCatnon−cocmpl with
Cconstr small. Assume Cconstr is equipped with a bounded t-structure and C =
Ind(Cconstr), so C ∈ DGCatcont. Recall that by ([11], II.1, Lemma 1.2.4), C is equipped
with a unique t-structure compatible with filtered colimits and accessible such that the
functor Cconstr → C is t-exact. Let (Dconstr)♡ ⊂ (Cconstr)♡ be a full Serre abelian
subcategory. Let Dconstr ⊂ Cconstr be the stable subcategory generated by (Dconstr)♡,
so Dconstr is small, set D = Ind(Dconstr). The inclusion Dconstr ⊂ Cconstr is compatible
with the t-structure on Cconstr, so Dconstr inherits a t-structure. In turn, D inherits
a t-structure from Dconstr, which is accessible and compatible with filtered colimits.
We have a natural functor D → C obtained by continuous extension of the inclusion
Dconstr → C. The functor D → C is fully faithful by (HTT, 5.3.5.11) and t-exact by
([11], II.1, Lemma 1.2.4).

By ([16], 9.3.18), the t-structure on C is right complete.
Let DC ⊂ C be the full subcategory of c ∈ C such that each cohomology of c

lies in D♡. Note that DC ⊂ C is stable under filtered colimits. Let us show that
D♡ ⊂ C♡ is also a Serre subcategory, that is, closed under extensions and subquotients.
Note that for K ∈ C♡ we have K ∈ D♡ iff for any L ∈ (Cconstr)♡ and an injection
L ↪→ K we have L ∈ (Dconstr)♡. This gives that D♡ is closed under subobjects. Let
0 → K → L → M → 0 be an exact sequence in C♡ with K,M ∈ D♡. Then L lies in
D. Besides, D∩C♡ = D♡, so L ∈ C♡. Similarly, if 0→ K1 → K → L→ 0 is an exact
sequence in C♡ with K1,K ∈ D♡ then L ∈ D ∩ C♡ = D♡. Thus, D♡ ⊂ C♡ is a Serre
subcategory.

This implies that DC is stable under formation of fibres and cofibres of a morphism.
So, DC is stable. It is also presentable as the fibre product of presentable categories

DC →̃C ×∏
n C
♡
∏
nD
♡. Here the functor C →

∏
nC
♡ is given by taking all the

cohomologies. Further,

DC
≤0 →̃C≤0 ×∏

n≤0 C
♡

∏
n≤0

D♡,

17

so DC
≤0 is presentable, so the t-structure on DC is accessible. Thus, DC ∈ DGCatcont.

We have a (t-exact) full embedding D → DC, because the composition with DC → C
is a full embedding. We claim that for any n, D≥n → (DC)≥n is an equivalence.

Indeed, for any m ≥ n, D[n,m] → (DC)[n,m] is an equivalence. In adddition, DC is
right complete, because C was right complete (we are using here [16], 4.0.10). So,
for K ∈ C≥n we have K →̃ colimm τ≤mK, and each τ≤mK ∈ D≥n. Since D → C is
continuous, K ∈ D≥n also.

Assume now that C is left complete. Then DC is also left complete. Indeed, since
C →̃ limn∈Zop C

≥−n, we have a fully faithful embedding DC → limn∈Zop(DC)≥−n. If
now (xn)n≥0 ∈ limn∈Zop(DC)≥−n is a compatible collection, let x = limn xn calculated
in C. Then for any n ≥ 0, τ≥nx →̃xn ∈ (DC)≥−n, so c ∈ DC.

Thus, finally, DC identifies with the left completion of D.

1.4.14. For E.6. Let Y be a scheme if finite type, not necessarily smooth, N ⊂ T ∗(Y)
a closed conical subset. Then the definition of ShvN(Y) is not given. I accept the
following: define PervN(Y) ⊂ Perv(Y) as the full subcategory of those F ∈ Perv(Y)
such that locally in Zariski topology there is a closed embedding f : Y → Y ′ with Y ′

smooth such that SingSupp(f∗F) ⊂ (df∗)−1(N) ⊂ T ∗(Y ′), where df∗ : T ∗(Y ′)×Y ′ Y →
T ∗(Y) is the codifferential.

I assume PervN(Y) ⊂ Perv(Y) is a Serre subcategory, so that we define ShvN(Y) ⊂
Shv(Y) as the full subcategory of thoseK such that for any n,Hn(K) ∈ Ind(PervN(Y)).
We also have

ShvN(Y)constr := ShvN(Y) ∩ Shv(Y)constr

and ShvN(Y)access defined as in their E.5.5.

1.4.15. For E.6.5. It is meant there that F1 ∈ Shv(Y1)
constr.

The following holds however and is used in F.6.3. Let f : S′ → S be a smooth
morphism of schemes of finite type, NS ⊂ T ∗(S) a closed conical subset. Let NS′ be
the image of NS ×S S′ under the codifferential map T ∗(S) ×S S′ → T ∗(S′). Then for
F ∈ ShvNS (S), f

∗F ∈ ShvNS′ (S
′). This is obtained from the property in E.6.5.

1.4.16. For E.7.3. Let Fi ∈ ShvNi(Yi), here Yi is a classical scheme of finite type. Let
us show that F1 ⊠ F2 ∈ ShvN1×N2(Y1 × Y2).

Step 1: assume Fi ∈ ShvNi(Yi)
≤ni for some n1, n2 ∈ Z. Then F1⊗F2 ∈ (ShvN1(Y1)⊗

ShvN2(Y2))
≤n1+n2 . Given i ≤ n1 + n2 let us show that

Hi(F1 ⊠ F2) ∈ Ind(PervN1×N2(Y1 × Y2))

Pick r ∈ Z small enough then if we replace F1 by τ≥rF1, the above cohomology does
not change, in view of their Pp. E.7.2. Similarly, we may replace F2 by τ≥rF2 without
changing this cohomology. For the objects Fi ∈ ShvNi(Yi)

constr the claim is clear.
Step 2: let Fi ∈ ShvNi(Yi). Since Shv(Yi) is right complete, Fi →̃ colimm∈Z τ

≤mFi,
where the colimit is calculated in ShvNi(Yi). So,

F1 ⊠ F2 →̃ colim
m1,m2

τ≤m1F1 ⊗ τ≤m2F2

in Shv(Y1 × Y2). For each m1,m2, τ
≤m1F1 ⊗ τ≤m2F2 ∈ ShvN1×N2(Y1 × Y2) by Step 1,

and ShvN1×N2(Y1 × Y2) ⊂ Shv(Y1 × Y2) is closed under filtered colimits. We are done.

18

1.4.17. For E.7.4. Recall that for C ∈ DGCatcont, C
<∞, Cc ⊂ C are stable subcat-

egories. Their condition that C is generated under filtered colimits by shifts of the
objects of C≤0 ∩ Cc is reformulated as follows: C is generated under filtered colimits
by the stable subcategory C<∞ ∩ Cc. Note that C<∞ ∩ Cc ∈ DGCatnon−cocmpl, so
Ind(C<∞ ∩ Cc) ∈ DGCatcont, and we have the natural functor Ind(C<∞ ∩ Cc) → C
always extending by continuity the inclusion C<∞ ∩Cc ↪→ C. By (HTT, 5.3.5.11), the
latter functor is always fully faithful. So, their second condition is that this functor is
essentially surjective.

Clearly, if i : Ind(C<∞ ∩Cc)→ C is an equivalence then the following condition (C)
holds: if HomC(c0, c) = 0 for any c0 ∈ C≤0∩Cc then c = 0. Conversely, assume (C). It
is reformulated as follows: given c ∈ C, if HomC(c0, c) = 0 for any c0 ∈ Ind(C<∞∩Cc)
then c = 0. Let iR be the right adjoint to the inclusion i. So, (C) means that Ker(iR) =
0. By ([11], I.1, 5.4.5), (C) is equivalent to the fact that i is essentially surjective.

Their E.7.5 is my ([16], 9.3.10). One needs to assume in addition here that F : C1 →
C2 is continuous.

1.4.18. For E.7.5. This lemma holds more generally for Ci, C equipped with accessible
t-structures which are compatible with filtered colimits (by [15], C.4.4.1). Indeed, in
this case C≤0 is a Grothendieck prestable category.

1.4.19. For E.8.2. Let Z be an irreducible scheme of finite type and ηZ its generic
point. Recall that Shv(ηZ) := colimU Shv(U), where U runs through the category
of non-empty open subschemes of Z. The fact that Shv(ηZ) is equipped with a t-
structure, which is accessible and compatible with filtered colimits is explained in ([16],
9.3.19). Note also that Shv(ηZ) ⊂ Shv(Z) is a full subcategory of sheaves, which are
written as j∗F for any open non empty subscheme j : U → Z and some F ∈ Shv(U)
(the functor j∗ : Shv(U)→ Shv(Z) is fully faithful).

Define IndLisse(ηZ) := colimU IndLisse(U). The fact that IndLisse(ηZ)→ Shv(ηZ)
is fully faithful follows from ([16], 9.2.47). To see that it is essenially surjective, let
F ∈ Shv(ηZ) ⊂ Shv(Z). Then any compact object of Shv(ηZ), by ([6], Lemma 1.9.5)
writes as the image insU (FU) of some FU ∈ Shv(U)c in Shv(ηZ). There is a non-
empty open subscheme V ⊂ U such that FU |V ∈ Lisse(V), so insU (FU) lies in the
essential image of IndLisse(ηZ). Since the full subcategory IndLisse(ηZ) ⊂ Shv(ηZ) is
closed under filtered colimits, it coincides with Shv(ηZ), because Shv(ηZ) is compactly
generated.

1.4.20. For E.9.2. Here Y is a scheme of finite type. We have indeed such a functor
IndLisse(X)⊗ ShvN(Y)access → Shv0×N(X × Y)access, which is clearly fully faithful.

Indeed, Shv0×N(X × Y)access ⊂ Shv0×N(X × Y) ⊂ Shv(X × Y) are fully faithful
embeddings, and for E ∈ Lisse(X),K ∈ ShvN(Y)constr, E⊠K ∈ Shv0×N(X×Y)constr.
If D is the smallest stable subcategory of IndLisse(X) ⊗ ShvN(Y)access containing all
objects E ⊠K as above then Ind(D) →̃ IndLisse(X)⊗ ShvN(Y)access naturally. Since
Shv0×N(X×Y)access is a stable subcategory of Shv(X×Y) and is closed under filtered
colimits, we get the desired full embedding.

They appeal to ([9], A.3.8). The following is used inside: Let Y2 be a smooth
scheme of finite type, i : Y1 ↪→ Y2 be an irreducible closed subscheme, U ⊂ Y1 a

19

smooth open dense in Y1. Let F be a nonzero irreducible perverse sheaf on Y1, which
is a shifted local system on U . Then SingSupp(i∗F) containes the conormal to Y1 at
its generic point. Indeed, SingSupp(F) containes the zero section Y1 ⊂ T ∗(Y1), and
SingSupp(i∗F) = (di∗)−1(SingSupp(F)), where (di)∗ : Y1 ×Y2 T ∗(Y2)→ T ∗(Y1) is the
codifferential by ([1], Section E.6.5).

For the proof of ([9], A.3.8) in the ind-constructible context, for ([9], Section A.5.6).
Here Y1, X are smooth irreducible schemes, X is proper. Now F is an irreducible

perverse sheaf on Y1 ×X, which is lisse on
◦
U ⊂ Y1 ×X, where D′ = Y1 ×X −

◦
U is a

divisor on Y1×X, and
◦
U is a maximal open on which F is lisse. Moreover, N ⊂ T ∗(Y1) is

a closed half-dimensional conical subset and SingSupp(F) ⊂ N′ := N×{zero section}.
By Beilinson, SingSupp(F) is half-dimensional. If there is an irreducible component of
SingSupp(F) which maps dominantly to Y1×X, then it is contained in the zero section
of T ∗(Y1×X). So, indeed, for any irreducible componentD′α ofD′ there is an irreducible
component N′α of SingSupp(F) such that its image under T ∗(Y1×X)→ Y1×X contains
D′α and is not contained in the zero section of T ∗(Y1 ×X). This shows that the image
of N′α in Y1×X is D′α. Any irreducible component of N′ is of the form Nβ×X for some
irreducible component Nβ of N. So, three is an irreducible component Nα of N such
that N′α ⊂ Nα×X. This must be an equality because they are of the same dimension.

In ([9], A.5.7) they use the following. Let π : Z→ X be a smooth proper morphism
of schemes of finite type with X smooth. Let E be a local system on Z. Then π∗E
is lisse, that is, each of its usual cohomology sheaves is lisse (equivalently, each of its
perverse cohomology sheaves is a lisse perverse sheaf). Indeed, this follows from ([5],
5.1.2) because E is ULA with respect to π.

We indeed have a map as they indicate

◦
π∗Y(

◦
FY)⊗

◦
π∗X(FX)→

◦
F

It comes from a morphism FX⊗D(FX)→ ωX , which in turn gives
◦
π!
X(FX⊗D(FX))→

ω◦
Y×X

. Tensoring with
◦
F, we get a morphism

◦
F ⊗! (

◦
π∗X(FX)⊗

◦
π!
X(D(FX))) →̃

◦
F ⊗! (

◦
π∗X(FX)⊗

◦
π∗X(D(FX)))[2m]→

◦
F,

where m = dim
◦
Y. Since FX is a shifted local system, by remark below, this rewrites

as a morphism

(
◦
F ⊗! ◦π!

X(D(FX)))⊗
◦
π∗X(FX)→

◦
F

We compose the latter with the morphism coming from adjointness

◦
π∗Y(

◦
FY) →̃

◦
π∗Y(

◦
πY)∗(

◦
F ⊗! ◦π!

X(D(FX)))→ (
◦
F ⊗! ◦π!

X(D(FX)))

This finally gives a morphism

◦
π∗Y(

◦
FY)⊗

◦
π∗X(FX)→

◦
F

They claimed that
◦
π!
Y(
◦
FY)⊗

◦
π!
X(FX) →̃

◦
FY ⊠ FX

20

This is wrong as stated, one needs to add shifts. Let n = dimX,m = dim
◦
Y, here X

and Y are smooth. So,

◦
π!
Y(
◦
FY)⊗

◦
π!
X(FX) →̃

◦
FY ⊠ FX [2n+ 2m]

You actually meant
◦
π!
Y(
◦
FY)⊗! ◦π!

X(FX) →̃
◦
FY ⊠FX . So, (A.18) should also be corrected,

I would write it as

(7)
◦
π∗Y(

◦
FY)⊗End(FX)

◦
π∗X(FX)→

◦
F

instead of ! that you used. Here we denoted by End(FX) ∈ Alg(Vect) the inner hom
with respect to the Vect-action on Shv(X). The relative tensor product is calculated

with respect to the Vect-module structure on Shv(
◦
Y×X).

We may also rewrite (7) as

◦
π!
Y(
◦
FY)⊗!

End(FX)

◦
π!
X(FX)→

◦
F

We have to underline here that the tensor product in Shv(
◦
Y×X) is taken with respect

to the ⊗!-monoidal structure.

Remark: let Z be a scheme of finite type, Ki ∈ Shv(Z)constr, E a local system on Z.
Then in the constructible context we get K1 ⊗! (K2 ⊗ E) →̃E ⊗ (K1 ⊗! K2). □

Now let iy : Spec k
y→
◦
Y be the inclusion. Then

i!y(
◦
FY) →̃ RΓ(X,FX ⊗! (DFX)) →̃End(FX) ∈ Alg(Vect)

So, for the inclusion i : y ×X →
◦
Y×X we get

(8) i!(
◦
π!
Y(
◦
FY)⊗!

End(FX)

◦
π!
X(FX)) →̃ (i!

◦
π!
Y(
◦
FY))⊗!

End(FX) i
! ◦π!
X(FX))

As above n = dimX,m = dimY. Then

i!
◦
π!
Y(
◦
FY) →̃ i!y(

◦
FY)⊗ ωX →̃End(FX)⊗ ωX

and i!
◦
π!
X(FX) →̃FX . So, (8) identifies with FX . Now applying i! to (7) we get the

identity indeed.

Both sides of (7) are objects of IndLisse(
◦
Y×X), for the LHS this is because for each

r ≥ 0,
◦
π!
Y(
◦
FY)⊗! ◦π!

X(FX)⊗ (End(FX))
⊗r ∈ Lisse(

◦
Y×X)

So, since after applying i! we get an isomorphism, the map (7) itself is an isomorphism.

Note also that the tensor product in
◦
π!
Y(
◦
FY)⊗!

End(FX)

◦
π!
X(FX) may be understood as

the one in IndLisse(
◦
Y×X) with respect to the ⊗!-monoidal structure.

To finish the proof they use the following property of singular support.

21

1.4.21. Claim. Let f : Y1 → Y2 be a proper map of schemes of finite type, F ∈
Shv(Y1)

constr. Then SingSupp(f∗F) is contained in the image under the projection
T ∗(Y2)×Y2 Y1 → T ∗(Y2) of (df

∗)−1(SingSupp(F)), where df∗ : T ∗(Y2)×Y2 Y1 → T ∗(Y1)
is the codifferential.

Proof. Apply [3], Lemma 2.2(ii). □

1.4.22. For E.9.5. Let X be a smooth scheme of finite type, Y be a scheme of finite
type. Consider the full subcategory C ⊂ Ind(Perv(X×Y)) consisting ofK such that for
any inclusion F ⊂ K in Ind(Perv(X ×Y)) with F ∈ Perv(X ×Y), there is N ⊂ T ∗(Y)
closed conical half-dimensional such that SingSupp(F) ⊂ {0} ×N .

Claim C is a Serre subcategory.
Proof: it is clearly closed under subobjects. Let now K ∈ C and K → K ′ → 0
be a quotient of K in Ind(Perv(X × Y)). Let F ∈ Perv(X × Y) be a subobject
of K ′. Let K1 = Ker(K → K ′). Pick I small filtered and write K1 →̃ colimi∈I K

i
1

with Ki
1 ∈ Perv(X × Y). Then K ′ →̃ colimi∈I K/Ki

1, where the quotient is taken in
Ind(Perv(X × Y). So, the map F → K ′ factors through F → K/Ki

1 for some i. For

this i let F̃ be the preimage of F under K → K/Ki
1, so we get an exact sequence

0→ Ki
1 → F̃ → F → 0 in Perv(X × Y). Now SingSupp(F) ⊂ SingSupp(F̃). Thus, C

is closed under quotients. It is closed under extensions for the same reason. □

Let say PervsmX ⊂ Perv(X×Y) be the full subcategory of thoseK ∈ Perv(X×Y) for
which there is a closed conical half-dimensional subset N ⊂ T ∗Y with SingSupp(K) ⊂
0 × N. Note that PervsmX ⊂ Perv(X × Y) is a Serre subcategory. By ind-extending,
we get a natural map Ind(PervsmX(X × Y)) → Ind(Perv(X × Y)), which is fully
faithful and factors through C ⊂ Ind(Perv(X × Y)). It is clear that the obtained map
Ind(PervsmX(X × Y))→ C is an equivalence. In particular, C is presentable.

We now can consider the full subcategory C̄ of Shv(X × Y) of K such that for any
n, Hn(K) ∈ C. This is a stable subcategory of Shv(X × Y), which is closed under
filtered colimits. By construction, C̄ is presentable: this is the limit

Shv(X × Y)×∏
n Ind(Perv(X×Y))

∏
n

C

of presentable categories. So, C̄ ∈ DGCatcont.
Since the map C̄ → Shv(X × Y) is an exact functor preserving filtered colimits, it

preserves all colimits.
The fully faithfulness of QLisse(X) ⊗ Shv(Y) → Shv(X × Y) is explained in their

proof of E.9.5. Let us explain it takes values in C̄. If F1 ∈ QLisse(X), F2 ∈ Shv(Y)constr

then F1 ⊠F2 ∈ C̄, as for this we may assume F2 perverse and use Beilison’s result ([3],
Th. in 1.2) and their (E.12). Now let E be the smallest stable subcategory E of
Shv(X × Y) containing such objects F1 ⊠ F2. Then E ⊂ C̄. Now, the objects F1 ⊠ F1

with F1 ∈ QLisse(X), F2 ∈ Shv(Y)constr generate the essential image of QLisse(X) ⊗
Shv(Y)→ Shv(X ×Y). Since C̄ → Shv(X ×Y) preserves all colimits, we see that the
essential image is contained in C̄ (by [11], ch. I.1, 5.4.5).

22

1.4.23. For E.9.9. The following is used in the proof without an explanation. Let
E ∈ QLisse(X),F′ ∈ Shv0×N(X × Y). Then p!X(E) ⊗! F′ ∈ Shv0×N(X × Y). Here
pX : X × Y → X is the proejction, and N ⊂ T ∗(Y) is half-dimensional, X is smooth
and proper.

The desired claim follows from my Lemma A.1.3.

1.4.24. For F.2.4, let Y be a classical quasi-compact algebraic stack locally of finite
type. If f : S → Y is a smooth cover, where S is an affine classical affine scheme of
finite type, we have Shv(Y) →̃Tot(Shv(S•)), where S• is the Cech nerve of f : S → Y.
For [n] ∈ ∆ let fn : Sn → Y be the corresponding map, it is smooth. Now for
F,F′ ∈ Shv(Y), HomShv(Y)(F,F

′) →̃Tot(HomShv(Sn)((f
n)!F, (fn)!F′) by ([16], 9.2.49).

Since fn is smooth, (fn)![−dim. rel(fn)] is t-exact for the perverse t-structures.
They use the following: let C ∈ DGCatcont with a t-structure and F ∈ C≤N ,F′ ∈

C≥m. Then HomC(F,F
′) ∈ Vect≥m−N , this follows from ([16], Lm. 9.3.2). For this

reason in their notation HomShv(Sn)((f
n)!F, (fn)!F′) ∈ Vect≥m−N .

Note that F.2.4 does not hold for Y which are not quasi-compact.

1.4.25. For F.3.2. A system of compact generators of Shv(Y) whose Verdier duals are
compact is sufficient, because Shv(Y)c is idempotent complete.

1.4.26. For F.3.4. Let Y ∈ Schft, G an algebraic group of finite type, F′ ∈ Shv(Y/G),
πpt : pt → pt/G and q : Y/G → pt/G the natural maps. Let us explain their isomor-
phism

F′ ⊗! q!(πpt)∗(e) →̃F′ ⊗ q∗((πpt)∗e)[2 dim(G)]

We have (πpt)∗(e) ∈ Lisse(pt/G), so it is dualizable with respect to the ⊗-monoidal
structure on Shv(pt/G). For E ∈ Lisse(S), where S is a scheme of finite type, write
temporarily E∨ ∈ Lisse(E) for its dual with respect to the ⊗-monoidal structure,
so E∨ = Hom(E, e), where Hom is the inner hom with respect to the ⊗-monoidal
structure. One has

F′ ⊗! q!(πpt)∗(e) →̃Hom(D(q!(πpt)∗(e)),F′) →̃Hom(q∗(πpt)!e,F
′) →̃ (q∗(πpt)!e)

∨ ⊗ F′

For any E ∈ Lisse(pt/G), one has q∗(E∨) →̃ (q∗E)∨. We have

(πpt)∗e →̃Hom((πpt)!, e[−2 dim(G)]) →̃ ((πpt)!)
∨[−2 dim(G)]

So, (q∗(πpt)!e)
∨ →̃ q∗(πpt)∗e[2 dim(G)]. We are done.

1.4.27. For F.5.1. Let Y be a classical algebraic stack with an affine diagonal, so
Y is locally of finite type. (In F.5.1 it is not assumed that Y is Verdier compat-
ible!) Recall that the truncation functors for the perverse t-structure preserve the
subcategory Shv(Y)constr, so induce a t-structure on it. Besides, the ⊗-tensor prod-
uct makes Shv(Y)constr into a symmetric monoidal category (same for ⊗!). For F1 ∈
Shv(Y)c, F2 ∈ Shv(Y)constr we get F1 ⊗ F2 ∈ Shv(Y)c.

Note that if Y is quasi-compact then any object of Shv(Y)constr is bounded.
Let Y be a quasi-compact classical algebraic stack with an affine diagonal. Then

the t-structure on Shv(Y)ren := Ind(Shv(Y)constr) is compactly generated (even in the
stronger sense of their Section E.7.4) by ([11], II.1, Lm. 1.2.4).

The functor un− renY : Shv(Y)ren → Shv(Y) is t-exact by ([11], II.1, Lm. 1.2.4).

23

1.4.28. For F.5.2. For any n, (Shv(Y)ren)≥−n →̃ Ind((Shv(Y)constr)≥−n) by ([11], II.1,
Lm. 1.2.4). Now the functor

(Shv(Y)ren)≥−n → Shv(Y)≥−n

is fully faithful by ([13], 5.3.5.11) and their Pp. F.2.4.
To see it is essentially surjective on hearts, let F ∈ Shv(Y)♡. Pick I small filtered

and F →̃ colimi∈I Fi with Fi ∈ Shv(Y)c. This exists because Shv(Y) is compacty
generated. We have Shv(Y)c ⊂ Shv(Y)constr, so Fi ∈ Shv(Y)constr. Now the functors
τ≤0, τ≥0 preserve Shv(Y)constr, so colimi∈I H

0(Fi) → F is an isomorphism, because
the t-structure on Shv(Y) is compatible with filtered colimits.

Remark 1.4.29. The category Shv(Y)c is not stable under the functors τ≤n, τ≥n on
Shv(Y). Indeed, take Y = B(Gm) and q : Spec k → B(Gm). Then q!e ∈ Shv(B(Gm))

c,
however its truncations are not compact.

1.4.30. For F.5.3. Then fact that renY : Shv(Y) ⇆ Shv(Y)ren : un−renY is an adjoint
pair follows from ([13], 5.3.5.13). Indeed, un− renY is the restriction

Fune,ex((Shv(Y)constr)op,Vect)→ Fune,ex((Shv(Y)c)op,Vect)

along the exact functor (Shv(Y)c)op → (Shv(Y)constr)op. The subscript e here stands
for e-linear.

The fact that (Shv(Y)ren,⊗) is symmetric monoidal follows from ([14], 4.8.1.14).
As we have seen in my Section 1.4.27, Shv(Y)c is a module over Shv(Y)constr, so
the ⊗-tensor product makes Shv(Y) a module over (Shv(Y)ren,⊗). If Y is Verdier
compatible and quasi-compact then Shv(Y)c is a module over (Shv(Y)constr,⊗!), so
Shv(Y) becomes a module over (Shv(Y)ren,⊗!).

The inclusion Shv(Y)c → Shv(Y)constr is a map of (Shv(Y)constr,⊗)-modules. So,
renY : Shv(Y) → Shv(Y)ren is a map of Shv(Y)ren-modules. Besides, un − renY is
also a map of Shv(Y)ren-modules.

1.4.31. Remark. let D0 be a small stable category, a Vectfd-module, f : C0 → D0 a
stable subcategory and a submodule over Vectfd, so f is exact. Let L : C = Ind(C0)→
D = Ind(D0) be the ind-extension of f . Note that L is a map in DGCatcont. Then f has
the continuous right-adjoint R : D → C given as the composition with fop : Cop

0 → Dop
0

by ([13], 5.3.5.13). Recall that R∨ : C∨ → D∨ is obtained as the ind-extension of
fop : Cop

0 → Dop
0 by ([11], ch. I.1, 7.3.5). The functor L∨ : D∨ → C∨ is the restriction

along f : C0 → D0, and L∨ is the right adjoint of R∨.
Assume now given an equivalence D : Dop

0 → D0 yielding Cop
0 →̃C0 and commuting

with f . This gives identifications D →̃D∨ and C →̃C∨. Under these identifications,
we get L∨ →̃R.

