
1. Comments to my joint paper with Dennis [13], Sept. 11, 2017

1.0.1. The notation DGCat from [13] corresponds to the category denoted DGCatcont
in ([15], ch. I.1, Sect. 10). The notation Vect is that of ([15], ch. I.1, Sect. 10.1,
so Vect is both left and right complete for its t-structure. This is used, in particular,
in Sect. 1.6.1, where it is claimed that Shv : (Schaff )op → DGCatSymMon. Namely,

for any S ∈ Schaff , the unit of Shv(S) is the pull-back of the constant sheaf E under

S → Spec k. Now indeed for f : S1 → S2 in Schaff the functor f ! : Shv(S2)→ Shv(S1)
is symmetric monoidal.

1.0.2. The category (Schaffft )op admits finite colimits, so Ind((Schaffft )op) →̃ (Schaff )op

is presentable by ([18], 5.5.1.1).
The definition of Shv : (PreStk)op → DGCat should indeed be a right Kan ex-

tension of (Schaff )op → DGCat under (Schaff )op ↪→ P(Schaff )op. That is, if Y ∈
PreStk is written as any colimit colimi∈I Si in P(Schaff ), where Si ∈ Schaff then
Shv(Y) →̃ limi∈IopShv(Si) in DGCat.

A prestack given by a functor F : (Schaff )op → Spc is locally of finite type iff this
functor preserves filtered colimits. Then it is completely defined by its restriction to

(Schaffft )op by (HTT, 5.3.5.10).

1.0.3. For 1.2.1. We may take here S indeed only as a filtered limit of Sα in Schaff ,

because the functor Shv : (Schaffft )op → DGCatmaybe does not preserve finite colimits.

See ([18], 5.5.1.9). Maybe Shv : (Schaff )op → DGCat does not preserve all colimits.

1.0.4. For 1.2.1. The functor (1.2) inherits a right-lax symmetric monoidal structure
by (HA, 4.8.1.10).

1.0.5. IfK,C ∈ 1−Cat, the relation between Funct(K,Egrp−like
n (C)) and Egrp−like

n (Funct(K,C))
is as follows. One has Mon(Ptd(C)) →̃Mon(C) canonically. Clearly,

Mon(Fun(K,C)) →̃Fun(K,Mon(C))

So, for any n ≥ 1, En(Fun(K,C)) →̃Fun(K,En(C)). The full subcategory Egrp−like
n (Fun(K,C)

identifies via this isomorphism with Fun(K,Egrp−like
n (C)) because of ([22], section

label{sec Nick equivalence fiberwise} and (HA, 5.2.6.2).
If f : C → D is a left-exact functor, and C,D admits finite limits then f induces a

functor En(C)→ En(D) for all n ≥ 0, and also Egrp−like
n (C)→ Egrp−like

n (D).

1.0.6. For any ∞-topos C, let C0 ⊂ C be the full subcategory of connected objects.
Recall that Ω : Ptd(C0) →̃ Grp(C) is an equivalence ([18], 7.2.2.11). The functor Ω :
Ptd(C) → Grp(C) has a left adjoint B given by the composition Grp(C) →̃ Ptd(C0) ↪→
Ptd(C). For G ∈ Grp(C) we have canonically G →̃ΩB(G), because G is a part of the
Cech nerve of ∗ → B(G).
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1.0.7. For 1.3.4. The category Egrp−like
k (C) is defined for k ≥ 1. For example, we have

a natural functor Ω : Mon(C) → Grp(Mon(C)) = Egrp−like
2 (C). If C is an ∞-topos,

it has a left adjoint B : Egrp−like
2 (C) → Mon(C). It takes values in Grp(C) because

of ([19], Lm. 5.2.6.16). Namely, for X ∈ Egrp−like
2 (C), B(X) is connected, that is,

1-connective because of ([18], 7.2.2.11), now B(X) is grouplike by ([19], Lm. 5.2.6.16).
Assume C is an∞-topos. Since the colimits in C are universal, the forgerful functor

Mon(C) → C preserves sifted colimits by (HA, 3.2.3.2). So, given G ∈ Grp(Mon(C)),
B(G) can be calculated either as a geometric realization of the diagram

[. . . G×G
−→−→−→ G −→−→ ∗]

in Mon(C) or in C. So, B(G) is connected by ([18], 7.2.2.11).

1.0.8. Explanation for ([13], 1.3.5) coming from ([1], Appendix E). Consider the co-
cartesian fibration f : X → 1 − Cat corresponding to id : 1 − Cat → 1 − Cat. So, X
classifies C ∈ 1− Cat and c ∈ C. A morphism in X from (C, c) to (C ′, c′) is, roughly, a
pair (f, g), where f : C → C ′ is a functor and g : f(c)→ c′ is a morphism in C ′. Then X

is a symmetric monoidal category with the product (C1, c1), (C2, c2) 7→ (C1×C2, c1×c2).
The unit of X is given by (C = ∗, ∗). Then f is a monoidal functor.

Write X′ ⊂ X for the 1-full subcategory, where we keep all objects, and only mor-
phisms cocartesian over 1− Cat. So, X′ → X is a cocartesian fibration in spaces. Then
X′ is a symmetric monoidal category.

Recall that Mon(Spc) is a symmetric monoidal category ([15], ch. I.1, 3.3.5). Now
we have a symmetric monoidal functor F : X′ → Mon(Spc), (C, c) 7→ MapC(c, c), here
Mon is the category of monoids in Spc.

The fact that the above functor is symmetric monoidal is expressed as follows: given
(C, c), (D, d) ∈ X one has naturally

MapC(c, c)×MapD(d, d) →̃ MapC×D((c, d), (c, d)),

and Map∗(∗, ∗) →̃ ∗ in Spc.
Now if A ∈ Mon(1 − Cat) is a monoidal category then (A, 1A) ∈ Mon(X′) with the

product (A × A, 1 × 1) → (A, 1) given by the multiplication m : A × A → A. So,
F(A, 1A) = MapA(1, 1) becomes a monoid in Mon(Spc). Thus, MapA(1, 1) ∈ E2(Spc).

Unwinding the definition, the interiour product on MapA(1, 1) is given by the com-
position in A sending f1 : 1 → 1, f2 : 1 → 1 to f1 ◦ f2. The exteriour product in
MapA(1, 1) is defined as the composition

MapA(1, 1)×MapA(1, 1) →̃ MapA×A(1× 1, 1× 1)
m→ MapA(1, 1),

here the first isomorphism is given by the right-lax monoidal structure on F, and the
second one is the morphism of Map-spaces for the functor m : A × A → A. In other
words, the exteriour product in MapA(1, 1) sends (f1, f2) ∈ MapA(1, 1) ×MapA(1, 1)
to f1 ⊗ f2.

Let A ∈ Egrp−like
2 (Spc), so B(A) ∈ Grp(Spc). A datum of C̃ ∈ 1− Cat together with

C̃ → B2(A) gives a B(A)-action on C := ∗ ×B2(A) C̃. It is given by a morphism α :
B(A)→ Funct(C,C) =: O in Mon(1−Cat). In particular, ∗ → B(A)→ Funct(C,C) is
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the identity functor. Passing to the Map-spaces from 1 ∈ B(A) to 1 ∈ B(A) in B(A),
the functor α yields a morphism

ᾱ : A →̃ MapB(A)(1, 1)→ MapO(1O, 1O)

Since B(A) ∈ Mon(1 − Cat), MapB(A)(1, 1) ∈ E2(Spc) by the above construction, and

ᾱ is a morphism of E2-objects by functoriality. (Since α is a functor, ᾱ preserves
the compositions, that is, respects the interiour products). In fact, ᾱ takes values in

MapOSpc(1O, 1O) ∈ Egrp−like
2 (Spc), which is a full subspace in MapO(1O, 1O).

Remark: if A,B ∈ Mon(1 − Cat) and α : A → B is a morphism in Mon(1 − Cat)
then the induced map MapA(1A, 1A) → MapB(1B, 1B) is a morphism in E2(Spc) by
functoriality.

We claim actually here the following. Let A ∈ Egrp−like
2 (Spc), C ∈ 1 − Cat, O =

Funct(C,C). Then to give a morphism B(A)→ O in Mon(1−Cat) is the same as to give
a morphism A→ MapO(1, 1) in E2(Spc), equivalently, a morphism A→ MapOSpc(1, 1)

in Egrp−like
2 (Spc).

Given A→ MapO(1, 1) in E2(Spc), how to get B(A)→ O in Mon(1− Cat)? I think
as follows. First, Mon(1−Cat) ⊂ 1−Cat is stable under small limits, and Mon(1−Cat)
admits all small limits. Besides, Ptd(Mon(1−Cat)) →̃ Mon(1−Cat), see HA. Consider

the functor Ω : Mon(1−Cat)→ Grp(Mon(1−Cat)) = Egrp−like
2 (1−Cat). The existence

of left adjoint to this functor is not clear, as 1−Cat is not a topos (are both categories
presentable?). Instead, we do the following.

If O ∈ Mon(1 − Cat) then OSpc ∈ Mon(Spc), so Ω(OSpc) ∈ Egrp−like
2 (Spc) and

MapOSpc(1O, 1O) ∈ Egrp−like
2 (Spc). We have canonically

MapOSpc(1O, 1O)→̃Ω(OSpc)

in Egrp−like
2 (Spc). By adjointness in B : Egrp−like

2 (Spc) ⇆ Grp(Spc) : Ω, it yields
a morphism B(MapOSpc(1O, 1O)) → OSpc in Grp(Spc). This is also a morphism in
Mon(1− Cat), then compose with OSpc → O.

1.1. If Y is a prestack, A is a commutative group object in PreStk/Y then by

Map/Y(Y;B
i
et/Y(A))

we mean the mapping space in PreStk/Y. In particular, if A is a torsion abelain group,

Map(Y, Bi
et(A)) denotes the mapping space in PreStk.

Notation throughout, I think: let Y be a prestack, A a group like En-object in

the category PreStk /Y. Then we have the functors Bi : Egrp−like
n (PreStk /Y) →

Egrp−like
n−i (PreStk /Y) for 0 ≤ i ≤ n defined as in Section 1.3.4 for the category C =

PreStk /Y. So, Bi(A) always has this meaning.

1.1.1. Explanation for 1.4.3. Let Stk ⊂ PreStk be the full subcategory of stack for
the etale topology. This inclusion is stable under all small limits. Recall that its left
adjoint is accessible and left exact (topological localization) functor L : PreStk→ Stk.
By ([18], 7.2.2.5), L induces a functor Grp(PreStk) → Grp(Stk). If G ∈ Grp(PreStk)
then ΩBet(G) →̃Get.
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Let A be a torsion abelian group, write Aet for the sheafification of A on Schaff .
Then Bi

et(A) is the i-th delooping of Aet in the topos Stk.
We have ΩMap(Y,Z) →̃ Map(Y,ΩZ) for any Y,Z ∈ PreStk. For j ≤ i we get

ΩjBi
et(A) →̃Bi−j

et (A), and the claim in this case is π0Map(Y, Br
et(A)) →̃Hr

et(Y, A) for
r ≥ 0.

For j > i we get the following. Recall that for any D ∈ 1− Cat, τ≤kD ⊂ D is stable
under all limits that exist in D. So, Ω(A, 1) can be calculated in τ≤0 Spc = Sets. We
get Ωi(A, 1) = ∗ for i > 0. For this reason, ΩjBi

et(A) →̃ ∗ is the final object in the
category Stk, and the corresponding πj is zero.

1.2. In fact, the functor Shv! : (Sch)op → 1 − Cat takes values in presentable stable
cocomplete∞-categories. Consider the ”context of constructible sheaves” as in [8]. Let
f : Y1 → Y2 be a morphism of prestacks. By ([8], Cor. 1.4.2), f! : Shv

!(Y1)→ Shv!(Y2)
is always defined. Let Y be a prestack.

Consider the category Sch/Y. We have a functor (Sch/Y)op → 1 − CatSt,cocmpl
cont ,

(S → Y) 7→ Shv(S), and

Shv!(Y) = lim
S∈(Sch/Y)op

Shv(S)

For each map α : S1 → S2 in Sch/Y we have the left adjoint α! : Shv(S1) → Shv(S2)

to α! : Shv(S2) → Shv(S1). Let Ỹ → Sch/Y be the cartesian fibration corresponding
to the above functor (Sch/Y)op → 1−Cat. Then it is bicartesian, so we get the functor

Shv! : Sch/Y→ 1− CatSt,cocmpl
cont , (S → Y) 7→ Shv(S).

Let (Sch/Y)▷ be obtained from Sch/Y by adjoining a final object. Consider an ex-

tension Shv▷! : (Sch/Y)▷ → 1−CatSt,cocmpl
cont of Shv!, which is a colimit diagram for Shv!.

The opposite to (Sch/Y)▷ is the category ((Sch/Y)op)◁ obtained by adjoining an initial
object to (Sch/Y)op.

Passing to right adjoints in Shv▷! , we get a functor

(Shv!)◁ : ((Sch/Y)op)◁ → 1− Cat

extending Shv!. By ([15], Ch. I.1, 2.5.7), this is a limit diagram. That is, the corre-
sponding map

colim
S∈Sch/Y

Shv(S)→ lim
S∈Sch/Y

Shv(S)

is an equivalence (alternatively, use [15], Ch. I.1, 5.3.4). Note that for α : S1 → S2

a morphism of schemes both α! and α! preserve colimits. So, the limit in the above
formula could be taken in 1− CatSt,cocmpl or 1− CatPrs or 1− Cat by ([15], 2.5.2(b)).

Let now A→ Shv!(Y) be a functor, a 7→ Fa. For each (S, y) ∈ Sch/Y, here y : S → Y

we get the functor A → Shv(S), a 7→ y!Fa. If Fy := lima∈A y!Fa exists for any

(S, y) ∈ Sch/Y, and for any α : S1 → S2 in Sch/Y the natural map α!Fy2 → Fy1 is an

isomorphism then lima∈A Fa exists in Shv!(Y), and the natural map y!(lima∈A Fa)→ Fy

is an isomorphism by ([15], Ch I.1, 2.6.2). This is ([8], Lemma 1.3.5).
If β : Y1 → Y2 is a morphism of prestacks, F ∈ Shv!(Y1) then for β!F we have some

formulas as colimits. For example, let A → PreStk, a 7→ Sa be a functor that factors
through Sch ↪→ PreStk and Y1 →̃ colima∈A Sa with colimit taken in PreStk. Then for
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the contructible context Shv!(Y) →̃ colima∈A Shv(Sa), and β!F →̃ colim(βαa)!(α
a)!F,

here αa : Sa → Y1 is the natural map. See ([8], 0.8.5).

1.2.1. Let A be a torsion abelian group. If S is a smooth scheme of dimension n,
Y ⊂ S is closed of codimension ≥ 2 then Map(S,B2

et(A))→ Map(S − Y,B2
et(A)) is an

isomorphism.

1.2.2. For Sect. 1.5.1, just to note. We could consider A⟨−1⟩ := limnHom(µn, A) over
n invertible in k, where for n | n′ the transition map Hom(µn′ , A)→ Hom(µn, A) is the
composition with the inclusion µn ↪→ µn′ .

In other words, A⟨−1⟩ is defined by the isomorphisms

Hom(B(1), A) →̃ Hom(B,A⟨−1⟩)

functorial in an abelian group B. If A is an N -torsion group then A⟨−1⟩ vanishes, but
A(−1) does not. So, this is a different thing!

1.2.3. Let C ∈ 1 − Cat admit finite products. Write Mon(C) for the ∞-category
of monoids in C, Mon+(C) for the category of left modules over a monoid in C, so
Mon+(C) ⊂ Funct(∆+,op,C) is a full subcategory. We have the forgetfull functor
Mon+(C) → Mon(C). If we are given A ∈ 1 − Cat and a functor F : Aop → Mon(C),
we may think of it as a presheaf of monoids in C. Then a lifting of F to a func-
tor F+ : Aop → Mon+(C) can be thought of as a presheaf of left modules over the
corresponding presheaf of algebras.

This is used in ([13], 1.6.2). Namely, the functor (1.2) can be seen as a functor

Shv : (Schaff )op → Mon(DGCat). We have a projection Schaff/Y → Schaff . A

presheaf of DG-categories on Schaff/Y is a lifting of the composition

(Schaff/Y)op → (Schaff )op → Mon(DGCat)

to a functor (Schaff/Y)op → Mon+(DGCat).
Let C be a presheaf of categories over Y ∈ PreStk. Note that for a map f : S1 → S2

in Schaff and y2 : S2 → Y with y1 = y2f the diagram commutes

Shv(S2)× C(S2, y2) → C(S2, y2)
↓ ↓

Shv(S1)× C(S1, y1) → C(S1, y1)

This is the sense of: (1.9) interwines the actions.
Def. of a sheaf of categories in 1.6.6 makes sense, because DGCat contains all colimits

(this is the category of modules over some algebra in 1− CatSt,cocmpl
cont ).

1.2.4. The category of étale sheaves Stk ⊂ PreStk is a topos, so Stk is presentable, in
particular, contains all small colimits and limits ([18], 5.5.2.4). The inclusion Stk ↪→
PreStk does not preserve colimits. Indeed, let S 7→ Sshf be the sheafification functor,
the left adjoint to the above inclusion. By ([18], 5.2.7.5), given an functor f : K → Stk,
the colimit of f is Sshf , where S is the colimit of f in PreStk.

The category Disc(Stk) of discrete objects of Stk is the category of sheaves of sets

on Schaff with respect to the étale topology. Let A be a group objects in Disc(Stk).
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We could directly construct B(A) ∈ Stk using ([18], 7.2.2.12). If A is a commutative
group object of Disc(Stk), we could similarly construct Bi(A) ∈ Stk for all i ≥ 0.

Dennis procedes differently. He considers the topos

P(Schaff ) = Funct((Schaff )op,Spc)

Then Disc(P(Schaff )) is the category of presheaves of sets on Schaff . Given a group

object A in Disc(P(Schaff )), we get the Eilenberg-MacLane object B(A) ∈ P(Schaff )

via ([18], 7.2.2.12). Namely, A can be seen as a functor A : ∆op → P(Schaff ) actually

taking values in the full subcategory Disc(P(Schaff )) ⊂ P(Schaff ). Then A extends to

a colimit diagram A+ : (∆+)
op → P(Schaff ) of its restriction to ∆op. Then B(A) =

colim∆op A calculated in P(Schaff ).
In general, if K,S,C ∈ 1 − Cat and C admits K-indexed colimits then Funct(S,C)

admit K-indexed colimits, and they are computed pointwise ([18], 5.1.2.3). Therefore,

for each S ∈ Schaff , we have a functor A(S) : ∆op → Spc, and the value B(A)(S) =
colim∆op A(S).

If we assume in addition that A is a sheaf for étale topology then A ∈ Disc(Stk), and

the functor A factors as ∆op → Stk → P(Schaff ). By the above, Bet(A) := colim∆op A

in Stk is calculated as the sheafification of the colimit B(A) := colim∆op A in P(Schaff ).

We have B(A)(S) = colim∆op A(S) (colimit in Spc) for any S ∈ Schaff . I don’t
know if the natural map B(A)→ Bet(A) is an isomorphism in PreStk.

Now assuming that A is an abelian group object in Disc(P(Schaff )), on the pointed
object ∗ → B(A) we get a structure of a group object in the category Ptd(PreStk).
Indeed, recall that for a usual category C, Grp(Grp(C)) →̃Ab(C), here Grp(C) is the
category of group objects, Ab(C) is the category of abelian group objects ([18], 7.2.2.12).

We get a functor A1 : ∆op → P(Schaff ) roughly given by a diagram

∗ ← B(A) ⇔ B(A)×B(A)←←← . . .

Then B2(A) = colim∆op A1, the colimit is taken in P(Schaff ). Then again ∗ → B2(A)
is a group object in Ptd(PreStk), and we continue the procedure. We get the functor

A2 : ∆op → P(Schaff ) given by a diagram

∗ ← B2(A) ⇔ B2(A)×B2(A)←←← . . .

and B3(A) = colim∆op A2, the colimit is taken in P(Schaff ). And so on.

1.2.5. Let f : S → Z be an étale surjective map of schemes. Let S• : ∆op → Sch be the
groupoid underlying the corresponding Cech nerve. Let A be a torsion abelain group,
assume the orders of elements in A are prime to the characteristic of k. Let Y → Z be
a A-gerb whose restriction to S is trivial. By definition, Bet(A) : (Schaff )op → Spc is
a group prestack (actually, stack for étale topology).

What is the data on S that allows to recover Y ? Our A-gerbe is a map Z →
B2

et(A). So, the answer is given by the sheaf condition: the map Map(Z,B2
et(A)) →

Tot(Y(S•/Z)) is an isomorphism, where Y(S′) = Map(S′, B2
et(A)), and S•/Z is the

Cech nerve of S → Z.
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1.2.6. Recall that for usual category C, Grp(Ab(C)) →̃ Ab(C) canonically. If A is a
commutative group object in Sets, view A as discrete object in Grp(ComGrp(PreStk)).
We get a functor ∆op → ComGrp(PreStk). Take the colimit of the latter functor, we
get B(A) ∈ ComGrp(PreStk). Is this the usual way to see that B(A) is a group like
object of PreStk?

1.2.7. For A a torsion abelian group and i ≥ 1, ΩBi
et(A) →̃Bi−1

et (A), here the functor
Ω : Stk → Stk is the loop functor in the ∞-topos Stk. This is true for any topos, and
is explained in Section 1.0.6.

Why Bi
et(A) is an Eilenberg-MacLane object of degree i in Stk? This is because A

is an Eilenberg-MacLane object in degree 0 in Stk, now apply ([18], 7.2.2.11) several
times.

1.2.8. For 1.4.3. Let A be a finite torsion abelian group. Consider the functor
(Schaff )op → PreStkop → Spc, where the second arrow sends Y to Map(Y,Bi

et(A)).

Why this functor is the left Kan extension from (Schaffft )op? Let J be a small filtered

category, p : J → (Schaffft )op a diagram j 7→ Sj , whose colimit in (Schaff )op is S. We

have to show that

MapPreStk( lim
j∈Jop

Sj , B
i
et(A)) →̃ colimj∈J Map(Sj , B

i
et(A))

1.2.9. Let 1 → A → H → G → 1 is a central extension of groups in an ∞-topos X,
so A ∈ ComGrp(X). It yields a morphism G→ B(A) in Grp(X). Indeed, according to
([13], 1.3.2), such a map is given by a A-torsor on G, namely H → G is equipped with
an ∞-action of A on H such that H/A →̃G, hence the desired map G→ B(A).

Actually, B(A) is a commutative group object in X, because A was a commutative
group object. Applying B, we get a morphism B(G)→ B2(A) in Grp(X).

This can be used to explain our construction of the gerbe La in ([13], 1.5.2). Namely,
the central extension 1→ µn → Gm → Gm → 1 in PreStk yields B(Gm)→ B2(A).

Another way to say, the object L
1
n ∈ PreStk /Y defined in 1.5.2 is equipped with an

action of Bet(µn), and L
1
n /Bet(µn) →̃Y, hence the desired map Y→ B2

et(µn).

1.2.10. For 1.5.4. HereA is a torsion abelian group. Recall thatB2(A) ∈ ComGrp(Spc),
B2

et(A) ∈ ComGrp(PreStk). Now for a collection of gerbes fi : Y → B2
et(A) we denote

by ⊗fi : Y → B2
et(A) the composition ⊠fi : Y →

∏
iB

2
et(A) → B2

et(A), where the last
map is the multiplication.

1.2.11. For 1.5.5. If f : X → Y is a map in Spc, x ∈ X, y = f(x) and Xy = X ×Y y
then we have a long exact sequence of groups (at the end of pointed sets)

πn(Xy, x)→ πn(X,x)→ πn(Y, y)→ πn−1(Xy, x)→ . . .→ π0(Xy)→ π0(X)→ π0(Y )

So, for the space X := GeA(Y ) ×GeA(Y−Z) ∗ we get the above long exact sequence.

It shows essentially that the complex RΓ(Z, i!A) controls the homotopy groups of X.
Namely, we should have πi(X) →̃H2−i(Z, i!A) for 0 ≤ i ≤ 2, by Hj we understand the
etale cohomology. So, if dimY = n then we need to understand RΓc(Z,A)[2n](n) in de-
grees [−2, 0]. Since dimZ = n−1, the latter complex is placed in degrees ≤ −2, and its
cohomology in degree -2 is Map(I, A(1)). Dualizing, we get H2(Z, i!A) →̃ Map(I, A(−1)).
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1.2.12. ([13], 1.6.8) is true because the colimit in a topos are universal.

1.2.13. I have to learn the following (to be checked as found on internet): the endo-
morphisms of the unit object in an En-monoidal category C naturally form an En+1-
monoidal category. These kind of questions seems to be studied in ([19], 5.3).

Let C ∈ 1− Cat be symmetric monoidal, 1 ∈ C be the unit object. Then MapC(1, 1)
is naturally a E2-object of Spc, that is, lies in AlgE2

(Spc). Indeed, let C⊗ → Fin∗
be the corresponding cocartesian fibration. Given xi, yi, zi ∈ C for i = 1, 2 and maps

xi
fi→ yi

gi→ zi, we get x1 ⊕ x2 ∈ C⊗2 with a cocartesian arrow x1 ⊕ x2 → x1 ⊗ x2 over
α : ⟨2⟩ → ⟨1⟩ active, similarly for y and z. Consider the commutative diagram

x1 ⊕ x2 → x1 ⊗ x2
↓ f1⊕f2 ↓ f1⊗f2

y1 ⊕ y2 → y1 ⊗ y2
↓ g1⊕g2 ↓ g1⊗g2

z1 ⊕ z2 → z1 ⊗ z2,

where the horizontal arrows are cocartesian maps in C⊗ over ⟨2⟩ → ⟨1⟩. The composi-
tion in the left column is (g1f1)⊕ (g2f2), this yields an isomorphism

(g1f1)⊗ (g2f2) →̃ (g1 ⊗ g2)(f1 ⊗ f2)

This means that the two operations ⊗ and the composition on MapC(1, 1) are compat-
ible.

1.2.14. Let Y ∈ PreStk,A be a grouplike E2-object in PreStk /Y. Then we have
B2

et(A) → Y a pointed object in PreStk /Y. Let v : Y → B2
et(A) be the distinguished

point, a map in PreStk /Y. The square is cartesian

B2
et(A) → B2

et(A)×B2
et(A)

↑ ↑ v×v
Bet(A) → Y

Indeed, B2
et(A) is obtained fromAet by applying the delooping functorB : Egrp−like

m (Stk /Y)→
Egrp−like
m−1 (Stk /Y) twice. The delooping for the topos Stk /Y of étale sheaves over Y.

This is why an automorphism of the trivial gerb B2
et(A)→̃B2

et(A) over Y is an element
of the mapping space MapMapPreStk /Y(Y,B

2
et(A))(v, v) is ????

1.2.15. For 1.7.1. Let T → Y be a morphism of prestacks, H a group object in
PreStk /Y acting on T. Then T is a H-torsor over Y by definition here if it comes from
a map Y→ Bet(H), so it would be better to call it Het-torsor in etale topology maybe.

For 1.7.3. Let Y ∈ PreStk. The commutative group object Bet(E
∗,tors) acts on any

presheaf of categories on Y, because we have a morphism of groups Bet(E
∗,tors)→ LS,

and LS acts on it.
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1.2.16. For 1.7.5. Let H ∈ Grp(PreStk), E : H → LS be a character sheaf on H. So,

for any S ∈ Schaff , H(S) ∈ Grp(Spc). For each h ∈ H(S) we are given a rank one
local system E(S, h) on S functorially on (S, h). Let m : H(S) × H(S) → H(S)
be the product, 1 ∈ H(S) be the unit section. Then we are given isomorphisms
E(S,m(h1, h2)) →̃E(S, h1)⊗ E(S, h2) on S, and E(S, 1) →̃E on S.

A character sheaf on H can also be seen as a map B(H) → B(LS) in Ptd(PreStk).

Therefore, if H acts on a prestack Y, and Ỹ = Y/H fits into ∗ ×B(H) Ỹ →̃Y, we get the

composition Ỹ→ B(H)→ B(LS).

1.2.17. For 1.8.3. If Y ∈ PreStk then YdR ∈ PreStk is defined by YdR(S) = Y(Sred)

for any S ∈ Schaff . We have a canonical map p : Y → YdR. Namely, Sred ↪→ S yields
Y(S) → Y(Sred) = YdR(S). Twistings on Y are the kernel of Map(YdR, B

2(Gm)) →
Map(Y, B2(Gm)).

By ([16], 6.4.2), the commutative group Tw(Y) ∈ ComGrp(Spc) of twistings on Y

actually lies in ∞− PicGrpdk, so is a k-module. The example ([16], 6.4.6) produces
for a line bundle L on Y an element of T (L⊗a) ∈ Tw(Y), hence the forgetful functor
Tw(Y)→ GeO×(YdR) gives the object denoted by La ∈ GeO×(YdR) in our Sect.1.8.3.

1.2.18. Sect. 2.2.1. The definition of a factorization prestack over Ran is not correct
in the cases when Z is not discrete, higher compatibilities are missing (the correct
definition is found in Raskin).

Precise definition of a non-unital associative algebra object in a monoidal∞-category
is (Lurie, HA, 5.4.3.3), non-unital commutative algebra objects (Lurie, HA, 5.4.4.1).

I proposed the following definition of a factorization structure on a prestack over
Ran, Dennis says it is correct one.

Recall that Lurie denotes by Surj ⊂ Fin∗ the subcategory with the same objects,
and a morphism ⟨n⟩ → ⟨m⟩ is in Surj iff it is surjective. Let C⊗ → Fin∗ be a symmetric
monoidal ∞-category. Let CAlgnu(C⊗) ⊂ FunctFin∗(Surj,C

⊗) be the full subcategory
spanned by functors F sending inert morphisms to inert morphisms in C⊗. This is
equivalent to requiring that for i ∈ I − {∗} the inert map (∗ ∈ I) → (∗ ∈ (∗, i)),
i 7→ i, j 7→ ∗ for j ̸= i is sent by F to a cocartesian arrow over Fin∗.

Let M be a non-unital commutative algebra object in C⊗. One has the notion of a
subobject of M in the category FunctFin∗(Surj, C

⊗). This is a map M′ →M such that
for any n ≥ 0, M′(⟨n⟩) ⊂ M(⟨n⟩) is a subobject. Assume M′(⟨1⟩) = M(⟨1⟩). Then M′

is ’stable by the multiplication’ automatically, and also stable under the permutations
of I−{∗} for any (∗ ∈ I) ∈ Surj. Note that M′ ∈ FunctFin∗(Surj,C

⊗) is not a non-unital
algebra itself!

For example, Ran is a non-unital commutative algebra in PreStk. Its subobject
Randisj is defined by the property that for any pointed finite set (∗ ∈ I), its value on
(∗ ∈ I) is (RanI−∗)disj .

Since Randisj is a subobject of Ran, it is stable by the multiplication. Besides,
Randisj(⟨1⟩) = Ran(⟨1⟩).

Let C be an infinity-category admitting finite limits. Let M be a non-unital com-
mutative algebra object in C (with its cartesian monoidal structure), let M′ be its
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subobject. Assume M′(⟨1⟩) = M(⟨1⟩) =: M . Let α : Z× → M′ be a map in
FunctFin∗(Surj, C

×). Set Z = Z×(⟨1⟩).
Let (∗ ∈ J) ∈ Fin∗. For j ∈ J−{∗} we have the inert map ρj : (∗ ∈ J)→ (∗ ∈ (∗, j))

in Surj given by j 7→ j, k 7→ ∗ for k ̸= j. It gives the induced map

Z×(∗ ∈ J)→ Z×(∗ ∈ (∗, j)) = Z

for each j ∈ J − {∗}. We want to require that together these maps give rise to an
isomorphism

Z×(∗ ∈ J) →̃ZJ−{∗} ×M(∗∈J) M
′(∗ ∈ J)

In other words, Z×(⟨n⟩) →̃Zn ×Mn M′(⟨n⟩).
Say that a factorization object over M′ is a pair (Z×, α) satisfyng the following

property. For any (∗ ∈ J) ∈ Surj there is a unique active map a : J → ⟨1⟩ in Surj, it
sends each j ∈ J − {∗} to 1. Then Z×(a) fits into a diagram

ZJ−{∗} ×MJ−{∗} M′(∗ ∈ J)
Z×(a)→ Z

↓ ↓
M′(∗ ∈ J)

M′(a)→ M′(⟨1⟩) = M

We require in addition that for any (∗ ∈ J) ∈ Surj this diagram is pull-back square in
C. Compare with the def. from (Raskin, Chiral categories).

Then as far as I understand, the diagram (2.3) is the functoriality of Z× for the
diagram I ⊔∗ → J ⊔∗ → ⟨1⟩ of active morphisms. I mean you take further C = PreStk
with its cartesian monoidal structure.

When Dennis talks about ”compatibilities for higher order compositions” in this
subsection, he means compositions of surjections of pointed finite maps I1 → I2 →
I3 → . . .→ Ir, where there are more than two maps involved.

1.2.19. In 2.2.2 the definition looks like a linearized (over the sheaf of symmetric

monoidal categories Shv on Schaff/Y) version of a right-lax monoidal functor.
For 2.2.3. Check that for a diagram Y → S ← Y ′ of prestacks, we have a natural

functor Shv(Y )⊗Shv(S) Shv(Y
′)→ Shv(Y ×S Y ′). This is used in the claim 2.2.3.

If S → RanJdisj is given by the sets Ij , j ∈ J then for I = ⊔Ij making the base

change in (2.2) by this map we get S ×RanJ ZJ →̃S ×Ran Z. Since we have a natural

map S ×I,RanJ ZJ ξ→
∏

J(S ×Ij ,Ran Z), it yields

⊗
J
Shv(S ×Ij ,Ran Z)→ Shv(S ×I,RanJ ZJ) →̃ Shv(S ×Ran Z)

We can further pass to the quotient tensoring over Shv(S), because we do base change
by the diagonal map S → SJ . Everywhere the index like S×I,Ran means that the
corresponding map S → Ran is I. The map ξ is a closed immersion.

1.2.20. For 2.2.6 In the case of D-modules this should be a factorization structure on
this sheaf of categories.
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1.2.21. For 3.1.3. The map (3.3) has to be an isomorphism of A-gerbes on S.
For 3.1.4. We interprete PG as a map S × X → Bet(G) × X, where the second

component is the projection on X.
The displayed formula in 3.3.4 is true for i = 0, 1, but wrong for i = 2, should be

corrected.
Remark: the calculation of homotopy groups (see 3.2.8) shows that the spaces

FactGeA(GrG) are not isomorphic in local and global case! Do I understand correctly
that (3.10) holds for both complete and noncomplete X?

