1. COMMENTS TO: THE STACK OF LOCAL SYSTEMS WITH RESTRICTED VARIATION
AND GEOMETRIC LANGLANDS THEORY WITH NILPOTENT SINGULAR SUPPORT

1.1. For version of Jan 24, 2022.

1.1.1. For 1.1.9. Let S be a scheme of finite type, X be a smooth scheme of finite type.
To see that QLisse(X) is left-complete, argue as follows. We know that Shv(X) is left
complete, so for z € QLisse(X) the natiral map = — lim, 72 "2 with limit taken in
Shv(X) is an isomorphism. So, this also holds in QLisse(X ), hence QLisse(X) has con-
vergent Postnikov towers. Let now {¢"} € lim,, QLissel™" and ¢ = lim,, ¢ calculated
in Shv(X). Then we know already that for any n, 72~"¢ — ¢" is an isomorphism. This
shows that ¢ € QLisse(X), so the limit of the diagram {¢"} taken in QLisse(X) and in
Shv(X) are the same. Moreover, the truncation functor for QLisse(X) is the restriction
of the truncation functor for Shv(X). So, the natural map 7=~"c — ¢™ in QLisse(X)
is an isomorpism. That is, their functor C—C given by (B.2) is fully faithful. So,
QLisse(X) is left complete. We did not need the fact that QLisse(X)<? C QLisse(X)
is closed under countable product, nor to apply (HA, 1.2.1.19).

The t-structure on Shv(S) is accessible and compatible with filtered colimits (see [11],
ch. IL.1, Lm. 1.2.4) proved in ([16], 10.3.3). Moreover, the t-structure on Shv(S) is
compactly generated in the sense of ([21], 6.3.8). Recall that each object of Shv ()t
is bounded. So, by ([18], 1.2.36), Shv(S) is right complete. We also know it is left
complete by ([1], Th. 1.1.4).

QLisse(X) is equipped with a t-structure. By ([13], 5.3.5.11), Ind(Lisse(X)) C
QLisse(X) is a full subcategory. We equip Ind(Lisse(X)) with the t-structure defined
by ([11], ch. II.1, Lm. 1.2.4) by ind-extention of the t-structure on Lisse(X). Then
Ind(Lisse=Y(X)) C Ind(Shv(X)=0constry and Ind(Lisse=%(X)) C Ind(Shv(X)Z0constr),
so the inclusion Ind(Lisse(X)) — QLisse(X) is t-exact. In particular, for n € Z the
functor

(1) IndLisse(X)=™" C QLisse(X)=""

is fully faithful. Let us show it is essentially surjective. Its image is closed under

filtered colimits and clearly containes QLisse(X)Y[m] for m < n. Finally, for any z €

QLisse(X)=~" we have z — COli%l 7SM2 in Shv(X), because Shv(X) is right complete,
me

see ([16], 4.0.10). But 7™z € IndLisse(X )=, and (1) is closed under filtered colimits,
so (1) is an isomorphism.

1.1.2. Let S be a scheme of finite type, work in the constructible context.

If K € Sho(S9)“"s let KV = Hom(K,e), where e is the constant sheaf on S.
We have a natural map K — Hom(KY,e) corresponding to the natural map K ®
Hom(K,e) — e. The full subcategory of K € Shv(S)®"s'" for which this map is
an isomorphism is closed under extensions and shifts and contains local systems. So,
it contains the full subcategory Lisse(S) C Shv(S)«""". So, for E € Lisse(S), the
map £ ® w — D(EVY) is an isomorphism. Recall that Lisse(S) C Shv(S) is the full
subcategory of objects dualizable with respect to the ®-monoidal structure, and EV is
the dual of £ € Lisse(S) with respect to this monoidal structure. Let E € Lisse(S5),
K € Shv(S). Then the above easily gives K @' (E®@w) > K ® E.
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Let us show that E ® w is dualizable with respect to the ®'-monoidal structure on
Shv(S). For F; € Shv(S) we get

Hom(Fy, Fy @ (E ®w)) = Hom(Fy, Hom(E*, Fy)) = Hom(F, ® E*, Fy) =
Hom(F @' (E* @ w), F),

here Hom(Fi, F») € Vect means relative inner hom for Vect-action on Sho(S). I don’t
see why the dualizability of K € Shw(S) for the ®'-monoidal structure implies that
K € Lisse(9).

Note that IndLisse(S)¢ = Lisse(S), and each object of Lisse(S) is dualizable in
(IndLisse(S), ®'). Besides, ®' sends Lisse(S)x Lisse(S) to Lisse(S), and w € IndLisse(S)°
because w € Lisse(S). So, by ([11], ch. 1.1, 9.1.5), IndLisse(.S) is rigid.

1.1.3. For the proof of B.1.9. The presentation changed in the new version.

If C is a stable category with a t-structure, a € CV,¢c € C then Ext’é(a, c) =
Homyc (a[—k], ¢) = Hompc(a[—k], 72%¢).

Let now C' = Ind(D®(A)), where A is an abelian category, say with enough projective
objects. Let a € A, ¢ € Ind(D®(A)) and k > 0. Then a map a — H(c) is the same as
amap a[—k] — 72Fc in C, and H(Hom(a[—k], 72%¢) is a nonzero vector space. Pick a
surjection a’ — a, where a’ is projective. Then Ext5™ (a’,7<%(c)) = 0 by ([14], 1.3.3.7),
so the map Ext®(a’,c) — Ext®(a’,72F(c)) is surjective, in particular, Ext®(a’,c) # 0.
This constradicts the fact that Homy,q(psay (a's c) € Vect =0,

1.1.4. Tt follows from Appendix C about categorical K (m, 1) that the t-structure on
QLisse(X) is compactly generated for any smooth complete curve X.

1.1.5. in 8.1.1, QLisse(X) is considered with respect to the x-monoidal structure. In
the definition of a smooth action in 8.1.1, fSet is the category of finite sets (possibly
empty) and any maps between them. The functor fSet — DGCato? T Rep(G)®!
sends a : I — J to the product map along o, similarly for I — QLisse(X)®!.

1.1.6. In 11.1.1, fSet denotes the category of finite sets (maybe empty) and all mor-
phisms between them. We have an adjoint pair [ : (fSet)? <= Tw(fSet) : r, where
(J)=0— J)and r(I — J) = J.

For 11.1.5. Let C' € CAlg(DGCatcont), let us show that Cray — Vect. We have the
functor q : (fSet)°? — DGCateont, J — Shv(X”). For amap «a : Jo — Jy in fSet, that
is, to a : J; — Jo in (fSet) it attached the morphism A: Shv(X7t) — Shv(X72) for
A XU — X720 By ([16], 2.2.39), gr is the LKE of q along [ : (fSet)®? — Tw(fSet).
So,

li I—J)= li = — Vect
(IﬁJsnglg%de)qr( — )%Jec(?slglwopq( )= q(P) = Vect,

because () € fSet is initial.

For 11.1.6. The symmetric monoidal structure on Tw(fSet) is given by sending
(Il — Jl), (IQ — JQ) to (Il Ul — Jp U Jz), see ([19], 123) Their functor (111) is
indeed right-lax symetric, and sends the unit object () — @) to Vect € DGCateont. So,
by their B.1.8, its colimit lies in C'Alg(DGCateont). In case, this could use the fact
that X is proper, as we need that for two maps of finite sets Jo — J1, J5 — J] and the
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. / / / / .
corresponding A: X7t — X2 A X1 — X2 and s : X/1Y 5 X2U2 the diagram
commutes

Shu(X71) @ Sho(X71) 5 Shu(X/191)

\l, A*®A; \l/ Sx
Shu(X72) @ Sho(X%) 5 Shu(X725%)

1.1.7. For B.1.1: my understanding is that the notation Fun"% (0O, A) means non-
unital right-lax monoidal functors, that is, the map 1 — f(1) is not necessarily an
isomorphism.

Their Pp. B.2.9 is precisely ([19], 1.3.4).

1.1.8. For 8.2.3. Let O be a symmetric monoidal presentable category, in which the
tensor product preserves colimits separately in each variable. Let A € C Alg(O), B be a
unital cocommutative coalgebra in O, which is dualizable in O. Then the commutative
algebra structure on coEnd(A, B) = colim(;_, jyeruw(ser) A @ B®/ in O is as follows.
Let ins(;_yy : AT @ B®/ — coEnd(A, B) be the natural map. For (I — Ji), (I —
Ja) € Tw(fSet) the composition

ins(r HJ1)§:ns(12ﬁJ2)

A®T1 @ BON g A®R @ BET2 coEnd(A, B)@coEnd(A, B) ™" coEnd(A, B)

coincides with
NS (1, Uly— Jy L) - ABDEE o BRIy oEnd(A, B)

The unit of coEnd(A, B) is insg_p) : 1 — coEnd(A, B).

1.1.9. In 8.2.4 they claim the following. Let O € C'Alg(1 — Cat), which is cocomplete
and such that the monoidal product preserves colimits separately in each variable. Let
B be a unital cocommutative coalgebra in O, which is dualizable, so B is a unital
commutative algebra. The functor R : O — BY — mod(O), M + BY @ M admits
a left adjoint L sending N to B ®pv N by ([16], 3.2.5). Now, the functor R gives
R : CAlg(O) — CAlg(BY — mod(0O)). The left adjoint £ to R is given by their Pp.
B.2.9. So,
L(N)= colim ® L(N®),

(I=J)eTw(fSet) jeJ
where the tensor power of N is taken in BY — mod(O). Here fSet is the category of
finite sets. Now for A € C'Alg(O) we get

L(BY® A=  colim B® @ A®!
(I—=J)eTw(fSet)

Indeed, B ®pv (BY ® A) = B ® A. They define coEnd(A, B) := £L(BY ® A) and use
the fact that

Mapc a0y (4, A'©BY) = Mape aig(5v—mod(0)) (B' ©A, AQBY) = Mapc 414(0)(L(BY©A), A')
They also write coHom(A, BY) = £L(BY ® A).



Let us describe the counit map of the adjunction £(BY ® A) — A in C'Alg(O). We
do this using ([19], 1.3.6). It is given by a compatible system of maps B®/ @ AT — A

for (1 4 J) € Tw(fSet), which are the compositions

2) B®I @ A®T counitSd jarm

where the first map comes from the J-th tensor power of the counit B — 1o of B. The
second map in (2) is the product m : A®1 — A.

1.1.10. In Lemma 8.2.7, the coalgebra B and algebra C' are assumed unital. By a
compatible collection of maps A%’ — C ® (BY)®! in (a) they mean the space of
natural transformations of functors fSet — Alg(DGCat) (or fSet — CAlg(DGCat)
respectively) from I — A®! to the functor I +— (BY)® I think.

1.1.11. For 11.1. Let € € CAlg(DGCateopnt). To see why in the definition of Cran
they use the *-direct image note the following. The formlula is analogous to the def-
inition of coEnd(A, B) in their Section 8.2.3. For a scheme of finite type S, it is
understood that Shv(S) is always considered with the ®'-symmetric monoidal struc-
ture. Dualizing, Shv(S) is a cocommlutative unital coalgebra with the coproduct
given by A, for A: S — § x S. So, in the formula for Cra,, we consider the functor
TwArr(fSet) — DGCateons, (I — J) = C®1 @ Shu(X7), and Shv(X7) secretely plays
the role of the tensor power Shu(X)®/ (this is litterally true for D-modules, but not in
the constructible context). So, the functor (fSet)®? — DGCateont, J — Shv(X7) for
the x-direct images is analogous to a unital cocommutative coalgebra in DGCat opt.

1.1.12. For 11.1.7, let first A € DGCateont. They consider the functors Fy, Fs : fSet —
DGCateont, I +— C®1 and I — A ® Shv(X!). The second functor here sends a map
I = Jtoid® A': A® Sho(XT) - A® Shu(X”) for the map A: X7 — X'. The claim
is that
MapPpyn(fSet,DGCateons) (F15 F2) = MaPpGeat,on, (CRan, 4)
If now A € CAlg(DGCatopt) they get a map

MapPpyn( £ Set,C Alg(DGCateons)) (F15 F2) = MaDeaig(DGCat o) (CRan, 4)
For A € Alg(DGCatcont) they get a map

MapFun( fSet,Alg(DGCatcont)) (F1, F2) — MapAzg(DGCatmm) (Cran, 4)

1.1.13. For 11.1.9. Let X be a scheme of finite type. We have the functors Fi, F> :
fSet — CAlg(DGCateont), Fi(I) = Shv(X)®! and Fy(I) = Shv(X!). Here for a :
I — J the map Fi(a) : Sho(X)®! — Shv(X)®/ is given by the algebra structure
(Shv(X),®"), this is the product along «, and the map Fy(a) : Shv(X!) — Shv(X7)
is A' for A: X7 — XT. Then the map K = h : Sho(X)®! — Shv(XT) is the natural
transformation lying in Mappyn(fser,catg(DGCateont)) (F15 F2)-

Consider the unital cocommutative coalgebra (Shv(X), A,) in DGCatcepns obtained
by the canonical self-duality from (Shv(X),®"). Cosider the functors Gy, Gy : fSet? —
DGCateont, where G1(I) = Sho(X)®!, Go(I) = Shv(X'). Here for o : I — J in
fSet the corresponding map G1(a) : Shv(X)®’ — Shv(X)®! is given by the coalgebra
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structure (Shv(X), A.), that is, the coproduct. The map Ga(a) : Shv(X7) — Shu(XT)
is Ay for a: X7 — X1

We have the natural transformation kY from Gy to G1, it is given on I € fSet by
the functor hY : Shu(XT) — Shv(X)®!.

Let € € CAlg(DGCatcont). This gives a natural transformation of functors from
Tw(fSet) to DGCateope, from

(I —J) C® @ Shv(X7)

to
(I = J)— C® @ Shu(X)®’.

Moreover, it is compatible with the right-lax structures on these functors, because h
is fully faithful. Passing to the colimit over Tw(fSet), this gives a morphism Cran, —
coHom(C, Shv(X)) given by their (11.6). It is actually a map in C Alg(DGCatcont).

1.1.14. In 11.2.3 they consider QLisse(X) with the ®'-monoidal structure. More pre-
cisely (probably even without the smoothness assumption of X), they consider the
embedding QLisse(X) — Shv(X), E — E ® wx, so that the ®'-monoidal structure on
Shv(X) restricts to the ®*-symmetric monoidal structure on QLisse(X). In this case
the map

Shv(X7) = (QLisse(X)")®’

becomes indeed a natural transformation of functor (fSet)? — DGCateons.

1.1.15. For Pp. 11.2.6. They use ([12], Lemma 6.4) and the fact that DGCateopns is
naturally an (oo, 2)-category, so Fun(fSet, DGCatyp:) is also an (oo, 2)-category.
We get

Fune’cont(ex_“sse, A)= lim Fune’cont((:’@)[, A® (QLisse(X)®J)) —
(I—=J)eTw(fSet)oP

l Fune,cont (€%, A ® Shv(X7)) = Fune,cont (CRan, 4
(U—D)eTu(fSeyr i @ Sho(X7)) = Fune cont(Cran, 4)
They also use ([16], 2.2.16, 2.2.17) to conclude. Namely, for each (I — J) € Tw(fSet),
Fune cont (C®1, A ® (QLisse(X)®7)) — Fune cont(C®L, A ® Shv(X7)) is fully faithful.

1.1.16. For 11.2.8. My understanding is as follows. Let B, A € Alg(DGCatcopnt). Write
A® B® for the corresponding functors A°? — DGCatcon:. Then

Map 41g(DGCateon) (B, 4) = lim MappGcat,on (B ([m]), A®([n])),
([n]=[m])eTw(AP)eP

here v is a map in A. This follows from ([9], 1.3.12). Let now B; — Bs be a map
in Alg(DGCateopnt) such that for any A € DGCateop,t) dualizable and any n > 0,
Funeycom(B?”,A) — Fune cont (BT, A) is fully faithful. Then for A € DGCatcont) du-
alizable the induced map Map 45D Catogn) (B2: 4) = Map g1(DGCateon:) (B1: A) is fully
faithful map of spaces, that is, a monomorphism.

A similar argument in the commutative case.



In 11.2.8 ¢) they assume My is dualizable in DGCateyp. For A — B a map in
Alg(DGCateont) and My, My € B—mod(DGCatont) we have a natural map Fung(Mq, Ma) —
Fun (M1, Ms). Assume that for any n > 0,

Fune,cont(B(Xm X Mla M2) — Fune,cont(A®n ® Mh MZ)

is fully faithful. Then Fung(Mi, Ms) — Fun(M;i, M) is fully faithful, as the limit
over [n] € A of the fully faithful functors. This is what happens in our case.
Namely, one first shows that for any n > 0,

Funemnt((exfhsse)@" ® My, My) — Funacont((fggn ® My, My)

is fully faithful, for this one repeats the argument from their Pp. 11.2.6. Then pass
to the totalization. This gives fully faithfulness. This is an isomorphism now by ([16],
2.7.18).

1.1.17. For 11.3.4, 11.3.6. If F € Shv(S)¢ for S € Schy;, we have a natural map
FXD(F) — Ay wg coming from the composition F@Hom(F,w) — w, where Hom(-,-) €
Shv(S) denotes the inner hom for the (Shv(S), ®)-monoidal structure. Here A: S —
S x S is the diagonal. On the other hand, we have a map A} eg — F X D(F), that is,
es — F @ D(F) in Sho(S). It comes from the characterization

Homgn,(D(FL), F) = RI(S, F, @ Fy)

of D(Fy) for Fy € Shvu(S)¢, Fy € Shu(S). Here Homgp, € Vect denotes the relative
inner hom for the Vect-action on Shv(S).

Remark 1.1.18. Let C; : I — DGCatcopt be a diagram ¢ — C;, where fori — j the cor-
responding functor ¢;; : C; — €; admits a continuous right adjoint qbfj Assume each C;
dualizable. Assume given a self-diality (:’2/ — C; for each i. Let Cﬁp : 1P — DGCateont
be obtained from C7 by passing to right adjoints. Let C’}/op : 17 — DGCateont be 0b-
tained from Ct by passing to the duals. Assume the functor (C’ﬁp)v : I — DGCateopy
obtained from Cﬁ,p by passing to the duals is identified with C1 via the self-dualities
on C;. In particular, for each i — j in I, the dual to (;Sf} : Cj — C; identifies with
¢ij + C; — Cj. Then D := colim Ct is naturally equipped with a self-duality. This is
used in 11.3.9. Moreover, for any i by ([11], ch. 1.1, 6.3.6) the diagram commutes

Vect % DD
l, u; \L ev;®id
id ®ins;
GeC =" oD,
where u; is the unit of the self-duality for C;, and u is the unit of the self-duality for
D. Note that u—= Coéilm(insi ®ins;)(u;) in D.
7

1.1.19. For 11.3.8. We use ([16], 4.1.2) and ([11], ch. 1.1, 6.3.4).

If € is a rigid symmetric monoidal category in C'Alg(DGCatcont) then for any « :
I — Jin fSet, let m : C®7 — €%/ be the product along a. Then (af*)Y = a with
respect to the canonical self-duality on €, see ([11], ch. 1.1, 9.2.6). Moreover, the dual
of the counit map ¢ : € ® € — Vect is the unit u : Vect — € ® C via the canonical
self-duality on C.
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Their isomorphism (11.12) is given in my ([16], 9.2.6). Their claim at the end of
11.4.3 is my ([16], 9.2.37). Their formula (11.14) comes from my Remark 1.1.18 above,
namely it gives a commutative square

Vect Rei;»an GRam & eRan
du i, ins{‘}ﬁn(@id
id ®insr_,
(€21 © Sho(X7)) @ (€21 @ Shu(X7)) D (€81 @ Sho(X7)) © Cran,

where u is the unit of the self-duality on (C*!/ @ Shv(X”)). So, u= R¥! ® UGhy(X7)s
where g, x 7y is the unit of the self-duality on Shu(X7), and Re € € ® € is the unit
of the self-duality on C.

1.1.20. For 11.4.2. The object Re Ran € CRran ® CRan has a structure of a unital algebra,
that is, Reran € Alg(Cran ® CRan), because ReRan = mPm(1 ® 1) is a monad in
Fun@Ran@)@Ran (GRan ® CRans CRan ® GRan). This is used later.

1.1.21. For 11.4.6. Let Y € Schy;. Then the unit of the canonical self-duality on
Shv(Y) is indeed ugpy(yy = hE(A, wy), where A1 Y — Y x Y is the diagonal, and
h: Shv(Y)® Shu(Y) — Shu(Y x Y) is the exteriour product. Indeed, the counit is
given by Shv(Y) ® Shv(Y) — Vect, (K1, K3) — RI(Y, K; ® Ks). Then the unit is
obtained by dualizing the counit map by ([16], 3.1.2.1), as h® is the dual of h.

Note that for Z € Schy, and K € Shv(Z) the functor Shv(Z) — Shv(Z), L +— L®'K
is canonically self-dual with respect to the canonical duality on Shv(Z). So, the dual

®!A*wy

to the composition Shv(Y) ® Shu(Y) LN Sho(Y xY) = =" Shv(Y xY) B Veet is
the composition

Vect “25 Sho(Y x Y) @25 Sho(Y x V) "5 Sho(Y) @ Sho(Y)

If K € Shu(Y') then we have ugpq(y) ®' (wy XK) S (wy XK) @' Ughy(y) canonically.
Indeed, we derive this from ([20], Claim in 0.0.7) saying that A% is a strict morphism
of Shu(Y')-bimodules. So, one has canonically

Usho(y) @ (wy B K) R ((4, wy) ® (wy BK)) S 1 (s, K)

and similarly (wy M K) ®' ugpy vy = hE (84 K).
This is used in their Section 11.5.1.

1.1.22. In 11.4.8 they mean the unit map 14 — comult(mult(14) and the counit map
mult(comult(1l4)) — 14 for a rigid symmetric monoidal category A, where A = Cran,
using the adjunction mult : A® A S A : comult.

1.1.23. The category Tw(fSet) does not seem to satisfy the assumptions of ([8], Lm.
1.3.6).

The natural map ley,, — Re Ran is the natural map le,,, — insg_g)(e)®insg_g)(e) —
R(?,Ram

For (11.16). First, they use the map h(ugp,(x/)) =8« wyo for A: X7 = X7 x X,
this is AT (A wys) —Ax Wy
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1.1.24. For 11.5.1. For € € CAlg(DGCatcont) rigid and the unit of the self-duality
Re € C®C, the object R € C®1@e®! gives a maps of C®/-bimodules ¥/ — ¥/ e,

1.1.25. For 11.6.3. This seems to be the following abstract claim. Let O be a symmetric
monoidal presentable category in which the tensor product preserves colimits separately
in each variable. Let A € C'Alg(O), B be a unital cocommutative coalgebra in O, which
is dualizable, so BY € C Alg(O).

Let fSet — O, I — &! be a functor sending ) to 1, it plays a role of a commutative
algebra, to the exception that &’ is not necessarily a tensor power. Assume &’ self-dual
in O, so the functor obtained by dualization fSet®? — O is plays a role of a ”unital
cocommutative coalgebra”. Assume given a morphism of functors fSet — O from the
commutative algebra I — (BY)®! to the functor I — €. Write ay : (BY)®! — &7 for
the corresponding morphism in O, let ay : &l — B®!I be its dual.

Let now C € CAlg(O) and let F : C —+ A® BY be a map in CAlg(O). For each

I .
I € fSetlet FT:C® — A® (BY)®! be the composition C®! L (A BV)®! mi§id

A® (BY)®!, where my : A®T — A is the product. Then F gives rise to a map

colim c®'wel - colim c® @ B% - A
(I—=J)eTw(fSet) (I—=J)eTw(fSet)
in O. The composition is given by a compatible system of maps C®' @ &/ — A

for (1 Y J) € Tw(fSet). Given (I 4 J), the desired map C®' ® €/ — A is the
composition

(3) el 0% wel 5 (BoO)® - A

The first map in (3) comes from the product C®! — C®7 in C, the second one comes
from o : &) — B®/. The map F gives rise by functoriality to a morphism F :
B®C — B® A defined as id®F : B®pv (BY @ C) — B ®pv (BY ® A), where

F:BY®C — BY® A is B-linear, and the composition C — BY @ C L BY®AisF.
Then the third map in (3) is the compositon

(Bo )2 IS (B g A)®T it goT ™ 4

where m : A®/ — A is the product, and we also used the counit B — 1o of the
coalgebra B.

They propose a different description of the composition C®/ @ &/ 5 A in (3).
Namely, they claim that € is the composition

C®J®8JFJgidA(g)(B\/)®J®8Jid®i{®idA®8J®8Jid@)mA®8Jid®gunitA

Here m : €7 @ &/ — &7 is the product in this "algebra”, and counit : &/ — 1y is the
”counit” of this ”coalgebra”. This gives indeed the same answer.

1.1.26. For 11.6.5. Let Z € PreStk with a symmetric monoidal functor F : ¢ —
QCoh(Z) ® QLisse(X), so we get a symmetric monoidal functor F : Cran — QCoh(Z).
Let in addition M € Cran—mod(DGCatcont). The functor oblvpecke,2, : Hecke(Z, M)p —
M ® QCoh(Z) is conservative by ([16], 4.0.30).
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R
For 11.6.6. The composition Cran ® Cran 2 Cran = Chan ® Cran is & map of Cran-
bimodules sending 1 ® 1 to Re Rran- S0, it acts on M ® QCoh(Z) via (id ®F)(Re Rran)
indeed.

1.1.27. Consider an adjoint pair [ : By 5 By : r in Alg(DGCateont), so [, are maps of
algebras. Assume r is fully faithful, so [ is a localization. Then for any n > 0 the induced
map Bi@” — Bgzm is also a localization. We claim that for any C' € Alg(DGCatcont)
the natural map

MapAlg(DGCatmnt) (BQ’ C) — MapAlg(DGCatcom) (Bla C)

is a monomorphism of spaces (and a similar claim for commutative algebras).

Proof: argue as in Section 1.1.16 of this file. Let Bf@, C® : A°? — DGCateopns be the
corresponding functors. For each m,n > 0 the adjoint pair B ([m]) = BS([m]) gives
rise to an adjoint pair

L+ Fune cont (B3 ([m]), O ([n])) = Fune,cont (BY ([m]), C([n]))
in DGCatcony with £ fully faithful. So, in

ol Mappgcg,,, (B (i), € (1)
([n]=[m])eTw(AP)oP

Map 419D Cateons) (B1, C) =

we replace each term in the limit by a full subspace Mappgcat,..,(Bs ([m]), C®([n])),
hence get a full subspace in the limit.

This is used for De Rham and Betti versions in Version Jan 24, 2022 of this paper,
Remark 11.8.3.

1.2. For Version of March 5, 2022.

1.2.1. For 1.7.3. Let H***¢ C H be the full subcategory of bounded objects, whose all
cohomologies lies in H¢ N HY. Then H5¢ is a small stable Vect®-module category,
it is closed under the tensor products (under the assumptions of 1.7.2). Indeed, if
h; € H%*5¢ then oblv(hihy) = oblv(hi)oblv(hy) € Vect®, so each cohomology of
hihs is sent by oblv to a finite-dimensional vector space, so each cohomology of hihs
lies in H° N HY. Moreover, if h € H° N HY then h is dualizable in H, and hY €
HY N H°. Indeed, since oblv is symmetric monoidal, oblv(hY) is the dual of oblv(h).
Since oblv(h) € Vect” NVect® and h conservative, h¥ € HY N H® by the assumptions
of 1.7.2.

Let h; € H with h; dualizable in H. Then Hompg(1,h{ ® ha) = Hompy(hy, hy).
Indeed, for V € Vect,

Mapyee (V, Homp (1, hY @ ha)) = Mapy (V @ 15, hY @ ho)
= MapH(V ® h1, hg) = MapVect(V, f]-(omH(hl, hg))
So, the assumptions of 1.7.2 imply that for h; € HN H® one has Homp (hi, he) €
Vect®, because hy € H°N HY, and hy ® hy € H* N H® also.

The claim in their Section 1.7.2 in the opposite direction is wrong as stated: it is
corrected in version of Apr 3, 2022.
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1.2.2. For 12.1.4. Note that Hecke(Z, M) = Fune,, qcon(z)(QCoh(2), M ® QCoh(Z))
by adjointness.

Note that for Z € PreStk with a symmetric monoidal functor F' : € — QCoh(Z) ®
QLisse(X) the object Ry = Ry p € CRran ® QCoh(Z) of 12.1.6 satisfies a system of

isomorphisms V* Ry = Ry % F'(V) for V € Crapn. Recall that Ry € Alg(Cran ® QCoh(Z)).

1.2.3. In Section 12.1.11 we need to calculate the following.

Step 1 Let K € Shv(X7), Ughy(x7) € Shv(X7) ® Shu(X7) be the unit of the Verdier
self-duality on Shv(X”). Then let us understand by wX K the corresponding object of
Shv(X7)® Shv(X7), so Ughy(x7) @ (wX K) is the product in the commutative algebra
Shv(X”7) @ Shu(X”7) (with the -monoidal strucrures on each factor). Then

(4) (Id@RIT(X7, ) (ugpy(x) @ (WK K)) S K

Indeed, write h for the exteriour product. Both sides being continuous and exact as
functors of K, we may and do assume K compact. Then the composition

A R id ®(e@' K

Veet 257 Sho(X7 x X7) ™5 Sho(X7) ® Sho(x7) EE8 )

id@RT(X7,0)
_)

Sho(X7) @ Shu(X7) Shu(X7)

denoted R admits the left adjoint Shv(X”) — Vect, M — RI'(X’/, M ® D(K)), be-
cause X is proper. Now Hom(RI'(X7/, M ® D(K)), e) = Homgp,(x 7y (M, K) canoni-
cally, where Homgy,(x7) denotes the inner hom with respect to the Vect action on
Shv(X7). So, R(e) = K, and (4) follows.

Step 2 It suffices to show that for any (I it J) € Tw(fSet), one has

ins ® (Fins,_, J(RE @ ugpy(xsy) = ins ® (i[d@(F” o multy)) (RS

1AS) (147

J)

This is now an immediate consequence of Step 1 and the formula for F given in the
paper.