They apply this in F.5.4 in the case of a Verdier-compatible stack Y to see that renY
and un− renY are mutually dual.

1.4.32. For F.5.5. Here G is a connected affine algebraic group of finite type. The
fact that e ∈ C .(pt/G)−mod generates the essential image of renpt/G : Shv(pt/G) →
Shv(pt/G)ren is obtained as follows, I think. First, we may assume that pt/G is a
prestack quotient, as this does not change Shv(pt/G). Then apply their F.4.7(ii’). For

24

an affine scheme of finite type S and a map S → pt/G, it factors as S → pt
π→ pt/G.

This is why the smallest non-cocomplete DG-subcategory of Shv(pt/G) containing π∗e
and closed under taking the direct summands is Shv(pt/G)c. This gives their claim.

Note that for πpt : pt → pt/G we have a natural map e → (πpt)∗e in Shv(B(G)),
passing to the cohomology this gives a structure of a C ·(pt/G)-module on e. This is
why renpt(πpt)∗e corresponds to e ∈ C ·(pt/G)−mod.

Note that Shv(pt/G) is compactly generated by one object π∗e. For example, for
G = Gm, C

·(pt/G) →̃ Sym(e[−2]), and e is the augmentation module of Sym(e[−2]).
Recall also that (πpt)∗e →̃ (πpt)!e[d], where d = 2dimGunip + dimGred, see their

F.3.3.

1.4.33. For F.5.7. Bad formulation: renY is left adjoint, not the right adjoint. The
same for the second displayed equation.

In F.5.8 the second displayed equation is wrong: renY should be the left adjoint.
The formulation of F.5.7 makes sense, because both renY and un − renY are mor-

phisms of Shv(Y)ren-modules, see my Section 1.4.30. Let Y = Y/G, where Y is a
scheme of finite type, G is an algebraic group (of finite type).

For the ⊗-monoidal structure the functor Shv(Y)ren ⊗Shv(pt/G)ren Shv(pt/G) →
Shv(Y) sends F ⊗K (with F ∈ Shv(Y)ren, K ∈ Shv(pt/G)) to un− renY (F)⊗ q∗K
for q : Y→ pt/G.

1.4.34. For F.5.8. Let Y be an algebraic stack locally of finite type with an affine diag-

onal. If U
α→ V ↪→ Y are quasi-compact opens then α! : Shv(V)constr → Shv(U)constr

gives α! : Shv(V)ren → Shv(U)ren by the ind-extension. Moreover, the functors
un − renV : Shv(V)ren → Shv(V) commute with α!. Passing to the limit, this gives
a functor un − renY : Shv(Y)ren → Shv(Y). Similarly, we get renY : Shv(Y) →
Shv(Y)ren by passing to the limit over the quasi-compact opens.

The fact that renY : Shv(Y) ⇆ Shv(Y)ren : un − renY is a dual pair follows from
([11], ch. I.1, 2.6.4). To get a t-structure on Shv(Y)ren we apply ([11], ch. I.3, 1.5.8)
with my explanations from ([16], 10.1.6). In particular, the t-structure on Shv(Y)ren

is accessible and compatible with filtered colimits.
The t-structure on Shv(Y)ren is right complete. To see this, by ([16], 4.0.10), it

suffices to show that for K ∈ Shv(Y)ren the natural map colimn τ
≤nK → K is an

isomorphism. This is true, because for each quasi-compact open U ⊂ Y , the t-structure
on Shv(U)ren is right complete by ([16], 9.3.18).

1.4.35. For F.6.1. Let Y be an algebraic stack, locally of finite type. Then the cotangent
comlplex of Y is not in general a vector bundle, for example, for Bunn, it is not a vector
bundle, as for L ∈ Bunn, dimH0(X,End(L)) jumps.

For GLn we get the following complex on Bunn. Let E be the universal vector bundle
on X × Bunn, q : X × Bun→Bunn the projection. Then q∗(End(E))[1] is the dual of
the cotangent complex, as far as I understand.

1.4.36. For F.6.2. Let Y be a classical algebrais stack locally of finite type, maybe non
smooth. By a compatible collection of Zariski-closed subsets NS ⊂ T ∗(S) for schemes
of finite type equipped with a smooth map S → Y they mean such a collection with

25

the property: for S′
a→ S → Y with both maps smooth, the image of NS ×S S′ under

the codifferential T ∗(S)×S S′ → T ∗(S′) equals NS′ . This is justified by the description
of SingSupp(a∗K) via SingSupp(K) given in their Section E.6.5.

1.4.37. For F.6.3. Let Y be a classical algebrais stack locally of finite type, maybe non
smooth, F ∈ Shv(Y)constr. By SingSupp(F) we mean a compatible system of closed
subsets in T ∗(S) for all S ∈ Schft equipped with a smooth map f : S → Y, namely,
to (S, f) we associate SingSupp(f∗F). This is a compatible system by their Section
E.6.5.

1.4.38. For F.6.4. Let Y be a classical algebraic stack, locally of finite type, N ⊂ T ∗(Y)
a Zariski-closed subset. Recall that ShvN(Y) = limS→Y ShvNS (S), where the limit is
over the category of (S, f), where S ∈ Schft with a smooth morphism f : S → Y. A
moprhism from (S′, f ′) to (S, f) is a smooth morphism a : S′ → S with a datum of
f ◦ a →̃ f ′. The transition functors are a! : ShvNS (S)→ ShvNS′ (S

′).

The t-structure on ShvN(Y) is defined by ShvN(Y)≤0 = lim
S
α→Y

ShvNS (S)
≤− dim.rel(α),

where for a : S′ → S we use the transition functor a!. This is a t-structure by ([11], ch.

I.3, 1.5.8), and ShvN(Y)>0 = lim
S
α→Y

ShvNS (S)
>− dim.rel(α). It is accessible, compatible

with filtered colimits (because the same holds for each ShvNS (S)) and both left and
right complete by loc.cit.

Left completeness of ShvN(Y) follows from the fact that limn ShvN(Y)
≥n and limS→Y

can be permuted:

lim
n

ShvN(Y)
≥−n →̃ lim

n
lim
S
α→Y

ShvNS (S)
≥−n−dim.rel(α) →̃

lim
S
α→Y

lim
n

ShvNS (S)
≥−n−dim.rel(α) →̃ lim

S
α→Y

ShvNS (S) →̃ShvN(Y)

The right completeness follows from the right colmpleteness of each ShvNS (S). In-
deed, it suffices (by [16],4.0.10) to show that for K ∈ ShvN(Y) the natural map

colimn τ
≤nK → K is an isomorphism. For this, it suffices to prove that for any S

f→ Y

with S ∈ Schft and f smooth, the map

f∗(colimn τ
≤nK)[dim. rel(f)]→ f∗K[dim. rel(f)]

is an isomorphism. This is clear, because f∗[dim. rel(f)] is t-exact
By definition, Perv(Y) = (Shv(Y)constr)♡. It is clear that PervN(Y) ⊂ Perv(Y) is a

Serre subcategory.
However, for the next their claim, namely the fact that Ind(PervN(Y)) →̃ShvN(Y)

♡,
one needs to assume that Y is quasi-compact in addition. Indeed, for example for
Y = ⊔i∈I Spec k with I infinite set, an object of Perv(Y) is not always compact in
ShvN(Y)

♡. Namely, Shv(Y) →̃
∏
i∈I Vecte, and a collection (e)i∈I is not compact in

Perv(Y) →̃
∏
i∈I Vect

♡
e .

They did not want to assume throughout Section F.6 that Y is quasi-compact.
Let us assume now Y quasi-compact and show that Ind(PervN(Y)) → ShvN(Y)

♡

is an equivalence. Let K ∈ ShvN(Y)
♡. Write K →̃ colimi∈I Ki in Shv(Y)♡, where

Ki ∈ (Shv(Y)constr)♡ and I filtered. This is possible by their Section F.5.2. We may

26

and do assume that each map Ki → K is a monomorphism in Shv(Y)♡. Now for any i,
Ki ∈ PervN(Y) by their chartacterization in Section F.6.4 of ShvN(Y). This shows that
PervN(Y) generates ShvN(Y)

♡ under filtered colimits. Now let F ∈ PervN(Y). Then
by their Pp. F.2.4, F is compact in Shv(Y)≥0, hence also in the full subcategories
ShvN(Y)

♡ ⊂ Shv(Y)♡. Now by ([13], 5.3.5.11), the functor Ind(PervN(Y))→ ShvN(Y)
♡

is fully faithful.

1.4.39. For F.6.6. Let us show that their functor (ShvN(Y)
ren)≥−n → (ShvN(Y)

≥−n

given by (F.12) is an equivalence. Let F ∈ (ShvN(Y)
constr)≥−n. Then by their F.2.4,

F is compact in Shv(Y)≥−n, hence also in the full subcategory (ShvN(Y)
≥−n. This

implies by ([13], 5.3.5.11) that (F.12) is fully faithful. It is also essentially surjective on
hearts because of F.6.4 which gives Ind(PervN(Y)) →̃ShvN(Y)

♡. This gives the result.
Note that their functor ShvN(Y)

ren → ShvN(Y) given by (F.11) is not fully faithful,
for example, for Y = B(Gm) and N = T ∗(Y).

1.4.40. For F.7.1. Let f : C → D be a map in DGCatcont, let C,D be equipped with
t-structures compatible with filtered colimits, assume f t-exact. Let D′′ ⊂ D be the
essential image of f . Let D′ ⊂ D be the full DG-subcategory generated under colimits
by D′′. Then D′ inherits a t-structure? Let I → D′′, i 7→ Ki be a diagram with I
small, let K = colimiKi in D, hence also in D′. For each i we have a fibre sequence
τ<nKi → Ki → τ≥nKi. Passing to the colimit, we get a fibre sequence colimi τ

<nKi →
K → colimi τ

≥nKi in D. Clearly, τ<n(Ki), τ
≥nKi ∈ D′ and colimi τ

<nKi ∈ D<n.
If I is filtered then colimi τ

≥nKi ∈ D≥n and τ≥nK →̃ colimi τ
≥nKi ∈ D′. In this

case τ<nK, τ≥nK ∈ D′. In general it is not clear.
Assume in addition that for any n, C≥n → D≥n is an equivalence. Then D′ is stable

under the truncation functors. Indeed, for K ∈ D′, τ≥nK ∈ D≥n ⊂ D′. We get a fibre
sequence K[−1] → (τ≥nK)[−1] → τ<nK in D, which shows that τ<nK ∈ D′. We are
done. Note that the t-structure on D′ is compatible with filtered colimits.

1.4.41. For F.7.7. Let Y be a quasi-compact algebraic stack, N ⊂ T ∗Y a Zariski-
closed subset. The category ShvN(Y)

access is the full cocomplete DG-subcategory of
ShvN(Y) generated by ShvN(Y) ∩ Shv(Y)constr. In particular, ShvN(Y) ∩ Shv(Y)c ⊂
ShvN(Y)

access always. Renormalization-adapted means that ShvN(Y)∩ Shv(Y)c gener-
ates ShvN(Y)

access. Note that ShvN(Y)∩Shv(Y)c ⊂ ShvN(Y)
access is stable under finite

colimits, so if it generates ShvN(Y)
access under colimits then it generated ShvN(Y)

access

under filtered colimits.
We claim that if (Y,N) is renormalization-adapted then the natural continuous func-

tor

(9) Ind(ShvN(Y) ∩ Shv(Y)c)→ ShvN(Y)
access

is an equivalence. Indeed, it is essentially surjective by definition. To see that it is fully
faithful, we show that its composition with fully faithful embeddings ShvN(Y)

access ↪→
ShvN(Y) ↪→ Shv(Y) is fully faithful. Indeed, each object of ShvN(Y)∩Shv(Y)c remains
compact in Shv(Y), we are done.

The dual pair in F.7.7(III) is obtained from ([13], 5.3.5.13).

27

For (IV): if Y is renormalization-adapted and Verdier compatible then

D : (ShvN(Y) ∩ Shv(Y)c)op →̃ShvN(Y) ∩ Shv(Y)c

is an equivalence.

1.4.42. For F.7.9. Let Y be a scheme of finite type, G an algebraic group of finite
type acting on Y , N ⊂ T ∗(Y/G) a Zarisk-closed subset. To see that (Y/G,N) is
renorlmalization-adapted, it suffices to prove the following. Let 0 ̸= F ∈ ShvN(Y/G)constr.
We need to find K ∈ ShvN(Y/G) ∩ Shv(Y/G)c with a nonzero map K → F . Let
n = dimG, q : Y → Y/G be the natural map, so q! = q∗[2n]. We get

HomShv(Y/G)(q!q
∗F [2n], F) →̃HomShv(Y)(q

∗F [2n], q!F) ̸= 0

We claim that q!q
∗F ∈ ShvN(Y/G) ∩ Shv(Y/G)c. It is compact in Shv(Y/G). To see

that q!q
∗F ∈ ShvN(Y/G) note that q!q

∗F →̃F ⊗ (q!e), and q!e admits a filtration in
Shv(Y/G) with succesive quotients being shifted constant sheaves. Since each succes-
sive quotient lies in ShvN(Y/G), the object itself is also there.

1.4.43. For F.8.2. To get t-structures we have to use ([16], 10.1.6 and below). If

U
j
↪→ V ⊂ Y are quasi-compact opens then the restriction along j is a t-exact func-

tor ShvN(V)access → ShvN(U)access, so we may apply ([11], ch. I.3, 1.5.8). We
see that the t-structures on both ShvN(Y)

ren, ShvN(Y)
access are accessible and com-

patible with filtered colimits. By definition, (ShvN(Y)
ren)≤0 →̃ limU (ShvN(U)ren)≤0

and (ShvN(Y)
ren)>0 →̃ limU (ShvN(U)ren)>0, where the limit is taken over the poset of

quasi-compact opens of the stack Y . Same for access version.
The DG-category ShvN(Y) is both left and right complete, as we have seen in F.6.4.
To see that ShvN(Y)access → ShvN(Y) is fully faithful, we use the fact that the limit

of fully faithful embedding is fully faithful ([16], 2.2.17).

1.4.44. For F.8.7. For an open immersion j12 : U1 ↪→ U2 of quasi-compact algebraic
stacks, (j12)! has perverse cohomological amplitude ≤ 0. Besides, (j12)∗ also has per-
verse cohomological amplitude ≤ n for some n. Indeed, pick a smooth cover S2 → U2,
where S2 is a scheme of finite type, let j̄ : S1 ↪→ S2 be the open immersion obtained by
base change. Then j̄∗ has cohomolocal amplitude ≤ n for some n by ([4], 4.2.3). This
is used to show that (D) is equivalent to (A).

1.4.45. For F.8.8. In the situation of F.8.6 the adjoint functors (ji1,i2)! : ShvN(Ui1) ⇆
ShvN(Ui2) : j

∗
i1,i2

respect the full subcategories ShvN(Ui1)
access, ShvN(Ui2)

access, hence
induce adjoint functors on those.

To get the adjoint pair (ji1,i2)! : ShvN(Ui1)
ren ⇆ ShvN(Ui2)

ren : j∗i1,i2 we apply ([16],

9.2.53).

1.4.46. For F.8.10. For (a) use ([11], I.1, 7.2.7). Recall that DGCatnon−cocompl admits
filtered colimits, so we have colimi ShvN(Ui)

constr taken in DGCatnon−cocmpl, where the
transition functors are (ji1,i2)!. Then

(10) Ind(colimi ShvN(Ui)
constr) →̃ colimi ShvN(Ui)

ren →̃ShvN(Y)
ren

in DGCatcont.

28

For (b) assume ShvN(Y) compactly generated. Consider the dual pair (ji)
∗ : ShvN(Y) ⇆

ShvN(Ui) : (ji)∗ in DGCatcont. We see that (ji)
∗ preserves compactness. Besides, (ji)

∗

is essentially surjective (it is a localization), so ShvN(Ui) is compactly generated. The
opposite implication is clear.

For (c), recall that ShvN(Y)
acess →̃ colimi ShvN(Ui)

access in DGCatcont. Assume first
each (Ui,N) renormalization-adapted. By (9) we get that ShvN(Y)

acess is compactly
generated by the union of objects of the form (ji)!K for K ∈ ShvN(Ui) ∩ Shv(Ui)

c.
For such an object we have (ji)!K ∈ ShvN(Y) ∩ Shv(Y)c, because (ji)! : Shv(Ui) →
Shv(Y) has a continuous right adjoint. So, ShvN(Y)

acess is generated under colimits by
ShvN(Y)∩Shv(Y)c. Moreover, in this case we may consider colimi ShvN(Ui)∩Shv(Ui)c
in DGCatnon−cocmpl and then

Ind(colimi ShvN(Ui) ∩ Shv(Ui)
c) →̃ShvN(Y)

acess,

Conversely, assume (Y,N) remormalization-adapted. Then the objects of ShvN(Y)∩
Shv(Y)c are compact in ShvN(Y)

access, so the evident functor Ind(ShvN(Y)∩Shv(Y)c)→
ShvN(Y)

access is fully faithful. It is also essentially surjective by definition (given in
F.8.4), so it is an equivalence. For each i, the adjoint pair (ji)

∗ : ShvN(Y) ⇆ ShvN(Ui) :
(ji)∗ respects the full subcategories ShvN(Y)

access, ShvN(Ui)
access, hence yield an ad-

joint pair denoted by the same symbols

(ji)
∗ : ShvN(Y)

access ⇆ ShvN(Ui)
access : (ji)∗,

where the right adjoint is fully faithful. So, the left adjoint here is essentially surjective.
Now the claim follows from the fact that for K ∈ ShvN(Y) ∩ Shv(Y)c we have j∗iK ∈
ShvN(Ui) ∩ Shv(Ui)

c. These objects compactly generate ShvN(Ui)
access.

In the situation of F.8.6 the adjunction renY,N : ShvN(Y)
access ⇆ ShvN(Y)

ren :
un − renY,N is obtained as follows. For each i, we have an adjunction renUi,N :
ShvN(Ui)

access ⇆ ShvN(Ui)
ren : un − renUi,N. Moreover, the functors un − renUi,N

are compatible with the !-restrictions transition functors, so give by passing to the
limit the functor un − renY,N. The functors renUi,N are compatible with the functors
(ji1,i2)!, so give by passing to the colimit the functor renY,N : colimi ShvN(Ui)

access →
colimi ShvN(Ui)

ren. The adjointness of the pair (renY,N, un− renY,N) follows now from
([16], 9.2.39).

1.4.47. Category of relative groupoids Grpdrel(C). Let C ∈ 1−Cat admit finite products.
We want to define the category of relative groupoids in C denoted Grpdrel(C). For a
groupoid ∆op → C given by its value H on [1] say that it is acting on Y, where Y is
its value on [0]. An object of our category will be a pair c ∈ C and H ∈ Grpd(C/c).
A morphism from (H, c) to (H′, c′) should be a map c′ → c in C and a morphism
H ×c c′ → H′ in Grpd(C/c′) inducing an isomorphism Y×c c′→̃Y′ on the values at [0].
So, Grpdrel(C) should be equipped with a projection Grpdrel(C)→ Cop sending (H, c)
to c.

Recall that the functor Fun([1],C) → C of evaluation at 1 is a bicartesian fibration
by ([16], 2.2.120). For a morphism from (x1 → c1) to (x2 → c2) in Fun([1],C) this is a
cartesian arrow over c1 → c2 iff the induced map x1 → c1 ×c2 x2 is an isomorphism.

29

I propose the following definition. First, there is a functor F : Cop → 1−Cat sending
c to Grpd(C/c), and a map c′ → c to the pullback functor Grpd(C/c) → Grpd(C/c′),
H 7→ H ×c c′. It is defined as follows.

Let X ⊂ Fun(∆op × [1],C) ×Fun(∆op×{1},C) C be the following full subcategory. An
object of the ambient category is (X• → c), where c ∈ C and X ∈ Fun(∆op,C/c). We
require that X• lies in the full subcategory Grpd(C/c) ⊂ Fun(∆op,C/c), that is, for any
S, S′ ⊂ [n] with S ∩ S′ = {s} the diagram

X(S) ← X([n])
↓ ↓

X({s}) ← X(S′)

is cartesian in C/c. My understanding is that X→ C sending the above point to c is a
cartesian fibration giving the desired functor.

Consider now the category of correspondences Corr(X) equipped with the projection
Corr(X)→ Corr(C). An object of Corr(X) is (X• → c) ∈ X. A morphism in Corr(C)
from (X• → c) to (X ′• → c′) is given by a diagram X• ← Y • → X ′• in X over a
diagram c ← cY → c′ in C. in Let now Grpdrel(C) ⊂ Corr(X) be the full subcategory
given by the properties:

• the arrow X• ← Y • is cartesian in X over c← cY in C, so Y • →̃X• ×c c′ in C;
• The map Y 0 → X ′0 is an isomorphism in C, hence cY → c′ is also an isomor-
phism in C.

We get the projection Grpdrel(C)→ Cop sending (X• → c) to c.
Question Is this a correct definition for the following lemma to hold?

Lemma 1.4.48. There is a natural functor Grpdrel(C)→ Alg(Corr(C)).

Proof. We send (X• → c) to X1 ∈ Alg(Corr(C)) naturally. Let now be given a map
from (X• → c) to (X ′• → c′) in Grpdrel(C), it is realized by a map c′ → c in C and a
morphism X• ×c c′ → X ′• in Grpd(C/c′) inducing an isomorphism X0 ×c c′ →̃X ′0.

First, consider the morphism from X1 to X1 ×c c′ in Cop ⊂ Corr(C) given by the
projection X1 ×c c′ → X1. It is naturally a morphism in Alg(Corr(C)). Besides, the
map X1 ×c c′ → X ′1 in C ⊂ Corr(C) is also naturally a morphism in Alg(Corr(C).
Their composition is the desired morphism in Alg(Corr(C)). □

1.4.49. For Hecke actions. Let C ∈ Alg(1− Cat) be a monoidal category, A ∈ 1− Cat
then on Fun(A,C) we get a monoidal structure with the pointwise tensor product by
([14], 2.1.3.4) and ([16], 3.0.69) with the property Fun(A,Alg(C)) →̃Alg(Fun(A,C)). To

be precise, the product of f1, f2 ∈ Fun(A,C) is the functor A→ A×A
f1×f2→ C×C

m→ C,
where m is the product in C, and the first map is diagonal. This is used in ([9], B.2.1).

For ([9], B.2.6). The category Grpd(PreStklft) of groupoids in PreStklft classifies
pairs (H,Y), where Y ∈ PreStklft, and H is a groupoid acting on Y.

If C ∈ 1− Cat say that a groupoid X : ∆op → C in C is over c ∈ C if it is an object
of Grpd(C/c).

30

The correct definition of the category they wanted to denote by Grpd /PreStk /Sch in
B.2.6 should use the category of relative groupoids from the previous subsection. Its pre-
cise definition is the full subcategory of those objects (X• → Z) ∈ Grpdrel(PreStklft)
such that Z ∈ Sch.

In ([9], B.2.6-B.2.9) evident mistake. Consider the category Grpd(PreStklft) clas-
sifying H ∈ Grpd(PreStklft) acting on Y ∈ PreStklft (so, Y is the value at [0] ∈ ∆
of our groupoid). Though H ∈ Alg(Corr(PreStklft)), this does not define a func-
tor Grpd(PreStklft) → Alg(Corr(PreStklft)). Namely, for a map c : H′ → H in
Grpd(PreStklft) over d : Y′ → Y the map d is not a map in Alg(Corr(PreStklft)) in
general. However, assume H ∈ Grpd(PreStk/Z). If Z ′ → Z is a map in Sch and H′

is obtained from H by the base change Z ′ → Z then c can be viewed as a map in
(PreStklft)

op ⊂ Corr(PreStklft), and it is indeed a morphism in Alg(Corr(PreStklft)).
From Lemma 1.4.48 we get a natural functor

Grpd /PreStk /Sch→ Alg(Corr(PreStklft))

Their functor (B.7) from B.2.8 now makes sense. Let α : I → J be a map in fSet.
Let △: XJ → XI be the induced map. By HeckeI we mean the global Hecke stack
classifying (FG,F

′
G, {xi})i∈I), where FG,F

′
G are G-torsors on X, FG →̃F′G |S×X−∪ixi is

the isomorphism of G-torsors on the complement to the union of graphs of xi. Define
h←, h→ by the diagram

BunG×XI h
←
← HeckeI

h→→ BunG×XI ,

where h←, h→ sends the above point to (FG, (xi)) and (F′G, (xi)) respectively.
Then in general there is no map HeckeJ → HeckeI for given α. We only have a

correspondence

(11) HeckeI
a← HeckeI ×XIXJ b→ HeckeJ

Indeed, if {xj} ∈ XJ and {yi} ∈ XI is its image under △ then the inclusion S ×X −
∪jxj ⊂ S ×X − ∪iyi is strict in general.

Note that HeckeI is a groupoid over BunG×XI , we have the diagram pr, act :
HeckeI → BunG×XI , where pr sends (FG,F

′
G, {xi}) to (FG, {xi}) and act sends it

to (F′G, {xi}). So, HeckeI ×XIXJ is a groupoid over BunG×XJ . The above map a
can be seen as a map in PreStkoplft ⊂ Corr(PreStklft), and as such it is a morphism in

Alg(Corr(PreStklft)) from HeckeI to HeckeI ×XIXJ . So,

a! : Shv(HeckeI)→ Shv(HeckeI ×XIXJ)

is monoidal. Now b is a morphism of groupoids acxting on BunG×XJ , so this is
a morphism in Alg(Corr(PreStklft)). So, the composition in (11) is a morphism in

Alg(Corr(PreStklft)). It gives rise to the monoidal functor b∗a
! : Shv(HeckeI) →

Shv(HeckeJ).

1.4.50. Generalities. To make things more explicit, consider the composition

Grpd /PreStk /Sch→ Alg(Corr(PreStklft))→ DGCatMon

31

The first functor send H acting on Y over Z to H ∈ Alg(Corr(PreStklft)) with the mul-

tiplication given by the diagram H×H← H×Y H
m→ H, and the unit correspondence

Spec k ← Y→ H.
Consider two object (H,Y, Z), (H′,Y′, Z ′) ∈ Grpd /PreStk /Sch. By definition, a

morphism in Grpd /PreStk /Sch from H to H′ is a morphism Z ′ → Z in Sch (giving
rise by base change to β : Y′ → Y in PreStklft) and a morphism H ×Z Z ′ → H′ in
Grpd((PreStklft)/Z′).

Such a datum defines a diagram H
a← H ×Z Z ′

b→ H′ in PreStk, here a is the
projection. Moreover, let K ∈ Shv(H), F ∈ Shv(Y). Then

β!(K ∗ F) →̃ (a!K) ∗ (β!F)

Now the action of Shv(H ×Y Y′) on Shv(Y′) factors through the monoidal functor
b∗ : Shv(H ×Y Y

′)→ Shv(H′). So, we get as desired

β!(K ∗ F) →̃ (b∗a
!K) ∗ (β!F),

where the RHS stands for the action of Shv(H′) on Shv(Y′).

1.4.51. For ([9], B.3.2). An explanation is missing here, as HeckelocI is not locally of
finite type. First, for I ∈ fSet we have a group scheme L+

I (G) onXI whose fibre over xI

is the scheme of maps DxI → G. This is a placid group scheme over XI in the sense of

[18] by ([23], Lemma 2.5.1). Consider the stack quotients XI/L+
I (G). For S ∈ Schaffft ,

the stack HeckelocI has as S-points the collections xI ∈ XI(S), FG,F
′
G,FG →̃F′G | ◦

D
xI

,

where FG,F
′
G are G-torsors on DxI . We have a diagram

XI/L+
I (G)

h←← HeckelocI
h→→ XI/L+

I (G),

where h← (resp., h→) sends the above point to (FG, x
I) (resp., to (F′G, x

I)).
We define Shv(XI/L+

I (G)) via our general conventions of ([20], 0.0.40). Similarly,

trivializing FG say, we may write HeckelocI as a quotient of an ind-scheme of ind-finite

type by a placid group scheme, so ([20], 0.0.40) also gives a definition of Shv(HeckelocI).