1.2.22. The definition of π1,alg(G) in 3.2.5 is correct and taken from ([5], formula (7),

p. 5), where it is proved also it is independent of a choice of G̃1. We always have an
exact sequence 1→ µ(−1)→ π1,alg(G)→ Hom(Gm, Gab)→ 1, where Gab = G/[G,G],

and µ = Ker(G̃→ [G,G]). Here G̃ is the simply-connected cover of [G,G].
I think this is the usual fundamental group (quotient of Λ by the roots lattice),

the complicated definition is to be able enentually to see the action of Aut(k) maybe?
What is it for?

A calculation of H∗(Bet(G), Q̄ℓ) for G semisimple is done in ([17], Prop. 2.2.5).

1.2.23. For 4.3.1. I think compatibility of G ∈ FactGeA(GrT ) with the group structure
on GrT means, first, that the morphism GrT → B2

et(A)× Ran is a morphism of group
prestacks over Ran, so that the total space G→ GrR of this gerbe is a group prestack
over Ran, and moreover the isomorphisms (2.5) on p. 21, Sect. 2.2.4 are required to
be isomorphism of group prestacks over RanJdisj .

Problem: find a precise rigorous definition here!

1.2.24. For 4.3.4. I think the map Map(X,B2
et(Hom(Λ, A)) → FactGecomA (GrT ) is

analogous to the fact that a Ť -torsor on X yields an object of Ext(Div(X,Λ),Gm)
given by ([2], 3.10.7.3).

Namely, commutative factorization A-gerbes on GrT give gerbes G→ GrT such that
for any finite set J our isomorphism (2.5) extends to an isomorphism

G⊠J |Gr
TJ
→̃G |GrT ×Ran RanJ

over the whole of RanJ .

1.2.25. The def ofA(1) in 1.5.1 is wrong, it is corrected as follows. For each n ≥ 1 prime
to char(k) let An = {a ∈ A | an = 1}, set An(1) = An⊗Z µn. Then A(1) = colimAn(1)
with respect to maps n | n′ for n, n′ prime to char(k).

Problem: The definition of the Kummer map from 4.3.4 is not clear.

1.2.26. Formulas in 4.3.9 is a formal consequence of Prop. 4.3.7, proof of 4.3.7 not
clear for me.

1.2.27. For 4.4.1. The action of GrT2 on GrT1 is free in any sense one can imagine. So,
GrΓ⊗Gm can be seen as a stack classifying (I ∈ Ran,P, α), where P is a GrΓ⊗Gm-torsor
on X with a trivialization over UI . Here UI is the complement of the union of the
graphs of points of X given by I. This is clearly a factorization prestack over Ran.
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1.2.28. For 4.4.5(a), in the displayed formula Ran should be replaced byX. The object
of FactGecomA (GrΓ⊗Gm) factorize in a stronger sense, such gerbe gives a morphism of
commutative group prestacks G → GrΓ⊗Gm ×RanRan

J over Ran and for any finite set
J an isomorphism of commutative group prestacks over RanJ

G⊠J →̃ f∗G,

where f : GrJΓ⊗Gm
→ GrΓ⊗Gm ×RanRan

J → GrΓ⊗Gm is the composition.
For 4.4.5(b). The following notation is used here. For abelian groups Γ, A we can

define Quad(Γ, A). Namely, this is the space of maps q : Γ → A such that (writing A
additively)

1) Γ× Γ→ A, (a, b) 7→ q(a+ b)− q(a)− q(b) is bilinear;
2) for n ∈ Z, a ∈ Γ, q(na) = n2q(a).

In 4.4.5(b), Hom(Γ, A(−1))2−tors denotes the group Hom(Γ, A(−1)2−tors) if char(k) ̸=
2 at least, where A(−1)2−tors = {a ∈ A(−1) | 2a = 0}.

The functoriality that Dennis meant in 4.5.1 is as follows. We may replace Γ by Γ/2Γ,
then there is an isomorphism Γ/2Γ →̃ (Z/2Z)K for some finite set K, so Hom(Γ, A2) =
Homsets(K,A2). For any finite set K he says he claim one has canonically for a prestack
Z

Map(Z,B2
et(Homsets(K,A2))) →̃ Hom(K,Map(Z,B2

et(A))

So, if we have construction for Z/2Z, we get a contstruction by functoriality for
(Z/2Z)K .

Even better, Hom(Γ, A2) →̃ Hom(Γ,Z/2Z)⊗A2. Each map f ∈ Hom(Γ,Z/2Z) yields
a morphism GrΓ⊗Gm → GrZ/2Z⊗Gm

. The construction of GrΓ⊗Gm is functorial in Γ.
That is, if Γ1 → Γ2 is a homomorphism, we get a map GrΓ1⊗Gm → GrΓ2⊗Gm , and the
map of factorization gerbes in the opposite direction.

1.2.29. For 5.1.3. No section M → P is needed here to get a map FactGeA(GrG) →
FactGeA(GrM ).

1.2.30. For 5.1.4. The meaning of p! is as follows. In 1.2.2 we defined the functor
Shv : (PreStk)op → DGCat. It is understood that for a morphism α : Z → Z ′ in
PreStk the corresponding morphism Shv(Z ′)→ Shv(Z) is denoted α!.

1.2.31. For 7.2.2. The action of L(G) on GrG can be spelled as follows. For S ∈ Schaff

and a point I : S → Ran we have DI ,
◦
DI as in 7.1.2. An S-point of GrG over I is given

by (cPG, α), where PG is a G-torsor on DI , α : P0
G →̃PG over

◦
DG. An S-point of L(G)

is a map ξ :
◦
DI → G. The action change the trivialization α by ξ.

1.2.32. For 5.2.1. To be precise, let us understand by detrel(gPG
, gP0

G
) the line bundle

detRΓ(X, gPG
)⊗ detRΓ(X, gP0

G
)−1.

For 5.2.4. The ratio of detG |S and detM |S here is detG
detM

.

The line

K(L) :=
detRΓ(X,E ⊗ L)⊗ detRΓ(X,E∗ ⊗ L)

detRΓ(X,E0 ⊗ L) detRΓ(X,E∗0 ⊗ L)
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is canonically independent of L ∈ Bun1. One sees that K(L(x)) →̃K(L) canonically
for x ∈ X. This argument can be also done locally, in the case when X is not complete.
This is related to my paper [23].

For 5.3.1. We have ρ̌G,M = ρ̌G − ρ̌M .

1.2.33. Explanation about Quad(Λ, A)W , where A is a torsion divisible abelian group.
Here G is any split reductive.

Note that Quad(Λ,Z) ⊗Z A →̃ Quad(Λ, A). Let κi ∈ Quad(Λ,Z)W be the Killing
form for the i-th connected component of the Dynkin diagram. Let qi ∈ Quad(Λ,Z)W
be the corresponding quadratic form, so qi(λ) = κi(λ, λ)/2 for λ ∈ Λ. Pick a short
coroot αi for any such i.

For any q ∈ Quad(Λ, A)W there are multiples bi ∈ A such that biqi(αi) = q(αi) in
Quad(Λ,Z)W ⊗ZA. Let now R = q−

∑
i biqi. Let bR be the bilinear form associated to

R, that is, bR(λ1, λ2) = R(λ1 + λ2)− R(λ1)− R(λ2) for λi ∈ Λ. Let Q be the coroots
lattice. Then 2R vanishes on Q, and for µ ∈ Q,λ ∈ Λ, 2bR(µ, λ) = 0. So, there is

q̄ ∈ Quad(π1,alg(G), A) such that 2R is the composition Λ→ π1,alg(G)
q̄→ A.

An example showing that the map Quad(Λ,Z)W ⊗Z A → Quad(Λ, A) is not al-
ways surjective: let A2 = {a ∈ A | 2a = 0}, we write A additively. A quadratic
form q : Λ → A2 such that q(α) = 0 for any short coroot α does not always lie in
Quad(Λ,Z)W ⊗Z A. For example, G = Sp4, so that Λ = Z2, where we identify in a
usual way Hom(Gm, T ) →̃Z for a maximal torus T ⊂ GL2 ⊂ Sp4. For c ∈ A2 the
quadratic form defined on (a1, a2) ∈ Z2 by q(a1, a2) = ca1a2 is W -invariant, and is not
in Quad(Λ,Z)W ⊗Z A.

1.2.34. I claim that the image of

Quad(π1,alg(G), A)→ Quad(Λ, A)

does not lie in Quad(Λ,Z)W ⊗Z A in general.
Consider an example ofG = (Spin2n)ad with n ∈ 4Z. In this case π1,alg(G) →̃ (Z/2Z)2.

We have Λ = Zn + Zω, where ω = (12 , . . . ,
1
2), the coroots are ±(ei + ej),±(ei − ej)

for i ̸= j. Consider the quadratic form q(x1, . . . , xn) =
∑

i x
2
i for x ∈ Λ. It takes

values in Z, we have an isomorphism Quad(Λ,Z)W →̃Z sending q to 1. So, elements
of Quad(Λ,Z)W ⊗Z A are those of the form x 7→ aq(x) for a ∈ A, we are writing A
additively.

Let e = (1, 0, . . . , 0), so {e, ω} is a base of π1(G) over Z/2Z. We get aq(e) =
a, aq(ω) = n

4a. So, take for example q̄ : π1(G)→ A2 linear given by q̄(e) = 0, q̄(ω) = c

for some c ∈ A2. The restriction of q̄ to Λ does not lie in Quad(Λ,Z)W ⊗Z A.
This leads to the following contradiction in the paper. By Cor. 4.4.5, any q̄ ∈

Quad(π1(G), A) can be lifted to an element of FactGeA(Grπ1,alg(G)⊗Gm
). Consider its

image under

FactGeA(Grπ1,alg(G)⊗Gm
)→ FactGeA(GrG)→ Quad(Λ,Z)W ⊗Z A,

where the second map is as in Sect. 3.2.9. We get a contradiction. So, either Cor. 4.4.5
is wrong as stated or the calculation of H4

et(B(G), A(1)) from Sect. 3.2.6 is wrong.
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1.2.35. The lemma of Reich ([32], Lm. II.7.2) badly explained should be formulated
as follows I think.

Let A be a torsion divisible abelian group. For i-th connected component of the
Dynkin diagram pick a corresponding short coroot αi. Let κi : Λ⊗Λ→ Z be the Killing
form for the i-th connected component of Dynkin diagram, and qi the corresponding
quadratic form, so qi(λ) = κi(λ;λ)/2. Let Q ⊂ Λ be the coroots lattice of G.

Lemma 1.2.36. Let q ∈ Quad(Λ,Z)W ⊗Z A. Let bi ∈ A such that biqi(αi) = q(αi)
in Quad(Λ,Z)W ⊗Z A for each i-th connected component of the Dynkin diagram. Set
R = q −

∑
i biqi. Let Λab be the coweights lattice of G/[G,G]. Then there is R̄ ∈

Quad(Λab, A) whose restriction to Λ is R.

Proof. Our q is a linear combination of forms of the form aq̃, where q̃ ∈ Quad(Λ,Z)W
and a ∈ A. If we prove our claim for q of the form aq̃ then it is also true for a linear
combination. So, assume q = aq̃ as above. Pick r ∈ N large enough such that there are
integers di with rq̃(αi) = diqi(αi) for all i. Consider q0 = rq̃−

∑
i diqi ∈ Quad(Λ,Z)W .

Let b0 be the bilinear form associated to q0, that is b0(λ1, λ2) = q0(λ1 + λ2)− q0(λ1)−
q0(λ2) for λi ∈ Λ.

As in ([37], Lemma 1.2), we get 2b0(α, λ) = 2q0(α)⟨α̌, λ⟩ = 0 for any λ ∈ Λ and any
short coroot α. Since our forms take values in Z, this gives b0(α, λ) = 0 for any λ ∈ Λ
and any short coroot α.

As we have seen in the previous section, 2q0 vanishes on Q, and 2b0(µ, λ) = 0 for

µ ∈ Q,λ ∈ Λ. Let Q̃ = {λ ∈ Λ | there is m > 0 with mλ ∈ Q}. Pick m ∈ N such

that mQ̃ ⊂ Q. We see that 2mb0(µ, λ) = 0 for µ ∈ Q,λ ∈ Λ. So, mq0 descends to a
quadratic form r̄ : Λab → Z. Since A is divisible, we are done. □

Corollary 1.2.37. The images of the Killing forms κi and of Quad(Λab, A) generate
the subgroup Quad(Λ,Z)W ⊗Z A.

1.2.38. For 6.2.1 The torus T ♯ is the maximal torus in G♯ defined as Λ♯ ⊗ Gm, so Λ♯

are coweights of G♯, and Λ̌♯ are weights of G♯.

For 6.2.2. Since the bilinear form corresponding to the gerbe GT ♯
vanishes, to show

that the quadratic form vanishes on the roots lattice of (T ♯, G♯), it suffices indeed to

show that the pull-back of GT ♯
to GrGm for any simple coroot α♯ : Gm → T of (T ♯, G♯)

is trivialized.

1.2.39. For 6.2.3 .The Z/2Z-graded factorization line bundle detGm,n has fibre in the
global case detRΓ(X,Ln) ⊗ detRΓ(X,On)−1 at (L,α : L →̃O |UI

) ∈ GrGm over I ∈
Ran.

For 6.2.4: we should precise here that it suffices to show that detGm,2n admits a
canonical 2n-th root at a factorization line bundle (the corresponding Z/2Z-grading
should be trivial!!).

For 6.2.5: the factorizable line bundles detGm,2n, detGm,1 correspond to some θ-data,
and the theta datum corresponding to detGm,2n⊗(detGm,1)

−4n has trivial Z-valued
bilinear form, so is given (according to [2], 3.10.3.1) by some Ǧm-torsor, Dennis claims

this torsor corresponds to Ω
n(2n−1)
X .
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Since the precise definition of detrel is not given, it is impossible to verify the 2nd
displayed equation in Sect. 6.2.5. That formula is true for one normalization of detrel,
not for both!!

Note that we have canonically

det(O(mx)/O)⊗ det(O(x)/O)−m →̃Ω
−m(m−1)

2
x

This calculates detGm,m⊗(detGm,1)
−m essentially.

1.2.40. For 6.3.1. It is important that (Gπ1,alg(G
♯)⊗Gm)com gives a gerbe Ran →

B2
et(Hom(π1,alg(G

♯), E∗,tors)) over the whole of Ran.
The ZH(E)tors-gerbe GZ on X is an element of

Map(X,B2
et(Hom(π1,alg(G

♯), E∗,tors))

corresponding to (Gπ1,alg(G
♯)⊗Gm)com. Here ZH(E)tors = Hom(π1,alg(G

♯), E∗,tors).
So, GZ gives rise to a ZH(E)tors-gerbe on Ran.

1.2.41. By a symmetric monoidal DG-category in 6.4.1 we mean a commutative alge-
bra object of DGCat.

For 6.4.5: my understanding is that Fact(C)GA
and Fact(C)ϵGA

are prefactorization
sheaves of monoidal DG-categories on Ran, we have an equivalence

Fact(C)GA
→̃ Fact(C)ϵGA

of sheaves of monoidal DG-categories on Ran, but this equivalence is not compatible
with the prefactorization structures.

1.2.42. Since T is an abelian group, the factorization isomorphism for GrT for a finite
set J exends to a morphism of group prestacks over RanJ

h : GrJT → GrT ×RanRan
J

sending an S-point (Fj , αj , Ij ∈ Ran), where Fj is a T -torsor on S ×Ran GrT , α :
Fj →̃F0

T |X−Ij is a trivialization to (⊗jFj , α = ⊗αj , I = ∪jIj).
For a multplicative gerbe G ∈ FactGemult

A (GrT ) we get an isomorphism h∗G →̃G⊠J

over GrJT . However, say if we consider this over X2 → Ran, this isomoprhism does not

descend to isomorphism of gerbes over GrT ×RanX
(2), see Sect. 4.2.

1.2.43. Dennis proposed a more general Satake equivalence (on Jan 13, 2018) as fol-
lows. Let Γ be a finitely generated abelian group. View Hom(Γ,Gm) as an algebraic
group. Then Satake equivalence for GrΓ⊗Gm is an equivalence

Fact(Rep(Hom(Γ,Gm))) →̃Shv(GrΓ⊗Gm)

in the notations of [13].
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1.2.44. To better understand the relation between commutative and multiplicaive A-
gerbes on Ran, one may ask the following question. Let Y be a commutative monoid
in Sets, Let S be a commutative monoid in τ≤2

Spc.
What can we say about maps of spaces MapComMon(Spc)(Y, S)→ MapMon(Spc)(Y, S)→

MapSpc(Y, S)
Are the above morphisms fully faithful embeddings? This would help to think about

multiplicativity or commutaivity of a factorization gerbe. We want to apply the above
to S = B2(A). It is not clear that commutativity defines a full subspace.

2. Comments to [13], file version May 25, 2018

2.0.1. One has Quad(Λ,Z)⊗A →̃ Quad(Λ, A). The subgroup Quad(Λ,Z)W ⊂ Quad(Λ,Z)
is saturated, that is, the cokernel is torsion free. For this reason for any abelian group A
the map Quad(Λ,Z)W ⊗ZA→ Quad(Λ, A) is injective and takes vales in Quad(Λ, A)W .

2.0.2. For Sect. A.1. Let A be a torsion abelian group, whose elements have orders
prime to char(k). We have H2

et(B(T ),Z) →̃ Λ̌(−1), and H2
et(B(T ), A) →̃ Λ̌⊗A(−1). So,

H4
et(B(T ), A) is the S2-coinvariants in H2

et(B(T ), A)⊗AH2
et(B(T ), A) →̃ Λ̌⊗ Λ̌⊗A(−2).

Consider the map Hom(Λ ⊗ Λ,Z) → Quad(Λ,Z) sending a bilinear form s to the
quadratic form q given by q(λ) = s(λ, λ). This map identifies canonically Quad(Λ,Z)
with the S2-coinvariants of Λ̌⊗ Λ̌. For this reason we get H4(B(G), A) →̃ Quad(Λ,Z)⊗
A(−2) in such a way that the coproduct is the above map Hom(Λ⊗Λ,Z)→ Quad(Λ,Z),
s 7→ q.

2.0.3. Any reductive group of semi-simple rank 1 writes as G1 × G2, where G2 is a
torus, and G1 →̃ SL2,PSL2,GL2. Indeed, just consider possible actions of the simple
reflection s on Λ. Let Λ0 = Ker α̌. The nontrivial case is when Λ0⊕Zα ⊂ Λ is of index
2. Then Λ is generated by Λ0 ⊕ Zα and an element α+u

2 for some u ∈ Λ. If u/2 ∈ Λ
then we get PSL2×G2. Otherwise, we get GL2×G2, where G2 is a torus.

Remark 2.0.4. Consider G simple simply-connected. Then Quad(Λ,Z)W →̃Z, and
there is a distinguished generator q given by the property that q(α) = 1 for any short
coroot.

2.0.5. Consider the example of G = PSLn, Λ is the coroots lattice. In this case
Quad(Λ,Z)W →̃Z is generated by a quadratic form q0 such that q0(α) = n for any
coroot.

Lemma 2.0.6. Assume A a divisible torsion group. Let q ∈ Quad(Λ, A)Wrestr. Then
there is qZ ∈ Quad(Λ,Z)W ⊗A such that q − qZ comes from Quad(π1,alg(G), A).

Proof. For each connected component of the Dynkin diagram let κj be the correspond-
ing Killing form for G, so κj =

∑
α̌∈Řj

α̌ ⊗ α̌ : Λ ⊗ Λ → Z, and Gad =
∏

j Gj .

Here Řj is the set of roots of Gj . Let qj ∈ Quad(Λ,Z)W be the quadratic form
qj(x) = κj(x, x)/2. Pick aj ∈ A such that for each j, q(α) = ajqj(α) for each

short coroot of Řj . Set qZ =
∑

j ajqj . So, q(α) = qZ(α) for any short coroot of

G. Let q̄ = q − qZ, let b̄ : Λ ⊗ Λ → A be the bilinear form associated to q̄, that is,
b̄(x1, x2) = q̄(x1 + x2) − q̄(x1) − q̄(x2). By our assumption, q̄ ∈ Quad(Λ, A)Wrestr, so
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b̄(α, λ) = 0 for λ ∈ Λ and a short coroot α. So, b̄(µ, λ) = 0 for µ ∈ Λsc, λ ∈ Λ. Here
Λsc ⊂ Λ is the coroots lattice of G. So, for λ ∈ Λ, q̄(λ) depends only on λ+ Λsc. □

2.1. Just to underline: if say A = E×,tors is the group of torsion elements of order
prime to char(k) then Bet(A) is a prestack that has a modular interpretation. For a
prestack Y , Map(Y,Bet(A)) is the space of A-torsors on Y . Question: is it possible to
make sense of this without higher category theory?

2.2. For 1.7.1. Let Y ∈ PreStk. Via the strengthening for cartesian fibrations, the
category PreStk /Y identifies with the cartesian fibraions in spaces over Schaff/Y. Let

H ∈ Grp(PreStk /Y), let X→ Schaff/Y and q̄ : X̄→ Schaff/Y be the cartesian fibration
in spaces corresponding to B(H) → Y and Bet(H) → Y. We have the natural map

X → X̄ over Schaff/Y. Now given a H-torsor on Y, that is, a section Y → Bet(H) of

the projection Bet(H) → Y, it can be seen as a section s : Schaff/Y → X̄ of q̄. Then
Split(T) is defined by the cartesian square

Split(T) → X

↓ ↓
Schaff/Y

s→ X̄

2.3. For 1.8.3. We have LS1−dim(Spec k) = { 1-dimensional local systems within Vect},
this is the space B(E×) ∈ Spc of E-lines. Therefore, we have B(E×,tors)→ B(E×)→
LS1−dim.

2.4. For 3.2.8 in the paper. Since

FactGeA(GrG) →̃ Map(Bet(G)×X,B4
et(A(1)))×Map(X,B4

et(A(1))) ∗,

we have the corresponding long exact sequence of homotopy groups

. . .→ π1 → H3(Bet(G)×X,A(1))→ H3(X,A(1))→ π0 → H4(Bet(G)×X,A(1))→ H4(X,A(1)),

where πi = πi(FactGeA(GrG)). It gives the desired calculation.

2.5. Consider a diagram G1 → G2 → G3 in ComGrp(Spc) such that G3 is the cofibre
of G1 → G2. Since ComGrp(Spc) →̃ Sptr≤0 ⊂ Sptr is stable under small colimits, it is
cocartesian in Sptr, hence cartesian in Sptr, hence G1 is a fibre of G2 → G3 in the full
subcategory Sptr≤0 →̃ ComGrp(Spc).

So, Bet(G1)→ Bet(G2)→ Bet(G3) is a cofiber sequence in ComGrp(PreStk), because

Bet preserves colimits. For any S ∈ Schaff , the value of the above sequence on S is a
fibre sequence in ComGrp(Spc) by the above. Since

ComGrp(PreStk) →̃Fun(Schaff ,ComGrp(Spc)),

we see that Bet(G1) is the fibre of Bet(G2)→ Bet(G3) in ComGrp(PreStk). Indeed, the
limits in functors are computed pointwise.
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2.5.1. The above applies in 4.4.4, 4.4.5 of the paper. Namely, given a finitely-generated
abelian group Γ, pick a presentation Γ = Λ1/Λ2, where Λ2 ⊂ Λ1 are lattices. Since
our torsion abelian group A is divisible, the sequence is exact 0 → Hom(Γ, A) →
Hom(Λ1, A)→ Hom(Λ2, A)→ 0. So,

(1) B2
et(Hom(Γ, A))→ B2

et(Hom(Λ1, A))→ B2
et(Hom(Λ2, A))

is a fibre and cofibre sequence in ComGrp(PreStk).

The oblivion functor Fun(Schaff ,ComGrp(Spc))→ PreStk preserves small limits, so
(1) is a fibre sequence in PreStk also. So, Map(X,B2

et(Hom(Γ, A)) is the fibre of

Map(X,B2
et(Hom(Λ1, A))→ Map(X,B2

et(Hom(Λ2, A))

in Spc.
If q ∈ Quad(Γ, A(−1)) there is a factorization gerbe in FactGeA(GrΓ⊗Gm) with this

quadratic form q. Indeed, pick any factorization gerbe G on GrT1 with the quadratic
form q1, the restriction of q. Let G2 be its restriction to GrT2 . Then G2 is given by
a map X → B2

et(Hom(Λ2, A)). Note that H2(X,Hom(Λ1, A)) → H2(X,Hom(Λ2, A))
is surjective. So, we may pick G′ ∈ FactGecomA (GrT1) whose restriction to GrT2 is
isomorphic to G2. Then (G′)−1 ⊗ G will give rise to a factorization gerbe on GrΓ⊗Gm .

2.6. Let I be the category of finite nonempty sets, whose morphisms are surjections
I → J . We have a functor Iop → 1−Cat, I 7→ Schaff/XI . If I → J is a surjection, the

functor Schaff/XJ → Schaff/XI is the evident one. Then

colimI∈Iop Sch
aff/XI →̃Schaff/Ran ?

Here the colimit is taken in 1 − Cat. This would be true it we considered the colimit
in 1 − Catordn ⊂ 1 − Cat, the full subcategory of ordinary categories. However, the
inclusion 1 − Catordn ↪→ 1 − Cat does not preserve colimits. Since Iop is not filtered,
this is not evident.

I wonder if the natural functor

Fun(Schaff/Ran,DGCat)→ lim
I∈I

Fun(Schaff/XI ,DGCat)

is an equivalence, where the limit is calculated in 1− Cat.

2.7. If F is a sheaf of DG-categories on Y ∈ PreStk, C ∈ DGCat is it true that
S 7→ F(S)⊗ C is a sheaf of DG-categories?

For this we ask the following. Is it true that the tensor product in 1−CatSt,cocmpl
cont pre-

serves totalizations separately in each variable? The natural functor 1−CatSt,cocmpl
cont →

1−Cat preserves limits, so the corresponding limit can be calculated in 1−Cat. The an-
swer is not clear. Question: does the tensor product in PrL preserves limits separately
in each variable? (Maybe some special limits?
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2.8. If one wants a more general sheaf theory than the 3 examples in 1.1.2 then one
will need the following. For a closed immersion i : Y → Y ′ the functor i∗ : Shv(Y ) →
Shv(Y ′) such that for a cartesian square

Y
iY→ Y ′

↑ f ↑ f ′

S
iS→ S′

we have (f ′)!iY ∗ →̃ iS∗f
!. This is needed for the functor iY ! : Shv(Y ) → Shv(Y ′) to

be symmetric monoidal. The latter property is used in the construction of Fact(C) in
6.4.1.

2.9. For 6.4.1. Let I be a finite non-empty set, f : I → I ′ a surjection. Then f induces

a full embedding Tw(I ′) ⊂ Tw(I) sending I ′ → J ′ → K ′ to I
f ′→ J ′ → K ′. Here f ′ is

the composition I → I ′ → J ′.
Let Q(I) be the set of equivalence relations on I. Recall that Q(I) is partially

ordered. As in [2], we write I ′ ∈ Q(I) for a quotient I → I ′ viewed as an equivalence
relation on I. We write I ′′ ≤ I ′ iff I ′′ ∈ Q(I ′). Then Q(I) is a lattice. For I ′, I ′′ ∈ Q(I)
we have inf(I ′, I ′′). Let now a surjection f : I → I ′ be given. We get a functor
Q(I)→ Q(I ′) sending J ∈ Q(I) to inf(J, I ′) ∈ Q(I ′).

Define a functor ξ : Tw(I) → Tw(I ′) sending I → J → K to I ′ → J ′ → K ′, where
J ′ = inf(J, I ′),K ′ = inf(K, I ′). It sends a morphism

(2)
I → J1 → K1

∥ ↓ ↑
I → J2 → K2

to the induced diagram

I ′ → J ′1 → K ′1
∥ ↓ ↑
I ′ → J ′2 → K ′2

Let FI : Tw(I)→ Shv(XI)−mod be the functor sending (I → J → K) to

Shv(XK)⊗ C⊗J

Recall that Fact(C) associates to XI → Ran the category

CXI := colim
(I→J→K)∈Tw(I)

Shv(XK)⊗ C⊗J ∈ Shv(XI)−mod

Let now f : I → I ′ be a surjection. To the closed immersion XI′ → XI the
sheaf Fact(C) associates the restriction functor CXI → CXI′ given as follows. For each
(I → J → K) ∈ Tw(I) let (I ′ → J ′ → K ′) ∈ Tw(I ′) be its image under ξ. Consider
the functor

(3) (△!)⊗m : Shv(XK)⊗ C⊗J → Shv(XK′)⊗ C⊗J
′
,

where m : C⊗J → C⊗J
′
is the product map, and △: XK′ → XK is the diagonal. Now

(3) extends to a morphism of functors FI → FI′ ◦ ξ in Funct(Tw(I), Shv(XI)−mod).
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Namely, for any morphism (2) the diagram commutes

Shv(XK1)⊗ CJ1 △!⊗m→ Shv(XK′1)⊗ CJ ′1

↓ m ↓ m

Shv(XK1)⊗ CJ2 Shv(XK′1)⊗ CJ ′2

↓ △! ↓ △!

Shv(XK2)⊗ CJ2 △!⊗m→ Shv(XK′2)⊗ CJ ′2

It uses the fact that the square is cartesian

XK1
△← XK′1

↓ △ ↓ △

XK2
△← XK′2

and the base change holds △!△∗ →̃ △∗△!.
We get natural functors

colimTw(I) FI → colimTw(I) FI′ ◦ ξ → colimTw(I′) FI′

This is the desired restriction functor. Now given S → XI , one may impliment S×XI ·
in the above formulas.

2.10. Kummer theory. For 4.2.4 of final version. Let A be a torsion abelian group,
whose elements have orders prime to char(k). Then (A(−1))(1) →̃A. The Kummer
map A × Gm → Bet(A(1)) is defined as follows. Replacing A by A(−1), it suffices
to define a map A(−1) × Gm → Bet(A). We have for each n prime with char(k) the
cover Gm → Gm, x 7→ xn giving a homomorphism Gm → Bet(µn) in ComGrp(PreStk).
Together they yield a map Gm → limnBet(µn), the limit over n prime to char(k).
Here if n | m then the map Bet(µm) → Bet(µn) is induced by the hohmomorphism

µm → µn, x 7→ xm/n. The desired map is the composition A(−1) × Gm → A(−1) ×
limnBet(µn)→ Bet(A), where the second map is

(colimmHom(µm, A))× lim
n

Bet(µn)→ Bet(A)

restricted to Hom(µm, A)×limnBet(µn) is the composition Hom(µm, A)×limnBet(µn)→
Hom(µm, A) × Bet(µm) → Bet(A), the latter map being the extension of scalars via
f : µm → A of our µm-torsor.

My understanding is that the Kummer theory claims that the induced map A(−1)→
HomGrp(PreStk)(Gm, Bet(A)) is an isomorphism. The Kummer theory is: let T be a split
torus over our field k. Then the canonical map

Hom(Λ, A(−1))→ HomGrp(PreStk)(T,Bet(A))

is an isomorphism. It associates to T → Bet(A) the map ν : Λ→ A(−1) such that for

λ ∈ Λ, ν(λ) corresponds to the composition Gm
λ→ T → Bet(A).
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2.11. For 6.4.1. One needs to assume that that C is dualizable.
Dennis explained that if Y ∈ PreStk, C ∈ DGCat is dualizable then we can garantee

that S 7→ Shv(S)⊗C is a sheaf in Fun(Schaff/Y,DGCat), not just a presheaf. Moreover,
under this assumption, colimTw(I) Shv(S ×XI XK) ⊗ C⊗J can be rewritten as a limit
over Tw(I)op of the right adjoint functors. For this reason Fact(C) will be a sheaf.

This works because for any surjection of finite non-empty sets K → K ′ the functor
△!: Shv(X

K′)→ Shv(XK) admits a right adjoint.

2.12. Dennis claims the following suprising thing! Let A be a torsion abelian group,
so B(A) ∈ ComGrp(Spc). Then there could be a nontrivial exact sequence 1→ B(A)→
G→ Z→ 1 in ComGrp(Spc). In other words, this is a fibre sequence in ComGrp(Spc),
and π0(G) → Z is surjective. There could be the situation when G is not isomorphic
to B(A)× Z in ComGrp(Spc).

He proposes to take G = B(A) × Z as an object on Grp(Spc) and to introduce a
nontrivial commutativity constraint. Namely, define the commutativity constraint by
the isomorphism: for n,m ∈ Z,

(n+m,F1
A ⊗ F2

A) = (n,F1
A)(m,F2

A) →̃ (m,F2
A)(n,F

1
A) = (n+m,F1

A ⊗ F2
A)

given by multiplication by some β(n,m) : F1
A⊗F2

A →̃F1
A⊗F2

A. Here β(n,m) ∈ A, and
Fi
A are A-torsors.
A definition of a strictly commutative Picard category (champs de Picard strictement

commutatifs ) is given in (SGA4, Exp. 17, Deligne, Formule de la dualité globale, Sect.
1.4.1). By this definition, to get a strictly commutative Picard category structure on
the above G, we must impose the following conditions:

• for n ∈ Z, β(n, n) = 1;
• for n,m ∈ Z, β(n,m)β(m,n) = 1
• hexagon axiom, which in this case says that for x, y, z ∈ Z,

β(y, z)β(x, z) = β(x+ y, z)

(we write A multiplicatively). So, β : Z × Z → A is bilinear, anti-symmetric and
alternating. We see that in our case there is no nontrivial strictly commutative structure
on B(A)× Z.

But there exist nontrivial commutative structures! Under the equivalence

ComGrp(Spc) →̃ Sptr≤0

(we use cohomological idexing conventions), the subcategory of G ∈ ComGrp(Spc)

with πi(G) = 0 for i > 1 becomes Sptr[−1,0]. This is the category of Picard groupoids
described in ([21], Sections 2-3). For a free abelian group Λ of finite type and abelian
group M , Ext2Sptr(Λ,M) →̃ Hom(Λ,M2), where M2 ⊂ M is the subgroup of 2-torsion
in M .

2.13. The definition of FactGemult
A (GrT ) and FactGecomA (GrT ) was not given in the

paper. Dennis meant the following definition.
There is the (∞, 1)-category FactPreStk/Ran of factorizable prestacks over Ran.
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3. Comments to the 1st joint paper with Dennis: version July 4, 2018
(essentially the same as April 28, 2019)

3.0.1. For 0.4.6. For C,D ∈ DGCat the tensor product C ⊗ D denotes the tensor
product over Vect. The isomorphism (R1 − mod ) ⊗ (R2 − mod ) →̃ (R1 ⊗ R2) −
mod is a particular case of (ch. 1, Prop. 8.5.4, [15]).

3.0.2. In 1.1.7 if H is a monoidal (∞, 1)-category, by an action of H on C ∈ 1−Cat we
mean a monoidal functor H → Fun(C,C). We have a monoidal functor B(E∗)→ Vect
sending a line ℓ to ℓ. Since Vect acts on any C ∈ DGCatcont, we get an action of B(E∗)
on C.

3.0.3. Recall that τ≤n Spc ⊂ Spc is stable under filtered colimits (HTT, 5.3.5.6). This

is used in 1.2.4: if F ∈ PreStklft is such that its restriction to (Schaffft )op takes values

in n-trunctaed spaces then Y itself is n-truncated.