1.2.4. Let X be a complete smooth curve. Note that, according to the formula just
before Th. 11.10.2, the exteriour product map

QCoh(LocSysf$*" (X ))®@QCoh(LocSysg* (X)) — QCoh(LocSys™" (X ) x LocSysis ™ (X))

is an equivalence.

1.2.5. For 12.3.1. If f : Z — LocSysi¥*"(X) be a morphism, where Z is a prestack.
Then indeed we get a symmetric monoidal functor F' : Rep(G) — QCoh(Z)®QLisse(X),
because QLisse(X) is dualizable (as it is compactly generated by Appendix C of version
Jan 24, 2022). Here X is a smooth complete curve.

Let f : Z — LocSysge™" (X) be a map of prestacks. Set for brevity € = Rep(G). If
M is a Crap-module then, since Cray, is rigid,

Hecke(Z, M) = Cran ®cg,,@Cra (M @ QCoh(Z))
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Assume in addition that M is a QCoh(LocSysis*" (X))-module (so giving a structure
of a Cran-module). Then Hecke(Z, M) identifies with M @qcon(Locsyszest (x)) QCOoh(Z).

Indeed, the RHS of the above displayed formula becomes
(eRan ®(6Rarl®er{arl) (A/ &® A/)) RargA (M &® QCOh(Z))
with A" := QCoh(LocSysg*" (X ). Now Cran @ (en,,@Cxan) (A’ ® A') = A’ by their Prop.

11.11.6. So,
Hecke(Z, M) = M ® 4 QCoh(Z)

1.2.6. For 12.4.1. Let X be a smooth projective curve, C € CAlg(DGCatcont) is a
compactly generated rigid symmetric monoidal category. The functor Tw(fSet) —
DGCateont, (I — J) = C® @ Shy(X7 x Y) is still right-lax monoidal, so its colimit is
an object of C' Alg(DGCatcont)-

1.2.7. For 12.4.5. Let F': ¢ — QCoh(Z) ® QLisse(X) be a symmetric monoidal functor.
We get out of it a symmetric monoidal functor C®X—tss¢ _ QCoh(Z) as in their Section
12.1.3.

Consider now the functor fSet — DGCateont, I — QLisse(X)®! sending J' — J to
o : QLisse(X)®7" — QLisse(X)®”7 that fits into the commutative square

Shu(X7) i QLisse(X)®7
T A T o
Sho(X7') « QLisse(X)®7

Here f is the composition QLisse(X)®/ — Shu(X)®/ 5 Shy(X”), where the first
map comes from the inclusion QLisse(X) — Shv(X), E — E ® w, here QLisse(X) is
considered with the x-monoidal structure. We used A: X7/ — X/’ Let 8V : Sho(X”7) —
(QLisse(X)Y)®’ be the dual map. We have

6®X7Zisse Sho(Y)S li G®I Li XV ®J Sho(Y
® Sho( )—>(I_>J():&}g%f56t) ® (QLisse(X)")®’ @ Shu(Y)

Consider the natural transformation of right-lax functors Tw( fSet) — DGCatcopns from
(I — J)— C®' @ Sho(X' xY)

to the functor (I — J) — C® @ (QLisse(X)Y)®’ ® Shv(Y) coming from

(5) Sho(X7 x Y) = (QLisse(X)V)® @ Shv(Y)

Here (5) is dual to the composition

QLisse(X)®! ® Sho(Y) "3 Sho(X7) @ Sho(Y) B Sho(X x V)

Passing to the colimit over Tw( fSet), we get a symmetric monoidal functor Cran xy —
e®X-lisse @ Shy(Y). Composing with the symmetric monoidal functor €®X—lisse
Shv(Y) = QCoh(Z) ® Shu(Y') mentioned above, we get the symmetric monoidal func-
tor

Fy : CRran xy — QCoh(Z) @ Sho(Y)

described in their Section 12.4.5. Question: is this correct?
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Note that Fy is a morphism of Shv(Y)-algebras. By definition
Heckey (2, M) = Funep,, .y @5y, (v)Cran xv (CRan xv; M © QCoh(Z))
Note also that
Chan ¥ (Ex s S ) (Chian Y Dy (QCOM(2)@Shw(Y))) 5 QCoh(Z) @ Shu(Y)
Therefore, by adjointness ([16], 9.2.30),

Heckey (Z, M) = Funey g, (QCoh(2)@5ho(y)) (RC0L(Z)@Shv(Y), M®QCoh(2))
—Fune,,  , ©qconz)(QCoh(Z) ® Shu(Y'), M @ QCoh(Z))

The composition Cran ® Shv(~Y) — CRan xY e QCoh(Z) ® Shv(Y) is the map of
Shv(Y)-algebras F' ® id, where F': Cran — QCoh(Z) is their functor (12.2).

1.2.8. For 12.5.1. This is indeed sufficient for the following reason. The adjoint pair
CRan xy ® QCoh(Z) = QCoh(Z) ® Shu(Y) : Ry y

in Cran xy ® QCoh(Z)-modules with the corresponding monad Ry y gives an adjoint

pair

(6) ind : M ® QCoh(Z) = Heckey (Z, M)

by functoriality (composing with the initial adjoint pair), and the monad obtained in
(6) is as desired.

1.2.9. For 12.5.2. The fact that ¥ : Cranxy — Cran ® Shv(Y) is right adjoint to
P : Cran ® Shv(Y) = CRran xy follows from ([16], 9.2.39 last part).

For each J the functor X : Shu(X’/ x Y) — Shv(X7) @ Shv(Y) is Shv(X7) ®
Shv(Y)-linear by ([20], 0.0.7). This is why W is strictly Cran ® Shv(Y)-linear. Indeed,
CRan xv's Cran are compactly generated, so it is enough to show that given (I — J;) €
Tw(fSet), V1 € C®11 F) € Sho(X7t xY), and (I3 — J2) € Tw(fSet), Vo € €2, T, €
Shv(X72), M € Shv(Y) when we act by the pair

(NS (1—05) (V2 @ F2), M)

on U(ins(p, ) (Vi @ F1)) = ins (-5 (Vi © KE(F1)), we get ¥ applied to the result
of the action of the pair

(inS([2_>J2)(V2 ® ?2)5 M)
on ins(, 5y (Vi ® F1). This works because of ([20], 0.0.31)).

1.2.10. The claim in 12.5.3 follows from the commutativity of the diagram

Shu(X7 xY) & Shu(Y)
| w7 /' RI(X7,)
Shv(X7) @ Shu(Y)

for Y € Schyy, here q : X7 x Y =Y is the projection.
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1.2.11. For 12.5.4. The morphisms Vy * Ryy — Rzy ® Fy(Vy) given by (12.22)
are defined as follows for any Vy € Cranxy. First, we have the adjointness map
dU(Vy) — Vy. Now, ®U(Vy) * ®(Ry) = ®(¥(Vy) * Rz) = Ryy ® Fy(Vy), here
U(Vy) * Ry is of course informal notation (it is understood that we tensor by Shv(Y)
the usual action). This gives the map Vy *x Ry y — Rzy ® Fy(Vy) denoted (12.22) in
their paper.

1.2.12. For 12.5.6. Their adjunction (12.24), that is, mUItQCoh(Z)O(F 0id) : Cran ®
QCoh(Z) = QCoh(Z) : Ry is obtained from the adjoint pair m : Cran ® Cran =
CRan : M by applying ®ep,, QCoh(Z) via the symmetric monoidal functor F: Cran —
QCoh(Z). Here we use in the LHS the Cra,-module structure via the product on the
second variable. It is understood that the above Ry is a map of QCoh(Z)-modules.

1.2.13. Their formula (11.21) is a property of the constructible sheaves theory, it is
used essentially (!!) in the proof of Prop. 12.5.5.
Proof of their (11.21). Let Y € Schy;. Let h : Sho(Y) ® Shv(Y) — Shv(Y xY) be

the exteriour product. The natural map hhf(A, wy) — wy yields their map

(P2)s (Ughu(y) @ PIF) = (p2)« (b4 wy @' PiF) S F

Let us show this is an isomorphism. We may and do assume F € Shv(Y)¢. For
K € Shu(Y) we get

Hom (K, (p2)«(tushu(v) ®' p1F)) = Hom(ps K, UShy(Y) ®'pF))
Homgpu(y xv) (D3 KDDL F), tshor)) = Homspyv)eshev)(DF)QK, Wb (4, wy))
We have hfth = h, because h is fully faithful, so the above complex identifies with
Homsuu(y xv) (DFYREK, &, wy) = Hom(psK, b wy @' (0 F)) = Hom (K, (p2). (8, wy &' (0 F)))

We are done.
1.3. For version of April 3, 2022.

1.3.1. If Y is an algebraic stack locally of finite type (a classical one is sufficient, as we
are about constructible sheaves theories), then they do not really need to define T*Y,
though this is done somewhere, I think. First, they use the notion of a closed Zarisky
subset in 7*Y defined in ([9], A.3.6).

For ([9], A.3.6). Let Y is an algebraic stack locally of finite type, F' be a coherent
sheaf on Y (placed in coholological degree zero). Then Tot(F) is defined in ([9], A.3.3).
My understanding is that a a Zariski-closed subset Z C Tot(F') is a compatible family
of Zariski closed subsets Zg C Tot(F |g) for any S — Y, where S is an affine scheme
of finite type. That is, for @ : S’ — S a map of affine schemes of finite type, pick a
presentation Coker(E; — Eyg) = F |g on S, where E; are locally free sheaves on S.
So, a*F = Coker(a*Ey — a*FEy) on S’, and 8" xg Tot(Ey) = Tot(a*Ey). Our Zg is a
Tot(FE1)-invariant closed subset in Tot(Ep). We require that Zg xg S’ identifies with
Zgr under the above isomorphism.

1.4. For arxiv version 2.
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1.4.1. For 1.7.1. If H € C'Alg(DGCatcont) is equipped with a t-structure and a sym-
metric monoidal conservative t-exact functor oblv : H — Vect, then the t-structure is
compatible with filtered colimits. It is also right complete: for any z € C the natural
map colim,cz 7"z — z is an isomorphism, so it is right complete by ([16], 4.0.10).

I think in the 3rd bullet point of 1.7.2 we have to require H" is generated under

filtered colimits by HY N He.

1.4.2. For 1.7.3. Let H%*%¢ C H be the full subcategory of bounded objects, whose all
cohomologies lies in H° N HY. Then H°5¢ is a small stable Vect®-module category,
it is closed under the tensor products (under the assumptions of 1.7.2). Indeed, if
h; € H%c5¢ then oblv(hihg) = oblv(hi)oblv(hy) € Vect®, so each cohomology of
hihs is sent by oblv to a finite-dimensional vector space, so each cohomology of hihs
lies in H° N HY. Moreover, if h € H°N HY then h is dualizable in H, and hY €
HY N He. Indeed, since oblv is symmetric monoidal, oblv(hY) is the dual of oblv(h).
Since oblv(h) € Vect¥ N Vect® and h conservative, h¥ € HY N H¢ by the assumptions
of 1.7.2.

Let h; € H with hy dualizable in H. Then Hompg(1,hy ® ha) = Hompy(hy, ha).
Indeed, for V € Vect,

MapVect(‘/a J‘meH(l, hY ® hZ)) — MapH(V @ 1H7 h\l/ ® h2)
— Mapy (V' ® hi, ha) = Mapyee (V, Homp (hi, h))

So, the assumptions of 1.7.2 imply that for h; € H°N HY one has Homy (hy, ho) €
Vect®, because hY € H°N HY, and hY @ hy € H*N HY also.

1.4.3. For 1.7.6. They use ([11], ch. II.1, Lm. 1.2.4) to see that H** — H is t-exact.
The map H%* — H is fully faithful by (HTT, 5.3.5.11).

I think in the 3rd bullet point of 1.7.2 we have to require HY is generated un-
der filtered colimits by HY N H®. Let us then show that for any n, the functor
(Haceess)y==n 5 H="7 i5 an equivalence. We know it is fully faithful, also its im-
age is closed under filtered colimits. So, for each m < n, H"[m] is in the essential
image. For each z € H=~" now z — colim,,ez 7=z in H by ([16], 4.0.10), because H
is right complete. Now 75"z € (H%¢¢5$)2=" and (H5$)=~" is closed under filtered
colimits in H. So, z € (H¢%)=n,

1.4.4. For 1.7.10. They assume in this lemma that H is a gentle Tannakian category.
If h e H°N HY then for V € Vect® we get

MapH(h7 Ve 1) = MapH(Vv ® h, 1H) - MapVect(Vvv f]-COWlH(ha 1H))
= Mapyee (Hompg (b, 15)Y, V)

Both functors V — Mapy (h, V®1), V — Mapye. (Hompg (h, 15)Y, V) preserve filtered
colimits, so this also holds for V' € Vect. We used (HA, 4.6.2.1).

Let h € H<°. Then Hompg(h,1) € Vect”®. Indeed, for W € Vect=? we get
Mapyeet (W, Homp (h,1)) = Mapy (W @ h,1) = *, because 1 € HY, as oblv is con-
servative and t-exact.
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Let now h € (Hc¢5¢)<0 in particular h is bounded and each cohomology is in
H¢N HY. Then Hompg(h,1) € Vect® N Vect™, so Homg(h,1)V € Vect<C. This shows
that for any n the functor coinvy sends HZ~" N H=0 to Vect=’.

Fort any z € H, = lim,, 72"z in H by ([16], 4.0.10 Remark). Now let h € H. Then
for any m, 72 (lim,, coinvg (12""h)) = 72" (coinvy (TZ~™h)). Now for W € Vect,

Mapyeet (lim coinvg (727 "h), W) = lim Mapy,>-m (7=~ " (lim coinvy (1="h)), 7=~ W)
n meZ n
= lim Mapy,.>-—m (7= " (coinvg (1="™h)), 72" W) = limZ Mapyee (cOinvg (T=7™h), 72" ™W)
me

mEZ

= lir% Mapy (7="™h, (12"™W) ® 1) = Mapy (h, W ® 1),
me
because H is left complete.

1.4.5. For 14.1.2. The nilpotent cone 91 C g is the zero fibre of g — g//G. Here
0//G = Spec k[g]°.

Question What the nilpoitence of (Fg, A € HO(X, ggrc ® Q)) means if there is no
G-invariant bilinear form on g?

1.4.6. For 14.1.5. This means that Bung is Nilp-trancatable in the sense of F.8.6.
Recall that for N C T%(Y) a Zariski-closed subset in a classical algebraic stack Y locally
of finite type with an affine diagonal, Shux(Y)®"s!" = Shoy(Y) N Shv(Y)constr,

For 14.1.9. Let U; C Bung for ¢ € I be as in Thm. 14.1.5, so [ is a filtered poset.
Then we may consider colim; Shupi,(U;) N Sho(U;)¢ in DGCat™" =P and get

Ind(colim; Shv (W) N Sho(W;)¢) = Shuyi, (Bung ) e5,
by my Section 1.4.46. Note also that we get an adjoint pair
TeNBung,Nilp : ShNip(Bung)*“** = Shun,(Bung)™ @ un — rengung, Nip

by my Section 1.4.46.

1.4.7. For D.1.1. Let G be reductive group over an algebraically closed field k£ of
characteristic p, (T' C B C G) be a maximal torus and Borel. Then p is called good
for G if p is greater than any coefficient of any positive root expressed as a linear
combination of simple roots. The bad primes, that is, those which are not good, are as
follows: 2 in type By, Cyp, Dy; 2 and 3 in types Go, Fy, Eg, F7; 2,3,5 in type Fg.

Assume first D simple. Then a prime p is called very good for G if it is good for G,
and if G is of type A,,_1 then p does not divide n.

1.4.8. For E.1.6. Let C € DGCat.y,; with a t-structure, ¢ € C. By definition, ¢
has cohomological dimension < n iff for any 2 € C<™" one has Homg(c,2) = 0,
here Home = H°(Hom¢)), and Home denotes the relative inner hom with respect
to Vect action. In other words, this is equivalent to: for any z € C'<"" one has
Home(c, z) € Vect<Y.

1.4.9. For E.2.10. This is close to ([11], ch. 1.3, Lm. 2.4.5). I think in (a) they meant
injective map cy — ¢, and not just a non-zero map.
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1.4.10. Attention! In the version of April 3, 2022 a nonstandard definition of a com-
pactly generated t-structure is used!!! (see their E.7.4).

1.4.11. For E.4.4. Let Y be a smooth scheme of finite type. By naive duality they
mean the duality K — Hom(K, ey ), where Hom is the inner hom with respect to the
®-monoidal structure.

1.4.12. For E.5.4. Let Y be a smooth scheme of finite type, N C T*(Y) be a con-
ical Zariski closed subset of T*(Y). The functor Shun(Y)%c¢s* — Shun(Y) is fully
faithful as it composition with Shon(Y) — Sho(Y) is fully faithful. To see that
Shon(Y)ce5$ — Shun(Y') given by (E.9) is t-exact, they use ([11], II.1, Lemma 1.2.4).

To see that (Shun(Y)2ces$)==" — Shun(Y)=~" we use the right completeness of
Shy(Y). Namely, for any F € Sho(Y), F= colim, 7<"F by ([16], 4.0.10). Since
this isomorphism holds in Shv(Y'), for any F' € Shun(Y) it also holds if the colimit is
understood in Shux(Y') by the way. Since the essential image of (Shun(Y)a¢ces$)==n —
Shux(Y)Z~™ contains Shon(Y)[=™™ for m > —n, the functor (Shun(Y)2ces$)Z—" —
Shun(Y)Z~" is indeed an equivalence.

1.4.13. Let us try to formalize this situation. Let C<!" ¢ DGCat™" Pl with
Cnstr small.  Assume O™ is equipped with a bounded t-structure and C' =
Ind(C"'), s0 C € DGCateont- Recall that by ([11], IT.1, Lemma 1.2.4), C'is equipped
with a unique t-structure compatible with filtered colimits and accessible such that the
functor C°™" — (' is t-exact. Let (D®"'")Y C (C®"$tT)Q be a full Serre abelian
subcategory. Let D' C Ot he the stable subcategory generated by (Dmsm)?
so DS i small, set D = Ind (D). The inclusion D" C C"s" is compatible
with the t-structure on C"t" so D" inherits a t-structure. In turn, D inherits
a t-structure from D" which is accessible and compatible with filtered colimits.
We have a natural functor D — C obtained by continuous extension of the inclusion
Deonstr 5 . The functor D — C' is fully faithful by (HTT, 5.3.5.11) and t-exact by
([11], II.1, Lemma 1.2.4).

By ([16], 9.3.18), the t-structure on C is right complete.

Let pC C C be the full subcategory of ¢ € C' such that each cohomology of ¢
lies in D¥. Note that pC C C is stable under filtered colimits. Let us show that
DY ¢ C¥ is also a Serre subcategory, that is, closed under extensions and subquotients.
Note that for K € C¥ we have K € DY iff for any L € (C®")” and an injection
L < K we have L € (D). This gives that D" is closed under subobjects. Let
0 — K — L — M — 0 be an exact sequence in C¥ with K, M € DY. Then L lies in
D. Besides, DNC"Y = DY, so L € C*. Similarly, if 0 - K; — K — L — 0 is an exact
sequence in CV with K1, K € DY then L € DN CY = DY. Thus, DY ¢ CY is a Serre
subcategory.

This implies that pC' is stable under formation of fibres and cofibres of a morphism.
So, pC' is stable. It is also presentable as the fibre product of presentable categories
pC=C xq1 oo [, D¥. Here the functor C — [],CY is given by taking all the
cohomologies. Further,

<0 ~ ~<0 Q@
POy oo T] 7.
a n<0
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so pC=Y is presentable, so the t-structure on pC is accessible. Thus, pC € DGCateont.

We have a (t-exact) full embedding D — pC, because the composition with pC — C
is a full embedding. We claim that for any n, D=" — (pC)=" is an equivalence.
Indeed, for any m > n, D™ — (DC')["’m] is an equivalence. In adddition, pC is
right complete, because C' was right complete (we are using here [16], 4.0.10). So,
for K € C2" we have K = colim,,, 7<™K, and each 7<™K € D=". Since D — C is
continuous, K € DZ" also.

Assume now that C' is left complete. Then pC' is also left complete. Indeed, since
C = limyezor 27", we have a fully faithful embedding pC — lim,czor (pC)="". If
now (Z,)n>0 € limy,ezor (pC)=~™ is a compatible collection, let z = lim,, z,, calculated
in C. Then for any n > 0, 72"z >z, € (pC)="", s0 ¢ € pC.

Thus, finally, pC' identifies with the left completion of D.

1.4.14. For E.6. Let Y be a scheme if finite type, not necessarily smooth, N C 7*(Y)
a closed conical subset. Then the definition of Shun(Y') is not given. I accept the
following: define Pervy(Y') C Perv(Y) as the full subcategory of those F' € Perv(Y')
such that locally in Zariski topology there is a closed embedding f : Y — Y’ with Y’
smooth such that SingSupp(f. F) C (df*)"*(N) C T*(Y"), where df* : T*(Y') xy+ Y —
T*(Y) is the codifferential.

I assume Pervy(Y) C Perv(Y) is a Serre subcategory, so that we define Shun(Y) C
Shv(Y') as the full subcategory of those K such that for any n, H"(K) € Ind(Pervy(Y)).
We also have

Shon(Y)S .= Shun(Y) N Sho(Y)eonstr

and Shun(Y)2¢*s defined as in their E.5.5.

1.4.15. For E.6.5. It is meant there that F; € Shv(Y7;)®nstr.

The following holds however and is used in F.6.3. Let f : S — S be a smooth
morphism of schemes of finite type, Ng C T%(S) a closed conical subset. Let Ng be
the image of Ng xg S" under the codifferential map 7*(S) xg S" — T*(S"). Then for
F € Shung(S), [*F € Shung, (S). This is obtained from the property in E.6.5.

1.4.16. For E.7.3. Let F; € Shuy;(Y;), here Y; is a classical scheme of finite type. Let
us show that 1 X Fy € ShUleNQ (}/1 X Yg).

Step 1: assume F; € Shuy, (Y;)=" for some ny,ng € Z. Then F1 @F € (Shon, (Y1)®
Shuy, (Y2))S™1712. Given i < nj + ng let us show that

Hl(g.'l X 92) S Ind(PeI'VleN2(Y1 X Yg))

Pick r € Z small enough then if we replace F1 by 72", the above cohomology does
not change, in view of their Pp. E.7.2. Similarly, we may replace o by 72" Fy without
changing this cohomology. For the objects F; € Shuy;, (Y;)"!" the claim is clear.

Step 2: let F; € Shuy;, (Y;). Since Shv(Y;) is right complete, F; = colimy,ez TsmF,
where the colimit is calculated in Shoy,(Y;). So,

F1 K Fo = colim 7™ F) @ 75725,
mi,m2

in Shu(Y; x Y3). For each my,mg, 7™ F) @ 7S™2F5 € Shuy, xn, (Y1 x Y2) by Step 1,
and Shun, xn, (Y1 x Y2) C Shu(Y; x Ya) is closed under filtered colimits. We are done.
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1.4.17. For E.7.4. Recall that for C € DGCateyps, C<>°,C¢ C C are stable subcat-
egories. Their condition that C' is generated under filtered colimits by shifts of the
objects of C<0 N C¢ is reformulated as follows: C is generated under filtered colimits
by the stable subcategory C<®° N C¢. Note that C<® N C¢ € DGCat™"—cmpl g
Ind(C<* N C°) € DGCateont, and we have the natural functor Ind(C<>* N C°) — C
always extending by continuity the inclusion C<*NC° — C. By (HTT, 5.3.5.11), the
latter functor is always fully faithful. So, their second condition is that this functor is
essentially surjective.

Clearly, if i : Ind(C<*NC°) — C is an equivalence then the following condition (C)
holds: if Homc(co, ¢) = 0 for any ¢y € C=°NC° then ¢ = 0. Conversely, assume (C). It
is reformulated as follows: given ¢ € C, if Home(co, ¢) = 0 for any ¢y € Ind(C<>*NC*)
then ¢ = 0. Let i® be the right adjoint to the inclusion i. So, (C) means that Ker(if*) =
0. By ([11], .1, 5.4.5), (C) is equivalent to the fact that i is essentially surjective.

Their E.7.5 is my ([16], 9.3.10). One needs to assume in addition here that F': C1; —
(5 is continuous.

1.4.18. For E.7.5. This lemma holds more generally for C;, C equipped with accessible
t-structures which are compatible with filtered colimits (by [15], C.4.4.1). Indeed, in
this case C=? is a Grothendieck prestable category.

1.4.19. For E.8.2. Let Z be an irreducible scheme of finite type and 7z its generic
point. Recall that Shv(nz) := colimy Shu(U), where U runs through the category
of non-empty open subschemes of Z. The fact that Shv(nz) is equipped with a t-
structure, which is accessible and compatible with filtered colimits is explained in ([16],
9.3.19). Note also that Shv(nz) C Shv(Z) is a full subcategory of sheaves, which are
written as j,.F' for any open non empty subscheme j : U — Z and some F' € Shv(U)
(the functor j. : Shv(U) — Shv(Z) is fully faithful).

Define IndLisse(nyz) := colimy IndLisse(U). The fact that IndLisse(nz) — Shv(nyz)
is fully faithful follows from ([16], 9.2.47). To see that it is essenially surjective, let
F € Shv(nz) C Shv(Z). Then any compact object of Shv(nz), by ([6], Lemma 1.9.5)
writes as the image insy(Fy) of some Fyy € Shu(U)¢ in Shv(nz). There is a non-
empty open subscheme V' C U such that Fyy |y € Lisse(V), so insy(Fy) lies in the
essential image of IndLisse(nz). Since the full subcategory IndLisse(nz) C Shv(nz) is
closed under filtered colimits, it coincides with Shv(nz), because Shv(nz) is compactly
generated.

1.4.20. For E.9.2. Here Y is a scheme of finite type. We have indeed such a functor
IndLisse(X) ® Shun(Y)*¢% — Shugyn(X x V)¢5 which is clearly fully faithful.

Indeed, Shvgxn(X x YY) C Shugun(X X Y) C Sho(X x Y) are fully faithful
embeddings, and for E € Lisse(X), K € Shun(Y)®“™" EKXK € Shugxn(X x Y)constr,
If D is the smallest stable subcategory of IndLisse(X) ® Shun(Y)%““*® containing all
objects E X K as above then Ind(D)— IndLisse(X) ® Shoy(Y)*“** naturally. Since
Shugyn(X x Y)es8 is a stable subcategory of Shv(X xY) and is closed under filtered
colimits, we get the desired full embedding.

They appeal to ([9], A.3.8). The following is used inside: Let Y5 be a smooth
scheme of finite type, ¢ : Y7 < Y5 be an irreducible closed subscheme, U C Y7 a
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smooth open dense in Y;. Let F' be a nonzero irreducible perverse sheaf on Y7, which
is a shifted local system on U. Then SingSupp(i.F') containes the conormal to Y; at
its generic point. Indeed, SingSupp(F') containes the zero section Y3 C T*(Y7), and
SingSupp(i«F) = (di*)~*(SingSupp(F)), where (di)* : Y1 xy, T*(Y2) — T*(Y7) is the
codifferential by ([1], Section E.6.5).

For the proof of ([9], A.3.8) in the ind-constructible context, for ([9], Section A.5.6).
Here Y1, X are smooth irreducible schemes, X is proper. Now F' is an irreducible

perverse sheaf on Y; x X, which is lisse on U C Y7 x X, where D' = Y; x X — U is a

divisor on Y1 x X, and U is a maximal open on which F' is lisse. Moreover, N C T*(Y;) is
a closed half-dimensional conical subset and SingSupp(F) C N := N x {zero section}.
By Beilinson, SingSupp(F') is half-dimensional. If there is an irreducible component of
SingSupp(F') which maps dominantly to Y; x X, then it is contained in the zero section
of T*(Y1x X). So, indeed, for any irreducible component D!, of D’ there is an irreducible
component N/, of SingSupp(F) such that its image under 7*(Y1 x X ) — Y1 x X contains
D!, and is not contained in the zero section of T*(Y; x X). This shows that the image
of N, in Y1 x X is D/,. Any irreducible component of N’ is of the form Ng x X for some
irreducible component Ng of N. So, three is an irreducible component N, of N such
that N/, C N, x X. This must be an equality because they are of the same dimension.

In ([9], A.5.7) they use the following. Let 7 : Z — X be a smooth proper morphism
of schemes of finite type with X smooth. Let F be a local system on Z. Then 7, FE
is lisse, that is, each of its usual cohomology sheaves is lisse (equivalently, each of its
perverse cohomology sheaves is a lisse perverse sheaf). Indeed, this follows from ([5],
5.1.2) because E is ULA with respect to .

We indeed have a map as they indicate

T (Fy) @7 (Fx) = F
It comes from a morphism Fx @ D(Fx) — wy, which in turn gives 7' (Fx @ D(Fx)) —

w; X Tensoring with &, we get a morphism
X

o

F e (7% (Fx) @ 7 (D(Fx)) 3 F & (75 (Fx) © 75 (D(Fx))[2m] = 7,

where m = dimY. Since Fx is a shifted local system, by remark below, this rewrites
as a morphism
|1 o

(F &' 7% (D(Fx))) @ 7% (Fx) = F

We compose the latter with the morphism coming from adjointness
T4 (Fy) = 7 (1) (F © Ty (D(Fx))) = (F @ Ty (D(Fx)))

This finally gives a morphism

o o

;ri;(i}"g) @i (Fx) = F
They claimed that
my(Fy) © Ty (Fx) = Fy R Fx



20

This is wrong as stated, one needs to add shifts. Let n = dim X, m = dimY, here X
and Y are smooth. So,

70713(%‘3) ®7OT!X(3FX):>J~%Y X Fx[2n + 2m]

You actually meant 7()?124(.‘;"13) ®' T (Fx) :3&3/ XFx. So, (A.18) should also be corrected,
I would write it as

(7) T5(Fy) Renary) T (Fx) = F

instead of ! that you used. Here we denoted by End(Fx) € Alg(Vect) the inner hom
with respect to the Vect-action on Shv(X). The relative tensor product is calculated

with respect to the Vect-module structure on Shv(Y x X).
We may also rewrite (7) as

o

Ty(Fy) Qnary) Tx(Fx) = F

o

We have to underline here that the tensor product in Shv(Y x X) is taken with respect
to the ®'-monoidal structure.