The monoidal operation on Shv(HeckelocI) is defined not as usually! Namely, we have
the diagram

HeckelocI ×HeckelocI
pr1× pr2← HeckelocI ×XI/L+

I (G)Hecke
loc
I

m→ HeckelocI

and for Ki ∈ Shv(HeckelocI) we would like to set K1 ∗K2 →̃m∗(pr1×pr2)
!(K1 ⊠K2).

However, the functor (pr1×pr2)
! does not make sense in our formalism! Besides, we

would like Shv(XI/L+
I (G)) to be a Shv(HeckelocI)-module naturally. I imagine we can

try to define the convolution instead as m∗(pr1×pr2)
∗(K1 ⊠ K2). This is reasonable

because m is ind-proper.
Note that (HeckelocI , XI/L+

I (G), XI) ∈ Grpd /PreStk /Sch.

32

1.4.52. For B.3.3. They claim that (B.11) gives a functor fSet → Shv(HeckelocI),

I 7→ Shv(HeckelocI). Let us check this. For this Nick suggests that

I 7→ (HeckelocI , XI/L+
I (G), XI)

extends to a functor fSet→ Grpd /PreStk /Sch.
For α : I → J in fSet let △: XJ → XI be the induced map. For a S-point (xj) ∈ XJ

let (yi) ∈ XI be its image under △. Recall that DxJ denotes the formal completion of

the union of the graphs of xj in S ×X, and
◦
DxJ ⊂ DxJ is the open part obtained by

removing the union of the graphs of all xj . If S is affine then DxJ is an ind-object of the

category Schaff . We have closed immersions DyI ↪→ DxJ and
◦
DyI ↪→

◦
DxJ . Restricting

along these closed immersions gives a morphism fα : HeckelocJ → HeckelocI . Note that

f !
α : Shv(HeckelocI)→ Shv(HeckelocJ) is not monoidal! Namely, the preimage of the unit

section XI/L+
I (G)→ HeckelocI is much bigger than the unit section of HeckelocJ .

We have a morphism of group schemes L+
J (G)→△∗ L+

I (G) over XJ , hence maps of
stack quotients

XJ/L+
J (G)→ XJ/ △∗ L+

I (G)→ XI/L+
I (G)

The composition is given by restricting a G-torsor under DyI → DxJ essentially.
Mistake I don’t think we get this way a functor fSet → Grpd /PreStk /Sch, I 7→

(HeckelocI , XI/L+
I (G), XI), I think this is a mistake.

Maybe it does actually as Nick suggests: consider the prestack HeckelocI,α classifying

(xj) ∈ XJ for which we denote by (yi) ∈ XI its image, G-torsors F,F′ on DxJ together
with a trivialization F →̃F′ |D

xJ
−Γ

yI
. Here ΓyI is the union of graphs of all yi.

We get a correspondence

HeckelocI
aloc← HeckelocI,α

bloc→ HeckelocJ ,

where aloc is given by restricting along DyI ↪→ DxJ . The map bloc keeps the G-torsors

F,F′ and restricts the isomorphism between them under the open immersion
◦
DxJ ⊂

DxJ − ΓyI .

1.4.53. The categories Shv(HeckelocI), Shv(XI/L+
I (G)) are equipped with the perverse

t-structures as in ([20], 0.0.40).
For I ∈ fSet the square is cartesian

HeckeI
rI→ HeckelocI

↓ h← ↓ h←
BunG×XI → XI/L+

I (G),

where the low horizontal arrow is the restriction along DxI → S ×X. For this reason
the square

HeckeI ×BunG×XI HeckeI
m→ HeckeI

↓ ↓ rI

HeckelocI ×XI/L+
I (G)Hecke

loc
I → HeckelocI

is also cartesian. Here m is the composition map for the corresponding groupoid.

33

Mistake Dennis used the functor r!I in ([9], B.3.3). This functor does not make
sense, only r∗I makes sense according to our conventions!

I think one gets (r∗IK1) ∗ (r∗IK2) →̃ r∗I(K1 ∗K2) for Ki ∈ Shv(HeckelocI). We also have
a cartesian square

XI × BunG
u→ HeckeI

↓ ↓
XI/L+

I (G)
u→ HeckelocI ,

where u is the unit section of the corresponding groupoid.

1.4.54. Let G be reductive over k, so Ǧ is reductive over e. Let Λ+ be the set of
dominant coweights of G. Recall that

Rep(Ǧ) →̃
∏
λ∈Λ+

Vect →̃ ⊕
λ∈Λ+

Vect

by ([16], 9.4.2). Write V λ for an irreducible Ǧ-module over e with h.w. λ. The
functor oblv : Rep(Ǧ)→ Vect sends a collection (Wλ) ∈ ⊕

λ∈Λ+
Vect to ⊕λ(V λ ⊗Wλ) ∈

Vect. Now (Wλ) ∈ Rep(Ǧ)≤0 iff each Wλ ∈ Vect≤0. The t-structure on Rep(Ǧ) is
accessible, compatible with filtered colimits, left and right complete by ([16], 9.4.2).
The t-structure on Rep(Ǧ) is compactly generated in the sense of ([10], 6.3.8). Indeed,
for any C ∈ DGCatcont compactly generated with an accessible and compatible with
filtered colimits t-structure assume that Cc is preserved by the truncation functors.
Then the t-structure on C is compactly generated.

For I ∈ fSet, we conclude that Rep(Ǧ)⊗I is compactly generated with a com-
pactly generated t-structure by ([16], Lemma 9.3.7). In particular, the t-structure on
Rep(Ǧ)⊗I is accessible and compatible with filtered colimits by ([16], Lemma 9.3.5).

Recall that Rep(Ǧ) is rigid, so Rep(Ǧ)⊗I →̃Rep(ǦI) by ([11], ch. I.3, 3.4.2). By
([11], I.3, 2.4.3), the natural map

(12) D+(Rep(ǦI)♡)→ Rep(ǦI)+

is an isomorphism. So, Rep(ǦI) identifies with the left completion of D+(Rep(ǦI)♡),
which is D(Rep(ǦI)♡) in the sense of ([14], 1.3.5.8). Indeed, Rep(ǦI)♡ has enough
projective objects, so we apply ([14], 1.3.5.24 and 1.3.3.16).

1.4.55. We try to correct the end of the proof of ([9], Pp. B.2.3) as follows. We want to
construct a natural transformation τ of functors fSet→ DGCatMon from the functor
I 7→ Rep(Ǧ)⊗I to I 7→ Shv(HeckeI).

As in ([5], 3.2.1), we denote by ∗ : SphGI →̃SphGI the equivalence coming from

the swap of HeckelocI permuting FG and F′G. We denote by the same symbol the

autoequivalence of Rep(ǦI) obtained via the Satake equivalence SphGI →̃Rep(ǦI).
For I ∈ fSet we first define a functor Rep(ǦI)♡ → Shv(HeckeI) as follows. Let

Hecke
I,
◦
XI
⊂ HeckeI be obtained from HeckeI by the base change

◦
XI → XI , this is the

complement to all the diagonals. Given Vi ∈ Rep(Ǧ)♡∩Rep(Ǧ)c for i ∈ I, we have the

34

perverse sheaf
◦

LocHecke(⊠iVi) on Hecke
I,
◦
XI

defined via the usual Satake equivalence,

we denote by LocHecke(⊠iVi) its intermediate extension to HeckeI .
To be precise, the normalization is as follows. Let Bun

G,
◦
XI

be the stack classifying

FG ∈ BunG, x
I ∈

◦
XI and a trivialization of FG over DxI . Let Gr

G,
◦
XI

be the ind-scheme

classifying (xI ∈
◦
XI ,FG, β), where FG is a G-torsor on DxI , and β is its trivialization

on
◦
DxI . We have an isomorphism

γ← : HeckeI →̃ Bun
G,
◦
XI
×L+

I (G) Gr
G,
◦
XI

,

such that the projection h← : HeckeI → BunG×XI identifies with the projection

Bun
G,
◦
XI
×L+

I (G) Gr
G,
◦
XI
→ BunG. By definition,

◦
LocHecke(⊠iVi) identifies with

IC(BunG)⊠̃Loc⊠iVi . Here Loc⊠iVi is the perverse sheaf on Gr
G,
◦
XI

attached to ⊠iVi

via the usual Satake equivalence. Our functor τ : Rep(ǦI)♡ → Shv(HeckeI) is given
by

⊠iVi 7→ LocHecke(∗(⊠iVi))[| I | +dimBunG],

for Vi ∈ Rep(Ǧ)♡ ∩ Rep(Ǧ)c, so the result is a shifted perverse sheaf. The ∗ is added
to make this definition compatible with he one from [5], and it is necessary to get a left
action, not a right action.

By ind-extension, this gives a functor

τ : Rep(ǦI)♡ → Shv(HeckeI)
♡[| I | +dimBunG],

which is an exact functor of abelian categories.
The category Rep(ǦI)♡ has enough injective objects, so we may consider the sta-

ble category D+(Rep(ǦI)♡) defined in a way dual to ([14], 1.3.2.7). Recall that
Shv(HeckeI) is right complete by ([20], 0.0.10). By the dual version of the univer-
sal property ([14], 1.3.3.2), the above functor extends naturally to a left t-exact functor
D+(Rep(ǦI)♡) → Shv(HeckeI), which is also exact. By ([14], 1.3.3.6), the latter
functor is t-exact. Since the t-structure on Shv(HeckeI) is left complete (by [20],
0.0.28), passing to the left completions and using (12), we get the desired functor
τ : Rep(ǦI) → Shv(HeckeI). The latter functor is a map in DGCatcont by ([16],
9.3.21).

Let us check that τ is monoidal and functorial in I ∈ fSet. For the diagram

HeckeI ×HeckeI
q← HeckeI ×BunG×XI HeckeI

m→ HeckeI

given V ′i , Vi ∈ Rep(Ǧ)♡∩Rep(Ǧ)c the complex q!(τ(⊠Vi)⊠τ(⊠V ′i)) is placed in perverse
degree −dimBunG− | I |. The usual Satake gives

m∗q
!(τ(⊠Vi)⊠ τ(⊠V ′i)) →̃ τ(⊠i(Vi ⊗ V ′i))

by ([25], Pp. IV.3.4). My understanding is that τ(⊠iVi) is ULA for HeckeI → XI , see
[25]. This implies that τ is monoidal.

35

Let us verify the functoriality of τ on I ∈ fSet. If α : I → J is a map in fSet, recall
the diagram (11). From the ULA property we get that a!τ(⊠Vi) ∈ Shv(HeckeI ×XIXJ)
is placed in perverse degree −dimBunG− | J |.

Note that if α is injective then △: XJ → XI is smooth, so △! [−dim. rel(△)] is
t-exact, so in this case the latter claim is evident.

Given Vi ∈ Rep(Ǧ)♡ ∩ Rep(Ǧ)c, we must show that

(13) b∗a
!τ(⊠iVi) →̃ τ(⊠jWj),

where Wj = ⊗i∈α−1(j)Vi.
CASE of α : I → J injective. In this case Wj = e for j /∈ α(I), and the map

b : HeckeI ×XIXJ → HeckeJ is a closed immersion. The isomorphism (13) is evident
in this case.

CASE of α : I → J surjective. In this case △: XJ → XI and a are closed immersions,
and b : HeckeI ×XIXJ → HeckeJ is an isomorphism. The isomorphism (13) holds in
this case, this is a part of the classical Satake equivalence.

The general case follows formally as a combination of these two.
The natural transformation τ is well-defined on objects and on morphisms, the func-

toriality on I is explained below. The relation with the factorizable version of Satake
is also explained below.

1.4.56. To summarize, given I ∈ fSet, Vi ∈ Rep(Ǧ)♡ ∩ Rep(Ǧ)c, the action of ⊠iVi ∈
Rep(Ǧ)⊗I on K ∈ Shv(BunG×XI) is the object

(h→ × s)∗((h
← × s)K ⊗! τ(⊠iVi)) ∈ Shv(BunG×XI)

for the diagram

BunG×XI h
←×s← HeckeI

h→×s→ BunG×XI

For | I |= 1 this agrees with the functor H←G from [5].

1.4.57. Relation with the factorization claimed by Nick: let C be a monoidal factoriza-
tion category over Ran. Then for any I let CI be the category its global sections over
XI . Then CI ∈ Alg(DGCatcont), and CI depends functorially on I ∈ fSet.

1.5. Question 2: let A be a Grothendieck abelian e-linear category. Let D ∈
CAlg(DGCatcont) with an accessible t-structure compatible with filtered colimits. As-
sume A is symmetric monoidal, and the monoidal operation on A is exact separately
in each variable and preserving small colimits separately in each variable (and Vect♡-
linear in each variable). Let A → D♡ be a continuous symmetric monoidal functor,
exact functor of abelian categories, and Vect♡-linear. Assume D both left and right
complete. Let D(A) be the derived category of A in the sense of ([14], 1.3.5.8). Do

we get monoidal operations on D(A) and its left completion D̂(A)? Is the functor

D̂(A)→ D obtained by the universal property symmetric monoidal?
Nick’s answer: see appendix C in [15]. We analyze this in details below. This seems

the right approach to fill the gap in the proof of ([9], B.2.3).

36

1.5.1. Recall that an abelian category is Grothendieck if it is presentable and filtered
colimits are left exact. By Grothab Lurie denotes the ∞-category, whose objects are
Grothendieck abelian categories, and morphisms are colimit-preserving functors. Then
Grothlexab ⊂ Grothab is the subcategory, where we restrict the morphisms to those pre-
serving finite limits in addition.

Let A,B ∈ PrL be Grothendieck abelian categories. Then A ⊗ B ∈ PrL is still a
Grothendieck abelian by ([15], C.5.4.16), so Grothab by ([15], C.5.4.19) inherits a tensor
product, and becomes symmetric monoidal.

Nick wanted first to claim that there is a functor Grothlexab → 1−CatSt,cocmplcont sending

A to D̂(A), where D̂(A) is the left completion of the derived ∞-category D(A) in the
sense of ([14], 1.3.5.8). Moreover, this functor is right-lax monoidal. This is probably
nor true as stated and needs a correction. We check this.

1.5.2. Lurie introduces a notion of a Grothendieck prestable ∞-category in ([15],
C.1.4.2). For example, if A in a Grothendieck abelian category then D(A)≤0 is a
Grothendieck prestable ∞-category by ([15], C.1.4.5), here D(A) is the derived DG-
category of A in the sense of ([14], 1.3.5.8), note that D(A) is the category of spectrum
objects of D(A)≤0.

If C is a Grothendieck prestable category then C admits a generator x ∈ C, by ([15],
C.2.1.4). If moreover C is separated, then C is generated under colimits by the full
subcategory C0 ⊂ C spanned by the single object x ([15], C.2.1.7). Write Sp for the
category of spectra.

Lurie defines Groth∞ ⊂ PrL as the full subcategory spanned by Grothendieck
prestable categories in ([15], C.3.0.5). The important role is played by the category

denoted Grothlex∞ in ([15], Notation C.3.2.3). Let PrSt ⊂ PrL be the full subcategory
spanned by stable presentable categories. The first point is that we have a functor
Grothlex∞ → PrSt, C 7→ Sp(C) by ([15], C.3.2.5). Recall that for any Grothendieck
prestable ∞-category C the natural map C → Sp(C) is fully faithful and identifies C
with Sp(C)≤0 with its natural t-structure (by [15], C.1.2.10).

1.5.3. The category Groth∞ has a symmetric monoidal structure with the unit Sp≤0 by
([15], C.4.2.1). The symmetric monoidal structure on Groth∞ restricts to a symmetric

monoidal structure on the subcategory Grothlex∞ by ([15], C.4.4.2). Let Grothlex,sep∞
denote the full subcategory of Grothlex∞ , whose objects are separated Grothendieck
prestable ∞-categories.

By ([15], C.5.4.5 and C.5.4.10), we have an adjoint pair Grothlexab ⇆ Grothlex,sep∞ ,
where the left adjoint A 7→ D(A)≤0 is fully faithful, and the right adjoint sends C to
τ≤0C.

1.5.4. Denote by Grothcomp∞ ⊂ Grothsep∞ ⊂ Groth∞ the full subcategories of Groth∞
spanned by the complete and separated Grothendieck prestable ∞-categories (cf. [15],
C.1.2.12). Let L : Groth∞ → Grothsep∞ and L′ : Groth∞ → Grothcomp∞ denote the left
adjoint to inclusions. Note that L′ is the completion functor, and L sends C to Csep

by ([15], C.3.6.1). Then by ([15], C.4.6.2), Grothcomp∞ and Grothsep∞ admit essentially
unique symmetric monoidal structures for which the localization functors L,L′ are

37

symmetric monoidal. So, the inclusions

Grothcomp∞ ⊂ Grothsep∞ ⊂ Groth∞

are right-lax monoidal. The tensor product in Grothcomp∞ of C and D is C⊗̂D, the
completion of C ⊗D. The tensor product in Grothsep∞ of C and D is (C ⊗D)sep.

1.5.5. Recall that we have an adjoint pair PrL ⇆ PrSt, where the left adjoint sends
C to Sp(C) →̃C ⊗ Sp, and the right adjoint is the natural inclusion (by [14], 4.8.1.23

and 1.4.4.5). Since Sp with the sphere spectrum is an idempotent of PrL, PrSp gets a

unique symmetric monoidal structure for which the functor PrL → PrSt, C 7→ Sp(C)

is symmetric monoidal. So, the inclusion PrSt ↪→ PrL is right-lax symmetric monoidal.
Any A ∈ Grothab admits an essentially unique action of τ≤0(Sp≤0) as in ([15], C.

5.4.13), and by ([15], C.5.4.19) we get a symmetric monoidal structure on Grothab,
whose unit is τ≤0(Sp≤0). Moreover, the functor

(14) Groth∞ → Grothab, C 7→ τ≤0C

is symmetric monoidal by ([15], C.5.4.20).

The category Grothlexab inherits a symmetric monoidal structure from Grothab, and

the functor (14) restricts to a functor Grothlex∞ → Grothlexab (cf. [15], C.5.4.4).

1.5.6. In ([15], C.3.1.3) Lurie defines the ∞-category Groth+∞, whose objects are pairs

(C,C≤0), where C ∈ PrSt, and C≤0 ⊂ C is a core, that is, a full subcategory sta-
ble under small colimits and extensions. It is equipped with a cartesian fibration
q : Groth+∞ → PrSt forgetting C≤0. By ([15], C.3.1.4), we have a full embedding
Groth∞ ↪→ Groth+∞, C 7→ (Sp(C), Sp(C)≤0).

By ([15], C.4.2.3), Groth+∞ is equipped with a symmetric monoidal structure given
by the formula:

(C,C≤0)⊗ (D,D≤0) = (C ⊗D,m!(C≥0, D≥0)),

here m!(C≥0, D≥0) ⊂ C ⊗D is the smallest full subcategory closed under colimits and
extensions and containing c⊠ d for c ∈ C≤0, d ∈ D≤0. Then q is symmetric monoidal,
and the functor

Groth∞ → Groth+∞, C 7→ (Sp(C), Sp(C)≤0)

is symmetric monoidal!
Note that for C ∈ Groth∞ the t-structure on Sp(C) is compatible with filtered

colimits ([15], C.1.4.1). For C,D ∈ Groth∞ then LFun(D,C) ⊂ LFun(Sp(D), Sp(C))
is fully faithful and its image consists of colimit preserving functors, which are right
t-exact by ([15], C.3.1.1). Let LFunt−ex(Sp(D), Sp(C)) ⊂ LFun(Sp(D),Sp(C)) be the
full subcagory of functors which are t-exact. It is closed under filtered colimits, because
the t-structure on Sp(C) is compatible with filtered colimits. However, it is not stable
under colimits, as for example, for f ∈ LFunt−ex(Sp(D), Sp(C)), f [1] is not t-exact.

1.5.7. Remark: if C,D ∈ Groth∞ then C ⊗ D is generated under colimits by the
essential image of the functor C ×D → C ⊗D, (c, d) 7→ c⊠ d. So, Sp(C ⊗D)≤0 is the
smallest subcategory of Sp(C ⊗D) generated under colimits by the essential image of
C ×D → C ⊗D, (c, d) 7→ c⊠ d, no need to add extensions! See ([15], C.4.2.2-C.4.2.3).

38

1.5.8. The functor f : Grothlexab → Grothlex,sep∞ , A 7→ D(A)≤0 is left-lax symmetric
monoidal, because its right adjoint is symmetric monoidal. The left-lax structure on f
is not strict: already the natural map D(Sp♡)→ Sp≤0 is not an equivalence, as Jacob
confirms.

Example: if A is an algebra in Sp then we have the category A − mod(Sp) of A-

modules in Sp. By ([16], 4.0.32), A−mod(Sp) ∈ 1−CatSt,cocmplcont . The t-structure on Sp
is compatible with filtered colimits (by [16], 4.0.66). Recall that Sp≤0⊗Sp≤0 →̃ Sp≤0,
where the tensor product is taken in the sense of PrL, see ([15], C.4.1). Assume A ∈
Sp≤0. Then we define the t-structure on A −mod(Sp) so that A −mod(Sp)≤0 is the
preimage of Sp≤0 under oblv : A−mod(Sp)→ Sp. This is an accessible t-structure by
([14], 1.4.4.11), and A−mod(Sp) is compactly generated by A ([14], 7.1.2.1). We have

MapsA−mod(Sp)(A, x) →̃ oblv(x) in Sp for x ∈ A−mod(Sp). Here for C ∈ 1−CatSt,cocmplcont

and c, c′ ∈ C we write MapsC(c, c
′) ∈ Sp for the relative inner hom. The t-structure

on A−mod(Sp) is compactly generated, in the sense that A−mod(Sp)≤0 is generated
under filtered colimits by A−mod(Sp)≤0 ∩A−mod(Sp)c. Now as in ([16], 9.3.5), the
t-structure on A−mod(Sp) is compatible with filtered colimits.

Jacob: let A,A′ be algebras in Sp♡. Then the tensor product of A − mod(Sp)♡
with A′ −mod(Sp)♡ in PrL is A ⊗ A′ −mod(Sp)♡, where the tensor product A ⊗ A′

is the usual tensor product of abelian groups over Z. However, the tensor product
D(A −mod(Sp)♡) ⊗D(Z−mod(Sp)♡) D(A′ −mod(Sp)♡) will be in general different, here

the relative tensor product is taken in 1− CatSt,cocmplcont .

1.5.9. Next simplification: let VectQ be the left completion of the derived DG-category
of Q-vector spaces. Then VectQ →̃Q−mod(Sp) naturally, and Spc→ VectQ given by

Q is an idempotent in 1− CatSt,cocmplcont and also in PrL, giving the ∞-category

DGCatcont,Q := VectQ−mod(1− CatSt,cocmplcont)

of DG-categories over Q.

As in ([15], C.4.2.2), we see now that Spc
Q→ Vect≤0Q is also an idempotent in PrL, so

we get a full subcategory

Groth∞,Q := Vect≤0Q −mod(Groth∞) ⊂ Groth∞

This is the intersection Vect≤0Q −mod(PrL) ∩ Groth∞ inside PrL. We may also define

Grothlex∞,Q ⊂ Groth∞,Q as the subcategory, where we restrict maps to left exact functors.

Similarly, for n ≥ 0, Spc→ τ≤n Spc is an idempotent in PrL, so τ≤n(Vect
≤0
Q) is also an

idempotent in PrL, namely the tensor product (τ≤n Spc)⊗Vect≤0Q of two idempotents.

In particular, Spc
Q→ Vect♡Q is an idempotent in PrL.

Let Grothab,Q ⊂ Grothab be the full subcategory of those C ∈ Grothab, which admit

an action of Vect♡Q.
We get symmetric monoidal structures on Grothab,Q and Groth∞,Q such that both

Groth∞ → Groth∞,Q, C 7→ Vect≤0Q ⊗C is symmetric monoidal, and Grothab → Grothab,Q,

39

C 7→ Vect♡Q ⊗C is symmetric monoidal. Moreover, the inclusions Groth∞,Q → Groth∞
and Grothab,Q → Grothab preserve the tensor products, but not the unit objects.

The symmetric monoidal structrure on Grothab,Q restricts to a symmetric monoidal

structure on Grothlexab,Q, and similarly for Grothlex∞,Q ⊂ Groth∞,Q.
My understanding is that, as above, we have an adjoint pair

LQ : Grothlexab,Q ⇆ Grothlex,sep∞,Q : RQ

where the left adjoint LQ sends A to D(A)≤0 in the same sense, and the right adjoint
C 7→ τ≤0C is symmetric monoidal.

Claim(Nick) The left-lax structure on LQ is strict, so it is symmetric monoidal.

Proof. Let A,B ∈ Grothab,Q. We want to show that the natural map D(A ⊗ B)≤0 →
D(A)≤0 ⊗D(B)≤0 is an equivalence. Use the Gabriel-Papescu theorem ([15], Theorem
C.2.4.1). First, by ([15], C.2.0.12), there are maybe noncommutative rings A,B (in the
category of abelian groups) such that A is a localization (exact in the sense of abelian

categories) of RMod♡A, and similarly for RMod♡B. Here RModA is the category of right
A-modules in Sp with its natural t-structure.

Recall that D(RMod♡A)
− is complete by ([14], 1.3.3.16), and we know that RMod≤0A

is complete ([16], 6.1.20). The canonical functor e : D(RMod♡A)
− → RMod≤0A is an

equivalence? Let X,Y ∈ RMod♡A with X projective. Then X is a direct summand of

a free module, so ExtiRModA
(X,Y) = 0, so that e is an equivalence by ([14], 1.3.3.7).

We have RModA⊗RModB →̃ RModA⊗B, and here by A ⊗ B we mean the usual
tensor product in the category of abelian groups (or Q-vector spaces). So,

RMod≤0A ⊗RMod≤0B →̃ RMod≤0A⊗B

also by ([15], C.4.2.2). Applying the symmetric monoidal functor RQ, we get

RMod♡A ⊗RMod♡B →̃ RMod♡A⊗B

□

1.5.10. We need the following special case only. For A ∈ Grothab assume A has enough
projective objects. Recall that in this case D−(A) in the sense of ([14], 1.3.2.7) identifies
with ∪nD(A)≤n by ([14], 1.3.5.24), here D(A) is taken in the sense of ([14], 1.3.5.8).

Let A be a small abelian category, and A = Ind(A), assume A has enough projective
objects. Then A is abelian, has enough projective objects by ([13], 1.3.3.13). Write
Aproj ⊂ A for the full subcategory of projective obejcts. Note that Aproj ⊂ A is closed
under finite coproducts, so we have the presentable ∞-category PΣ(Aproj) defined in
([13], 5.5.8.8). Moreover, by ([13], 1.3.3.14) we have D(A)≤0 →̃PΣ(Aproj).

Let K be the collection of finite sets. Let 1 − Cat(K) ⊂ 1 − Cat be the subcate-
gory, where we restrict objects to small ∞-categories admitting finite coproducts, and
morphisms to the functors preserving finite coproducts. For C ∈ 1 − Cat(K) we get

PΣ(C) ∈ PrL by ([13], 5.5.8.10(1)). Moreover, if C → C ′ is a map in 1 − Cat(K) then
the induced functor PΣ(C) → PΣ(C

′) preserve small colimits by ([13], 5.5.8.15 and
5.5.8.10(2)).