3.0.4. In 1.2.5 the sheafification functor Let : PreStk→ Stk sends n-truncated objects
to n-truncated objects, because it is left exact (HTT, 5.5.6.16).

3.0.5. For 1.2.6. The formula Stklft := Stk ∩ PreStklft ⊂ PreStk from that section is
to be compared with 1st displayed formula in ([15], ch. I.2, 2.7.8).

3.0.6. For 1.3.3. Let Y be a prestack. Recall that we have an equivalence

F : PreStk/Y →̃Fun((Schaff/Y )op, Spc)

Write StkY for the category of objects of Fun((Schaff/Y )op,Spc) that satify the descent

for the etale topology on the category Schaff/Y . Clearly, F sends Stk/Y to the full sub-

category StkY . The obtained functor Stk/Y ↪→ StkY is fully faitful but not essentially
surjective in general. For example, if Y is not a stack, consider the constant functor

f : (Schaff/Y )op → Spc with value ∗. Then F−1(f) →̃Y , so it is not in Stk/Y .

Write L : Fun((Schaff/Y )op,Spc) → StkY for the sheafification functor. Let X ∈
PreStk, Xet its sheafification on Schaff . Is it true that L(X × Y ) identifies with
Xet × Y ? In the main body of the paper we rather use spaces like Map(S,B2

et(A))
without refering to any base prestack Y , that is, we rather use Xet × Y instead of
L(X × Y ).

If Z is a truncated prestack (taking values in τ≤m Spc for some m then for the etale

sheafification Let(Z), the restriction of Let(Z) to (Schaff/Y )op concides with the sheafifica-

tion in the etale topology on Schaff/Y of the composition (Schaff/Y )op → (Schaff )op
Z→ Spc.

This follows from the explicit formula for the sheafification of truncated prestacks ([15],
ch. 2, 2.5.2).

In particular, for an abelian group A the restriction of Bi
et(A) to (Schaff/Y )op coincides

with Bi
et,/Y (A).
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3.0.7. The inclusion PreStklft ⊂ PreStk is stable under the finite limits because of
(HTT, 5.3.4.7) and under all colimits. See also ([15], ch. 2, 1.6.8). In particular,
if F • : ∆op → PreStklft then | F • | is also locally of finite type. In particular, if
G ∈ Grp(PreStk), and G ∈ PreStklft then B(G) ∈ PreStklft.

Example, if Z ∈ Spc, we may consider the constant prestack Z with value Z. It is
locally of finite type. Indeed, for any Y ∈ PreStk,

Map(Y,Z) = MapPreStk(Y,Z) →̃ MapSpc(Y (∅), Z)

If S ∈ Schaff then S(∅) = ∗, and we get MapPreStk(S,Z) →̃Z. So, if S = limi∈I Si is a

filtered limit in Schaff then Map(S,Z) →̃ colimiMap(Si, Z), because I is contractible.
In particular, if A is an abelian group then A ∈ PreStklft, hence Bi(A) ∈ PreStklft

for any i. Now Bi
et(A) ∈ Stklft by Cor. 1.2.8 from the paper.

3.0.8. Let K,C ∈ 1− Cat and C admits finite limits. Then for k ≥ 0,

Ek(Fun(K,C)) →̃Fun(K,Ek(C))

naturally. So, if X ∈ Ek(C), Y ∈ C then MapC(Y,X) is naturally an object of
Ek(Spc). Indeed, the Yoneda embedding C → P(C) induces by applying Ek a func-
tor Ek(C) → Ek(P(C)) →̃Fun(Cop,Ek(Spc)), because the Yoneda embedding preserves
all limits, which exist in C by (HTT, 5.1.3.2). The diagram commutes

Ek(C) → Fun(Cop,Ek(Spc))
↓ ↓
C → P(C),

where the vertical arrow are the oblivion (forgetful) functors. This is used in Section
1.3.2 of the paper.

If moreover X ∈ Grp(C) then MapC(Y,X) ∈ Grp(Spc). Indeed, this follows from
([22], Remark 2.5.18).

3.0.9. The Z-module µpro
∞ = limµn is flat, bacause it is torsion free. Here the limit

is taken over the poset N. If n | m then µm → µn, x 7→ xm/n. For any n ≥ 1
we have µpro

∞ ⊗Z Z/nZ →̃µn. If A is a torsion abelian group then for any n ≥ 1,
µn⊗Z/nZAn−tors →̃µpro

∞ ⊗ZAn−tors ⊂ µpro
∞ ⊗ZA is a subgroup. Tensor product commutes

with colimits, so µpro
∞ ⊗Z A →̃ colimn(µ

pro
∞ ⊗Z An−tors).

In 1.4.1 given n | n′ | n′′, we identify µn′ ⊗Z/n′Z An−tors with µn′′ ⊗Z/n′′Z An−tors via

the map µn′′ → µn′ , x 7→ x
n′′
n′ . In

colim
n∈N

(µn′ ⊗Z/n′Z An−tors)

the transition maps are as follows. Given n | m | m′, we have µm′ ⊗Z/m′Z An−tors ↪→
µm′ ⊗Z/m′Z Am−tors.

3.0.10. For 1.4.2. A generalization of this procedure for T -torsors instead of line
bundes. Let Λ1 ⊂ Λ be free abelian groups (subgroup of finite index). Let T1 =
Λ1 ⊗ Gm, T = Λ ⊗ Gm. The map T1 → T is surjective, let K be its kernel. Then
K →̃ (Λ/Λ1)(1) canonically. We have the natural map T → Bet(K) in ComGrp(Stk),
hence in turn B(T )→ B2

et(K) in ComGrp(Stk). So, for a homomorphism a : K → A,
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each T -torsor FT on a prestack Y yields a A-gerbe (FT )
a via extension of scalars. It is

referred to in 4.3.6 of version June 1, 2020.

3.0.11. For 1.5.4: the functor Shv : (PreStklft)
op → DGCat preserves small limits

by (HTT, 5.1.5.5). Indeed, its opposite (PreStklft) → DGCatop is the LKE under

Schaffft ↪→ PreStklft →̃P(Schaffft ).

The symmetric monoidal structure on (Schaffft )op is cocartesian (HA, 3.2.4.10), so

CAlg((Schaffft )op) →̃ (Schaffft )op by (HA, 2.4.3.10). This is why the symmetric monoidal

structure on the functor Shv : (Schaffft )op → DGCat gives rise to a functor (Schaffft )op →
CAlg(DGCat).

The category (PreStklft)
op admits finite colimits, we consider it as equipped with

the cocartesian symmetric monoidal structure, so CAlg((PreStklft)
op) →̃ (PreStklft)

op.
Consider the functor Shv : (PreStklft)

op → DGCat. It inherits a right-lax non-unital
symmetric monoidal structure? Nonrigorous explanation: if Y1, Y2 ∈ PreStklft then

pick presentations Y1 →̃ colimi S
i
1, Y2 →̃ colimj S

j
2 with Si

1, S
j
2 ∈ Schaffft . Then clearly

Y1×Y2 →̃ colimi,j S
i
1×Sj

2 in PreStklft, as PreStklft is an∞-topos (colimits are univer-

sal). This gives a natural map Shv(Y1)⊗Shv(Y2)→ Shv(Y1×Y2) →̃ limi,j Shv(S
i
1×S

j
2),

because Shv(Y1) →̃ limi Shv(S
i
1) and similarly for Y2.

Recall that if f : C1 → C2 is a symmetric monoidal functor between symmetric
monoidal ∞-categories then fop : Cop

1 → C
op
2 is also symmetric monoidal. So, Shv :

Schaffft → DGCatop is symmetric monoidal. However, we can not apply now (HA,

4.8.1.10) to its left Kan extension P(Schaffft )→ DGCatop, as DGCatop does not satisfy

the assumptions.

3.0.12. For 1.6.2. The rigorous definition of the ∞-category ShvCat(Y ) of sheaves
of DG-categories over Y ∈ PreStk is given as in ([9], Sect. 1.1.1). Namely, we take

the RKE of the functor (Schaffft )op → 1 − Cat, S 7→ Shv(S) − mod with respect to

(Schaffft )op ⊂ (PreStklft)
op. We see also ShvCat(Y ) is a symmetric monoidal ∞-

category. Indeed, the forgetful functor CAlg(1 − Cat) → 1 − Cat preserves limits,

so we may first consider the functor (Schaffft )op → CAlg(1 − Cat), then take its RKE

to (PreStklft)
op. The category ShvCat(Y ) admits small colimits (proof using my [22],

around Lemma 2.2.67).
On the other hand, it is not clear if the category ShvCat(Y ) admits small limits,

because for a map f : S → S′ in Schaff the functor f ! : Shv(S′) → Shv(S) does not
preserve small limits. It only does preserve them for f proper, Dennis says. Indeed,
for f proper, f ! : Shv(S′) → Shv(S) is known to admit a left adjoint. For the sheaf
theory of D-modules, ShvCat(Y ) admits limits, see my Section 3.7.

We get a functor Γenh : ShvCat(Y ) → Shv(Y ) − mod as in [9], it is right-lax
symmetric monoidal. It has a left adjoint LocY : Shv(Y )−mod→ ShvCat(Y ) sending
C to the sheaf of categories S 7→ C ⊗Shv(Y ) Shv(S). The functor LocY is symmetric
monoidal.
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If S ∈ Schaffft , Z ∈ PreStklft and f : Z → S then the functor coresf : ShvCat(S)→
ShvCat(Z) of restriction has a right adjoint. Indeed, by (Th. 2.6.3, [9]), SdR is 1-affine.

Now coresf is the composition Shv(S)−mod→ Shv(Z)−mod
LocZ→ ShvCat(Z). Each

functor in this diagram has a right adjoint, so coresf also has one.
For an arbitary map f : Y1 → Y2 in PreStklft the functor coresf : ShvCat(Y2) →

ShvCat(Y1) probably does not have a right adjoint, not clear.

3.0.13. For 1.6.4. If Y is an ind-scheme of ind-finite type then YdR is 1-affine. By

definition, Y is a filtered colimit of Si ∈ Schaffft , the transition maps Si → Sj being

closed immersions. For Y ∈ PreStk, D − mod(S) is defined as QCoh(YdR). For any

map f : S1 → S2 in Schaffft and a prestack Z locally of finite type with Z → S2 the

functor

(4) Shv(S1)⊗Shv(S2) Shv(Z)→ Shv(S1 ×S2 Z)

is an equivalence. Indeed, apply ([9], Lemma 3.2.4) for (S1)dR
f→ (S2)dR

h← ZdR and
the sheaf C = coindh(QCoh) using the fact that (Si)dR is 1-affine by ([9], Th. 2.6.3).

Remark 3.0.14. If S ∈ Schaff is not of finite type then we don’t know if SdR is 1-
affine. For this reason, it is not clear if (4) is an isomorphism. For this reason, we
should note that in [9] the original definition of a ”quasi-coherent sheaf of categories”

used the whole category Schaff/Y for a prestack Y . In our situation, ShvCat(Y ) is defined

as lim
(Schaffft )/Y

Shv(S)−mod. Such theory of sheaves seems to be adopted to prestacks

locally of finite type. Indeed, for Y ∈ PreStklft, Y = colimS→Y S, the colimit over

(Schaffft )/Y . So, for Y ∈ PreStklft,

lim
(Schaff

/Y
)op

Shv(S)−mod →̃ lim
((Schaffft )/Y )op

Shv(S)−mod

3.0.15. For 1.6.5. Let Y ∈ PreStklft, C be a sheaf of DG-categories over Y . Let

C̄ : ((Schaffft )/Y )
op → DGCat be the functor obtained from C by forgetting the Shv(S)-

module structure on each C(S, y). Then C̄ satisfies the etale descent. Here ([9], Th.
1.5.2) is good but is not sufficient.

The following is true. Let T → S be an etale surjective map in Sch. Then TdR → SdR

is an etale surjection in PreStk. Indeed, let S′ ∈ Schaff and y : S′ → SdR be any map
given by S′red → S. Let us show that S′×SdR

TdR is a scheme etale over S′. First, there
is an equivalence of categories {schemes etale over S′} →̃ {scheme etale over S′red} given
by U 7→ U ×S′ S

′
red, see ([35], 15.2). So, the etale surjective map ā : S′red ×S T → S′red

yields an etale morphism a : T ′ → S′, where T ′ is a scheme. The base change of a by
S′red ↪→ S′ is ā. We claim that

S′ ×SdR
TdR →̃T ′

over S′. Indeed, for Z ∈ Schaff , Z-point of S′ ×SdR
TdR is a map Z → S′ and a

compatible map Zred → S′red ×S T over S′red. By ([35], 15.1), this is precisely a datum
of a map Z ′ → T ′.
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Now by ([9], 1.5.5), Shv : (Schaffft )op → DGCat satisfies etale descent. Question.

How this argument extends to any sheaf C ∈ ShvCat(Y ) for a prestack locally of finite
type as in our Sect. 1.6.5?

It seems, in ([16], Sect. 3) it is proved more generally that Shv satisfy fppf descent
(namely, crystals satisfy it).

3.0.16. If Y ∈ PreStklft then ShvCat(Y ) admits limits? It is not clear. The problem

is to check that if S → S′ is a map in (Schaffft )/Y then the functor Shv(S′) −mod →
Shv(S)−mod, C 7→ C ⊗Shv(S′) Shv(S) preserves limits.

It is true that for S ∈ Schaffft , Shv(S) = QCoh(SdR) is dualizable. Indeed, the latter

category is compactly generated.
To see this, use ([16], Lemmas 2.2.6) saying that oblvl : QCoh(SdR) → QCoh(S) is

conservative, and ([16], 3.4.7) saying that this oblvl has a left adjoint. Apply ([15], ch.
I.1, 5.4.3) and the fact that QCoh(S) is compactly generated.

Though we know dualizability of Shv(S), it is not clear if Shv(S) is dualizable as
a Shv(S′)-module, because Shv(S′) is not rigid in general. However, we know this for
D-modules (Sam Raskin email of 6.02.2020 and Lin Chen).

3.0.17. For 1.6.6. There we may take indeed arbitrary colimits in the formula for C(Z)
because of the following. Let C ∈ 1−Cat be small, D ∈ 1−Cat be cocomplete, Y ∈ P(C)
and C/Y = C ×P(C) P(C)/Y . Let f : C/Y → D be a functor, f̄ : P(C)/Y → D be the

LKE of f along C/Y ↪→ P(C)/Y . Then f̄ preserves colimits (see [22], Lm. 2.2.40).

In Sect. 1.6.6 the assumption Z →̃ colimi Si means that (Si, yi) ∈ Schaffft /Y and the

colimit is taken in (PreStklft)/Y, or what is the same, in PreStklft →̃P(Schaffft ).

3.0.18. For 1.6.7. The colimits in PreStk are universal. Let Z → Y be a map in
PreStklft. Since colim

(S→Y)∈(Schaffft )/Y
S →̃Y in PreStklft and PreStk, we get

colim
(S→Y)∈(Schaffft )/Y

S ×Y Z →̃Z

So, for C = Shv(Z)/Y we get C(Y) →̃ lim
(S→Y)∈((Schaffft )/Y)

op

Shv(S×Y Z) →̃ Shv(Z) by Sect.

1.5.4 of the paper.

3.0.19. For 1.6.8. The fact that these functors are mutually adjoint is proved as in
([9], 1.3.1), where there is no proof actually. I wrote down the corresponding proof in
my file ([24], 0.0.4).

3.0.20. Let C be a small category, Y ∈ P(C). Consider the functor a : P(C)/Y →
P(C/Y ) sending Z to the presheaf (c

α→ Y ) 7→ Z(c) ×Y (c) {α}. Consider also the
functor b : P(C/Y ) → P(C)/Y sending Z ′ : (C/Y )

op → Spc to the presheaf given

informally by S 7→ {α ∈ Y(S), z ∈ Z ′(S, α)}. The formal definition: let Z̄ ′ → (C/Y )
op

be the cocartesian fibration corresponding to Z ′. Then b(Z ′) is the functor Cop → Spc
such that the corresponding cocartesian fibration in spaces over Cop is the composition
Z̄ ′ → (C/Y )

op → Cop. Then a and b are inverses of each other.
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3.0.21. Category of equivariant sheaves. Sam explains by email how to define the
category of equivariant objects (our definition of the twist of a sheaf of categories by

a gerbe in 1.7.2 is not rigorous). If the map f : X → Y in Schaff is smooth of
relative dimension n then the functor f ! : Shv(Y ) → Shv(X) admits a continuous
right adjoint, say f∗[−2n] : Shv(X) → Shv(Y ). Now if f : X → Y is an affine
schematic morphism in PreStk, assume it is smooth of some relative dimension. That

is, for any S ∈ Schaff/Y , S ×Y X → S is a smooth morphism of affine schemes. Then

the functor f ! : Shv(Y ) → Shv(X) also admit a continuous right adjoint by ([15], ch.
1, 2.6.4).

More generally, if I → Fun([1],PreStklft) is a functor sending i to (Xi
fi→ Zi), assume

that each f !
i : Shv(Zi)→ Shv(Xi) admits a continuous right adjoint (fi)∗[−2n]. Then

let f : X = colimXi → Z = colimZi be the colimit in PreStklft. For any i→ j in the
index category let αij : Xi → Xj and βij : Zi → Zj denote the transition maps, assume
the square is cartesian

Xj
fj→ Zj

↑ ↑
Xi

fi→ Zi

Then the diagram commutes

Shv(Xi)
α!
ij← Shv(Xj)

↓ (fi)∗ ↓ (fj)∗

Shv(Zi)
β!
ij← Shv(Zj)

Then f ! : Shv(Z) → Shv(X) also admits a continuous right adjoint by ([15], ch. 1,
2.6.4). This is because our functors are actually functors out of correspondences (see
[15]).

Let G be a group object of Schaff , it is given by a functor G : ∆op → Schaff . Assume
G is locally of finite type and smooth of dimension n. Then for any map α : [i]→ [j] in
∆ the induced map Gα : Gj → Gi is such that (Gα)! : Shv(Gi)→ Shv(Gj) admits a right

adjoint. Passing to the right adjoints in the functor ∆
G→ (Schaff )op

Shv→ DGCatcont,
we get a functor ∆op → DGCatcont. I think this uses the (∞, 2)-category structure on
DGCatcont, and the procedure of passing to right adjoint is described in ([15], vol. 1,
Appendix: (∞, 2)-categories).

Then incorporating shifts and additionally composing with the corresponding mor-
phisms Shv(G)⊗ . . .⊗Shv(G)→ Shv(G× . . .×G) = Shv(Gm) for all m ≥ 0, we get on
Shv(G) a structure of a monoidal DG-category, that is, an algebra object in DGCat.

So, the product in Shv(G) is given by Shv(G) ⊗ Shv(G) → Shv(G × G)
m∗→ Shv(G).

Even if Shv is only right-lax monoidal, this construction works.
A better explanation (similar to the one given in [15], ch. I.3, 2.2.4 for quasi-coherent

sheaves, see also ([22], 10.2.5)): consider the 1-full subcategory PreStkind−sch ⊂ PreStklft,
where we restrict 1-morphisms to be ind-schematic. Then we have a well-defined func-
tor

ShvPreStkind−sch
: PreStkind−sch → DGCatcont



28

sending Y to Shv(Y ) and a morphism f : Y → Y ′ to f∗ : Shv(Y ) → Shv(Y ′).
Moreover, this functor is right-lax symmetric monoidal, so sends algebras to algebras.
So, if G is an algebra in PreStkind−sch, Shv(G) will become a monoidal DG-category
with the monoidal convolution structure.

Similarly, if X ∈ PreStklft is equipped with a G-action then for any map α : [i]+ →
[j]+ in ∆+ and the corresponding map Tα : G × . . . × G ×X → G × . . . × G ×X in
PreStklft the correspnding functor (Tα)! : Shv(G×. . .×G×X)→ Shv(G×. . .×G×X)
admits a right adjoint. For example, the action map G × X → X is smooth, as it is

the composition G×X
act× pr1→ X ×G

pr1→ X. By the same token, we see that Shv(X)
is equipped with a left action of Shv(G). The action map is the composition

Shv(G)⊗ Shv(X)→ Shv(G×X)
m∗→ Shv(X)

Let now L be a character sheaf on G. Sam says that since L is placed in the heart
of the t-structure of Shv(G), the notion of a character sheaf should not involve any
coherent-homotopy issues. What is the precise claim?

Our L is a local system on G equipped with m∗L →̃L⊠L, where m∗ = m![−2n], n =
dimG. For the unit i : Spec k → G we have a distinguished trivialization c : i∗L →̃E.
Note that i∗E is the unit of the convolution monodal structure on G. Thus, c yields
the counit map L → i∗E in Shv(G), and L is naturally a coalgebra in Shv(G) for

the convolution monoidal structure. Sam proposes to define the category Shv(X)(G,L)

of sheaves on X that are (G,L)-equivariant as L − comod(Shv(X)), the category of
comodules for this comonad.

In such a way, given a E×,tors-gerbe on Y ∈ PreStk, one defines ShvG(Y ). Namely,

let Ỹ be the total space of this gerbe, so this is a Bet(E
×,tors)-torsor over Y . Equip

Shv(Bet(E
×,tors)) with the convolution monoidal structure, then it acts naturally on

Shv(Ỹ ). Besides, E ∈ Shv(Bet(E
×,tors)) is a character sheaf on this stack, and E×,tors

acts on it by the tautological character. So, E is a coalgebra in Shv(Bet(E
×,tors)) giving

rise to a comonad on Shv(Ỹ ). Then ShvG(Y ) is defined as the category of comodules
over this comonade. More general definition of the twist is giving in my Section 3.6.1.

3.0.22. Consider the situation in the previous subsection with L = E. Recall that

Shv(X/G) →̃ lim[Shv(X) ⇒ Shv(G × X)
−→−→−→ . . .] taken in DGCatcont. We claim that

the natural functor ev0 : Shv(X/G) → Shv(X) is comonadic. Namely, apply ([9],
Lemma C.1.9). To check that our co-simplicial category satisfies the ([9], Def. C.1.3),
we note that for any n for the map id× act : (G× . . .×G)×G×X → (G× . . .×G)×X
the functor (id× act)! : Shv((G × . . . × G) × X) → Shv((G × . . . × G) × G × X)
admits a right adjoint, and for any map α in ∆ denoting α! : Shv(G× . . .×G×X)→
Shv(G×. . .×G×X) the corresponding map, we have α!(id× act)∗ →̃ (id× act)∗(α+1)!.

The corresponding comonad is the functor (act)∗ pr
∗ : Shv(X) → Shv(X) for act :

G ×X → X,pr : G ×X → X and n = dimG. Here pr∗ = pr![−2n]. We see that this
comonad comes from the fact that the constant sheaf E is a coalgebra in Shv(G) for

the convolution monoidal structure. This justifies the definition of Shv(X)(G,L) from
the previous subsection.

3.0.23. Ran ∈ PreStklft, because PreStklft ⊂ PreStk is stable under all colimits.
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3.0.24. The 1-affineness of SdR for S ∈ Schaffft gives the following. First, if Z ∈
PreStklft, S ∈ Schaffft then Shv(S × Z) →̃Shv(S) ⊗ Shv(Z). Assume now Shv(Z)

dualizable. Recall that for C ∈ DGCat dualizable, the functor DGCat → DGCat,
D 7→ D ⊗ C commutes with limits by ([22], Lm. 3.1.2). So, if Z′ ∈ PreStklft is

written as Z′ →̃ colimi Si in PreStklft with Si ∈ Schaffft then Shv(Z′) →̃ limi Shv(Si)

and Shv(Z′) ⊗ Shv(Z) →̃ limi(Shv(Si) ⊗ Shv(Z)) →̃ limi Shv(Si × Z) →̃ Shv(Z′ × Z),
because Z′ × Z →̃ colimi(Si × Z) in PreStklft.

This was used in 2.2.3: if Z is a factorizable prestack such that Shv(XI ×Ran Z) is
dualizable for any I then for a surjection of finite nonempty sets I → J one gets

⊗
j∈J

Shv(XIj ×Ran Z) →̃Shv(
∏
j∈J

(XIj ×Ran Z))

We also used the following consequence of Th. 1.6.9: if S ∈ Schft non necessarily affine
then the functors denoted (1.14) and (1.15) in the paper are equivalences. This is why
it suffices to get the equivalence of Section 2.2.3 in the case S = XI

disj,J for π : I → J

surjective, this scheme is not necessarily affine! Here XI
disj,J is the scheme of (xi) ∈ XI

such that if π(i) ̸= π(i′) then xi ̸= xi′ . There is a misprint in the paper, where the
scheme XI

disj is mentioned instead.
We also used the following: given symmetric monoidal DG-categories Ai with Ci ∈

Ai −mod and a map ⊗n
i=1Ai → B in DGCatSymMon

cont , we have

(⊗iCi)⊗(⊗Ai) B →̃ ⊗i,B (Ci ⊗Ai B)

(trivial: extend the scalars first to ⊗iAi and then to B). The first isomorphism in
the long displayed formula in the paper uses the fact that Shv(XIj ×Ran Z)⊗

Shv(XIj )

Shv(XI) →̃Shv(XI ×Ran Z) for the projection XI → XIj by 1.6.4.

3.0.25. For 1.6.9. The reference for [Ga1, Th. 1.5.2] in the paper is a wrong reference,
the correct one is [Ga1, Th. 2.6.3].

3.0.26. Factorization prestacks over Ran. For 2.2.1. Let Z → RanX be a map in
PreStk. The definition of a factorization structure on Z is not precise. The correct
one is given as in [30]. Namely, let PreStkcorr be the category of correspondences in
prestacks ([30], 4.28). Equip RanX with the structure of a non-unital commutative
algebra in PreStkcorr given by the chiral mutliplication. The chiral product in RanX
is given by Ran2X ← Ran2X,disj → RanX . Then Z → RanX has to be a morphism of
non-unital commutative algebras in PreStkcorr such that for any nonempty finite set J
the induced map

ZJ ×RanJX
(RanJX)disj → Z ×RanX (RanJX)disj

is an isomorphism.
Similarly, let C be a sheaf of DG-categories over RanX (in the sense of ([13], 1.6.2).

A precise definition of a factorization structure on C is a non-unital chiral category
([30], Def. 6.2.1).
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3.0.27. For 2.2.4. The rigorous definition of a factorization gerbe is as follows. Let
Z be a factorization prestack over Ran, A be a torsion abelian group. Since A is a
commutative group in Spc, B2

et(A) is a commutative group in PreStk, hence also in
PreStkcorr. So, Ran×B2

et(A) is an object of CAlgnu(PreStkcorr), the category of non-
unital commutative algebras in PreStkcorr. The space of factorization gerbes on Z is
the space

MapCAlgnu(PreStkcorr)(Z,Ran×B
2
et(A))×MapCAlgnu(PreStkcorr)

(Z,Ran) ∗

based changed by MapPreStk(Z,Ran×B2
et(A))→ MapPreStkcorr(Z,Ran×B

2
et(A)).

However, Ran×B2
et(A) is a not a factorization prestack over Ran in our sense!

If Z is 0-truncated, the space of factorizable A-gerbes on Z lies in τ≤2
Spc.

3.0.28. For 2.3.2. If S ∈ Schaffft it is known that Shv(S) ∈ DGCatcont is dualizable.

Now if Z →̃ colimi∈I Zi, where Zi ∈ Schaffft and the transition maps Zi → Zj are closed

immersions then Shv(Z) is dualizable!
Indeed, for i → j in I let h : Zi → Zj be the corresponding closed immersion, so

h! : Shv(Zj) → Shv(Zi) admits a left adjoint h! : Shv(Zi) → Shv(Zj) by ([8], 1.5.2).
By definition, Shv(Z) →̃ limi∈Iop Shv(Zi). It also rewrites as colimi∈I Shv(Zi) because
of ([22], Section 9.2.6), the colimit taken in DGCatcont. Now we may apply ([10], Lm.
2.2.2), which is actually an analog of ([15], ch. 1, Pp. 6.3.4). This shows that Shv(Z)
is dualizable.

3.0.29. For 3.1.2, line 3: there the category MapPtd(PreStk/X)(B(G) × X,B4
et(A(1)))

does not make sense, it is actually

(5) MapPreStk(B(G)×X,B4
et(A(1)))×MapPreStk(X,B4

et(A(1))) ∗

where the distinguished point is the map X → ∗ → B4
et(A(1))). In (5) we may replace

if needed B(G) by Bet(G), because sheafification is a localization functor.

3.0.30. For 3.1.5. More precisely, for i = 3 or 4 and any element s of Hi
et(S×X,A(1))

or Hi−1
et (UI , A(1)) there is an etale cover S′ → S such that the restriction of s to S′×X

(or respectively, UI for S′) vanishes.
For 3.1.6. Note that Aet is 0-truncated prestack, so for Y ∈ PreStk, H0

et(Y,A) =
Map(Y,Aet) is a set.

In the version of June 1: a simple idea. If i : Y → Z is a morphism, Y = ⊔jYj then

i!F →̃ ⊕ i!jF .

In our case the isomorphism i!AS×X(1)[2] →̃π!AS is the isomorphism

⊕
j
i!jAS×X(1)[2] →̃π!AS

It is the sum of isomorphisms i!jAS×X(1)[2] →̃π!
jAS , where πj : Γj → S is the projec-

tion.
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3.0.31. For 3.1.11. By relative cohomology here we mean really the abstract definition
as on nlab, because X → B(G)×X is not a closed immersion. Formula (5) shows this
is the relative cohomology of the map X → B(G)×X with respect to ∗ → B4

et(A(1))
in the ∞-topos PreStk.

In general, given a map f : Y → X of prestacks, letK → A→ f∗A be a distinguished
triangle in the derived category of sheaves on X then by Hi

et(X;Y,A) one should mean
Hi

et(X,K). If

Z →̃ Map(X,Bi
et(A))×Map(Y,Bi

et(A)) ∗

then for j ≤ i we get πj(Z) →̃H i−j
et (X;Y,A).

3.0.32. For 3.2.3. If α
2 ∈ Λ then b(s(α2 ), s(λ)) = b(α2 , λ) for the reflexion s correspond-

ing to α. This yields b(α, λ) = ⟨α̌, λ⟩q(α).
The map Quad(Λ,Z)⊗A→ Quad(Λ, A) is an isomorphism. First, we check surjec-

tivity. Given q ∈ Quad(Λ, A) we may first pick a bilinear form ϕ : Λ ⊗ Λ → A such
that ϕ(x, y) + ϕ(y, x) = b(x, y) for any x, y ∈ Λ, where b is the bilinear form associated
to q. Indeed, if ei form a base of Λ then b(ei, ei) = 2q(ei). Take ϕ such that for i < j,
ϕ(ei, ej) = b(ei, ej) and ϕ(ej , ei) = 0. Besides, ϕ(ei, ei) = q(ei). So, we may assume
b = 0. Then q : Λ→ A is linear with values in A2−tors. Such quadratic form also writes
as ϕ(x, x) for a suitable diagonam bilinear form ϕ : Λ ⊗ Λ → A. If {ei} is a base of
Λ, it gives a base of the free A-module Quad(Λ,Z)⊗A. Namely, if we write ěi for the
dual base then we have the images of ěi ⊗ ěj ⊗ 1 ∈ Λ̌ ⊗ Λ̌ ⊗ A in Quad(Λ,Z) ⊗ A for
i ≤ j. This shows injectivity also: a quadratic form on Λ sends

∑
i xiei to∑

i

aix
2
i +

∑
i<j

aijxixj

with ai, aij ∈ A.
Note that Quad(Λ,Z) ⊂ Quad(Λ,Z)W is a direct summand. So, Quad(Λ,Z)W ⊗Z A

is a direct summand in Quad(Λ, A), and Quad(Λ,Z)W ⊗Z A ↪→ Quad(Λ, A)Wrestr is
injective.

For 3.2.4. Assume A divisible. Let us verify that for q ∈ Quad(Λ, A)Wrestr there is
qZ ∈ Quad(Λ,Z)W ⊗Z A such that q − qZ comes by restriction from a quadratic form
on π1(G). Indeed, if qi : Λ → Z is the Killing form of i-th connected component of
Dynkin, pick ai ∈ A such that aiqi(α) = q(α) for any short coroot in the i-th connected
component of the Dynkin diagram. Let qZ =

∑
i aiqi, q

′ = q − qZ. Let b′ : Λ⊗ Λ→ A
be the bilinear form attached to q′. That is,

b′(λ1, λ2) = q′(λ1 + λ2)− q′(λ1)− q′(λ2)

For any reductive group G, the Z-span of all W -orbits of all short coroots equals
the coroots lattice (this is verified separately for any irreducible root system via their
classification). So, b′(µ, λ) = 0 for any µ in the coroots lattice and λ ∈ Λ. Thus,
b′ comes from a bilinear form on π1(G). This also shows that q′ is additive on the
coroots lattice. Again, since the Z-span of all W -orbits of all short coroots equals the
coroots lattice, q′ vanishes on the coroots lattice. By the above, for λ ∈ Λ, µ in the
coroots lattice q′(λ + µ) − q′(λ) = b′(λ, µ) = 0. So, q′ descends to a quadratic form
q̄ : π1(G)→ A. We are done.
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Note also that Quad(π1,alg(G)) ⊂ Quad(Λ, A)Wrestr.
For A.4. We use the fact that any coroot is in the W -orbit of some simple coroot.

Remark 3.0.33. Consider G simple simply-connected. Then Quad(Λ,Z)W →̃Z, and
there is a distinguished generator q given by the property that q(α) = 1 for any short
coroot.

3.0.34. Consider the example of G = PSLn, Λ is the coroots lattice. In this case
Quad(Λ,Z)W →̃Z is generated by a quadratic form q0 such that q0(α) = n for any
coroot.

3.0.35. For A.6. Our q is a sum of expressions of (I) and (II). Recall that

ComGrp(Spc) →̃ Sptr≤0 ⊂ Sptr

is closed under all colimits. So, ComGrp(Spc) admits all small colimits. We may first
define B(T )/B(Tsc) as the cofibre of B(Tsc)→ B(T ) in ComGrp(Spc). Then it is also
a cofibre in Sptr, hence

(6)
B(Tsc) → B(T )
↓ ↓
pt → B(T )/B(Tsc)

is cartesian in Sptr. So, this square is also cartesian in Sptr≤0 →̃ComGrp(Spc).
The oblivion functor ComGrp(Spc)→ Spc preserves small limits (Proof: each of the

inclusions ComGrp(Spc) ⊂ ComMon(Spc) ⊂ Fun(Fin∗,Spc) is closed under limits.
The evaluation Fun(Fin∗, Spc)→ Spc at ⟨1⟩ preserves limits). So, (6) is also cartesian
in Spc.