Remark: let Z be a scheme of finite type, K; € Shv(Z)®“"'" E a local system on Z.
Then in the constructible context we get K @' (Ko ® E) S E® (K1 ®' Ky). O

Now let i, : Spec k EN ‘; be the inclusion. Then
iL (Fy) = RI(X, Fx @ (DFx)) = End(Fx) € Alg(Vect)
So, for the inclusion ¢ : y x X — ’; x X we get

(8) Ry (Fg) Oy T (Fx)) T (7Y F)) Oy 17x (Fx))
As above n = dim X, m = dimY. Then

i'my(Fy) = is (Fy) @ wx = End(Fx) ® wx

and ‘7' (Fx) = Fx. So, (8) identifies with Fy. Now applying i' to (7) we get the
identity indeed.

o

Both sides of (7) are objects of IndLisse(Y x X), for the LHS this is because for each
r >0,

m(Fy) @' T (Fx) @ (End(Fx))®" € Lisse(Y x X)
So, since after applying i* we get an isomorphism, the map (7) itself is an isomorphism.

Note also that the tensor product in ;T{d(ffy) ®‘!Snd(?x) 7' (Fx) may be understood as

the one in IndLisse(Y x X) with respect to the ®'-monoidal structure.
To finish the proof they use the following property of singular support.
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1.4.21. Claim. Let f : Y7 — Y5 be a proper map of schemes of finite type, F €
Shv(Y1)emst . Then SingSupp(f.«F) is contained in the image under the projection
T*(Y2) Xy, Y1 = T*(Ya) of (df*) ™ (SingSupp(¥F)), where df* : T*(Y2) xy, Y1 — T*(¥1)

is the codifferential.

Proof. Apply [3], Lemma 2.2(ii). O

1.4.22. For E.9.5. Let X be a smooth scheme of finite type, Y be a scheme of finite
type. Consider the full subcategory C' C Ind(Perv(X xY)) consisting of K such that for
any inclusion F' C K in Ind(Perv(X xY)) with F' € Perv(X xY), there is N C T*(Y')
closed conical half-dimensional such that SingSupp(F) C {0} x N.
Claim C is a Serre subcategory.

Proof: it is clearly closed under subobjects. Let now K € C and K — K' — 0
be a quotient of K in Ind(Perv(X x Y)). Let F' € Perv(X x Y) be a subobject
of K'. Let K1 = Ker(K — K'). Pick I small filtered and write K1 — colim;c; K?
with K! € Perv(X x Y). Then K’= colim;e; K/K%, where the quotient is taken in
Ind(Perv(X x Y). So, the map F' — K’ factors through F — K/K! for some i. For
this i let F' be the preimage of F' under K — K /K{, so we get an exact sequence
0— Ki - F = F —0in Perv(X xY). Now SingSupp(F) C SingSupp(F). Thus, C
is closed under quotients. It is closed under extensions for the same reason. [

Let say Pervg, x C Perv(X xY) be the full subcategory of those K € Perv(X xY) for
which there is a closed conical half-dimensional subset N C T*Y with SingSupp(K) C
0 x N. Note that Pervg, x C Perv(X x Y) is a Serre subcategory. By ind-extending,
we get a natural map Ind(Pervg, x(X x Y)) — Ind(Perv(X x Y)), which is fully
faithful and factors through C' C Ind(Perv(X x Y)). It is clear that the obtained map
Ind(Pervg, x (X x Y)) — C is an equivalence. In particular, C' is presentable.

We now can consider the full subcategory C of Shu(X x Y) of K such that for any
n, H*(K) € C. This is a stable subcategory of Shv(X x Y'), which is closed under
filtered colimits. By construction, C' is presentable: this is the limit

Sho(X X V) X[ d(Perv(xxv)) | | €

of presentable categories. So, C' € DGCatcons.

Since the map C' — Shv(X x Y) is an exact functor preserving filtered colimits, it
preserves all colimits.

The fully faithfulness of QLisse(X) ® Shv(Y) — Shv(X x Y) is explained in their
proof of E.9.5. Let us explain it takes values in C. If F} € QLisse(X), F, € Shu(Y)constr
then Fy X Fy € C, as for this we may assume Fy perverse and use Beilison’s result ([3],
Th. in 1.2) and their (E.12). Now let € be the smallest stable subcategory & of
Shv(X x Y) containing such objects Fy X Fy. Then & C C. Now, the objects F; X F}
with F} € QLisse(X), F» € Shv(Y )" generate the essential image of QLisse(X) ®
Shv(Y) — Shu(X xY). Since C — Shv(X x Y) preserves all colimits, we see that the
essential image is contained in C' (by [11], ch. I.1, 5.4.5).
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1.4.23. For E.9.9. The following is used in the proof without an explanation. Let
E € QLisse(X),F" € Shvgun(X x Y). Then py(E) ® F € Shugun(X x Y). Here
px : X XY — X is the proejction, and N C T*(Y) is half-dimensional, X is smooth
and proper.

The desired claim follows from my Lemma A.1.3.

1.4.24. For F.2.4, let Y be a classical quasi-compact algebraic stack locally of finite
type. If f: S — Y is a smooth cover, where S is an affine classical affine scheme of
finite type, we have Shv(Y) = Tot(Shv(S*®)), where S*® is the Cech nerve of f : S — Y.
For [n] € A let f* : S™ — Y be the corresponding map, it is smooth. Now for
F,5 € Shv(Y), Homgp, ) (F, F') = Tot(Homgpysn ((f™)'F, (f™)'F) by ([16], 9.2.49).

Since f™ is smooth, (f™)'[— dim. rel(f™)] is t-exact for the perverse t-structures.

They use the following: let C' € DGCaton; with a t-structure and F € C=N,F ¢
CZ™. Then Home(F,F') € Vect="" this follows from ([16], Lm. 9.3.2). For this
reason in their notation .‘J-fomShv(Sn)((f”)!.&'", (fM)'F) € Vect=""N.

Note that F.2.4 does not hold for Y which are not quasi-compact.

1.4.25. For F.3.2. A system of compact generators of Shv(Y) whose Verdier duals are
compact is sufficient, because Shv(Y)¢ is idempotent complete.

1.4.26. For F.3.4. Let Y € Schy, G an algebraic group of finite type, ¥ € Shv(Y/G),
mpt 1 pt = pt/G and ¢ : Y/G — pt/G the natural maps. Let us explain their isomor-
phism

T & ¢ (mp0)e() FF @ g (mpe)ec) 2 dim(G)]

We have (mp¢)«(e) € Lisse(pt/G), so it is dualizable with respect to the ®-monoidal
structure on Shv(pt/G). For E € Lisse(S), where S is a scheme of finite type, write
temporarily EY € Lisse(E) for its dual with respect to the ®-monoidal structure,
so BV = Hom(FE,e), where Hom is the inner hom with respect to the ®-monoidal
structure. One has

F @' ¢ (mpe)«(€) = Hom(D(q (mpe )« (), ) = Hom(q" (mp)re, F') = (¢ (mpe)re) ¥ @ F
For any E € Lisse(pt/G), one has ¢*(EY) = (¢*E)V. We have
(mpt)«e = Hom((mpe)1, e[~2 dim(G)]) = ((mpe)1) ¥ [~2 dim(G)]
So, (q*(mpe)ie)Y = q¢*(mpt)+€[2 dim(G)]. We are done.

1.4.27. For F.5.1. Let Y be a classical algebraic stack with an affine diagonal, so
Y is locally of finite type. (In F.5.1 it is not assumed that Y is Verdier compat-
ible!) Recall that the truncation functors for the perverse t-structure preserve the
subcategory Shv(Y)™!  so induce a t-structure on it. Besides, the ®-tensor prod-
uct makes Shv(Y)®ms" into a symmetric monoidal category (same for ®'). For Fy €
Shv(Y)¢, Fy € Shv(Y )™ we get Fy @ Fy € Sho(Y)©.

Note that if Y is quasi-compact then any object of Shv(Y) is bounded.

Let Y be a quasi-compact classical algebraic stack with an affine diagonal. Then
the t-structure on Shu(Y) " := Ind(Shv(Y)®"5'") is compactly generated (even in the
stronger sense of their Section E.7.4) by ([11], IL.1, Lm. 1.2.4).

The functor un — reny : Shv(Y')"™*" — Shu(Y') is t-exact by ([11], IL.1, Lm. 1.2.4).

constr
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1.4.28. For F.5.2. For any n, (Shv(Y)"*")2~" = Ind((Shv(Y)erstr)y==n) by ([11], I1.1,
Lm. 1.2.4). Now the functor

(Sho(Y)"®)Z" = Sho(Y)>™"

is fully faithful by ([13], 5.3.5.11) and their Pp. F.2.4.

To see it is essentially surjective on hearts, let F € Sho(Y)?. Pick I small filtered
and F'—= colim;er F; with F; € Shv(Y)°. This exists because Shv(Y') is compacty
generated. We have Sho(Y)¢ C Shu(Y)"!"  so F; € Shv(Y)®"". Now the functors
750 720 preserve Shv(Y)®"" so colim;e; HO(F;) — F is an isomorphism, because
the t-structure on Shv(Y') is compatible with filtered colimits.

Remark 1.4.29. The category Shv(Y)¢ is not stable under the functors 7", 72" on
Shu(Y). Indeed, take Y = B(Gy,) and q : Speck — B(Gy,). Then gre € Shv(B(Gy,))°,

however its truncations are not compact.

1.4.30. For F.5.3. Then fact that reny : Sho(Y) = Sho(Y)™" : un—reny is an adjoint
pair follows from ([13], 5.3.5.13). Indeed, un — reny is the restriction

Fune ¢, ((Shv(Y)®nstr)oP Vect) — Fung ¢, ((Shv(Y)9), Vect)

along the exact functor (Shv(Y)¢)%? — (Sho(Y)®nst")oP The subscript e here stands
for e-linear.

The fact that (Sho(Y)™", ®) is symmetric monoidal follows from ([14], 4.8.1.14).
As we have seen in my Section 1.4.27, Shv(Y)¢ is a module over Shv(Y )" so
the ®-tensor product makes Shv(Y) a module over (Sho(Y)™" ®). If Y is Verdier
compatible and quasi-compact then Shv(Y)¢ is a module over (Shu(Y )™ '), so
Shv(Y') becomes a module over (Sho(Y)"", @").

The inclusion Shv(Y)¢ — Sho(Y)®"s" is a map of (Shv(Y )" @)-modules. So,
reny : Sho(Y) — Shu(Y)™" is a map of Shv(Y)"*"-modules. Besides, un — reny is
also a map of Shv(Y)"*"-modules.

1.4.31. Remark. let Dy be a small stable category, a Vect!®-module, f : Cy — Dy a
stable subcategory and a submodule over Vect/?, so f is exact. Let L : C' = Ind(Cy) —
D = Ind(Dy) be the ind-extension of f. Note that L is a map in DGCatcypt. Then f has
the continuous right-adjoint R : D — C' given as the composition with f° : Cg¥ — Dg?
by ([13], 5.3.5.13). Recall that RY : CV — DV is obtained as the ind-extension of
[P Cg? — Dg? by ([11], ch. 1.1, 7.3.5). The functor LY : DY — CV is the restriction
along f: Co — Dg, and LY is the right adjoint of R".

Assume now given an equivalence D : Di¥ — Dy yielding Cj* = Cj and commuting
with f. This gives identifications D= DY and C = CV. Under these identifications,
we get LV < R.

They apply this in F.5.4 in the case of a Verdier-compatible stack Y to see that reny
and un — reny are mutually dual.

1.4.32. For F.5.5. Here GG is a connected affine algebraic group of finite type. The
fact that e € C*(pt/G) — mod generates the essential image of ren, g : Shv(pt/G) —
Shu(pt/G)"™ is obtained as follows, I think. First, we may assume that pt/G is a
prestack quotient, as this does not change Shv(pt/G). Then apply their F.4.7(ii’). For
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an affine scheme of finite type S and a map S — pt/G, it factors as S — pt 5 pt/G.
This is why the smallest non-cocomplete DG-subcategory of Shv(pt/G) containing m.e
and closed under taking the direct summands is Shv(pt/G)¢. This gives their claim.

Note that for my : pt — pt/G we have a natural map e — (mp)«e in Sho(B(G)),
passing to the cohomology this gives a structure of a C"(pt/G)-module on e. This is
why renp:(mp)«€e corresponds to e € C"(pt/G) — mod.

Note that Shv(pt/G) is compactly generated by one object m.e. For example, for
G = Gy, C'(pt/G) = Sym(e[—2]), and e is the augmentation module of Sym(e[—2]).

Recall also that (my)«e — (mpe)ie[d], where d = 2dim Gypip + dim Gyreq, see their
F.3.3.

1.4.33. For F.5.7. Bad formulation: reny is left adjoint, not the right adjoint. The
same for the second displayed equation.

In F.5.8 the second displayed equation is wrong: reny should be the left adjoint.

The formulation of F.5.7 makes sense, because both reny and un — reny are mor-
phisms of Shv(Y)"*"-modules, see my Section 1.4.30. Let Y = Y/G, where Y is a
scheme of finite type, G is an algebraic group (of finite type).

For the ®-monoidal structure the functor Shv(Y)"" ®gpy(pt/cyren Shv(pt/G) —
Shv(Y) sends F ® K (with F € Sho(Y)™", K € Shv(pt/G)) to un — reny (F) @ ¢*K
for ¢: Y — pt/G.

1.4.34. For F.5.8. Let Y be an algebraic stack locally of finite type with an affine diag-
onal. If U % V < Y are quasi-compact opens then o' : Shu(V)enstr — Shy(U)constr
gives o' : Shu(V)™" — Shv(U)™" by the ind-extension. Moreover, the functors
un — reny : Shu(V)"" — Shy(V) commute with o'. Passing to the limit, this gives
a functor un — reny : Sho(Y)™" — Sho(Y). Similarly, we get reny : Shv(Y) —
Shv(Y)™" by passing to the limit over the quasi-compact opens.

The fact that reny : Sho(Y) = Sho(Y)™™ : un — reny is a dual pair follows from
([11], ch. I.1, 2.6.4). To get a t-structure on Shv(Y)"" we apply ([11], ch. 1.3, 1.5.8)
with my explanations from ([16], 10.1.6). In particular, the t-structure on Shv(Y) "
is accessible and compatible with filtered colimits.

The t-structure on Shv(Y)™" is right complete. To see this, by ([16], 4.0.10), it
suffices to show that for K € Sho(Y)™" the natural map colim, 7<"K — K is an
isomorphism. This is true, because for each quasi-compact open U C Y, the t-structure
on Shu(U)"™ is right complete by ([16], 9.3.18).

1.4.35. For F.6.1. Let Y be an algebraic stack, locally of finite type. Then the cotangent
comlplex of Y is not in general a vector bundle, for example, for Bun,, it is not a vector
bundle, as for L € Bun,, dim H*(X, Eénd(L)) jumps.

For GL,, we get the following complex on Bun,,. Let € be the universal vector bundle
on X x Bun,, ¢ : X x Bun_, Bun,, the projection. Then ¢.(End(&))[1] is the dual of
the cotangent complex, as far as I understand.

1.4.36. For F.6.2. Let Y be a classical algebrais stack locally of finite type, maybe non
smooth. By a compatible collection of Zariski-closed subsets Ng C T%(S) for schemes
of finite type equipped with a smooth map S — Y they mean such a collection with
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the property: for 8’ % S — Y with both maps smooth, the image of Ng x g S’ under
the codifferential T*(S) xg S" — T*(5’) equals Ng/. This is justified by the description
of SingSupp(a*K) via SingSupp(K) given in their Section E.6.5.

1.4.37. For F.6.3. Let Y be a classical algebrais stack locally of finite type, maybe non
smooth, F' € Shv(Y)«"s'". By SingSupp(F) we mean a compatible system of closed
subsets in T*(S) for all S € Schy, equipped with a smooth map f : § — Y, namely,
to (S, f) we associate SingSupp(f*F). This is a compatible system by their Section
E.6.5.

1.4.38. For F.6.4. Let Y be a classical algebraic stack, locally of finite type, N C T*(Y)
a Zariski-closed subset. Recall that Shux(Y) = limg_,y Shung(S), where the limit is
over the category of (5, f), where S € Schy; with a smooth morphism f: S — Y. A
moprhism from (5, f') to (S, f) is a smooth morphism a : S" — S with a datum of
foa= f. The transition functors are a' : Shuyg(S) — Shux,, (S").

The t-structure on Shoy(Y) is defined by Shux(Y)<0 = limg o, Shoy (§)= mrel(@),
where for a : S’ — S we use the transition functor a'. This is a t-structure by ([11], ch.
1.3, 1.5.8), and Shon(Y)>0 = limg o, Shvng (&)>—dimrel(@) Tt is accessible, compatible
with filtered colimits (because the same holds for each Shuvy(S)) and both left and
right complete by loc.cit.

Left completeness of Shux(Y) follows from the fact that lim,, Shvn(Y)=" and limg_,y
can be permuted:

lim Shuy(Y)=~" = lim lim SthS(S)E*n*dim.rel(a) ~

nosay
lim lim Shoy (S)Z "~ 4mrel@) = Jim Sha, (8) = Shux(Y)
Sy n 53y

The right completeness follows from the right colmpleteness of each Shvy,(S). In-
deed, it suffices (by [16],4.0.10) to show that for K € Shux(Y) the natural map

colim,, 7" K — K is an isomorphism. For this, it suffices to prove that for any S i> Y
with S € Schy; and f smooth, the map

f*(colim,, 75" K)[dim. rel(f)] — f*K[dim. rel(f)]

is an isomorphism. This is clear, because f*[dim.rel(f)] is t-exact

By definition, Perv(Y) = (Shv(Y)®"#)¥. Tt is clear that Pervy(Y) C Perv(Y) is a
Serre subcategory.

However, for the next their claim, namely the fact that Ind(Pervy(Y)) = Shon(Y)Y,
one needs to assume that Y is quasi-compact in addition. Indeed, for example for
Y = Ujer Speck with I infinite set, an object of Perv(Y) is not always compact in
ShUN(H)O. Namely, Shv(Y)— [[;c; Vecte, and a collection (e);e; is not compact in
Perv(Y) = [Lics Vect.

They did not want to assume throughout Section F.6 that Y is quasi-compact.

Let us assume now Y quasi-compact and show that Ind(Pervy(Y)) — Shon(Y)"
is an equivalence. Let K € Shun(Y)Y. Write K = colim;es K; in Shv(Y)", where
K; € (Shv(Y)m!")* and I filtered. This is possible by their Section F.5.2. We may
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and do assume that each map K; — K is a monomorphism in Shv(Y)¥. Now for any i,
K; € Pervn(Y) by their chartacterization in Section F.6.4 of Shux(Y). This shows that
Pervy(Y) generates Shun (Y)Y under filtered colimits. Now let F € Pervy(Y). Then
by their Pp. F.2.4, F is compact in Shv(Y)=°, hence also in the full subcategories
Shox(Y)® € Sho(Y)¥. Now by ([13], 5.3.5.11), the functor Ind(Pervy(Y)) — Shux(Y)™
is fully faithful.

1.4.39. For F.6.6. Let us show that their functor (Shon(Y)"")="" — (Shon(Y)=™"
given by (F.12) is an equivalence. Let F € (Shun(Y)"'")==". Then by their F.2.4,
F is compact in Shv(Y)=~", hence also in the full subcategory (Shvn(Y)=~". This
implies by ([13], 5.3.5.11) that (F.12) is fully faithful. It is also essentially surjective on
hearts because of F.6.4 which gives Ind(Pervy(Y)) = Shun(Y)Y. This gives the result.

Note that their functor Shun(Y)"" — Shun(Y) given by (F.11) is not fully faithful,
for example, for Y = B(G,,) and N = T%(Y).

1.4.40. For F.7.1. Let f : C' — D be a map in DGCat,ppnt, let C, D be equipped with
t-structures compatible with filtered colimits, assume f t-exact. Let D” C D be the
essential image of f. Let D’ C D be the full DG-subcategory generated under colimits
by D”. Then D’ inherits a t-structure? Let I — D", i — K; be a diagram with I
small, let K = colim; K; in D, hence also in D’. For each ¢ we have a fibre sequence
T<"K; — K; — 72" K;. Passing to the colimit, we get a fibre sequence colim; 7<"K; —
K — colim; 72" K; in D. Clearly, 7<"(K;), 72" K; € D’ and colim; 7<"K; € D<".

If I is filtered then colim; 72"K; € D=" and 72"K = colim; 7="K; € D’. In this
case T<"K,72"K € D'. In general it is not clear.

Assume in addition that for any n, C=" — D=" is an equivalence. Then D’ is stable
under the truncation functors. Indeed, for K € D', 72"K € D=" C D'. We get a fibre
sequence K[—1] — (12"K)[—1] — 7<"K in D, which shows that 7<"K € D’. We are
done. Note that the t-structure on D’ is compatible with filtered colimits.

1.4.41. For F.7.7. Let Y be a quasi-compact algebraic stack, N C T*Y a Zariski-
closed subset. The category Shun(Y)*““*s is the full cocomplete DG-subcategory of
Shux(Y) generated by Shun(Y) N Sho(Y)«rst. In particular, Shon(Y) N Shv(Y)¢ C
Shuy(Y)eccess always. Renormalization-adapted means that Shun(Y) N Shv(Y)¢ gener-
ates Shoy(Y)**s. Note that Shun(Y)NShv(Y)¢ C Shun(Y)2ee** is stable under finite
colimits, so if it generates Shvn(Y)*“““*s under colimits then it generated Shuvy(Y)®ccess
under filtered colimits.

We claim that if (Y, N) is renormalization-adapted then the natural continuous func-
tor

(9) Ind(Shun(Y) N Shv(Y)S) — Shu(Y)reeess

is an equivalence. Indeed, it is essentially surjective by definition. To see that it is fully
faithful, we show that its composition with fully faithful embeddings Shuvn(Y)*ccss —
Shun(Y) <= Shv(Y) is fully faithful. Indeed, each object of Shun(Y) N Shv(Y)¢ remains
compact in Shv(Y), we are done.

The dual pair in F.7.7(III) is obtained from ([13], 5.3.5.13).
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For (IV): if Y is renormalization-adapted and Verdier compatible then
D : (Shux(Y) N Shu(Y)9)? = Shon(Y) N Shu(Y)¢
is an equivalence.

1.4.42. For F.7.9. Let Y be a scheme of finite type, G an algebraic group of finite
type acting on Y, N C T*(Y/G) a Zarisk-closed subset. To see that (Y/G,N) is
renorlmalization-adapted, it suffices to prove the following. Let 0 # F' € Shun(Y/G)omst.
We need to find K € Shon(Y/G) N Sho(Y/G)¢ with a nonzero map K — F. Let
n=dimG, ¢:Y — Y/G be the natural map, so ¢' = ¢*[2n]. We get

Homsnu(v/cy(@a F2n], F) = Homgy,v)(q" F[2n],¢'F) # 0

We claim that qi¢*F € Shon(Y/G) N Sho(Y/G)¢. Tt is compact in Sho(Y/G). To see
that q¢*F € Shun(Y/G) note that q¢*F = F & (qe), and gre admits a filtration in
Shv(Y/G) with succesive quotients being shifted constant sheaves. Since each succes-
sive quotient lies in Shun(Y/G), the object itself is also there.

1.4.43. For F.8.2. To get t-structures we have to use ([16], 10.1.6 and below). If

ULV CY are quasi-compact opens then the restriction along j is a t-exact func-
tor Shun(V)®cess — Shun(U)?%S, so we may apply ([11], ch. 1.3, 1.5.8). We
see that the t-structures on both Shun(Y)"", Shun(Y)*“sS are accessible and com-
patible with filtered colimits. By definition, (Shvy(Y)"")=0= limy (Shon(U)r™)<0
and (Shux(Y)"")>0 = limy (Shux(U)7")>0, where the limit is taken over the poset of
quasi-compact opens of the stack Y. Same for access version.

The DG-category Shuvn(Y) is both left and right complete, as we have seen in F.6.4.

To see that Shun(Y')%c¢*s — Shun(Y) is fully faithful, we use the fact that the limit
of fully faithful embedding is fully faithful ([16], 2.2.17).

1.4.44. For F.8.7. For an open immersion ji2 : Uy < Uy of quasi-compact algebraic
stacks, (j12)1 has perverse cohomological amplitude < 0. Besides, (j12)« also has per-
verse cohomological amplitude < n for some n. Indeed, pick a smooth cover So — Us,
where S5 is a scheme of finite type, let j : S; < S5 be the open immersion obtained by
base change. Then j, has cohomolocal amplitude < n for some n by ([4], 4.2.3). This
is used to show that (D) is equivalent to (A).

1.4.45. For F.8.8. In the situation of F.8.6 the adjoint functors (ji, i, )1 : Shon(Wi;) S
Shox(Ui,) @ jf, 4, respect the full subcategories Shux (Ui, )™, Shon(Us,)*°°°*, hence
induce adjoint functors on those.

To get the adjoint pair (ji,,i, )1 : Shon(Uiy )" S Shun(Wi, )™ ¢, 4, we apply ([16],
9.2.53).

1.4.46. For F.8.10. For (a) use ([11], L1, 7.2.7). Recall that DGCat""~omPl admits
filtered colimits, so we have colim; Shun(U; )" taken in DGCat™" =™l where the
transition functors are (jj, i,)1. Then

(10) Ind(colim; Shun(U;)™') = colim; Shun(U;) " = Shuy(Y)"™
in DGC&tcont.
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For (b) assume Shvy(Y) compactly generated. Consider the dual pair (j;)* : Shon(Y) S
Shon(U;) @ (Ji)« in DGCateont. We see that (j;)* preserves compactness. Besides, (j;)*
is essentially surjective (it is a localization), so Shun(U;) is compactly generated. The
opposite implication is clear.

For (c), recall that Shun(Y)*** = colim; Shun(U;)*““*® in DGCatcont. Assume first
each (U;, N) renormalization-adapted. By (9) we get that Shovy(Y)*“*® is compactly
generated by the union of objects of the form (j;)1K for K € Shun(U;) N Sho(WU;)°.
For such an object we have (j;1 KX € Shux(Y) N Shu(Y)¢, because (j;)1 : Sho(U;) —
Shv(Y) has a continuous right adjoint. So, Shun(Y)*““** is generated under colimits by
Shux(Y)NShv(Y)¢. Moreover, in this case we may consider colim; Shux(U;) N Sho(U;)¢
in DGCat™"=¢“mPl and then

Ind(colim; Shun(WU;) N Sho(U;)¢) = Shux(Y)2eess,

Conversely, assume (Y, N) remormalization-adapted. Then the objects of Shun(Y)N
Shv(Y)¢ are compact in Shoy(Y)*¢*5| so the evident functor Ind(Shvx(Y)NShv(Y)<) —
Shuy(Y)eccess s fully faithful. It is also essentially surjective by definition (given in
F.8.4), so it is an equivalence. For each 7, the adjoint pair (j;)* : Shon(Y) &= Shon(W;) :
(ji)« respects the full subcategories Shun(Y)*“*s, Shun(U;)*“*S) hence yield an ad-
joint pair denoted by the same symbols

(]1)* . Sth(y)aCCeSS (:> ShUN(ui)aCCCSS . (]l)*,

where the right adjoint is fully faithful. So, the left adjoint here is essentially surjective.
Now the claim follows from the fact that for K € Shox(Y) N Shv(Y)¢ we have jFK €
Shun(U;) N Shov(U;)¢. These objects compactly generate Shuy(U;)*<ce*.

In the situation of F.8.6 the adjunction renyy : Shun(Y)**® = Shon(Y)™" :
un — renyy is obtained as follows. For each i, we have an adjunction remy, x :
Shon(Us) % = Shon(U)™" © un — reny, . Moreover, the functors un — remy, x
are compatible with the !-restrictions transition functors, so give by passing to the
limit the functor un — reny . The functors reny, v are compatible with the functors
(Jir,ia)1, SO give by passing to the colimit the functor renyy : colim; Shuy(U;)*“°*% —
colim; Shux(U;)"*". The adjointness of the pair (reny y, un —reny ) follows now from
([16], 9.2.39).

1.4.47. Category of relative groupoids Grpd,¢;(C). Let € € 1—Cat admit finite products.
We want to define the category of relative groupoids in € denoted Grpd,.;(C). For a
groupoid A? — € given by its value 3 on [1] say that it is acting on Y, where Y is
its value on [0]. An object of our category will be a pair ¢ € € and H € Grpd(€/.).
A morphism from (H,¢) to (H',¢') should be a map ¢ — ¢ in € and a morphism
H x.d = H in Grpd(C /C/) inducing an isomorphism Y x. =Y’ on the values at [0].
So, Grpd,¢(€) should be equipped with a projection Grpd,.¢;(€) — C sending (3, c)
to c.

Recall that the functor Fun([1],€) — € of evaluation at 1 is a bicartesian fibration
by ([16], 2.2.120). For a morphism from (z; — ¢1) to (xr2 — ¢2) in Fun([1], €) this is a
cartesian arrow over c¢; — cg iff the induced map x; — ¢; X, x2 is an isomorphism.
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I propose the following definition. First, there is a functor & : C°? — 1 — Cat sending
c to Grpd(C.), and a map ¢ — ¢ to the pullback functor Grpd(€/.) — Grpd(C,.),
H — H x.c. It is defined as follows.