40

Claim: The functor PΣ : 1−Cat(K)→ PrL is symmetric monoidal, where the source
is equipped with the symmetric monoidal structure defined in ([14], 4.8.1.4).

Proof. Recall that PΣ(C) = PK′
K (C), where K is the collection of finite sets, and K′ is

the collection of small ∞-categories, see ([13], 5.5.8.16). Our claim follows now from
([14], Remark 4.8.1.8).

For example, the unit object of 1− Cat(K) is PK
∅ (∗), because the functor 1− Cat→

1− Cat(K), C 7→ PK
∅ (C) is symmetric monoidal. □

Let now E ∈ Groth∞. Then

(15) LFun(D(A)≤0, E) →̃FunK(Aproj , E)

by ([13], 5.3.6.2), here LFun is the category of colimit preserving functors.

Assume in addition E ∈ CAlg(Groth∞), hence in PrL, and A ∈ CAlg(1− Cat(K)).
Assume even that the multiplication A×A→ A is exact in each variable, and restrict
to a map Aproj ×Aproj → Aproj , and 1A ∈ Aproj , so Aproj ∈ CAlg(1−Cat(K)). By the

above Claim, D(A)≤0 ∈ CAlg(PrL), and actually in Groth∞. Under the equivalence
(15) the symmetric monoidal functors D(A)≤0 → E correspond to symmetric monoidal
functors Aproj → E.

This applies for A = the category of finite-dimensional representations of ǦI over e,
where I is a finite set.

1.5.11. Suggestion of Nick. Recall that e is an algebraically closed field of character-
istic zero. Consider the category, say C. Its objects are presentable abelian e-linear
categories A such that there is a full subcategory A0 ⊂ Ac generating A under filtered
colimits and n ∈ N such that each object of A0 is of cohomological dimension ≤ n.
Morphisms in C are exact functors in the sense of abelian categories, which are e-linear
and preserve colimits.

Let us show that if A ∈ C then A is a Grothendieck abelian category. Let I be small

filtered, I → Fun([1],A) be a functor i 7→ (xi
αi→ yi), where αi is a monomrphism. Let

x → y be obtained by passing to colimI in A. Let z = Ker(x → y). It suffices to
show that for any a ∈ A0, Hom(a, z) = 0. For this it suffices to show that the natural
map Hom(a, x)→ Hom(a, y) is an isomorphism in Spc. This follows from the fact that
Hom(a, ·) preserves filtered colimits and from ([13], 5.3.3.3).

Question 1: My understanding is that we may consider the category Grothab,e of
Grothendieck abelian categories, which are e-linear. Namely, the preimage of Grothab
under the projection Vect♡e −mod(PrL)→ PrL. Is Grothab,e symmetric monoidal with

the tensor product over Vect♡e ? Does the subcategory Grothlexab,e ⊂ Grothab,e inherit a

symmetric monoidal structure? Does the subcategory C ⊂ Grothlexab,e inherit a symmet-
ric monoidal structure?

Consider the functor F : C → DGCatcont sending A to D(A), where D(A) is the
derived DG-category attached to A in the sense of ([14], 1.3.5.8). My understanding is
that this is indeed a functor (in view of [15], C.5). We do not need left completeness
of D(A), because we will be interested only in t-exact continuous functors from D(A)
to a DG-category left complete in its t-structure. Indeed, for I ∈ fSet, Shv(HeckeI)

41

is left complete because of ([20], 0.0.28). We invoke here the fact that the functor L′

from Section 1.5.4 is symmetric monoidal.
Question 2: is the above functor F : C→ DGCatcont symmetric monoidal? (maybe

at least on the bounded from below parts of our stable categories, this would be suffi-
cient). Namely, for A,B ∈ C the natural map D(A⊗Vect♡ B)+ → (D(A)⊗Vect D(B))+

is an isomorphism? (This would imply that it induces an isomorphism on left comple-
tions). How to prove this?

1.6. More on [1] and [2].

1.6.1. For ([2], Lemma A.2.6). The argument has evidently be corrected for H which
is not connected.

IfG is an affine connected algebraic group of finite type, the functor C ·▲ : Shv(B(G))→
Vect is completely determined by C ·▲(π∗e), where π : pt → B(G) is the natural map.
Indeed, π∗e →̃π!e[d] with d = 2dimGunip + dimGred, and π∗e is a compact generator
of Shv(B(G)) in our constructible context, see ([1], F.5.5) and my Section 1.4.32. Let
B = C ·c(G,ω), this is an algebra in Vect, and Shv(B(G)) →̃B−mod(Vect) =: B−mod
by Barr-Beck-Lurie. Moreover B is co-commutative coalgebra, because B∨ →̃C ·(G, e)
is a commutative algebra (because G is a commutative coalgebra in Schft). So, B is a
co-commutative Hopf algebra. The augmentation of B comes from G→ pt, which gives
e→ C ·(G), and in turn B → e. The object eB(G) ∈ Shv(B(G)) corresponds to the auh-

mentation module e ∈ B −mod. Now HomShv(B(G))(eB(G), eB(G)) →̃HomB−mod(e, e).

Now ([7], Example 9.1.6) says that the functor C ·▲ : Shv(B(G))→ Vect identifies with
the functor

B −mod→ Vect, M 7→ e⊗B M [−2 dim(G) + δ],

where δ = 0 if G is unipotent (resp., δ = dimG if G is reductive).
This shows that e⊗B e is bounded from above and has finite-dimensional cohomolo-

gies. Let Y1, Y2 be quasi-compact algebraic stacks, which are of the form Z/H, where
Z is a scheme of finite type, H is a linear algebraic group of finite type. For this reason
for a morphism f : Y1 → Y2 and F ∈ Shv(Y1)

constr, f▲(F) and f∗(F) has constructible
perverse cohomologies: the only nontrivial step in the proof is this claim for the pro-
jection f : Y2×B(G)→ Y2, where G is a connected linear algebraic group. In this case
we have the projection formula for F ∈ Shv(Y2)

constr, f▲(ω) ⊗! F →̃ f▲f
!F by ([20],

0.0.52). By the base change of ([2], A.3.1), C ·▲(B(G), e)⊗ωY2 →̃ f▲(ωY2). So, the claim
follows from the fact that the cohomologies of C ·▲(B(G), e) are finite-dimensional.

For f∗ in the above argument we have to show that for the projection f : Y2×B(G)→
Y2 and F ∈ Perv(Y2), f∗f

∗(F) has constructible perverse cohomologies. For this we use
the fact that C ·(B(G), e) has finite-dimensional cohomologies and argue in the same
way. This was implicit in ([2], A.2.7).

1.6.2. For ([2], B.1.4). Let Y1, Y2, Z are quasi-compact algebraic stacks (of the form
Y/G, where Y is a scheme of finite type, and G is a linear algebraic group of finite
type), so Yi are Verdier compatible. For Q ∈ Shv(Y1 × Y2) consider their functor

idZ ⊠Q : Shv(Z × Y1)→ Shv(Z × Y2), ;F 7→ (pZ,Y2)▲(p
!
Z,Y1(F)⊗! p!Y1,Y2Q)

42

for the projections pZ,Yi : Z × Y1 × Y2 → Z × Yi, pY1,Y2 : Z × Y1 × Y2 → Y1 × Y2. The
following is left in loc.cit. without an explanation.

Lemma 1.6.3. Assume Q ∈ Shv(Y1 × Y2)
c. Then idZ ⊠Q preserves compact objects.

Proof. Shv(Z × Y1)
c is the idempotent completion of the smallest stable subcategory

of Shv(Z × Y1) containing q∗K for q : S → Z × Y1, where S ∈ Schft and K ∈ Shv(S)c.
So, it suffices to show that (idZ ⊠Q)(q∗K) is compact. Let q̄ be the composition

S
q→ Z × Y1 → Y1. For the map q̄ × id : S × Y2 → Y1 × Y2 the object (q̄ × id)!Q is

compact. Indeed, the functor (q̄ × id)! admits a continuous right adjoint, as we are in
the constructible context, see ([20], 0.0.11). So, pr!S(K) ⊗! (q̄ × id)!Q is also compact,

as the category Shv(S × Y2)
c is preserved under the ⊗!-tensor product by objects of

Shv(S × Y2)
constr. The result is obtained by applying (g × id)∗ to the above object,

where g : S → Z is the corresponding map, and g × id : S × Y2 → Z × Y2. Since g is
schematic, (g × id)∗ preserves compact objects. □

1.6.4. For ([2], B.1.5). Let us be given a system of functors idZ⊠Q as in loc.cit., let
us show that for any K ∈ Shv(Z× Y1),

(16) (id⊠Q)(K) →̃ (pZ,Y2)▲(p
!
Z,Y1K ⊗

! p!Y1,Y2Q),

where Q = (idY1 ⊠Q)(uY1). Here uY1 =△∗ ω =△▲ ω for △: Y1 → Y1 × Y1.
Let q : Z× Y1 → Z be the projection. We get a commutative diagram

Shv(Z× Y1)
idZ ⊠Q→ Shv(Z× Y2)

↑ (q×id)▲ ↑ (q×id)▲

Shv(Z× Y1 × Y1)
idZ×Y1 ⊠Q
→ Shv(Z× Y1 × Y2)

↑ (id×△× id)! ↑ (id×△× id)!

Shv(Z× Y1 × Y1 × Y1)
idZ×Y1×Y1 ⊠Q

→ Shv(Z× Y1 × Y1 × Y2)
↑ K⊠· ↑ K⊠·

Shv(Y1 × Y1)
idY1 ⊠Q
→ Shv(Y1 × Y2)

Apply the maps of this diagram to the object uY1 . Its image under the left vertical
column is K. The image of Q under the write vertical column is the RHS of (16). We
are done.

1.6.5. For ([2], B.1.7). The reason to write Q2,3 ∗ Q1,2 and not in the opposite order
is the definition of composition of functors, it corresponds to (idZ⊠Q2,3)(idZ⊠Q1,2).

1.6.6. For ([2], B.2.1). Let Y1, Y2 be algebraic stacks as in my Section 1.6.2, Q ∈
Shv(Y1×Y2), and Q,Qdisc : Shv(Y1)→ Shv(Y2) the corresponding functors ”given by
kernel”. Then for K ∈ Shv(Y1)

c, the map Q(K)→ Qdisc(K) is an isomorphism.

Proof. Let a : S1 → Y1 be given with S1 ∈ Schft and F ∈ Shv(S1)
c. It suffices

to prove this for K = a∗F , as the the idempotent completion of the smallest stable
subcategory of Shv(Y1) containing such objects is Shv(Y1)

c. Let b : S2 → Y2 be
given with S2 ∈ Schft. It suffices to establish compatible system of isomorphisms

43

b!Q(K)→̃b!Qdisc(K) for all such b. Let a× b : S1×S2 → Y1× Y2 be the product of the
two maps. We get

b!Q(K)→̃(p2)▲(p
!
1F ⊗! (a× b)!Q) →̃ (p2)∗(p

!
1F ⊗! (a× b)!Q) →̃ b!Qdisc(K),

for the diagram of projections S1
p1← S1 × S2

p2→ S2. We used that p2 is schematic, so
(p2)▲ →̃ (p2)∗. □

If we assume in addition that Q ∈ Shv(Y1×Y2)
constr then for any K ∈ Shv(Y1)

c the
object Q(K) →̃Qdisc(K) ∈ Shv(Y2) is constructible, this is clear from the above proof.
In ([2], B.2.1) they forgot the assumption that Q is constructible for the above claim.

If moreover we assume Q ∈ Shv(Y1 × Y2)
c then Q→ Qdisc is an isomorphism.

Proof. It suffices to show that for any L ∈ Shv(Y2)
c the functor Shv(Y1) → Vect,

F 7→ HomShv(Y2)(L, (p2)∗((p
!
1F)⊗! Q)) is continuous. We have

HomShv(Y1×Y2)(p
∗
2L, (p

!
1F)⊗! Q) →̃HomShv(Y1×Y2)(p

∗
2L,Hom(DQ, p!1F))

→̃HomShv(Y1×Y2)(p
∗
2L⊗ D(Q), p!1F)

Since Y1×Y2 is Verdier compatible, DQ ∈ Shv(Y1×Y2)c, so p∗2L⊗D(Q) ∈ Shv(Y1×Y2)c
by ([1], F.4.4). □

Since the functor f∗ : Shv(Y2) → Shv(Y1) has a cohomological amplitude bounded
on the right, f∗ has a cohomological amplitude bounded on the left. Now if Q is
constructible, there is a constant n such that if F ∈ Shv(Y1)

≥0 then p!1(F) ⊗! Q is in
perverse degrees ≥ n. So, the functor Qdisc in this case has the cohomological amplitude
bounded on the left.

Let us show that for Q constructible the functor Q has cohomological amplitude
bounded on the right (that is, there is n such that for F ∈ Shv(Y1)

≤0 we have
Q(F) ∈ Shv(Y2)

≤n). First, the functor Shv(Y1) → Shv(Y1 × Y2), F 7→ (p!1F) ⊗!

Q →̃Hom(D(Q), p!1F) has a bounded cohomological amplitude. Indeed, Q is cohomo-
logically bounded, and p!1 has bounded cohomoogical amplidute (as ωY2 is bounded),
and the functor △! has a bounded cohomological amplitude for the diagonal map
△: Y2 → Y2 × Y2 by [4]. To finish, apply ([2], A.2.6).

1.6.7. For example, for Y = B(Gm), we get C ·▲(B(Gm), e) →̃ e ⊗B e[−1], where B =
C ·c(Gm, ω) →̃ e⊕ e[1], see my Section 1.6.1. So, it is not bounded on the left. Compare
with ([2], A.28).

1.6.8. If Y is an algebraic stack as in my Section 1.6.2, F ∈ Shv(Y)≤0,K ∈ Shv(Y)≥0

with F constructible then Hom(F,K) ∈ Shv(Y)≥0, see ([4], after 4.2.5).

1.6.9. For ([2], B.3.1). Assume given Y1, Y2 as in my Section 1.6.2. Assume given for
algebraic stacks Z as in my Section 1.6.2 a system of functors

idZ⊠Pl : Shv(Z× Y1)→ Shv(Z× Y2)

satisfying the compatibilities isomorphisms as in ([2], B.1.5) with −! replaced by −∗,
and −▲ replaced by −!. Then we may recover an object P ∈ Shv(Y1 × Y2) as in the

44

case of functors given by kernel, see my Section 1.6.4. Namely, let ps-uY =△! e for
△: Y → Y × Y . Then (idY1 ⊠Pl)(ps-uY1) →̃P .

1.6.10. Correction for ([2], B.3.2). In the RHS of the formula (B.11) one should write
((P σ

1,2)
l ⊠ idY3)(P2,3).

1.6.11. For ([2], formula (B.12)). This is not evident and should be split into several
claims. The first would be as follows, which is a generalization of ([2], B.1.5).

Lemma 1.6.12. Consider algebraic stacks Z,Z′, Y1, Y2 as in my Section 1.6.2 and a
map f : Z′ → Z.
1) The diagram commutes ”up to a natural transformation”

Shv(Z′ × Y1)
idZ′ ⊠Q
→ Shv(Z′ × Y2)

↑ (f×id)∗ ↑ (f×id)∗

Shv(Z× Y1)
idZ ⊠Q→ Shv(Z× Y2)

namely, there is a natural transformation of functors

(f × id)∗ ◦ (idZ⊠Q)→ (idZ′ ⊠Q) ◦ (f × id)∗

2) The diagram commutes ”up to a natural transformation”

Shv(Z′ × Y1)
idZ′ ⊠Q
→ Shv(Z′ × Y2)

↓ (f×id)! ↓ (f×id)!

Shv(Z× Y1)
idZ ⊠Q→ Shv(Z× Y2)

namely, there is a natural transformation of functors

(f × id)! ◦ (idZ′ ⊠Q)→ (idZ⊠Q) ◦ (f × id)!

3) Let pZ : Z× Yi → Z denotes the projection. Then there is a natural transformation
functorial in K ∈ Shv(Z× Y1), M ∈ Shv(Z)

(idZ⊠Q)(K)⊗ p∗ZM → (idZ⊠Q)(K ⊗ p∗ZM)

in Shv(Z× Y2).
3’) Let F ∈ Shv(Z). The the diagram canonically commutes

Shv(Z× Z′ × Y1)
idZ×Z′ ⊠Q
→ Shv(Z× Z′ × Y2)

↑ F⊠· ↑ F⊠·

Shv(Z′ × Y1)
idZ′ ⊠Q
→ Shv(Z′ × Y2)

Proof. Consider the diagram, where the squares are cartesian

(17)
Z′ × Y1

p̄1← Z′ × Y1 × Y2
p̄2→ Z′ × Y2

↓ f×id ↓ f×id ↓ f×id
Z× Y1

p1← Z× Y1 × Y2
p2→ Z× Y2

Let p : Z× Y1 × Y2 → Y1 × Y2 be the projection.

45

1) For K ∈ Shv(Z× Y1) we get natural maps

(f × id)∗(idZ⊠Q)(K)→ (p̄2)▲(f × id)∗(p!1K ⊗! p!Q)

→ (p̄2)▲(((f × id)∗p!1K)⊗! (f × id)!p!Q)→ (p̄2)▲((p̄
!
1(f × id)∗K)⊗! (f × id)!p!Q)

Here the first map comes from a natural transformation (f×id)∗(p2)▲ → (p̄2)▲(f×id)∗.
The second maps comes from the natural transformation

(f × id)∗(K1 ⊗! K2)→ (f × id)∗K1 ⊗! (f × id)!K2

explained in ([20], 0.1.5). Finally, the third map comes from the natural transformation
(f × id)∗p!1 → p̄!1(f × id)∗ explained in ([20], 0.1.8).

2) For K ∈ Shv(Z′ × Y1) we get natural maps

(f × id)! ◦ (idZ′ ⊠Q)(K)→ (p2)▲(f × id)!(p̄
!
1K ⊗! (f × id)!p!Q)

→ (p2)▲(((f × id)!p̄
!
1K)⊗! p!Q)→ (idZ⊠Q)((f × id)!K)

Here the first map comes from (f × id)!(p̄2)▲ → (p2)▲(f × id)!. The second map comes
from the natural transformation (f × id)!(K1⊗ (f × id)!K2)→ (f × id)!(K1)⊗!K2 from
([20], 0.1.7). The third map comes from the natural morphism (f× id)!p̄!1 → p!1(f× id)!,
see ([20], Sect. 0.1.8).

3) Our pi, p are as in (17). We have a natural map

((p2)▲(p
!
1K ⊗! p!Q))⊗ p∗ZM → (p2)▲((p

!
1K ⊗! p!Q)⊗ p∗2p

∗
ZM)

It comes from the projection formula ”up to a natural transformation” for (p2)▲ from
([20], 0.1.5). Further, p∗2p

∗
ZM →̃ p∗1p

∗
ZM . There is a natural map

(p!1K ⊗! p!Q)⊗ p∗1p
∗
ZM → p!1(K ⊗ p∗ZM)⊗! p!Q

constructed in ([20], 0.1.9), we apply the cited result to the map p1 : Z×Y1×Y2 → Z×Y1.
This gives the claim.

3’) This follows from ([20], Lemma 0.1.3). This is also ([2], B.1.5). □

Important Remark: Lemma 1.6.12 holds also for Q replaced by Qdisc with a similar
proof (the corresponding natural morphisms for ▲-version have a ∗-version also).

1.6.13. For ([2], B.3.4). It requires an explanation, we prepared the previous lemma
for this. Let us construct a natural morphism (in their notation (B.12)):

(idY2 ⊠Pl) ◦ (Q⊠ idỸ1)→ (Q⊠ idỸ2) ◦ (idY1 ⊠Pl)

Consider the diagram

Ỹ1 × Ỹ2 × Y1
p̄1← Ỹ1 × Ỹ2 × Y1 × Y2

p̄2→ Ỹ1 × Ỹ2 × Y2
τ→ Ỹ1 × Ỹ2

↓ q×id ↓ q×id ↓ q×id
Ỹ1 × Y1

p1← Ỹ1 × Y1 × Y2
p2→ Ỹ1 × Y2,

where q : Ỹ2 → pt. Here τ is the projection. Let K ∈ Shv(Ỹ1 × Y1).
By my Lemma 1.6.12, 1) we get a natural morphism

(q × id)∗(Q⊠ idỸ1)(K)→ (idỸ1×Ỹ2 ⊠Q)(q × id)∗K

46

Tensoring by τ∗P , we get morphisms

((q × id)∗(Q⊠ idỸ1)(K))⊗ τ∗P → ((idỸ1×Ỹ2 ⊠Q)(q × id)∗K)⊗ τ∗P →
(idỸ1×Ỹ2 ⊠Q)((q × id)∗K ⊗ τ∗P),

where the second map comes from my Lemma 1.6.12, 3). For the projection q2 :

Ỹ1 × Ỹ2 × Y2 → Ỹ2 × Y2 applying (q2)! to the constructed morphism, we get a map

(q2)!(((q × id)∗(Q⊠ idỸ1)(K))⊗ τ∗P)→ (q2)!(idỸ1×Ỹ2 ⊠Q)((q × id)∗K ⊗ τ∗P)

By my Lemma 1.6.12, 2), the latter maps naturally to

(idỸ2 ⊠Q)((q2)!((q × id)∗K ⊗ τ∗P)) →̃ (idỸ2 ⊠Q)(idY1 ⊠Pl)(K)

We are done.

1.6.14. For ([2], B.3.4). It is useful to add the following. Let Yi, Ỹi be as in their

Section B.3.4, let Q ∈ Shv(Y2 × Y1), P̃ ∈ Shv(Ỹ1 × Ỹ2), Q
′ ∈ Shv(Y1 × Ỹ1). The map

(B.12) gives a morphism

(18) P̃ ∗l (Q′ ∗Q)→ (P̃ ∗l Q′) ∗Q

1.6.15. For ([2], B.3.5). This follows from my Remark after the proof of my Lemma 1.6.12.

1.6.16. For ([2], B.4.1). On a separated scheme of finite type S the miraculous functor

MirS : Shv(S)→ Shv(S) is given by K 7→ eS ⊗! K. The functor idlS = ulS : Shv(S)→
Shv(S) is given by K 7→ ω ⊗K.

If in addition S is smooth of dimension n then it is miraculous. Indeed, MirS is given
by the kernel uS [−2n], and the kernel uS defines the identity functor.

1.6.17. For ([2], B.4.2). For convenience, let Y1, Y2 be algebraic stack as in my Sec-
tion 1.6.2. Then MirY1 ⊠ idY2 : Shv(Y1 × Y2) → Shv(Y1 × Y2) for the diagram of
projections

(19)
Y1 × Y2

p1← Y1 × Y1 × Y2
p2→ Y1 × Y2

↓ p
Y1 × Y1

is given by

(MirY1 ⊠ idY2)(K) = (p2)▲(p
!
1K ⊗! p!(ps-uY1))

Here ps-uY1 =△! e for △: Y1 → Y1×Y1. Here pi keeps the i-term in the product Y1×Y1
and forgets the other term.

The claim in their B.4.2 needs an explanation. Given Q ∈ Shv(Y1 × Y2) let P =
(MirY1 ⊠ idY2)(Q) ∈ Shv(Y1×Y2). Let F ∈ Shv(Z×Y1). To check their result, we need
to establish isomorphisms

(idZ⊠Pl)(F) →̃ ((F σ)l ⊠ idY2)(idY1 ⊠Q)(ps-uY1)

and

(idZ⊠Q)(F) →̃ (idZ⊠Q)((F σ)l ⊠ idY1)(ps-uY1)

47

The second isomorphism follows from ((F σ)l⊠ idY1)(ps-uY1) →̃F , which is evident. To
get the first one, we get first

(20) (MirY1 ⊠ idY2)(Q) = P →̃ (idY1 ⊠Q)(ps-uY1)

This is the symmetry in the definition of the functor given by kernel, namely for the
diagram (19)

P →̃ (p2)▲(p
!
1(Q)⊗! p!(ps-uY1)) and (idY1 ⊠Q)(ps-uY1) →̃ (p1)▲(p

!
2Q⊗! p!(ps-uY1))

The above two objects are identified via the automorphism σ of Y1 × Y1 × Y2 which
swaps two copies of Y1. Now

((F σ)l ⊠ idY2)(P) →̃ (idZ⊠Pl)(F)

by the same symmetry in the definition: for the similar diagram

Z× Y1
q1← Z× Y1 × Y2

q2→ Z× Y2
↓ q

Y1 × Y2

we have

(idZ⊠Pl)(F) →̃ (q2)!(q
∗
1F ⊗ q∗P) →̃ ((F σ)l ⊠ idY2)(P)

The formula (20) shows, by virtue of my Section 1.6.9, that P is the only object for
which we may hope that the system of functors (idZ⊠Q) is codefined by the kernel P .
This also explains their ([2], Pp. B.4.4).

1.6.18. In the situation of ([2], B.3) let Q ∈ Shv(Y1×Y2) and Z, where Yi,Z are stacks
as in my Section 1.6.2. Let σ denote the isomorphism Shv(Y1 × Z) →̃Shv(Z × Y1)
obtained by permuting the terms in the product. The diagram commutes

Shv(Y1 × Z)
Q⊠idZ→ Shv(Y2 × Z)

↓ σ ↓ σ
Shv(Z× Y1)

idZ ⊠Q→ Shv(Z× Y2)

and similarly for Ql ⊠ idZ. Let now P = (MirY1 ⊠ idY2)(Q). Applying σ to their
natural transformation idZ⊠Pl → idZ⊠Q of ([2], formula (B.17)), we get a natural
transformation

Pl ⊠ idZ → Q⊠ idZ

of functors Shv(Y1 × Z)→ Shv(Y2 × Z).

1.6.19. For ([2], B.4.6). To get their map (B.19), write Q2,3∗Q1,2 →̃ (Qσ
1,2⊠ idY3)(Q2,3)

and

Q2,3 ∗l Q1,2 →̃ ((Qσ
1,2)

l ⊠ idY3)(Q2,3)

by their ([2], Sections B.1.7, B.3.2). Let us simply write Q2,1 = Qσ
1,2. Set

P1,2 = (idY1 ⊠MirY2)(Q1,2)

Note that (MirY2 ⊠ idY1)(Q2,1) = P σ
1,2 = P2,1. The natural transformation Pl

2,1⊠idY3 →
Q2,1 ⊠ idY3 of my Section 1.6.18 gives being applied to Q2,3 their map (B.19).

48

1.6.20. For ([2], B.4.8). This follows from (idY1 ⊠Pl)(uY1) →̃ (idlY1 ⊠ idY2)(P) = Q as
above.

Their natural transformation (B.20) is the value of the natural transformation

(idZ⊠Pl)(F σ ⊠ idY1)→ (F σ ⊠ idY2)(idY1 ⊠Pl)

(given by their (B.12)) on uY1 . Indeed, F →̃ (F σ⊠ idY1)(uY1) and Q →̃ (idY1 ⊠Pl)(uY1).
Besides,

(F σ ⊠ idY2)(Q) →̃ (idZ⊠Q)(F)

1.6.21. For ([2], B.4.10). Let us explain their natural transformation (B.22). Set

P2,1 = P σ
1,2 and Q1,2 = (idY1 ⊠ idlY2)(P1,2). So, Q2,1 := Qσ

1,2 = (idlY2 ⊠ idY1)(P2,1).

The natural transformation (B.20) gives a natural transformation

P l
2,1 ⊠ idY3 → Q2,1 ⊠ idY3 ,

which we apply to P2,3. Then use their formulas P2,3 ∗l P1,2 = (P l
2,1 ⊠ idY3)(P2,3) and

P2,3 ∗Q1,2 →̃ (Q2,1 ⊠ idY3)(P2,3).