As for any quotient of some Z ∈ Spc by an action of some group H ∈ Grp(Spc), the
square is cartesian in Spc

B(T ) → pt
↓ ↓

B(T )/B(Tsc) → B2(Tsc)

The forgetful functor Spc∗ → Spc preserves limits and push-outs.
Consider the B(Tsc)-torsor q : B(T ) → B(T )/B(Tsc) and the exact triangle on

B(T )/B(Tsc)

A→ q∗A→ τ≥2π∗A

The corresponding long exact sequence in cohomology gives

H2(B(T )/B(Tsc), A) →̃ Hom(π1(G), A(−1)), H i(B(T )/B(Tsc), A) = 0 for i = 1, 3.

We also get an exact sequence 0 → H4(B(T )/B(Tsc), A) → Quad(Λ, A(−2)) → M ,
whereM itself fits into an exact sequence 0→ Hom(π1(G), A(−1))⊗AHom(Λsc, A(−1))→
M → Quad(Λsc, A(−2))→ 0. It follows that we have a commutative diagram

H4(B(T )/B(Tsc), A) →̃ Quad(π1(G), A(−2))
↓ ↓

H4(B(T ), A) →̃ Quad(Λ, A(−2)),
where the vertical arrows are natural maps.
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Construction of the canonical T sc-torsor over G. Recall that T sc is the maximal
torus of the simply-connected cover Gsc of [G,G]. Pick an exact sequence 1 → T1 →
G̃ → G → 1, where T1 is a torus, G̃ is reductive and [G̃, G̃] is simply-connected (see

[34], Lemma 7.2.2). Let T̃ be the preimage of T in G̃, so T̃ is a maximal torus in G̃. Our

T̃ acts by conjugation on [G̃, G̃], and [G̃, G̃] → [G,G] is the simply-connected cover.

Since T1 is in the center of G̃, it acts trivially on [G̃, G̃], so T acts on Gsc →̃ [G̃, G̃], and

this action does not depend on a choice of the above extension G̃.
Now consider the semi-direct product Gsc ⋊ T . We get a homomorphism Gsc ⋊

T → G, (g, t) 7→ ḡt, where ḡ is the image of g in G. This gives an exact sequence
1 → T sc → Gsc ⋊ T → G → 1. This is the canonical T sc-torsor over G. It yields a
diagram B(T sc)→ B(Gsc ⋊ T )→ B(G) in Ptd(Spc).

We have have the projection homomorphism γ : Gsc ⋊ T → T . Let us include T sc

to Gsc ⋊ T by t 7→ (t−1, t̄), so γ commutes with the actions of T sc by left translations.
Here t ∈ T sc acts on t1 ∈ T as t̄t1.

Since T sc is central in Gsc⋊T , B(T sc) acts on the left on B(Gsc⋊T ), and B(G) is the
quotient of B(Gsc⋊T ) by the left action of B(T sc) is PreStk, see ([22], Section 7.2.18).

The map B(Gsc ⋊ T ) → B(T ) is B(T sc)-equivariant, so passing to the quotient we
get the desired map B(G)→ B(T )/B(T sc) (cf. [22], Section 7.2.18).

The calculation of Hi(G/B, Q̄ℓ) is done in Proposition 1.3(ii) in [4].

3.0.36. For 3.3.1. We assume A divisible or π1([G,G]) = 0. Let q : ∗ → B(G) be
the trivial torsor. Define M by the distinguished triangle M → A(1) → q∗A(1) on
B(G). Let pX : X → ∗ be the projection. For the map id×pX : B(G)×X → B(G) by
definition we get

H4−i
et (B(G)×X;X,A(1)) →̃H4−i

et (B(G)×X, (id×pX)∗M) →̃H4−i
et (X, p∗X(pB(G))∗M),

the second isomorphism is by the base change under pB(G) : B(G) → ∗. The diagram

∗ q→ B(G)
pB(G)→ ∗ yields a diagram A → (pB(G))∗A → A in the stable category of

sheaves of abelian groups on ∗, the composition is id : A → A. So, A is a retract of
(pB(G))∗A. Any retract in a stable category splits, so (pB(G))∗A →̃A⊕ (τ≥1(pB(G))∗A).

Applying (pB(G))∗ to the fibre sequence M → A(1)→ q∗A(1), we get a fibre sequence

(pB(G))∗M → (pB(G))∗A(1) → A(1), so (pB(G))∗M →̃ τ≥1(pB(G))∗A(1). For i ≥ 0 this

gives for K := τ≤4((pB(G))∗M) the isomorphism

H4−i
et (B(G)×X;X,A(1)) →̃H4−i

et (X, p∗XK)

Thus, we get an exact sequence

0→ H2(X,Hom(π1(G), A))→ H4(X, p∗XK) →̃ Quad(Λ, A(−1))Wrestr → 0

of abelian groups. The claim that it splits non-canonically. Indeed, if L is a divisible
abelian group then L is an injective Z-module. This implies that

K →̃ Hom(π1(G), A)[−2]⊕Quad(Λ, A(−1))Wrestr[−4]

non-canonically. Namely, the map γ in the triangle

K → Quad(Λ, A(−1))Wrestr[−4]
γ→ Hom(π1(G), A)[−1]
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is an element of Ext3(Quad(Λ, A(−1)),Hom(π1(G), A)) in the category of abelian groups.
The exact sequence 0 → Λsc → Λ → π1(G) → 0 shows that Hom(π1(G), A) is
quasi-isomorphic in the derived category over ∗ to the complex of injective modules
Hom(Λ, A) → Hom(Λsc, A). So, RHom(Quad(Λ, A(−1))Wrestr,Hom(π1(G), A)) is the
complex

Hom(Quad(Λ, A(−1))Wrestr,Hom(Λ, A))→ Hom(Quad(Λ, A(−1))Wrestr,Hom(Λsc, A))

placed in degrees 0, 1. Thus, the above Ext3 vanishes. Actually, Ext2 also vanishes, so
the splitting is canonical. Indeed, the latter map is surjective, because it rewrites as

Hom(?× Λ, A)→ Hom(?× Λsc, A)

with ? = Quad(Λ, A(−1))Wrestr. Since A is divisible, the latter map is surjective.
This also shows that πj FactGeA(GrG) = 0 for j > 2, because RΓet(X, p∗XK) is

placed in degrees ≥ 2.
The explanation in 3.3.4 is complicated, but clearly from the above we see that

RΓ(X, p∗X Hom(π1(G), A))[−2] gives a commutative group in spaces FactGe0A(GrG),
which is so a connective spectrum. The above complex should correspond to the con-
nective spectrum Map(X,B2

et(Hom(π1(G), A)) somehow by definition, namely

πj Map(X,B2
et(Hom(π1(G), A)) →̃H2−j

et (X,Hom(π1(G), A))

identifies with 4− j-th cohomology group of RΓ(X, p∗X Hom(π1(G), A))[−2].
The above calculation shows also that

MapPtd(PreStk)(B(G), B2
et(A(1))) →̃ Hom(π1(G), A)

Indeed, (pB(G))∗M →̃ τ≥1(pB(G))∗A(1).

3.0.37. For 3.3.4. The equivalence Mon(PreStk) →̃Fun((Schaff )op,Mon(Spc)) restricts
to an equivalence

Grp(PreStk) →̃Fun((Schaff )op,Grp(Spc))

by ([22], Remark 2.5.18). Besides, E0(PreStk) →̃Fun(Schaff )op,Ptd(Spc)). Recall that
Grp(Spc∗) →̃ Grp(Spc) by (HTT, 7.2.2.10). Similarly, Grp(PreStk) →̃ Grp(Ptd(PreStk)).
So if H ∈ Grp(PreStk), Y ∈ Ptd(PreStk) then MapPtd(PreStk)(Y,H) is a group in Spc

If A is a commutative group in PreStk, Y ∈ Ptd(PreStk) then

ΩMapPtd(PreStk)(Y,B
i+1
et (A)) →̃ MapPtd(PreStk)(Y,B

i
et(A))

in ComGrp(Spc) By adjunction, this yields a morphism

(7) B(MapPtd(PreStk)(Y,B
i
et(A)))→ MapPtd(PreStk)(Y,B

i+1
et (A))

in ComGrp(Spc). If MapPtd(PreStk)(Y,B
i+1
et (A)) is connected, that is, Hi+1

et (Y,A) = 0

then (7) is an isomorphism.
Question Do I understand correctly that MapPtd(PreStk/X)(B(G) × X,B4

et(A(1)))

rewrites as MapPreStk(X,MapPtd(PreStk)(B(G), B4
et(A(1)))et), because B4

et(A(1)) is a
stack?

We have the natural map

Bet(MapPtd(PreStk)(B(G), B3
et(A(1)))→ MapPtd(PreStk)(B(G), B4

et(A(1)))et
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but not to the constant prestack MapPtd(PreStk)(B(G), B4
et(A(1))), I think. This is why

we get indeed a map ?

Map(X,Bet(MapPtd(PreStk)(B(G), B3
et(A(1)))→ MapPtd(PreStk/X)(B(G)×X,B4

et(A(1)))

An easy calculation of homotopy groups of Map(X,B2
et(Hom(π1(G), A))) shows that

Corollary 3.3.6 is true.
The etale-local triviality claim for FactGe0A(GrG): for the bilinear form b we see that

GeA(X
2) ×GeA(X2−△) ∗ →̃A, so it does not change if we replace X by an etale cover.

This etale-local triviality is used in 4.3.2.

3.0.38. If X,Y ∈ PreStk, write Map(X,Y ) for the inner hom in PreStk. Note that if
Y ∈ Stk then Map(X,Y ) ∈ Stk. Let H ∈ Grp(PreStk) then Bet(H) →̃Bet(Het). Let
Y ∈ PreStk. We claim that there is a natural map in PreStk

(8) BetMap(Y,Het)→ Map(Y,Bet(H))

Indeed, for S ∈ Schaff one has ΩMap(S × Y,Bet(H)) →̃ Map(S × Y,Het) in Grp(Spc).
By adjunction, this gives a natural map

Map(S,BMap(Y,Het)) →̃BMap(S × Y,Het)→ Map(S × Y,Bet(H))

in Ptd(Spc). These maps organize into a morphism of prestacks BMap(Y,Het) →
Map(Y,Bet(H)). Since the target is a stack, in turn this yields the desired morphism
(8). We used the fact that MapPreStk(S,B(H)) →̃B(H(S)) in Spc, so is connected.

For X ∈ PreStk we get a morphism Map(X,BetMap(Y,Het))→ Map(X×Y,Bet(H))
in Spc. Dennis claims that the image of this map is the full subspace of those maps
X × Y → Bet(H), which are étale-locally trivial along X. By ([15], ch. 2, 2.3.10),
BMap(Y,Het)→ BetMap(Y,Het) is an etale surjection. So a map X → BetMap(Y,Het)
etale-locally over X lifts to a map X → ∗.

3.0.39. For 4.1.1. Given a surjection I → J the map XJ → XI is the composition
I → J → X.

3.0.40. Recall that Ran →̃ colimI∈Iop X
I in PreStk, here I is the category of finite

nonempty sets and surjective maps. So, Shv(Ran) →̃ limI∈I Shv(X
I). On the other

hand for a surjection ϕ : I → J of finite nonempty sets the diagonal d : XJ → XI the
functor d! : Shv(XI) → Shv(XJ) admits a left adjoint d! : Shv(X

J) → Shv(XI). So,
by ([22], 9.2.6), Shv(Ran) →̃ colimI∈Iop Shv(X

I).
More generally, this holds for pseudo-proper prestacks in the sense of ([8], 1.5.1).

Let us check formally the proof of ([8], 1.5.4). A map f : Y1 → Y2 is PreStk is preudo-
proper if for any S ∈ Sch, Y1 ×Y2 S is a pseudo-proper prestack over S. Consier the
functor f ! : limS→Y2 Shv(S) →̃Shv(Y2)→ Shv(Y1) →̃ limS→Y2 Shv(Y1×Y2 S), here the

limit is over (Schaff/Y2
)op. It is obtained by passing to this limit in the system of functors

f !
S : Shv(S) → Shv(Y1 ×Y2 S) for fS : Y1 ×Y2 S → S. Each f !

S admits a left adjoint
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(fS)! by ([8], 1.5.2). If S → S′ → Y2 is a map in Schaff/Y2
, for the diagram

Y1 ×Y2 S
′ fS′→ S′

↑ gY ↑ g

Y1 ×Y2 S
fS→ S

the natural transformation (fS)!g
!
Y → g!(fS)! is an equivalence by ([8], 1.5.2). Passing

to the limit over (Schaff/Y2
)op, we get the functor h := limS→Y2(fS)! : Shv(Y1)→ Shv(Y2).

It is left adjoint to f ! because of ([22], Lemma 2.4.1). Now given a cartesian diagram
of prestacks

Y1
f→ Y2

↑ g1 ↑ g2

Y ′1
f ′→ Y ′2

with f pseudo-proper, we want to check that the natural transformation ϵ : f ′! g
!
1 → g!2f!

is an isomorphism. We get for each S → Y2 in Schaff/Y2
the base changed diagram

Y1,S
fS→ S

g2,S← Y ′2,S with Y ′1,S ×S Y ′2,S →̃Y ′1,S , and a natural transformation

ϵS : (f ′S)!g
!
1,S → g!2,S(fS)!

of functors Shv(Y1,S)→ Shv(Y ′2,S). If we show that ϵS is an isomorphism then passing

to the limit over S ∈ (Schaff/Y2
)op, we will conclude that ϵ is an isomorphism. Thus,

we may and assume Y2 ∈ Schaff . Similarly, now for each S → Y ′2 in Schaff
/Y ′2

let

f ′S : Y ′1,S → Y ′2,S be the base change of f ′. For the diagram

Y1
f→ Y2

↑ g1,S ↑ g2,S

Y ′1,S
f ′S→ Y ′2,S

we know that the transformation (f ′S)!g
!
1,S → g!2,Sf! is an isomorphism by ([8], 1.5.1).

I think passing to the limit over S ∈ (Schaff
/Y ′2

)op, we may conclude that ϵ is an isomor-

phism.

3.0.41. If X ∈ PreStk is a pseudo-scheme ([8], 7.4.1) then the diagonal map X → X×
X is pseudo-proper. Indeed, if X →̃ colima∈A Za, where Za ∈ Sch, and the transition
maps Za1 → Za2 are proper then for any S ∈ Schaff and a map h : S → X×X there is
a, b ∈ A such that h factors through h : Za×Zb → X×X, and the claim follows from the
fact that Za → X is pseudo-proper by ([8], 7.4.2). Indeed, X×X×XZa×Zb →̃Za×XZb.
The morphism Za ×X Zb → Za × Zb comes in the sense of ([8], Remark 7.4.4) from a
morphism in PreStkproper by LKE, hence is pseudo-proper.
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3.0.42. For ([8], Pp 7.4.2). Let us show that Schproper → Sch preserves finite limits.
Because of (HTT, 5.3.2.9), it suffices to show that this map is left exact in the sense of
(HTT, 5.3.2.1). To this end, it suffices by (HTT, 5.3.2.5) to show that for any S ∈ Sch
the category (Schproper ×Sch SchS/)

op is filtered. This is true, because the category
Schproper ×Sch SchS/ admits pullbacks.

Now it remains to prove ([8], Lm 7.4.3). In the case when C ′ admits finite limits,
this is nothing but (HTT, 6.1.5.2). For C ∈ 1− Cat, Pro(C) is defined as (Ind(Cop))op.
By (HTT, 5.3.5.14), the Yoneda embedding C→ Pro(C) preserve all finite limits which
exist in C. As formulated, I don’t understand the proof of ([8], Lm 7.4.3). However,
consider a little different claim, namely assume F : C ′ → C left exact in the sense of
(HTT, 5.3.2.1). Then by (HTT, 5.3.2.5), for c ∈ C, C ′op×Cop (Cop)/c is filtered. Let now
Φ ∈ Fun((C ′)op, Spc) and c ∈ C. It suffices to show that the functor Φ 7→ LKE(Φ)(c)
preserves finite limits. One has LKE(Φ)(c) →̃ colimc→F (c′)Φ(c

′), the colimit in Spc
over the filtered category C ′op×Cop (Cop)/c. The claim follows now from (HTT, 5.3.3.3).

For ([8], Remark 7.4.4). It is essential that if X
f→ Y

g→ Z are morphisms in Sch,
gf, g are proper then f is automatically proper. For this reason any pseudo-proper
morphism Y1 → Y2 in PreStk, where Yi are pseudo-schemes, comes from a morphism
in PreStkproper.

3.0.43. From ([8], Lemma 7.4.7) it follows that for a proper morphism of separated
schemes f : X → Y , the functor f! : Shv(X)→ Shv(Y ) preserves limits in the context
of constructible sheaves, so has a left adjoint. It should be f∗ for f∗ = f!. In the context
of D-modules this is not true, f! in general does not preserve limits!

3.0.44. By ([8], 7.4.11), if f : S′ → S is a morphism of separated schemes of finite
type, which is surjective on k-points, then f ! : Shv(S)→ Shv(S′) is conservative. There
this is claimed without a proof. For a Zariski cover Lin Chen has proposed a proof in
his email.

It should be true that if a : F → F ′ is a map in Shv(S) such that for any field-valued
point i : s→ S, i!F → i!F ′ is an isomorphism then a is an isomorphism (see emails of
Sam).

3.0.45. The following holds for the sheaf theory: let f : X → Y be a proper morphism
of separated schemes of finite type. The commutative diagram

Shv(Y )⊗ Shv(X) → Shv(Y ×X)
↑ id×f ! ↑ (id×f)!

Shv(Y )⊗ Shv(Y ) → Shv(Y × Y )

coming from the right-lax structure on Shv gives rise to a natural transformation
(id×f)!(F ⊠ H) → F ⊠ (f!H) functorial in F ∈ Shv(Y ), H ∈ Shv(X). This map
is an isomorphism, because ShvPreStkind−sch

is right-lax symmetric monoidal, see Sec-
tion 3.0.21 of this file. This is not really explained in [8], though Dennis refers to this
as the base change.

I think ([8], Lm 7.2.3 in the constructible context) should be also an axiom for the
sheaf theory.
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More generally, if f : X1 → X2, g : Y1 → Y2 are pseudo-proper maps of prestacks,
K ∈ Shv(X1), H ∈ Shv(Y1) then (f!K)⊠ (g!H) →̃ (f × g)!(K ⊠H).

3.0.46. Under the conventions of [8], one has the projection formula for a pseudo-
proper map f : X → Y . Let F ∈ Shv(X), G ∈ Shv(Y ). Denote by ⊗ : Shv(Y ) ×
Shv(Y )→ Shv(Y ) the functor sending G1, G2 to diag!(G1 ⊠G2), this is the ”pointwise
symmetric monoidal structure” on Shv(Y ). Then

(f!F )⊗G →̃ f!(F ⊗ (f !G))

in Shv(Y ).

Proof. Since f × id : X × Y → Y × Y is pseudo-proper, (f!F )⊠G →̃ (f × id)!(F ⊠G).
Write Grf : X → X × Y for the graph of f . By the base change for the pseudo-proper
map f × id ([8], Cor.1.5.4), one gets for diag : Y → Y × Y

(f!F )⊗G →̃ diag!((f!F )⊠G) →̃ diag!(f × id)!(F ⊠G) →̃ f!(Grf )
!(F ⊠G) →̃

f! diag
!(F ⊠ (f !G)) →̃ f!(F ⊗ (f !G)),

because the composition X
diag→ X ×X

id×f→ X × Y is Grf . □

3.0.47. For ([8], 7.1). If fi : Xi → Yi is a map in PreStk then the diagram commutes

Shv(X1)⊗ Shv(X2) → Shv(X1 ×X2)
↑ f !

1⊗f !
2 ↑ (f1×f2)!

Shv(Y1)⊗ Shv(Y2) → Shv(Y1 × Y2)

in particular, ωX1 ⊠ ωX2 →̃ωX1×X2 . Here ωX is the dualizing sheaf on X.

3.0.48. For ([8], Lm. 7.4.9) a strengthened version: write Y →̃ colima Za, where Za ∈
Sch, and the transition maps Za1 → Za2 are proper. If Y is a pseudo-scheme with a
finitary diagonal then for any a, b one may write Za ×Y Zb →̃ colimi∈I Z

i
a,b in PreStk,

where Zi
a,b is a scheme proper over both Za and Zb, and the indexing category I is

finite.
Indeed, both projections Za ← Za×YZb → Zb are pseudo-proper. Pick a presentation

Za ×Y Zb →̃ colimi∈I Z
i
a,b in PreStk, where Zi

a,b is a scheme proper over Zb for any i.

Since Za×YZb → Za is pseudo-proper, for any i the composition Zi
a,b → Za×YZb → Za

is pseudo-proper by ([8], 7.4.2). Finally, use the following consequence of ([8], end of
proof of Corollary 7.5.6): if h : S1 → S2 is a pseudo-proper morphism between schemes
(recall that schemes are assumed separated) then h is proper, see also ([8], Remark
7.4.4). So, for each i, Zi

a,b → Za is proper.

3.0.49. If f : Y1 → Y2 is an etale morphism of prestacks then d : Y1 → Y1 ×Y2 Y1 is
affine schematic and pseudo-proper, so d! exists. Besides, for any S ∈ Sch, Y1(S) →
(Y1 ×Y2 Y1)(S) is a monomorphism of spaces. So, d! is fully faithful, that is, id→ d!d!
is an isomorphism ([8], 7.4.11).
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3.0.50. For 4.1.2 and 4.1.4. First, for finite nonempty sets I, J , XI ×Ran XJ is the
prestack, whose S-points are pairs of morphisms S → XI , S → XJ such that the
corresponding subsets of Map(S,X) coincide (they are quotient sets of a set of | J |-
elements and of a set of | I |-elements. It is described in ([8], 8.1.2) as colim

I↠K↞J
XK .

Let J be the category whose objects are (I, λI), where I is a nonempty finite set,
λI : I → Λ is a map. A morphism (J, λJ)→ (I, λI) in J is a surjection ϕ : I → J such
that λj =

∑
i∈ϕ−1(j) λi for all j. Recall that GrT,comb = colim(I,λI)∈JX

I in PreStk. So,

GrT,comb×RanX
J →̃ colim(I,λI)∈J(X

I ×Ran X
J).

For a finite non-empty set J consider the category JJ , whose objects are triples

(I, λI , J
π→ I), where π is a surjection, and λI : I → Λ is a map. A morphism from

(I, λI , J → I) to (I ′, λI′ , J
π′→ I ′) is a surjection ϕ : I ′ → I compatible with surjections

from J such that λi =
∑

i′∈ϕ−1(i) λi′ . We have a map

(9) colim
(I,λI ,J→I)∈JJ

XI → GrT,comb×RanX
J

Namely, for (I, λI , J → I) ∈ JJ we get the map XI → GrT,comb×RanX
J , where the

projection on GrT,comb is the natural map, and the projection XI → XJ comes from
J → I. The map (9) is an isomorphism in PreStk, I think.

Indeed, one has

GrT,comb×RanX
J →̃ colim

(I,λI),I→K←J
XK

Here the colimit is over the diagram, whose objects are collections (I, λI , I → K ← J),

the maps being surjective. A morphism from (I ′, λI′ , I ′ → K ′ ← J) to (I, λI , I → K ←
J) is a pair of surjections I → I ′ and K → K ′ such that the diagram commutes

I → K ← J
↓ ϕ ↓ ↙
I ′ → K ′

and λi′ =
∑

ϕ(i)=i′ λi. This diagram maps naturally to JJ sending the above point to

(J → K,λK), where λK is the direct image of λI along I → K. We first calculate the
LKE along this projection. This is easy, and produces precisely the colimit in the LHS
of (9).

For each λ ∈ Λ consider the object aλ = (∗, λ) ∈ J, let Jaλ/ be the corresponding
undercategory. Then the geometric realization of Jaλ/ is ∗, because it has an initial
object. So, colim

(I,λI)∈J
∗ →̃Λ in Spc. Recall also that for any C ∈ 1− Cat, | C | →̃ | Cop |.

The prestack GrT ×RanX
J writes as colimJ→K GrT,XK over the category opposite to

the category of surjections J → K, where K is a finite non-empty set. Here we denoted
by GrT,XK the prestack classifying a point xK ∈ XK , a T -torsor F on X together with

a trivialization β : F →̃F0 over X − xK . The map GrT,XK → XK is pseudo-proper.
The map

(10) GrT,comb×RanX
J → GrT ×RanX

J
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is pseudo-proper and surjective on k-points. It is finitary pseudo-proper. Indeed, pick
a base {ěi} in Λ̌. For N ≥ 0 let GrT,XI ,N ⊂ GrT,XI be the closed subscheme classifying

(xI ∈ XI ,F, β) such that for any i one has

V ěi
F0
T
(−NxI) ⊂ V ěi

FT
⊂ V ěi

F0
T
(NxI),

where V ěi is the 1-dimensional T -module with weight ěi. Then GrT,XI = colim
N

GrT,XI ,N .

For N ≥ 0 and a surjection J → I, the base change of (10) by the natural map
GrT,XI ,N → GrT ×RanX

J is written as a finite colimit of proper schemes.
To check that (10) is a monomorphism of prestacks, it is easier to check that the

diagonal map Y1 → Y1×Y2Y1 is an isomorphism, where Y1 → Y2 is the map (10). Indeed,
if S is say an affine scheme of finite type, an S-point of Y1×Y2Y1 comes from a collection:
(I1, I2, λ

I1 , λI2 , π1 : J → I1, π2 : J → I2, x
I1 ∈ XI1(S), xI2 ∈ XI2(S) over the same

point xJ ∈ XJ(S) and an isomorphism F0
T (
∑

j∈J λ
1
π1(j)

) →̃F0
T (
∑

j∈J λ
2
π2(j)

) over S×X,

whose restriction to the complement of xJ is the identity. We see that the diagonal map
Y1 → Y1×Y2Y1 is an isomorphism. This is to apply ([8], 7.4.11(d)). This gives the claim
from 4.1.2 in our joint paper: the natural map ShvG(GrT )/Ran → ShvG(GrT,comb)/Ran

is an isomorphism of sheaves of categories.
The isomorphism (9) also gives the fact from 4.1.4 of the paper that

ShvG(GrT,comb×RanX
J) →̃ lim

(I,λI ,J→I)∈JopJ
ShvG

λI
(XI)

The latter also rewrites as

colim
(I,λI ,J→I)∈JJ

ShvG
λI
(XI),

because for each morphism from (I, λI , J → I) to (I ′, λI′ , J → I ′) in JJ and the corre-

sponding closed immersion h : XI → XI′ the functor h! : ShvG
λI
′ (X

I′)→ ShvG
λI
(XI)

admits a left adjoint h! : ShvG
λI
(XI)→ ShvG

λI
′ (X

I′) as in my Section 3.0.28.

3.0.51. The factorization structure on GrT,comb is as follows. Let ϕ : J → J ′ be a sur-

jection of finite nonempty sets. Let XJ
ϕ,disj be as in (18). We construct an isomorphism

GrT,comb×RanX
J
ϕ,disj →̃(

∏
j′∈J ′

GrT,comb×RanX
Jj′ )×XJ XJ

ϕ,disj

as follows. The LHS is

( colim
(I,λI ,J→I)∈JJ

XI)×XJ XJ
ϕ,disj

By Lemma 3.3.1 of this file, XI ×XJ XJ
ϕ,disj is empty unless ϕ factors as J → I

ϕ′→ J ′,

and then XI ×XJ XJ
ϕ,disj →̃XI

ϕ′,disj . So, the index category becomes
∏

j′∈J ′ JJj′ . We
get

colim
(Ij′ , λ

Ij′ , Jj′→Ij′ )∈JJj′
XIj′ →̃ GrT,comb×RanX

Jj′

and the claim easily follows.
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3.0.52. For 4.1.5. The identification of θ-data with factorization Z/2Z-line bundles on
GrT,comb is as follows. A datum of a factorization line bundle on GrT,comp gives for each

finite nonempty set I with λI : I → Λ a Z/2Z-graded line bundle LλI
on XI . For a

surjection ϕ : I → J we have an isomorphism

LλI |XI
ϕ,disj

→̃ ( ⊗
j∈J

LλIj
) |XI

ϕ,disj

The corresponding θ-datum is a collection λγ , here λγ = LλI
for I = ∗ and λI : ∗ → Λ

given by γ. For a pair γ1, γ2 ∈ Λ the isomorphism Lγ1,γ2 |X2|△ →̃Lγ1 ⊠ Lγ2 |X2|△
extends to an isomorphism

Lγ1,γ2 →̃Lγ1 ⊠ Lγ2(−κ(γ1, γ2) △)

over X2 for a suitable symmetric bilinear form κ : Λ ⊗ Λ → Z. Resticting to △, this
gives the isomorphisms cγ1,γ2 : λγ1+γ2 →̃λγ1 ⊗ λγ2 ⊗ Ωκ(γ1,γ2) on X.

Consider the sheaf denoted by Div(X,Λ) in ([2], 3.10.7). We get a morphism
GrT,comb → Div(X,Γ). What is the relation between Div(X,Γ) and GrT ? They are not
the same. Given a T -torsor F on S×X trivialized away ΓI for some I ∈ Ran(S), we get a
relative Cartier divisor on S×X proper over S. Namely, for each λ̌ ∈ Λ̌ the correspond-

ing line bundle Lλ̌
F with its trivialization over S×X−ΓI is a relative Cartier divisor. So,

if we pick a base of Λ, we get a point of Div(X,Γ). This gives a map GrT → Div(X,Γ),
which is not an isomorphism (already at the level of k-points). For example, for
x ̸= y ∈ X,λ ∈ Λ consider the k-point (I,O(λy),O(λy) →̃O |X−x−y) ∈ GrT with
I = {x, y} ⊂ X. We may also consider the k-point (y,O(λy),O(λy) →̃O |X−y) ∈ GrT .
Their images in Div(X,Λ) are the same, but these are different points of GrT .

Dennis claims that the map GrT → Div(X,Γ) induces an isomorphism between any
factorizable structures on both prestacks. More generally, for G an algebraic group,
one has the version GRASG of the affine grassmanian defined in ([3], 4.3.14). Namely,

for S ∈ Schaff its S-points is colimU CU , here the colimit is taken over (the opposite) of
the category of open subsets U ⊂ X ×S such that the fibre of U over any point of S is
nonempty. We denoted by CU the groupoid of G-torsors on X ×S with a trivialization
over U (in fact, CU is a set, so the above colimit is also a set). This GRASG is not a
factorization prestack in the sense of our paper, but one may define for example the
notion of a factorizable line bundle on GRASG.

Probably for G reductive, the natural map f : GrG → GRASG induces an iso-
morphism of any factorizable structures on both prestacks. Though GRASG is not a
factorization prestack over Ran, one defines factorizable structures on it naturally. For
example, FactPic(GRASG) is the groipoid classifying a line bundle L on GRASG and
a factorization structure on f∗L. Are the fibres of f contractible?

There is a subtlety in the definition of a Z/2Z-graded factorization line bundle on a
factorization prestack. It is crucial to require a suitable sign for the commutativity con-
straint. For example, in the definition of the θ-datum in the commutativity constraint
it is crucial to require the sign: cγ1,γ2 = (−1)κ(γ1,γ2)cγ2,γ1σ in ([2], 3.10.3(ii)).

If we do not require the sign, the following would be a factorization Z/2Z-graded line
bundle L on GrZ/2Z⊗Gm,comb. Write k[−1] for the k-vector space k placed in degree one
as Z/2Z-graded. We define a the Z/2Z-graded line bundle L on GrZ/2Z⊗Gm,comb so that
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its restriction toXI for (I, λI : I → Z/2Z) is (k[−1])⊗λ with λ =
∑

i∈I λi. It would have
the following factorization structure as a Z/2Z-graded line bundle. Given a surjection
ϕ : I → J of finite nonempty sets, one has a canonical Z/2Z-graded isomorphism

⊗
j∈J

( ⊗
i∈Ij

(k[−1])⊗λj ) →̃ (k[−1])⊗λ,

where λj =
∑

i∈Ij λi. We view the latter as the corresponding factorization isomor-

phism over XI
ϕ,disj . However, the sign for the commutativity constraint is not correct!

3.0.53. For 4.2.4. The map (4.8) given by A(−1) × Gm → Bet(A) is bilinear. The
linearity with respect to the second variable is the multiplicativity of the A-torsor χa

on Gm. For its definition: if n | n′ then we have the µn′-torsor Gm
x 7→xn′

→ Gm over

Gm. Its extension of scalars under µn′ → µn, x 7→ xn
′/n is canonically the torsor

Gm
x7→xn

→ Gm. For this reason the maps Hom(µn, A) × Gm → Bet(A) are compatible,
so yield the morphism (4.7). The corresponding map A(−1)→ TorsA(Gm), a 7→ χa is
a group homomorphism.

3.0.54. For 4.2.7, version June 1. Let γλ1,λ2 : Gλ1,λ2 →̃Gλ1 ⊠ Gλ2 ⊗ O(△)b(λ1,λ2) be the
isomorphism as in 4.2.1. Then for λ1 ̸= λ2 the canonical commutativity datum for
the diagram (4.14) does not give something additional, as the two isomorphisms in the
horizontal lines of (4.14) are not the same. The isomoprhisms σ∗γλ2,λ1 and γλ1,λ2 are
identified in (4.6), but they are not the same, so this is just and abstract A-torsor on
X with a trivialization of its square.

3.0.55. For 4.2.8. The relation q(λ + µ) = q(λ) + q(µ) + b(λ, µ) is proved as in ([32],
II.3.4). Namely, consider Gλ,µ,λ,µ on X4. The factorization isomorphism becomes

(11) Gλ,µ,λ,µ →̃ (Gλ ⊠ Gµ ⊠ Gλ ⊠ Gµ)⊗ O(△12)
b(λ,µ) ⊗ O(△34)

b(λ,µ)⊗

O(△23)
b(λ,µ) ⊗ O(△14)

b(λ,µ) ⊗ O(△13)
2q(λ) ⊗ O(△24)

2q(µ)

Reich restricts it to △12 ∩ △34, this gives

(12) Gλ+µ,λ+µ →̃ ((Gλ ⊗ Gµ)⊠ (Gλ ⊗ Gµ))⊗ (Tb(λ,µ) ⊠ Tb(λ,µ))⊗O(△)2b(λ,µ)+2q(λ)+2q(µ)

Here T = Ω−1 on X. The factorization isomorphism Gλ,µ →̃ (Gλ ⊠ Gµ)⊗ O(△)b(λ,µ) on
X2 restricts to the diagonal as

Gλ+µ →̃ (Gλ ⊗ Gµ)⊗ Tb(λ,µ)

So, (12) becomes

Gλ+µ,λ+µ →̃ (Gλ+µ ⊠ Gλ+µ)⊗ O(△)2b(λ,µ)+2q(λ)+2q(µ)

on X2. On the other hand, we have the factorization isomorphism for (λ + µ, λ + µ)
given by

Gλ+µ,λ+µ →̃ (Gλ+µ ⊠ Gλ+µ)⊗ O(△)2q(λ+µ)

on X2. This gives the equality 2q(λ + µ) = 2b(λ, µ) + 2q(λ) + 2q(µ). Consider now
the permutation τ = (13)(24) ∈ S4. Its action on X4 preserves the closed subscheme
△12 ∩ △34 →̃X2, and gives the nontrivial permutation σ on it. Our τ preserves △13
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and △24. The isomorphism (11) is τ -equivariant. This allows to extract square root of
the above equality.