Let X C Fun(A° x [1],€) Xpun(aorx{1},¢) € be the following full subcategory. An
object of the ambient category is (X*® — ¢), where ¢ € € and X € Fun(A®,€/.). We
require that X* lies in the full subcategory Grpd(€,.) C Fun(A,€/.), that is, for any
S,S" C [n] with SN S" = {s} the diagram

X(S) < X([n])
\ 3
X({s}) « X(5)

is cartesian in €/.. My understanding is that X — € sending the above point to c is a
cartesian fibration giving the desired functor.

Consider now the category of correspondences Corr(X) equipped with the projection
Corr(X) — Corr(€). An object of Corr(X) is (X®* — ¢) € X. A morphism in Corr(C)
from (X® — ¢) to (X’* — () is given by a diagram X® « Y* — X'* in X over a
diagram ¢ < ¢y — ¢ in €. in Let now Grpd,¢(€) C Corr(X) be the full subcategory
given by the properties:

e the arrow X® < Y® is cartesian in X over ¢ < cy in €, s0 Y* = X*® x.c in C;
e The map Y° — X' is an isomorphism in €, hence cy — ¢ is also an isomor-
phism in €.

We get the projection Grpd,.;(€) — C° sending (X*® — ¢) to c.
Question Is this a correct definition for the following lemma to hold?

Lemma 1.4.48. There is a natural functor Grpd,¢(C) — Alg(Corr(C)).

Proof. We send (X*® — ¢) to X! € Alg(Corr(€)) naturally. Let now be given a map
from (X® — ¢) to (X'* — ) in Grpd,(@), it is realized by a map ¢ — ¢ in C and a
morphism X* x. ¢ — X' in Grpd(C/./) inducing an isomorphism X0 x,.d =X,
First, consider the morphism from X! to X! x. ¢ in €? C Corr(C) given by the
projection X! x.¢ — X'. It is naturally a morphism in Alg(Corr(C)). Besides, the
map X! x. ¢ — X' in € C Corr(€) is also naturally a morphism in Alg(Corr(€).
Their composition is the desired morphism in Alg(Corr(C)). O

1.4.49. For Hecke actions. Let C € Alg(1 — Cat) be a monoidal category, A € 1 — Cat
then on Fun(A,C) we get a monoidal structure with the pointwise tensor product by
([14], 2.1.3.4) and ([16], 3.0.69) with the property Fun(A, Alg(C)) = Alg(Fun(A4, C)). To

be precise, the product of fi, fo € Fun(A, €) is the functor A - Ax A o em C,
where m is the product in €, and the first map is diagonal. This is used in (][9], B.2.1).
For ([9], B.2.6). The category Grpd(PreStk;s;) of groupoids in PreStk;s; classifies
pairs (H,Y), where Y € PreStk;s;, and J{ is a groupoid acting on Y.
If @ € 1 — Cat say that a groupoid X : A’ — € in C is over ¢ € C if it is an object
of Grpd(€/,).
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The correct definition of the category they wanted to denote by Grpd / PreStk /Sch in
B.2.6 should use the category of relative groupoids from the previous subsection. Its pre-
cise definition is the full subcategory of those objects (X* — Z) € Grpd,..;(PreStk;s)
such that Z € Sch.

In ([9], B.2.6-B.2.9) evident mistake. Consider the category Grpd(PreStk;s) clas-
sifying 5 € Grpd(PreStk;;) acting on Y € PreStk;s; (so, Y is the value at [0] € A
of our groupoid). Though H € Alg(Corr(PreStk;s:)), this does not define a func-
tor Grpd(PreStk;s:) — Alg(Corr(PreStk;s:)). Namely, for a map ¢ : H' — 3 in
Grpd(PreStk;s;) over d : Y — Y the map d is not a map in Alg(Corr(PreStk;s)) in
general. However, assume H € Grpd(PreStk,,). If Z' — Z is a map in Sch and 3’
is obtained from JH by the base change Z’ — Z then c¢ can be viewed as a map in
(PreStk; ;)7 C Corr(PreStk;s;), and it is indeed a morphism in Alg(Corr(PreStk;y)).

From Lemma 1.4.48 we get a natural functor

Grpd / PreStk /Sch — Alg(Corr(PreStk;))

Their functor (B.7) from B.2.8 now makes sense. Let « : I — J be a map in fSet.
Let A: X — X! be the induced map. By Hecke; we mean the global Hecke stack
classifying (Fa, I, {xi})icr), where Fg, Fi; are G-torsors on X, Fg = T |sxx—Uya; 18
the isomorphism of G-torsors on the complement to the union of graphs of x;. Define
h*,h™ by the diagram

h* h™—
Bung x X1 Hecke; Bung XXI,

where h*", h™ sends the above point to (Fg, (x;)) and (F, (z;)) respectively.
Then in general there is no map Hecke; — Heckey for given . We only have a
correspondence

(11) Hecke; & Hecker X 1 X7 LN Hecke s

Indeed, if {z;} € X7 and {y;} € X' is its image under A then the inclusion S x X —
Ujz; C S x X — Uy, is strict in general.

Note that Hecke; is a groupoid over Bung x X!, we have the diagram pr,act :
Hecke; — Bung x X!, where pr sends (Fg, 5, {z:}) to (Fa, {z;}) and act sends it
to (Fg, {xi}). So, Hecker x xr1 X7 is a groupoid over Bung xX”. The above map a
can be seen as a map in PreStkf}’t C Corr(PreStk;s;), and as such it is a morphism in
Alg(Corr(PreStk;s;)) from Hecker to Heckes x x1 X 7. So,

a' : Shv(Hecker) — Sho(Hecker x x1X7)

is monoidal. Now b is a morphism of groupoids acxting on Bung xX”, so this is
a morphism in Alg(Corr(PreStk;s:)). So, the composition in (11) is a morphism in
Alg(Corr(PreStk;s;)). It gives rise to the monoidal functor b,a' : Shv(Heckes) —
Shv(Heckey).

1.4.50. Generalities. To make things more explicit, consider the composition

Grpd / PreStk /Sch — Alg(Corr(PreStk;;)) — DGCatM"
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The first functor send H acting on Y over Z to H € Alg(Corr(PreStk;s)) with the mul-

tiplication given by the diagram H x H < H xy K ™ 3, and the unit correspondence
Speck +— Y — H.

Consider two object (H,Y,2),(H',Y',Z") € Grpd /PreStk /Sch. By definition, a
morphism in Grpd / PreStk /Sch from H to H' is a morphism Z’ — Z in Sch (giving
rise by base change to 5 : Y — Y in PreStk;s;) and a morphism H xz Z" — H' in
Grpd((PreStk;s¢) /7).

Such a datum defines a diagram H & H x5 Z’ L3¢ in PreStk, here a is the
projection. Moreover, let K € Shv(H), F € Shv(Y). Then

B(K «F)= (a'K) % (B'F)

Now the action of Shu(H xy Y') on Shu(Y’) factors through the monoidal functor
by : Sho(H xy Y') — Sho(H'). So, we get as desired

BYK « F)= (b,a'K) * (B'F),

where the RHS stands for the action of Shv(H') on Shu(Y').

loc

1.4.51. For ([9], B.3.2). An explanation is missing here, as Hecke is not locally of
finite type. First, for I € fSet we have a group scheme 2? (G) on X! whose fibre over z!
is the scheme of maps D, — G. This is a placid group scheme over X/ in the sense of

[18] by ([23], Lemma 2.5.1). Consider the stack quotients X!/£7(G). For S € Sch?{f,

the stack Heckel®® has as S-points the collections =/ € X'(S), F¢, Fe. Fa =T |% R
where Fg, Fi; are G-torsors on D,r. We have a diagram

X1/85(G) "= Heckelre "5 X1 /21(G),

where h (resp., h™) sends the above point to (Fg,z?) (resp., to (Fi, z1)).

We define Shv(XT/£](G)) via our general conventions of ([20], 0.0.40). Similarly,
trivializing F say, we may write HeckelloC as a quotient of an ind-scheme of ind-finite
type by a placid group scheme, so ([20], 0.0.40) also gives a definition of Shv(Heckel®).
The monoidal operation on Shv(HeckelI"c) is defined not as usually! Namely, we have

the diagram
loc loc PT1 X PT2 loc loc M loc
Hecke?“ x Heckej < " Heckep® X /eH@) Hecke”® — Hecke}

and for K; € Shv(Heckel®®) we would like to set K1 * Ko = m(pr; x pry)' (K1 K Ko).
However, the functor (pr; x pr2)! does not make sense in our formalism! Besides, we
would like Sho(X!/£](G)) to be a Shu(Hecke[**)-module naturally. I imagine we can
try to define the convolution instead as m.(pry X pry)*(K; X K3). This is reasonable

because m is ind-proper.
Note that (Heckel”?, X1/£1(G), X') € Grpd / PreStk /Sch.
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1.4.52. For B.3.3. They claim that (B.11) gives a functor fSet — Shwv(Heckel’),
I — Shv(Hecke!?®). Let us check this. For this Nick suggests that

I+ (Heckel?®, X1/217(G), X1)

extends to a functor fSet — Grpd / PreStk /Sch.
Fora: I — Jin fSetlet A: X’ — X! be the induced map. For a S-point (z;) € X7
let (y;) € X' be its image under A. Recall that D,; denotes the formal completion of

the union of the graphs of x; in § x X, and QO)mJ C D, is the open part obtained by
removing the union of the graphs of all ;. If S is affine then D, is an ind-object of the
category Sch®/. We have closed immersions Dy — D, and 5y1 — 5#- Restricting
along these closed immersions gives a morphism f, : HeckelJOC — Heckelfc. Note that
£ - Shv(Heckel?®) — Shv(Hecke!#¢) is not monoidal! Namely, the preimage of the unit
section X!/€F(G) — Hecke!’ is much bigger than the unit section of Hecke!s.

We have a morphism of group schemes Sj(G) —a* £ (G) over X7, hence maps of
stack quotients

X7/85(G) = X7/ 0 £7(G) = X'/£1(G)
The composition is given by restricting a G-torsor under D, — D, essentially.

Mistake I don’t think we get this way a functor fSet — Grpd /PreStk /Sch, I —
(Heckel?®, X1 /25 (G), X1), T think this is a mistake.

Maybe it does actually as Nick suggests: consider the prestack Heckelfg classifying
(zj) € X7 for which we denote by (y;) € X7 its image, G-torsors F,F on D, together
with a trivialization F = ' |@xj,py1. Here I'y; is the union of graphs of all y;.

We get a correspondence

aloc bloc
Heckel?® % Heckel[‘jg "~ Heckel?°,

loc

where a'*® is given by restricting along D,r < D_s. The map b°¢ keeps the G-torsors

F,F" and restricts the isomorphism between them under the open immersion D_; C
D,r—T

yI.

1.4.53. The categories Shv(Hecke!?®), Shu(X!/£](G)) are equipped with the perverse
t-structures as in ([20], 0.0.40).
For I € fSet the square is cartesian

Hecke; -5 Heckel®
3 he 4 ne
Bung xX! — X1/£7(G),
where the low horizontal arrow is the restriction along D,r — S x X. For this reason
the square
Hecker Xgyp,, x x1 Heckey ™ Hecker

i b

Heckel® x X1/¢H(G) Heckel’® — Heckel®

is also cartesian. Here m is the composition map for the corresponding groupoid.
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Mistake Dennis used the functor vy in ([9], B.3.3). This functor does not make
sense, only t7 makes sense according to our conventions!
I think one gets (vi K1) * (viK2) = vi(K1 * Ka) for K; € Shu(Hecke’). We also have

a cartesian square
u,

X! x Bung — Hecke;

} }
XT/ef (@) % Heckelf,

where u is the unit section of the corresponding groupoid.

1.4.54. Let G be reductive over k, so G is reductive over e. Let At be the set of
dominant coweights of G. Recall that

Rep(G) = H Vect = @& Vect
AEAT
AeAt

by ([16], 9.4.2). Write V* for an irreducible G-module over e with h.w. A. The
functor oblv : Rep(G) — Vect sends a collection (W)) € @+ Vect to @ (VA @ Wy) €
AEA

Vect. Now (Wy) € Rep(G)=" iff each Wy € Vect=". The t-structure on Rep(G) is
accessible, compatible with filtered colimits, left and right complete by ([16], 9.4.2).
The t-structure on Rep(G) is compactly generated in the sense of ([10], 6.3.8). Indeed,
for any C' € DGCat.ont compactly generated with an accessible and compatible with
filtered colimits t-structure assume that C°¢ is preserved by the truncation functors.
Then the t-structure on C' is compactly generated.

For I € fSet, we conclude that Rep(G)®! is compactly generated with a com-
pactly generated t-structure by ([16], Lemma 9.3.7). In particular, the t-structure on
Rep(G)®! is accessible and compatible with filtered colimits by ([16], Lemma 9.3.5).

Recall that Rep(G) is rigid, so Rep(G)®! = Rep(GT) by ([11], ch. 1.3, 3.4.2). By
([11], 1.3, 2.4.3), the natural map

(12) D (Rep(G1)?) — Rep(GT)T

is an isomorphism. So, Rep(G') identifies with the left completion of DT (Rep(G')),
which is D(Rep(GT)¥) in the sense of ([14], 1.3.5.8). Indeed, Rep(G')” has enough
projective objects, so we apply ([14], 1.3.5.24 and 1.3.3.16).

1.4.55. We try to correct the end of the proof of ([9], Pp. B.2.3) as follows. We want to
construct a natural transformation 7 of functors fSet — DGCat™°" from the functor
I — Rep(G)®! to I — Shv(Heckey).

As in ([5], 3.2.1), we denote by * : Sphgr — Sphgr the equivalence coming from
the swap of HeckelfC permuting Fg and F,. We denote by the same symbol the
autoequivalence of Rep(G') obtained via the Satake equivalence Sphgr = Rep(GY).

For I € fSet we first define a functor Rep(GT)Y — Shwv(Hecker) as follows. Let

HeckeI o C Heckey be obtained from Hecke; by the base change )O( ' X7 this is the

)

complement to all the diagonals. Given V; € Rep(G)Y NRep(G)° for i € I, we have the
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perverse sheaf Locpecke(X; Vi) on Heckel [ defined via the usual Satake equivalence,

we denote by Locpecke(X;V;) its intermediate extension to Hecke;.
To be precise, the normalization is as follows. Let BunG o be the stack classifying

5

Fo € Bung, ! € X! and a trivialization of F¢ over D,:. Let GrG o be the ind-scheme

classifying (z! € X!, ¢, B), where F¢ is a G-torsor on D,r, and f3 is its trivialization
on D,r. We have an isomorphism

— +
7 :Hecke; 5 Bun o x%1(@) Gr . |
G, X! G, X1

such that the projection h* : Hecke; — Bung x X! identifies with the projection
+ . ° . . :
BunG o x 21 (G) GrG o Bung. By definition, Locpece(X;V;) identifies with

) )

IC(Bung)g Locw,y;. Here Locg,y; is the perverse sheaf on GrG [r attached to X;V;

via the usual Satake equivalence. Our functor 7 : Rep(GT)Y — Shv(Heckes) is given
by
X;V; + LocHecke (*(X;V5))[| I | + dim Bung],

for V; € Rep(G)Y NRep(G)¢, so the result is a shifted perverse sheaf. The # is added
to make this definition compatible with he one from [5], and it is necessary to get a left
action, not a right action.

By ind-extension, this gives a functor

7 : Rep(G1)Y — Shv(Hecker)V[| I | + dim Bung],

which is an exact functor of abelian categories.

The category Rep(G')Y has enough injective objects, so we may consider the sta-
ble category DV (Rep(G')?) defined in a way dual to ([14], 1.3.2.7). Recall that
Shv(Hecker) is right complete by ([20], 0.0.10). By the dual version of the univer-
sal property ([14], 1.3.3.2), the above functor extends naturally to a left t-exact functor
D*(Rep(GT)Y) — Shw(Hecker), which is also exact. By ([14], 1.3.3.6), the latter
functor is t-exact. Since the t-structure on Shv(Heckey) is left complete (by [20],
0.0.28), passing to the left completions and using (12), we get the desired functor
7 : Rep(G!) — Shv(Hecker). The latter functor is a map in DGCateont by ([16],
9.3.21).

Let us check that 7 is monoidal and functorial in I € fSet. For the diagram

Hecke; x Hecke; <~ Heckey X Bung x x7 Heckey ™ Heckey

given V/, V; € Rep(G)”NRep(G)¢ the complex ¢'(1(XV;) X7 (KV/)) is placed in perverse
degree —dim Bung — | I |. The usual Satake gives

m.q (T(RV;) B 7(8V))) = 7(K:(V; ® V)

by ([25], Pp. IV.3.4). My understanding is that 7(X;V;) is ULA for Hecke; — X7, see
[25]. This implies that 7 is monoidal.
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Let us verify the functoriality of 7 on I € fSet. If a: I — J is a map in fSet, recall
the diagram (11). From the ULA property we get that a'7(XV;) € Shv(Hecker x y1 X7)
is placed in perverse degree —dim Bung — | J |.

Note that if « is injective then A: X7 — XT is smooth, so A' [—dim.rel(A)] is
t-exact, so in this case the latter claim is evident.

Given V; € Rep(G)” NRep(G)¢, we must show that

(13) bea'r(R;V;) = (R, W),

where W; = ®i€a—1(]~)Vi.

CASE of a : I — J injective. In this case W; = e for j ¢ (), and the map
b : Heckes x y1 X7 — Hecke; is a closed immersion. The isomorphism (13) is evident
in this case.

CASE of o : I — J surjective. In this case A: X/ — X' and a are closed immersions,
and b : Hecke; x x1 X7 — Hecke; is an isomorphism. The isomorphism (13) holds in
this case, this is a part of the classical Satake equivalence.

The general case follows formally as a combination of these two.

The natural transformation 7 is well-defined on objects and on morphisms, the func-
toriality on [ is explained below. The relation with the factorizable version of Satake
is also explained below.

1.4.56. To summarize, given I € fSet, V; € Rep(G)¥ N Rep(G)¢, the action of K,;V; €
Rep(G)®! on K € Shu(Bung xX') is the object

(W™ x 8),((h" x 8)K @ 7(%;V;)) € Shv(Bung x X')
for the diagram
Bung x X! hxs Hecke; WZys Bung x X!

For | I |=1 this agrees with the functor Hg; from [5].

1.4.57. Relation with the factorization claimed by Nick: let € be a monoidal factoriza-
tion category over Ran. Then for any I let C; be the category its global sections over
X1, Then €; € Alg(DGCatcont), and €; depends functorially on I € fSet.

1.5. Question 2: let A be a Grothendieck abelian e-linear category. Let D €
C Alg(DGCatcont) with an accessible t-structure compatible with filtered colimits. As-
sume A is symmetric monoidal, and the monoidal operation on A is exact separately
in each variable and preserving small colimits separately in each variable (and Vect”-
linear in each variable). Let A — D% be a continuous symmetric monoidal functor,
exact functor of abelian categories, and Vect”-linear. Assume D both left and right
complete. Let D(A) be the derived category of A in the sense of ([14], 1.3.5.8). Do
we get monoidal operations on D(A) and its left completion D(A)? Is the functor
lj(A) — D obtained by the universal property symmetric monoidal?

Nick’s answer: see appendix C in [15]. We analyze this in details below. This seems
the right approach to fill the gap in the proof of ([9], B.2.3).
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1.5.1. Recall that an abelian category is Grothendieck if it is presentable and filtered
colimits are left exact. By Groth,, Lurie denotes the oo-category, whose objects are
Grothendieck abelian categories, and morphisms are colimit-preserving functors. Then
Grothffb"” C Grothyg, is the subcategory, where we restrict the morphisms to those pre-
serving finite limits in addition.

Let A,B € Pr’ be Grothendieck abelian categories. Then A ® B € Prl is still a
Grothendieck abelian by ([15], C.5.4.16), so Grothg, by ([15], C.5.4.19) inherits a tensor
product, and becomes symmetric monoidal.

Nick wanted first to claim that there is a functor Groth!5® — 1 — Gatf(f;ftocmp ' sending
A to D(A), where D(A) is the left completion of the derived co-category D(A) in the
sense of ([14], 1.3.5.8). Moreover, this functor is right-lax monoidal. This is probably
nor true as stated and needs a correction. We check this.

1.5.2. Lurie introduces a notion of a Grothendieck prestable oo-category in ([15],
C.1.4.2). For example, if A in a Grothendieck abelian category then D(A)<" is a
Grothendieck prestable co-category by ([15], C.1.4.5), here D(A) is the derived DG-
category of A in the sense of ([14], 1.3.5.8), note that D(A) is the category of spectrum
objects of D(A)<Y.

If € is a Grothendieck prestable category then € admits a generator x € €, by ([15],
C.2.1.4). If moreover C is separated, then € is generated under colimits by the full
subcategory Cp C € spanned by the single object x ([15], C.2.1.7). Write Sp for the
category of spectra.

Lurie defines Groth,, C Pr” as the full subcategory spanned by Grothendieck
prestable categories in ([15], C.3.0.5). The important role is played by the category
denoted Groth'e® in ([15], Notation C.3.2.3). Let Pr°* ¢ Prl be the full subcategory
spanned by stable presentable categories. The first point is that we have a functor
Croth’® — Pr5t € — Sp(C) by ([15], C.3.2.5). Recall that for any Grothendieck
prestable oo-category C' the natural map C' — Sp(C) is fully faithful and identifies C'
with Sp(C)=Y with its natural t-structure (by [15], C.1.2.10).

1.5.3. The category Groth,, has a symmetric monoidal structure with the unit Sp=C by
([15], C.4.2.1). The symmetric monoidal structure on Grothy, restricts to a symmetric
monoidal structure on the subcategory Groth!®® by ([15], C.4.4.2). Let Groth!c®:sep
denote the full subcategory of Grothfff, whose objects are separated Grothendieck
prestable oco-categories.

By ([15], C.5.4.5 and C.5.4.10), we have an adjoint pair Groth!s® & Groth!¢®se?,
where the left adjoint A +— D(A)=Y is fully faithful, and the right adjoint sends C' to
T<0C.

1.5.4. Denote by Groth"” C Grothi? C Grothy, the full subcategories of Groths,
spanned by the complete and separated Grothendieck prestable oo-categories (cf. [15],
C.1.2.12). Let L : Groths, — Groth? and L' : Groth,, — GrothS2™” denote the left
adjoint to inclusions. Note that L’ is the completion functor, and L sends C' to C*
by ([15], C.3.6.1). Then by ([15], C.4.6.2), GrothS2™ and Groth3? admit essentially
unique symmetric monoidal structures for which the localization functors L, L’ are
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symmetric monoidal. So, the inclusions
GrothZ2™ C GrothZ? C Grothe,

are right-lax monoidal. The tensor product in Groth”™ of C' and D is C®D, the
completion of C'® D. The tensor product in Grothi? of C' and D is (C' ® D)*P.

1.5.5. Recall that we have an adjoint pair Pr” S Prot, where the left adjoint sends
C to Sp(C) = C ® Sp, and the right adjoint is the natural inclusion (by [14], 4.8.1.23
and 1.4.4.5). Since Sp with the sphere spectrum is an idempotent of Prl, prSp gets a
unique symmetric monoidal structure for which the functor Pr¥ — Prot C Sp(C)
is symmetric monoidal. So, the inclusion Pr®* < Pr’ is right-lax symmetric monoidal.

Any A € Grothg, admits an essentially unique action of 7<o(Sp=") as in ([15], C.
5.4.13), and by ([15], C.5.4.19) we get a symmetric monoidal structure on Grothgy,
whose unit is 7<o(Sp="). Moreover, the functor

(14) Groths, — Grothy,, C+— 7<oC

is symmetric monoidal by ([15], C.5.4.20).
The category Grothéebz inherits a symmetric monoidal structure from Grothg,, and
the functor (14) restricts to a functor Groth’®® — Groth!S® (cf. [15], C.5.4.4).

1.5.6. In ([15], C.3.1.3) Lurie defines the co-category Grothl , whose objects are pairs
(C,C=Y), where C' € Pr, and C=0 C C is a core, that is, a full subcategory sta-
ble under small colimits and extensions. It is equipped with a cartesian fibration
q : Grotht, — Pr forgetting C=°. By ([15], C.3.1.4), we have a full embedding
Grothe, < Groth® , C' + (Sp(C),Sp(C)=Y).

By ([15], C.4.2.3), Groth’ is equipped with a symmetric monoidal structure given
by the formula:

(C, CSO) X (D, DSO) = (C X D,m;(CZo, Dzo)),

here m(C>0, D>0) C C ® D is the smallest full subcategory closed under colimits and
extensions and containing ¢ X d for ¢ € C=0,d € D=V, Then ¢ is symmetric monoidal,
and the functor

Groths, — Groth®, C s (Sp(C),Sp(C)=)
is symmetric monoidal!

Note that for C' € Groths, the t-structure on Sp(C') is compatible with filtered
colimits ([15], C.1.4.1). For C, D € Grothy then LFun(D,C) C LFun(Sp(D),Sp(C))
is fully faithful and its image consists of colimit preserving functors, which are right
t-exact by ([15], C.3.1.1). Let LFun’"“*(Sp(D),Sp(C)) C LFun(Sp(D),Sp(C)) be the
full subcagory of functors which are t-exact. It is closed under filtered colimits, because
the t-structure on Sp(C) is compatible with filtered colimits. However, it is not stable
under colimits, as for example, for f € LFun'~**(Sp(D),Sp(C)), f[1] is not t-exact.

1.5.7. Remark: if C;D € Grothy then C ® D is generated under colimits by the
essential image of the functor C x D — C ® D, (¢,d) — c¢Xd. So, Sp(C ®@ D)=V is the
smallest subcategory of Sp(C ® D) generated under colimits by the essential image of
CxD—C®D, (c,d)— cXd, no need to add extensions! See ([15], C.4.2.2-C.4.2.3).
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1.5.8. The functor f : Groth!s? — Groth’é®*P| A s D(A)=0 is left-lax symmetric
monoidal, because its right adjoint is symmetric monoidal. The left-lax structure on f
is not strict: already the natural map D(Spv) — Sp=" is not an equivalence, as Jacob
confirms.

Example: if A is an algebra in Sp then we have the category A — mod(Sp) of A-
modules in Sp. By ([16], 4.0.32), A —mod(Sp) € 1— Cat>-°™P! The t-structure on Sp
is compatible with filtered colimits (by [16], 4.0.66). Recall that Sp=" @ Sp=" = Sp=C,
where the tensor product is taken in the sense of Pr’, see ([15], C.4.1). Assume A €
Sp=. Then we define the t-structure on A — mod(Sp) so that A — mod(Sp)=? is the
preimage of Sp=" under oblv : A — mod(Sp) — Sp. This is an accessible t-structure by
([14], 1.4.4.11), and A — mod(Sp) is compactly generated by A ([14], 7.1.2.1). We have
Maps 4_mod(sp) (A, ) = oblv(z) in Sp for x € A~mod(Sp). Here for C € 1—Cathcoempl
and ¢, € C we write Mapsq(c,c’) € Sp for the relative inner hom. The t-structure
on A —mod(Sp) is compactly generated, in the sense that A —mod(Sp)=" is generated
under filtered colimits by A — mod(Sp)=" N A — mod(Sp)¢. Now as in ([16], 9.3.5), the
t-structure on A — mod(Sp) is compatible with filtered colimits.

Jacob: let A, A’ be algebras in Sp”. Then the tensor product of A — mod(Sp)QQ
with A" — mod(Sp)¥ in Prl is A ® A’ — mod(Sp)?, where the tensor product A @ A’
is the usual tensor product of abelian groups over Z. However, the tensor product
D(A — mod(Sp)©) ®D(Z—mod(sp)?) D(A" — mod(Sp)¥) will be in general different, here

St,cocmpl
Cat, .

the relative tensor product is taken in 1 —
1.5.9. Next simplification: let Vectg be the left completion of the derived DG-category

of Q-vector spaces. Then Vectg = Q — mod(Sp) naturally, and Spc — Vectg given by

St,cocmpl
Cat cont

DGC&tcont,Q = VectQ —mod(l _ eatst,cocmpl)

cont

Q is an idempotent in 1 — and also in Pr”, giving the co-category

of DG-categories over Q.

As in ([15], C.4.2.2), we see now that Spc L Vect(gl)O is also an idempotent in Pr’, so
we get a full subcategory

Grothy @ 1= Vectao —mod(Groths) C Groths

This is the intersection Vect(é0 —mod(Pr?) N Grothy, inside Pry. We may also define
Grothﬁfcf(@ C Grothy g as the subcategory, where we restrict maps to left exact functors.
Similarly, for n > 0, Spc — 7<;, Spc is an idempotent in Prl. so Tgn(Vectao) is also an
idempotent in Pr¥, namely the tensor product (7<, Spc) ® VectéO of two idempotents.
In particular, Spc g Vectg is an idempotent in PrF.
Let Groth,; g C Grothy, be the full subcategory of those C' € Groth,,, which admit

an action of Vectg.
We get symmetric monoidal structures on Grothg, g and Groth,, g such that both

Groths, — Grothy g, C Vectao ®C'is symmetric monoidal, and Groth,, — Grothg g,
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Cr Vect(g ®C' is symmetric monoidal. Moreover, the inclusions Groth,, g — Groth
and Grothg, g — Grothg, preserve the tensor products, but not the unit objects.
The symmetric monoidal structrure on Grothg, g restricts to a symmetric monoidal
lex

structure on Groth,; 'y, and similarly for Grothl;f(@ C Groth g.
My understanding is that, as above, we have an adjoint pair

Lg : Grothls%o = Grothl"s” : Ry

where the left adjoint Lg sends A to D(A)=" in the same sense, and the right adjoint
C — 7<oC is symmetric monoidal.

Claim(Nick) The left-lax structure on L is strict, so it is symmetric monoidal.

Proof. Let A, B € Grothy,p. We want to show that the natural map D(A @ B)<Y —
D(A)=Y ® D(B)=0 is an equivalence. Use the Gabriel-Papescu theorem ([15], Theorem
C.2.4.1). First, by ([15], C.2.0.12), there are maybe noncommutative rings A, B (in the
category of abelian groups) such that A is a localization (exact in the sense of abelian
categories) of RMon?, and similarly for RModg. Here RMod 4 is the category of right
A-modules in Sp with its natural t-structure.