Mistake in the last claim in their Sect. B.4.10. In the last sentence P l
1,2 should be

replaced by (P σ
1,2)

l.

I think on more way to think about (B.22) is to say that this is the natural map

P2,3 ∗l P1,2 = P2,3 ∗l (uY2 ∗ P1,2)→ P2,3 ∗ (uY2 ∗l P1,2)

1.7. Usual functors.

1.7.1. Let f : Y2 → Y1 be a morphism of algebraic stacks as in my Section 1.6.2.
Then f∗ : Shv(Y1)→ Shv(Y2) is codefined by the kernel (Γf)!e for Γf : Y2 → Y1 × Y2,

Γf = (f, id). The functor f ! : Shv(Y1)→ Shv(Y2) is defined by the kernel (Γf)∗ω.

1.7.2. Let f : Y1 → Y2 be a morphism of algebraic stacks as in my Section 1.6.2. Then
f▲ : Shv(Y1)→ Shv(Y2) is defined by the kernel (Γf)∗ω for Γf = (id, f) : Y1 → Y1×Y2.
Besides f∗ : Shv(Y1)→ Shv(Y2) is of the form Qdisc for Q = (Γf)∗ω.

The functor f! : Shv(Y1)→ Shv(Y2) is codefined by the kernel (Γf)!e.
Assume in addition f is smooth. Then f∗ is both defined and codefined by a kernel.

The defining object is (Γf)∗ω[−2 dim. rel(f)]. Suppose also that f∗ is continuous, so
f▲ →̃ f∗ is an isomorphism (for example, f is schematic). Then f∗ admits a right adjoint
as a functor defined by kernel. Namely, (f∗, f∗) is an adjoint pair as functors given by
kernel. The corresponding pair is ((Γf)∗ω[−2 dim. rel(f)], ((Γf)∗ω)

σ).
If f : Y1 → Y2 is schematic and proper then f∗ = f! is both defined and codefined

by a kernel. Moreover, f! admits a right adjoint as a functor given by kernel by my
Proposition 1.8.5. Indeed, for any Z as in my Section 1.6.2, the functor idZ⊠f! :
Shv(Z× Y1)→ Shv(Z× Y2) admits a continuous right adjoint.

Particular cases:
a) if j : U → Y is an open immersion of algebraic stacks as in my Section 1.6.2 then j∗

admits a right adjoint as a functor given by kernel.
b) if i : Z → Y is a closed immersion of algebraic stacks as in my Section 1.6.2 then i!
admits a right adjoint as a functor given by kernel.

1.8. Adjointness and more.

49

1.8.1. For ([2], B.5.1). Be carefull, in their Section B.5 the notation Q2,1 does not
mean Qσ

1,2 that I used before!

The adjunction for a pair (Q1,2, Q2,1) means that we are given un : uY1 → Q2,1∗Q1,2,
co : Q1,2 ∗Q2,1 → uY2 such that the compositions

Q1,2
id ∗un→ Q1,2 ∗Q2,1 ∗Q1,2

co∗id→ Q1,2

and

Q2,1
un∗id→ Q2,1 ∗Q1,2 ∗Q2,1

id ∗co→ Q2,1

are isomorphic to the identity maps in Shv(Y1 × Y2) and Shv(Y2 × Y1) respectively.
We have in mind that Q1,2 corresponds to a functor Q1,2 : Shv(Y1) → Shv(Y2)

define by the kernel Q1,2. Then if (Q1,2, Q2,1) is an adjoint pair in the above sense then
Q1,2 : Shv(Y1) ⇆ Shv(Y2) : Q2,1 is an adjoint pair, so Q1,2 is a left adjoint.

1.8.2. For ([2], B.5.2). Let Q1,2 ∈ Shv(Y1 × Y2), Q2,1 ∈ Shv(Y2 × Y1). Assume
given for any algebraic stack Z as in my Section 1.6.2 an adjuction datum for a
pair (idZ⊠Q1,2, idZ⊠Q2,1) compatible with the isomorphisms from their Section B.1.5.
Then one gets the adjunction datum for the pair (Q1,2, Q2,1) in the 2-category in-
troduced in their Section B.1.8 as follows. The unit map is the value on uY1 of the
transformation

id→ (idY1 ⊠Q2,1)(idY1 ⊠Q1,2)

The counit map is the value on uY2 of the natural transformation

(idY2 ⊠Q1,2)(idY2 ⊠Q2,1)→ idY2×Y2

1.8.3. For ([2], B.6.5). Under the assumptions of this proposition to see that P is
constructible, we essentially use the fact that idZ×Q preserve compactness (actually for
Z = S1 an affine scheme together with a smooth covering S1 → Y1). Namely, we pick a
smooth cover by an affine scheme f : S1 → Y1 and check that (f×id)∗P ∈ Shv(S1×Y2)c.
We have

(f × id)∗P →̃ (idS1 ⊠P l)((Γf)!e),

where Γf : S1 → S1 × Y1 is the graph of f . Since (Γf)!e ∈ Shv(S1 × Y1)
c, our claim

follows.
I wonder if the same holds even if idZ×Q is not assumed to preserve compactness.

1.8.4. For ([2], B.6.5) They say that B.6.5 is a partial converse of Theorem B.6.3, but
in fact it is a full converse in the following sense:

Proposition 1.8.5. Let Y1, Y2 be algebraic stack as in my Section 1.6.2. Let Q ∈
Shv(Y1 × Y2). The following conditions are equivalent:

i) Q admits a right adjoint as a functor defined by a kernel with the corresponding
object QR ∈ Shv(Y2 × Y1).

ii) The functor Q is defined and codefined by a kernel. In addition, for any alge-
braic stack Z as in my Section 1.6.2, idZ⊠Q preserves compactness.

50

Remark 1.8.6. Moreover, if the equivalent conditions of the above proposition hold
then both Q,QR in i) are constructible, and the codefining object of the functor Q is
P := D(QR)σ. This formula also allows to recover QR in the case ii). Besides, QR is
safe.

Proof. Assume i). Then ii) is explained in ([2], B.6.3). We only add the fact that
idZ⊠Q preserves compactness. This follows from the fact that (idZ⊠Q, idZ⊠QR) is
an adjoint pair for any Z, and the functor idZ⊠QR is continuous by definition. So, ii)
holds.

Now assume ii). Let us first show that Q is constructible. This is done as in ([2],
B.5.6). Namely, pick a smooth covering S1 → Y1 with S1 an affine scheme of finite
type. For the map Γf = (id, f) : S1 → S1 × Y1 we have (Γf)∗ω ∈ Shv(S1 × Y1)

c. Now

(f × id)!Q →̃ (idS1 ⊠Q)((Γf)∗ω)

is compact by our assumption that idS1 ⊠Q preserves compactness. So, Q is con-
structible. Now i) follows by applying ([2], B.6.5). □

1.8.7. For ([2], B.6.6). Let f : B(Gm)→ pt be the map. Then f∗ is both defined and
codefined by the kernel Q = e ∈ Shv(B(Gm)), the codefining object is P = e. The
functor idZ⊠Q does not preserve compactness, and Q does not admit a right adjoint
as a functor given by kernel (because QR = ωB(Gm) is not safe).

1.8.8. For ([2], B.7.1). Let Y be an algebraic stack as in my Section 1.6.2. By definition,
Y is miraculous if Q = ps-uY admits a right adjoint as a functor given by kernel (with
the corresponding object denoted QR ∈ Shv(Y × Y)) and such that un : uY → QR ∗Q
and co : Q ∗ QR → uY are isomorphisms. In other words, Q is an invertible object in
the 2-category defined in ([2], B.1.8).

In this case for any Z as in my Section 1.6.2, the adjunction data for the pair
(idZ⊠Q, idZ⊠QR) are also isomorphisms (by functoriality), so that idZ⊠Q and idZ⊠QR

are equivalences inverse to each other.
This is indeed equivalent to the property that for every Z, idZ⊠Q : Shv(Z × Y) →

Shv(Z×Y) is an equivalence. If the latter property holds then the functors (idZ⊠Q)−1

form a system of functors satisfying he compatibilities of their Section B.1.5, so coming
from a uniquely defined object QR. Moreover, in this case QR and Q are inverses
of each other in the 2-category defined in ([2], B.1.8). Note that QR is recovered as
QR = (idY ×Q)−1(uY).

1.8.9. For ([2], B.7.2). Recall that evY : Shv(Y) ⊗ Shv(Y) → Vect is given by
(K,K ′) 7→ C ·▲(Y,K ⊗! K ′).

1.8.10. For ([2], B.7.3). Here the identifications (MirY)
∨ →̃ MirY and (Mir−1Y)∨ →̃ Mir−1Y

is with respect to hte usual Verdier duality, that is, the above pairing evY , see their
Sect. B.1.2.

In B.7.3 they mean that DMir is involutive on (Shv(Y)c)op, as Y is Verdier compatible.

51

1.8.11. For ([2], B.7.4). If Y is miraculous, then idZ⊠MirY : Shv(Z×Y)→ Shv(Z×Y)
preserves constructibility for any Z as above. They use their Section B.2.4 to get this.
We get Mir−1Y = idlY by their Th. B.6.3. The functor idlY is also defined and codefined
by kernel, and for the same reason preserves constructibility (it admits a left adjoint
as a functor defined by kernel, so is safe by their B.6.3). So, MirY : Shv(Y)constr →
Shv(Y)constr is an equivalence inducing an equivalence MirY : Shv(Y)c →̃Shv(Y)c on
compact objects.

As a corollary, DMir : (Shv(Y)constr)op → Shv(Y)constr is also an equivalence.

1.8.12. For ([2], B.8.2). Let Q ∈ Shv(Y1 × Y2) be constructible, assume it admits a
right adjoint QR ∈ Shv(Y2 × Y1) as a functor given by kernel. Then

D(QR) →̃ ((MirY1 ⊠ idY2)(Q))σ

by their Cor. B.6.8, and QR is constructible. So, QR →̃ (D((MirY1 ⊠ idY2)(Q)))σ. Now

D((MirY1 ⊠ idY2)(Q)) →̃ (ulY1 ⊠ idY2)(DQ),

because (MirY1 ⊠ idY2)(Q) is constructible. Recall that idlY1 = ulY1 by definition in their

Sect. B.4.7. So indeed ′QR = QR.

1.8.13. For ([2], B.8.4). Their map (B.27) comes from the natural morphism eY1×Y2 →
Hom(Q,Q) →̃Q⊗! (DQ) on Y1 × Y2.

They follow (B.28) by the map

(idY1 ⊠ idlY1)(Q
σ
disc ⊠ idY1)(DQσ)→ (Qσ

disc ⊠ idY1)(idY2 ⊠ulY1)(DQ
σ)

given by (B.14). In the above formula the RHS becomes by definition

(Qσ
disc ⊠ idY1)(

′QR) →̃ ′QR ∗disc Q

The meaning of the map (B.27) is as follows. Note that idY1 ⊠Qσ
disc has a left

adjoint, which is given by idY1 ⊠(DQ)l according to their Section B.6.1. The unit of
this adjunction

idY1×Y1 → (idY1 ⊠Qσ
disc)(idY1 ⊠(DQ)l)

applied to ps-uY1 is the map ps-uY1 → (DQ)σ ∗disc Q given by (B.27).
Now they try to do ”the best possible” as the case when the family of functors

(idZ⊠(DQ)l) would be defined by kernel. In this case the corresponding kernel would

be given by (idlY1 ⊠ idY2)(DQ) = (′QR)σ. We have natural transformations as in their
(B.20)

idZ⊠(DQ)l → idZ⊠(′QR)σ

And for Q to have a right adjoint as a functor given by kernel one needs the latter
transformation to be an isomorphism.

52

1.8.14. In ([2], B.8.5) their map (B.29) comes from the evident morphism Q⊗(DQ)→
ω on Y1 × Y2.

The meaning of their (B.29) is as follows. We have an adjoint pair ((DQ)l, Qσ
disc).

Applying the counit map (idY2 ⊠(DQ)l)(idY2 ⊠Qσ
disc) → idY2×Y2 to the object uY2 , we

get a morphism (DQ) ∗l Qσ → uY2 , which is the same as their Q ∗l (DQ)σ → uY2 given
by (B.29).

As for the unit, now they ”do the best possible” as the case when the family of
functors (idZ⊠(DQ)l) would be defined by kernel.

1.8.15. For ([2], B.9.2). Assume Q admits a right adjoint. To get (iii) it suffices to
show that (DQ)l is defined by a kernel (according to their Section B.4.10). We know
that ((QR)σ, Qσ) are adjoints as functors defined by kernels by their Section B.5.4. So,
by their Theorem B.6.3, for DQ = (DQσ)σ the functor (DQ)l is indeed defined by a
kernel.

1.8.16. For ([2], B.9.3). If we assume (iii) then (DQ)l is defined by a kernel. The
corresponding kernel is (′QR)σ.

Let f : Ỹ2 → Y2 be a smooth cover, where Ỹ2 is a scheme. They denote by ′Q̃R

the object defined by the same formula as ′QR, where one replaces Q by Q̃, that is,
′Q̃R = (idỸ2 ⊠ idlY1)((DQ̃)σ), where Q̃ = (id×f)∗Q ∈ Shv(Y1 × Ỹ2).

A simple calculation shows that the composition (idZ⊠′QR)(idZ⊠f∗) is given by the

kernel (f × id)!(′QR) ∈ Shv(Ỹ2 × Y1). The latter identifies indeed with ′Q̃R.

1.8.17. For ([2], B.9.3). They use the following. Let f : S → Y be a smooth surjective
morphism of algebraic stacks as in my Section 1.6.2, which is schematic. So, f∗ :
Shv(Y1) → Shv(Y2) is continuous. Let us check that any F ′ ∈ Shv(Y2) writes as a
totalization of objects in the essential image of f∗.

Since f is a smooth cover, Shv(Y) →̃ TotShv(S•), where S• is the Cech nerve of
f . For n ≥ 0 let fn : Sn → Y be the corresponding map. As in Section 1.4.24, for
F ′, F ∈ Shv(Y) we have HomShv(Y)(F, F

′) →̃ TotHomShv(Sn)((f
n)!F, (fn)!F ′). Since

fn is smooth, (fn)! = (fn)∗[2 dim. rel(fn)]. So,

HomShv(Y)(F, F
′) →̃ TotHomShv(Y)(F, (fn)∗(f

n)!F ′[−2 dim. rel(fn)]) →̃
TotHomShv(Y)(F, (fn)∗(f

n)∗F ′) →̃HomShv(Y)(F,Totn(fn)∗(f
n)∗F ′)

We used the fact that we have a functor ∆→ Shv(Y), [n] 7→ (fn)∗(f
n)∗F ′. This shows

that the natural map F ′ → Totn(fn)∗(f
n)∗F ′ is an isomorphism.

1.8.18. For ([2], B.9.6). It is useful to note that for any algebraic stack Y as in my

Section 1.6.2, one has (idY ⊠ idlY)(ps-uY) →̃uY1 . That is, the identity functor is both
defined and codefined by a kernel.

A way to understand their diagfam would be to wtrite down a more general one.
Namely, assume given objects Q,A,B which are ”composable”, in the sense that Q ∗A
and A ∗B are defined. Recall that we have canonical functorial morphisms

(21) Q ∗l (A ∗B)→ (Q ∗l A) ∗B

53

for such a triple. Recall also that we have an involution Q 7→ Qσ with the property
that (Q ∗A)σ = Aσ ∗Qσ and (Q ∗l A)σ = Aσ ∗l Qσ. Conjugating (21) by σ, we obtain
functorial maps

(22) (Q ∗A) ∗l B → Q ∗ (A ∗l B)

The morphisms (21), (22) yield a diagram

Q ∗l (A ∗B) → Q ∗ (u ∗l (A ∗B))
↓ ↓

(Q ∗l A) ∗B Q ∗ (u ∗l A) ∗B)
↓ ↓ id

Q ∗ (u ∗l A) ∗B = Q ∗ (u ∗l A) ∗B

which actually commutes!
Question: what this property for a pair of monoidal structures given by ∗l and ∗

means, maybe there is a name for this? Here u is the unit for the ∗-monoidal structure.
I suggest something in the next subsection.

1.8.19. Consider a scheme of finite type S. We equip Shv(S × S) with two monoidal
structures: the first is (A,B) 7→ A ∗B, the second is (A,B) 7→ A ∗l B. We denote then
(Shv(S × S), ∗) and (Shv(S × S), ∗l).

For B ∈ Shv(S×S) let rB : Shv(S×S)→ Shv(S×S) be the functor A 7→ A∗B. If
we view Shv(S×S) as a left module over (Shv(S×S), ∗l) (given by the multiplication on
the left) then rB is naturally a right-lax functor of (Shv(S × S), ∗l)-module categories.
This encodes the maps (21). Let lB : Shv(S × S) → Shv(S × S) be the functor
A 7→ B ∗ A. If we view Shv(S × S) as a right module over (Shv(S × S), ∗l) (given by
the multiplication on the right) then for Q ∈ Shv(S × S) the functor lQ is a right-lax

functor of (Shv(S × S), ∗l)op-module categories. This encodes the maps (22). The two
structures are swapped by σ. There is some strange compatibility between the two
structures given by the latter diagram (to be clarified).

1.8.20. For any morphism f : Y1 → Y2 of algebraic stacks as in my Section 1.6.2,
we have an adjoint pair (f▲, (f!)

∨). Moreover, if f is schematic then (f !, (f∗)∨) is an
adjoint pair.

1.8.21. Let Y1, Y2 be algebraic stacks as in my Section 1.6.2, Q ∈ Shv(Y1 × Y2)
gives the functor Q : Shv(Y1) → Shv(Y2) defined by the kernel Q. We identify
Shv(Yi)

∨ →̃Shv(Yi) as in their Section A.4.1. Then Q∨ : Shv(Y2) → Shv(Y1) is
defined by the kernel Qσ.

Let now I → Shv(Y1 × Y2) be a diagram, i 7→ Qi, let Qi : Shv(Y1) → Shv(Y2) be
the correspoinding functor. Then for K ∈ Shv(Y1) we have colimiQi(K) →̃Q(K) ∈
Shv(Y2), where Q is the functor given by the kernel colimiQi. And the same for finite
limits. Moreover, the same holds for the functors codefined by kernels.

54

1.8.22. Remark. Let C0 ⊂ Shv(Y1 × Y2) be the full subcategory of those Q for which
Q is defined and codefined by kernel. Let C ⊂ C0 be the full subcategory of those Q
for which the functor Q admits a right adjoint as a functor given by kernel. Then

i) C0 ⊂ Shv(Y1 × Y2) is a stable subcategory, closed under colimits (and finite
limits).

ii) C ⊂ C0 is a stable subcategory

Proof. i) It suffices to show C0 is closed under the formation of limits/colimits in
Shv(Y1×Y2). We give a proof for colimits, it is similar for the limits. Let Z be a stack
as in in my Section 1.6.2 and K ∈ Shv(Z× Y1). Let I → C0, i 7→ Qi be a diagram and
Q = colimiQi calculated in Shv(Y1 × Y2). Let Pi = (MirY1 ⊠ idY2)(Qi) ∈ Shv(Y1 × Y2)
and P = (MirY1 ⊠ idY2)(Q), so P →̃ colimPi in Shv(Y1×Y2). By ([2], B.4.4), it suffices
to show that the natural map

(idZ⊠P l)(K)→ (idZ⊠Q)(K)

is an isomorphism. The desired isomorphism is obtained by passing to the colimit over
i ∈ I in the corresponding isomorphisms (idZ⊠P l

i)(K) → (idZ⊠Qi)(K), taking into
account the previous subsection.

ii) Clearly, C ⊂ C0 is closed under translations. By ([14], 1.1.3.3) it suffices to show
C ⊂ C0 is closed under cofibers. Let I → C, i 7→ Qi be a finite diagram and Q =
colimiQi in Shv(Y1 × Y2). It suffices to show Q ∈ C. We apply my Proposition 1.8.5.
Let Z be a stack as in in my Section 1.6.2 and K ∈ Shv(Z × Y1)

c. It suffices to show
that colimi∈I(idZ⊠Qi)(K) ∈ Shv(Z × Y2)

c. However, Shv(Z × Y2)
c ⊂ Shv(Z ⊠ Y2) is

a stable subcategory by ([16], 4.2.2), it is also closed under finite colimits by (HTT,
5.3.4.15). □

We write C(Y1 × Y2) and C0(Y1 × Y2) if we need to express the dependence on Yi.

1.8.23. In the situation of my Remark 1.8.22 assume i : Y2 ↪→ Y ′2 is a closed immersion
of algebraic stacks as in my Section 1.6.2. Let K ∈ Shv(Y1×Y2). Then Q ∈ C0(Y1×Y2)
iff (idY1 ⊠i!)(Q) ∈ C0(Y1 × Y ′2) and similarly for C0 replaced by C.

Proof. 1) Let P = (MirY1 ⊠ idY2)(Q) and Q′ = (idY1 ⊠i!)(Q). Set P ′ := (idY1 ⊠i!)(P)
then (MirY1 ⊠ idY ′2)(Q

′) →̃P ′. Assume i! ◦Q is both defined and codefined by a kernel.

Let us check that Q is codefined by a kernel. Note that i! ◦Q →̃Q′.
We check that for Z as in my Section 1.6.2 the natural map idZ⊠Pl → idZ⊠Q is an

isomorphism. It suffices to show that the composition

(idZ⊠i!)(idZ⊠Pl)→ (idZ⊠i!)(idZ⊠Q)

is an isomorphism. We have (idZ⊠i!)(idZ⊠Q) →̃ (idZ⊠Q′) and

(idZ⊠i!)(idZ⊠Pl) →̃ idZ⊠(P′)l,

Now the map idZ⊠(P′)l → idZ⊠Q′ is an isomorphism by our assumption.
2) Recall that i! admits a right adjoint as a functor given by kernel by my Sec-

tion 1.7.2. Assume i! ◦ Q →̃Q′ admits a right adjoint as a functor given by kernel.
Let us check the same for Q itself. By 1) we know already that Q is both defined
and codefined by a kernel. By my Prop. 1.8.5, it suffices to check that for Z as in my

55

Section 1.6.2 the functor idZ⊠Q : Shv(Z× Y1)→ Shv(Z× Y2) preserves compactness.
If K ∈ Shv(Z×Y1)

c then (idZ⊠i!)(idZ⊠Q)(K) ∈ Shv(Z×Y ′2)
c. Now (id×i)! preserves

compactness, as it is schematic. We are done. □

1.9. Around ULA property.

1.9.1. For ([2], B.10.2). Let f : Y → S be a morphism, where S is a separated scheme of
finite type, and Y is an algebraic stack as in my Section 1.6.2. Let F ∈ Shv(Y). Let Γf :
S → S×Y be the graph of f , this is a closed immersion. Set P = (MirS ⊠ idY)((Γf)∗F),

so P →̃ (Γf)∗((f
!e)⊗! F). The functor P l : Shv(S)→ Shv(Y) is given by

G 7→ ((f !e)⊗! F)⊗ f∗G

Write F : Shv(S)→ Shv(Y) for the functor given by the kernel Q := (Γf)∗F.

By their B.4.4, we have a natural transformation idZ⊠P l → idZ⊠Q for any Z as in
my Section 1.6.2. The functor F : Shv(S) → Shv(Y), G 7→ F ⊗! f !G is codefined by
a kernel iff this natural transformation is an isomorphism. In this case the codefining
object is P by their B.4.4.

The functor idZ⊠F : Shv(Z× S)→ Shv(Z× Y) is

G 7→ p!Y F ⊗! (id×f)!G

for the diagram Y
pY← Z×Y id×f→ Z×S. The functor idZ⊠P l : Shv(Z×S)→ Shv(Z×Y)

is

G 7→ p∗Y ((f
!e)⊗! F)⊗ (id×f)∗G

If S is smooth of dimension d then eS = ω[−2d], and the above natural transforma-
tion writes for G ∈ Shv(Z× S)

p∗Y (F)⊗ (id×f)∗G[−d]→ p!Y F ⊗! (id×f)!G[d]

In SGA41
2 the notion of local acyclicity was formulated even in the case when the

base S is not smooth (in [5] it was reformulated for morphisms as above with S smooth).
Some modified version of ULA property appeared in ([17], Definition 4.8.2). There is
also the abstract ULA property of Raskin from ([22], B.5.1).

Example: Assume in the above situation that both S and f are smooth and F = eY .
Then F is ULA with respect to f : Y → S in the sense of ([2], B.10.2).

1.9.2. For F ∈ Shv(Y) as in the previous subsection write HomY,S(F, ?) : Shv(Y) →
Shv(S) for the relative inner hom with respect to the Shv(S)-action on Shv(Y). It is
understood that G ∈ Shv(S) acts on M ∈ Shv(Y) as M ⊗! f !G. This inner hom always
exists, because Shv(Y) is presentable.

Assume now that F is codefined by the kernel P as above. Then forK ∈ Shv(Y),G ∈
Shv(S) we get

HomShv(S)(G,HomY,S(F,K)) →̃HomShv(Y)(F ⊗! f !G,K) →̃

HomShv(Y)(((f
!e)⊗! F)⊗ f∗G,K) →̃HomShv(Y)(f

∗G,Hom((f !e)⊗! F,K)) →̃

HomShv(S)(G, f∗Hom((f !e)⊗! F,K))

56

Here Hom means relative inner hom in (Shv(Y),⊗). So,

HomY,S(F,K) →̃ f∗Hom((f !e)⊗! F,K) ∈ Shv(S)

functorially on K ∈ Shv(Y). Let us check if the functor K 7→ f∗Hom((f !e)⊗! F,K) is
Shv(S)-linear. It will not always be the case!!!

For M ∈ Shv(S) we always have a natural map

(23) M ⊗! HomY,S(F,K)→ HomY,S(F,K ⊗! f !M)

We want to check if it is an isomorphism. We have

M ⊗! f∗Hom((f !e)⊗! F,K) →̃ f∗(f
!M ⊗! Hom((f !e)⊗! F,K)

Moreover, there is a natural map

(24) f !M ⊗! Hom((f !e)⊗! F,K)→ Hom((f !e)⊗! F,K ⊗! f !M)

It suffices to show it is an isomorphism. It is evidently the case for F ∈ Shv(Y)constr,
as in this case (f !e)⊗! F ∈ Shv(Y)constr, and

Hom((f !e)⊗! F,K) →̃D((f !e)⊗! F)⊗! K

In the case M ∈ Shv(S)c we get

f !M ⊗! Hom((f !e)⊗! F,K) →̃Hom(D(f !M),Hom((f !e)⊗! F,K)) →̃

Hom(D(f !M)⊗((f !e)⊗!F),K) →̃Hom((f !e)⊗!F,Hom(D(f !M),K)) →̃Hom((f !e)⊗!F,K⊗!f !M)

We are done in this case also.
However, in general neither (24) nor (23) is an isomorphism.
Example Take f = id : S → S and S = Spec k. In this case M,F,K ∈ V ect and

the map (24) becomes

M ⊗Hom(F,K)→ Hom(F,K ⊗M)

If say M,F are infinite-dimensional vector spaces placed in degree zero and K = e then
the above map is not surjective. On the other hand, any F ∈ Vect is ULA in the sense
of ([2], Definition B.10.2) with respect to id : Spec k → Spec k. Warning! So, in this
case though F is ULA in the sense of ([2], Definition B.10.2), it is not necessarily ULA
in the sense of ([22], B.5.1).

1.9.3. Assume now f : Y → S as in Section 1.9.1 and F ∈ Shv(Y)constr and assume
that the functor F : Shv(S) → Shv(Y) defined by the kernel Q = (Γf)∗F is also
codefined by the above kernel P . We have seen in the previous subsection that the
functor ShvY,S : Shv(Y)→ Shv(S) is Shv(S)-linear. Is it continuous?