Recall ([22], 7.2.20). It shows that a base of Λ indexed by a finite set I yields an
isomorphism B2

et(Hom(Λ, A)) →̃
∏

I B
2
et(A).

3.0.56. In Sect. 4.2.10, in the diagram (4.14) the commutativity datum is the identity
one, because the quadratic form vanishes, not only the bilinear form (this quadratic
form precisely is given by this commutativity datum).

3.0.57. For 4.3.13 version June 1, 2020. The exact sequence of constructibel sheaves
0→ ι∗A1 → (s1)∗A1 ⊕ (s2)∗A1 → (s1,2)∗A1 → 0 yields a distinguished triangle

(s1,2)∗A1(−2)[−4]→ (s1)∗A1(−1)[−2]⊕ (s2)∗A1(−1)[−2]→ ι!A1

by passing to the Verdier dual.

3.0.58. For 4.3.1. For a notion of a factorization group prestack over Ran. Let Z be
a factorization prestack over Ran, that is, we are given a map Z → Ran in PreStk
lifted to a morphism in CAlgnu(PreStkcorr). Moreover, we assume that for any finite
nonempty set J the induced map ZJ ×RanJ RanJd → Z ×Ran Ran

J
d is an isomorphism.

To provide a structure of a factorization group prestack on Z means to lift it to an
object of

(13) Grp((CAlgnu(PreStkcorr))/Ran)×Grp((PreStkcorr)/Ran) Grp(PreStk/Ran)

In other words, product m : Z ×Ran Z → Z should be a map of factorization prestacks
over Ran, and similarly for the unit u : Ran→ Z over Ran.

A good way to say is as follows I think. Let FactPreStk/Ran be the ∞-category of
factorization prestacks over Ran. It afmits products. So, we may consider the category
Grp(FactPreStk/Ran) of groups in this category.

Our GrT is such a factorization group prestack over Ran. Let H ∈ ComGrp(Spc)
then H is a commutative group in PreStk, hence also in PreStkcorr. So, Ran×H ∈
CAlgnu(PreStkcorr). The product for Ran×H is given by the diagram

Ran2×H2 ← Ran2d×H2 add×mH→ Ran×H
Moreover Ran×H ∈ Grp(CAlgnu(PreStkcorr)/Ran). A map

Z → Ran×H
in PreStk/Ran lifted to a morphism in CAlgnu(PreStkcorr)/Ran should be called multi-
plicative if it is a morphism in

Grp(CAlgnu(PreStkcorr)/Ran)

In particular, such a morphism yields morphism in Grp(PreStk/Ran). Note that Ran×H
is not a factorization prestack in our sense.

Taking H = B2
et(A), we get a definition of a FactGemult

A (Z).
Question. I think the proof of Pp. 4.3.2 in the paper is correct, but not very clear,

because not sufficiently conceptual. Can you give a conceptual proof? I have as a
model a claim like this: if C ∈ 1 − Cat then ComGrp(ComGrp(C)) →̃ComGrp(C)
canonically. Maybe it would become clearer if formulated more generally?
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The idea of your proof is that for Z a factorization group prestack the desired iso-
morphisms for (z, 1) ∈ (Z ×Ran Z)×Ran Ran

2
disj over (x1, x2) ∈ Ran2disj corresponding

to factorization and to the multiplication by 1 are the same.
Formally, for a finite nonempty set J the diagram commutes

Z ×Ran Ran
J
d →̃ ZJ ×RanJ RanJd

↑ m ↑ mJ

(Z ×Ran Z)×Ran Ran
J
d →̃ (Z ×Ran Z)J ×RanJ RanJd

and we apply this for J = {1, 2} and the point of (Z×RanZ)×RanRan
J
d over (x1, x2) ∈

Ran2d given by (z1, 1) at x1 and (1, z2) at x2. Here m is the multiplication on Z.

3.0.59. For the definition of a multiplicative gerbe from the previous section. If Z ∈
Grp(PreStk), A is a torsion abelian group then multiplicative A-gerbes on Z are defined
as MapGrp(PreStk)(Z,B

2
et(A)) →̃ MapPtd(PreStk)(B(Z), B3

et(A)).

3.0.60. For 4.3.3. Actually we need A = E×,tors, the group of torsion elements in E∗ of
order coprime to char(k). Since E is of characteristic zero alg. closed, {±1} = µ2 ⊂ E
canonically indeed.

3.0.61. For 4.3.4. For k ≥ 1 I think the definition of FactGeEk
A (GrT ) can be given as

in my Section 3.0.58 replacing (13) by

Egrp−like
k ((CAlgnu(PreStkcorr))/Ran)×Egrp−like

k ((PreStkcorr)/Ran)
Egrp−like
k (PreStk/Ran)

Its description is proposed in Remark 4.3.5 of the paper.

3.0.62. For Remark 4.6.7. MapGrp(Spc)(Λ, B
2(A)) classifies central extensions C of Λ

by B(A), see ([22], 7.2.18).
We have MapE2(Spc)(Λ, B

2(A)) →̃ MapPtd(Spc)(B
2(Λ), B4(Λ)) by adjointness. To lift

an object C of MapGrp(Spc)(Λ, B
2(A)) to an object of MapE2(Spc)(Λ, B

2(A)) means to

provide a braiding on the monoidal category C, see [19].
Dennis says here that

π2MapPtd(Spc)(B
2(Λ), B4(A)) →̃π0Ω

2MapPtd(Spc)(B
2(Λ), B4(A))

Further, ΩMapPtd(Spc)(X,Y ) →̃ MapPtd(Spc)(X,ΩY ) for any X,Y ∈ Ptd(Spc). So, the

above group identifies with π0MapE2(Spc)(Λ, A) = HomAb(Λ, A).

My understanding is that Dennis claims that π0(MapE2(Spc)(Λ, B
2(A)) →̃Quad(Λ, A),

this is the set of isomorphism classes of such braided monoidal categories C, see ([22],
7.3) for that. Moreover, π0(MapE∞(Spc)(Λ, B

2(A)) →̃ Hom(Λ, A2−tors), this corresponds
to symmetric monoidal categories. Note also that

π2(MapE∞(Spc)(Λ, B
2(A))) →̃π0MapE∞(Spc)(Λ, A) = Hom(Λ, A)

This gives a canonical map

(14) B2(Hom(Λ, A)→ MapE∞(Spc)(Λ, B
2(A))

in E∞(Spc) by adjointness. It is used in Section 4.3.7 of the paper. Besides,

π1(MapE∞(Spc)(Λ, B
2(A))) = 0
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3.0.63. For 4.3.7. The fact that MapE∞(Spc)(Λ,GeA(X)) →̃FactGemult
A (GrT ) is ob-

tained as follows. The description of MapE∞(Spc)(Λ,GeA(X)) can be given as in Sect.

4.2.10 of the paper with the following change: for λ ∈ Λ, we are given Gλ ∈ GeA(X).
For λi ∈ Λ we are given an isomorphism Gλ1+λ2 →̃Gλ1 ⊗ Gλ2 on X associative in the
natural sense. We are also given a datum of commutativity for the square

Gλ1+λ2 → Gλ1 ⊗ Gλ2

↓ ↓
Gλ2+λ1 → Gλ2 ⊗ Gλ1

satisfying the hewagon axiom. Moreover, the square of the commutativity constraint is
the identity. However, we do not require any more that the datum of the commutativity
for (4.14) in the paper is the identity one!

This datum of commutativity gives precisely a map MapE∞(Spc)(Λ,GeA(X)) →
Hom(Λ, A2−tors). As in (4.11) of the paper, we get a fibre sequence in ComGrp(Spc)

Map(X,B2
et(Hom(Λ, A)))→ MapE∞(Spc)(Λ,GeA(X))→ Hom(Λ, A2−tors)

See also my Section 3.0.62.
To explain his formula

MapE∞(Spc)(Λ,GeA(X)) →̃ MapE∞(Spc)(Λ, B
2(A))×B2(Hom(Λ,A))Map(X,B2

et(Hom(Λ, A)))

note the following. First, π2Map(X,B2
et(Hom(Λ, A))) →̃ Hom(Λ, A), asX is connected.

By adjointness, this gives a morphismB2(Hom(Λ, A))→ MapPreStk(X,B2
et(Hom(Λ, A)))

in Ptd(Spc). We also have the map (14) above, which together give a diagonal action
of B2(Hom(Λ, A)) on

MapE∞(Spc)(Λ, B
2(A))×Map(X,B2

et(Hom(Λ, A)))

We have also π1Map(X,B2
et(Hom(Λ, A))) →̃H1

et(X,Hom(Λ, A)) and

π0Map(X,B2
et(Hom(Λ, A))) →̃H2

et(X,Hom(Λ, A))

So, at the level of homotopy groups this seems to give the correct result, same homotopy
groups as for FactGemult

A (GrT ).

3.0.64. It should be noted I think in the paper that the notion of a Hecke eigen-sheaf
could be spelled as in the paper ”On the de Jong conjecture” instead of complicated
definition using sheaves of categories!

3.0.65. For 4.4.1. Dennis uses the ”topology of finite surjective maps”, no precise
definition given!

Lemma 3.0.66. Let Y
f→ Z

g← Z ′ be a diagram in Schaffft . Let f ′ : Y ′ → Z ′ be obtained

from f by the base change g. Assume both f ′, g are finite morphisms surjective on k-
points. Then f is also finite surjective on k-points.

Proof. (Alain Genestier) Write Y = SpecB, let A → A′ be the homomorphism of k-
algebras corresponding to g. Let B′ = A′⊗AB, let I be the kernel of h : B → B′. Since
B′ is a finite B-module, each element of I is nilpotent. Since B is noetherian, there
is n > 0 such that In = 0. Let B0 be the image of h. Since B′ is a finite A-module,
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A is noetherian, we conclude that B0 is a finite A-module. For any i, the B0-module
Ii/Ii+1 is of finite type, so Ii/Ii+1 is also a finite type A-module. Thus I is a finite
type A-module. We are done. □

We equip Schaffft with a collection of coverings, where a covering of S ∈ Schaffft is

a finite collection of maps fi : Si → S such that fi is finite and the map ⊔iSi → S is
surjective on k-points. The axioms of ([36], Definition 6.2) are verified, so we get a site.

Thus for PreStklft = Fun(Schaffft , Spc) we get the corresponding localization.

Dennis proposed the following. Call a morphism Y1 → Y2 in PreStklft ind-finite if

for S → Y2 with S ∈ Schaffft , Y1 ×Y2 S can be written as a filtered colimit colimi∈I Zi,

where each Zi is a scheme finite over S.

Remark 3.0.67. Let f : Y1 → Y2 be an ind-finite morphism in PreStklft inducing a
surjection on k-points Y1(k) → Y2(k). Then it is a surjection in the topology of finite
surjective maps.

Proof. Let S = SpecA ∈ Schaffft with a section S → Y2. Write S ×Y2 Y1 →̃ colimZi

with Zi a scheme finite over S. Let Si ⊂ S be the schematic image of Zi ×Y2 S → S.
Then we get an inductive system {Si}i∈I such that for the corresponding system of
their ideals Ii ⊂ A any maximal ideal m ⊂ A contains some Ii. Then there is i ∈ I
such that Zi ×Y2 S → S is surjective on k-points. It is also finite, so we can localize in
our topology using the cover Zi ×Y2 S → S. We get the desired lifting Zi ×Y2 S → Y1
of S → Y2. So, f is a surjectiion in this topology. □

3.0.68. Combinatorial Grassmanian. For a finitely generated abelian group Γ we may
define GrΓ⊗Gm,comb similarly to the case of a torus. Namely, consider the index category

C whose objects are pairs (I, λI) with I a finite non-empty set, λI : I → Γ. Write λi

for the value of λI on i. A map from (J, λJ) to (I, λI) in C is a surjection ϕ : I → J
such that λj =

∑
ϕ(i)=j λi. Set GrΓ⊗Gm,comb = colim

(I,λI)∈C
XI .

If Γ = Λ1/Λ2, we get a diagram GrT2,comb → GrT1,comb → GrΓ⊗Gm,comb, hence a map
GrT1,comb /GrT2,comb → GrΓ⊗Gm,comb. Probably, the latter map is an isomorphism after
sheafification in the topology of finite surjective maps. Why?? This would imply that
the sheafifications of GrΓ⊗Gm,comb and of GrT1 /GrT2 in this topology are isomorphic.

3.0.69. For 4.4.5. If b1(Λ2,−) = 0 then we get b : Γ × Γ → A(−1). If in addition
q1 |Λ2= 0 then we get the quadratic form q : Γ→ A(−1) given by q(λ mod Λ2) = q1(λ)
for λ ∈ Λ1.

Hopefully a proof of 4.4.5 could be obtained as follows. Recall the isomorphism
MapPtd(PreStk/X)(Bet(Ti) × X,B4

et(A(1)) × X) →̃ FactGeA(GrTi) in ComGrp(Spc) for

Ti = Λi ⊗Gm. We assume Γ = Λ1/Λ2. Consider the map

MapPtd(PreStk/X)(Bet(T1)×X,B4
et(A(1))×X)→ MapPtd(PreStk/X)(Bet(T2)×X,B4

et(A(1))×X)

given by restricting along Bet(T2) → Bet(T1). Does Dennis claim that the fibre of the
latter map identifies canonically with FactGeA(GrΓ⊗Gm)? I think no, because the kernel
of Quad(Λ1, A(−1))→ Quad(Λ2, A(−1)) is too big: for q in the kernel the bilinear form
b(Λ2,−) does not becessary vanish.
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3.0.70. For 4.4.6. In the last displayed formula if that section one needs to replace
B2

et(Hom(Γ, A)) by B2(Hom(Γ, A)).
If Γ = Λ1/Λ2, where 0→ Λ2 → Λ1 → Γ→ 0 is an exact sequence in abelian groups,

Λi are lattices then Λ1 → Λ2 → Γ is a fibre sequence in Sptr, hence a cofibre sequence
in Sptr. Now Sptr≤0 →̃ComGrp(Spc) is stable under small colimits, so Γ is a cofibre
of Λ1 → Λ2 in ComGrp(Spc). So, MapComGrp(Spc)(Γ, B

2(A)) is the fibre of the map

MapComGrp(Spc)(Λ1, B
2(A)) → MapComGrp(Spc)(Λ2, B

2(A)) in ComGrp(Spc), and also
in Spc.

Similarly, the fibre of the natural map

MapComGrp(Spc)(Λ1,GeA(X))→ MapComGrp(Spc)(Λ2,GeA(X))

in ComGrp(Spc) is MapComGrp(Spc)(Γ,GeA(X)).

To be clear: if Γ is torsion free then the assumption that A is divisible in 4.4.6(e,f)
is not needed according to Sect. 3.3 of the paper.

3.1. For 4.4.7. Pick a presentation 1 → T2 → G̃2 → G → 1, where T2 is a torus, and
[G̃2, G̃2] is simply-connected, set T1 = G̃2/[G̃2, G̃2]. We get the maps GrT2 → GrG̃2

→
GrT1 → Grπ1(G)⊗Gm

, and Grπ1(G)⊗Gm
→̃ GrT1 /GrT2 . Actually, T2 is central in G̃2, so

GrT2 acts on GrG̃2
, and we get a map of quotients GrG̃2

/GrT2 → GrT1 /GrT2 . The

natural map GrG̃2
/GrT2 → GrG is a monomorphism of prestacks. Yifei claims that

the map GrG̃2
→ GrG is surjective in any topology including finite surjective maps as

coverings. This would imply that f : GrG̃2
/GrT2 → GrG becomes an isomorphism

after the sheafification in this topology.
Note that f is surjective on k-points. I think it is pseudo-proper. Is it true that after

any base change S → Ran with S ∈ Schaffft it becomes finitary pseudo-proper? This

looks plausible. Then we would apply ([8], Lemma 7.4.11(d)). Dennis will treat this
question in a new version.

Question. If Z → Ran is a factorization prestack, Z ∈ PreStklft, consider the
sheafification Z ′ of Z in the topology of finite surjective maps. Why Z ′ is still a
factorization prestack? This is not clear at all!

It is not clear if Ran is a sheaf in this topology. We could in principle consider

the sheafification on the category of (Schaffft )/Ran, but even then it is not clear why a

sheafification of a factorization prestack is still a factorization prestack. This will be
changed in a new version.

Remark: A1 is not a sheaf on Schaffft in the topology of finite surjective maps.

3.1.1. For 4.5. We are mostly interested in the case A = E×,tors, the group of torsion
elements in E∗ of orders coprime to char(k). If check(k) = 2 we get A2−tors = 0,
otherwise A2−tors = Z/2Z. In the case of char(k) = 2 there is no problem of splitting
of multiplicative gerbes.

Dennis claims that π0MapE∞(Spc)(Γ, B
2(A)) →̃ Hom(Γ, A2−tors), see ([22], 7.3). In-

deed, if Γ = Λ1/Λ2, we get that MapE∞(Spc)(Γ, B
2(A)) is the fibre of

MapE∞(Spc)(Λ1, B
2(A))→ MapE∞(Spc)(Λ2, B

2(A))
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in E∞(Spc). This allows to calculate the homotopy groups of MapE∞(Spc)(Γ, B
2(A)),

since we know the answer for Γ a lattice. We get

π2MapE∞(Spc)(Γ, B
2(A)) →̃ Hom(Γ, A)

Now π1MapE∞(Spc)(Γ, B
2(A)) = 0, because this is a cokernel of Hom(Λ1, A)→ Hom(Λ2, A),

and A is divisible.

3.1.2. For 4.8.2. Misprint: he meant π0(C) = π1(C) = Z/2Z. This C = Z/2Z ×
B(Z/2Z) is equipped with the braiding b′(λ, µ) : cλ⊗ cµ → cµ⊗ cλ for any λ, µ ∈ Z/2Z.
Here b′ is a bilinear form on Z/2Z with values in Z/2Z given by b′(1, 1) = 1. Then the
square of the brading cλ ⊗ cµ → cµ ⊗ cλ → cλ ⊗ cµ is the identity, and the quadratic
form q(x) = b′(x, x) in Hom(Z/2Z) = Quad(Z/2Z,Z/2Z) is the identity map q = id.

By functoriality he means the following. We have a morphism HomAb(Γ,Z/2Z) ×
MapE∞(Spc)(Z/2Z, B2(A)) → MapE∞(Spc)(Γ, B

2(A)) given by composing with Γ →
Z/2Z. It is bilinear. So, our distinguished element of MapE∞(Spc)(Z/2Z, B2(A)) by

restriction gives a map HomAb(Γ,Z/2Z) → MapE∞(Spc)(Γ, B
2(A)) in E∞(Spc), whose

composition with the projection to Hom(Γ,Z/2Z) is the identity.

3.1.3. For 4.5.3. The gerbe Gϵ is defined for ϵ ∈ Hom(Γ, A2−tors) under the assumption
that A2−tors ⊂ Z/2Z imposed in 4.5!

3.1.4. For 4.5.6. The determinant line bundle detGm,St is not defined on GrGm ex-
plicitly however it is uniquely recovered from what is written in that section. Namely,
detGm,St is the line bundle sending (I, L, β : L →̃O |S×X−ΓI

) ∈ GrGm to detRΓ(X,L)⊗
detRΓ(X,O)−1. In the local setting this is

det(L : O) =
det(L/L′)

det(O/L′)

for any L′ ⊂ L ∩ O.
Similarly, detSL2,St is the line bundle sending (I, L, β : L →̃O2 |S×X−ΓI

) ∈ GrSL2 to
det(L : O2).

3.1.5. In the last paragraph of Sect. 4.6.1 it is affirmed that (L⊗2)
1
2 identifies canoni-

cally with Gϵtaut |Z . I think this is correct but not completely clear. In particular this
implies that the factorization line bundle L⊗2 is not trivial!

3.1.6. For 4.6.3. Let C be a sheaf of categories on GrZ/2Z⊗Gm
. By a ”factorization

structure on C compatible with the factorization structure on GrZ/2Z⊗Gm
we mean a

multiplicative sheaf of categories over GrZ/2Z⊗Gm
∈ CAlgnu(PreStkcorr) in the sense of

[30]. So, given S ∈ Schaffft and a map

s : S → GrZ/2Z⊗Gm
×RanRan

J
d →̃ GrJZ/2Z⊗Gm

×RanJ Ran
J
d ,

which is a collection sj : S → GrZ/2Z⊗Gm
×RanRan

J
d →̃ GrZ/2Z⊗Gm

for j ∈ J , we have
an equivalence

⊗
j∈J,Shv(S)

C(S, sj) →̃C(S, s)

functorial in (S, s).
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3.1.7. For 4.6.5. The definition of the endofunctor c 7→ c[d] given by (4.23) was ex-
plained to me by Dennis: he meant the cohomological shift c 7→ c[d] over the connected
component given by d.

3.1.8. For 5.1.4. About a formalism: if f : Y1 → Y2 is an ind-schematic morphism in
PreStklft, why f∗ : Shv(Y1)→ Shv(Y2) exists and how it is defined? Dennis says this is
done in [13] in the case when f : Y1 → Y2 is a morphism of schemes. The general case:

it suffices to define the direct image for S ×Y2 Y1 → S for any S → Y2, S ∈ Schaffft .

Write S×Y2Y1 →̃ colimi Zi so that Zi is a scheme and h : Zi → Zj is a closed immersion.
Then Shv(S×Y2 Y1) →̃ colimi Shv(Zi) as in ([8], 1.5.2). The desired functor comes from
a compatible system of functors (qi)∗ : Shv(Zi)→ Shv(S) for qi : Zi → S.

3.1.9. For 5.2.1. To be precise, let us understand by detrel(gPG
, gP0

G
) the line bundle

detRΓ(X, gPG
)⊗ detRΓ(X, gP0

G
)−1.

3.1.10. For 5.2.2. We have ρ̌G,M = ρ̌G− ρ̌M . Here ρ̌G is the half sum of positive roots
of G.

For 5.2.4. The line

K(L) :=
detRΓ(X,E ⊗ L)⊗ detRΓ(X,E∗ ⊗ L)

detRΓ(X,E0 ⊗ L) detRΓ(X,E∗0 ⊗ L)

is canonically independent of L ∈ Bun1. One sees that K(L(x)) →̃K(L) canonically
for x ∈ X. This argument can be also done locally, in the case when X is not complete.
This is related to my paper [23].

The factorization Z/2Z-graded line bundle detg on GrG comes from a theta-datum
such that corresponding symmetric bilinear form on Λ is the Killing form κG,Kil =∑

α̌ α̌⊗ α̌, the sum over all roots. So, the factorization Z/2Z-graded line bundle detn(P )

corresponds to the bilinear form 1
2(κG,Kil − κM,Kil).

In general, if L is a factorization Z/2Z-graded line bundle on GrT corresponding to
a symmetric bilinear form κ : Λ ⊗ Λ → Z when viewed as a θ-datum (cf. 4.1.5 of the

paper) then L⊗2 is a factorization line bundle, and the factorization µ2-gerbe (L⊗2)
1
2

corresponds to the quadratic form q : Λ → Z/2Z, where q(x) = κ(x, x) mod 2. So,

(L⊗2)
1
2 is a multiplicative factorization gerbe.

In 5.2.3 the following calculation is used: set q(x) = 1
2κG,Kil(x, x) mod 2 ∈ Z/2Z

for x ∈ Λ. Then q(x) = ⟨2ρ̌, x⟩ mod 2.

3.1.11. For 6.2.3. The Z/2Z-graded factorization line bundle detGm,n has fibre in
the global case detRΓ(X,Ln) ⊗ detRΓ(X,On)−1 at (L,α : L →̃O |UI

) ∈ GrGm over
I ∈ Ran.

The factorization line bundle detGm,1⊗detGm,−1 on GrGm corresponds when viewed
as a θ-datum, to the symmetric bilinear form b : Z ⊗ Z → Z, b(x, y) = 2xy. So, the
quadratic form q : Λ → A(−1) with Λ = Z corresponding to the factorization gerbe
(detGm,1⊗detGm,−1)

a is given by q(1) = a.
Let n = ord(a). Then the pull-back of the factorization line bundle detGm,1⊗detGm,−1

under Gm → Gm, x 7→ xn identifies with (detGm,1⊗detGm,−1)
n2

canonically by ([23],



50

Lm. 5.7). In particular, the restriction of the factorization gerbe (detGm,1⊗detGm,−1)
a

under this map is canonically trivialized.

3.2. Let us think about the question: is thereK ∈ ComGrp(PreStk) such that Grπ1(G)⊗Gm

identifies with the prestack classifying I ∈ Ran(S), a map S ×X → K together with a
trivialization of the composition UI → S ×X → K?

Write Stk ⊂ PreStk for the full subcategory of stacks in etale topology. Pick an
exact sequence 1 → T2 → G̃ → G → 1 with [G̃, G̃] simply-conneted. Write B(G)

for the corresponding colimit in PreStk. Clearly, Bet(T2) acts on Bet(G̃) ∈ Ptd(Stk)
on the left. Since our extension is central, the corresponding map G → Bet(T2) is a
morphism in Grp(Stk), hence induces after applying B a morphism Bet(G)→ B2

et(T2)

in Ptd(Stk). The fibre of this morphism is Bet(G̃), so Bet(G) is the quotient of Bet(G̃)

by the action of Bet(T2) in the ∞-topos Stk. Let T1 = G̃/[G̃, G̃].
Let (B(T1)/B(T2))c be the cofibre of B(T2)→ B(T1) in ComGrp(PreStk). We have

a full subcategory ComGrp(PreStk) ⊂ Fun(Schaff ,Sptr), this is also a cofibre in the

stable category Fun(Schaff , Sptr), because Sptr≤0 ⊂ Sptr is stable under all colimits.

So, B(T2) is the fibre of B(T1) → (B(T1)/B(T2))c in Fun(Schaff ,Sptr), hence also in
its full subcategory ComGrp(PreStk).

Write Bet(T1)/Bet(T2) for the quotient of Bet(T1) by Bet(T2) in the ∞-topos Stk.
We have a natural map Bet(T1)/Bet(T2) → B2

et(T2) whose fibre is Bet(T1). The map

G̃→ T1 gives a morphism of quotients

(15) Bet(G) →̃Bet(G̃)/Bet(T2)→ Bet(T1)/Bet(T2)

in Ptd(Stk). How Bet(T1)/Bet(T2) depends on a choice of G̃?
Consider the case of π1(G) finite. Then the kernel of T2 → T1 is K := π1(G)(1). The

fibre sequence 1 → K → T2 → T1 → 1 gives a map Bet(T1) → B2
et(K), whose fibre is

Bet(T2). This means that Bet(T1) is the quotient of Bet(T2) by Bet(K) in Stk (cf. more
generally [22], 7.2.18). Considering now the natural map Bet(T2) → Bet(T2)/Bet(K)
and taking its quotient by the action of Bet(T2), we should get ∗ → B2

et(K). So, I
hope that Bet(T1)/Bet(T2) identifies with B2

et(K) in Ptd(Stk). I think this can also be
checked calculating the homotopy groups of Bet(T1)/Bet(T2) using the fibre sequence
Bet(T1)→ Bet(T1)/etB(T2)→ B2

et(T2) in Stk.
So, (15) is a canonical morphism Bet(G)→ B2

et(K) in Stk.

Let YK be the prestack (locally of finite type) over Ran sending S ∈ Schaffft to

I ∈ Ran(S), a map X × S → B2
et(K) together with a trivialization of the composition

UI → X×S → B2
et(K). This is a factorization prestack over Ran, we have a natural map

GrG → YK of factorization prestacks over Ran. In 3.1.6 of the paper we constructed a
map of prestacks YK → K(−1)et under the assumption that K is of order coprime to
char(k).

Let us interprete GrT1 /GrT1 as the quotient in PreStklft. My understanding is that
the natural map GrT1 /GrT2 → YK is an isomorphism. Is this correct?

More generally, remove the assumption that π1(G) is finite. Then I think that

Bet(T1)/Bet(T2) ∈ Ptd(Stk) is independent of our choice of G̃. Indeed, let 1 → T ′2 →
G̃′ → G→ 1 be another exact sequence with T ′2 a torus, and [G̃′, G̃′] simply connected.
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Then we may argue as in ([33], 7.2.5). Namely, let G̃′′ = G̃ ×G G̃′. The projection

G̃′′ → G̃ fits into an exact sequence 1 → T ′2 → G̃′′ → G̃ → 1. Moreover, the exact
sequence splits

1→ T ′2 → G̃′′ab → G̃ab → 1,

where G̃ab stands for the abelinization of Gab. We have the natural map

Bet(G̃
′′
ab)/Bet(T2 × T ′2)→ Bet(T1)/Bet(T2)

The fact that this map is an isomorphism follows from the fact that

Bet(T1 × T2) →̃Bet(T1)×Bet(T2)

Let Y be the prestack sending S to I ∈ Ran(S), a map X × S → Bet(T1)/Bet(T2)
together with a trivialization of the composition UI → X×S → Bet(T1)/Bet(T2). Then
Y is a factorization prestack, and we get a natural map GrG → Y over Ran.

Question. It seems that (GrT1 /GrT2)et →̃Y in general. Is this correct? Here
(GrT1 /GrT2)et is the sheafification in the etale topology.

Maybe then we can take Y for Grπ1(G)×Gm
?

3.2.1. For 7.4. To describe the multiplicative A-torsors on T , we have to analyse
MapGrp(PreStk)(T,Bet(A)) →̃MapPtd(PreStk)(B(T ), B2

et(A)). This is the relative coho-

mology MapPreStk(B(T ), B2
et(A)) ×MapPreStk(∗,B2

et(A)) ∗. Let q : ∗ → B(T ) be the nat-

ural map in PreStk. Define K by the fibre sequence K → A → q∗A in the corre-
sponding stable category of sheaves on B(T ). The corresponding long exact sequence
in cohomology gives 0 → H2

et(B(T ),K) → H2
et(B(T ), A) → 0 is an isomorphism, so

H2
et(B(T ),K) →̃ Hom(Λ, A(−1)) by Th. 3.2.6 of our paper. So,

π0MapGrp(PreStk)(T,Bet(A)) →̃ Hom(Λ, A(−1))

If G is an A-gerbe over ∗, to provide its descent datum under the map ∗ → B(T ) means
essentially to provide a point of MapPtd(PreStk)(B(T ), B2

et(A)). Indeed, we may assume
our gerbe on ∗ trivial. The corresponding multiplicative A-torsor on T is obtained as
follows: we have ΩB(T ) →̃T . So, for h : T → ∗ we get an automorphism of h∗G, which
is given by a A-torsor on T .

3.2.2. For 7.5.1. The quotient by L+(G) in (7.10) is understood as the quotient in

the topos of prestacks sheafified in etale topology. The prestack Zn sends S ∈ Schaff

to the collection: F0, . . . , Fn, where Fi is a G-torsor on S × X, I ∈ Ran(S), and
αi : Fi−1 →̃Fi |UI

is an isomorphism. The simplicial structure comes from the fact that
for any finite nonempty linearly ordered set I we may similarly define ZI sending S
to: Fi, i ∈ I, I ∈ Ran(S) and isomorphisms α:Fi−1 →̃Fi |UI

for i ∈ I different from the
initial element. Here i− 1 is the element preceding i.

The factorization structure on Zn can be obtained using the Beauville-Laszlo the-
orem: Zn sends S ∈ Schaff to the collection: I ∈ Ran(S); G-torsors F0, . . . , Fn on

DI together with isomorphisms F0 →̃F1 →̃ . . . →̃Fn over
◦
DI . If {Ij}j∈J ∈ RanIdisj

then DI = ⊔jDIj , so the above data factorize. So, Z• is a simplicial object in
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CAlgnu(PreStkcorr). Then Z :=| Z• | is a colimit in PreStk/Ran, and Dennis claims
that the corresponding maps

ZJ ×RanJ RanJdisj → Z×Ran Ran
J
disj

are still isomorphisms for all finite nonempty sets J , so that Z is a factorization prestack.
I think the category of factorization prestacks over Ran admits all small colimits.

Dennis says that if G is a factorization A-gerbe on GrG then G⊠̃n constructed in

Sect. 7.3 over G̃r
n

G ×Rann Ran descend to a gerbe on Zn, and can be see as a map
Zn → B2

et(A)×n. This gives a morphism of simplicial prestacks, and passing to the
geometric realizations (shifified in etale topology), one gets a morphism | Z• |→ B3

et(A).
For 7.5.2. My understanding is that, more generally, let H ⊂ G be a subgroup in a

group maybe in some ∞-topos C. Then the Cech nerve of B(H) → B(G) is obtained

as follows. For n ≥ 0 it sends [n] to G\((G/H)×(n+1)), where G acts diagonally on

the product (G/H)×(n+1). The latter identifies also with H\((G/H)n), where H acts
diagonally.

The identification of Zn with the prestack L(G)\(Gr
×(n+1)
G ) is as follows. For a point

(F0, . . . , Fn, αi) of Zn as above, pick trivializations δi of F0, . . . , Fn over the disk Dx.
Then our datum becomes a collection γ1, . . . , γn ∈ G(F ), where F is the field of fraction

of Ox. Namely, γi is the induced isomorphism F 0 δ−1
0→ F0 → F1 → . . . → Fi

δi→ F 0 over
SpecF . This gives a point of L+(G)\(GrnG).

Dennis claims that, according to (HTT, 6.2.3.4), the map Bet(L
+(G))→ Bet(L(G))

is a (−1)-truncated object of PreStk/Bet(L(G)). This is equivalent to saying that the
diagonal morphism

Bet(L
+(G))→ Bet(L

+(G))×Bet(L(G)) Bet(L
+(G))

is an isomorphism in PreStk.
The space of multiplicative gerbes on L(G) with a multiplicative trivialzation of their

restriction to L+(G) is (the one in the LHS of formula (7.3) in the paper)

MapGrp(PreStk)(L(G), B2
et(A))×MapGrp(PreStk)(L

+(G),B2
et(A)) ∗ →̃

MapPtd(PreStk)(Bet(L(G)), B3
et(A))×MapPtd(PreStk)(Bet(L+(G)),B3

et(A)) ∗

So, we produced an object of this space out of a factorization gerbe G on GrG.

3.3. About Fact(C). For 8.1.4. For a finite nonempty set I, the notation Tw(I) here
is not standard. Write fSets for the category whose objects are finite noempty sets,
and morphisms are surjections. For C ∈ 1 − Cat write Tw(C) for the twisted arrows
category (cf. [25], Appendix). Then Tw(fSets)×fSets fSetsI/ →̃ Tw(I).

For (I → J → K) ∈ Tw(I), the 2nd displayed formula in 8.1.5 means ⊠
k∈K

C
⊗Jk
X

rather. That is, in ⊗
k∈K

C
⊗Jk
X we make1 base change by ⊗

k∈K
Shv(X)→ Shv(XK).