Recall that D(RModZ)* is complete by ([14], 1.3.3.16), and we know that RModflO
is complete ([16], 6.1.20). The canonical functor e : D(RMOdZ)_ — RMOd%O is an
equivalence? Let X,Y € RModi with X projective. Then X is a direct summand of
a free module, so ExtiRModA (X,Y) =0, so that e is an equivalence by ([14], 1.3.3.7).

We have RMod4 ® RModg = RModagp, and here by A ® B we mean the usual
tensor product in the category of abelian groups (or Q-vector spaces). So,

RMod}’ ® RModj’ = RMod 3
also by ([15], C.4.2.2). Applying the symmetric monoidal functor Rg, we get
RMod; ® RMody, = RMod;,,
]

1.5.10. We need the following special case only. For A € Groth,, assume A has enough
projective objects. Recall that in this case D™ (A) in the sense of ([14], 1.3.2.7) identifies
with U, D(A)S" by ([14], 1.3.5.24), here D(A) is taken in the sense of ([14], 1.3.5.8).

Let A be a small abelian category, and A = Ind(A), assume A has enough projective
objects. Then A is abelian, has enough projective objects by ([13], 1.3.3.13). Write
Aproj C A for the full subcategory of projective obejcts. Note that Ap.,; C A is closed
under finite coproducts, so we have the presentable co-category Px(Ap;) defined in
([13], 5.5.8.8). Moreover, by ([13], 1.3.3.14) we have D(A)=0 = Px(Apro;)-

Let K be the collection of finite sets. Let 1 — Cat(K) C 1 — Cat be the subcate-
gory, where we restrict objects to small oco-categories admitting finite coproducts, and
morphisms to the functors preserving finite coproducts. For C' € 1 — Cat(X) we get
Px(C) € Prl by ([13], 5.5.8.10(1)). Moreover, if C' — C’ is a map in 1 — Cat(X) then
the induced functor Px(C) — Px(C’) preserve small colimits by ([13], 5.5.8.15 and
5.5.8.10(2)).
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Claim: The functor Py, : 1 — Cat(K) — Prl is symmetric monoidal, where the source
is equipped with the symmetric monoidal structure defined in ([14], 4.8.1.4).

Proof. Recall that Ps(C) = PX (C), where X is the collection of finite sets, and X’ is
the collection of small co-categories, see ([13], 5.5.8.16). Our claim follows now from
([14], Remark 4.8.1.8).

For example, the unit object of 1 — Cat(X) is TP%C(*), because the functor 1 — Cat —

1 — Cat(X),C — T%C(C) is symmetric monoidal. O

Let now E € Grothy,. Then
(15) LFun(D(A)=%, E) = Fung (Aproj, E)

by ([13], 5.3.6.2), here LFun is the category of colimit preserving functors.

Assume in addition E € C' Alg(Groth,), hence in Prl, and A € CAlg(1 — Cat(X)).
Assume even that the multiplication A x A — A is exact in each variable, and restrict
to amap Aproj X Aproj = Aproj, and 14 € Aprgj, 80 Aproj € CAlg(1 — Cat(KX)). By the
above Claim, D(A)=0 € CAlg(Prl), and actually in Groth,,. Under the equivalence
(15) the symmetric monoidal functors D(A)<Y — E correspond to symmetric monoidal
functors Ap.o; — E.

This applies for A = the category of finite-dimensional representations of G over e,
where [ is a finite set.

1.5.11. Suggestion of Nick. Recall that e is an algebraically closed field of character-
istic zero. Consider the category, say C. Its objects are presentable abelian e-linear
categories A such that there is a full subcategory Ag C A€ generating A under filtered
colimits and n € N such that each object of Ag is of cohomological dimension < n.
Morphisms in C are exact functors in the sense of abelian categories, which are e-linear
and preserve colimits.

Let us show that if A € € then A is a Grothendieck abelian category. Let I be small
filtered, I — Fun([1],.4) be a functor i — (z; =% y;), where ; is a monomrphism. Let
x — y be obtained by passing to colim; in A. Let z = Ker(z — y). It suffices to
show that for any a € Ay, Hom(a, z) = 0. For this it suffices to show that the natural
map Hom(a,x) — Hom(a, y) is an isomorphism in Spc. This follows from the fact that
Hom(a, -) preserves filtered colimits and from ([13], 5.3.3.3).

Question 1: My understanding is that we may consider the category Grothg, . of
Grothendieck abelian categories, which are e-linear. Namely, the preimage of Grothg,
under the projection Vecté9 —mod(‘PrL ) — Pl Is Grothy, . symmetric monoidal with
the tensor product over Vecty? Does the subcategory Grothf,fe C Grothgp ¢ inherit a

lex

symmetric monoidal structure? Does the subcategory € C Groth,',

ric monoidal structure?

Consider the functor F : € — DGCateon: sending A to D(A), where D(A) is the
derived DG-category attached to A in the sense of ([14], 1.3.5.8). My understanding is
that this is indeed a functor (in view of [15], C.5). We do not need left completeness
of D(A), because we will be interested only in t-exact continuous functors from D(A)
to a DG-category left complete in its t-structure. Indeed, for I € fSet, Shv(Heckery)

inherit a symmet-
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is left complete because of ([20], 0.0.28). We invoke here the fact that the functor L’/
from Section 1.5.4 is symmetric monoidal.

Question 2: is the above functor ¥ : € — DGCaty,; symmetric monoidal? (maybe
at least on the bounded from below parts of our stable categories, this would be suffi-
cient). Namely, for A, B € € the natural map D(A ®y,© B)" = (D(A) @veet D(B)) ™
is an isomorphism? (This would imply that it induces an isomorphism on left comple-
tions). How to prove this?

1.6. More on [1] and [2].

1.6.1. For ([2], Lemma A.2.6). The argument has evidently be corrected for H which
is not connected.

If G is an affine connected algebraic group of finite type, the functor C : Shv(B(G)) —
Vect is completely determined by C| (m«e), where 7 : pt — B(G) is the natural map.
Indeed, m.e = me[d] with d = 2dim Gypnip + dim G4, and 7.e is a compact generator
of Shu(B(G)) in our constructible context, see ([1], F.5.5) and my Section 1.4.32. Let
B = C,(G,w), this is an algebra in Vect, and Shv(B(G)) = B —mod(Vect) =: B—mod
by Barr-Beck-Lurie. Moreover B is co-commutative coalgebra, because BY = C'(G, e)
is a commutative algebra (because G is a commutative coalgebra in Schy;). So, B is a
co-commutative Hopf algebra. The augmentation of B comes from G — pt, which gives
e = C'(G), and in turn B — e. The object ep () € Shv(B(G)) corresponds to the auh-
mentation module e € B —mod. Now Homsu,((a))(€p(c): €8(c)) = Homp—mod(e; €).
Now ([7], Example 9.1.6) says that the functor C} : Shv(B(G)) — Vect identifies with
the functor

B — mod — Vect, M — e®p M[-2dim(G) + 4],

where § = 0 if G is unipotent (resp., § = dim G if G is reductive).

This shows that e ® g e is bounded from above and has finite-dimensional cohomolo-
gies. Let Y7, Y5 be quasi-compact algebraic stacks, which are of the form Z/H, where
Z is a scheme of finite type, H is a linear algebraic group of finite type. For this reason
for a morphism f : Y] — Y5 and F € Sho(Y7)" | fa(F) and f.(F) has constructible
perverse cohomologies: the only nontrivial step in the proof is this claim for the pro-
jection f : Yo x B(G) — Ya, where G is a connected linear algebraic group. In this case
we have the projection formula for F € Shv(Y2)" fu(w) ® F= faf'F by ([20],
0.0.52). By the base change of (2], A.3.1), C,(B(G),e) ®wy, — fa(wy,). So, the claim
follows from the fact that the cohomologies of C} (B(G), e) are finite-dimensional.

For f, in the above argument we have to show that for the projection f : Yox B(G) —
Y5 and F' € Perv(Y2), f«f*(F) has constructible perverse cohomologies. For this we use
the fact that C"(B(G),e) has finite-dimensional cohomologies and argue in the same
way. This was implicit in ([2], A.2.7).

1.6.2. For ([2], B.1.4). Let Y7,Y5, Z are quasi-compact algebraic stacks (of the form
Y/G, where Y is a scheme of finite type, and G is a linear algebraic group of finite
type), so Y; are Verdier compatible. For @ € Shv(Y; x Y3) consider their functor

idz ®¥Q : Sho(Z x Y1) — Sho(Z x Ya),s F = (pzy,)a(Pzy, (F) @' DY, 1, Q)
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for the projections pzy, : Z x Y1 x Yo = Z XY, pviy, 1 Z X Y1 x Yo = Y1 x Y. The
following is left in loc.cit. without an explanation.

Lemma 1.6.3. Assume QQ € Shv(Y1 x Y3)¢. Then idz XQ preserves compact objects.

Proof. Shv(Z x Y1)¢ is the idempotent completion of the smallest stable subcategory
of Shv(Z x Y1) containing ¢, K for ¢ : S — Z x Y1, where S € Schy; and K € Shv(S)°.
So, it suffices to show that (idz XQ)(q.K) is compact. Let ¢ be the composition
S % Zx Y, — Yi. For the map g x id : § x Yo — ¥} x Y5 the object (g x id)'Q is
compact. Indeed, the functor (g x id)! admits a continuous right adjoint, as we are in
the constructible context, see ([20], 0.0.11). So, priy(K) ®' (7 x id)'@ is also compact,
as the category Shv(S x Y3)¢ is preserved under the ®'-tensor product by objects of
Shv(S x Y9)enst"  The result is obtained by applying (g x id)« to the above object,
where g : S — Z is the corresponding map, and g x id : S x Y5 — Z x Y5. Since g is
schematic, (g x id). preserves compact objects. O

1.6.4. For ([2], B.1.5). Let us be given a system of functors idy KQ as in loc.cit., let
us show that for any K € Shv(Z x Y1),

(16) (IdRQ)(K) = (p2,v2)a (Pry, K @' 1y, v, Q),

where @ = (idy, XQ)(uy; ). Here uy, =A, w =A,4 w for A: Y] — Y] x V7.
Let ¢ : Z x Y7 — Z be the projection. We get a commutative diagram

Sho(Z x V1) 1425Q Sho(Z x V)
T (axid)a T (axid)a
Sho(z xYixY) AT gz x v x V)
T (id xax id)! T (id xax id)!
idzxy, xv; ¥Q
Shv(Z x Y1 x Y] x Y1) = Shv(Z x Y1 x Y] x Y3)
T KR 1 KK

idy, HQ
%

ShU(Yl X Yl) ShU(Yl X Yz)

Apply the maps of this diagram to the object wy,. Its image under the left vertical
column is K. The image of () under the write vertical column is the RHS of (16). We
are done.

1.6.5. For ([2], B.1.7). The reason to write Q23 * Q12 and not in the opposite order
is the definition of composition of functors, it corresponds to (idy XQ23)(idz KQ1 2).

1.6.6. For ([2], B.2.1). Let Y7,Y5 be algebraic stacks as in my Section 1.6.2, Q €
Shu(Y1 x Y2), and Q, Qgisc : Shv(Y1) — Sho(Ya) the corresponding functors ”given by
kernel”. Then for K € Shv(Y7)¢, the map Q(K) — Quisc(K) is an isomorphism.

Proof. Let a : S; — Y; be given with S1 € Schy, and F' € Shv(S1)¢. It suffices
to prove this for K = a.F, as the the idempotent completion of the smallest stable
subcategory of Shu(Y1) containing such objects is Shv(Y7)¢. Let b : So — Y3 be
given with So € Schy;. It suffices to establish compatible system of isomorphisms
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b'Q(K)=b' Quise(K) for all such b. Let a x b: Sy x Sy — Y7 x Y5 be the product of the
two maps. We get

V' QK)Z(p2)a(piF ®' (a x 1)'Q) = (p2)«(pi F &' (a x b)'Q) =5 b'Quise(K),

for the dlagram of projections 57 il S1 x Sy P2 G, We used that po is schematic, so
(p2)a = (P2)+- O

If we assume in addition that Q € Shv(Y; x Y2)®"s" then for any K € Shv(Y7)¢ the
object Q(K) = Quisc(K) € Shu(Y2) is constructible, this is clear from the above proof.
In ([2], B.2.1) they forgot the assumption that @ is constructible for the above claim.

If moreover we assume @ € Shv(Y; x Y5)¢ then Q — Qgisc is an isomorphism.

Proof. 1t suffices to show that for any L € Shv(Y3)¢ the functor Shv(Y1) — Vect,
F = Homgpy(vy) (L, (p2)«((pF) @ Q)) is continuous. We have

}ComShv(Yl XYQ)(p;LJ (p;F) ®! Q) /;;J{OmSh’U(Yl XYQ)(p;L7 %Om(DvallF))
= Homspny(vixys) (3L @ D(Q), pi F)

Since Y7 x Y3 is Verdier compatible, DQ € Shv(Y] xY3)¢, so p5L@D(Q) € Shv(Yr x Ys)¢
by ([1], F.4.4). O

Since the functor f* : Shv(Y2) — Shv(Y7) has a cohomological amplitude bounded
on the right, f. has a cohomological amplitude bounded on the left. Now if @ is
constructible, there is a constant n such that if F € Shv(Y1)Z? then p}(F) @' Q is in
perverse degrees > n. So, the functor (4. in this case has the cohomological amplitude
bounded on the left.

Let us show that for ) constructible the functor Q has cohomological amplitude
bounded on the right (that is, there is n such that for F' € Shv(Y;)=" we have
Q(F) € Shu(Y2)S"). First, the functor Shv(Y1) — Shu(Y; x Ya), F s (p}F) @
Q= Hom(D(Q), py F) has a bounded cohomological amplitude. Indeed, @ is cohomo-
logically bounded, and p} has bounded cohomoogical amplidute (as wy, is bounded),
and the functor A' has a bounded cohomological amplitude for the diagonal map
A:Yy — Ys x Ys by [4]. To finish, apply ([2], A.2.6).

1.6.7. For example, for Y = B(G,,), we get C,(B(Gy,),e) > e ®p e[—1], where B =
C.(Gp,,w) = e e[l], see my Section 1.6.1. So, it is not bounded on the left. Compare
with ([2], A.28).

1.6.8. If Y is an algebraic stack as in my Section 1 6.2, F € Sho(Y)<", K € Shu(Y)=0
with F constructible then Hom(F, K) € Shv(Y)=Y, see ([4], after 4.2.5).

1.6.9. For ([2], B.3.1). Assume given Y7,Y> as in my Section 1.6.2. Assume given for
algebraic stacks Z as in my Section 1.6.2 a system of functors
idy P! : Sho(Z x Y1) — Sho(Z x Yz)

satisfying the compatibilities isomorphisms as in ([2], B.1.5) with —' replaced by —*,
and —, replaced by —. Then we may recover an object P € Shv(Y] x Y3) as in the
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case of functors given by kernel, see my Section 1.6.4. Namely, let ps-uy =A; e for
AY =Y x Y. Then (idy, KP')(ps-uy,) = P.

1.6.10. Correction for ([2], B.3.2). In the RHS of the formula (B.11) one should write
((P{o)! Widy,)(Pa3)-

1.6.11. For ([2], formula (B.12)). This is not evident and should be split into several
claims. The first would be as follows, which is a generalization of ([2], B.1.5).

Lemma 1.6.12. Consider algebraic stacks Z,2',Y1,Ys as in my Section 1.6.2 and a

map [ :Z — Z.
1) The diagram commutes "up to a natural transformation”
Sho(Z x Y1) 5 Sho(2 x Ya)
T (fxid)® . T (fxid)*
Sho(z x Vi) 259 Sho(z x Ya)
namely, there is a natural transformation of functors
(f xid)* o (idz ¥Q) — (idy ®Q) o (f x id)*
2) The diagram commutes "up to a natural transformation”

Sho(Z x Y1) 5 Sho(2 x Ya)

b (rxidy 1 (fxid),
Sho(z x V1) 25% Sho(z x 1a)
namely, there is a natural transformation of functors
(f xid); o (idyy KQ) — (idz ®¥Q) o (f x id),

3) Let py, : Z x Y; — Z denotes the projection. Then there is a natural transformation
functorial in K € Shv(Z x Y1), M € Shv(Z)

(idz KQ)(K) ® pp M — (idz MQ) (K @ py M)
in Shv(Z x Ya).
3’) Let F' € Shv(Z). The the diagram canonically commutes

id X
Sh(ZxZ xY) 75 @ Shu(Z x 7/ X Ya)

T FR. 1 FX.
, idy, KQ ,
Shv(Z' x Y1) — Shv(Z' x Ys)

Proof. Consider the diagram, where the squares are cartesian

2xY, B UxvixYs B ¥xY,
(17) 1 Fxid 1 Fxid 1 Fxid
Z XY e ZxY] xYy Lt Z X Yo

Let p: Z x Y] x Yo — Y7 X Ys be the projection.
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1) For K € Shv(Z x Y1) we get natural maps

(f x id)*(idz MQ)(K) — (B2)a(f x id)*(p} K @' p'Q)
— (P2)a(((f x id)*PLK) &' (f x id)'P'Q) = (B2)a((P1(f x 1d)*K) @' (f x id)'p'Q)

Here the first map comes from a natural transformation (f xid)*(p2)a — (p2)a(f xid)*.
The second maps comes from the natural transformation

(f x id)*(K; @' K3) — (f xid)*K; @' (f x id)' Ko
explained in (]20], 0.1.5). Finally, the third map comes from the natural transformation
(f x id)*p} — pi(f x id)* explained in ([20], 0.1.8).
2) For K € Shv(Z' x Y1) we get natural maps

(f x i)y o (idz MQ)(K) = (p2)a(f x id(py K @' (f x id)'P'Q)
= (p2)a(((f X id)p1 K) @' p'Q) — (idz ®Q)((f x id).K)
Here the first map comes from (f x id)1(p2)a — (p2)a(f x id);. The second map comes
from the natural transformation (f x id),(K; ® (f xid)'K3) — (f xid)i(K1) ®' Ko from

(]20], 0.1.7). The third map comes from the natural morphism (f xid)p}, — p} (f xid)y,
see ([20], Sect. 0.1.8).

3) Our p;,p are as in (17). We have a natural map
(P2)a (1K ' P'Q)) ®prM — (p2)a (P K &' p'Q) @ pipt M)

It comes from the projection formula "up to a natural transformation” for (pz)a from
([20], 0.1.5). Further, p5ps M — pip5 M. There is a natural map

(P K @' p'Q) @ pipz M — pi(K @ piM) @' p'Q
constructed in ([20], 0.1.9), we apply the cited result to the map p; : ZxY; xYs — ZxY7.
This gives the claim.

3’) This follows from ([20], Lemma 0.1.3). This is also ([2], B.1.5). O

Important Remark: Lemma 1.6.12 holds also for Q replaced by Qg;s. with a similar
proof (the corresponding natural morphisms for A-version have a *-version also).

1.6.13. For ([2], B.3.4). It requires an explanation, we prepared the previous lemma
for this. Let us construct a natural morphism (in their notation (B.12)):

(idy, KP') 0 (Q Kidy,) — (Q ®idy, ) o (idy, KP')

Consider the diagram

171><372><Y1 (ﬁ—l ?V]_X?QXY:[XYVQ % }71XY/2XY2 l)f/lXY/Q
1 gxid J gxid 4 gxid
Vixys £ VixvixYe By xY,

where ¢ : Y5 — pt. Here 7 is the projection. Let K € Shv(fﬁ x Y7).
By my Lemma 1.6.12, 1) we get a natural morphism

(g xid)"(QWidy, )(K) — (idy, .y, ¥Q)(g x id)*K
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Tensoring by 7* P, we get morphisms

(¢ x id)*(QRidy, )(K)) @ 7P — ((idg, .y, KQ)(q X id)*'K) @ 7P —
(idg, .7, ®Q)((¢ x id)*'K @ 7*P),

where the second map comes from my Lemma 1.6.12, 3). For the projection ¢y :
Y1 x Ya x Yo — Yy x Yy applying (g2): to the constructed morphism, we get a map

(g2)1(((g x id)"(Q Widy, )(K)) ® T°P) = (g2)1(idy; . v, ¥Q)((q x id)"K @ 7°P)
By my Lemma 1.6.12, 2), the latter maps naturally to
(idg, KQ) ((42):((q x id)" K @ 7 P)) = (idy, KQ)(idy, KP!)(K)
We are done.

1.6.14. For (2], B.3.4). It is useful to add the following. Let Y;,Y; be as in their
Section B.3.4, let Q € Shv(Ys x Y1), P € Shu(Y1 x Y3), Q" € Shv(Y; x Y7). The map
(B.12) gives a morphism

(18) P (Q Q)= (P+Q)*Q
1.6.15. For ([2], B.3.5). This follows from my Remark after the proof of my Lemma 1.6.12.

1.6.16. For ([2], B.4.1). On a separated scheme of finite type S the miraculous functor
Mirg : Shv(S) — Shv(S) is given by K + eg ® K. The functor idy = ul : Shv(S) —
Shv(S) is given by K — w® K.

If in addition S is smooth of dimension n then it is miraculous. Indeed, Mirg is given
by the kernel ug[—2n], and the kernel ug defines the identity functor.

1.6.17. For ([2], B.4.2). For convenience, let Y7,Ys be algebraic stack as in my Sec-
tion 1.6.2. Then Miry, Midy, : Shu(Y1 x Ya) — Shv(Y; x Y3) for the diagram of
projections
VixVe?& VixYixYs BYixYs
(19) Lo
Y1 X 1/1
is given by
(Miry, Bidy, ) (K) = (p2)a(p K @' p'(ps-uy,))

Here ps-uy, =A; e for A: Y7 — Y7 x Y7. Here p; keeps the i-term in the product Y7 x Y7
and forgets the other term.

The claim in their B.4.2 needs an explanation. Given @ € Shu(Y; x Y3) let P =

(Miry; Kidy, )(Q) € Shu(Y1 xY3). Let F' € Shv(Z xY7). To check their result, we need
to establish isomorphisms

(idy KPY)(F) = ((F°)! Ridy, ) (idy; BQ)(ps-uy, )

and
(idy ®Q)(F) = (idz ®Q) ((F7)! Ridy, ) (ps-uy, )
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The second isomorphism follows from ((F”)! Kidy, )(ps-uy, ) = F, which is evident. To
get the first one, we get first

(20) (Miry, Midy, )(Q) = P = (idy, XQ)(ps-uy,)
This is the symmetry in the definition of the functor given by kernel, namely for the
diagram (19)

P (p2)a(p1(Q) ®' p(ps-uy,)) and  (idy; KQ)(ps-uy,) = (p1)a (p2Q ®' ' (ps-uy, )

The above two objects are identified via the automorphism o of Y7 x Y7 x Y5 which
swaps two copies of Y7. Now

((F7)! Ridy, ) (P) = (idz KP')(F)
by the same symmetry in the definition: for the similar diagram

IxVT & IxYVixYy Baxvy,

laq
Y1><Yé

we have
(idy, RP) (F) = (g2)1(¢1 F © ¢"P) = ((F7)' R idy, ) (P)
The formula (20) shows, by virtue of my Section 1.6.9, that P is the only object for

which we may hope that the system of functors (idg XQ) is codefined by the kernel P.
This also explains their ([2], Pp. B.4.4).

1.6.18. In the situation of ([2], B.3) let Q € Shv(Y1 x Y2) and Z, where Y;, Z are stacks
as in my Section 1.6.2. Let o denote the isomorphism Shv(Y; x Z) = Shv(Z x Y1)
obtained by permuting the terms in the product. The diagram commutes

Sho(Yi x 2) ¥ Sho(vs x 2)
Lo | Lo
Sho(Z x Y1) 59 Sho(Z x Ya)

and similarly for Q' X idy. Let now P = (Miry, Kidy,)(Q). Applying ¢ to their
natural transformation idy XP! — idy ®XQ of ([2], formula (B.17)), we get a natural
transformation

P'Xid; —» QXid,
of functors Shv(Y; x Z) — Shv(Ya x Z).

1.6.19. For ([2], B.4.6). To get their map (B.19), write Q2,3+ Q1,2 — (Qf 3 Midy; )(Q2,3)
and

Q23 % Q127 ((Q7,) Midy,)(Q2,3)
by their ([2], Sections B.1.7, B.3.2). Let us simply write Q21 = QF 5. Set
Py o = (idy, ®Miry, )(Q1,2)

Note that (Miry, Midy, )(Q2,1) = PYy = P21. The natural transformation Pl271 Nidy, —
Q2,1 Midy, of my Section 1.6.18 gives being applied to Q2 3 their map (B.19).
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1.6.20. For ([2], B.4.8). This follows from (idy, &PZ)(Uyl):)/(idlYl Kidy,)(P) = Q as
above.
Their natural transformation (B.20) is the value of the natural transformation

(idg KP')(F° Ridy,) — (F° Ridy,)(idy; XP')
(given by their (B.12)) on uy,. Indeed, F = (F’ Ridy, )(uy,) and Q = (idy, XP!)(uy, ).
Besides,
(F7 Widy, )(Q) = (idz Q) (F)
1.6.21. For ([2], B.4.10). Let us explain their natural transformation (B.22). Set
Py = Py and Q1 = (idy, Kid},)(Pr2). So, Q21 = QF 5 = (id}, Ridy, )(P2,).
The natural transformation (B.20) gives a natural transformation

P} Ridy, = Q2,1 Midys,

which we apply to P 3. Then use their formulas P 3 ! Py = (P2l71 X idy;)(FPe,3) and
Po3* Q12— (Q2,1 Midy, ) (Pa3)-

Mistake in the last claim in their Sect. B.4.10. In the last sentence Pll’2 should be
replaced by (P} 5.

I think on more way to think about (B.22) is to say that this is the natural map

Pyl Pro = Pyg ! (uy, * Pra) — Pa3 * (uy, ¥ Pp2)
1.7. Usual functors.

1.7.1. Let f : Y2 — Y; be a morphism of algebraic stacks as in my Section 1.6.2.
Then f*: Shv(Y1) — Shv(Ys2) is codefined by the kernel (I'¢)ie for I'y : Yo — Y7 X Y5,
Iy = (f,id). The functor f': Shv(Y1) — Shv(Y2) is defined by the kernel (I'f).w.

1.7.2. Let f: Y7 — Y5 be a morphism of algebraic stacks as in my Section 1.6.2. Then
fa : Shv(Y1) = Sho(Ya) is defined by the kernel (I'¢ ) w for I'y = (id, f) : Y1 — Y7 x Ya.
Besides f, : Shv(Y1) — Shv(Y3) is of the form Qgise for @ = (I'y).w.

The functor fi: Shv(Y1) = Shvu(Y2) is codefined by the kernel (I'f)e.

Assume in addition f is smooth. Then f* is both defined and codefined by a kernel.
The defining object is (I'f).w[—2dim. rel(f)]. Suppose also that f, is continuous, so
fa = [« is an isomorphism (for example, f is schematic). Then f* admits a right adjoint
as a functor defined by kernel. Namely, (f*, fi) is an adjoint pair as functors given by
kernel. The corresponding pair is ((I'f)«w[—2 dim. rel(f)], ((I'f)«w)7).

If f:Y; — Y5 is schematic and proper then f. = f is both defined and codefined
by a kernel. Moreover, fi admits a right adjoint as a functor given by kernel by my
Proposition 1.8.5. Indeed, for any Z as in my Section 1.6.2, the functor idy Xf; :
Shv(Z x Y1) — Shv(Z x Y3) admits a continuous right adjoint.

Particular cases:

a) if j : U — Y is an open immersion of algebraic stacks as in my Section 1.6.2 then j*
admits a right adjoint as a functor given by kernel.
b)ifi: Z — Y is a closed immersion of algebraic stacks as in my Section 1.6.2 then i,
admits a right adjoint as a functor given by kernel.

1.8. Adjointness and more.
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1.8.1. For (2], B.5.1). Be carefull, in their Section B.5 the notation Q2 does not
mean Qf 5 that I used before!

The adjunction for a pair (Q1,2,Q2,1) means that we are given un : uy, = Q2,1*Q1,2,
co: Q12 * Q2,1 — uy, such that the compositions

id xun coxid
Q2 — Qi2*xQ21*%Q12 — Q12

and
unxid id xco

Q21 " Q21 % Q12 % Q21 Qa2
are isomorphic to the identity maps in Shv(Y; x Y3) and Sho(Ya x Y7) respectively.
We have in mind that @2 corresponds to a functor Qi 2 : Shv(Y1) — Sho(Y3)
define by the kernel Q1 2. Then if (Q12,Q2,1) is an adjoint pair in the above sense then
Q12 : Shu(Y1) & Shu(Yz) : Qa1 is an adjoint pair, so Q12 is a left adjoint.

1.8.2. For ([2], B.5.2). Let Q12 € Shv(Y1 x Y2),Q21 € Shv(Yz x Y7). Assume
given for any algebraic stack Z as in my Section 1.6.2 an adjuction datum for a
pair (idy XQ1 2,idy XQ2 1) compatible with the isomorphisms from their Section B.1.5.
Then one gets the adjunction datum for the pair (Q12,Q2;1) in the 2-category in-
troduced in their Section B.1.8 as follows. The unit map is the value on uy, of the
transformation

id — (idyl &szl)(idyl &Ql,g)

The counit map is the value on wy, of the natural transformation
(ldY2 IEQ].,Z)(idYQ IZQQ,].) — idYgXYQ

1.8.3. For ([2], B.6.5). Under the assumptions of this proposition to see that P is
constructible, we essentially use the fact that idy x @ preserve compactness (actually for
Z = S an affine scheme together with a smooth covering S; — Y7). Namely, we pick a
smooth cover by an affine scheme f : S; — Y] and check that (f xid)*P € Shv(S;xY2)°.
We have

(f xid)*P = (ids, ®P')((Tf)re),

where I'y : S — S1 x Y] is the graph of f. Since (I'f)ie € Shv(S1 x Y7)¢, our claim
follows.
I wonder if the same holds even if idy X @ is not assumed to preserve compactness.