If f is schematic then this is evidently the case.
In general it is not continuous! For example, take S = pt, Y = B(Gm) and F = eY .

Then the functor ShvY,S : Shv(Y) → Vect becomes the functor K 7→ RΓ(B(Gm),K),
and we know it is not continuous. So, eB(Gm) is not ULA with respect to f : B(Gm)→
pt in the sense of ([22], B.5.1). On the other case it is ULA in the sense of ([2], B.10.2)
as we have seen above.

57

Sam: it is only meaningful to compare his definition of ULA with that of ([2],
B.10.2) for F ∈ Shv(Y)c. In this case indeed, the above functor Shv(Y) → Shv(S),
K 7→ HomY,S(F,K) is continuous, because it is of the form QR

disc for

QR = ((Γf)∗(f
∗ω ⊗ DF))σ ∈ Shv(Y × S)c

So, QR
disc is continuous by ([2], B.2.3).

There is a discussion of the abstract ULA property (in a situation of a dualizable
category) in ([9], appendix D).

Sam: in the constructible context probably if F ∈ Shv(Y)c and the above ShvY,S :
Shv(Y)→ Shv(S) is Shv(S)-linear and continuous, this does not imply that F is ULA
in the sense of ([2], B.10.2) (though it does for D-modules (as we know from ([9],
appendix D).

1.9.4. In the situation of my Section 1.9.1 assume F ∈ Shv(Y)constr. Let us make
precise the condition that the functor F : Shv(S) → Shv(Y),G 7→ F ⊗! f !G admits a
right adjoint as a functor given by kernel. Let

′QR = ((Γf)∗(f
∗ω ⊗ DF))σ ∈ Shv(Y × S)

Their map uS →′ QR ∗Q given by ([2], (B.26)) becomes a morphism

µ : ωS → f▲(((f
∗ωS)⊗ DF)⊗! F)

on S. Set F∨ := f∗ωS ⊗ DF. This becomes a map µ : ωS → f▲(F ⊗! F∨). The
counit of a would-be adjunction becomes a map Q ∗ ′QR → uY , that is, a morphism
ϵ : △̄∗(F⊠S F

∨)→△∗ ωY , here △: Y → Y ×Y is the diagonal, and △̄ : Y ×S Y → Y ×Y
is the natural map. The notation K1 ⊠S K2 means q!1K1 ⊗! q!2K2 for the projections

qi : Y ×S Y → Y . We may view ϵ as a map F ⊠S F∨ → △̄! △∗ ωY .
Note that if Y ∈ Schft then the property that Q admits a right adjoint as a functor

given by kernel becomes precisely the property ([9], D.4.2(i)), which was formulated in
loc.cit. for F compact.

The property (iii) of ([9], D.4.2) is maybe strictly weaker then the fact that Q admits
a right adjoint as a functor given by kernel: the implication (iii)⇒(ii) is not justified
in ([9], D.4.2).

Remark Let F ∈ Shv(Y)constr. If F is ULA over S in the sense of ([2], B.10.1)

then for any base change g : S̃ → S, where S′ is a separated scheme of finite type,
for the base changed map f̃ : Ỹ → S̃, F̃ = g!Y F is also ULA with respect to f̃ . Here

gY : Ỹ → Y is the induced map.
Proof: let h : Y ′ → Y be a smooth surjective map, where Y ′ ∈ Schft. Then the same

holds for the base changed map Ỹ ′ → Ỹ . So, by the next subsection, it suffices to show
that the !-restriction of F̃ to Ỹ ′ is ULA over S. Let F′ be the !-restriction of F to Y ′.
Then F′ ∈ Shv(Y ′)c is ULA over S, so the functor Shv(S)→ Shv(Y ′),G 7→ h!F⊗!h!f !G

admits a right adjoint as a functor given by kernel by ([2], B.10.4). The !-restriction

under Ỹ ′ → Y ′ will produce a functor, which also has a right adjoint as a functor given
by kernel. So, again by ([2], B.10.4) we see that F̃′ is ULA over S. We are done. □

58

1.9.5. Let us show that the ULA condition from ([2], B.10.2) is local in the smooth
topology on Y . Let g : Y ′ → Y be a smooth surjective morphism of stacks as in my
Section 1.6.2, F ∈ Shv(Y). Then g∗[2 dim. rel(g)] →̃ g! is both defined and codefined
by a kernel.

Now F is ULA with respect to f in the sense of ([2], B.10.2) iff f !F is ULA with
respect to f ◦ g. Indeed, we compose the functor Shv(S) → Shv(Y), G 7→ F ⊗! f !G

with g!. The composition of funtors defined by a kernel (resp., codefined by a kernel)
is defined by a kernel (resp., codefined by a kernel).

1.9.6. For ([2], B.10.4). Assume F ∈ Shv(Y)c and F is ULA w.r.t. f : Y → S in
the sense of their Def. B.10.2. So, F : Shv(S) → Shv(Y), G 7→ F ⊗! f !G is codefined
by P = (Γf)∗((f

!e) ⊗! F). Let QR = (DP)σ. Then QR ∈ Shv(Y × S)c, because

(f !e) ⊗! F ∈ Shv(Y)c by ([2], A.2.2). So, the functors idZ⊠QR
disc are continuous by

([2], B.2.3), hence idZ⊠F preserve compactness. Now by ([2], B.6.5), F admits a right
adjoint as a functor defined by kernel.

Conversely, if F admits a right adjoint as a functor defined by kernel then F is
defined and codefined by a kernel by ([2], B.6.3).

1.9.7. For ([2], B.10.5). Let f : Y → S be a map as in their Def. B.10.2, and
F : Shv(S) → Shv(Y) be the functor given by the kernel Q = (Γf)∗(F) for F ∈
Shv(Y)constr and Γf : Y → S × Y the graph of f . Let us write down explicitly their

map (B.30). We get ′QR →̃D(P)σ →̃ ((Γf)∗(f
∗ω⊗DF))σ. Let ′△: Y ×S Y → Y × Y be

the natural map, this is a closed immersion.
We get

Q ∗ ′QR →̃ (′△)∗(
′△!)((f∗ω ⊗ DF)⊠ F) ∈ Shv(Y × Y)

Now Q ∗l (DQ)σ →̃ (′△)∗(′△∗)((DF) ⊠ F). So, their map (B.30) becomes the push-out
(′△)∗ of the morphism

(25) (′△∗)((DF)⊠ F)→ (′△!)(((f∗ωS)⊗ DF)⊠ F)

So, in their formula in Remark B.10.5 there is a mistake: f∗eS should be replaced by
f∗ωS .

Assume the map (25) is an isomorphism. Let h : Y ′ → Y be a smooth cover of the
relative dimension d, where Y ′ is a scheme of finite type. Consider teh commutative
diagram

Y ×S Y
′△→ Y × Y

↑ τ ↑ h×h
Y ′ ×S Y ′

′′△→ Y ′ × Y ′,

where τ = h×S h. Note that τ ! = τ∗[4d]. Applying τ∗ to (25) we get an isomorphism

′′△∗ (h∗(DF)⊠ h∗F)[−2d] →̃ τ !(′△!)(((f∗ωS)⊗ DF)⊠ F)[−4d] →̃
′′△! (((fh)∗ωS ⊗ D(h∗F))⊠ h∗F)[−2d]

Indeed, h! →̃h∗[2d]. We see that the version of (25) for h∗F is an isomorphism. We
conclude by their B.8.8 that Q admits a right adjoint as a functor given by kernel.

59

Since h∗F ∈ Shv(Y ′)c, this gives that h∗F is ULA with respect to hf : Y ′ → S by their
B.10.4, so F is also ULA over S.

1.9.8. For ([2], B.10.10). We amy assume Z = S is a scheme of finite type. Let G ∈
ShvN×T ∗(Y)(S × Y). We want to show that (idS ⊠F)(G) ∈ ShvN(S). Let S

h← U
t→ S′

be a N-transversal test pair, so U, S′ are smooth. We may and do assume S′ separated.
We want to show that h∗(idS ⊠F)(G) is ULA with respect to t. We have

h∗(idS ⊠F)(G) →̃ (idU ⊠F)((h× id)∗G)

by the version of their B.1.5 for functors codefined by kernels. Here h×id : U×Y → S×
Y . By my Section A.1.5, SingSupp((h×id)∗G) ⊂ (h×id)◦(N×T ∗(Y)) = h◦(N)×T ∗(Y).

Here (h × id)◦ is the notation of Beilinson [3]. The composition U × Y → U
t→ S′ is

h◦(N) × T ∗(Y)-transversal. Now S × Y
h×id← U × Y → S′ is a N × T ∗(Y)-transversal

pair, so (h× id)∗G is ULA over S′.
So, indeed, it suffices to show that given K ∈ Shv(U×Y) which is ULA with respect

to the composition U × Y → U
t→ S′ then (idU ⊠F)(K) is ULA over S′. This indeed

follows from their B.10.7.

1.10. For [9], Appendix D.

1.10.1. For D.1.4. First, in the defining formula for m∨,C one may replace if needed
Map ∈ Spc by Hom ∈ Vect.

Let C ∈ CAlg(DGCatcont) and M ∈ C − mod(DGCatcont) be dualizable as a C-
module. Let m ∈M,m∨,C ∈M∨,C be equipped with an isomorphism

MapsM (c⊗m,m′) →̃ MapC(c, counit
C
M (m′ ⊗C m∨,C))

To this data one associates µ : 1C → counitCM (m⊗Cm∨,C) corresponding to id : m→ m
in the LHS. Now FunC(M,M) →̃M∨,C ⊗C M naturally, and under this isomorphism
unitCM (1) corresponds to id : M →M . Taking in the above formula c = counitCM (m′⊗C
m∨,C), we get a morphism

counitCM (m′ ⊗C m∨,C)⊗m→ m′

in M functorial in m′ ∈ M . This is a morphism in FunC(M,M) →̃M∨,C ⊗C M from
the functor m∨,C ⊗C m to the identity functor of M . In other words, this is a map
ϵ : m∨,C ⊗C m→ unitCM (1C).

Now ϵ gives for any m′ ∈ M a morphism MapsC(c, counit
C
M (m′ ⊗C m∨,C)) →

MapsM (c⊗m,m′). It sends α : c→ counitCM (m′ ⊗C m∨,C)) to the composition

c⊗m
α⊗id→ counitCM (m′ ⊗C m∨,C))⊗m

ϵ→ m′

Our µ gives for m′ ∈M a morphism

MapsM (c⊗m,m′)→ MapsC(c, counit
C
M (m′ ⊗C m∨,C))

It sends β : c⊗m→ m′ to the composition

c
µ→ c⊗counitCM (m⊗Cm∨,C) →̃ counitCM (c⊗m⊗Cm∨,C)

counitCM (β⊗id)
→ counitCM (m′⊗Cm∨,C)

60

Their property that (D.2) and its analog for m∨,C are isomorphisms is a way to say
that these two arrows are inverse to each other. The analog of (D.2) for m∨,C says that
the composition

(26)

m∨,C
id⊗µ→ m∨,C ⊗C counitCM (m⊗C m∨,C) = (id⊗counitCM)(m∨,C ⊗C m⊗C m∨,C)

ϵ⊗id→ (id⊗counitCM)(unitCM (1C)⊗m∨,C)

is isomorphic to the identity map. In these axioms m and m∨,C appear symmerically.
This is why if m is ULA then m∨,C ∈M∨,C is also ULA and its dual is m.

The second axiom is obtained as follows. We start for any m′ ∈M with the identity
morphism counitCM (m′ ⊗C m∨,C) → counitCM (m′ ⊗C m∨,C). Then send it to the LHS
of the formula, and then further to the RHS. The result should be again the identity
map as above. This is equivalent to requiring that the composition (26) is the identity.
Indeed, the latter property is equivalent to the fact that for any m′ ∈ M applying
counitCM (m′ ⊗C •) to (26) one gets the identity.

1.10.2. In the situation of D.1.4, for m ∈ M the functor Hom(m, •) : M → C is
right-lax functor of C-module categories.

So, if C is rigid, it is automatically a strict functor.

1.10.3. For their D.2.1. For c ∈ Cc and V ∈ Vectfd one has DC(V ⊗ c) →̃V ∨ ⊗DC(c)
canonically.

1.10.4. For their D.2.4. Let C ∈ CAlg(DGCatcont) with C compactly generated such
that 1C ∈ Cc. Let M ∈ DGCatcont be compactly generated. We assume the existence
of 1̃C ∈ Cc as in their D.2.1, hence an equivalence DC : (Cc)op →̃Cc. By definition, for
c1 ∈ Cc, c2 ∈ C one has

HomC(DC(c1), c2) →̃HomC(1̃C , c1 ⊗ c2)

Let M∨ be the dual of M in DGCatcont, and <,>: M ×M∨ → Vect the tautological
pairing.

We explain that given m ∈ M,m′ ∈ M , there is ⟨m,m′⟩C ∈ C such that for any
c ∈ Cc one has HomC(c, ⟨m,m′⟩C) = ⟨DC(c) ⊗m,m′⟩. This is done as in ([16], 9.2.3,
a version for Spc replaced by Vect).

Note also that DM : (M c)op →̃ (M∨)c is characterised by the property: for m1,m2 ∈
M c one has ⟨DM (m1),m2⟩ = HomM (m1,m2).

1.10.5. For their D.2.7. We may add in the formulation that if the conditions (i)
(equivalently, (ii) or (iii)) hold then 1̃C ⊗m and m∨,C are compact.

Let us explain the implication (iii)⇒(ii). If 1̃C ⊗m ∈M c and c ∈ Cc then

HomM (1̃C⊗m,DC(c)⊗m′)→̃ ⟨DM (1̃C⊗m),DC(c)⊗m′⟩ →̃HomC(c, ⟨DM (1̃C⊗m),m′⟩C)
So, in this case the functor M → C,m′ 7→ ⟨DM (1̃C ⊗m),m′⟩C preserves colimits and
is C-linear.

Explanation for (i)⇒(iii). We get counitCM (m′ ⊗C m∨,C) →̃ < m′,m∨,C⟩C . By
construction, the functor M → C,m′ 7→ ⟨m′,m∨,C⟩C is continuous and C-linear.

61

For m′ ∈ M we get HomM (1̃C ⊗ m,m′) →̃ ⟨m′,m∨,C⟩. Since the functor m′ 7→
⟨m′,m∨,C⟩ is continuous, we see that 1̃C ⊗m ∈M c and

⟨m′,m∨,C⟩ →̃ ⟨DM (1̃C ⊗m),m′⟩

for any m′ ∈M . This gives DM (1̃C ⊗m) →̃m∨,C , and m∨,C ∈M c.

1.10.6. For their D.2.8. This is correct. If M0 ∈ DGCatcont is compactly generated
then identify (C⊗M0)

∨ →̃M∨0 ⊗C via the self-duality on C given by their D.2.1. Then
the tautological pairing <,>: (C ⊗M0)× C ⊗M∨0 → Vect becomes:

(c⊗m0, c
′ ⊗m′0) 7→< m0,m

′
0 > ⊗HomC(1̃C , c⊗ c′)

This implies the claim.

1.10.7. For their Pp. D.4.2. Here f : Z → Y is a morphism of schemes of finite type,
so f̃ ! : Shv(Ỹ)→ Shv(Z̃) has a continuous right adjoint. So, for FỸ ∈ Shv(Ỹ)c in (iii),

f̃ !(D(FỸ)) ∈ Shv(Z̃)c, and f̃ !(D(FỸ))⊗
! F̃′ →̃Hom(f̃∗FỸ , F̃

′). Here Hom is the inner

hom for (Shv(Z̃),⊗). So, (D.12) says that the canonical map

f̃∗FỸ ⊗ (f̃ !(eỸ)⊗
! F̃)→ f̃ !(FỸ)⊗

! F̃

defined in ([20], 0.1.9) is an isomorphism.
In the 2nd line of the proof, (D.9) should be replaced by (D.12). Indeed, the RHS

of (D.12) writes

HomShv(Z̃)(f̃
∗FỸ ⊗ (f̃ !(eỸ)⊗

! F̃), F̃′) →̃HomShv(Z̃)(f̃
∗FỸ ,Hom(f̃ !(eỸ)⊗

! F̃, F̃′))

→̃HomShv(Ỹ)(FỸ , f̃∗(F̃
′ ⊗! D(f̃ !(eỸ)⊗

! F̃)))

Question: Why in the RHS of (D.14) one gets the same thing as in the LHS? This
boils down to establishing an isomorphism

△∗ (p!1(eZ)⊗! p!2F) →̃ f !(eY)⊗! F,

in Shv(Z), where △: Z → Z ×Y Z is the diagonal, and pi : Z ×Y Z → Z are the
projections. Not clear where it comes from.

1.11. For [2], Appendix C.

1.11.1. For their C.1.1. If Ui are quasi-compact algebraic stacks (of the form Z/G,
where Z is a scheme of finite type, G is an affine algebraic group of finite type according
to their conventions), j : U1 → U2 is an open immersion. If j is cotruncative then j! :
Shv(U1)→ Shv(U2) is both defined and codefined by a kernel. So, the compatibilities
of their B.1.5 hold for it, as well as the version of B.1.5 with −! replaced by −∗ and
−▲ replaced by −!.

Note that j is cotruncative iff j∗ has a left adjoint as a functor given by kernel. Let
i : Z ↪→ U2 be a closed substack whose complement is U1.

Claim. U1 is cotruncative in U2 iff the functor i! admits a right adjoint as a functor
given by kernel. This is also equivalent to i∗ admits a left adjoint as a functor given by
kernel (write i∗ for this left adjoint given by kernel).

62

Proof. The proof is inspired by ([6], Prop. 3.1.2).
1) By my Section 1.8.23, i! admits a right adjoint as a functor given by kernel iff the
same holds for i!i

!.
If j∗ admits a right adjoint as a functor given by kernel then so does j∗j

∗ by my
Section 1.7.2. ForK ∈ Shv(U2) we have a functorial fibre sequence i!i

!K → K → j∗j
∗K

in Shv(U2). By my Remark 1.8.22, we see that i!i
! admits a right adjoint as a functor

given by kernel, hence the same for i!.
Conversely, assume i! admits a right adjoint as a functor given by kernel. Recall

that i! admits a right adjoint as a functor given by kernel by my Section 1.7.2. Again
by my Remark 1.8.22, we see that j∗j

∗ admits a right adjoint as a functor given by
kernel, let Q̄ ∈ Shv(U2 × U2) be the object defining this right adjoint by kernel. By
([2], B.6.3), j∗j

∗ is defined and codefined by a kernel. Now j∗ = (j∗j
∗) ◦ j! is codefined

by a kernel as a composition of functors codefined by kernels. So, j∗ is defined and
codefined by kernel. By my Prop. 1.8.5, it suffices to show for any Z as above the
functor (idZ⊠j∗) : Shv(Z × U1) → Shv(Z × U2) preserves compactness. We have
(idZ⊠j∗) = (idZ⊠j)∗ = (idZ⊠j∗j

∗)(idZ⊠j!). Since both idZ⊠j∗j
∗ and idZ⊠j! preserve

compactness, we are done.

2) The fact that (i!, Q) is an adjoint pair as functors given by kernel is equivalent to
the fact that (Qσ, i∗) is an adjoint pair as functors given by kernel by ([2], B.5.4) and
my Section 1.7.2. □

In the situation of the above claim write i? for the functor given by kernel and right
adjoint to i!. Similarly, the right adjoint to j∗ given by kernel is denoted j?. Using ([2],
A.4.4) we see that i? is the dual to i∗, and j! is the dual to j?. Once again,

i! = (i∗)∨, j! = (j?)∨

1.11.2. To summarize, consider the situation of the previous subsection, i : Z → U2

is a closed immersion, and j : U1 ↪→ U2 is the complementary open. The following
conditions are equivalent:

• j∗ admits a right adjoint as a functor given by kernel;
• i! admits a right adjoint as a functor given by kernel;
• i∗ admits a left adjoint as a functor given by kernel;
• j∗ admits a left adjoint as a functor given by kernel

Under the above conditions we may say that j : U1 ↪→ U2 is cotruncative, and
i : Z ↪→ U2 is trancative, following [6]. We arrange these functors into sequences:
functors between Shv(Z) and Shv(U2)

i∗, i∗, i
!, i?

and functors between Shv(U1) and Shv(U2)

j!, j
∗, j∗, j

?

As in loc.cit., the natural maps i!i? → id and id → j∗j! are isomorphism of functors
given by kernels.

63

1.11.3. Consider a locally closed embedding i : Z → Y of algebraic stacks as in my
Section 1.6.2. Following loc.cit., call Z truncative in Y if i! admits a right adjoint i? as
a functor given by kernel.

Lemma 1.11.4. Let Z
i′→ Y ′

j→ Y be a diagram of stacks as in my Section 1.6.2,
where i′ is a closed embedding, and j is an open embedding. Then i′ is truncative iff
j ◦ i′ is truncative.

Proof. The composition of truncative morphisms is truncative. This gives the ”only
if” direction. Assume now j ◦ i′ is truncative. Note that i′! is defined by a kernel.
The functor i′! identifies with (ji′)! ◦ j!. Since j ◦ i′ admits a right adjoint as a functor
given by kernel, it is codefined by a kernel, and j! is codefined by a kernel, hence i′! is
codefined by a kernel. It remains to show that for any Z as in my Section 1.6.2, idZ⊠i′!

preserves compactness. The latter functor is (idZ×i′)!. It preserves compactness by
my Section 1.8.20. □

1.11.5. Consider a truncative locally closed embedding i : X → Y of algebraic stacks
as in my Section 1.6.2. If Z is another algebraic stack as in my Section 1.6.2 then
Z×X → Z× Y is also truncative.

Proof. Let QR : Shv(Y) → Shv(X) be the functor given by kernel QR, which is the
right adjoint to i! as a functor given by kernel. Then for any Z′ as in my Section 1.6.2
we have an adjoint pair (idZ′ ⊠i!, idZ′ ⊠QR) compatible with the isomorphisms of ([2],
B.1.5). So, the same holds for the system of functors (idZ′×Z⊠i!, idZ′×Z⊠QR). By ([2],
B.5.2), we are done. □

1.11.6. Let f : Y1 → Y2 be a schematic morphism of stacks as in my Section 1.6.2.
Let Γf : Y1 → Y1 × Y2 be its graph. Recall that f ! : Shv(Y2) → Shv(Y1) is defined by

the kernel Q := (σΓf)∗ω ∈ Shv(Y2 × Y1). Let ′QR be constructed out of Q by their
formula (B.25) in their Section B.8.1. So, if Q admits a right adjoint given by kernel,
it is given by ′QR. One gets ′QR →̃ (f × idY2)

∗uY2 , here uY2 =△∗ ω for △: Y2 → Y2×Y2.
We get

′QR ∗Q →̃ (f × id)▲(f × id)∗uY2 ∈ Shv(Y2 × Y2)

Their map (B.26) becomes uY2 → (f × id)▲(f × id)∗uY2 , this is the map coming from
the adjunction simply. We have canonically.

Q ∗ ′QR →̃ (id×f)!(f × id)∗uY2

Now Q∗l(DQ)σ →̃ (f×idY1)∗((σΓf)∗ω) →̃ (f×idY1)∗(idY2 ×f)!uY2 canonically. So, their
map (B.30) becomes

(27) (f × idY1)
∗(idY2 ×f)!uY2 → (id×f)!(f × id)∗uY2

It comes from the canonical natural transformation

(f × idY1)
∗(idY2 ×f)! → (id×f)!(f × id)∗

64

for the cartesian square

Y1 × Y1
id×f→ Y1 × Y2

↓ f×id ↓ f×id
Y2 × Y1

id×f→ Y2 × Y2

Let now h2 : Y ′2 → Y2 an etale schematic morphism, define f ′, h1 by the cartesian
square

Y ′1
f ′→ Y ′2

↓ h1 ↓ h2
Y1

f→ Y2

Claim 1. If f ! admits a right adjoint as a functor given by kernel then so does f ′!.

Proof. By ([2], B.8.8), it suffices to show that the version of the map (27) for f replaced
by f ′ is an isomorphism. Applying (h1 × h1)

! = (h1 × h1)
∗ to the isomorphism (27),

one gets an isomorphism

(f ′ × id)∗(id×f ′)!(h2 × h2)
!uY2 →̃ (id×f ′)!(f ′ × id)∗(h2 × h2)

!uY2

Since Y ′2 is a connected component of Y ′2 ×Y2 Y ′2 , the object uY ′2 is a direct summand of

(h2×h2)!uY2 . So, the version of the map (27) for f replaced by f ′ is an isomorphism. □

Let P = (MirY2 ⊠ idY1)(Q) then

P →̃σ!(f × idY2)
!(ps-uY2) = (id×f)! ps-uY2 ∈ Shv(Y2 × Y1)

Then Q is codefined by a kernel iff for any Z as in my Section 1.6.2, the map idZ⊠Pl →
idZ⊠Q is an isomorphism.

Claim 2. Let α : U → Y1 be a smooth surjective schematic morphism of some
relative dimension d. Then f ! admits a right adjoint as a functor given by kernel iff
(fα)! admits a right adjoint as a functor given by kernel.

Proof. We have α! →̃α∗[2d]. The functors α∗, α! admit right adjoints as functors given
by kernel by my Section 1.7.2. This gives the ’only if” direction.

Now assume (fα)! admits a right adjoint as a functor given by kernel. By ([2], B.8.8)
the map

(fα× id)∗(id×fα)!uY2 → (id×fα)!(fα× id)∗uY2

is an isomorphism. Since (id×α)! = (id×α)∗[2d], the above map rewrites as

(α× α)∗(f × id)∗(id×f)!uY2 [2d]→ (α× α)∗(id×f)!(f × id)∗uY2 [2d]

It is obtained by applying (α×α)∗[2d] to the map (27). Since (α×α)∗ is conservative,
(27) is an isomorphism, so f ! asdmits a right adjoint as a functor given by kernel by
([2], B.8.8). □

The following is an analog of ([6], 3.6.4).

65

Corollary 1.11.7. Let i : Z→ Y be a locally closed substack, f : Ỹ → Y be a smooth
schematic morphism, where all the stacks are as in my Section 1.6.2. Let Z̃ ⊂ Z×Y Ỹ
be an open substack such that the resulting morphism f ′ : Z̃ → Z is surjective. If the
locally closed embedding ĩ : Z̃→ Ỹ is truncative then Z is truncative in Y .

Proof. By Claim 2 of my Section 1.11.6, it suffices to show that (i ◦ f ′)! admits a right
adjoint as a functor given by kernel. We have ĩ!f ! →̃ (i ◦ f ′)!. Since f is smooth and
schematic, f ! admits a right adjoint given by kernel. Our claim follows. □

The following is immediate from the previous corollary.

Corollary 1.11.8. Let i : Z → Y be a locally closed substack, all the stacks are as in
my Section 1.6.2. Suppose that any z ∈ Z has a Zariski open neighbourhood U ⊂ Y
such that Z ∩ U ↪→ U is truncative. Then Z is truncative in Y . □

1.11.9. (analog of [6], 3.6.10). Let Y be as in my Section 1.6.2. Let f : Ỹ → Y be a
locally closed embedding. If a locally closed substack i : Z→ Y is truncative then the
same holds for ĩ : Z×Y Ỹ → Ỹ .

Proof. Any locally closed embedding writes as a composition of a closed embedding
followed by an open embedding. If f is an open embedding, our claim follows from
Claim 1 in my Section 1.11.6.