1For D-modules this is not necessary, as the corresponding map is an equivalence, but we want a
consruction working for other sheaf theories also.



53

We use everywhere the fact that in any sheaf theory an ind-scheme of ind-finite type
is 1-affine (this is proved by Lin Chen in his email).

The colimit of the functor (8.6) can be understood also in Shv(XI) −mod instead
of DGCatcont, the projection Shv(XI) −mod → DGCatcont preserves colimits. For a
map (16) in Tw(I) the diagram commutes

⊠
k∈K1

C
⊗(J1)k
X

m→ ⊠
k∈K1

C
⊗(J2)k
X

↓ ↓
⊠

k∈K2

C
⊗(J1)k
X

m→ ⊠
k∈K2

C
⊗(J2)k
X ,

where the vertical arrows are direct image functors for XK1 ↪→ XK2 .
For 8.1.6. To check that the construction of 8.1.2-8.1.5 produces a factorization sheaf

of symmetric monoidal categories on Ran, we do the following.
Let I be a finite non-empty set, f : I → I ′ a surjection. Then f induces a full

embedding Tw(I ′) ⊂ Tw(I) sending I ′ → J ′ → K ′ to I
f ′→ J ′ → K ′. Here f ′ is the

composition I → I ′ → J ′.
Let Q(I) be the set of equivalence relations on I. Recall that Q(I) is partially

ordered. As in [2], we write I ′ ∈ Q(I) for a quotient I → I ′ viewed as an equivalence
relation on I. We write I ′′ ≤ I ′ iff I ′′ ∈ Q(I ′). Then Q(I) is a lattice. For I ′, I ′′ ∈ Q(I)
we have inf(I ′, I ′′). Let now a surjection f : I → I ′ be given. We get a functor
Q(I) → Q(I ′) sending J ∈ Q(I) to inf(J, I ′) ∈ Q(I ′). It can be seen as a push-out in
the category of finite sets.

If J2 ≤ J1 in Q(I) then for J ′i = inf(Ji, I
′) we get XJ2 ×XJ1 XJ ′1 →̃XJ ′2 .

Define a functor ξ : Tw(I) → Tw(I ′) sending I → J → K to I ′ → J ′ → K ′, where
J ′ = inf(J, I ′),K ′ = inf(K, I ′). It sends a morphism

(16)
I → J1 → K1

∥ ↓ ↑
I → J2 → K2

to the induced diagram
I ′ → J ′1 → K ′1
∥ ↓ ↑
I ′ → J ′2 → K ′2

Let FI : Tw(I)→ Shv(XI)−mod be the functor sending (I → J → K) to

⊠
k∈K

C
⊗Jk
X

(the latter category is actually an object of Shv(XK) −mod). By definition, Fact(C)
associates to XI → Ran the category

CXI := colim
(I→J→K)∈Tw(I)

( ⊠
k∈K

C
⊗Jk
X )

the colimit taken in Shv(XI)−mod.

Let now f : I → I ′ be a surjection. To the closed immersion XI′ → XI the
sheaf Fact(C) associates the restriction functor CXI → CXI′ given as follows. For each
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(I → J → K) ∈ Tw(I) let (I ′ → J ′ → K ′) ∈ Tw(I ′) be its image under ξ. Consider
the functor

(17) ⊠
k∈K

C
⊗Jk
X → ⊠

k′∈K′
C
⊗J ′

k′
X ,

given as the composition

⊠
k∈K

C
⊗Jk
X → ( ⊠

k∈K
C
⊗Jk
X )⊗Shv(XK) Shv(X

K′) →̃ ⊠
k′∈K′

C
⊗Jk′
X → ⊠

k′∈K′
C
⊗J ′

k′
X

where the second map is the product in C along the natural maps Jk′ → J ′k′ for any

k′ ∈ K ′. We also used the closed immersion XK′ → XK . Now (17) extends to a
morphism FI → FI′ ◦ ξ in Funct(Tw(I), Shv(XI) −mod). Namely, for any morphism
(16) the diagram commutes

⊠
k∈K1

C
⊗(J1)k
X → ⊠

k∈K′1
C
⊗(J ′1)k
X

↓ ↓
⊠

k∈K2

C
⊗(J2)k
X → ⊠

k∈K′2
C
⊗(J ′2)k
X

It uses the fact that the square is cartesian

XK1
△← XK′1

↓ △ ↓ △

XK2
△← XK′2

and the base change holds △!△∗ →̃ △∗△!. Here K ′1 = inf(K1,K
′
2).

We get natural functors

colimTw(I) FI → colimTw(I) FI′ ◦ ξ → colimTw(I′) FI′

This is the desired restriction functor. Given S → Ran with S ∈ Schaffft , it factors

through XI for some I finite nonempty set.
Example: if I = ∗ then Fact(C)(X) = CX . If I = {1, 2} then Fact(C)(XI) is the

colimit of the diagram CX ⊠ CX ← C⊗2X → CX , so factorizes over XI −X.

Let us show that CXI ⊗Shv(XI) Shv(X
I′) → CXI′ is an isomorphism. Denote by

Tw(I)f ⊂ Tw(I) the full subcategory of (I → J → K) such that K ∈ Q(I ′). The
embedding Tw(I)f ⊂ Tw(I) has a right adjoint β : Tw(I) → Tw(I)f sending (I →
J → K) to (I → J → K ′) with K ′ = inf(I ′,K). We have

CXI ⊗Shv(XI) Shv(X
I′) →̃ colim

(I→J→K)∈Tw(I)
( ⊠
k′∈K′

C
⊗Jk′
X ),

here (I → J → K ′) = β(I → J → K). The expression under the colimit is the
composition

Tw(I)
β→ Tw(I)f

F
f
I→ Shv(XI′)−mod,

wher Ff
I : Tw(I)f → Shv(XI′) −mod is the restriction of FI to this full subcategory.

So, we first calculate the LKE under β : Tw(I)→ Tw(I)f of Ff
I ◦ β. By ([15], ch. I.1,
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2.2.3), β is cofinal, so the above colimit identifies with

colim
(I→J→K)∈Tw(I)f

( ⊠
k∈K

C
⊗Jk
X ).

Consider now the full embedding Tw(I ′) ⊂ Tw(I)f . It has a left adjoint ξf : Tw(I)f →
Tw(I ′). Here ξf is the restriction of ξ. So, the full embedding Tw(I ′) ⊂ Tw(I)f is
cofinal. We so rewrite the above colimit as

colim
(I′→J ′→K′)∈Tw(I′)

( ⊠
k′∈K′

C
⊗J ′

k′
X ) →̃CXI′

To prove the factorization property, we use the following lemma from ([26], 1.3.35).
Recall that for a surjection ϕ : I → I ′ of finite nonempty sets we write

(18) XI
ϕ,disj = {(xi) ∈ XI | ifϕ(i) ̸= ϕ(i′) thenxi ̸= xi′}

Lemma 3.3.1. Let I ′
ϕ← I → K be a diagram of surjection of finite nonempty sets.

Then XI
ϕ,disj×XI XK is empty unless I ′ ∈ Q(K), that is, ϕ decomposes as I → K

ϕ′→ I ′.
In the latter case the square is cartesian

XI
ϕ,disj ↪→ XI

↑ ↑ △

XK
ϕ′,disj ↪→ XK ,

where △ is the diagonal.

Given a surjection ϕ : I → I ′, we want to establish an isomorphism

(19) CXI |XI
ϕ,disj

→̃ ( ⊠
i′∈I′

C
XIi′ ) |XI

ϕ,disj

Write Tw(I)ϕ for the full subcategory of Tw(I) spanned by objects (I → J → K) such
that I ′ ∈ Q(K). We have the equivalence Tw(I)ϕ →̃

∏
i′∈I′ Tw(Ii′) sending (I → J →

K) to the collection (Ii′ → Ji′ → Ki′) ∈ Tw(Ii′) for i′ ∈ I ′, the corresponding fibres
over i′.

The base change by Shv(XI) → Shv(XI
ϕ,disj) commutes with colimits, so the LHS

of (19) is

colim
(I→J→K)∈Tw(I)

(( ⊠
k∈K

C
⊗Jk
X )⊗Shv(XI) Shv(X

I
ϕ,disj))

By my Lemma 3.3.1, the above colimit rewrites as the colimit over Tw(I)ϕ. For (I →
J → K) ∈ Tw(I)ϕ we get

( ⊠
k∈K

C
⊗Jk
X )⊗Shv(XI) Shv(X

I
ϕ,disj) →̃ ( ⊠

i′∈I′
( ⊠
k∈Ki′

C
⊗Jk
X ))⊗Shv(XI) Shv(X

I
ϕ,disj)

Since
colim

(Ii′→Ji′→Ki′ )∈Tw(Ii′ )
( ⊠
k∈Ki′

C
⊗Jk
X ) →̃C

XIi′ ,

passing to the colimit we get the desired isomorphism.
An alternative construction of Fact(C) is given in ([31], 6.6). Dennis says the defini-

tion from our joint paper is better, because it is more general. I think the advantage of
defining Fact(C)(XI) as a colimit is that for any morphism f : Y → Y ′ in PreStk the
restriction functor f ! : ShvCat/Y ′ → ShvCat/Y for any theory of sheaves will preserve
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colimits. For limits this is not clear, because for a morphism S → S′ in Schaffft it is

not clear in general if Shv(S) is dualizable as an object of Shv(S′) −mod. Even the
existence of limits in ShvCat/Y is not clear for this reason in general. (However, if Y
is 1-affine then ShvCat/Y has limits).

The structure of a commutative chiral category on our Fact(C) is as follows. Given
finite nonempty sets I1, I2 let I = I1 ⊔ I2. Consider the functor α : Tw(I1)×Tw(I2)→
Tw(I) sending a pair (I1 → J1 → K1), (I2 → J2 → K2) to (I → J → K) with
J = J1 ⊔ J2,K = K1 ⊔K2 given by the coproduct. Note that α is fully faithful. For
an object of Tw(I1) × Tw(I2) whose image under α is (I → J → K) we have an
isomorphism

(20) ( ⊠
k∈K1

C
⊗J1,k
X )⊠ ( ⊠

k∈K2

C
⊗J2,k
X ) →̃ ⊠

k∈K
C
⊗Jk
X

It extends naturally to an isomorphism of functors FI1 ⊠FI2 →̃FI ◦α in Fun(Tw(I1)×
Tw(I2), Shv(X

I) − mod). Passing to colimits over Tw(I1) × Tw(I2) (using the fact
that for a morphism of commutative algebras A → B in DGCatcont the functor A −
mod (DGCatcont)→ B − mod (DGCatcont), M 7→ M ⊗A B commutes with colimits)
we get a morphism

(21) Fact(C)(XI1)⊠ Fact(C)(XI2)→ colim
Tw(I1)×Tw(I2)

FI ◦ α→ colim
Tw(I)

FI = Fact(C)(XI)

in Shv(XI)−mod. Let us check it becomes an isomorphism after the base change by
Shv(XI)→ Shv((XI1 ×XI2)d). Here (XI1 ×XI2)d ⊂ XI is the open subscheme given
by the property that if i1 ∈ I1, i2 ∈ I2 then (xi1 , xi2) ∈ X2 −X.

For an object (I → J → K) ∈ Tw(I), XK ×XI (XI1 × XI2)d is empty unless
(I → J → K) lies in the full subcategory Tw(I1) × Tw(I2). So, (21) becomes an
isomorphism over (XI1 ×XI2)d.

Let now I1 → I ′1, I2 → I ′2 be maps in fSet. Then (21) fits into a commutative
diagram

(22)

CXI1 ⊠ CXI2

(21)→ CXI1⊔I2

↓ ↓
C
XI′1

⊠ C
XI′2

(21)→ C
XI′1⊔I

′
2
,

where the vertical maps are !-restrictions along the closed immersionsXI′1 ↪→ XI1 , XI′2 ↪→
XI2 and XI′1⊔I′2 ↪→ XI1⊔I2 . Passing to the limit over I1, I2 ∈ fSet × fSet, the above
diagram yield the functor

(23) β : Γ(Ran,Fact(C))⊠ Γ(Ran,Fact(C))→ Γ(Ran×Ran, u∗ Fact(C))

for the sum map u : Ran×Ran→ Ran.

3.3.2. Question. How does one gets a unital commutative chiral category structure on
Fact(C) (similar to ([31], 6.6))?
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3.3.3. As in ([31], 6.6), we get the following. For any finite nonempty set I, FI :
Tw(I) → CAlgnu(Shv(XI) −mod), however, we take the colimit rather of the com-
position Tw(I) → CAlgnu(Shv(XI) − mod) → Shv(XI) − mod. The structure on
CXI of a sheaf of symmetric monoidal DG-categories on XI is not clear, has to be
precised. The category Tw(I) has an object (I → I → I). So, we get the morphism
Loc : ⊠

i∈I
CX → CXI of sheaves of (symmetric monoidal?) DG-categories on XI .

The morphisms Loc are evidently compatible with surjections I → I ′. That is, the
diagram commutes

⊠
i∈I

CX → CXI

↓ ↓
⊠
i∈I′

CX → CXI′

Here the right vertical arrow comes from the isomorphism CXI⊗Shv(XI)Shv(X
I′) →̃CXI′ ,

and the left vertical arrow comes from the !-retsriction to XI′ and the corresponding
product map along I → I ′.

3.3.4. For 8.1.7. The construction of the non-unital symmetric monoidal structure
on Fact(C)(Ran) is as in ([30], Sect. 7.17). This uses ([30], Pp. 7.15.5), which is
formulated only for D-modules, but holds for any sheaf theory. Namely, if f : Y → Z
is a map of pseudo-indschemes in the sense of ([30], 7.15.1), C is a sheaf of categories
on Z then there is a canonical morphism Γ(Y,C |Y ) → Γ(Z,C), see ([25], 0.4.13) and
Section 3.7.10 of this file, see also ([24], Section 2) for sheaves on categories for any
sheaf theory.

The product in Fact(C)(Ran) is given by the diagram

Γ(Ran,Fact(C))⊗ Γ(Ran,Fact(C))→ Γ(Ran×Ran,Fact(C)⊠ Fact(C))→

Γ(Ran×Ran, u∗ Fact(C))
u∗,Fact(C)→ Γ(Ran,Fact(C))

Here u : Ran×Ran → Ran is the multiplication, u∗,Fact(C) is the left adjoint to
the restriction map Γ(Ran,Fact(C)) → Γ(Ran×Ran, u∗ Fact(C)). Since u is pseudo-
indproper morphism of pseudo-indschemes in the sense of ([30], 7.15.1), u∗,Fact(C) exists
by Section 3.7.10 of this file.

Since Ran →̃ colimI∈fSetop X
I , for any sheaf of categories E on Ran,

Γ(Ran, E) →̃ lim
I∈fSet

Γ(XI , E),

and we may pass to left adjoint in this diagram. So, Γ(Ran, E) →̃ colimI∈fSetop Γ(X
I , E).

In the latter colimit for a map I → J in fSet let a : XJ → XI be the corresponding
closed immersion. Then the transition map Γ(XJ , E)→ Γ(XI , E) is a∗,E .

3.4. Let us again be as in 8.1.4. We want to compare the definition of Fact(C) from
8.1.4 with the one from ([31], 6.8). Let C ∈ CAlg(DGCatcont). Work with any of the
4 sheaf theories from [14]. We take C⊗ Shv(X) as our sheaf of categories over X and
apply Dennis’ construction of Fact(C).

In Section 3.4 we assume that C is compactly generated, and the product C⊗C→ C

admits a continuous right adjoint.
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Lemma 3.4.1. Let I be a finite nonempty set. For any (I → J → K) ∈ Tw(I) the
natural functor C⊗J ⊗ Shv(XK) → CXI admits a continuous right adjoint, which is a
strict morphism of Shv(XI)-modules. One may pass to right adjoints in FI,C and get

a functor FR
I,C : Tw(I)op → Shv(I)−mod. Then CXI →̃ lim

Tw(I)op
FR
I,C naturally.

Let F∨I,C : Tw(I)op → Shv(XI)−mod be obtained from FI,C by passing to the duals.

Then CXI is dualizable as a Shv(XI)-module, and its dual is (CXI )∨ →̃ lim
Tw(I)op

F∨I,C .

Proof. For any (I → J → K) ∈ Tw(I), C⊗J ⊗Shv(XK) is compactly generated, hence

dualizable in DGCatcont. Indeed, Shv(S) is compactly generated for any S ∈ Schaffft ,

and Vect is rigid, so we applied ([15], ch. I.1, 8.7.4).
Note that Shv(XK) is dualizable as a Shv(XI)-module (see my Section 3.7.1 below).

The functor DGCatcont → Shv(XI)−mod, D 7→ D⊗Shv(XI) is symmetric monoidal,
so sends dualizable objects to dualizable. So, C ⊗Shv(XI) is dualizable in Shv(XI)−
mod. The product of dualizable objects is dualizable, so C⊗J ⊗ Shv(XK) is dualizable
in Shv(XI)−mod.

Since the product C⊗ C→ C admits a continuous right adjoint, for any J → K the
product CJ → CK admits a continuous right adjoint also by ([22], 4.1.6). We claim
now that any morphism in Tw(I) is sent by FI to the functor C⊗J ⊗ Shv(XK) →
C⊗J

′ ⊗ Shv(XK′) admitting a continuous right adjoint, which is moreover Shv(XI)-
linear (not just right-lax). Indeed, for a surjection K ′ → K and the corresponding

diagonal δ : XK → XK′ the functor δ! admits a continuous right adjoint δ!, which is
Shv(XI)-linear. Write FR

I,C : Tw(I)op → Shv(XI)−mod for the functor obtained from

FI,C by passing to right adjoints. We get CXI →̃ lim
Tw(I)op

FR
I,C .

Now proceed as in ([15], ch. I.1, 6.3.4) replacing only 1− CatSt,cocmpl
cont by Shv(XI)−

mod. We used the fact that the projection Shv(XI) − mod → DGCatcont preserves
colimits and limits. □

Let us also construct a functor ζ from Dennis version to Sam’s version of Fact(C).
So, CX = C⊗ Shv(X). Sam’s definition is

C̄XI = lim
(I

p→J→K)∈Tw(I)op
Shv(XI

p,disj)⊗ C⊗K

His transition map attaches for the diagram (16) the functor

Shv(XI
p2,disj)⊗ C⊗K2 → Shv(XI

p1,disj)⊗ C⊗K1 ,

which is the tensor product of the product C⊗K2 → C⊗K1 along K2 → K1 and the
restriction along the open immersion XI

p1,disj
⊂ XI

p2,disj
. Denote by F̄I : Tw(I)op →

Shv(XI)−mod the above diagram defining C̄XI . We write F̄I,C if we need to express
the dependence on C.

For any C ∈ CAlg(DGCatcont) the functor ζ : CXI → C̄XI is defined as follows.

Pick (I
p→ J → K) ∈ Tw(I). We define a compatible system of morphisms CXI →

Shv(XI
p,disj) ⊗ C⊗K as follows. Given (I → J1 → K1) ∈ Tw(I), XI

p,disj ×XI XK1 is
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empty unless J ∈ Q(K1). The map

(24) Shv(XK1)⊗ CJ1 → Shv(XI
p,disj)⊗ C⊗K

vanishes unless J ∈ Q(K1). In the latter case we get a diagram I → J1 → K1 → J →
K, hence a map C⊗J1 → C⊗K given by the product along J1 → K. Then (24) is the
composition

Shv(XK1)⊗ CJ1 → Shv(XK1)⊗ CK → Shv(XI
p,disj)⊗ C⊗K ,

where the second map is the restriction (followed by the direct image under closed im-
mersion). These maps are compatible, so yield the desired functor CXI → Shv(XI

p,disj)⊗
C⊗K . The latter functors are compatible, hence yield ζ : CXI → C̄XI .

By construction, C̄XI ∈ CAlg(Shv(XI) − mod), and for each (I → J1 → K1) ∈
Tw(I) the corresponding map Shv(XK1)⊗CJ1 → C̄XI is a map in CAlgnu(Shv(XI)−
mod). So, ζ : CXI → C̄XI is Shv(XI)-linear.

Lemma 3.4.2. Recall that C is compactly generated and m : C⊗2 → C admits a
continuous right adjoint. Then
i) the functor ζ : CXI → C̄XI is an equivalence.

ii) for each (I → J → K) ∈ Tw(I) the projection C̄XI → Shv(XI
p,d) ⊗ C⊗K admits a

continuous Shv(XI)-linear right adjoint.

Proof. For S ∈ Schft, E ∈ Shv(S) −mod, x, x′ ∈ E write HomE(x, x
′) ∈ Shv(S) for

the relative inner hom for the Shv(S)-action.
Our CXI is ULA over Shv(XI) by Section 3.4.6. The functor Loc : Shv(XI)⊗C⊗I →

CXI was defined in Section 3.3.3. We first prove i).

Step 1We claim that ζ : CXI → C̄XI admits a Shv(XI)-linear continuous right adjoint.
Using Lemma 3.5.2 and Proposition 3.7.7, it suffices to show that if c ∈ (C⊗I)c then
ζ(Loc(c⊗ω)) ∈ C̄XI is ULA over Shv(XI). Indeed, the objects of the form c⊗K with
K ∈ Shv(XI)c, c ∈ (C⊗I)c generate C⊗I ⊗ Shv(XI). Let c ∈ (C⊗I)c.

By ([22], 2.4.7), if L ∈ C̄XI is such that for any (I
p→ J → K) ∈ Tw(I), the image of

L in Shv(XI
p,d) ⊗ C⊗K is compact then L is compact in C̄XI , because Tw(I) is finite.

For K ∈ Shv(XI)c the image of ζ(Loc(c⊗K)) in each Shv(XI
p,d)⊗C×K is compact, so

ζ(Loc(c⊗K)) ∈ (C̄XI )c. This shows that ζ admits a continuous right adjoint ζR.
Let L ∈ Shv(XI),M ∈ C̄XI . We must show that the natural map

(25) L⊗! HomC̄
XI

(ζ(Loc(c⊗ ω)),M)→ HomC̄
XI

(ζ(Loc(c⊗ ω), L⊗M)

is an isomorphism in Shv(XI). For Σ = (I
p→ J → K) ∈ Tw(I) write MΣ for the

projection of M to Shv(XI
p,d)⊗ C⊗K , write fΣ for the composition

Shv(XI)⊗ C⊗I
Loc→ CXI

ζ→ C̄XI → Shv(XI
p,d)⊗ C⊗K

One has

HomC̄
XI

(ζ(Loc(c⊗ ω)),M) →̃ lim
(I

p→J→K)∈Tw(I)op
HomShv(XI

p,d)⊗C⊗K (fΣ(c⊗ ω),MΣ)
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in Shv(XI). Clearly, fΣ has a Shv(XI)-linear continuous right adjoint fR
Σ , and

HomShv(XI
p,d)⊗C⊗K (fΣ(c⊗ ω),MΣ) →̃HomShv(XI)⊗C⊗I (c⊗ ω, fR

Σ (MΣ))

The key point is that the functor Shv(XI) → Shv(XI), · 7→ L ⊗! · commutes with
finite limits, as this functor is exact. So, the LHS of (25) identifies with

lim
(I

p→J→K)∈Tw(I)op
L⊗! HomShv(XI)⊗C⊗I (c⊗ ω, fR

Σ (MΣ))

Since c⊗ ω ∈ Shv(XI)⊗ C⊗I is ULA over Shv(XI), the latter limit becomes

lim
(I

p→J→K)∈Tw(I)op
HomShv(XI)⊗C⊗I (c⊗ ω,L⊗ fR

Σ (MΣ)) →̃

lim
(I

p→J→K)∈Tw(I)op
HomShv(XI)⊗C⊗I (c⊗ ω, fR

Σ (L⊗MΣ)) →̃

lim
(I

p→J→K)∈Tw(I)op
HomShv(XI

p,d)⊗C⊗K (fΣ(c⊗ω), L⊗MΣ) →̃HomC̄
XI

(ζ(Loc(c⊗ω)), L⊗M)

Step 2 Let U ⊂ XI be the complement to the main diagonal X ↪→ XI . By Propo-
sition 3.7.8, it suffices to show now that ζ becomes an isomorphism after applying
· ⊗Shv(XI) Shv(X) and · ⊗Shv(XI) Shv(U). But both properties follow from factoriza-

tion. For the open part, we use here that the union of XI
p,d for p : I → J in fSet with

| J |> 1 is U . We also use the following claim. If ν : B → B′ is a map in Shv(U)−mod,
which becomes an equvalence after Zariski localization then ν is an equivalence. So, i)
is proved.

ii) For any (I → J1 → K1) ∈ Tw(I) the functor (24) admits a continuous Shv(XI)-
linear right adjoint. Recall that each transition functor in the diagram FI,C admits also

a Shv(XI)-linear continuous right adjoint. Passing to the right adjoints in Shv(XI)−
mod, we get a canonical map Shv(XI

p,d) ⊗ C⊗K → lim
Tw(I)op

FR
I,C →̃CXI in Shv(XI) −

mod. By ([22], 9.2.6), this is the desired Shv(X)-linear continuous right adjoint to the
projection C̄XI → Shv(XI

p,d)⊗ C⊗K . □

Note that we may pass to right adjoints in the functor F̄I,C : Tw(I)op → Shv(XI)−
mod and get a functor denoted (F̄I,C)

R : Tw(I) → Shv(XI) − mod. Moreover, by
the above lemma we may pass to right adjoints in the limit diagram ◁(Tw(I)op) →
Shv(XI) − mod of the functor F̄I,C , this produces a functor denoted (F̄I,C)

R,▷ :

Tw(I)▷ → Shv(XI)−mod, whose value on the final object is C̄XI . In other words, we
constructed a map in Shv(XI)−mod

(26) colim
Tw(I)

(F̄I,C)
R → C̄XI .

3.4.3. Question. Is the map (26) an equivalence?
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3.4.4. We hope that for any C ∈ CAlg(DGCatcont), CXI can be lifted naturally to
an object of CAlg(Shv(XI) −mod) such that for each (I → J1 → K1) ∈ Tw(I) the
corresponding map Shv(XK1)⊗ CJ1 → CXI is symmetric monoidal. (The definition of
the symmetric monoidal structure on the Shv(XI)-module CXI is not clear in general,
as Tw(I) is not sifted, so CAlg(Shv(XI)−mod)→ Shv(XI)−mod does not preserve
the Tw(I)-indexed colimits maybe.

Note however that under the assumptions of Section 3.4, we have indeed CXI
→̃ C̄XI ∈

CAlg(Shv(XI)−mod).

Remark 3.4.5. Assume in the situation of Lemma 3.4.1 in addition that 1 ∈ C is
compact. Since XK is smooth, the unit object ω ∈ Shv(XK) is compact. Indeed, the
functor Γ(XK ,−) : Shv(XK)→ Shv(∗) is continuous. Thus, 1⊗ ω ∈ (C⊗ Shv(X))c.
So, the image of 1 ⊗ ω under the natural map C ⊗ Shv(X) → CXI (corresponding to
(I → ∗ → ∗) ∈ Tw(I)) is compact by Lemma 3.4.1. So, the unit of CXI is compact.

3.4.6. As in [31], we want to show that CXI is ULA in the sense of Section 3.7.6 below.
Let c ∈ C⊗I be compact. Then c ⊗ ω ∈ Shv(XI) ⊗ CI is ULA. Here ω is the unit

object of Shv(S) for S ∈ Schaffft . Indeed, we have an adjoint pair L : Vect ⇄ C⊗I : R,

where L(K) = K ⊗ c. Tensoring by Shv(XI), we get an adjoint pair L̄ : Shv(XI) ⇄
C⊗I ⊗ Shv(XI) : R̄. Since R̄ is continuous and Shv(XI)-linear, c⊗ ω is ULA.

Recall the functor Loc : ⊠
i∈I

CX → CXI of Section 3.3.3 above. By Lemma 3.4.1, Loc

admits a continuous right adjoint, which is Shv(XI)-linear. If c ∈ C⊗I is compact then

Loc(c⊗ ω) ∈ CXI is ULA by Proposition 3.7.7 below. Indeed, C⊗I ⊗ Shv(XI)
Loc→ CXI

admits a continuous right adjoint, which is Shv(XI)-linear.
By Lemma 3.5.2 below, the essential image of Loc : ⊠

i∈I
CX → CXI generates CXI

under colimits. We also check below in Lemma 3.5.12 that CXI is ULA over Shv(XI).
Concretely, if c ∈ C⊗I is compact then Loc(c ⊗ ω) ∈ CXI is ULA. Since C⊗I ⊗

Shv(XI) is compactly generated by objects of the form c⊗z, c ∈ (C⊗I)c, z ∈ Shv(XI)c,
this shows that CXI is ULA over Shv(XI) using Lemma 3.5.2.

3.4.7. If C = Vect then CXI →̃Shv(XI) in Shv(XI) −mod. Indeed, as in the proof
of Lemma 3.5.2 we see that (28) is an isomorphism in this case. In turn, 0Tw(I)op

has an initial object (I
id→ I

id→ I), so the limit (28) in this case becomes the value at

(I
id→ I

id→ I), that is, Shv(XI).

3.4.8. Let Γ be an affine algebraic group of finite type. Let C = Rep(Γ) = QCoh(B(Γ)).
It is known to be rigid. We have a conservative forgetful functor C → Vect. The
functoriality of Fact yields a conservative functor OblvXI : CXI → Fact(Vect)(XI) =
Shv(XI), here we use the definition of CXI as a colimit.

Write FI,C for the functor FI is we want to underline the dependence on the category

C. Write FR
I,C : Tw(I)op → DGCatcont for the functor obtained from FI by passing

to the right adjoints, then we do not have a map of functors FR
I,C → FR

I,Vect for the
forgetfull functor oblv : C→ Vect. That is, to get OblvXI we can not use the definition
CXI →̃ limFR

I,C , we consider the colimits instead.
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As in ([31], 6.22.1) we derive from Proposition 3.7.7 that OblvXI has a Shv(XI)-
linear right adjoint Avw

XI ,∗ : Shv(X
I)→ CXI????

3.4.9. For I ∈ fSet the union of XI
p,disj for p : I → J in fSet with | J |> 1 equals

XI −X. For Σ = (I → J → K) ∈ Tw(I) we have a morphism

I
p→ J → K

↑ id ↑ ↓
I

p→ J → ∗

functorial in Σ. The corresponding functor Shv(XI
p,d) ⊗ C⊗K

id⊗m→ Shv(XI
p,d) ⊗ C is

functorial in Σ.
Let ins : fSetI/ ⊂ Tw(I) be the full subcategory of objects of the form (I → J → ∗).

We get an adjoint pair fSetI/ ⇆ Tw(I) : τ , where τ(I → J → K) = (I → J → ∗).

Lemma 3.4.10. One has lim
(I→J→K)∈Tw(I)op

Shv(XI
p,d) →̃Shv(XI), these are the sections

over XI of the factorization category Shv.

Proof. Consider the functor

η : (fSetI/)
op → DGCatcont, (I

p→ J → ∗) 7→ Shv(XI
p,d),

where the transition functors are restrictions. Its RKE along the inclusion (fSetI/)
op ↪→

Tw(I)op is η ◦ τ op by ([22], 2.2.39). So,

lim
(I→J→K)∈Tw(I)op

Shv(XI
p,d) →̃ lim

(I→J→∗)∈(fSetI/)op
Shv(XI

p,d)

The category fSetI/ has the final object (I → ∗), so the latter limit identifies with the
value at (I → ∗ → ∗). □

Since C is assumed dualizable, we have

Shv(XI)⊗ C →̃ lim
(I→J→K)∈Tw(I)op

(Shv(XI
p,d)⊗ C)

Passing to the limit over Σ ∈ Tw(I)op, the above gives a functor C̄XI → Shv(XI)⊗C.
For U = XI − X tensoring by Shv(U), we get a morphism C̄XI ⊗Shv(XI) Shv(U) →
Shv(U)⊗ C. The square is cartesian

C̄XI → C̄XI ⊗Shv(XI) Shv(U)

↓ ↓
Shv(XI)⊗ C → Shv(U)⊗ C,

where the horizontal arrows are restrictions. This is ”a way to do induction” over | I |.

3.4.11. For a reductive group G such that the set of irreducible representations of Ǧ
is infinite the functor m : Rep(Ǧ)⊗2 → Rep(Ǧ) does not have a left adjoint. So, one
should not hope to be able to pass to the left adjoints in the diagram defining C̄XI

lim
(I→J→K)∈Tw(I)op

Shv(XI
p,d)⊗ C⊗K →̃ C̄XI
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3.4.12. Recall that C ∈ CAlg(DGCatcont) is assumed compacty generated, and we
assume that m : C⊗2 → C admits a continuous right adjoint.

Let Σ = (I
p→ J → K) ∈ Tw(I). By Section 3.7.1, Shv(XI

p,d) is self-dual in

Shv(XI) −mod. Besides, C⊗K ⊗ Shv(XI) is dualizable in Shv(XI) −mod, so their
tensor product Shv(XI

p,d)⊗ C⊗K is dualizable in Shv(XI)−mod, and its dual is

Shv(XI
p,d)⊗ (C∨)⊗K

Let D ∈ Shv(XI)−mod. Then we get an equivalence

FunShv(XI)(Shv(X
I
p,d)⊗ (C∨)⊗K , D) →̃C⊗K ⊗ Shv(XI

p,d)⊗Shv(XI) D

Our purpose is to understand the limit

lim
(I→J→K)∈Tw(I)op

C⊗K ⊗ Shv(XI
p,d)⊗Shv(XI) D,

where this diagram is obtained from the one defining C̄XI by applying · ⊗Shv(XI) D.
We rewrite it as

(27) lim
(I→J→K)∈Tw(I)op

FunShv(XI)(Shv(X
I
p,d)⊗ (C∨)⊗K , D)

Denote by F̄∨I,C : Tw(I) → Shv(XI) − mod the diagram obtained from F̄I,C by

passing to the duals. The diagram (27) is obtained by functoriality from F̄∨I,C by

applying FunShv(XI)(·, D). So, the limit (27) identifies with

FunShv(XI)(colim
Tw(I)

F̄∨I,C , D)

3.4.13. Question. The equivalence CXI →̃ lim
Tw(I)op

F̄I,C of Lemma 3.4.2 yields by pass-

ing to the duals a morphism colim
Tw(I)

F̄∨I,C → (CXI )∨, where the colimit is calculated in

Shv(XI)−mod. Is the latter an equivalence?

Remark 3.4.14. Assume in addition C rigid in DGCatcont. Then in the case of D-
modules the answer to Question 3.4.13 is yes, this follows directly from ([31], Lemma 6.18.1).

3.5. Additional results about Fact(C).

3.5.1. We work here with any of our 4 sheaf theories. The theory of sheaves of cate-
gories in this context is developed in [24]. Let C ∈ CAlg(ShvCat(X)). Write FI,C for

the functor FI : Tw(I) → Shv(XI) −mod if we need to underline the dependence on
the category C(X).