1.8.4. For ([2], B.6.5) They say that B.6.5 is a partial converse of Theorem B.6.3, but
in fact it is a full converse in the following sense:

Proposition 1.8.5. Let Y1,Ys be algebraic stack as in my Section 1.6.2. Let Q €
Shv(Yy x Y3). The following conditions are equivalent:
i) Q admits a right adjoint as a functor defined by a kernel with the corresponding
object Q' € Shu(Yz x Y1).
ii) The functor Q is defined and codefined by a kernel. In addition, for any alge-
braic stack Z as in my Section 1.6.2, idy XQ) preserves compactness.
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Remark 1.8.6. Moreover, if the equivalent conditions of the above proposition hold
then both Q,Qf in i) are constructible, and the codefining object of the functor Q is
P :=D(Q")?. This formula also allows to recover Q¥ in the case ii). Besides, QT is
safe.

Proof. Assume i). Then ii) is explained in ([2], B.6.3). We only add the fact that
idy M@ preserves compactness. This follows from the fact that (idy XQ,idy Q) is
an adjoint pair for any Z, and the functor idy XQ* is continuous by definition. So, ii)
holds.

Now assume ii). Let us first show that @ is constructible. This is done as in ([2],
B.5.6). Namely, pick a smooth covering S; — Y; with S; an affine scheme of finite
type. For the map I'y = (id, f) : 1 = S1 x Y1 we have (I'y).w € Shv(S1 x Y1)¢. Now

(f xid)'Q = (ids, KQ)((T'y).w)

is compact by our assumption that idg, MQ preserves compactness. So, () is con-
structible. Now 1) follows by applying ([2], B.6.5). O

1.8.7. For ([2], B.6.6). Let f : B(G,,) — pt be the map. Then f* is both defined and
codefined by the kernel Q = e € Shv(B(G,,)), the codefining object is P = e. The
functor idg K@ does not preserve compactness, and ¢ does not admit a right adjoint
as a functor given by kernel (because Qf = w B(G,,) 15 not safe).

1.8.8. For (2], B.7.1). Let Y be an algebraic stack as in my Section 1.6.2. By definition,
Y is miraculous if = ps-uy admits a right adjoint as a functor given by kernel (with
the corresponding object denoted Qf* € Shu(Y x Y)) and such that un : uy — Q¥ *Q
and co : Q * Q® — uy are isomorphisms. In other words, @ is an invertible object in
the 2-category defined in ([2], B.1.8).

In this case for any Z as in my Section 1.6.2, the adjunction data for the pair
(idy KQ, idy Q™) are also isomorphisms (by functoriality), so that idy XMQ and idy KQ*
are equivalences inverse to each other.

This is indeed equivalent to the property that for every Z, idy ¥Q : Sho(Z x Y) —
Shv(Z xY) is an equivalence. If the latter property holds then the functors (idy XQ)~*
form a system of functors satisfying he compatibilities of their Section B.1.5, so coming
from a uniquely defined object Q®. Moreover, in this case QF and Q are inverses
of each other in the 2-category defined in ([2], B.1.8). Note that Q¥ is recovered as

QF = (idy xQ) ! (uy).

1.8.9. For ([2], B.7.2). Recall that evy : Shv(Y) ® Shu(Y) — Vect is given by
(K,K') + C,(Y, K @ K').

1.8.10. For ([2], B.7.3). Here the identifications (Miry)¥ = Miry and (Miry")¥ = Miry '
is with respect to hte usual Verdier duality, that is, the above pairing evy, see their
Sect. B.1.2.

In B.7.3 they mean that DM is involutive on (Shv(Y)¢)%, as Y is Verdier compatible.
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1.8.11. For ([2], B.7.4). If Y is miraculous, then idg & Miry : Shv(ZxY) — Shv(ZxY)
preserves constructibility for any Z as above. They use their Section B.2.4 to get this.
We get Mir;,1 = id}. by their Th. B.6.3. The functor id} is also defined and codefined
by kernel, and for the same reason preserves constructibility (it admits a left adjoint
as a functor defined by kernel, so is safe by their B.6.3). So, Miry : Shv(Y)®nstr —
Shv(Y)®"s!" is an equivalence inducing an equivalence Miry : Shv(Y)¢= Shv(Y)¢ on
compact objects.
As a corollary, DM : (Shy(Y)eonstr)or — Shy (YY) is also an equivalence.

1.8.12. For ([2], B.8.2). Let Q € Shv(Y1 X Ya2) be constructible, assume it admits a
right adjoint Q¥ € Shu(Ys x Y1) as a functor given by kernel. Then
D(Q™) = (Miry; Kidy,)(Q))”

by their Cor. B.6.8, and Q' is constructible. So, Q¥ = (D((Miry, Kidy,)(Q)))?. Now
D((Miryl X ide)(Q)) — (ulYl X ide)(DQ)’

because (Miry, Xidy,)(Q) is constructible. Recall that idly1 = ul, by definition in their
Sect. B.4.7. So indeed QT = QF.

1.8.13. For ([2], B.8.4). Their map (B.27) comes from the natural morphism ey; xy, —
Ufom(Q, Q):Q ®! (DQ) on Yl X }/2
They follow (B.28) by the map

(idy; ®id}, ) (QFise R idy, ) (DQ?) = (QFise M idy; ) (idy, Rk, ) (DQ?)

given by (B.14). In the above formula the RHS becomes by definition
(Qgisc X ile)(/QR) :/QR *dise &

The meaning of the map (B.27) is as follows. Note that idy, MQ9,,. has a left
adjoint, which is given by idy; K(DQ)' according to their Section B.6.1. The unit of
this adjunction

ile XYy —7 (idY1 ‘XIQgisc)(idyl g(DQ)l)

applied to ps-uy, is the map ps-uy, — (DQ)? *gisc @ given by (B.27).

Now they try to do ”the best possible” as the case when the family of functors
(idy R(DQ)") would be defined by kernel. In this case the corresponding kernel would
be given by (id}, Kidy,)(DQ) = ('QT)°. We have natural transformations as in their
(B.20)

idy R(DQ)" — idz ®('QF)”

And for @ to have a right adjoint as a functor given by kernel one needs the latter
transformation to be an isomorphism.
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1.8.14. In ([2], B.8.5) their map (B.29) comes from the evident morphism Q ® (DQ) —
won Y] x Yy,

The meaning of their (B.29) is as follows. We have an adjoint pair ((DQ)!, Q7,..)-
Applying the counit map (idy, K(DQ)")(idy, XQ5;,.) — idy,xy, to the object uy,, we
get a morphism (DQ) ' Q7 — uy,, which is the same as their Q *' (DQ)? — uy, given
by (B.29).

As for the unit, now they "do the best possible” as the case when the family of
functors (idy ®(DQ)!) would be defined by kernel.

1.8.15. For ([2], B.9.2). Assume @ admits a right adjoint. To get (iii) it suffices to
show that (DQ)' is defined by a kernel (according to their Section B.4.10). We know
that ((Q%)?, Q%) are adjoints as functors defined by kernels by their Section B.5.4. So,
by their Theorem B.6.3, for DQ = (DQ?)? the functor (DQ)' is indeed defined by a
kernel.

1.8.16. For ([2], B.9.3). If we assume (iii) then (DQ)' is defined by a kernel. The
corresponding kernel is (’ Q.

Let f : Yo — Y5 be a smooth cover, where Y; is a scheme. They denote by ‘Qf
the object defined by the same formula as 'Q%, where one replaces () by Q, that is,
'QF = (idy, X id} )((]D)Q) ), where Q = (id X f)*Q € Shu(Y; x Y3).

A snnple calculation shows that the composition (idg X'Q*)(idy X f,) is given by the
kernel (f x id)'('Q") € Shv(Yy x Y7). The latter identifies indeed with 'Q*.

1.8.17. For ([2], B.9.3). They use the following. Let f : S — Y be a smooth surjective
morphism of algebraic stacks as in my Section 1.6.2, which is schematic. So, fi :
Shu(Yr) — Shv(Ys) is continuous. Let us check that any F’ € Shv(Y2) writes as a
totalization of objects in the essential image of f,.

Since f is a smooth cover, Shv(Y)— Tot Shv(S*®), where S® is the Cech nerve of
f. Forn > 0let f*: 8™ — Y be the corresponding map. As in Section 1.4.24, for
F',F € Shv(Y) we have Homgp,(y)(F, F') = Tot Homgp,(sm) ((f")'F, (f")'F’). Since
f™ is smooth, (f™)' = (f™)*[2dim.rel(f™)]. So

Homgp vy (F, Y= Tot FHomgp,(yv) (F, (fn)« (f”)!F’[—Qdim. rel(f")]) =
Tot Homgpy(y) (F, (fo)«(f") F') = Homgpy(v)(F, Tot (fn) (f")F")

We used the fact that we have a functor A — Sho(Y), [n] — (fn)«(f™)*F’. This shows
that the natural map F’' — Toty,(fy)«(f™)*F’ is an isomorphism.

1.8.18. For ([2], B.9.6). It is useful to note that for any algebraic stack Y as in my
Section 1.6.2, one has (idy ®id})(ps-uy ) =5 uy,. That is, the identity functor is both
defined and codefined by a kernel.

A way to understand their diagfam would be to wtrite down a more general one.
Namely, assume given objects @0, A, B which are ”composable”, in the sense that Q *x A
and A * B are defined. Recall that we have canonical functorial morphisms

(21) Q+(AxB)— (Q«'A) B
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for such a triple. Recall also that we have an involution @ — Q¢ with the property
that (Q x A)” = A% x Q% and (Q ** A)” = A% ¥ Q. Conjugating (21) by o, we obtain
functorial maps
(22) (QxA)«' B— Qx* (A« B)

The morphisms (21), (22) yield a diagram

Q+ (AxB) — Qx*(ux (AxB))

1 {
(Q+ A)xB Q * (ux! A) x B)
{ lid
QxuxA)*xB = Qx(uxA)xB

which actually commutes!

Question: what this property for a pair of monoidal structures given by ! and x
means, maybe there is a name for this? Here w is the unit for the *-monoidal structure.
I suggest something in the next subsection.

1.8.19. Consider a scheme of finite type S. We equip Shv(S x S) with two monoidal
structures: the first is (4, B) — A x B, the second is (4, B) — A %! B. We denote then
(Shv(S x S),*) and (Shv(S x S), ).

For B € Shv(S x S) let rp : Shv(S x S) — Shv(S x S) be the functor A — AxB. If
we view Shu(Sx S) as a left module over (Shv(SxS), ') (given by the multiplication on
the left) then rp is naturally a right-lax functor of (Shv(S x S), *!)-module categories.
This encodes the maps (21). Let Ip : Shv(S x §) — Shv(S x S) be the functor
A+ B A. If we view Shv(S x S) as a right module over (Shu(S x S),*!) (given by
the multiplication on the right) then for @ € Shu(S x S) the functor [ is a right-lax
functor of (Shv(S x S), *!)P-module categories. This encodes the maps (22). The two
structures are swapped by o. There is some strange compatibility between the two
structures given by the latter diagram (to be clarified).

1.8.20. For any morphism f : Y7 — Y5 of algebraic stacks as in my Section 1.6.2,
we have an adjoint pair (fa, (f1)¥). Moreover, if f is schematic then (f', (f*)") is an
adjoint pair.

1.8.21. Let Y7,Y5 be algebraic stacks as in my Section 1.6.2, Q € Shv(Y; x Y3)
gives the functor Q : Shv(Y;) — Shv(Y2) defined by the kernel Q. We identify
Shv(Y;)V = Shu(Y;) as in their Section A.4.1. Then QY : Shv(Y2) — Shv(Y1) is
defined by the kernel Q°.

Let now I — Shv(Y1 x Y3) be a diagram, i — @Q;, let Q; : Shu(Y1) — Shv(Y2) be
the correspoinding functor. Then for K € Shv(Y)) we have colim; Q;(K) — Q(K) €
Shv(Ys), where Q is the functor given by the kernel colim; ;. And the same for finite
limits. Moreover, the same holds for the functors codefined by kernels.
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1.8.22. Remark. Let €Y C Shu(Y; x Ya) be the full subcategory of those @ for which
Q is defined and codefined by kernel. Let € C C° be the full subcategory of those Q
for which the functor Q admits a right adjoint as a functor given by kernel. Then

i) €Y C Shu(Y; x Ys) is a stable subcategory, closed under colimits (and finite
limits).
ii) € c €V is a stable subcategory

Proof. i) Tt suffices to show € is closed under the formation of limits/colimits in
Shv(Yy x Y3). We give a proof for colimits, it is similar for the limits. Let Z be a stack
as in in my Section 1.6.2 and K € Shv(Z x Y7). Let I — €°,i > Q; be a diagram and
Q@ = colim; Q; calculated in Shv(Y; x Y3). Let P; = (Miry; Midy, )(Q;) € Shv(Y; x Ya)
and P = (Miry, Kidy,)(Q), so P—= colim P; in Shu(Y; x Y32). By ([2], B.4.4), it suffices
to show that the natural map

(idg RP')(K) — (idz KQ)(K)

is an isomorphism. The desired isomorphism is obtained by passing to the colimit over
i € I in the corresponding isomorphisms (idy XP!)(K) — (idy XQ;)(K), taking into
account the previous subsection.

ii) Clearly, C C € is closed under translations. By ([14], 1.1.3.3) it suffices to show
€ C @Y is closed under cofibers. Let I — C,i — @Q; be a finite diagram and Q =
colim; Q; in Shu(Y1 x Y3). It suffices to show @ € C. We apply my Proposition 1.8.5.
Let Z be a stack as in in my Section 1.6.2 and K € Shv(Z x Y7)¢. It suffices to show
that colim;er(idy XQ;)(K) € Shu(Z x Ys2)¢. However, Shu(Z x Y2)¢ C Shv(Z X Y3) is
a stable subcategory by ([16], 4.2.2), it is also closed under finite colimits by (HTT,
5.3.4.15). O

We write (Y7 x Y3) and C%(Y7 x Y3) if we need to express the dependence on Y;.

1.8.23. In the situation of my Remark 1.8.22 assume i : Y2 < Y3 is a closed immersion
of algebraic stacks as in my Section 1.6.2. Let K € Shu(Y; xY3). Then Q € €°(Y; x Y>)
iff (idy, ®i))(Q) € C°(Y; x Yy) and similarly for C¥ replaced by €.

Proof. 1) Let P = (Miry, Midy,)(Q) and Q" = (idy, Xi))(Q). Set P’ := (idy, Ki)(P)
then (Miry, Midyy)(Q') = P'. Assume 40 Q is both defined and codefined by a kernel.
Let us check that Q is codefined by a kernel. Note that 70 Q = Q.

We check that for Z as in my Section 1.6.2 the natural map idy XP! — idy KQ is an
isomorphism. It suffices to show that the composition

(idg Riy) (idg KPY) — (idg Miy) (idy KQ)
is an isomorphism. We have (idy Xiy)(idg KQ) = (idy Q') and
(idg M) (idy KPY) = idy R(P')Y,
Now the map idg K(P’)! — idy Q' is an isomorphism by our assumption.
2) Recall that 4 admits a right adjoint as a functor given by kernel by my Sec-
tion 1.7.2. Assume 4y o Q — Q' admits a right adjoint as a functor given by kernel.

Let us check the same for Q itself. By 1) we know already that Q is both defined
and codefined by a kernel. By my Prop. 1.8.5, it suffices to check that for Z as in my
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Section 1.6.2 the functor idg KQ : Shv(Z x Y1) — Shv(Z x Ys) preserves compactness.
If K € Shu(ZxY1)¢ then (idy Kiy)(idy KQ)(K) € Shv(Z x YJ)°. Now (id xi)' preserves
compactness, as it is schematic. We are done. ]

1.9. Around ULA property.

1.9.1. For (2], B.10.2). Let f : Y — S be a morphism, where S is a separated scheme of
finite type, and Y is an algebraic stack as in my Section 1.6.2. Let I € Shv(Y'). Let I'f :
S — SxY be the graph of f, this is a closed immersion. Set P = (Mirg Midy )((I'¢).F),
so P (I'y).((f'e) ® F). The functor P': Shv(S) — Shv(Y) is given by

S ((fle) @ F) @ f*S

Write F' : Shv(S) — Shv(Y') for the functor given by the kernel @ := (I'f).J.

By their B.4.4, we have a natural transformation idy IP! — idy KQ for any Z as in
my Section 1.6.2. The functor F : Shv(S) — Shv(Y), § — F @' f'G is codefined by
a kernel iff this natural transformation is an isomorphism. In this case the codefining
object is P by their B.4.4.

The functor idg KF' : Shv(Z x S) — Shv(Z x Y) is

S — pyF @ (idxf)'S

for the diagram Y 2 2xY '3 2x S. The functor idy RP! : Shu(2xS) — Sho(ZxY)
is

G py((fle) @ F) @ (1d xf)'S
If S is smooth of dimension d then eg = w[—2d], and the above natural transforma-
tion writes for § € Shv(Z x S)

P (F) @ (i[d x f)*§[~d] = py T @' (id xf)'S[d]

In S GA4% the notion of local acyclicity was formulated even in the case when the
base S is not smooth (in [5] it was reformulated for morphisms as above with S smooth).
Some modified version of ULA property appeared in ([17], Definition 4.8.2). There is
also the abstract ULA property of Raskin from ([22], B.5.1).

Example: Assume in the above situation that both .S and f are smooth and F = ey.
Then JF is ULA with respect to f : Y — S in the sense of ([2], B.10.2).

1.9.2. For F € Shv(Y) as in the previous subsection write Homy g(F,7) : Shv(Y) —
Shwv(S) for the relative inner hom with respect to the Shv(S)-action on Shv(Y). It is
understood that § € Shv(S) acts on M € Shu(Y) as M ®' f'G. This inner hom always
exists, because Shv(Y') is presentable.

Assume now that F'is codefined by the kernel P as above. Then for K € Shv(Y), G €
Shv(S) we get

Homspu(s) (S, Homy,s(F, K)) = Homgpy) (F @' G, K)=
Homsnov)(((f'e) @ F) @ £*9, K) = Homgpu) (f*9, Hom((fle) @' F, K)) =
Homgnu(s) (S, frHom((f'e) @ F, K))
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Here Hom means relative inner hom in (Shv(Y),®). So,
Homy 5(F, K) = fuHom((f'e) @ F, K) € Shv(S)

functorially on K € Shu(Y). Let us check if the functor K — f,Hom((f'e) ®' F, K) is
Shv(S)-linear. It will not always be the case!!!
For M € Shv(S) we always have a natural map

(23) M @' Homy s(F, K) — Homy.s(F, K @' f' M)
We want to check if it is an isomorphism. We have

M &' f.Hom((f'e) @ F, K) = fo(f'M & Hom((f'e) @ F, K)
Moreover, there is a natural map

(24) F'M @ Hom((f'e) @' F, K) — Hom((f'e) ® F, K & f'M)

constr

It suffices to show it is an isomorphism. It is evidently the case for F € Shu(Y) ,
as in this case (f'e) @ F € Sho(Y)®“™!" and
!

Hom((f'e) ®' F, K) FD((f'e) & F) &
In the case M € Shu(S)¢ we get

K

f'M @ Hom((f'e) @ F, K)= Hom(D(f' M), Hom((f'e) @' F, K)) =
Hom(D(f'M)@((f'e)2'F), K) = Hom((f'e)@'F, Hom(D(f' M), K)) = Hom((f'e)o'F, K&' f' M)

We are done in this case also.

However, in general neither (24) nor (23) is an isomorphism.

Example Take f =id : S — S and S = Speck. In this case M,F, K € Vect and
the map (24) becomes

M @ Hom(F,K) - Hom(F, K @ M)

If say M, JF are infinite-dimensional vector spaces placed in degree zero and K = e then
the above map is not surjective. On the other hand, any F € Vect is ULA in the sense
of ([2], Definition B.10.2) with respect to id : Speck — Spec k. Warning! So, in this
case though F' is ULA in the sense of ([2], Definition B.10.2), it is not necessarily ULA
in the sense of ([22], B.5.1).

1.9.3. Assume now f : Y — S as in Section 1.9.1 and F € Sho(Y)®"!" and assume
that the functor F' : Shv(S) — Shv(Y) defined by the kernel Q@ = (I'f),JF is also
codefined by the above kernel P. We have seen in the previous subsection that the
functor Shvy,s : Sho(Y) — Shv(S) is Shv(S)-linear. Is it continuous?

If f is schematic then this is evidently the case.

In general it is not continuous! For example, take S = pt, Y = B(G,,) and F = ey.
Then the functor Shvy g : Shu(Y) — Vect becomes the functor K — RI'(B(Gy,), K),
and we know it is not continuous. So, ep(g,,) is not ULA with respect to f : B (Gp) —
pt in the sense of ([22], B.5.1). On the other case it is ULA in the sense of ([2], B.10.2)
as we have seen above.
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Sam: it is only meaningful to compare his definition of ULA with that of ([2],
B.10.2) for ¥ € Shv(Y)¢. In this case indeed, the above functor Shu(Y) — Shv(S),
K + Homy s(F, K) is continuous, because it is of the form Q% __ for

QF = (Tp)(f*w ®DIF))? € Shu(Y x S)°

So, QE . is continuous by ([2], B.2.3).

There is a discussion of the abstract ULA property (in a situation of a dualizable
category) in ([9], appendix D).

Sam: in the constructible context probably if ¥ € Shv(Y')¢ and the above Shvyg :
Shv(Y) — Shv(S) is Shv(S)-linear and continuous, this does not imply that F is ULA
in the sense of ([2], B.10.2) (though it does for D-modules (as we know from ([9],
appendix D).

1.9.4. In the situation of my Section 1.9.1 assume F € Sho(Y )" Let us make
precise the condition that the functor F : Shv(S) — Shv(Y),§ — F @' f'G admits a
right adjoint as a functor given by kernel. Let

QR = ((T).(f*w ® DF))" € Sho(Y x S)
Their map ugs —' QF % Q given by ([2], (B.26)) becomes a morphism

1 ws = fal((ffwg) @ DF) @ F)

on S. Set FV := f*wg ® DF. This becomes a map u : wg — fa(F @ FV). The
counit of a would-be adjunction becomes a map Q *'Q® — uy, that is, a morphism
€: A (FNRgTFY) = A, wy, here A:Y — Y XY is the diagonal, and A : YV xgY — ¥V xY
is the natural map. The notation K7 Kg K5 means qllKl ®' q!QKg for the projections
¢i:Y xgY =Y. We may view € as a map FRg F¥ — A' A, wy.

Note that if Y € Schy; then the property that ) admits a right adjoint as a functor
given by kernel becomes precisely the property ([9], D.4.2(i)), which was formulated in
loc.cit. for F compact.

The property (iii) of ([9], D.4.2) is maybe strictly weaker then the fact that ) admits
a right adjoint as a functor given by kernel: the implication (iii)=-(ii) is not justified
n ([9], D.4.2).

Remark Let ¥ € Sho(Y )CO”S”’. If ¥ is ULA over S in the sense of ([2], B.10.1)
then for any base change g : S — S, where S’ is a separated scheme of finite type,
for the base changed map f Y -8, 5= gyff is also ULA with respect to f Here

gy : Y = Y is the induced map.

Proof: let h: Y’ — Y be a smooth surjective map, where Y’ € Schy;. Then the same
holds for the base changed map Y > Y. So, by the next subsection, it suffices to show
that the l-restriction of F to Y’ is ULA over S. Let ¥ be the !-restriction of F to Y.
Then J7 € Shv(Y')¢ is ULA over S, so the functor Shv(S) — Shv(Y'),§ +— h'FR'h' f'G
admits a right adjoint as a functor given by kernel by ([2], B.10.4). The !-restriction
under Y’ — Y will produce a functor, which also has a right adjoint as a functor given
by kernel. So, again by ([2], B.10.4) we see that F is ULA over S. We are done. [J
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1.9.5. Let us show that the ULA condition from ([2], B.10.2) is local in the smooth
topology on Y. Let g : Y/ — Y be a smooth surjective morphism of stacks as in my
Section 1.6.2, F € Shv(Y). Then g*[2dim.rel(g)] = ¢' is both defined and codefined
by a kernel.

Now J is ULA with respect to f in the sense of ([2], B.10.2) iff f'F is ULA with
respect to f o ¢g. Indeed, we compose the functor Shv(S) — Shv(Y), § — F &' f'G
with ¢'. The composition of funtors defined by a kernel (resp., codefined by a kernel)
is defined by a kernel (resp., codefined by a kernel).

1.9.6. For ([2], B.10.4). Assume F € Shv(Y)¢ and F is ULA wrt. f:Y — S in
the sense of their Def. B.10.2. So, F : Shv(S) — Shv(Y), § — F®' f'G is codefined
by P = (Tp).((f'e) ® F). Let Qf = (DP)?. Then QF € Shu(Y x S)¢, because
(f'e) ® F € Shu(Y)° by ([2], A.2.2). So, the functors idy QL are continuous by
([2], B.2.3), hence idg KF' preserve compactness. Now by ([2], B.6.5), F' admits a right
adjoint as a functor defined by kernel.

Conversely, if F' admits a right adjoint as a functor defined by kernel then F' is
defined and codefined by a kernel by ([2], B.6.3).

1.9.7. For ([2], B.10.5). Let f : Y — S be a map as in their Def. B.10.2, and
F : Shv(S) — Shu(Y) be the functor given by the kernel Q@ = (I'y)«(F) for T €
Sho(Y)“™s and Ty : Y — S x Y the graph of f. Let us write down explicitly their
map (B.30). We get 'QE=D(P)? = ((T'f)«(f*w®@DF))?. Let 'A:Y xgY =Y XY be
the natural map, this is a closed immersion.
We get
Q+'Q¥=(n).(AY(ffweDF)KF) € Shu(Y xY)

Now @ ! (DQ)° = ('2)('a*)((DF) K F). So, their map (B.30) becomes the push-out
(A)4 of the morphism

(25) (A" ((DF)RF) = (a)(f*ws) ©DF) K F)

So, in their formula in Remark B.10.5 there is a mistake: f*eg should be replaced by
f*ws.

Assume the map (25) is an isomorphism. Let h: Y’ — Y be a smooth cover of the
relative dimension d, where Y’ is a scheme of finite type. Consider teh commutative
diagram

YxsY B vxvy
Tr T hxh
Y xsY B y'xy,
where 7 = h xg h. Note that 7' = 7*[4d]. Applying 7* to (25) we get an isomorphism

"A* (h*(DF) K h*F)[-2d) = 7' (o) ((ffws) @ DF) K F)[—4d] =
"a" (((fh)'ws © D(h*F)) K h*F)[-2d]

Indeed, h' = h*[2d]. We see that the version of (25) for h*F is an isomorphism. We
conclude by their B.8.8 that () admits a right adjoint as a functor given by kernel.
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Since h*F € Shv(Y”)¢, this gives that h*F is ULA with respect to hf : Y — S by their
B.10.4, so J is also ULA over S.

1.9.8. For ([2], B.10.10). We amy assume Z = S is a scheme of finite type. Let § €

Shusr(v) (S X Y). We want to show that (idsKF)(S) € Shox(S). Let § & U L 8
be a N-transversal test pair, so U, S” are smooth. We may and do assume S’ separated.
We want to show that h*(idg XF)(9) is ULA with respect to t. We have

h*(ids XF)(G) = (idy ®F)((h x id)*9)

by the version of their B.1.5 for functors codefined by kernels. Here hxid : UxY — Sx
Y. By my Section A.1.5, SingSupp((hxid)*G) C (hxid)°(NxT*(Y)) = h°(N)xT*(Y).
Here (h x id)° is the notation of Beilinson [3]. The composition U x Y — U 4 9 s
h®(N) x T*(Y)-transversal. Now S x Y "YU XY = S s a N x T*(Y)-transversal
pair, so (h x id)*§ is ULA over S'.

So, indeed, it suffices to show that given K € Shv(U xY') which is ULA with respect
to the composition U x Y — U - S’ then (idg XF)(K) is ULA over S’. This indeed
follows from their B.10.7.

1.10. For [9], Appendix D.

1.10.1. For D.1.4. First, in the defining formula for mY>¢ one may replace if needed
Map € Spc by Hom € Vect.

Let C € CAlg(DGCateont) and M € C — mod(DGCatcont) be dualizable as a C-
module. Let m € M, m":¢ € MY be equipped with an isomorphism

Maps (¢ ® m, m') = Mapg (¢, counit§p(m’ @c m*©))

To this data one associates p: 1o — counit%(m@cmv’c) corresponding toid : m — m

in the LHS. Now Func(M, M) = MV @c M naturally, and under this isomorphism
unit§;(1) corresponds to id : M — M. Taking in the above formula ¢ = counit{; (m’'®¢
m"¢), we get a morphism

%)

counit§;(m’ @c m¥%) @ m — m’

in M functorial in m’ € M. This is a morphism in Fung(M, M) = MY'¢ @c M from
the functor m""¢ ®c m to the identity functor of M. In other words, this is a map
e:m"% @cm — unit{,(1¢).

Now e gives for any m’ € M a morphism Mapsq(c, counit{,(m’ @c m":¢)) —
Maps,,(c ® m,m’). Tt sends a : ¢ = counit§,;(m’ @c m">%)) to the composition

id .
c®m S counit§;(m' ®c m"%)) @ m S m/

Our p gives for m’ € M a morphism

Maps (¢ ® m, m') — Mapsg (¢, counit§y(m’ @c m"©))

It sends 8 : ¢ ® m — m’ to the composition

K C V.0y = C v,Cy counitfy (B®id) LC v,C
¢ = cRcounity; (m@cm”" ) = counity;(c@m@cm""*) = counity,(m'@cm”)
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Their property that (D.2) and its analog for m":¢

that these two arrows are inverse to each other. The analog of (D.2) for m
the composition

(26)

m

are isomorphisms is a way to say
V:C says that

v,C 1d&u

="' mVC @¢ counit§; (m @c m*°)

= (id @counit§;) (m""¢ @c m @c m¥"°)
ey (id @counit§y) (unit§; (1c) @ m""¢)

is isomorphic to the identity map. In these axioms m and m""C appear symmerically.
This is why if m is ULA then m""¢ € M":¢ is also ULA and its dual is m.