So, we may and do assume f is a closed embedding. Write f̃ : Z×Y Ỹ → Z for the
projection. By my Section 1.8.23, it suffices to show that f̃!ĩ

! admits a right adjoint
as a functor given by kernel. We have f̃∗ĩ

! →̃ f∗i
!, and the functor f∗ admits a right

adjoint as a functor given by kernel by my Section 1.7.2. We are done. □

1.11.10. For ([2], C.1.2). Assume Z1,Z2 ⊂ Y are locally closed truncative substacks
of Y , where all the stacks are as in my Section 1.6.2. Then the same holds for Z1 ∩Z2.

Proof. By my Section 1.11.9, Z1 ∩ Z2 ⊂ Z1 is truncative. Since Z1 ⊂ Y is truncative,
the composition of these embeddings is also truncative. □

Let Ui ⊂ Y be the complement to Zi. The above claim says that if both Ui are
cotruncative in Y then U1 ∪ U2 is also cotruncative.

1.11.11. For ([2], C.1.5). Let j : U ↪→ Y be a quasi-compact open substack. Then
indeed the property that j! sends ShvN(U) to ShvN(Y) is equivalent to the fact that
j∗ sends ShvN(U) to ShvN(Y) by ([1], F.8.7).

1.11.12. For ([2], C.2.2). Recall we are in the constructible context. Assume Y is an
algebraic stack locally of finite type. Then by definition, Shv(Y)co →̃ colim∗ Shv(U),
where the colimit is taken over the poset of quasi-compact open substacks U ⊂ Y .

For each such j : U→ Y , the functor j∗,co is fully faithful by ([16], Remark in 9.2.7).
Indeed, for each inclusion j12 : U1 ⊂ U2 of quasi-compact opens, (j12)∗ is fully faithful
and has a continuous right adjoint ((j12)!)

∨.
Besides, Shv(U)co is compactly generated by ([6], 1.9.4). For each quasi-compact

open substack j : U → Y and F ∈ Shv(U)c, j∗,co(F) ∈ Shv(U)cco, and such objects
generate Shv(Y)co. Moreover, by ([6], 1.9.5) each compact object of Shv(Y)co is of the
form j∗,co(F) for j : U→ Y quasi-compact open and F ∈ Shv(U)c.

66

1.11.13. For ([2], C.2.3). Let Y be an algebraic stack locally of finite type. For any
quasi-compact open j : U ↪→ Y we let Shv(Y) act on Shv(U) so that F ∈ Shv(Y) sends
K ∈ Shv(U) to K ⊗! j!F . If j12 : U1 ↪→ U2 is an open immersion of quasi-compact
substacks then ((j12)∗K)⊗! j!2F →̃ (j12)∗(K ⊗! j!1F) canonically for K ∈ Shv(U1), F ∈
Shv(Y) and ji : Ui → Y . So, the colimit colim∗ Shv(U) →̃Shv(Y)co may be understood
in the category Shv(Y)−mod(DGCatcont), because oblv : Shv(Y)−mod(DGCatcont)→
DGCatcont preserves colimits (by [16], 3.0.53).

With this definition for a quasi)-compact open j : U ⊂ Y we have

j∗,co(F)⊗! K →̃ j∗,co(F ⊗! j!K)

for F ∈ Shv(U),K ∈ Shv(Y).
By ([16], 9.2.47), the functor idnaiveY : Shv(Y)co → Shv(Y) is fully faithful.
Consider full subcategory C ⊂ Shv(Y) consisting of objects of the form j∗(K) for

j : U ↪→ Y a quasi-compact open substack and K ∈ Shv(U)c. By the above, C is pre-
cisely the image of Shv(Y)cco under idnaiveY : Shv(Y)co ↪→ Shv(Y). Since the canonical
map Ind(C) → Shv(Y)co is an equivalence, we conclude that the ind-extension of the
inclusion C ⊂ Shv(Y) defines a fully faithful functor Ind(C)→ Shv(Y), which factors

as Ind(C) →̃Shv(Y)co
idnaiveY→ Shv(Y).

1.11.14. For ([2], C.2.4). Let Y be an algebraic stack locally of finite type and N-
truncatable. Then for each N-cotruncative quasi-compact open j : U → Y , the functor
j∗,co : ShvN(U) → ShvN(Y)co is fully faithful? Consider a pair of N-cotruncative
quasi-compact opens j12 : U1 ↪→ U2 ⊂ Y .

Question: the functor (j12)∗ : ShvN(U1) → ShvN(U2) has a continiuous right ad-
joint ??? This would imply that j∗,co : ShvN(U)→ ShvN(Y)co is fully faithful.

Let us show that ShvN(Y)co → Shv(Y)co is fully faithful. For each pair of N-
cotruncative opens j12 : U1 ↪→ U2 ⊂ Y the functor (j12)∗ : ShvN(U1) → ShvN(U2) has
a maybe discontinuous right adjoint h21 : ShvN(U2)→ ShvN(U1), so

ShvN(Y)co →̃ lim
U

ShvN(U),

where the transition functors are h21, and the limit is taken in DGCat. Similarly,
Shv(Y)co →̃ limU Shv(U) taken in DGCatcont, hence also in DGCat. Now for each
N-cotruncative quasi-compact U ⊂ Y , ShvN(U)→ Shv(U) is fully faithful. Passing to
the limit, we see that the desired functor is also fully faithful.

1.11.15. For ([2], C.3.3-C.3.4). They do not assume Y truncative. Their formula for
the pairing Shv(Y) ⊗ Shv(Y)co → Vect is correct. Let us explain how it implies the
desired formula for the induced equivalence (Shv(Y)c)op →̃ (Shv(Y)co)

c. Let j : U ⊂ Y
be an open immersion with U quasi-compact. We check that for FU ∈ Shv(U)c,K ∈
Shv(Y)co one has canonically

(28) HomShv(Y)co(j∗,co(DFU),K) →̃C▲(Y, (j!FU)⊗! K)

Here in the RHS by C▲(Y, ·) we mean the corresponding functor Shv(Y)co → Vect.
Both parts being continuous functors in K ∈ Shv(Y)co, we may assume K compact.

67

So, we pick an open quasi-compact substack j′ : V → Y and L ∈ Shv(V)c so that

K = j′∗,co(L). Let U
jU← U ∩V

jV
↪→ V be the open immersions. The RHS of (28) becomes

C▲(V,L⊗! (jV)!j
∗
UFU) →̃HomShv(V)((jV)∗j

∗
UDFU , L)

In view of my Section 1.11.13, it remains to obtain an isomorphism

HomShv(Y)(j∗(DFU), j′∗L) →̃HomShv(V)((jV)∗j
∗
UDFU , L)

The latter is clear.

1.11.16. Let j : U1 ↪→ U2 be an open immersion of quasi-compact algebraic stacks.
Let N ⊂ T ∗(U2) be a closed conical subset, its restriction to U1 is still denoted by N

by abuse of notations. Assume (Ui,N) is duality-adapted in the sense of ([2], A.5.4)
for i = 1, 2. So, the usual Verdier duality yields equivalences ShvN(Ui)

∨ →̃ShvN(Ui).
Assume j! (equivalently, j∗) sends ShvN(U1) to ShvN(U2). Then the dual of the functor
j! : ShvN(U2)→ ShvN(U1) is j∗ : ShvN(U1)→ ShvN(U2).

In this case the adjoint pair j! : ShvN(U1) ⇆ ShvN(U2) : j
! gives by passing to the

duals an adjoint pair

j∗ : ShvN(U1) ⇆ ShvN(U2) : (j!)
∨

In particular, j∗ has a continuous right adjoint.
Application: assume Y is an algebraic stack locally of finite type, N ⊂ T ∗(Y) is

a closed conical subset, and Y is N-truncatable in the sense of ([1], F.8.6). Pick a
filtered collection of quasi-compact opens ji : Ui → Y such that (ji)! sends ShvN(Ui)
to ShvN(Y). Assume each (Ui,N) is duality-adapted in the sense of ([2], A.5.4). Then
we get ShvN(Y)co →̃ colim∗i ShvN(Ui), where the transition functors are the ∗-direct
images. Since for each pair i1, i2 and an open immersion ji1,i2 : Ui1 ↪→ Ui2 the functor
(ji1,i2)∗ : ShvN(Ui1) → ShvN(Ui2) has a continuous right adjoint, by ([16], Remark in
9.2.7), each (ji)∗,co : ShvN(Ui)→ ShvN(Y)co is fully faithful.

1.11.17. Let Y, Y ′ be algebraic stacks locally of finite type (whose all quasi-compact
open substacks are as in my Section 1.6.2). Let f : Y ′ → Y be a morphism of finite
type. Then we have natural functors that I denote f !

co : Shv(Y)co → Shv(Y ′)co and
f▲,co : Shv(Y ′)co → Shv(Y)co. In fact, f▲,co is defined even if f is not of finite type.
Namely, for a cofinal diagram of quasi-compact opens Ui ⊂ Y , i ∈ I with I filtered
small, let U ′i = f−1(Ui). Then U ′i is quasi-compact open in Y ′, and ∪iU ′i = Y ′. We
have a morphism of diagrams

i 7→ (Shv(Ui)
(fi)

!

→ Shv(U ′i))

in DGCatcont, where fi : U
′
i → Ui is the restriction of f . Here for α : Ui ↪→ Uj the

transition functors are the ∗-direct images with respect to α and α′ respectively, where
α′ : U ′i → U ′j is obtained by base change. Passing to colimi∈I , we get the functor f !

co.

In fact, f !
co is naturally a morphism of Shv(Y)-modules.

Assume first f of finite type. We also have a morphism of diagrams

i 7→ (Shv(U ′i)
(fi)▲→ Shv(Ui))

68

with the same transition functors. Passing to the colimit over I, we get the functor
f▲,co : Shv(Y ′)co → Shv(Y)co. Let now f be arbitary. Then we first define the

functors Shv(U ′i)
(fi)▲→ Shv(Ui) as follows. They come from a compatible system of

functors (fVi)▲ : Shv(V)→ Shv(Ui) for quasi-compact opens V ⊂ U ′i , where fVi is the

composition V ↪→ U ′i
fi→ Ui.

Note that if f : Y ′ → Y is an open immersion of a quasi-compact open then f▲,co :
Shv(Y ′)→ Shv(Y) has the same meaning as f∗,co in ([2], C.2.2).

If j : Y ′ → Y is an open immersion we also write j∗co = j!co. Moreover, in this case
we get an adjoint pair j∗co : Shv(Y)co ⇆ Shv(Y ′)co : j▲,co by ([16], 9.2.39). Indeed,
it is obatined by passing to the colimit over i ∈ I in the adjoint pair j∗i : Shv(Ui) ⇆
Shv(U ′i) : (ji)∗. Here ji : U

′
i → Ui is an open immersion.

We can get more formalism for the co-category by applying the Verider duality to
the usual formalism and using their equivalence Shv(Y)∨ →̃Shv(Y)co from ([2], C.3.3).

Applying ([2], A.4.4) we get the following. The Verdier dual of the above functor
f▲,co : Shv(Y

′)co → Shv(Y)co is f ! : Shv(Y)→ Shv(Y ′) even if f is not of finite type.
Assume f of finite type. Then the Verdier dual of

f !
co : Shv(Y)co → Shv(Y ′)co

is f▲ : Shv(Y ′)→ Shv(Y). Here f▲ is obtained by passing to the limit over i (with the
transition functors given by the usual restriction) in the diagram (fi)▲ : Shv(U ′i) →
Shv(Ui).

Remark The functor idnaiveY : Shv(Y)co → Shv(Y) is Verdier self-dual.

Proof. We have to establish for F, F ′ ∈ Shv(Y)co an isomorphism

C▲(Y, id
naive
Y (F ′)⊗! F) →̃C▲(Y, id

naive
Y (F)⊗! F ′)

Let j : U ↪→ Y and j′ : U ′ ↪→ Y be two quasi-compact opens, K ∈ Shv(U),K ′ ∈
Shv(U ′). It suffices to establish the above isomorphism for F = j∗,co(K), F ′ = j′∗,co(K

′)
in a way compatible with the transition functors in the corresponding direct diagram.
The desired isomorphism becomes

C▲(Y, j
′
∗(K

′)⊗! j∗,co(K)) →̃C▲(U,K ⊗! j!j′∗K
′) →̃

C▲(U
′,K ′ ⊗! (j′)!j∗K) →̃C▲(Y, j∗(K)⊗! j∗,co(K

′))

The isomorphism in the middle comes from the fact that both sides identify with

C▲(U ∩ U ′, j̄!K ′ ⊗! (j̄′)!K). Here U
j̄′← U ∩ U ′

j̄→ U ′ are the corresponding open
immersions. □

Note also that idnaiveY is the limit over the quasi-compact opens j : U ⊂ Y of the
restriction functors j∗co : Shv(Y)co → Shv(U), as lim∗U⊂Y Shv(U) →̃Shv(Y).

For any f : Y ′ → Y as above (f may be of infinite type) the functor f▲,co :
Shv(Y ′)co → Shv(Y)co satisfies the projection formula: for F ∈ Shv(Y ′)co, K ∈
Shv(Y) one has canonically

f▲,co(F)⊗! K →̃ f▲,co(F ⊗! f !K)

69

Proof. Since Shv(Y ′)co is compactly generated and both sides are continuous in F ,
we may assume F compact. Then there is a quasi-compact open j′ : U ′ ⊂ Y ′ and
F ′ ∈ Shv(U ′)c such that F →̃ j′∗,co(F

′). Pick a quasi-compact open j : U ⊂ Y such

that the map f ◦ j′ factors as U ′ f̄→ U
j
↪→ Y . By definition, f▲,co(F) →̃ j∗,cof̄▲(F). The

claim follows from the projection formula for f̄▲. □

Assume f : Y ′ → Y of finite type in addition. Then f satisfies the second projec-
tion formula: for M ∈ Shv(Y ′), L ∈ Shv(Y)co one has canonically

f▲(M)⊗! L →̃ f▲,co(M ⊗! f !
co(L))

Proof. Both sides are continuous in L, and Shv(Y)co is compactly generated, so we
may assume L compact. So, there is a quasi-compact open substack j : U ↪→ Y and
LU ∈ Shv(U)c such that L = j∗,co(LU). We get

f▲(M)⊗! L →̃ j∗,co(LU ⊗! j!f▲(M)) →̃ j∗,co(LU ⊗! (fU)▲(j
′!M)),

where j′ : U ′ ↪→ Y ′ is obtained by base change, and fU : U ′ → U is the restriction of
f . On the other hand, f !

co(L) →̃ j′∗,co(f
!
ULU). So,

M ⊗! f !
co(L) →̃ j′∗,co((f

!
ULU)⊗! (j′)!M)

Now f▲,co(M ⊗! f !
co(L)) →̃ j∗,co(fU)▲((f

!
ULU)⊗! (j′)!M). So, the claim follows from the

usual projection formula:

(fU)▲((f
!
ULU)⊗! (j′)!M) →̃LU ⊗! (fU)▲(j

′)!M

□

1.11.18. Consider a cartesian square

Y ′
fY→ Y

↑ g′ ↑ g
Z ′

fZ→ Z

of algebraic stacks locally of finite type. Assume g of finite type. Then one has canoni-
cally g!co(fY)▲,co →̃ (fZ)▲,co(g

′)!co. This is obtained from the usual (−▲,−!)- base change
by Verdier by dualization.

1.11.19. Let f : Y ′ → Y be a morphism of algebraic stacks as in my Section 1.11.17,
assume f of finite type. Then the diagram commutes canonically

Shv(Y)
f !→ Shv(Y ′)

↑ idnaiveY ↑ idnaive
Y ′

Shv(Y)co
f !co→ Shv(Y ′)co

In addition, the diagram commutes canonically

Shv(Y ′)
f▲→ Shv(Y)

↑ idnaiveY ↑ idnaive
Y ′

Shv(Y ′)co
f▲,co→ Shv(Y)co

70

1.11.20. For ([2], C.4.2). If Z, Y are algebraic stacks, the functor idZ⊠ idnaiveY :
Shv(Z × Y)co → Shv(Z × Y)coZ is defined as follows. For each quasi-compact open
j : UY ⊂ Y we have the restriction (id×j)∗co : Shv(Z × Y)co → Shv(Z × UY)co. For
a pair of quasi-compact opens jU : U ′Y ⊂ UY we have (id×jU)∗co(id×j)∗co →̃ (id×j′)co,
where j′ = j ◦ jU . This gives the desired functor

Shv(Z× Y)co → lim
UY ⊂Y

∗ Shv(Z× UY)co

The functor
idnaiveZ ⊠ idY : Shv(Z× Y)coZ → Shv(Z× Y)

is defined as the limit over the quasi-compact opens UY ⊂ Y of the functors idnaiveZ×UY :
Shv(Z × UY)co → Shv(Z × UY). Since this is a limit of fully fauthful functors,
idnaiveZ ⊠ idY is fully faithful.

Since idnaiveZ×Y : Shv(Z× Y)co → Shv(Z× Y) is fully faithful, we see that idZ⊠ idnaiveY

is also fully faithful.

1.11.21. For ([2], C.4.3). Assume Y truncatable. Let jY : U1,Y → U2,Y be a cotrunca-
tive open immersion of quasi-compact open substacks of Y . Then we have an adjoint
pair (id×jY)▲ : Shv(Z× U1,Y) ⇆ Shv(Z× U2,Y) : (id×jY)? in DGCatcont. Dualizing,
it gives an adjoint pair

(29) ((id×jY)?)∨ : Shv(Z× U1,Y)co ⇆ Shv(Z× U2,Y)co : (id×jY)∗co
So, we may pass to left adjoints in the diagram lim∗

UY ⊂Y
Shv(Z×UY)co →̃Shv(Z× Y)coZ

and get

(30) Shv(Z× Y)coZ →̃ colim
UY ⊂Y

Shv(Z× UY)co

Let U1,Z
jZ
↪→ U2,Z ⊂ Z be quasi-compact opens. Let us explain that their displayed

diagram

(31)
Shv(U1,Y × U1,Z)

(jY ×id)!→ Shv(U2,Y × U1,Z)
↓ (id×jZ)∗ ↓ (id×jZ)∗

Shv(U1,Y × U2,Z)
(jY ×id)!→ Shv(U2,Y × U2,Z)

commutes. After Verdier dualization, it is enough to show that the following diagram
commutes

Shv(U1,Y × U1,Z)
(jY ×id)?← Shv(U2,Y × U1,Z)

↑ (id×jZ)! ↑ (id×jZ)!

Shv(U1,Y × U2,Z)
(jY ×id)?← Shv(U2,Y × U2,Z)

This is true, because (jY × id)? is a functor given by kernel, this is precisely the 2nd
compatibility property in ([2], B.1.5).

We may pass to the colimit (with respect to the ∗-direct images) over UZ in the
diagram (jY × id)! : Shv(U1,Y × UZ) ⇆ Shv(U2,Y × UZ) : (jY × id)∗. By ([16], 9.2.39)
this gives precisely the adjoint pair (29). So, the RHS of (30) rewrites as

colim!
UY ⊂Y

colim∗
UZ⊂Z

Shv(UZ × UY)

71

It would be reasonable to denote the left adjoint in (29) by (id×jY)!,co.
Remark Recall that Y is assumed truncatable. We have an action of Shv(Z × Y)

on Shv(Z × Y)coZ . Namely, we let F ∈ Shv(Z × Y) act on K ∈ Shv(UZ × Y) as
K ⊗! (j × id)!F for j : UZ ↪→ Z. This is compatible with the ∗-transition functors in
colim∗
UZ⊂Z

Shv(UZ × Y).

1.11.22. ([2], C.4.3) more. Assume Y truncatable. Then the Verdier duality gives a
canonical equivalence

(Shv(Z× Y)coZ)
∨ →̃Shv(Z× Y)coY

Proof. Apply ([11], ch. I.1, 6.3.4) to the diagram Shv(Z×Y)coZ →̃ colim∗
UZ⊂Z

Shv(UZ×Y),

where UZ runs through the quasi–compact open substacks of Z. For a pair of such opens
j : U ′Z ↪→ UZ the functor (j × id)∗ : Shv(U

′
Z × Y)→ Shv(UZ × Y) admits a continuous

right adjoint. The Verdier dual of (j × id)∗ is the functor (j × id)!co : Shv(UZ× Y)co →
Shv(U ′Z × Y)co, and Shv(Z× Y)coY →̃ lim

UZ⊂Z
∗Shv(UZ × Y)co. □

1.11.23. For ([2], C.4.4). Let Y1, Y2 be a pair of truncatable algebraic stacks, Z an
algebraic stack locally of finite type. By definition functors defined by kernel are the
functors in their Section C.4.4.

1) Let Q ∈ Shv(Y1 × Y2). For a pair of quasi-compact opens UZ ⊂ Z, U1 ⊂ Y1
consider the diagram

UZ × U1
p1← UZ × U1 × Y2

p2→ UZ × Y2
↓ p

Y1 × Y2

We get a functor Shv(UZ × U1) → Shv(UZ × Y2), K 7→ (p2)▲(p
!
1K ⊗! p!Q). If now

UZ ⊂ U ′Z, U1 ⊂ U ′1 are open immersions of quasi-compact opens, then the above functor
is compatible with the ∗-direct images with respect to UZ × U1 ↪→ U ′Z × U ′1 on the
source, and with respect to UZ × Y2 ↪→ U ′Z × Y2 on the target. Passing to the colimit,
we get a functor

Shv(Z× Y1)co →̃ colim∗
UZ,U1

Shv(UZ × U1)→ colim∗
UZ

Shv(UZ × Y2) →̃Shv(Z× Y2)coZ

denoted idZ⊠Q.
If we pass to the colimit only over U1 with the transition functors being ∗-direct

images, one gets the functor

(32) fZ : Shv(UZ × Y1)co → Shv(UZ × Y2)

These functors are compatible with the ∗-restrictions along the open immersions UZ ⊂
U ′Z. So, passing to the limit over UZ, we get the functor

Shv(Z× Y1)coY1 →̃ lim
UZ⊂Z

∗ Shv(UZ × Y1)co → lim
UZ⊂Z

∗ Shv(UZ × Y2) →̃Shv(Z× Y2)

also denoted idZ⊠Q. (The latter functor makes sense even if Y1, Y2 are not assumed
truncatable).

72

2) Let Q ∈ Shv(Y1 × Y2)co. Let UZ ⊂ Z be a quasi-compact open. First, we define a
functor gUZ

: Shv(UZ × Y1)→ Shv(UZ × Y2)co as follows. Consider the diagram

UZ × Y1
p1← UZ × Y1 × Y2

p2→ UZ × Y2
↓ p

Y1 × Y2

We have the functors Shv(Y1 × Y2)co
p!co→ Shv(UZ × Y1 × Y2)co

(p2)▲,co→ Shv(UZ × Y2)co
defined in my Section 1.11.17. Set

gUZ
(K) = (p2)▲,co(p

!
1(K)⊗! p!co(Q))

Here we used the action of Shv(UZ × Y1 × Y2) on Shv(UZ × Y1 × Y2)co discussed in my
Section 1.11.13.

If j : U ′Z ↪→ UZ is an open substack, the diagram commutes

Shv(UZ × Y1)
gUZ→ Shv(UZ × Y2)co

↓ (j×id)! ↓ (j×id)!co

Shv(U ′Z × Y1)
gU′

Z→ Shv(UZ × Y2)co

Passing to the limit over quasi-compact opens UZ ⊂ Z, the functors gUZ
give the functor

Shv(Z× Y1) →̃ lim
UZ⊂Z

! Shv(UZ × Y1)→ lim
UZ⊂Z

! Shv(UZ × Y2)co →̃Shv(Z× Y2)coY2

denoted idZ⊠Q.
Besides, if j : U ′Z ↪→ UZ is an open substack, the diagram commutes

Shv(UZ × Y1)
gUZ→ Shv(UZ × Y2)co

↑ (j×id)▲ ↑ (j×id)▲,co

Shv(U ′Z × Y1)
gU′

Z→ Shv(UZ × Y2)co

Passing to the colimit over UZ ⊂ Z, one gets the functor

Shv(Z× Y1)coZ →̃ colim∗
UZ⊂Z

Shv(UZ × Y1)→ colim∗
UZ⊂Z

Shv(UZ × Y2)co →̃Shv(Z× Y2)co

also denoted idZ⊠Q.

3) Let Q ∈ Shv(Y1×Y2)coY1 →̃ lim∗
U2⊂Y2

Shv(Y1×U2)co, where U2 runs through the quasi-

compact opens of Y2. Write QU2 the image of Q in Shv(Y1×U2)co. For quasi-compact

opens UZ

jZ
↪→ Z, U2 ⊂ Y2 consider the diagram

UZ × Y1
p1← UZ × Y1 × U2

p2→ UZ × U2

↓ p
Y1 × U2

Define the functor h : Shv(UZ × Y1)→ Shv(UZ × U2) by

h(K) = (p2)▲,co(p
!
1(jZ × id)!K ⊗! p!co(QU2))

73

Let j : U ′Z ↪→ UZ and j2 : U ′2 ⊂ U2 be open immersions. Then the diagram canonically
commute

Shv(UZ × Y1)
h→ Shv(UZ × U2)

↓ (j×id)! ↓ (j×j2)!

Shv(U ′Z × Y1)
h→ Shv(U ′Z × U ′2)

We get a morphism of diagrams indexed by pairs of quasi-compact opens UZ, U2. Pass-
ing to the limit (and using that the index category is filtered, hence contractible), we
get the functor

Shv(Z× Y1) →̃ lim
UZ⊂Z

∗ Shv(UZ × Y1)
limh→ lim

UZ,U2

∗ Shv(UZ × U2) →̃Shv(Z× Y2)

denoted idZ⊠Q. This does not uses the fact that Y1, Y2 are truncatable.
Let j : U ′Z ↪→ UZ be an open immersion of quasi-compact opens in Z. Then the

diagram commutes

Shv(UZ × Y1)
h→ Shv(UZ × U2)

↑ (j×id)∗ ↑ (j×id)∗

Shv(U ′Z × Y1)
h→ Shv(U ′Z × U2)

Passing to the colimit over UZ with the transition functors being the ∗-direct images,
we get the functor

Shv(Z× Y1)coZ →̃ colim∗
UZ⊂Z

Shv(UZ × Y1)→ colim∗
UZ⊂Z

Shv(UZ × U2) →̃Shv(Z× U2)co,

here we used the fact that Y1 is trancatable. These functors are compatible with the
∗, co-restriction functors along Z × U ′2 ⊂ Z × U2. Passing to the limit over U2, we get
the functor

Shv(Z× Y1)coZ → lim
U2⊂Y2

∗ Shv(Z× U2)co →̃Shv(Z× Y2)coZ

still denoted idZ⊠Q.

4) Let Q ∈ Shv(Y1×Y2)coY2 →̃ lim
U1

∗Shv(U1×Y2)co. Using the fact that Y1 is truncatable,
we may rewrite

Shv(Y1 × Y2)coY2 →̃ colim∗
U2⊂Y2

Shv(Y1 × U2)

We identify Shv(Y1 × Y2)coY2 with the essential image of the fully faithful functor

idY1 ⊠ idnaiveY2 : Shv(Y1 × Y2)coY2 ↪→ Shv(Y1 × Y2).