The category Tw(I) has an object (I → I → I). So, for I ∈ fSet we get the
morphism Loc : ⊠

i∈I
C(X)→ CXI = Fact(C)(XI).

Lemma 3.5.2. The functor Loc : ⊠
i∈I

C(X)→ CXI generates CXI under colimits.

Proof. It suffices to show, by ([32], ch. I.1, 5.4.3) that the right adjoint LocR : CXI →
⊠
i∈I

C(X) is conservative. Denote by FI : Tw(I)→ Shv(XI)−mod our functor sending

(I → J → K) to ⊠
k∈K

C⊗Jk(X), so CXI := colimFI . Denote by j : 0Tw(I) ⊂ Tw(I)
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the full subcategory spanned by objects of the form (I
p→ J → K), where p is an

isomorphism. We have an adjoint pair

j : 0Tw(I) ⇆ Tw(I) : jR,

where jR(I
p→ J

q→ K) = (I
id→ I

qp→ K).
We may write

CXI →̃ lim
(I→J→K)∈Tw(I)op

⊠
k∈K

C⊗Jk(X)

the limit of the functor FR
I obtained from FI by passing to right adjoints. Restricting

to the full subcategory 0Tw(I)op the functor FR
I , we get a morphism

(28) CXI → lim
(I→J→K)∈0Tw(I)op

FR
I

Let F̄R
I denote the RKE of FR

I ◦ jop under 0Tw(I)op → Tw(I)op. By ([22], 2.2.39),

F̄R
I = FR

I ◦ jop ◦ (jR)op.

The map of functors FR
I → F̄R

I evaluated at an object (I
p→ J

q→ K) = Σ ∈ Tw(I)op

becomes

⊠
k∈K

C⊗Jk(X)→ ⊠
k∈K

C⊗Ik(X).

It is conservative, as its left adjoint is surjective. So, passing to the limit over Tw(I)op,
we conclude by ([22], Cor. 2.5.3) that (28) is conservative.

The category 0Tw(I)op has an initial object (I
id→ I

id→ I). So,

lim
(I→J→K)∈0Tw(I)op

FR
I →̃ ⊠

i∈I
C(X)

Thus, LocR is conservative. □

From this lemma it follows that there could be at most a unique symmetric monoidal
structure on CXI for which Loc is symmetric monoidal. Add the proof that it exists
indeed. I assume moreover that for any (I → J → K) ∈ Tw(I) the corresponding
functor ⊠

k∈K
C⊗Jk(X)→ CXI is symmetric monoidal.

3.5.3. Factorization algebras in Fact(C). Let in addition A ∈ CAlg(C(X)). We want
to analyse the construction of the corresponding commutative factorization algebra in
Fact(C).

For J ∈ fSet write ∗ : C⊗J(X)→ C(X) for the product map, so we get the product
map A∗J → A in C(X) for A, here A∗J ∈ C(X) is the image of A⊗J(X) under ∗. Now
given a map ϕ : J → J ′ ∈ fSet, for the product map mϕ : C⊗J(X)→ C⊗J

′
(X) we get

the product map mϕ(A
⊗J)→ A⊗J

′
in C⊗J

′
(X) for the algebra A.

We define the functor FI,A : Tw(I) → CXI as follows. We will write FC
I,A = FI,A if

we need to express its dependence on C. The functor FI,A sends (I → J → K) to the
image under FI(I → J → K)→ CXI of the object

⊠
k∈K

A⊗Jk ∈ ⊠
k∈K

C⊗Jk(X) = FI(I → J → K)
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Now for a map in Tw(I) given by (2) we get a morphism in ⊠
k∈K2

C⊗(J2)k(X) and

hence in CXI

FI,A(I → J1 → K1)→ FI,A(I → J2 → K2)

as follows. First, for the diagram (defining the transition functor for FI)

⊠
k∈K1

C⊗(J1)k(X)
α→ ⊠

k∈K1

C⊗(J2)k(X)
β→ ⊠

k∈K2

C⊗(J2)k(X)

we get natural product map α( ⊠
k∈K1

A⊗(J1)k)→ ⊠
k∈K1

A⊗(J2)k in ⊠
k∈K1

C⊗(J2)k(X) for the

algebra A. Further, for △: XK1 ↪→ XK2 we have

△! ( ⊠
k∈K2

A⊗(J2)k) →̃ ⊠
k∈K1

A⊗(J2)k

in ⊠
k∈K1

C⊗(J2)k(X). So, we compose the previous product map with

△! ( ⊠
k∈K1

A⊗(J2)k) →̃ △!△
! ( ⊠

k∈K2

A⊗(J2)k)→ ⊠
k∈K2

A⊗(J2)k

Finally, AXI ∈ CXI is defined as colim
(I→J→K)∈Tw(I)

FI,A in CXI . That is,

AXI →̃ colim
(I→J→K)∈Tw(I)

⊠
k∈K

A⊗Jk

taken in CXI .

3.5.4. Let us check that this defines indeed an object of Fact(C)(Ran). That is, for a
surjection I → I ′ in fSet, the restriction functor CXI → CXI′ defined in Section 3.3
sends AXI to AXI′ .

We argue as and use the notations of Section 3.3. First, the image of AXI under
CXI → CXI′ writes as

colim
(I→J→K)∈Tw(I)

⊠
k∈K′

A⊗Jk

taken in CXI′ , where K ′ = inf(K, I ′). So, this is the colimit of the composition

Tw(I)
β→ Tw(I)f

F
f
I,A→ CXI′ ,

where Ff
I,A is the restriction of FI,A to the full subcategory Tw(I)f ⊂ Tw(I) composed

with the natural map CXI → CXI′ . Since β is cofinal, the above colimit rewrites as

colim
(I→J→K′)∈Tw(I)f

( ⊠
k∈K′

A⊗Jk)

taken in CXI′ . Since Tw(I ′)→ Tw(I)f is cofinal, the above colimit rewrites as

colim
(I′→J ′→K′)∈Tw(I′)

( ⊠
k∈K′

A⊗J
′
k)

taken in CXI′ , hence identifies withAXI′ . We obtained an object Fact(A) of Fact(C)(Ran).
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3.5.5. Given ϕ : I → J a map in fSet, arguing as after Lemma 3.3.1, one gets an
isomorphism

AXI |XI
ϕ,disj

→̃ ( ⊠
i′∈I′

A
XIi′ ) |XI

ϕ,disj

in CXI ⊗Shv(XI) Shv(X
I
ϕ,disj), where we use the equivalence (19) to see both sides in

the same category.

3.5.6. Recall that in Section 3.3.4 we equipped Γ(Ran,Fact(C)) with a structure of
an object of CAlgnu(DGCatcont). Write ⋆ for the monoidal operation on Fact(C)(Ran).
Let us lift Fact(A) ∈ Fact(C)(Ran) to a non-unital commutative algebra in Fact(C)(Ran).

Let I1, I2 ∈ fSet with I = I1 ⊔ I2. Let

(I1 → J1 → K1) ∈ Tw(I1), (I2 → J2 → K2) ∈ Tw(I2)

Recall the functor α : Tw(I1)×Tw(I2)→ Tw(I), let (I → J → K) is the image of this
pair under α. Under the equivalence (20) one gets an isomorphism

( ⊠
k∈K1

A⊗(J1)k)⊠ ( ⊠
k∈K2

A⊗(J2)k) →̃ ⊠
k∈K

A⊗Jk

in ⊠
k∈K

C⊗Jk(X), hence also in CXI1⊠CXI2 . Passing to the colimit over Tw(I1)×Tw(I2)
in CXI1 ⊠ CXI2 , we get in

AXI1 ⊠AXI2 →̃ colim
(I1→J1→K1)∈Tw(I1)

(I2→J2→K2)∈Tw(I2)

⊠
k∈K

A⊗Jk ,

where K = K1 ⊔ K2. Applying further the natural functor CXI1 ⊠ CXI2 → CXI , we
get a natural map in CXI

(29) βI1,I2 : AXI1 ⊠AXI2 → AXI

Now if I1 → I ′1, I2 → I ′2 are maps in fSet, using the commuttaive diagram (22) we

!-restrict (29) under XI′ ↪→ XI , where I ′ = I ′1 ⊔ I ′2, and get the same morphism

βI′1,I′2 : A
XI′1

⊠A
XI′2
→ AXI′

Passing to the limit over I, I ′ ∈ fSet× fSet, this gives a map

β(Fact(A)⊠ Fact(A))→ u! Fact(A)

in Γ(Ran×Ran, u∗ Fact(C)), here β is the morphism (23). We have denoted here by
u! : Γ(Ran,Fact(C)) → Γ(Ran×Ran, u∗ Fact(C)) the natural ”shriek-pullback” for
sections. Recall from ([24], 2.0.2) that this u! has a left adjoint

u!,Fact(C) : Γ(Ran×Ran, u∗ Fact(C))→ Γ(Ran,Fact(C)),

because u is a pseudo-indproper morphism of pseudo-indschemes. By definition of the
monoindal structure on Γ(Ran,Fact(C)), this gives a map

Fact(A) ⋆ Fact(A)→ Fact(A)

This is the product on Fact(A) in (Γ(Ran,Fact(C)), ⋆).
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3.5.7. From now on for the rest of Section 3.5 we assume that C(X) is compactly gener-

ated, dualizable as a Shv(X)-module, the functor C⊗2(X)
m→ C(X) admits a continuous

right adjoint, which is Shv(X)-linear, and Shv(X)
1C→ C(X) admits a Shv(X)-linear

continuous right adjoint. Recall that C⊗J(X) denotes the J-tensor power of C(X) in
Shv(X)−mod.

Recall that for D-module dualizability of C(X) as a Shv(X)-module is equivalent
to its dualizability as a plein object of DGCatcont. This is maybe not true in the
constructible context.

Lemma 3.5.8. Let I be a finite nonempty set. Then Fact(C)(XI) is dualizable as a
Shv(XI)-module. Besides, for any (I → J → K) ∈ Tw(I) the natural functor

(30) ⊠
k∈K

C⊗Jk(X)→ CXI

admits a continuous right adjoint, which is a strict morphism of Shv(XI)-modules.

Proof. Step 1 For any (I → J → K) ∈ Tw(I), ⊠
k∈K

C⊗Jk(X) is dualizable in Shv(XI)−

mod. Indeed, ⊠i∈JC(X) is dualizable as a Shv(XJ)-module, as the functor∏
J

Shv(X)−mod→ Shv(XJ)−mod

of exteriour product is symmetric monoidal. Now the extensions of scalars functor
Shv(XJ) − mod → Shv(XK) − mod with respect to △!: Shv(XJ) → Shv(XK) is
symmetric monodal. So, ⊠

k∈K
C⊗Jk(X) is dualizable in Shv(XK) −mod. Finally, ap-

plying ([22], 9.2.32) for the colocalization Shv(XK) ⇆ Shv(XI), we conclude that
⊠

k∈K
C⊗Jk(X) is dualizable in Shv(XI)−mod.

Step 2 Consider a morphism in Tw(I) given by (2). We claim that in the diagram

⊠
k∈K1

C⊗(J1)k(X)→ ⊠
k∈K1

C⊗(J2)k(X)→ ⊠
k∈K2

C⊗(J2)k(X)

both maps admit continuous right adjoints, which are Shv(XI)-linear. For the first
map we first check that it is Shv(XK1)-linear using ([22], 4.1.6), and apply the functor
of direct image Shv(XK1) −mod → Shv(XI) −mod. For the second map we use the
fact that for any M ∈ Shv(XK2)−mod, we have an adjoint pair

△!: M ⊗Shv(XK2 ) Shv(X
K1) ⇆ M :△!

in Shv(K2)−mod, which is also an adjoint pair in Shv(XI)−mod.
So, we get the functor FI : Tw(I) → Shv(XI) − mod, sending (I → J → K)

to ⊠
k∈K

C⊗Jk(X), and we may pass to right adjoints here and get FR
I : Tw(I)op →

Shv(XI)−mod. Recall that the functor oblv : Shv(XI)−mod→ DGCatcont preserves
limits and colimits, so we may understand limFR

I either in DGCatcont or in Shv(XI)−
mod. Recall that colimFI →̃ limFR

I , where the limit is understood in DGCatcont, the
claim about the right adjoint to (30) follows. To get the dualizability of Fact(C)(XI)
is Shv(XI)−mod we may apply ([22], 3.1.10). □
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3.5.9. The right adjoint mR : C(X) → C⊗2(X) of m together with 1RC : C(X) →
Shv(X) defines on C(X) the structure of a cocommutative coalgebra in Shv(X) −
mod. Write C∨(X) for the dual of C(X) in Shv(X) − mod. Passing to the duals,
C∨(X) becomes a commutative algebra in Shv(X) − mod with the product (mR)∨ :
(C∨)⊗2(X)→ C∨(X) and unit (1RC)

∨ : Shv(X)→ C∨(X).
Our our assumptions, the map C(X) 7→ C∨(X) is an involution. It interacts nicely

with the construction of Fact(C), we discuss this in the next subsection.

3.5.10. Under our assumptions, for Σ = (I → J → K) ∈ Tw(I), the dual of
⊠

k∈K
C⊗Jk(X) in Shv(XI) −mod is ⊠

k∈K
(C∨)⊗Jk(X). From Lemma 3.5.8 we conclude

that the dual of CXI in Shv(XI)−mod writes as

(31) (CXI )∨ →̃ lim
(I→J→K∈Tw(I)op

⊠
k∈K

(C∨)⊗Jk(X)

(limit taken in Shv(XI) −mod). For a map (16) in Tw(I) the transition map in the
latter limit is

⊠
k∈K2

(C∨)⊗(J2)k(X)
△!

→ ⊠
k∈K1

(C∨)⊗(J2)k(X)
m∨→ ⊠

k∈K1

(C∨)⊗(J1)k(X)

for △: XK1 → XK2 , and m∨ is the dual to the product map m in Shv(XI)−mod.
We may pass to the left adjoints in Shv(XI)−mod in the diagram (31), and get

(CXI )∨ →̃ colim
(I→J→K∈Tw(I)

⊠
k∈K

(C∨)⊗Jk(X)

The corresponding diagram is nothing but the functor FI,C∨ . We conclude that

(CXI )∨ →̃ (C∨)XI

naturally.
Note that for D ∈ Shv(XI)−mod one has

FunShv(XI)(CXI , D) →̃ (CXI )∨ ⊗Shv(XI) D →̃ (C∨)XI ⊗Shv(XI) D

3.5.11. Though we don’t know how to define the symmetric monoidal structure on
CXI , for (I → ∗ → ∗) ∈ Tw(I) the corresponding functor C(X) → CXI has to be
symmetric monoidal. Since 1C ∈ C(X)c, the unit of CXI has also to be compact by
Lemma 3.5.8.

Lemma 3.5.12. Assume that C(X) is ULA over Shv(X). Then for any I ∈ fSet, CXI

is ULA over Shv(XI) in the sense of Definition 3.7.6. In particular, CXI is compactly
generated.

Proof. Step 1 Recall that our notation ⊠
i∈I

C(X) actually means (C(X)⊠I)⊗(Shv(X)⊠I)

Shv(XI). Let us show that the latter category is compactly generated by objects of
the form

(32) (⊠
i∈I

ci)⊗(Shv(X)⊠I) z
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with ci ∈ C(X) ULA over Shv(X), and z ∈ Shv(XI)c. In the case of D-modules,
Shv(X)⊠I → Shv(XI) is an equivalence, and there is nothing to prove. Assume now
we are in the constructible context.

In this case for any S ∈ Schft, ⊗! : Shv(S) ⊗ Shv(S) → Shv(S) has a continuous
right adjoint. Note that if ci ∈ C(X) is ULA over Shv(X) then ⊠i∈Ici is ULA over
Shv(X)⊠I . So, for any z ∈ Shv(XI)c, (32) is compact in (C(X)⊠I)⊗(Shv(X)⊠I)Shv(X

I)
by Remark 3.7.3.

Let D ⊂ (C(X)⊠I) ⊗(Shv(X)⊠I) Shv(X
I) be a full embedding in DGCatcont such

that D contains all the objects of the form (32). Then it contains all the objects
c′⊗(Shv(X)⊠I) z for c′ ∈ C(X)⊠I , z ∈ Shv(XI) by ([15], I.1, 7.4.2). Applying in addition

([15], I.1, 8.2.6), we see that D = (C(X)⊠I)⊗(Shv(X)⊠I) Shv(X
I).

Step 2 If ci ∈ C(X) are ULA over Shv(X) then (⊠
i∈I

ci) ⊗(Shv(X)⊠I) ω is ULA over

Shv(XI).
Indeed, consider the adjoint pair Shv(X)⊠I ⇆ C(X)⊠I in Shv(X)⊠I −mod, where

the left adjoint is the multimlication by ⊠ici. Tensoring with Shv(XI) over Shv(X)⊠I ,
we get the desired adjoint pair in Shv(XI).

Step 3 By Lemma 3.5.2, the essential image of Loc : ⊠
i∈I

C(X) → CXI generates CXI

under colimits. Now if ci ∈ C(X) are ULA over Shv(X), ⊠ici ∈ ⊠
i∈I

C(X) is ULA over

Shv(XI). By Proposition 3.7.7 and Lemma 3.5.8, Loc(⊠ici) is ULA over Shv(XI).
By Lemma 3.5.8, if ci ∈ C(X) are ULA over Shv(X), z ∈ Shv(XI)c then

Loc((⊠
i∈I

ci)⊗(Shv(X)⊠I) z)

is compact in CXI , and these objects generate CXI by Lemma 3.5.2. □

3.5.13. Assume in addition that we are given an adjoint pair O : C(X) ⇆ Shv(X) : OR

in Shv(X)−mod, where O is conservative, comonadic, and a map in CAlg(Shv(X)−
mod). The comonad OOR : Shv(X) → Shv(X) is Shv(X)-linear, so is given by some
coalgebra OC ∈ Shv(X).

The map O is a morphism in CAlg(ShvCat(X)), hence we may apply the construc-
tion of Fact to this map. For any I ∈ fSet,Σ = (I → J → K) ∈ Tw(I) we get an
adjoint pair

OΣ : ⊠
k∈K

C⊗Jk(X) ⇆ Shv(XK) : OR
Σ

in Shv(XI)−mod, where OΣ is obtained from O by the functoriality of the construction
of FI . Since all the involved categories are dualizable, by ([22], 9.2.67), for any I ∈
fSet,Σ = (I → J → K) ∈ Tw(I) the functor OΣ is conservative. The comonad

OΣO
R
Σ on Shv(XK) is given by tensoring with ⊠

k∈K
O
⊗Jk
C ∈ Shv(XK). The map △!:

Shv(XK) → Shv(XI) is left-lax monoidal, so sends coalgebras to coalgebras. So, we

may think of ⊠
k∈K

O
⊗Jk
C as a coalgebra in Shv(XI). Since for △: XK → XI the functor

△∗: Shv(XK)→ Shv(XI) is fully faithful, we have

⊠
k∈K

O
⊗Jk
C − comod(Shv(XK)) →̃ ⊠

k∈K
O
⊗Jk
C − comod(Shv(XI))
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canonically.
Assume that OΣ is comonadic for any I ∈ fSet,Σ ∈ Tw(I). This is the case in the

main example below in Section 3.5.19 by ([31], 6.23.2). In particular, for any J ∈ fSet,

C⊗J(X) →̃O⊗JC − comod(Shv(X))

We assume in addition that OC ∈ coAlg(Shv(X)) is lifted OC ∈ CAlg(coAlg(Shv(X)),
and the structure of an object of CAlg(Shv(X)) on C(X) comes now from this bialge-
bra structure on OC .

Namely, the unit 1OC
: ωX → OC is a map in coAlg(Shv(X), so gives the extensions

of scalars map

Shv(X) →̃ωX − comod(Shv(X))→ OC − comod(Shv(X)) →̃C(X),

which is the unit of C(X). For J ∈ fSet, the product map O⊗JC → OC in coAlg(Shv(X))
gives via extension of scalars the morphism

C⊗J(X) →̃O⊗JC − comod(Shv(X))→ OC − comod(Shv(X)) →̃C(X)

which is the product for C(X) along J → ∗.

3.5.14. Passing to the colimit over Tw(I), OΣ yields a functor denoted OI : CXI →
Shv(XI) in Shv(XI) −mod. By ([22], 9.2.39), OI admits a continuous right adjoint
OR

I obtianed from OR
Σ by passing to the limit over Tw(I)op. We obtained an adjoint

pair

OI : CXI ⇆ Shv(XI) : OR
I

in Shv(XI)−mod. The corresponding comonad is given by some coalgebra in Shv(XI).
Is it true that OI is comonadic? Why is it conservative? In our main example, the

functor FR
I is not compatible with O.

Note that if I → I ′ is a map in fSet then applying ⊗Shv(XI)Shv(X
I′) to the above

adjoint pair, one gets canonically the adjoint pair

OI′ : CXI′ ⇆ Shv(XI′) : OR
I′

For OI this follows from the functoriality of Fact, so for the right adjoint it is automatic.
This means that we get after passing to the limit over I ∈ fSet the adjoint pair

ORan : Fact(C)(Ran) ⇆ Shv(Ran) : OR
Ran

by ([15], I.1, 2.6.4). This is an adjoint pair in Shv(Ran) − mod, where Shv(Ran) s
equipped with the ⊗! pointwise symmetric monoidal structure.

3.5.15. To a morphism (16) in Tw(I) we attach the composition

⊠
k∈K1

O
⊗(J1)k
C

m→ ⊠
k∈K1

O
⊗(J2)k
C

△∗→ ⊠
k∈K2

O
⊗(J2)k
C

in coAlg(Shv(XK2)), hence also in coAlg(Shv(XI)). This defines the functor

F
coAlg
I,OG

: Tw(I)→ coAlg(Shv(XI))

whose underlying functor FI,OG
: Tw(I) → Shv(XI) is as in Section 3.5.3 for the

factorization category Shv(Ran).
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The forgetful functor coAlg(Shv(XI))→ Shv(XI) preserves colimits, so

(OC)XI = colim
(I→J→K)∈Tw(I)

FI,OG

can be understood in Shv(XI) or equivalently in coAlg(Shv(XI)). Now FI,C : Tw(I)→
Shv(XI)−mod is obtained from the functor FcoAlg

I,OG
passing to comodules in Shv(XI),

that is, the equivalence

⊠
k∈K

C⊗Jk(X) →̃ ⊠
k∈K

O
⊗Jk
C − comod(Shv(XI))

becomees functorial in Σ ∈ Tw(I), where on the RHS we use the functor FcoAlg
I,OG

.

Passing to the colimit over Tw(I) this gives a canonical diagram

CXI → (OC)XI − comod(Shv(XI))
↓ OI ↙ oblv

Shv(XI)

Is it an equivalence?

3.5.16. The counit map OC → ωX in CAlg(Shv(X)) by functoriality of the construc-
tion of factorization algebras in Shv(Ran) gives a morphism in

Fun(Tw(I), Shv(XI)−mod)

from FI,OC
to FI,ωX

. Namely, for Σ = (I → J → K) ∈ Tw(I) the map ⊠
k∈K

O
⊗Jk
C →

ωXK is functorial in Σ ∈ Tw(I). Passing to the colimit over Σ ∈ Tw(I), this gives a
map in Shv(XI)

(33) (OC)XI → ωXI .

It is compatible with factorizations, and gives as I varies in fSet the map Fact(OC)→
Fact(ωX) →̃ωRan in Shv(Ran).

3.5.17. In fact, in our situation OC ∈ CAlg(C(X)). For J ∈ fSet the product for
J → ∗ is given as follows. The J-th tensor power of OC in the symmetric monoidal
category C(X) is O⊗JC (where the tensor power is taken in (Shv(X),⊗!)) with the OC-

comodule structure given by O⊗JC

mJ→ OC . Here mJ is the product on OC as an object
of CAlg(Shv(X)). Then mJ itself becomes the desired product map.

The unit of the symmetric monoidal category C(X) is ωX ∈ OC−comod(Shv(X)), on
which the OC-comodule structure is given by the map 1OC

: ωX → OC in coAlg(Shv(X)).
The unit of OC as a commutative algebra in C(X) is the morphism 1OC

: ωX → OC

in OC − comod(Shv(X)).

3.5.18. So, we may apply the construction of the factorization algebra to OC ∈
CAlg(C(X)). In other words, we may think of the colimit of the functor F

Shv(X)
I,OC

:

Tw(I)→ Shv(XI) as the image under OI : CXI → Shv(XI) of colim
Tw(I)

FC
I,OC

.

By abuse of notations, we sometimes write (OC)XI ∈ CXI . Now (33) is actually a
morphism OI((OC)XI )→ ωXI . By adjointness, it gives the morphism in CXI

(34) (OC)XI → OR
I (ωXI )
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compatible with factorizations and base changes under △! for △: XI′ → XI , where
I → I ′ is a map in fSet. Here we used the observation from Section 3.5.14 that the
formation of OR

I commutes with functors △!.
Since for I = ∗ the map (34) is an isomorphism, we conclude that for any I it is also

an isomorphism.
We conclude that the comonad OIO

R
I : Shv(XI) → Shv(XI) is given by (OC)XI ∈

coAlg(Shv(XI)).
How to prove that OI : CXI → Shv(XI) is comonadic???????

3.5.19. Example. Classically, for C(X) = Rep(Ǧ) ⊗ Shv(X), where Ǧ is a reductive

group over e, the map ∗ 1→ Ǧ yields the dual pair O : Rep(Ǧ)⊗Shv(X) ⇆ Shv(X) : OR

in Shv(X)−mod, while the left adjoint to O does not exist (when the set of irreducible
representations of Ǧ is infinite). All the assumptions of Section 3.5.13 are satisfied.

3.6. For 8.2. It is understood that C is a commutative algebra in DGCatcont.

3.6.1. Twist of a sheaf of categories by a gerbe. For 8.2.2. There we need a general
definition of the twist. Let C ∈ DGCatcont, A be a torsion abelian group with a given
monoidal functorB(A)→ Funk,cont(C,C). That is, A acts on C by automorphisms of the
identity functor. (For example, if C ∈ CAlg(DGCatcont) then we have a version where
the input datum is a monoidal functor B(A) → Fun⊗k,cont(C,C), the latter category

denotes the category of k-linear continuous symmetric monoidal functors from C to
itself).

Let a A-gerbe G : Y → B2
et(A) be given. We want to construct a sheaf of DG-

categories (resp., a sheaf of symmetric monoidal DG-categories) CG on Y . Recall that
ShvCat/Y satisfies the etale descent (for any theory of sheaves). Pick f : Y ′ → Y an
etale surjection and a trivialization of our gerbe over Y ′. Then we get the Cech nerve
Y ′•/Y of Y ′ → Y with Y ′n/Y = Y ′ ×Y × . . . ×Y Y ′, the product taken n + 1 times.
The natural map ShvCat/Y → Tot(ShvCatY ′•/Y ) is an isomorphism in 1 − Cat. We
construct the corresponding object of Tot(ShvCatY ′•/Y ) as follows. As an object of

ShvCatY ′n/Y this is the constant sheaf C⊗ Shv(Y ′n/Y ). Over Y ′ ×Y Y ′ = Y ′1/Y we
get a A-torsor F giving an automorphism of the trivial A-gerbe over Y ′ ×Y Y ′. Over
Y ′ ×Y Y ′ ×Y Y ′ we get an identification pr∗23 F ◦ pr∗12 F →̃ pr∗13 F of the automorphisms
of the trivial A-gerbe.

Over Y ′ ×Y Y ′ we get an automorphism

F̄ : C⊗ Shv(Y ′ ×Y Y ′) →̃C⊗ Shv(Y ′ ×Y Y ′)

of this sheaf of categories given as the composition Y ′×Y Y ′
F→ B(A)→ Funk,cont(C,C).

Over Y ′2/Y we then get the commutativity datum for the diagram

C⊗ Shv(Y ′2/Y )
pr∗12 F̄→ C⊗ Shv(Y ′2/Y )
↘ pr∗13 F̄ ↓ pr∗23 F̄

C⊗ Shv(Y ′2/Y )

and so on, which together define the desired object of Tot(ShvCatY ′•/Y ).
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More precisely, we are given as an input a commutative diagram

Y
G→ B2

et(A)
↑ ↑
Y ′ → pt

Passing to the Cech nerves, we get a morphism of groupoids in PreStk, Y ′•/Y →
pt•/B2

et(A). Here ptn/B2
et(A) →̃Bet(A) × . . . × Bet(A), the product taken n times for

n ≥ 0. In this sense F extends to a what could be called a multiplicative A-torsor on
the groupoid Y ′•/Y . Now F̄ is a morphism of groupoids from Y ′•/Y to the groupoid
in DGCatcont corresponding to Funk,cont(C,C).

So, F̄ looks like an algebra in the monoidal category Funk,cont(C,C) with the difference
that the symplicial object [n] 7→ Funk,cont(C,C)

⊗n defining this monoidal category is
replaced by the simplicial object [n] 7→ Funk,cont(C,C)

⊗n ⊗ Shv(Y ′n/Y ). It seems the
desired category CG is the category of F̄-algebras in C ⊗ Shv(Y ′). One should still
give a sense to this notion similarly to the notion of a module over an algebra in the
(∞, 1)-category setting. (To be improved later).

3.6.2. For 8.3.1. For a group H, Z(H) acts on Rep(H) by the automorphisms of the
identity functor (viewed as a symmetric monoidal category). This means that 1) for
z ∈ Z(H), Vi ∈ Rep(H) letting zi be the action of z in Vi, the action of z on V1 ⊗ V2 is
z1z2; 2) the action of z ∈ Z(H) on the trivial representation is trivial.

3.6.3. For 8.3.3. The sheaf ShvG(GrG)Ran was defined in 2.4.2.
Where the symmetric monoidal structure on the sheaf of categories ShvGT (GrT )/Ran

comes from?
Let Y ∈ PreStklft, Z ∈ Grp((PreStklft)/Y ) and G be a multiplicative A-gerbe on

Z, that is, given by an element in MapGrp((PreStklft)/Y )(Z,B
2
et(A) × Y ). Then we can

consider the sheaf of categories ShvG(Z)/Y over Y sending S → Y to ShvG(S×Y Z). We
need some assumptions to get the convolution monoidal structure on this sheaf of DG-
categories. Assume for example that f : Z → Y is ind-schematic, so that f∗ : Shv(Z)→
Shv(Y ) is defined, see my Section 3.1.8. Let m : Z×Y Z → Z be the product map, then
it is automatically ind-schematic, to that m∗ : Shv(S ×Y (Z ×Y Z)) → Shv(S ×Y Z)

exists for S ∈ (Schaffft )/Y . The usual convolution product is the composition

Shv(S ×Y Z)⊗Shv(S) Shv(S ×Y Z)→ Shv(S ×Y (Z ×Y Z))
m∗→ Shv(S ×Y Z)

Twisting by G, we get the desired convolution morphism

ShvG(S ×Y Z)⊗Shv(S) ShvG(S ×Y Z)→ ShvG(S ×Y (Z ×Y Z))
m∗→ ShvG(S ×Y Z)

For clarity, ShvG(S×Y Z) is naturally a Shv(S×Y Z)-module, hence a Shv(S)-module.
Assume also the unit map u : Y → Z ind-schematic, so u∗ : Shv(S) → Shv(S ×Y

Z) exists. By assumption, u∗G is trivialized over Y . So, we get the morphism u∗ :

Shv(S)→ ShvG(S ×Y Z) for S → Y with S ∈ Schaffft .

If in addition Z ∈ ComGrp((PreStklft)/Y ) and

G ∈ MapComGrp((PreStklft)/Y )(Z,B
2
et(A)× Y )
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then I think ShvG(Z)/Y will be a sheaf of symmetric monoidal DG-categories over Y .

Remark 3.6.4. We used without a definition the notion of a sheaf of (symmetric)
monoidal DG-categories on some Y ∈ PreStklft. The definition is that it is an object
of CAlg(ShvCat/Y ), where ShvCat/Y is considered as a symmetric monoidal category
with termwise tensor product: if C,C ′ ∈ ShvCat/Y then C ⊗Shv/Y C ′ is the sheaf of

categories whose sections over S → Y are C(S)⊗Shv(S) C
′(S).

3.6.5. For 8.3.3 more. Let us check the equivalence (8.11) in the case when the gerbe
GT is trivial. Note that Rep(Ť ) →̃ ⊕λ∈ΛVect →̃

∏
λ∈ΛVect, where on the corresponding

piece Vect the group Ť acts by λ.
For I a finite nonempty set, the sheaf Shv(GrT )/Ran associates to XI the category

(35) Shv(GrT,comb×RanX
I) →̃ colim

(K,λK ,I→K)∈JI
Shv(XK)

as we have seen in my Section 3.0.50.
By definition, the sheaf of categories Fact(Rep(Ť )) associates to XI the following

category. Consider the category Tw(I)Λ, whose objects are collections: (I → J →
K) ∈ Tw(I) and a map λJ : J → Λ. A morphism from (I → J → K,λJ) to (I → J ′ →
K ′, λJ ′) is a morphism from (I → J → K) to (I → J ′ → K ′) in Tw(I) as in 8.1.4 with
the surjection J → J ′ denoted ϕ such that for each j′ ∈ J ′ one has λj′ =

∑
ϕ(j)=j′ λj .

Then the value of Fact(Rep(Ť )) on XI is

(36) colim
(I→J→K,λJ )∈Tw(I)Λ

Shv(XK)

Indeed, we may rewrite ⊠
k∈K

Rep(Ť )⊗JkX as ⊕
λJ :J→Λ

Shv(XK).

We have the functor Tw(I)Λ → JI sending (I → J
ν→ K,λJ) to (I → K,λK), where

λK is the direct image of λJ under ν. So, let’s calculate (36) in two steps: first take
the LKE along this functor and then colimit over JI .

Given an object, say a = (I → K,λK) ∈ JI , we claim that Tw(I)Λ ×JI (JI)/a is
contractible.

An object of the latter category is given by a diagram (I → J ′
ν→ K ′, λJ ′) ∈ Tw(I)Λ

and a surjection ϕ : K → K ′ compatible with surjections I → K, I → K ′ such that
ϕ!λ

K = ν!λ
J ′ .

Consider first the full subcategory Y ⊂ Tw(I)Λ×JI (JI)/a consisting of those objects
for which K ′ has only one element. Then the inclusion Y ⊂ Tw(I)Λ ×JI (JI)/a is
not cofinal, however it induces an isomorphism of geometric realizations. Indeed, this

functor admits an adjoint Tw(I)Λ ×JI (JI)/a → Y sending a point (I → J ′
ν→ K ′

ϕ←
K,λJ ′) to (I → J ′ → ∗ ← K,λJ ′). Besides, Y has a final object. The final object of
Y is of course (I → ∗ → ∗, λ) ∈ Tw(I)Λ, where λ =

∑
k∈K λk. We have proved the

contractibility of Tw(I)Λ ×JI (JI)/a
So, the LKE in question produces precisely the colimit (35). The equivalence (8.11)

for GT trivial follows.
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3.6.6. For 8.4.1. The definition of t-structure on Rep(H)GZ
(X) should be as follows

I think. Let S ∈ Schaffft , S → X be an etale morphism such that the gerbe GZ

becomes trivial on S. Any trivialization of GZ over S gives a functor Rep(H)GZ
(X)→

Rep(H)⊗ Shv(S). Consider the forgetful functor Rep(H)→ Vect given by restriction
to {1} ⊂ H. Composing with Rep(H)⊗ Shv(S)→ Vect⊗Shv(S) →̃Shv(S), we get a
functor rS : Rep(H)GZ

(X) → Shv(S). The t-structure on Rep(H)GZ
(X) is such that

rS is t-exact for the perverse t-structure on Shv(S).
In the definition of a twisted local system we have to require that the functor

Rep(H)GZ
(X)→ Shv(X) is Shv(X)-linear, that is, comes from a morphism of sheaves

of categories Rep(H)GZ
→ Shv/X over X. This is also used in 8.4.3 for the functoriality

of the construction.