The second axiom is obtained as follows. We start for any m’ € M with the identity
morphism counit§,(m’ @c m¥¢) = counit{,(m’ ®c m":¢). Then send it to the LHS
of the formula, and then further to the RHS. The result should be again the identity
map as above. This is equivalent to requiring that the composition (26) is the identity.
Indeed, the latter property is equivalent to the fact that for any m’ € M applying
counit§;(m’ ®c o) to (26) one gets the identity.

1.10.2. In the situation of D.1.4, for m € M the functor Hom(m,e) : M — C is
right-lax functor of C-module categories.
So, if C' is rigid, it is automatically a strict functor.

1.10.3. For their D.2.1. For ¢ € C¢ and V € Vect/? one has Do (V ® ¢) = VY @ De(c)
canonically.

1.10.4. For their D.2.4. Let C € C Alg(DGCatopn:) with C' compactly generated such
that 1c € C°¢. Let M € DGCaty,:+ be compactly generated. We assume the existence
of 1¢ € C° as in their D.2.1, hence an equivalence D¢ : (C€)°? = C°. By definition, for
c1 € C%cy € C one has

Home(De(er), c2) Zﬂ{omo(io, €1 ®ca)

Let MY be the dual of M in DGCateont, and <,>: M x M"Y — Vect the tautological
pairing.

We explain that given m € M,m’ € M, there is (m,m')c € C such that for any
¢ € C° one has Home (e, (m,m')c) = (De(c) ® m,m’). This is done as in ([16], 9.2.3,
a version for Spc replaced by Vect).

Note also that Dy : (M€)°P = (M")¢ is characterised by the property: for my,ms €
M€ one has (Dps(m1), ma) = Homas(my, ma).

1.10.5. For their D.2.7. We may add in the formulation that if the conditions (i)
(equivalently, (ii) or (iii)) hold then 1¢ ® m and m"°¢ are compact.

Let us explain the implication (iii)=-(ii). If 1c ® m € M€ and ¢ € C° then
Hom (1c@m, Do (c)@m’)= (D (1e@m), Do(e)@m’) = Home (e, (D (1c@m), m') o)
So, in this case the functor M — C,m/ — (Dp(1c ® m), m')¢ preserves colimits and
is C-linear.

Explanation for (i)=-(iii). We get counit{,(m’ ®c m""¢)= < m/;m"C)¢. By

construction, the functor M — C,m’ — (m/,m""¢)¢ is continuous and C-linear.

\/,C’) V,C>
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V€Y. Since the functor m’

For m' € M we get Homp(1c @ m,m') = (m/,m
(m’,m":%) is continuous, we see that 1o ® m € M¢ and
(m',m"") = Dy (Ie @ m),m’)
for any m’ € M. This gives Dy(1c ® m) = m":¢, and m"¢ € M.

1.10.6. For their D.2.8. This is correct. If My € DGCatcon: is compactly generated
then identify (C'® M) = My @ C via the self-duality on C' given by their D.2.1. Then
the tautological pairing <, >: (C'® M) x C ® M — Vect becomes:

(c®mog,d @mp) =< mg,my > @Home(1g,c® )
This implies the claim.

1.10.7. For their Pp. D.4.2. Here f : Z — Y is a morphism of schemes of finite type,
so f': Shv(Y) — Shv(Z) has a continuous right adjoint. So, for Fy € Shu(Y)® in (iii),
F1(D(TFy)) € Sho(Z)°, and f1(D(Fy)) @ F = Hom(f*Fs,F'). Here Hom is the inner
hom for (Shv(Z),®). So, (D.12) says that the canonical map

o @ (fleg) ® F) = f(Fp) ' F
defined in ([20], 0.1.9) is an isomorphism.

In the 2nd line of the proof, (D.9) should be replaced by (D.12). Indeed, the RHS
of (D.12) writes

Homgp i ([*Fy © (Fey) @ F),F) = Homgy, 7 (f*Fy, Hom(f (eg) @' F,5))
= Hom g 5Ty fo(F &' D(f'(ey) ® F)))

Question: Why in the RHS of (D.14) one gets the same thing as in the LHS? This
boils down to establishing an isomorphism

A* (pi(ez) @ pyF) = fl(ey) @' T,

in Shv(Z), where A: Z — Z xy Z is the diagonal, and p; : Z Xy Z — Z are the
projections. Not clear where it comes from.

1.11. For [2], Appendix C.

1.11.1. For their C.1.1. If U; are quasi-compact algebraic stacks (of the form Z/G,
where Z is a scheme of finite type, G is an affine algebraic group of finite type according
to their conventions), j : Uy — Us is an open immersion. If j is cotruncative then j :
Shv(Uy) — Shv(Usz) is both defined and codefined by a kernel. So, the compatibilities
of their B.1.5 hold for it, as well as the version of B.1.5 with —! replaced by —x and
—a replaced by —i.

Note that j is cotruncative iff j* has a left adjoint as a functor given by kernel. Let
1 : Z — Us be a closed substack whose complement is Uj.

Claim. U, is cotruncative in Uy iff the functor i' admits a right adjoint as a functor

given by kernel. This is also equivalent to 7, admits a left adjoint as a functor given by
kernel (write i* for this left adjoint given by kernel).
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Proof. The proof is inspired by ([6], Prop. 3.1.2).
1) By my Section 1.8.23, i' admits a right adjoint as a functor given by kernel iff the
same holds for 47"

If j. admits a right adjoint as a functor given by kernel then so does j,j* by my
Section 1.7.2. For K € Shuv(Us) we have a functorial fibre sequence iyi' K — K — j,j* K
in Shv(Us). By my Remark 1.8.22, we see that iji' admits a right adjoint as a functor
given by kernel, hence the same for i'.

Conversely, assume ' admits a right adjoint as a functor given by kernel. Recall
that 4y admits a right adjoint as a functor given by kernel by my Section 1.7.2. Again
by my Remark 1.8.22, we see that j.j* admits a right adjoint as a functor given by
kernel, let Q € Shv(Uy x Us) be the object defining this right adjoint by kernel. By
([2], B.6.3), j.«j* is defined and codefined by a kernel. Now j. = (j.j*) o ji is codefined
by a kernel as a composition of functors codefined by kernels. So, j, is defined and
codefined by kernel. By my Prop. 1.8.5, it suffices to show for any Z as above the
functor (idg Xj.) : Shv(Z x Uy) — Shv(Z x Usy) preserves compactness. We have
(idg Xyj,) = (idg ®y), = (idg Xj,j*) (idg Kjy). Since both idg Xj,j* and idg Xj; preserve
compactness, we are done.

2) The fact that (i',Q) is an adjoint pair as functors given by kernel is equivalent to
the fact that (Q7,i.) is an adjoint pair as functors given by kernel by ([2], B.5.4) and
my Section 1.7.2. O

In the situation of the above claim write ¢7 for the functor given by kernel and right
adjoint to ¢'. Similarly, the right adjoint to j. given by kernel is denoted j°. Using ([2],
A.4.4) we see that i; is the dual to i*, and j is the dual to j°. Once again,

=", ="

1.11.2. To summarize, consider the situation of the previous subsection, i : Z — Us
is a closed immersion, and j : Uy — Us is the complementary open. The following
conditions are equivalent:

Jj« admits a right adjoint as a functor given by kernel;
i' admits a right adjoint as a functor given by kernel;
ix admits a left adjoint as a functor given by kernel;
e j* admits a left adjoint as a functor given by kernel

Under the above conditions we may say that j : Uy — Uy is cotruncative, and
i Z — Uy is trancative, following [6]. We arrange these functors into sequences:
functors between Shv(Z) and Shv(Us)

iy iy i
and functors between Shv(U;) and Shv(Us)

g1 g g g’

As in loc.cit., the natural maps i'i» — id and id — j*ji are isomorphism of functors
given by kernels.
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1.11.3. Consider a locally closed embedding i : Z — Y of algebraic stacks as in my
Section 1.6.2. Following loc.cit., call Z truncative in Y if i' admits a right adjoint i as
a functor given by kernel.

Lemma 1.11.4. Let Z 5 Y' 5 Y be a diagram of stacks as in my Section 1.6.2,
where i’ is a closed embedding, and j is an open embedding. Then i’ is truncative iff
joi is truncative.

Proof. The composition of truncative morphisms is truncative. This gives the "only
if’” direction. Assume now j o i’ is truncative. Note that i"* is defined by a kernel.
The functor i" identifies with (ji’)" o ji. Since j o4’ admits a right adjoint as a functor
given by kernel, it is codefined by a kernel, and j is codefined by a kernel, hence i" is
codefined by a kernel. It remains to show that for any Z as in my Section 1.6.2, idy, X"
preserves compactness. The latter functor is (idg x4’ )!. It preserves compactness by
my Section 1.8.20. O

1.11.5. Consider a truncative locally closed embedding i : X — Y of algebraic stacks
as in my Section 1.6.2. If Z is another algebraic stack as in my Section 1.6.2 then
Z x X — Z XY is also truncative.

Proof. Let Qf : Shv(Y) — Shv(X) be the functor given by kernel Q, which is the
right adjoint to i' as a functor given by kernel. Then for any Z/ as in my Section 1.6.2
we have an adjoint pair (idg Xi', idy, MQ™) compatible with the isomorphisms of ([2],
B.1.5). So, the same holds for the system of functors (idg/ Xi', iy 2 KQ™). By (2],
B.5.2), we are done. 0

1.11.6. Let f : Y1 — Y5 be a schematic morphism of stacks as in my Section 1.6.2.
Let Ty : Y7 — Y; x Y be its graph. Recall that f': Sho(Ya) — Shv(Y}) is defined by
the kernel Q := (oT'f).w € Shv(Yz x Y7). Let ‘QF be constructed out of @ by their
formula (B.25) in their Section B.8.1. So, if @ admits a right adjoint given by kernel,
it is given by ‘Qf. One gets 'Qf = (f x idy, )*uy,, here uy, =A, w for A: Yo — Y3 x Ys.
We get

'QF + QT (f x id)a(f x id)*uy, € Shv(Yz x Ya)

Their map (B.26) becomes uy, — (f x id)4(f x id)*uy,, this is the map coming from
the adjunction simply. We have canonically.

Q+'QF = (id x ) (f x id)*uy,

Now Q! (DQ)7 = (f xidy; )*((oT f)sw) = (f xidy; )*(idy, X f)"uy, canonically. So, their
map (B.30) becomes

(27) (f x idy,)*(idy, % f)'uy, — (id x f)'(f x id)*uy,
It comes from the canonical natural transformation

(f x idy;)*(idy, x f)' = (id x f)"(f x id)*
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for the cartesian square

vixy, B ovixy
d fFxid J fxid
Yaxy;, B v, x v

Let now hy : Yy — Y5 an etale schematic morphism, define f’,h; by the cartesian
square
f/

Y = Y
I 1 ho
i 4o

Claim 1. If f' admits a right adjoint as a functor given by kernel then so does f".

Proof. By ([2], B.8.8), it suffices to show that the version of the map (27) for f replaced
!

by f’ is an isomorphism. Applying (hy x h1)" = (h1 X h1)* to the isomorphism (27),
one gets an isomorphism

(f" xid)*(id x f)} (ha % h)'uy, = (id x f')'(f’ x id)*(hg x ha)'uy,

Since Yy is a connected component of Y3 Xy, Yy, the object uyy is a direct summand of
(hax ha)'uy,. So, the version of the map (27) for f replaced by f’ is an isomorphism. [

Let P = (Miry, Xidy, )(Q) then

P=0'(f x idy,) (ps-uy,) = (id x f)' ps-uy, € Sho(Ya x Y1)
Then Q is codefined by a kernel iff for any Z as in my Section 1.6.2, the map idy XP! —
idy XQ is an isomorphism.

Claim 2. Let o : U — Y7 be a smooth surjective schematic morphism of some
relative dimension d. Then f' admits a right adjoint as a functor given by kernel iff
(fa)' admits a right adjoint as a functor given by kernel.

Proof. We have o' = o*[2d]. The functors o, o admit right adjoints as functors given
by kernel by my Section 1.7.2. This gives the ’only if” direction.

Now assume (fa)' admits a right adjoint as a functor given by kernel. By (]2], B.8.8)
the map

(fo x id)*(id x fa)'uy, — (id x fa)' (fa x id)*uy,
is an isomorphism. Since (id xa)' = (id xa)*[2d], the above map rewrites as
(o x @) (f x id)*(id x f)'uy,[2d] = (o x @) (id x f)'(f x id)* uy,[2d]

It is obtained by applying (a x a)*[2d] to the map (27). Since («a X )* is conservative,
(27) is an isomorphism, so f' asdmits a right adjoint as a functor given by kernel by
([2], B.8.8). O

The following is an analog of ([6], 3.6.4).



65

Corollary 1.11.7. Let i : Z — Y be a locally closed substack, f:Y — Y be a smooth
schematic morphism, where all the stacks are as in my Section 1.6.2. Let ZCZxyY
be an open substack such that the resulting morphism f' : Z = 2 is surjective. If the
locally closed embedding i : Z — Y is truncative then Z is truncative in'Y .

Proof. By Claim 2 of my Section 1.11.6, it suffices to show that (io f)' admits a right
adjoint as a functor given by kernel. We have ' f' = (i o f')'. Since f is smooth and
schematic, f' admits a right adjoint given by kernel. Our claim follows. U

The following is immediate from the previous corollary.

Corollary 1.11.8. Let i : Z — Y be a locally closed substack, all the stacks are as in
my Section 1.6.2. Suppose that any z € Z has a Zariski open neighbourhood U C Y
such that ZNU — U is truncative. Then Z is truncative in Y. OJ

1.11.9. (analog of [6], 3.6.10). Let Y be as in my Section 1.6.2. Let f : Y - Y bea
locally closed embedding. If a locally closed substack i : Z — Y is truncative then the
same holds for i : Z xy Y = Y.

Proof. Any locally closed embedding writes as a composition of a closed embedding
followed by an open embedding. If f is an open embedding, our claim follows from
Claim 1 in my Section 1.11.6.

So, we may and do assume f is a closed embedding. Write f : 2 xy Y — Z for the
projection. By my Section 1.8.23, it suffices to show that fﬂ! admits a right adjoint
as a functor given by kernel. We have f.i' = f.i', and the functor f, admits a right
adjoint as a functor given by kernel by my Section 1.7.2. We are done. U

1.11.10. For ([2], C.1.2). Assume Z1,Z2 C Y are locally closed truncative substacks
of Y, where all the stacks are as in my Section 1.6.2. Then the same holds for Z; N Zs.

Proof. By my Section 1.11.9, Z1 N Zy C Z; is truncative. Since Z; C Y is truncative,
the composition of these embeddings is also truncative. O

Let U; C Y be the complement to Z;. The above claim says that if both U; are
cotruncative in Y then U; U Us is also cotruncative.

1.11.11. For ([2], C.1.5). Let j : U — Y be a quasi-compact open substack. Then
indeed the property that j; sends Shun(U) to Shun(Y) is equivalent to the fact that
Jx sends Shun(U) to Shun(Y) by ([1], F.8.7).

1.11.12. For ([2], C.2.2). Recall we are in the constructible context. Assume Y is an
algebraic stack locally of finite type. Then by definition, Shv(Y )., — colim, Shu(U),
where the colimit is taken over the poset of quasi-compact open substacks U C Y.

For each such j : U — Y, the functor j, c, is fully faithful by ([16], Remark in 9.2.7).
Indeed, for each inclusion ji2 : Uy C Uy of quasi-compact opens, (j12)s is fully faithful
and has a continuous right adjoint ((j12)1).

Besides, Shv(U)¢, is compactly generated by ([6], 1.9.4). For each quasi-compact
open substack j : U — Y and F € Shv(U)¢, j.co(F) € Shu(U)S,, and such objects

generate Shv(Y)c,. Moreover, by ([6], 1.9.5) each compact object of Shv(Y)c, is of the
form jy oo (F') for j : U — Y quasi-compact open and F' € Shv(U)°.
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1.11.13. For ([2], C.2.3). Let Y be an algebraic stack locally of finite type. For any
quasi-compact open j : U < Y we let Shv(Y') act on Shv(U) so that F' € Shu(Y') sends
K € Shw(U) to K ® j'F. If jio : Uy < Uy is an open immersion of quasi-compact
substacks then ((j12)+K) ®' joF = (j12)«(K ®' ji F) canonically for K € Shv(U;), F €
Shv(Y) and j; : U; — Y. So, the colimit colim, Shv(U) = Shv(Y )., may be understood
in the category Shv(Y)—mod(DGCatcont ), because oblv : Shv(Y)—mod(DGCateont) —
DGCatcon: preserves colimits (by [16], 3.0.53).
With this definition for a quasi)-compact open j : U C Y we have

Jeco(F) @ K5 ju o F @' j'K)

for F' € Shv(U), K € Shu(Y).
By ([16], 9.2.47), the functor id}**¢ : Shv(Y ), — Shu(Y) is fully faithful.
Consider full subcategory C' C Shv(Y') consisting of objects of the form j.(K) for
j: U <Y a quasi-compact open substack and K € Shv(U)¢. By the above, C is pre-
cisely the image of Shv(Y)¢, under id}3*"*¢ : Shv(Y)q < Shv(Y). Since the canonical
map Ind(C) — Shv(Y ) is an equivalence, we conclude that the ind-extension of the
inclusion C' C Shv(Y') defines a fully faithful functor Ind(C) — Shv(Y'), which factors

sqnaive

as Tnd(C) 5 Sho(Y)eo s Sho(Y).

1.11.14. For ([2], C.2.4). Let Y be an algebraic stack locally of finite type and N-
truncatable. Then for each N-cotruncative quasi-compact open j : U — Y, the functor
Jrco @ Shon(U) — Shon(Y)eo is fully faithful? Consider a pair of N-cotruncative
quasi-compact opens j12 : Uy — Uz C Y.

Question: the functor (ji2)« : Shun(U1) — Shun(Usz) has a continiuous right ad-
joint 77?7 This would imply that ji ¢, : Shon(U) — Shon(Y)e is fully faithful.

Let us show that Shun(Y)e — Sho(Y)e is fully faithful. For each pair of N-
cotruncative opens jio : Uy < Uy C Y the functor (j12)« : Shun(Ur) — Shun(Us) has
a maybe discontinuous right adjoint hoy : Shun(Usz) — Shun(Uy), so

Shon(Y)eo — lién Shon(U),

where the transition functors are hs;, and the limit is taken in DGCat. Similarly,
Shv(Y)eo — limy Shv(U) taken in DGCateopnt, hence also in DGCat. Now for each
N-cotruncative quasi-compact U C Y, Shox(U) — Shv(U) is fully faithful. Passing to
the limit, we see that the desired functor is also fully faithful.

1.11.15. For ([2], C.3.3-C.3.4). They do not assume Y truncative. Their formula for
the pairing Shv(Y) ® Shu(Y')q — Vect is correct. Let us explain how it implies the
desired formula for the induced equivalence (Shv(Y)¢)? = (Shv(Y )e)¢. Let j: U C Y
be an open immersion with U quasi-compact. We check that for Fy € Shv(U)¢, K €
Shv(Y)co one has canonically

(28) Homsho(y)., (Jeco(DF), K) = Cu (Y, (71Fv) @' K)

Here in the RHS by C,(Y,-) we mean the corresponding functor Shv(Y )., — Vect.
Both parts being continuous functors in K € Shv(Y ), we may assume K compact.
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So, we pick an open quasi-compact substack j' : V' — Y and L € Shv(V)¢ so that
K = ji (L) Let U L unv L&V be the open immersions. The RHS of (28) becomes

Ca(V, L&' (jv )it Fv) = Homgpev)((v)«itDFu, L)
In view of my Section 1.11.13, it remains to obtain an isomorphism
Homgh(y)(J=(DIv), i L) = Homgpuv) ((jv)«iiDIv, L)

The latter is clear.

1.11.16. Let j : Uy — Uy be an open immersion of quasi-compact algebraic stacks.
Let N C T*(Uz) be a closed conical subset, its restriction to U; is still denoted by N
by abuse of notations. Assume (U;,N) is duality-adapted in the sense of ([2], A.5.4)
for i = 1,2. So, the usual Verdier duality yields equivalences Shon(U;)Y = Shun(U;).
Assume j) (equivalently, j.) sends Shun(Ui) to Shun(Usz). Then the dual of the functor
3t Shun(Us) — Shux(Uy) is js : Shux(Ur) — Shon(Us).

In this case the adjoint pair j, : Shun(Uy) < Shun(Us) : j' gives by passing to the
duals an adjoint pair

Gx : Shux(U1) S Shon(Us) : ()Y

In particular, j, has a continuous right adjoint.

Application: assume Y is an algebraic stack locally of finite type, N C T*(Y) is
a closed conical subset, and Y is N-truncatable in the sense of ([1], F.8.6). Pick a
filtered collection of quasi-compact opens j; : U; — Y such that (j;) sends Shon(U;)
to Shun(Y). Assume each (U;, N) is duality-adapted in the sense of ([2], A.5.4). Then
we get Shun(Y)eo — colim] Shun(U;), where the transition functors are the s-direct
images. Since for each pair i1,43 and an open immersion j;, ;, : U;; — U;, the functor
(Jirsia)x : Shun(Usy) — Shon(Us,) has a continuous right adjoint, by ([16], Remark in
9.2.7), each (Ji)xco : Shun(U;) = Shon(Y)eo is fully faithful.

1.11.17. Let Y,Y’ be algebraic stacks locally of finite type (whose all quasi-compact
open substacks are as in my Section 1.6.2). Let f : Y’ — Y be a morphism of finite
type. Then we have natural functors that I denote f!, : Sho(Y)eo — Shv(Y')e and
Jaco : Sho(Y)eo = Shu(Y ). In fact, faco is defined even if f is not of finite type.
Namely, for a cofinal diagram of quasi-compact opens U; C Y, ¢ € I with [ filtered
small, let U/ = f~1(U;). Then U/ is quasi-compact open in Y’, and U;U/ = Y'. We
have a morphism of diagrams

i (Sho(Uy) Y sho))

in DGCatcont, where f; : U/ — U; is the restriction of f. Here for o : U; < Uj the
transition functors are the *-direct images with respect to a and o’ respectively, where
o' : U] — Uj is obtained by base change. Passing to colim;es, we get the functor fio.

In fact, f!, is naturally a morphism of Shv(Y)-modules.
Assume first f of finite type. We also have a morphism of diagrams

i = (ShoU!) T3 Sho(U))
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with the same transition functors. Passing to the colimit over I, we get the functor
Jaco : Sho(Y')eo — Shu(Y)e. Let now f be arbitary. Then we first define the

functors Shv(U/) (fila Shv(U;) as follows. They come from a compatible system of
functors (fY)a : Sho(V) — Shv(U;) for quasi-compact opens V' C U/, where f} is the
composition V' — U/ Tl U;.

Note that if f : Y’ — Y is an open immersion of a quasi-compact open then f, ¢, :
Shv(Y'") — Shu(Y') has the same meaning as f . in ([2], C.2.2).

If j: Y — Y is an open immersion we also write j* = j. . Moreover, in this case
we get an adjoint pair ji, : Shv(Y)eo S Sho(Y)eo : ja,co by ([16], 9.2.39). Indeed,
it is obatined by passing to the colimit over i € I in the adjoint pair j* : Sho(U;) =
Shv(U}) : (ji)«. Here j; : Ul — U; is an open immersion.

We can get more formalism for the co-category by applying the Verider duality to
the usual formalism and using their equivalence Shv(Y)Y = Sho(Y ), from ([2], C.3.3).

Applying (2], A.4.4) we get the following. The Verdier dual of the above functor
faco : Sh(Y")eo — Sho(Y)eo is f': Sho(Y) — Sho(Y”) even if f is not of finite type.
Assume f of finite type. Then the Verdier dual of

f Sho(Y)eo — Sho(Y)eo

is fa : Sho(Y’) — Shv(Y). Here f, is obtained by passing to the limit over i (with the
transition functors given by the usual restriction) in the diagram (f;)a : Sho(U]) —

Remark The functor id{™¢ : Shv(Y)eo — Sho(Y) is Verdier self-dual.
Proof. We have to establish for F, F" € Shu(Y)., an isomorphism
Ca(Y,idy" (F') @' F) = Cu (Y, idy*"*(F) @' F)

Let j: U — Y and j' : U’ < Y be two quasi-compact opens, K € Sho(U),K’ €
Shv(U'). Tt suffices to establish the above isomorphism for F' = ji oo (K), F' = ji .,(K')
in a way compatible with the transition functors in the corresponding direct diagram.
The desired isomorphism becomes

Ca(Y. 5L (E") ® juco(K)) = Ca(U. K @' LK) =
CaU' K" @ (1) 4.K) = Ca(Y, ju(K) @' oK)
The isomorphism in the middle comes from the fact that both sides identify with
Co(UNU, 'K @ (5)'K). Here U L unu & U are the corresponding open

immersions. 0

Note also that id{*"¢ is the limit over the quasi-compact opens j : U C Y of the
restriction functors j%, : Shv(Y)eo — Shv(U), as limf;—y Sho(U) = Sho(Y).

For any f : Y/ — Y as above (f may be of infinite type) the functor fico :
Shv(Y')eo — Shv(Y)e, satisfies the projection formula: for F € Sho(Y')e, K €
Shv(Y') one has canonically

fA,co(F) ®! K/;;fA,co(F ®! f'K)
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Proof. Since Shv(Y')., is compactly generated and both sides are continuous in F,
we may assume F' compact. Then there is a quasi-compact open j' : U’ C Y’ and
F' € Shv(U")¢ such that F=j. . (F'). Pick a quasi-compact open j : U C Y such

*,C0 ‘
that the map f o j/ factors as U’ Ludsy. By definition, faco(F)= jucofa(F). The
claim follows from the projection formula for f,. O

Assume f : Y’ — Y of finite type in addition. Then f satisfies the second projec-
tion formula: for M € Shu(Y’), L € Shv(Y)., one has canonically

Fa(M) @ LTS fao(M &' fo(L))

Proof. Both sides are continuous in L, and Shv(Y)., is compactly generated, so we
may assume L compact. So, there is a quasi-compact open substack j : U — Y and
Ly € Shv(U)¢ such that L = jy co(Ly). We get

fA(M) ®! L:j*po(LU ®! j!fA(M))/:;j*,co(LU ®! (fU)A(j/!M))a

where j' : U’ — Y is obtained by base change, and fyy : U’ — U is the restriction of
f. On the other hand, f. (L) :;ji,co(f!ULU)- So,

M & fio L) foeo((firLu) @' (§1) M)

Now fa.co(M @' f1o(L)) = jecol f)a(fiLu) @' (5')'M). So, the claim follows from the
usual projection formula:

(fo)a((frLo) ® (7)) M) = Ly @' (fu)a(i')' M

O
1.11.18. Consider a cartesian square
v oy
N4 Ty
7z 5 g

of algebraic stacks locally of finite type. Assume g of finite type. Then one has canoni-
cally gt (fy)aco— (f2)a.co(9')s- This is obtained from the usual (—,, —')- base change
by Verdier by dualization.

1.11.19. Let f: Y’ — Y be a morphism of algebraic stacks as in my Section 1.11.17,
assume f of finite type. Then the diagram commutes canonically

Sho(Y) L Sho(y?)
/I\ idgz/aive /]\ id;l/(}ive
f

Sho(Y)eo % Sho(Y')e
In addition, the diagram commutes canonically
Sho(Y) & Shu(y)
/]\ id”g}aive /I\ idgu;ive

Sho(Y)es "25° Shu(Y)ey
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1.11.20. For ([2], C.4.2). If 2,Y are algebraic stacks, the functor idy Xidfe™e :
Shv(Z X Y)eo = Shv(Z X Y)¢o, is defined as follows. For each quasi-compact open
j : Uy CY we have the restriction (id xj)%, : Shv(Z X Y)eo — Shv(Z X Uy ). For
a pair of quasi-compact opens jy : Uy, C Uy we have (id xjy)%,(id xj)%, = (id Xj)co,
where j' = j o jyy. This gives the desired functor

Shv(Z X Y)eo — lim * Sho(Z X Uy )eo
Uy CY

The functor
129" Kidy : Sho(Z X Y)eo, — Shv(Z x V)
is defined as the limit over the quasi-compact opens Uy C Y of the functors i Q‘;’i’,ﬁ/ :
Shv(Z x Uy)eo — Shv(Z x Uy). Since this is a limit of fully fauthful functors,
id3ee ®idy is fully faithful.
Since id29%¢ : Shv(Z x Y)eo — Sho(Z x Y) is fully faithful, we see that idy X idp*™e
is also fully faithful.