For a quasi-compact open UZ ⊂ Z recall the functor fZ given by (32). Our assumption
that Q ∈ Shv(Y1×Y2)coY2 together with my Section 1.11.19 garantees that (32) actually

takes values in a full subcategory Shv(UZ×Y2)co
idnaive

↪→ Shv(UZ×Y2). The so obtained
functors

fZ : Shv(UZ × Y1)co → Shv(UZ × Y2)co

are compatible with the ∗-restrictions along the open immersions UZ ⊂ U ′Z. So, passing
to limit over UZ, we get the functor

Shv(Z× Y1)coY1 →̃ lim
UZ⊂Z

∗ Shv(UZ × Y1)co → lim
UZ⊂Z

∗ Shv(UZ × Y2)co →̃Shv(Z× Y2)coY2

74

denoted idZ⊠Q.
To get their last assertion here we claim that the functor idZ⊠Q : Shv(Z× Y1)co →

Shv(Z × Y2)coZ defined in 1) for Q ∈ Shv(Y1 × Y2) actually takes values in the full
subcategory Shv(Y1 × Y2)co ⊂ Shv(Y1 × Y2) provided that

Q ∈ Shv(Y1 × Y2)coY2 ⊂ Shv(Y1 × Y2)

The claim follows by passing to the colimit as in 1) over (UZ, U1), because

colim∗
UZ⊂Z

Shv(UZ × Y2)co →̃Shv(Z× Y2)co

1.11.24. ([2], C.4.4) more. Since Y1, Y2 are truncatable, all the DG-categories appear-
ing in their C.4.4 are dualizable. For a functor given by kernel Q (in all the versions
appearing in C.4.4) the Verdier dual functor is also given by kernel Qσ. This gives a
good consistency check of the claims of their C.4.4 (using my Section 1.11.22).

By definition, if for example Q ∈ Shv(Y1 × Y2)coY1 then Qσ ∈ Shv(Y2 × Y1)coY1 and
so on.

1.11.25. For ([2], C.4.5). Let F ∈ Shv(Y). We show that (△Y)∗(F)co1 ∈ Shv(Y ×Y)co1

is well-defined. Let U ′
jU
↪→ U

j→ Y be open immersions, where U,U ′ are quasi-compact.
Let j′ = j ◦jU . Let ν : U → Y ×U be the graph of j, and similarly for ν ′ : U ′ → Y ×U ′.
The base change of ν by id×jU : Y × U ′ → Y × U is the map ν ′. Now from my
Section 1.11.18 we get

(id×jU)!co ν▲,co(j∗F) →̃ ν ′▲,co (jU)
!
co(j

∗F) →̃ ν ′▲,co(j
′∗F)

because (jU)
!
co = j!U = j∗U . So, (△Y)∗(F)co1 is well-defined, similarly for (△Y)∗(F)co2 .

If F ∈ Shv(Y)co then by (△Y)∗(F) ∈ Shv(Y ×Y)co they mean what I denoted above
by (△Y)▲,co(F).

1.11.26. For ([2], C.4.7). Let Y be an algebraic stack locally of finite type. The mirac-
ulous functor MirY : Shv(Y)co → Shv(Y) is Verdier self-dual (see my Section 1.11.24).

1.11.27. For ([2], C.4.8). Their formula (C.4) makes sense, because j! is defined by a
kernel, not just codefined by a kernel.

We check their formula (C.4). Let j : U → Y be a cotruncative open embedding,
assume first both U, Y are algebraic stacks of finite type. Then j! is defined by a kernel
by my Section 1.11.1, we are using here ([2], B.6.3). Recall that j! is codefined by the

kernel (Γj)!e, so it is defined by the kernel Q := (idlU ⊠ idY)((Γj)!e) by their B.4.8,
here Γj : U → U × Y is the graph of j. One checks that Q →̃ (id×j)!(uU), where
uU = (△U)∗ω for △U : U → U × U .

The functor j∗ : Shv(U) → Shv(Y) is defined by the kernel (Γj)∗ω, and MirY is
defined by the kernel ps-uY = (△Y)!e for △Y : Y → Y × Y . This gives that MirY ◦j∗ is
defined by the kernel (Γj)!e.

Now we compose the functors given by kernel j! ◦MirU , the result is defined by the
kernel Q ∗ (ps-uU) →̃ (idU ⊠Q)(ps-uU), here we used their formula (B.5). Now again

75

use the fact that Q is codefined by the kernel, so that idU ⊠Q →̃ idU ⊠j! as functors
Shv(U × U)→ Shv(U × Y). One checks that idU ⊠j! = (idU ×j)!. This gives

(idU ⊠Q)(ps-uU) →̃ (idU ×j)!(△U)!e →̃ (Γj)!e

as desired! Note that we obtained their formula only under the assumption that j! is
defined by a kernel. We did not need the full strength of the property that j∗ admits
a right adjoint as a functor given by kernel.

Let now j : Y ′ ↪→ Y be an open immersion of algebraic stacks (maybe of infinite
type), which is cotruncative. To check their formula (C.4) in this case, note that the
question is local in Zariski topology: it suffices to show that for any quasi-compact open
U ⊂ Y for the contruncative open immersion U ∩ Y ′ ↪→ U we have the corresponding
formula.

1.11.28. For ([2], C.4.9). Let Y1, Y2 be truncatable and j : U2 ↪→ Y2 be a contruncative
open, where U2 is quasi-compact, let P2 ∈ Shv(Y1 × U2) and P = (id×j)∗(P2) ∈
Shv(Y1 × Y2). Let now Z be an algebraic stack locally of finite type (as we consider,
that is, locally as in my Section 1.6.2). Let UZ ⊂ Z be a quasi-compact open. Consider
the functor idUZ

⊠P l : Shv(UZ × Y1)→ Shv(UZ × Y2).
First, we claim that it takes values in the full subcategory Shv(UZ × Y2)co. Indeed,

the functor j∗ is codefined by a kernel, by assumption. Write P̃ ∈ Shv(U2 × Y2) for

the object that codefines j∗. So, P →̃ (idY1 ⊠P̃ l)(P2). Let K ∈ Shv(UZ × Y1). By their
Section B.3.2,

(idUZ
⊠P l)(K) →̃ ((Kσ)l ⊠ id)(P) →̃ ((Kσ)l ⊠ id)(idY1 ⊠P̃ l)(P2)

→̃ (idY1 ⊠P̃ l)((Kσ)l ⊠ id)(P2)

Thus, we obtained a functor

(33) idUZ
⊠P l : Shv(UZ × Y1)→ Shv(UZ × Y2)co

The so obtained functors are compatible with the ∗-direct images of P2 under open
immersions U2 ↪→ U ′2 of quasi-compact cotruncated opens of Y2. Passing to the colimit
over U2, we see that for any P ∈ colim∗

U2⊂Y2
Shv(Y1 × U2) →̃Shv(Y1 × Y2)coY2 we get the

functor (33).
By definition, Shv(Z × Y2)coY2 →̃ lim

UZ

∗ Shv(UZ × Y2)co. The functors (33) are com-

patible with the ∗-restrictions along the open immersions UZ ↪→ U ′Z for quasi-compact
opens of Z. Passing to the limit, one gets the functor

Shv(Z× Y1) →̃ lim
UZ⊂Z

∗ Shv(UZ × Y1)→ lim
UZ⊂Z

∗ Shv(UZ × Y2)co →̃Shv(Z× Y2)coY2

still denoted idZ⊠P l.

1.11.29. For ([2], C.5.2). Here Y is assumed locally of finite type and truncatable.
Let us explain that Y is miraculous iff each cotruncative quasi-compact open substack
U ⊂ Y is miraculous.

76

Assume each such U is miraculous. It suffices to show that for any quasi-compact
stack Z the functor idZ⊠MirY : Shv(Z × Y)co → Shv(Z × Y) is an equivalence. For
any quasi-compact cotruncative open j : U ↪→ Y we have

(idZ⊠j!)(idZ⊠MirU) →̃ (idZ⊠MirY)(idZ⊠j∗,co)

by their (C.4), and (idZ⊠j∗,co) : Shv(Z× U)→ Shv(Z× Y)co is fully faithful (see my
Section 1.11.12). So, the restriction of idZ⊠MirY to the full subcategory Shv(Z× U)
is fully faithful. By ([16], 9.2.47) this implies that idZ⊠MirY is fully faithful. Write j?

for the right adjoint to j∗,co.By Verdier duality, their (C.4) gives MirU ◦j? →̃ j∗ ◦MirY .
To see that idZ⊠MirY is essentially surjective, let K ∈ Shv(Z × Y). For each

quasi-compact open j : U ↪→ Y let

FU = (idZ⊠Mir−1U)(idZ⊠j∗)(K)

Recall that Shv(Z× Y)co →̃ lim
U⊂Y

?Shv(Z× U). For an open immersion jU : U ↪→ U ′ of

quasi-compact contruncative opens substacks of Y , we have canonically j?UFU ′ →̃FU ,

so the collection (FU) defines an object F ∈ Shv(Z × Y)co with j!co(F) →̃FU for each
contruncative quasi-compact open U . Then formally we get (idZ⊠MirY)(F) →̃K.

Conversely, assume Y is miraculous. Then again, for any quasi-compact stack Z, the
fully faithfulness and essential surjectivity of MirU follows from their (C.4). For the
essential surjectivity, let K ∈ Shv(Z×U) and F = (idZ⊠j?)(idZ⊠Mir−1Y)(idZ⊠j!)(K).
Then (idZ⊠MirU)(F) →̃K.

1.11.30. For ([2], C.5.3). Since Y is miraculous, for any quasi-compact open UZ ⊂ Z

the functor idZ⊠MirY : Shv(UZ × Y)co → Shc(UZ × Y) is an equivalence. They are
compatible with the restrictions for the open immersions U ′Z ⊂ UZ. Passing to the limit
over UZ, we get an equivalence idZ⊠MirY : Shv(Z× Y)coY →̃Shv(Z× Y). Dualizing,
we get the second equivalence.

1.11.31. For ([2], 0.3.4). Let Y be a connected separated scheme of finite type, Q ∈
Shv(Y). When does Q admits a right adjoint as a functor given by kernel? By their
B.5.6, we need Q ∈ Shv(Y)constr for this, which we assume. Note that in this case
Q ∈ Shv(Y)c, so by their B.1.4 for any quasi-compact algebraic stack Z (as in my
Section 1.6.2), the functor idZ⊠Q preserves compactness. So, by my Proposition 1.8.5,
Q admits a right adjoint as a functor given by kernel iff Q is codefined by a kernel.

Set ′QR = idlY (DQ), we get ′QR →̃ω ⊗ (DQ). By Verdier duality, (Q,′QR) is a dual
pair in the corresponding 2-category iff ((′QR)σ, Qσ) is an adjoint pair in the same
2-category. Here Qσ defines by the kernel the functor Shv(pt)→ Shv(Y), V 7→ V ⊗Q.

Let P = MirY (Q). One gets immediately P →̃ e⊗! Q →̃Hom(ωY , Q). To be precise,
by Hom(·, ·) ∈ Y we mean the inner hom for (Shv(Y),⊗). Then Q is codefined by a
kernel iff for any quasi-compact stack Z as above, idZ⊠P l → idZ⊠Q is an isomorphism
by their B.4.4. The morphism of functors Pl → Q in Fune,cont(Shv(Y),Vect) comes

from the natural morphism F ⊗ (eY ⊗! Q)→ F ⊗! Q for F ∈ Shv(Y) defined in ([20],
0.1.10). Namely, it is the composition

Cc(Y, F ⊗ (eY ⊗! Q))→ C∗(Y, F ⊗ (eY ⊗! Q))→ C∗(Y, F ⊗! Q)

Note that MirY : Shv(Y)→ Shv(Y) sends K to e⊗! K.

77

Assume that e[2d] →̃ω, for example, Y is smooth of dimension d. More generally,
this holds for example, for Y = An/S2, where the nontrivial element of S2 acts as
multiplication by −1. So MirY (K) →̃K[−2d], and MirY is an equivalence. Assume
in addition Y proper and Q ∈ Lisse(Y). Let us show that the functor Q is indeed
codefined by a kernel. Let Z be a quasi-compact algebraic stack. For K ∈ Shv(Z×Y),

M ∈ Shv(Z) we get for the diagram of projections Z
p1← Z× Y

p2→ Y

(34) Hom((idZ⊠Q)(K),M) →̃Hom(K ⊗! p!2Q, p!1M)

WriteQ∨ = Hom(Q, e), this is the dual ofQ in (Lisse(Y),⊗). ThenQ →̃Hom(Q∨, e),
and DQ →̃Q∨[2d]. Now

K ⊗ p!2Q →̃Hom(p∗2(DQ),K) →̃Hom(p∗2(Q
∨)[2d],K) →̃ p∗2Q⊗K[−2d]

We used that p∗2(Q
∨) →̃ (p∗2Q)∨. By ([20], 0.0.7), the functor K 7→ p∗2Q ⊗K[−2d] has

a continuousn right adjoint given by K 7→ K⊗! D(p∗2Q)[2d]. So, (34) identifies with

Hom(K, p!1M ⊗! p!2(DQ)[2d]) →̃Hom(K, (idZ⊠
′QR)(M))

So, (idZ⊠Q, idZ⊠ ′QR) is a dual pair for any Z, so that Q admits a right adjoint as a
functor given by kernel.

Appendix A. On singular support

A.0.1. Question. What is the relation between the abstract ULA property of Sam
with the notion of singular support?

A.0.2. Let X be a smooth scheme of finite type, F ∈ Shv(X)constr in the con-
structible context. Let E be a local system on X. Let us show that SingSupp(F) =
SingSupp(F ⊗ E).

Let C ⊂ T ∗X be a closed conical subset such that F is micro-supported on C in

the sense of [3]. Let X
h← U

f→ Y be a test pair, which is C-transversal, so h∗F is
ULA with respect to Y . Then h∗(F ⊗E) is ULA with respect to Y , because the ULA
property is local in smooth topology of the source. So, the pair (h, f) is F ⊗E-acyclic.
So, F ⊗ E is also micro-supported on C. Recall that Beilinson write C(F) for the set
of conical closed subsets C ′ ⊂ T ∗(X) such that F is micro-supported on C ′. On the
other hand if h∗(F ⊗ E) is ULA with respect to f : U → Y then h∗F is also ULA
with respect to f as a direct summand of h∗(F ⊗ E ⊗ E∗). So, C(F) = C(F ⊗ E) and
SingSupp(F) = SingSupp(F ⊗ E).

For any closed conical subset N ⊂ T ∗(X) we get an action of (Lisse(X),⊗) on
ShvN(X) such that E ∈ Lisse(X) sends K to K ⊗ E.

A.0.3. Let us now X a be scheme of finite type, not necessarily smooth, we want to
check the same property. Let E be a local system on X, F ∈ Shv(X)constr. Let us
show that SingSupp(F) = SingSupp(F ⊗ E).

Assume X ′ is a smooth scheme of finite type and j : X → X ′ is a closed embedding.
By definition, it suffices to show that SingSupp(j∗F) = SingSupp(j∗(F ⊗ E)).

Let C ⊂ T ∗X ′ be a closed conical subset and X ′
h′← U ′

f→ Y be a test pair, which is
C-transversal. Let jU : U → U ′ be obtained from j by the base change h′ : U ′ → X ′.

78

Let h : U → X be the projection. By ([5], property 3 in 5.1.2), (jU)∗h
∗F is ULA with

respect to f iff h∗F is ULA with respect to f ◦ jU . Now h∗F is ULA with respect to
f ◦ jU iff h∗(F ⊗E) is ULA with respect to f ◦ jU . So, C(j∗F) = C(j∗(F ⊗E)), and we
are done.

Remark A.0.4. Recall that QLisse(X) is equipped with the t-structures inheritied from
the usual (not perverse) t-structure of Shv(X), and Shv(X) is considered with the
perverse t-structure. If K ∈ Shv(X)≤0, V ∈ QLisse(X)≤0 then K ⊗ V ∈ Shv(X)≤0.

Proof. We characterize Shv(X)≤0 ⊂ Shv(X) as the full subcategory of K ′ ∈ Shv(X)
such that for any point i : x → X the object i∗K ′ is placed in usual cohomological
degrees ≤ −dimx, here x is not necessarily a closed point. Since i∗V is placed in usual
degrees ≤ 0, and i∗K is placed in usual degrees ≤ −dimx, i∗(K⊗V) is placed in usual
degrees ≤ −dimx. □

A.1. Let p : Z → X be a morphism of schemes of finite type with X smooth. Let
E ∈ Lisse(X) and K ∈ Shv(Z). Then we get

K ⊗! p!E →̃ p∗E ⊗K[−2 dimX]

The same holds for E ∈ IndLisse(X).
Proof:

K ⊗! p!E →̃Hom(D(p!E),K) →̃Hom(p∗(E∨[2 dimX],K) →̃ p∗E ⊗K[−2 dimX]

where Hom denotes the inner hom for the monoidal category (Shv(Z),⊗), and E∨ =
Hom(E, eX) is the naive duality on X. □

In particular, if K ∈ Shv(Z)constr then SingSupp(K⊗! p!E) = SingSupp(K) by the
above.

Lemma A.1.1. Let K ∈ Shv(Z)≥0, E ∈ QLisse(X)≥0 then K ⊗! p!E ∈ Shv(Z)≥0.

Proof. For K ′ ∈ Shv(Z) the condition that K ′ ∈ Shv(Z)≥0 means that for any maybe
non clolsed point i : z → Z, i!K ′ is placed in usual degrees ≥ − dim z. For such a
point i : z → Z let ī : z̄ → X be the image of z in X. Then ī!E is placed in usual
degrees ≥ 2 dimX−2 dim z̄. So, i!(K⊗! p!E) →̃ (i!K)⊗ (̄i!E) is placed in usual degrees
≥ −dim z+2dimX−2 dim z̄ ≥ −dim z, because dim z̄ ≤ dimX. So, K⊗p!E is placed
in perverse degrees ≥ 0. □

Lemma A.1.2. Let K ∈ Shv(Z)≤0. Then the functor QLisse(E)− → Shv(Z), E 7→
K ⊗! p!E commutes with Postnikov towers. That is, the natural map K ⊗! p!E →
limn(K ⊗! p!(τ≥−nE)) is an isomorphism in Shv(Z).

Proof. The idea is due to Sam, see his ([24], Lemma 3.12.1). We consider QLisse(X)
equipped with the usual t-structure. First, if E ∈ QLisse(X)≤r and is bounded then

(35) K ⊗! p!E →̃ p∗E ⊗K[−2 dimX] ∈ Shv(Z)≤r+2dimX

For each m ∈ Z,

τ≥−m(K ⊗! p!E) →̃ lim
n

τ≥−m(K ⊗! p!(τ≥−nE),

79

because the functor n 7→ τ≥−m(K ⊗! p!(τ≥−nE) stabilizes as n goes to +∞, here we
used (35). Now

K ⊗! p!E →̃ lim
m

τ≥−m(K ⊗! p!E) →̃ lim
m

lim
n

τ≥−m(K ⊗! p!(τ≥−nE)

→̃ lim
n

lim
m

τ≥−m(K ⊗! p!(τ≥−nE) →̃ lim
n
(K ⊗! p!(τ≥−nE))

□

Lemma A.1.3. Let N ⊂ T ∗Z be a closed conical subset. Then for K ∈ ShvN(Z),
E ∈ QLisse(X) we have K ⊗! p!E ∈ ShvN(Z)

Proof. Since K →̃ colimn τ
≤nK and E = colimn τ

≤nE, we may and do assume K ∈
ShvN(Z)≤0, E ∈ QLisse(X)≤0. Recall that we consider QLisse(X) with the usual t-
structure.

It suffices to show that for any m, τ≥−m(K ⊗! p!E) ∈ ShvN(Z). Given such m, for
n large enough we have

τ≥−m(K ⊗! p!E) →̃ τ≥m(K ⊗! p!(τ≥−nE))

as in the proof of Lemma A.1.2. Since K ⊗! p!(τ≥−nE) ∈ ShvN(Z) by Section A.0.2,
we are done. □

We may now consider (QLisse(X),⊗!), and the above lemma shows that this sym-
metric monoidal category acts on ShvN(Z), so that E ∈ QLisse(X) sends K ∈ ShvN(Z)
to K ⊗! p!E.

Lemma A.1.4. Let X,Y be schemes of finite type, K ∈ Shv(X)−. Then the functor
Shv(Y)→ Shv(X × Y), F 7→ K ⊠F preserves Postniklov towers. That is, the natural
map K ⊠ F → limn(K ⊠ τ≥−nF) is an isomorphism in Shv(X × Y).

Proof. Note that if K ∈ Shv(X)≤a and L ∈ Shv(Y)≤b then X ⊠ Y ∈ Shv(X × Y)≤a+b

by ([1], Pp. E.7.2).
Let m ∈ Z. Consider the functor n ∈ Z 7→ τ≥−m(K ⊠ τ≥−nF) ∈ Shv(X × Y). By

the above remark, it stabilizes for n large enough. So,

lim
n

τ≥−m(K ⊠ τ≥−nF) →̃ τ≥−m(K ⊠ F)

Thus, limn(K ⊠ τ≥−nF) →̃ limm limn τ
≥−m(K ⊠ τ≥−nF) →̃K ⊠ F . □

A.1.5. ([3], Lemma 2.2) is important and says: let X be a smooth variaty, ϕ : U → X a
moprhism in Schft, F ∈ Shv(X)constr. If ϕ : U → X is C-transversal with SS(F) ⊂ C
then SS(ϕ∗F) ⊂ ϕ◦(C).

Appendix B. Langlands functoriality

B.0.1. We try to derive a correct setting for the geometric Langlands functoriality on
the DG-level as an application of [1]. Let H,G be connected reductive groups over k,
Let κ : Ǧ→ Ȟ be a morphism of dual groups over e.

80

B.0.2. Work in the constructible setting. For a map f : Y → Y′ of classical algebraic
stacks (with affine diagonals), we denote by f∗ : Shv(Y) → Shv(Y′) the right adjoint
to f∗ as in ([2], A.1.8). It is not necessarily continuous, but satisfies the base change
with respect to the !-pullbacks by loc.cit.

Recall that fSet denotes the category of finite sets. Consider the functors hG, hH :
fSet → DGCatcont, hG(I) = Shv(BunG×XI) and hH(I) = Shv(BunH ×XI). For a
map α : I → J in fSet the corresponding transition maps are given by the !-pullback
with respect to BunG×XJ → BunG×XI and BunH ×XJ → BunH ×XI respectively.
We need to have a natural transformation L from hG to hH .

B.0.3. let CH : fSet → Alg(DGCatcont) be the functor sending I to Rep(Ȟ)⊗I ⊗
Shv(XI). For a morphism α : I → J the transition map CH(I) → CH(J) is the
morphism

Rep(Ȟ)⊗I ⊗ Shv(XI)
m⊗△!

→ Rep(Ȟ)⊗J ⊗ Shv(XJ),

where m is the multiplication along α, and △: XJ → XI is induced by α. Similarly we
have

CG : fSet→ Alg(DGCatcont), I 7→ Rep(Ǧ)⊗I ⊗ Shv(XI)

We view them as objects of Alg(Fun(fSet,DGCatcont)). Restriction along κ defines a
morphism

(36) Resκ : CH → CG

in Alg(Fun(fSet,DGCatcont)).
Recall that hG ∈ Fun(fSet,DGCatcont) is a module over CG via the action con-

structed in ([9], Pp. B.2.3), similarly, hH ∈ Fun(fSet,DGCatcont) is a module over
CH . By restriction along (36), we may view hG as a module over hH . We write

actG : Rep(Ǧ)⊗I ⊗ Shv(BunG×XI)→ Shv(BunG×XI)

for the corresponding action map, and similarly for actH .

B.0.4. Setting A) for the functoriality. We want a (maybe discontinuous) natural
transformation L : hG → hH to be a morphism of CH -modules.

When talking about possibily discontinuious natural transformation, we mean of
course that for each I ∈ fSet the functor LI : Shv(BunG×XI) → Shv(BunH ×XI)
should be a morphism in DGCat, the notation of ([11], ch. I.1, 10.3.4).

B.0.5. Our first trial is as follows. Let M ∈ Shv(BunG×BunH). It defines a natural
transformation L : hG → hH sending I to the functor

LI : Shv(BunG×XI)→ Shv(BunH ×XI), LI(K) = (pH)∗(p
!
GK ⊗! q!M)

for the diagram of projections

BunG×XI pG← BunG×BunH ×XI pH→ BunH ×XI

↓ q
BunG×BunH

81

B.0.6. Note that for a (maybe discontinuous) morphism f : D → D′ in DGCat and
C ∈ DGCatcont dualizable, we have a morphism id⊗f : C ⊗ D → C ⊗ D′ defined as
the composition Fune,cont(C

∨, D)→ Fune,cont(C
∨, D′) with f .

So, for each I ∈ fSet we get morphisms

id⊗LI : Rep(Ȟ)⊗I ⊗ Shv(BunG×XI)→ Rep(Ȟ)⊗I ⊗ Shv(BunH ×XI)

The requirement of Setting A) contains, in particular, the commutativity datum for
the diagram

(37)
Rep(Ȟ)⊗I ⊗ Shv(BunG×XI)

actG ◦(Resκ⊗ id)→ Shv(BunG×XI)
↓ id⊗LI ↓ LI

Rep(Ȟ)⊗I ⊗ Shv(BunH ×XI)
actH→ Shv(BunH ×XI)

in a way functorial in I ∈ fSet.

References

[1] D. Arinkin, D. Gaitsgory, D. Kazhdan, S. Raskin, N. Rozenblyum, Y. Varshavsky, The stack of
local systems with restricted variation and geometric Langlands theory with nilpotent singular
support, arxiv version 2

[2] D. Arinkin, D. Gaitsgory, D. Kazhdan, S. Raskin, N. Rozenblyum, Y. Varshavsky, Duality for
automorphic sheaves with nilpotent singular support, arxiv version 2

[3] A. Beilison, Constructible sheaves are holonomic
[4] Beilinson, Bernstein, Deligne, Faisceaux pervers, Asterisque 100
[5] Braverman, Gaitsgory, Geometric Eisenstein series, Invent. Math. 150, No. 2, 287-384 (2002).
[6] Drinfeld, Gaitsgory, Compact generation of the category of D-modules on the stack of G-bundles

on a curve, Cambridge Journal of Mathematics Vol. 3 (2015), Number 1 - 2, p. 19 - 125
[7] Drinfeld, Gaitsgory, On some finiteness questions for algebraic stacks, GAFA
[8] D. Gaitsgory, Notes on geometric Langlands: generalities on DG-categories, his homepage
[9] D. Gaitsgory, D. Kazhdan, N. Rozenblyum, Y. Varshavsky, A toy model for the Drinfeld-Lafforgue

shtuka construction, arXiv:1908.05420, version 5
[10] D. Gaitsgory, S. Lysenko, Metaplectic Whittaker category and quantum groups : the ”small” FLE,

arXiv:1903.02279
[11] D. Gaitsgory, N. Rozenblyum, A study in derived algebraic geometry, book
[12] David Gepner, Rune Haugseng, Thomas Nikolaus, Lax colimits and free fibrations in ∞-categories,

Documenta Mathematica 22 (2017), 1225 - 1266
[13] J. Lurie, Higher topos theory
[14] J. Lurie, Higher algebra, version Sept. 18, 2017
[15] J. Lurie, Spectral algebraic geometry
[16] S. Lysenko, Comments to Gaitsgory Lurie Tamagawa, my homepage
[17] S. Lysenko, Twisted Whittaker models for metaplectic groups, arXiv:1509.02433 (last version

corrects the published one)
[18] S. Lysenko, Comments to small FLE
[19] S. Lysenko, my Embryo seminar notes
[20] S. Lysenko, Assumptions on the sheaf theory for the 2nd joint paper with Dennis
[21] D. Gaitsgory, S. Lysenko, Metaplectic Whittaker category and quantum groups : the ”small” FLE,

arXiv:1903.02279, version April 21, 2020
[22] S. Raskin, Chiral principal series categories I: finite-dimensional calculations
[23] S. Raskin, Chiral principal series categories II: the factorizable Whittaker category, his web page
[24] S. Raskin, On the notion of spectral decomposition in local geometric Langlands
[25] R. C. Reich, Twisted geometric Satake equivalence via gerbes on the factorizable grassmannian,

Repr. Theory, Vol. 16 (2012), 345 - 449