1.11.21. For (2], C.4.3). Assume Y truncatable. Let jy : Ujy — Usy be a cotrunca-

tive open immersion of quasi-compact open substacks of Y. Then we have an adjoint

pair (id xjy)a : Sho(Z x Uy y) S Sho(Z x Usy) : (id xjy)? in DGCateont. Dualizing,

it gives an adjoint pair

(29) ((d x5y) )Y = Sho(Z X Ury)eo S Sho(Z x Uay)eo = (id X jy )%

So, we may pass to left adjoints in the diagram Uhm’; Sho(Z x Uy )eo = Shv(Z XY )co,
y C

and get

(30) Sho(2 X ¥ )eos, = golim Sho(Z x Uy )eo

Let Uy 2 i Us 2 C Z be quasi-compact opens. Let us explain that their displayed
diagram

Sho(Ury x Urz) VY Shu(Usy x Upz)

(31) 1 (id xjz)« 1 (id xjz)-
(Jy xid),

ShU(ULy X UQ’Z) — Shv(Ug’y X U27z,)

commutes. After Verdier dualization, it is enough to show that the following diagram
comimutes o
ShU(Ul’y X U17z) (Jyﬁd) Shv(Ugvy X ULZ)
T (id xjg)! T (id xjz)!
. .d ‘7
ShU(Ulyy X U27z,) (]Yﬁ ) ShU(UZY X U27z,)
This is true, because (jy X id)? is a functor given by kernel, this is precisely the 2nd
compatibility property in ([2], B.1.5).
We may pass to the colimit (with respect to the #-direct images) over Uy in the
diagram (]y X id)[ : Sh’U(ULY X Uz) = ShU(UQ’Y X Uz) : (]y X ld)* By ([16], 9.2.39)
this gives precisely the adjoint pair (29). So, the RHS of (30) rewrites as

colim, colim, Shv(Uy x Uy)
UyCY UyCZ
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It would be reasonable to denote the left adjoint in (29) by (id X jy )i co-

Remark Recall that Y is assumed truncatable. We have an action of Shv(Z x Y)
on Shv(Z X Y)eo,. Namely, we let F' € Shv(Z xY) act on K € Shu(Uz x Y) as
K @' (j x id)'F for j : Uy < Z. This is compatible with the *-transition functors in

colim, Shv(Uz x Y).
Uy CZ

1.11.22. ([2], C.4.3) more. Assume Y truncatable. Then the Verdier duality gives a
canonical equivalence

(Sho(Z X Y)eop )Y = Sho(Z X Y) oy
Proof. Apply ([11], ch. 1.1, 6.3.4) to the diagram Shv(Z XY")¢o, — colim, Shv(Uz, xY),
Uy CZ

where Uy runs through the quasi—compact open substacks of Z. For a pair of such opens

j : Uy — Uy, the functor (j x id), : Shv(U} x Y) — Shv(Uy, x Y') admits a continuous

right adjoint. The Verdier dual of (5 x id), is the functor (5 x id)’, : Sho(Ug X Y)eo —

Shv(U}, X Y )eo, and Shv(Z X Y )coy :Uhlgz*Shv(UZ X Y)co- O
Z

1.11.23. For ([2], C.4.4). Let Y1,Y> be a pair of truncatable algebraic stacks, Z an
algebraic stack locally of finite type. By definition functors defined by kernel are the
functors in their Section C.4.4.

1) Let @ € Shv(Y; x Ys). For a pair of quasi-compact opens Uy C Z,U; C Y;
consider the diagram

szUlg Uz,XU1XY2 gUzX}/Q

Ay
Y1XY2

We get a functor Shv(Uy x Up) — Shv(Uz x Ya), K + (p2)a(piK @' p'Q). If now
Uy C U}, Uy C Uj are open immersions of quasi-compact opens, then the above functor
is compatible with the *-direct images with respect to Uz x Uy — U} x Uj on the
source, and with respect to Uz x Ya < U X Y3 on the target. Passing to the colimit,
we get a functor

Shv(Z x Y1)eo — colim, Shv(Usg, x Uy) — colim, Shu(Uy, x Ya) = Shv(Z X Y2)co,

Uy, Ur Uz,

denoted idy XQ.
If we pass to the colimit only over U; with the transition functors being x-direct
images, one gets the functor

(32) fZ : Sh’U(UZ X Yi)co — Sh?}(UZ X Yz)

These functors are compatible with the %-restrictions along the open immersions Uy, C
U. So, passing to the limit over Uy, we get the functor

Shv(Z X Y1)coy, = Um ™ Shv(Ug X Y1)eo — lim * Sho(Uy, x Ya) = Shu(Z x Y2)
1 Uy CZ Uy CZ

also denoted idy XQ. (The latter functor makes sense even if Y7,Y5 are not assumed
truncatable).
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2) Let @Q € Shv(Y1 X Y3)eo. Let Uy C Z be a quasi-compact open. First, we define a
functor gy, : Shv(Uz x Y1) — Shv(Uy x Y2)., as follows. Consider the diagram

Uz,XYl(p—l U2XY1XY2 IgUz,XYQ

b
Y1><Y§

We have the functors Shu(Y; x Y2)eo Peg Shv(Uz x Y1 X Y2)co (pQ)—AYCO Shv(Uz, X Y2)co

defined in my Section 1.11.17. Set

9guy, (K) = (pQ)A,co(pll(K) ®! p!co(Q))

Here we used the action of Shv(Uy x Y1 X Ya) on Shv(Uz X Y1 X Y3)eo discussed in my
Section 1.11.13.
If j : U, — Uy is an open substack, the diagram commutes

Sho(Us x Y1) "% Sho(Uz x Ya)eo
1 (xid)! 1 (xid)t,
gy
Sho(UL x Y1) —  Sho(Uz X Y3)e
Passing to the limit over quasi-compact opens Uz, C Z, the functors g, give the functor

~ g . —~
Shv(Z x Y1) _>Ul;I£Z Shv(Uy x Y1) — Ul;lélz Sho(Uz X Y2)co = Shv(Z X Y2)coy,

denoted idy XQ.
Besides, if j : U} — Uy is an open substack, the diagram commutes

Sho(Uy x Y1) % Sho(Uz x Y3)eo
T (§xid)a T (9xid)a,co
gy
Sho(UL x V1)~ Sho(Uz x Ya)eo
Passing to the colimit over Uy, C Z, one gets the functor

Shv(Z x Y1)co, — colim, Shv(Uy, x Y1) — colim, Shv(Ug X Y2)co = Shv(Z X Y3)co
Uy CZ Uy CZ

also denoted idy XQ.

3) Let Q € Shv(Y: x Yg)coY1 :(}lm; Shv(Y1 X Uz)co, where Us runs through the quasi-
2CY2

compact opens of Ya. Write Qp, the image of @ in Shv(Y; X Us)e. For quasi-compact

opens Uy, A Z,Us C Yy consider the diagram

Uz,XYVl(p—l U1XY1XU2 gUZ_XUQ

Ip
Y1 x Us

Define the functor h : Shv(Ug x Y1) — Shv(Uy x Us) by
h(K) = (pQ)A,co(p!l(jZ X ld)'K ®! p!CO(QUQ))
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Let j : U] — Uy, and j3 : Uy C U be open immersions. Then the diagram canonically
commute
Shu(Uy x Y1) 25 Sho(Uy x Us)
1 (xid)! 4 (x42)"
Sho(UL x Y1) 2% Sho(U x U})
We get a morphism of diagrams indexed by pairs of quasi-compact opens Uy, Us. Pass-
ing to the limit (and using that the index category is filtered, hence contractible), we
get the functor
lim h

Shv(Z x Y1) = lim* Shv(Uy x Y1) — lim* Shu(Uz x Uz) = Shu(Z X Ya)
UyCZ Uz,Uz

denoted idy XQ. This does not uses the fact that Y7, Y5 are truncatable.
Let j : U, — Uz be an open immersion of quasi-compact opens in Z. Then the

diagram commutes

Shu(Us x Y1) 25 Sho(Uy x Us)

T (ixid)« T (ixid).
Sho(UL, x Y1) L5 Sho(U} x Uy)
Passing to the colimit over Uy with the transition functors being the x-direct images,
we get the functor
Shu(Z X Y1)co, — colimy Shv(Uy, x Y1) — colim, Shv(Uy, x Uz) = Shv(Z x Uz)co,
Uy CZ Uy CZ

here we used the fact that Y; is trancatable. These functors are compatible with the
%, co-restriction functors along Z x U) C Z x U,. Passing to the limit over Us, we get
the functor

Sho(Z % Y1)eo, — lm * Sho(Z x U)o = Shv(Z X Y2)co,
UxCY>

still denoted idy XQ.
4) Let Q € Shv(Y1 % YQ)COY2 = liUm*Shv(U1 X Y2)co. Using the fact that Y7 is truncatable,
1

we may rewrite

Shv(Y1 % Y2) oy, — colim, Shu(Yy x Us)
U2CY2

We identify Shv(Y; x YQ)COY2 with the essential image of the fully faithful functor
idy, K2 : Shu(Y1 X Y2) oy, < Sho(Y1 X Ya).

For a quasi-compact open Uy, C Z recall the functor f given by (32). Our assumption
that Q € Shv(Yy ><Y2)COY2 together with my Section 1.11.19 garantees that (32) actually

takes values in a full subcategory Shv(Usg X Y2)eo ld:i;ve Shv(Uy x Ys). The so obtained
functors

fZ : Sh’l)(UZ X Yl)co — ShU(UZ X }/Q)CO
are compatible with the *-restrictions along the open immersions Uz C U. So, passing
to limit over Uy, we get the functor

Shv(Z X )/1)003/1 :Ul;rgz* Sh’U(UZ X Yl)co — Ul;rélz* ShU(UZ X }/Q)CO:;ShU(Z X YQ)COY2
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denoted idy XQ.

To get their last assertion here we claim that the functor idy XQ : Shv(Z X Y7)eo —
Shv(Z x Y3)co, defined in 1) for @ € Shu(Y; x Y3) actually takes values in the full
subcategory Shv(Y) X Y3)co C Shu(Y; X Ya) provided that

Q € Shu(Y; x Yg)coY2 C Shu(Y1 x Ys)
The claim follows by passing to the colimit as in 1) over (Usg, U;), because

colim, Shv(Usz X Y2)eo — Shv(Z X Y2)co
Uy CZ

1.11.24. ([2], C.4.4) more. Since Y7, Y> are truncatable, all the DG-categories appear-
ing in their C.4.4 are dualizable. For a functor given by kernel @ (in all the versions
appearing in C.4.4) the Verdier dual functor is also given by kernel Q7. This gives a
good consistency check of the claims of their C.4.4 (using my Section 1.11.22).

By definition, if for example @ € Shv(Y; X Yg)coy1 then Q7 € Shv(Ys x Yl)coy1 and
so on.

1.11.25. For ([2], C.4.5). Let F € Shu(Y'). We show that (Ay)«(F)eo, € ShU(Y XY )co,

is well-defined. Let U’ 2% U % Y be open immersions, where U, U’ are quasi-compact.
Let 7/ = jojy. Let v : U — Y x U be the graph of j, and similarly for v/ : U’ — Y x U’.
The base change of v by idxjy : Y x U — Y x U is the map /. Now from my
Section 1.11.18 we get

(ld XjU)i:o VA,CO(]'*?) — V,A,co (]U)'co(j*?) — V,A,co(j/*sF)

because (jur)k, = jt; = Jir- S0, (By)s(F)eo, is well-defined, similarly for (Ay )w(F)eo,-
If F € Sho(Y)eo then by (Ay)«(F) € Sho(Y XY ) they mean what I denoted above
by (AY)A,CO(H:)'

1.11.26. For (]2], C.4.7). Let Y be an algebraic stack locally of finite type. The mirac-
ulous functor Miry : Shv(Y ), — Shu(Y') is Verdier self-dual (see my Section 1.11.24).

1.11.27. For ([2], C.4.8). Their formula (C.4) makes sense, because ji is defined by a
kernel, not just codefined by a kernel.

We check their formula (C.4). Let j : U — Y be a cotruncative open embedding,
assume first both U, Y are algebraic stacks of finite type. Then j is defined by a kernel
by my Section 1.11.1, we are using here ([2], B.6.3). Recall that j; is codefined by the
kernel (T;)e, so it is defined by the kernel Q := (id}; ®idy )((T';)1e) by their B.4.8,
here I'; : U — U x Y is the graph of j. One checks that @ — (id xj)i(uy), where
uy = (Ay)sw for Ay: U — U x U.

The functor j. : Shv(U) — Shv(Y') is defined by the kernel (I'j).w, and Miry is
defined by the kernel ps-uy = (Ay)je for Ay: Y — Y x Y. This gives that Miry oj, is
defined by the kernel (I';)e.

Now we compose the functors given by kernel j o Miry, the result is defined by the
kernel @ * (ps-uy) = (idy XQ)(ps-uyr), here we used their formula (B.5). Now again
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use the fact that @ is codefined by the kernel, so that idy XQ = idy X4, as functors
Shv(U x U) — Shv(U x Y). One checks that idy Xj; = (idy x7);. This gives

(idy ®¥Q)(ps-uy) = (idy xj)i(Ap)ie = (T'j)e

as desired! Note that we obtained their formula only under the assumption that ji is
defined by a kernel. We did not need the full strength of the property that j, admits
a right adjoint as a functor given by kernel.

Let now j : Y < Y be an open immersion of algebraic stacks (maybe of infinite
type), which is cotruncative. To check their formula (C.4) in this case, note that the
question is local in Zariski topology: it suffices to show that for any quasi-compact open
U C Y for the contruncative open immersion U N'Y’ < U we have the corresponding
formula.

1.11.28. For (2], C.4.9). Let Y7, Y3 be truncatable and j : Uy < Y3 be a contruncative
open, where Uy is quasi-compact, let P» € Sho(Y) x Uz) and P = (id xj)«(P) €
Shv(Y1 x Ys). Let now Z be an algebraic stack locally of finite type (as we consider,
that is, locally as in my Section 1.6.2). Let Uz C Z be a quasi-compact open. Consider
the functor idy, ®P! : Sho(Uy x Y1) — Shv(Uy x Ya).

First, we claim that it takes values in the full subcategory Shv(Usz X Y2)eo. Indeed,
the functor j, is codefined by a kernel, by assumption. Write P € Shv(Uy x Ys) for
the object that codefines j,. So, P= (idy, XP")(P,). Let K € Shv(Uy x Y1). By their
Section B.3.2,

(idp, ®PY)(K) = ((K°)' Rid)(P) = ((K°)' ®id) (idy, RP")(Py)
= (idy, KPP ((K?)! Kid)(P,)
Thus, we obtained a functor
(33) idgr, ®P' : Sho(Uy x Y1) — Sho(Uy X Ya)eo

The so obtained functors are compatible with the *-direct images of P, under open
immersions Uy < U} of quasi-compact cotruncated opens of Y. Passing to the colimit
over Us, we see that for any P € colim, Shv(Y; x Us) = Shv(Yy x YQ)COY2 we get the

UsCYo
functor (33).
By definition, Shv(Z X Y2)coy, glli]m* Shv(Usz % Y2)eo. The functors (33) are com-
Z

patible with the *-restrictions along the open immersions Uy < U, for quasi-compact
opens of Z. Passing to the limit, one gets the functor

Shv(Z x YI):;UI;%IZ* Shv(Ugz, x Y1) — Ulggz* Shv(Uz, X Y2)eo — Shv(Z x YQ)COYQ
still denoted idy KP'.
1.11.29. For ([2], C.5.2). Here Y is assumed locally of finite type and truncatable.

Let us explain that Y is miraculous iff each cotruncative quasi-compact open substack
U C Y is miraculous.
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Assume each such U is miraculous. It suffices to show that for any quasi-compact
stack Z the functor idy X Miry : Shv(Z X Y)e — Shv(Z x Y) is an equivalence. For
any quasi-compact cotruncative open j : U — Y we have

(idz &j[)(idz X MiI‘U) = (idz X Miry)(idz gj*,co)

by their (C.4), and (idg Kjs co) : Shv(Z x U) = Shv(Z x Y),, is fully faithful (see my
Section 1.11.12). So, the restriction of idy X Miry to the full subcategory Shv(Z x U)
is fully faithful. By ([16], 9.2.47) this implies that idy X Miry is fully faithful. Write j°
for the right adjoint to j. .,.By Verdier duality, their (C.4) gives Miry oj” = j* o Miry.

To see that idy X Miry is essentially surjective, let K € Shv(Z x Y). For each
quasi-compact open j : U — Y let

Fy = (idz ®Miry;") (idg X5%) (K)
Recall that Shv(Z x Y)CO:?[}irrll/?Shv(Z x U). For an open immersion jy : U < U’ of
C

quasi-compact contruncative opens substacks of Y, we have canonically j[?]FU/ = Fy,
so the collection (Fyr) defines an object F € Shv(Z x Y)., with j. (F)= Fy for each
contruncative quasi-compact open U. Then formally we get (idy X Miry)(F) = K.

Conversely, assume Y is miraculous. Then again, for any quasi-compact stack Z, the
fully faithfulness and essential surjectivity of Miry follows from their (C.4). For the
essential surjectivity, let K € Shv(Z x U) and F = (idy X;7) (idz B Miry ) (idz By ) (K).
Then (idg X Miry)(F) = K.

1.11.30. For ([2], C.5.3). Since Y is miraculous, for any quasi-compact open Uy C Z
the functor idg X Miry : Sho(Uz X Y)eo = She(Uz x Y) is an equivalence. They are
compatible with the restrictions for the open immersions U C Uyz. Passing to the limit
over Uz, we get an equivalence idg X Miry : Shv(Z X Y)co, — Shv(Z x Y). Dualizing,
we get the second equivalence.

1.11.31. For ([2], 0.3.4). Let Y be a connected separated scheme of finite type, @Q €
Shv(Y). When does @ admits a right adjoint as a functor given by kernel? By their
B.5.6, we need Q € Shu(Y )" for this, which we assume. Note that in this case
Q € Shu(Y)¢, so by their B.1.4 for any quasi-compact algebraic stack Z (as in my
Section 1.6.2), the functor idy XQ preserves compactness. So, by my Proposition 1.8.5,
() admits a right adjoint as a functor given by kernel iff () is codefined by a kernel.

Set 'Qf = id} (DQ), we get 'QF = w ® (DQ). By Verdier duality, (Q, QF) is a dual
pair in the corresponding 2-category iff (('QF)?,Q7) is an adjoint pair in the same
2-category. Here Q7 defines by the kernel the functor Shv(pt) — Shv(Y),V — V ® Q.

Let P = Miry(Q). One gets immediately P = e ®' Q = Hom(wy, Q). To be precise,
by Hom(-,-) € Y we mean the inner hom for (Shv(Y),®). Then @ is codefined by a
kernel iff for any quasi-compact stack Z as above, idy KP! — idy XQ is an isomorphism
by their B.4.4. The morphism of functors P! — Q in Fune cont(Shv(Y), Vect) comes
from the natural morphism F @ (ey ®' Q) — F ®' Q for F € Shv(Y) defined in (]20],
0.1.10). Namely, it is the composition

Co(Y, F @ (ey ® Q) = Cu(Y, F ® (ey ® Q) = Cu(Y, F &' Q)
Note that Miry : Shv(Y) — Shu(Y) sends K to e ®' K.
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Assume that e[2d] = w, for example, Y is smooth of dimension d. More generally,
this holds for example, for Y = A"/S,, where the nontrivial element of Sy acts as
multiplication by —1. So Miry (K)— K[—2d], and Miry is an equivalence. Assume
in addition Y proper and @ € Lisse(Y). Let us show that the functor Q is indeed
codefined by a kernel. Let Z be a quasi-compact algebraic stack. For K € Shv(Z xY),

M € Shv(Z) we get for the diagram of projections Z & Z x Y By
(34) Hom((idz RQ)(K), M) = Hom(K &' p,Q,p; M)

Write QY = Hom(Q, e), this is the dual of Q in (Lisse(Y'), ®). Then Q = Hom(Q",e),
and DQ = QV[2d]. Now

K ® pyQ = Hom(p3(DQ), K) = Hom(p3(Q")[2d], K) = p3Q ® K[~2d]

We used that p3(QY) = (p5Q)". By ([20], 0.0.7), the functor K + p5Q ® K[—2d] has
a continuousn right adjoint given by X — X @' D(p3Q)[2d]. So, (34) identifies with

Hom(K, py M @' py(DQ)(2d]) = Hom(K, (idz B'Q™)(M))

So, (idy KQ,idy X'QF) is a dual pair for any Z, so that @ admits a right adjoint as a
functor given by kernel.

APPENDIX A. ON SINGULAR SUPPORT

A.0.1. Question. What is the relation between the abstract ULA property of Sam
with the notion of singular support?

A.0.2. Let X be a smooth scheme of finite type, F' € Shv(X)®™! in the con-
structible context. Let E be a local system on X. Let us show that SingSupp(F) =
SingSupp(F @ E).

Let C C T*X be a closed conical subset such that F' is micro-supported on C' in
the sense of [3]. Let X LU LY be a test pair, which is C-transversal, so h*F is
ULA with respect to Y. Then h*(F ® E) is ULA with respect to Y, because the ULA
property is local in smooth topology of the source. So, the pair (h, f) is F' ® E-acyclic.
So, F ® FE is also micro-supported on C. Recall that Beilinson write C(F') for the set
of conical closed subsets C' C T*(X) such that F' is micro-supported on C’. On the
other hand if A*(F ® E) is ULA with respect to f : U — Y then h*F is also ULA
with respect to f as a direct summand of h*(F ® E ® E*). So, C(F) = C(F ® E) and
SingSupp(F) = SingSupp(F @ E).

For any closed conical subset N C T*(X) we get an action of (Lisse(X),®) on
Shun(X) such that E € Lisse(X) sends K to K @ E.

A.0.3. Let us now X a be scheme of finite type, not necessarily smooth, we want to
check the same property. Let E be a local system on X, F' € Shv(X)®“"s. Let us
show that SingSupp(F) = SingSupp(F @ E).

Assume X' is a smooth scheme of finite type and j : X — X’ is a closed embedding.
By definition, it suffices to show that SingSupp(j.F) = SingSupp(j.(F ® E)).

Let C C T*X’ be a closed conical subset and X’ & U7 % ¥ be a test pair, which is
C-transversal. Let jy : U — U’ be obtained from j by the base change h' : U" — X'.
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Let h: U — X be the projection. By ([5], property 3 in 5.1.2), (ju)«h*F is ULA with
respect to f iff h*F is ULA with respect to f o jy. Now hA*F is ULA with respect to
fojuiff W*(F ® E) is ULA with respect to f o jy. So, C(j«F) = C(j«(F ® E)), and we

are done.

Remark A.0.4. Recall that QLisse(X) is equipped with the t-structures inheritied from
the usual (not perverse) t-structure of Shv(X), and Shv(X) is considered with the
perverse t-structure. If K € Shv(X)=Y, V € QLisse(X)=" then K ® V € Shv(X)=Y.

Proof. We characterize Shv(X)<? € Shv(X) as the full subcategory of K’ € Shv(X)
such that for any point 7 : # — X the object i*K’ is placed in usual cohomological
degrees < — dim x, here z is not necessarily a closed point. Since i*V is placed in usual
degrees < 0, and i* K is placed in usual degrees < —dim z, i*(K ® V') is placed in usual
degrees < —dimx. O

A.1. Let p: Z — X be a morphism of schemes of finite type with X smooth. Let
E € Lisse(X) and K € Shv(Z). Then we get

K@ pE=p*E ® K[—2dim X]
The same holds for E € IndLisse(X).
Proof:
K @' p'ES Hom(D(p'E), K) = Hom(p* (EV[2dim X], K) = p*F @ K[—2dim X]

where Hom denotes the inner hom for the monoidal category (Shv(Z),®), and EY =
Hom(E, ex) is the naive duality on X. O

In particular, if K € Shv(Z)°"!" then SingSupp(K ®'p'E) = SingSupp(K) by the
above.

Lemma A.1.1. Let K € Shw(Z)2°, E € QLisse(X)2° then K ®' p'E € Shv(Z)=°.

Proof. For K' € Shv(Z) the condition that K’ € Shv(Z)=° means that for any maybe
non clolsed point i : z — Z, i'K’ is placed in usual degrees > —dimz. For such a
point i : z — Z let i : Z — X be the image of z in X. Then ¢'E is placed in usual
degrees > 2dim X —2dim z. So, i'(K ®'p'E) = (i'K) ® (i'E) is placed in usual degrees
> —dim z+2dim X —2dim Z > — dim z, because dim zZ < dim X. So, K ®p'E is placed
in perverse degrees > 0. O

Lemma A.1.2. Let K € Shv(Z)=C. Then the functor QLisse(E)~ — Shv(Z), E v
K &' p'E commutes with Postnikov towers. That is, the natural map K &' p'E —

lim, (K ®' p'(r12""E)) is an isomorphism in Shv(Z).

Proof. The idea is due to Sam, see his ([24], Lemma 3.12.1). We consider QLisse(X)
equipped with the usual t-structure. First, if £ € QLisse(X)<" and is bounded then

(35) K ®! p!E/_\;p*E ® K[—2 dimX] e Shv(z)§r+2dimX
For each m € Z,
MK @' P ) lm = (K @' pl (),
n
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because the functor n — 72 (K ®' p'(r2""E) stabilizes as n goes to 400, here we
used (35). Now

K& pE= hmT* (K® pE)—> hmhmT* (K® p( "E)
= hmhmT— (K® [ (T— "E)= hHl(K® p( "E))
O

Lemma A.1.3. Let N C T*Z be a closed conical subset. Then for K € Shun(Z),
E € QLisse(X) we have K @' p'E € Shun(Z)

Proof. Since K = colim, 7<"K and E = colim,, 7<"E, we may and do assume K €
Shux(Z2)=0 E € QLisse(X)<". Recall that we consider QLisse(X) with the usual t-
structure.

It suffices to show that for any m, 72" (K ®' p'E) € Shux(Z). Given such m, for
n large enough we have

MK @ p'E) S K @' p (12T E))

as in the proof of Lemma A.1.2. Since K ®' p'(12""E) € Shun(Z) by Section A.0.2,
we are done. O

We may now consider (QLisse(X),®'), and the above lemma shows that this sym-
metric monoidal category acts on Shun(Z), so that E € QLisse(X) sends K € Shun(Z)
to K @' p'E.

Lemma A.1.4. Let X,Y be schemes of finite type, K € Shv(X)~. Then the functor
Shv(Y) = Shv(X xY), F— KX F preserves Postniklov towers. That is, the natural
map KX F — lim,,(K X 72""F) is an isomorphism in Shv(X x Y).

Proof. Note that if K € Shv(X)=% and L € Shv(Y)<? then X }Y € Shv(X x Y)satb
by ([1], Pp. E.7.2).
Let m € Z. Consider the functor n € Z + 7=""(K K 7=""F) € Shv(X x Y). By
the above remark, it stabilizes for n large enough. So,
lim7= ™K X2 "F) S 72 "(K X F)

n

Thus, lim, (K X 727"F) = lim,, lim, 72""(K K72 "F) S KX F. O

A.1.5. ([3], Lemma 2.2) is important and says: let X be a smooth variaty, ¢ : U — X a
moprhism in Schyy, F € Sho(X)“"'. If ¢ : U — X is C-transversal with SS(F) C C
then SS(¢*F) C ¢°(C).

APPENDIX B. LANGLANDS FUNCTORIALITY

B.0.1. We try to derive a correct setting for the geometric Langlands functoriality on
the DG-level as an application of [1]. Let H,G be connected reductive groups over k,
Let x : G — H be a morphism of dual groups over e.
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B.0.2. Work in the constructible setting. For a map f : Y — Y’ of classical algebraic
stacks (with affine diagonals), we denote by f. : Shv(Y) — Shv(Y') the right adjoint
to f* as in ([2], A.1.8). It is not necessarily continuous, but satisfies the base change
with respect to the !-pullbacks by loc.cit.

Recall that fSet denotes the category of finite sets. Consider the functors hqg, hy :
fSet — DGCateont, ha(I) = Shv(Bung xX') and hg(I) = Shv(Bunyg xX'). For a
map « : [ — J in fSet the corresponding transition maps are given by the !-pullback
with respect to Bung x X7 — Bung x X! and Bunyg x X7 — Bung x X! respectively.
We need to have a natural transformation £ from hg to hy.

B.0.3. let Cg : fSet — Alg(DGCateons) be the functor sending I to Rep(H)®! ®
Shu(X'). For a morphism « : I — J the transition map Cg(I) — Cg(J) is the
morphism

meA"

Rep(H)®! @ Shv(X1) ™= Rep(H)®’ @ Shv(X7),
where m is the multiplication along a, and A: X7 — X' is induced by a. Similarly we
have
Cq : fSet — Alg(DGCateont), I+ Rep(G)®! @ Sho(XT)
We view them as objects of Alg(Fun(fSet, DGCat.opnt)). Restriction along x defines a
morphism

(36) Res"™ : Cg — Cq

in Alg(Fun(fSet, DGCatcont))-

Recall that hg € Fun(fSet, DGCatcopnt) is a module over Cg via the action con-
structed in ([9], Pp. B.2.3), similarly, hy € Fun(fSet, DGCatcont) is a module over
Cp. By restriction along (36), we may view hg as a module over hy. We write

actg : Rep(G)®! @ Shu(Bung x X!) — Shv(Bung x X71)

for the corresponding action map, and similarly for acty.

B.0.4. Setting A) for the functoriality. We want a (maybe discontinuous) natural
transformation £ : hg — hy to be a morphism of €g-modules.

When talking about possibily discontinuious natural transformation, we mean of
course that for each I € fSet the functor £; : Shv(Bung x X') — Shv(Buny x X71)
should be a morphism in DGCat, the notation of ([11], ch. 1.1, 10.3.4).

B.0.5. Our first trial is as follows. Let M € Shv(Bung x Bung). It defines a natural
transformation £ : hg — hp sending I to the functor

L1 : Shv(Bung x X1) — Sho(Bung xX'), £1(K) = (pr)«(peK &' ¢'M)
for the diagram of projections

Bung x X/ ke Bung x Bung x X! Py Bung x X/

La

Bung x Bung
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B.0.6. Note that for a (maybe discontinuous) morphism f : D — D’ in DGCat and
C € DGCatyps dualizable, we have a morphism id®f : C @ D — C ® D’ defined as
the composition Fune cont(CV, D) — Fune cont(CV, D’) with f.
So, for each I € fSet we get morphisms
id®L; : Rep(H)®! @ Shv(Bung xXT) — Rep(H)®! @ Shv(Buny xX7)

The requirement of Setting A) contains, in particular, the commutativity datum for
the diagram

Rep(H)®! ® Shv(Bung x X71) acte o(Res” ©1d) Shv(Bung x X71)
(37) lideL, N
Rep(H)®! @ Shv(Bung x X71) actg Shv(Bung x X71)
in a way functorial in I € fSet.
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