3.6.7. My impression is that one of the advantages of the framework from the book
[15] is as follows. Consider Bi

et(E
×,tors) in the classical algebraic geometry setting this

would be a stack over SpecE, but we view it as an object of PreStk = Fun(Schaff ,Spc),

where Schaff are over k. For any Y ∈ PreStk we may consider Map(Y,Bi
et(E

×,tors)).
I mean that was the following problem in the classical setting. For example, for Q̄ℓ-
sheaves given a scheme Y over a field k, we were not able to view a Q̄×,torsℓ -gerbe on
Y as a geometric object. More precisely, for a finite abelian group say H viewed as
a group scheme over k, we can consider a H-gerbe Ỹ → Y . But to get the desired
category of Q̄ℓ-sheaves on Ỹ , we need a character H → Q̄∗ℓ .

More basically, an abelian group H directly is an object of PreStk, a constant
prestack, while in the classical setting we need first to realize it as an algebraic group
over Spec k to get the corresponding geometric object.

3.6.8. For 9.1.1. We may view the gerbe GG ⊗ det
1
2
g as a gerbe over the quotient

L+(G)\GrG. This quotient is a factorization prestack over Ran, and this gerbe is a
factorization gerbe over the factorization prestack L+(G)\GrG. So, by 2.2.6 we get a
factorization sheaf of categories over Ran.

The monoidal structure on (SphGG)/Ran is obtained formally as follows. Consider the

map G̃r
2

G → GrG×RanRan
2 given by (7.6). Restricting to the diagonal under Ran →

Ran2, we get a map f : G̃r
2

G×Ran2 Ran→ GrG over Ran. Further f∗GG →̃GG⊠̃GG as in

7.3.4. The gerbe GG ⊗ det
1
2
g satisfies the same property, because f∗ detg →̃ detg ⊠̃detg.

The desired convolution is the direct image f!, here f is ind-proper so f! is defined by
([8], 1.5.2).

3.7. Generalities about sheaves theories. Let us take Shv(S) = D−mod(S) for

S ∈ Schaffft as the sheaf theory. Sam claims then Shv(S) is not rigid, however, the

following property holds. Let C ∈ Shv(S)−mod(DGCatcont). Then C is dualizable as
an object of Shv(S)−mod iff it is dualizable as an object of DGCatcont. This is a non
evident result!

Proof. 1) Shv(S) is dualizable in Shv(S × S) −mod. Indeed, Shv(S) is a retract of
Shv(S × S).
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2) Let C,D ∈ Shv(S)−mod. Then by ([22], Section 9.2.45) one has

FunShv(S×S)(Shv(S),Funk,cont(C,D)) →̃FunShv(S)(C,D)

Besides, by ([22], Section 6.1.17), Shv(S)⊗Shv(S)⊗Shv(S) (C ⊗D) →̃C ⊗Shv(S) D.
3) Assume C,D ∈ Shv(S)−mod and C is dualizable in DGCatcont. Then we get

FunShv(S)(C,D) →̃FunShv(S)⊗Shv(S)(Shv(S),Funk,cont(C,D)) →̃
Shv(S)⊗Shv(S)⊗Shv(S) C

∨ ⊗D →̃C∨ ⊗Shv(S) D

This implies that C is dualizable in Shv(S)−mod.
4) If C is dualizable in Shv(S)−mod then C⊗Shv(S)QCoh(S) is dualizable in QCoh(S)−
mod. Since QCoh(S) is rigid, C ⊗Shv(S) QCoh(S) is dualizable in DGCatcont. The
functor oblv : C → C ⊗Shv(S) QCoh(S) is monadic, so C is dualizable as well. My
understanding here is as follows: there is a monad A acting on QCoh(S) such that A−
mod(QCoh(S)) →̃Shv(S). Then C →̃ (C⊗Shv(S)QCoh(S))⊗QCoh(S)A−mod(QCoh(S)).
Since both A −mod(QCoh(S)) and C ⊗Shv(S) QCoh(S) are dualizable in QCoh(S) −
mod, their tensor product is also dualizable in QCoh(S) − mod, hence dualizable in
DGCatcont. I have not checked the fact that Shv(S) →̃A −mod(QCoh(S)). The du-
alizability of A − mod(O) in O-modules for some O ∈ Alg(DGCatcont) is in ([10],
4.7.1). □

Recall that for any S ∈ Schaffft , Shv(S) is dualizable. So, for a morphism f : S′ → S

in Schaffft , the functor Shv(S)−mod→ Shv(S′)−mod, E 7→ E⊗Shv(S)Shv(S
′) preserves

limits for D-modules. For this reason, for any Y ∈ PreStklft, ShvCat/Y admits small
limits for D-modules.

3.7.1. Consider a closed immersion f : Y ↪→ X of schemes. Then, for any theory of
sheaves, f! : Shv(Y )→ Shv(X) is fully faithful by ([8], 1.5.2 and 7.4.11), and actually a
retract of Shv(X). Note that Shv(X) is dualizable in Shv(X)−mod. The assumptions
of ([22], 3.1.10) are satisfied, because Shv(X) − mod admits small colimits, and the
tensor product preserves small colimits separately in each variable. So, Shv(Y ) is
dualizable in Shv(X)−mod, and is self-dual in Shv(X)−mod.

We especially need this for closed immersions XJ ↪→ XI corresponding to surjections
of finite nonempty sets I → J for establishing factorizable Satake.

If j : U ↪→ X is an open immersion, X ∈ Schft then Shv(U) is a retract of Shv(X).
So, by ([22], 3.1.10), Shv(U) is dualizable in Shv(X)−mod and is actually self-dual in
Shv(X)−mod.

3.7.2. Consider any of our 4 sheaf theories. Let S ∈ Schaffft , C ∈ Shv(S) − mod,

here we view Shv(S) with the ⊗!-symmetric monoidal structure. Recall that Shv(S)
is compactly generated in any sheaf theory. As in ([31], B.5.1), Sam proposes the
following.
Definition. (Sam Raskin) An object c ∈ C is ULA iff the functor HomC(c,−) :
C → Shv(S) is continuous and Shv(S)-linear. Here HomC denotes the inner hom with
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respect to the monodal category Shv(S). Since Shv(S) is presentable, this inner hom
automatically exists. Moreover, for any x ∈ C, K ∈ Shv(S) we have a canonical map

(37) K ⊗HomC(c, x)→ HomC(c, x⊗K)

Indeed, it comes from the natural morphism K ⊗HomC(c, x) ⊗ c → x ⊗K (the lat-
ter comes from HomC(c, x) ⊗ c → x). The Shv(S)-linearity means that (37) is an
isomorphism for any K ∈ Shv(S).

Remark 3.7.3. Let C ∈ Shv(S) − mod, c ∈ C. If c is ULA then for any M ∈
Shv(S)−mod and m ∈M c, the product c⊠Shv(S) m is compact in C ⊗Shv(S) M .

Proof. as in ([31], B.5.1). By assumption, the functor Shv(S)→ C, K 7→ K ⊗ c has a
continuous right adjoint. □

Remark 3.7.4. If L : C → D is a Shv(S)-linear continuous functor admitting a
Shv(S)-linear continuous right adjoint then L sends ULA objects to ULA objects.

Lemma 3.7.5. Let j : U ↪→ S be an open immersion, S ∈ Schft, C ∈ Shv(S)−mod,

F ∈ C be ULA over S. Then for any G ∈ Shv(U), j!(G) ⊗! F →̃ j!(G ⊗! F ). In
particular, j!(F ) is defined for the partially defined left adjoint j! : CU := C ⊗Shv(S)

Shv(U)→ C to j!.

Proof. First, without any ULA assumptions, for any F ′,K ∈ C,

j∗(ωU ⊗HomC(F
′,K)) →̃ j∗j

!HomC(F
′,K) →̃ (j∗ωU )⊗! HomC(F

′,K)

in C.
Since F s ULA, we get in addition (j∗ωU )⊗HomC(F

′,K) →̃HomC(F, (j∗ωU )⊗!K).

Now for any F̃ ∈ C,

HomC(j!G⊗!F, F̃ ) →̃HomShv(S)(j!G,HomC(F, F̃ )) →̃HomShv(U)(G, j!HomC(F, F̃ ))

→̃HomShv(U)(G,HomCU
(j!F, j!F̃ )) →̃HomCU

(G⊗! j!F, j!F̃ )

as desired. □

Definition 3.7.6. (Sam Raskin) Let S ∈ Schft, C ∈ Shv(S) − mod. Say that C is
ULA if it is compactly generated as a Shv(S)-module category by ULA objects. That
is, C is generated by objects of the form c⊗m with c ∈ C ULA and m ∈ Shv(S)c.

Write CULA ⊂ C for the full subcategory of ULA objects. For any sheaf theory
CULA ⊂ Cc. Indeed, for D-modules this is ([31], B.4.2), and in the constructible context
this follows from the fact that ωS is compact, see below. Moreover, If C is ULA over
Shv(S) then for any c ∈ CULA,K ∈ Shv(S)c, K ⊗! c ∈ Cc.

Proposition 3.7.7. Let C ∈ Shv(S) − mod be ULA and F : C → D be a map in
Shv(S) −mod. Then F has a Shv(S)-linear continuous right adjoint iff F (CULA) ⊂
DULA.

More generally, assume C0 ⊂ CULA is a full subcategory such that the objects of the
form c⊗Shv(S) F for c ∈ C0, F ∈ Shv(S)c generate C. If F (C0) ⊂ DULA then F has a
Shv(S)-linear continuous right adjoint.
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Proof. For D-modules this is ([31], B.7.1), and the proof of loc.cit. holds for con-
structible context also. □

Proposition 3.7.8. Let j : U ↪→ S be an open subscheme, the compement to the closed
immersion i : Z → S. Let f : C → D be a morphism in Shv(S) −mod, assume C is
ULA over Shv(S). Then f is an isomorphism iff f preserves ULA objects and induces
equivalences

C ⊗Shv(S) Shv(U)→ D ⊗Shv(S) Shv(U), C ⊗Shv(S) Shv(Z)→ D ⊗Shv(S) Shv(Z)

Instead of preservation of ULA objects, it suffices to require that f admits a Shv(S)-
linear continuous right adjoint.

Proof. as in ([31], B.8.1) □

3.7.9. Consider a sheaf theory from [14] in the constructible context. Let S ∈ Schft be
separated. Sam claims the Verdier duality gives an equivalence Shv(S)c →̃ (Shv(S)c)op,
hence by passing to Ind, an equivalence Shv(S) →̃Shv(S)∨. What about D-module
case?

Consider the diagonal map δ : S × S → S. The functor δ! : Shv(S × S) → Shv(S)
preserves compact objects. Indeed, it identifies with Dδ∗D, so it suffices to show that
δ∗ preserves compact objects. This is true, because it has a continuous right adjoint
δ∗ = δ!.

(In the D-module case Lin and Sam claim that δ! does not preserve compact objects.
CHECK!!!)

Consider the tensor product functor m : Shv(S) ⊗ Shv(S) → Shv(S), K1 ⊠K2 7→
δ!(K1 ⊠K2). If Ki ∈ Shv(S)c then δ!(K1 ⊠K2) is compact. Since Shv(S)⊗ Shv(S) is
generated by compact objects of the form K1 ⊠K2 with Ki ∈ Shv(S)c, we obtain by
([22], 4.2.3) that the right adjoint mR to m is continuous.

The failure of rigidity of Shv(S) in the constructible context comes from the fact that
certain compact objects are not dualizable. Example of Lin Chen: let S be a smooth
scheme of finite type, x ∈ S, j : S − x ↪→ S. Let δx denotes the delta sheaf supported
at x. It is not dualizable. Indeed, assume it is dualizable, let M = (δx)

∨. Then for
F,N ∈ Shv(S) we get Map(F ⊗! δx, N) →̃ Map(F,N ⊗! M), where MapShv(S) = Map.
Taking y ∈ S closed with y ̸= x and F = δy, we get by base change for proper

morphisms δy ⊗! δx = 0, so MapVect(k, i
!
y(N ⊗! M)) = ∗. We could similarly take δy[n]

for any n ∈ Z, which shows that i!y(N⊗!M) = 0 (see [22], 9.2). On the other hand, take

F = j!ωS−x and N = ωS , here ωS is the dualizing complex of S. Then Map(j!ωS−x)⊗!

δx, ωS) →̃ Map(ΩS−x, j
!M) is nontrivial. Indeed, D(j!ωS−x)⊗!δx) →̃ △∗ (j∗Q̄ℓ⊠(ix)!Q̄ℓ)

is nonzero. Here we denoted by Q̄ℓ the corresponding ”constant sheaves”, that is, Dω.
In the constructible context (at least) for S ∈ Schft, the dualizing sheaf ωS ∈ Shv(S)

is compact. Indeed, the functor Shv(S)→ Vect, M 7→ RΓc(S, ωS ⊗ D(M)) is continu-
ous. We have RHom(ωS ,M) →̃DRΓc(S, ωS ⊗ D(M)).

3.7.10. If f : Y → Z is a morphism in PreStklft and C ∈ ShvCat(Z) then for any sheaf
theory there is a natural functor Γ(Z,C)→ Γ(Y, f∗C). Indeed, Γ(Z,C) is the value on

Z of the functor ((PreStklft)/Z)
op → DGCatcont, which is the RKE of ((Schaffft )/Z)

op →
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DGCatcont, S 7→ Γ(S,C). Since this RKE is a functor, it yields the desired functor. It
may happen that the right adjoint to the restriction ShvCat(Z) → ShvCat(Y ) does
not exist, I think.

Assume Y,Z are pseudo-indschemes, and f : Y → Z is pseudo-indproper in the
sense of ([30], 7.15.1). Let C ∈ ShvCat(Z). Then the restriction functor Γ(Z,C) →
Γ(Y, f∗C) admits a left adjoint f∗,C : Γ(Y, f∗C) → Γ(Z,C). Same proof as in ([30],
7.15.5). Namely, let Z = colimj∈J Zj , where the transition maps α : Zj → Zj′ are
proper, and each Zi ∈ Schft (separated). Recall that Zi is 1-affine, and we have the

adjoint pair α! : Shv(Zj) ⇄ Shv(Zj′) : α
! in Shv(Zj′) −mod. Tensoring this adjoint

pair by Γ(Zj′ , C), we get an adjoint pair α!,C : Γ(Zj , C) ⇄ Γ(Zj′ , C) : α!,C . Assume
now I → J is a diagram, and Y = colimi∈I Yi, here Yi is a separated scheme of finite
type, and the transition maps Yi → Yi′ are proper. Then Γ(Y,C) →̃ colimi∈I Γ(Yi, C).
The desired functor f∗,C is obtained from the compatible system of functors β!,C :
Γ(Yi, C)→ Γ(Zj(i), C). Here the corresponding morphism β : Yi → Zj(i) is proper.

Compare with ([22], 9.2.21).

3.7.11. If we have a cartesian square

X
f← Y

↓ g ↓ h

X ′
t← Y ′

then it can not be true that f !g∗ →̃ t!h∗. For example take t = g : Spec k
0→ A1. Then

g! is different from g∗. Here we have taken the fibre product in the sense of non-derived
algebraic geometry (but the derived geometry does not cure this).

3.8. More for version June 1, 2020.

3.8.1. In Th. A.3.3 the quotient GrT1 /GrT2 is understood in the topos of prestacks,
using the fact that GrT1 ∈ Grp(PreStk).

3.8.2. For A.3.6. Let S ∈ Schaffft . If I ∈ Ran(S) and G is a µn-gerbe on S ×X (with

a trivilization over UI then localizing in etale topology of S), there is a line bundle L

on S × X and an isomorphism L
1
n →̃G over S × X. Indeed, for pr : X × S → S, we

have pr∗ µn →̃µn⊕H1(X,µn)[−1]⊕H2(X,µn)[−2]. Localizing in the etale topology of
S, our class in H2

et(S × X) comes from an element of H2(X,µn). However, the map
H1(X,O∗) → H2(X,µn) →̃Z/nZ coming from the Kummer sequence 1 → µn → O∗ →
O∗ → 1 is surjective: if L is a line bundle of degree 1 on X then L

1
n equals 1 ∈ Z/nZ.

3.8.3. For A.3.6. If Γ is a finite abelian group of order coprime to char(k) and S ∈ Schft
is smooth and separated then S-points of GrΓ⊗Gm is the set: I ∈ Ran(S) and a map
I → Γ. More generally, the same holds for S irreducible if for i ̸= j ∈ I, Γi ∩ Γj is of
dimension < dimS.

As in Sect. A.3.1 of the paper, present our S-point of GrΓ⊗Gm by an element of
H0 of C•(ΓI , π

!(Γ)), here π : ΓI → S is the projection. Note that π!(Γ) is placed in
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cohomological degrees ≥ 0. Consider the map s : ⊔i∈IS → ΓI whose i-th component is
the natural map Γi → ΓI . We have a natural map

s!(Γ) = s!s
!π!(Γ)→ π!(Γ)

Localizing S if necessary in the topology of finite surjective maps, assume S reduced
irreducible. Let also assume that for i ̸= j ∈ I, Γi ∩ Γj is of dimension < dimS. We

claim that the obtained map η : s!(Γ)→ τ≤0π!(Γ) is an isomorphism.
Indeed, the usual constructible sheaf τ≤0π!(Γ) has no subsheaves supported on closed

subschemes of dimension < dimS, because for such a sheaf F we have Hom(π!F,Γ) = 0.
This means that this sheaf is the nonderived ∗-extension of its restriction to ΓI with all
the intersections Γi ∩Γj removed (for i ̸= j). This gives Map(S,GrΓ⊗Gm) →̃ Map(I,Γ)
in this case.

3.8.4. Let Γ be a finitely generated abelian group of order coprime to char(k). As in
Section 3.1 of the paper, one constructs a map

MapPtd(PreStk/X)(Bet(Γ⊗Gm)×X,B4
et(A(1))×X)→ FactGeA(GrΓ⊗Gm)

Is it an isomorphism? What are the homotopy groups of the LHS? See below.

3.9. More on Appendix A.

3.9.1. Maybe add the following in Appendix A?
Let Γ be a finitely generated abelian group of order coprime to char(k). Define

GrΓ⊗Gm,comb similarly to the case of a torus. Namely, consider the index category C

whose objects are pairs (I, λI) with I a finite non-empty set, λI : I → Γ. Write λi for
the value of λI on i. A map from (J, λJ) to (I, λI) in C is a surjection ϕ : I → J such
that λj =

∑
ϕ(i)=j λi. Set GrΓ⊗Gm,comb = colim

(I,λI)∈C
XI .

Pick a section of

(38) Γ→ Γ/Γtors

We get a decomposition Γ →̃Γfree × Γtors. So,

GrΓ⊗Gm →̃ GrΓfree⊗Gm
×GrΓtors⊗Gm

There is a natural map

(39) GrΓ⊗Gm,comb → GrΓ⊗Gm

Namely, for (I, λI) ∈ C our λI is a pair λI,free : I → Γfree, λI,tors : I → Γtors. We have
the evident map

GrΓ⊗Gm,comb → GrΓfree⊗Gm,comb×GrΓtors⊗Gm,comb

We have already constructed the map GrΓfree⊗Gm,comb → GrΓfree⊗Gm
in the paper.

The map

(40) GrΓtors⊗Gm,comb → GrΓtors⊗Gm

is constructed as follows. For each (I, λI : I → Γtors) apply Lemma 1.4.5 of the paper,
which shows that λI gives a point of

GeΓtors(1)(X
I ×X)×GeΓtors(1)(UI) ∗
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These maps as (I, λI : I → Γtors) vary define the desired map (40). Composing the
above, one gets the map (39). I think this construction does not depend on a choice of
a section of (38).

The map (39) is compatible with the factorization structures. Moreover, (39) is a
map of factorization group prestacks over Ran. The map (39) is a monomorphism of
prestacks.

From Section 3.8.3 of this file we see that (39) is surjective after sheafification in
the topology of finite surjective maps. For i ≥ 0, Bi

et(A) is a sheaf for the topology
generated by finite surjective maps. This implies the following.

Proposition 3.9.2. The map (39) becomes an isomorphism after sheafification in the
topology of finite surjective maps. □

Remark 3.9.3. We can also inverse the logic now and derive Theorem A.3.3 of the
paper from the surjectivity, after sheafification in the topology of finite surjective maps,
of the map GrT1,comb → GrΓ⊗Gm. This would avoid Th. A.3.7 completely! This would
simplify the proof, I think.

3.9.4. As in Section 4.1.3 of the paper, we obtain an exactly similar combinatorial
description of FactGeA(GrΓ⊗Gm,comb):

For a finite set I and a map λI : I → Γ we specify a gerbe GλI
on XI . For a

surjection of finite sets ϕ : I → J such that λj =
∑

ϕ(i)=j λi, we specify an isomorphism

ν : (△ϕ)
∗GλI →̃GλJ

. These isomorphism are equipped with the compatibility data
for composition of surjections of finite sets. We are also given factorization data for
ϕ : I → J compatible with compositions of surjections of finite sets, and compatible
with maps ν.

The claim from Section 4.1.4 of the paper also extends to the case of Γ⊗Gm I think.
The consruction of q : Γ → A(−1) from Section 4.2 of the paper extends to this case
as is.

This would help to understand Corollary 4.7.5 of the paper, whose proof was omited.
I think now the content of Sect. 4.3-4.4 of the papers extends to the case of Λ

replaced by any Γ.
One more thing, we may define Θ(Γ) as in Section 4.5.1 of the paper for any finitely

generated abelian group Γ. Let

Θ0(Γ) →̃FactGe0A(GrΓ⊗Gm)

be the fibre of the projection Θ(Γ)→ Quad(Γ, A(−1)). We then get

FactGe0A(GrΓ⊗Gm) →̃ MapPreStk(X,B2
et(Hom(Γ, A)),

this is also claimed in Cor. 4.7.9 of the paper.

3.9.5. For Remark 4.7.7. He means by Ab the following. Consider the category of
chain complexes of abelian groups as a DG-category over Z first, to which we apply
the construction of a DG-nerve in the sense of ([19], 1.3.1.6), which is an ∞-category
by ([19], 1.3.1.10). This is Ab.

Dennis claims that MapAb(Γ, B
2(A)) has homotopy groups only in degrees 1, 2. Re-

call that for Λ a free abelian group of finite type MapAb(Λ;B
2(A)) →̃B2(Hom(Λ, A).
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We have π2MapAb(Γ, B
2(A)) →̃ MapAb(Γ, A) = Hom(Γ, A), and

π1MapAb(Γ, B
2(A)) →̃π0MapAb(Γ, B(A)) →̃ Ext1(Γ, A),

the Ext calculated in the category of abelian groups.
If 0 → Λ2 → Λ1 → Γ → 0 is an exact sequence in abelian groups, Λi are free if

finite type then MapAb(Γ, B
2(A))→ MapAb(Λ1, B

2(A))→ MapAb(Λ2, B
2(A)) is a fibre

sequence. The long exact sequence of πi then shows that π0MapAb(Γ, B
2(A)) = 0,

because MapAb(Λi, B
2(A)) →̃B2(Hom(Λi, B

2(A))).

3.9.6. For 4.5.2: if A,D are abelian groups then view B(A)×D as a monoidal category.
To provide a braiding on it is equivalent to giving a bilinear form b : D×D → A. This
braided monoidal category is then symmetric iff b takes values in A2−tors.

3.9.7. For Γ a finitely generated abelian group let BunΓ⊗Gm be the stack sending

S ∈ Schaffft to Map(S ×X,Bet(Γ⊗Gm).

Assume Γ finite. Then there is a natural map Map(S,BunΓ⊗Gm) → Map(S,Γet).
Namely, Bet(Γ⊗Gm) →̃B2

et(Γ(1)). Since H
2(X,Γ(1)) →̃Γ, we get a morphism as above.

For γ ∈ Γ write BunγΓ⊗Gm
for the substack given by requiring that S → Γet equals γ. We

have the projection GrΓ⊗Gm → BunΓ⊗Gm . Let GrγΓ⊗Gm
be the preimage of BunγΓ⊗Gm

.

3.10. For 4.9.1. If S ∈ Schaffft with S → GraZ/2Z⊗Gm
for some a ∈ Z/2Z, assume

the composition S → GraZ/2Z⊗Gm
→ Ran is lifted to RanJdisj . Suppose for j ∈ J the

j-th map S → GrZ/2Z⊗Gm
coming from the factorization takes values in Gr

aj
Z/2Z⊗Gm

for

ai ∈ Z/2Z. So, a =
∑

j aj . Let G be the trivial µ2-gerbe. What is the factorization

isomorphism G →̃G⊠J over

(
∏
j∈J

Gr
aj
Z/2Z⊗Gm

)×RanJ RanJdisj

It is given by some µ2-torsor. What is this torsor?
My impression is that this is just the torsor sending a finite set J to the set of orders

of J up to an even permutation.

3.10.1. For 7.1.2. Recall that Ind(Schaff ) ⊂ PreStk is a full subcategory by definition
from HTT.

3.10.2. Write Grpd(C) for the category of groipoids in an∞-category C. A multiplica-
tive A-gerbe on Z ∈ Grpd(PreStk) is an element in MapGrpd(PreStk)(Z,B

2
et(A)).

3.10.3. For 7.3.3. The multiplicativity of this gerbe is obtained as follows. We have the
composition map m : HeckelocG ×L+(G)\RanHecke

loc
G → HeckelocG . We want to construct

an isomorphismmG →̃G⊠G. A point of the LHS is a collection Fi : DI → Bet(G) for i =
1, 2, 3 and isomorphisms Fi →̃Fi+1 | ◦

DI

. The section of C•et(ΓI , ι̂
!A(1)) corresponding

to (F1,F3) is the sum of the sections corresponding to (F1,F2) and (F2,F3). The
compatibilty with the factorization follows from the corresponding decomposition ΓI =
⊔ΓIi when I is decomposed into Ii.
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3.10.4. For the proof of 7.3.5. If S ∈ Schaff , I ∈ Ran(S) then ΓI → S is flat. Indeed,
consider first the case of S = XI for a finite set I, let D ⊂ XI × X be the union of
△i, here △i is the locus, where i-th coordinate coincides with the last one. Then D is
an effective Cartier divisor, hence is flat over XI . The general case is obtained by the
base change under S → XI .

3.10.5. For 7.5.1, first claim: To understand the structure of L+(T )X -equivariance on
an A-gerbe GX on Λ×X, he means

MapGrp(PreStk/X)(L
+(T )X , Bet(A)×X) →̃ MapPtd(PreStk/X)(X/L+(T )X , B2

et(A)×X)

The LHS gives a multiplicative A-torsor on L+(T )X .

3.11. Ideas from Sam, twistings.

3.11.1. If A is a finite group then Shv(B(A)) →̃ QCoh(B(A)) in our case, where the
sheaf theory is D-modules. Indeed, B(A) →̃ colim[n]∈∆op An, hence

Shv(B(A)) →̃ lim
[n]∈∆

Shv(An)

Now for a finite union of points Y = ⊔i∈I Spec k, Shv(Y ) →̃
∏

i∈I Vect →̃ QCoh(Y ). In
turn, lim[n]∈∆QCoh(An) →̃ QCoh(B(A)).

His idea is that B(A) and Bet(A) should be 1-affine for any sheaf theory. (In the
setting of quasi-coherent sheaves this is [9, Thereom 2.2.2, Remark 2.5.2]). Indeed,
since ShvCat : (PreStklft)

op → 1− Cat preserves limits, we have

ShvCat(B(A)) →̃ lim
[n]∈∆

ShvCat(An)

If the sheaf theory isD-modules then, since ShvCat(An) →̃ QCoh(An)−mod, ShvCat(B(A))
identifies with the same category in the setting of quasi-coherent sheaves. However, in
the latter case we know that B(A) is 1-affine, so ShvCat(B(A)) →̃QCoh(B(A)) −
mod(DGCatcont). Thus, B(A) is 1-affine in this case.

For other sheaf theory we get ShvCat(B(A)) →̃Rep(A) −mod(DGCatcont), where
now the field of coefficients is E, maybe different from k. Here Rep(A) = QCoh(B(A))
with coefficients in E.

Recall also that QCoh(B(A)) →̃ QCoh(Bet(A)) by ([15], I.3, 1.3.8).

3.11.2. Let A be a finite abelian group. For the trivial torsor q : Spec k → B2(A)
consider the induced restriction map coresq : ShvCat(B2(A)) → ShvCat(Spec k) =
DGCatcont. We want to check it is comonadic and calculate the corresponding comon-
ade.

The functor ShvCat : (PreStklft)
op → 1− Cat preserves limits. Since

B2(A) →̃ colim
[n]∈∆op

B(A)n,

we get

(41) ShvCat(B2(A)) →̃ lim
[n]∈∆

ShvCat(B(A)n) →̃ lim
[n]∈∆

QCoh(B(A)n)−mod

Write ShvCatqcoh(Y ) for the category of sheaves of categories on a prestack Y in
the quasi-coherent setting. We conclude that ShvCat(B2(A)) →̃ShvCatqcoh(B

2(A))
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naturally. In the setting of quasi-coherent sheaves we know that coresq admits a right
adjoint coindq, hence the same holds for any sheaf theory. Note that q is 1-affine in the
sense of ([30], A.8), because B(A) is 1-affine. So, coindq preserves small colimits and
is a morphism of ShvCat(B2(A))-module categories, that is, satisfies the projection
formula by ([30], Pp. A.9.1(2)). Since B(A) is 1-affine, from ([9], Lemma 3.2.4) we get
QCoh(B(A)n) →̃ QCoh(B(A))⊗n.

Consider the cosimplicial category

DGCatcont
−→−→ QCoh(B(A))−mod

−→−→−→ QCoh(B(A)2)−mod . . .],

given by (41). It suffices to check that this cosimplicial category satisfies the comonadic
Beck-Chevalley condition ([9], Def. C.1.2). For each i ≥ 0 consider the projection
pr : B(A)i+1 → Bi(A) forgetting the last factor. We must check the corresponding
functor pr∗ : ShvCatqcoh(B(A)i) → ShvCatqcoh(B(A)i+1) admits a right adjoint pr∗.
This follows from ([30], Lm. A.9.1). For every map α : [j] → [i] in ∆ let α + 1 :
[j + 1]→ [i+ 1] be the map given by α on {0, . . . , j} and sending j + 1 to i+ 1. Write
Tα : ShvCat(B(A)j) → ShvCat(B(A)i) for the corresponding transition functor in
the above cosimplicial category. We must check that the natural transformation in the
diagram

ShvCat(B(A)i)
Tα

← ShvCat(B(A)j)
↑ pr∗ ↑ pr∗

ShvCat(B(A)i+1)
Tα+1

← ShvCat(B(A)j+1)

is an isomorphism. In other words, for the corresponding diagram

B(A)j
qα← B(A)i

↑ pr ↑ pr

B(A)j+1 qα+1← B(A)i+1

we have to show that (qα)
∗ pr∗ →̃ pr∗(qα+1)

∗. We have denoted by qα the corresponding
transition morphism in the simplicial object given by the group B(A). This base change
follows from ([30], A.9.1(1)). Thus, coresq is comonadic. The corresponding comonade,
by ([9], Lm. C.1.9), is isomorphic, as a plain endo-functor of DGCatcont, to the functor
C 7→ C ⊗QCoh(B(A)).

(Does it also satisfy the monadic Beck-Chevalley condition?)
Now use the fact that QCoh(B(A)) is rigid (in the sense of [9], D.1.1). Consider

the product map m : B(A) × B(A) → B(A). Since QCoh(B(A)i) is rigid for i = 1, 2,
we may apply ([15], I.3, 3.4.4), it says that m∗ : QCoh(B(A)2) → QCoh(B(A)) is
continuous, and m∗ →̃ (m∗)∨. So, QCoh(B(A)) ∈ CoAlg(DGCatcont) identifies with
the dual of QCoh(B(A)), where the algebra structure on QCoh(B(A)) is given by the
convolution m∗ : QCoh(B(A)2) → QCoh(A). Applying now ([22], 3.2.1-3.2.2), we
obtain an equivalence

(42) ShvCat(B2(A)) →̃ QCoh(B(A))−mod(DGCatcont),

where we use the convolution monoidal structure on QCoh(B(A)).
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3.11.3. Twist of a category by a gerbe. For a finite abelian group A as above let
C ∈ DGCatcont be equipped with a monoidal functor τ : B(A) → Funk,cont(C,C).
That is, A acts on C by automorphisms of the identity functor. (For example, if
C ∈ CAlg(DGCatcont) then we have a version where the input datum is a monoidal
functor τ : B(A)→ Fun⊗k,cont(C,C), the latter category denotes the category of k-linear

continuous symmetric monoidal functors from C to itself).
Since DGCatcont is cocomplete, it is tensored over Spc in the terminology of Lurie,

in this sense we have the tensor product B(A)⊗Vect ∈ DGCatcont. This is the colimit

of B(A) → ∗ Vect→ DGCatcont. By the universal property of the colimit, τ extends to a
map τ̄ : B(A)⊗Vect→ Funk,cont(C,C) in Alg(DGCatcont). In turn, B(A)⊗Vect as an
object of Alg(DGCatcont) identifies with QCoh(B(A)) with the convolution monoidal
structure (cf. [22], 9.2.20). So, our C becomes an object of (42). For any of the 4 sheaf
theories, the functor (PreStklft)

op → 1− Cat, Y 7→ ShvCat(Y ) satisfies etale descent,
so we get an object of

ShvCat(B2
et(A)) →̃ShvCat(B2(A))

Now given Y ∈ PreStk with a map G : Y → B2
et(A), we pull back the corresponding

sheaf of categories and get the twisted sheaf of categories CG on Y .

3.11.4. Explanations from Dennis email of 1.06.2020.
Consider a factorization gerbe GG ∈ FactGeA(GrG). The associated dual metaplectic

data (without the critical twist) in two particular cases.
i) If we start with GG trivial then H = Ǧ, ϵ = 0, Z trivial.

ii) If GG = (detg)
1
2 then we get H = Ǧ, ϵ = (2ρ)(−1) ∈ ZH(E) for 2ρ : Gm → ZH ,

and GZ is the extension of scalar via ϵ : Z/2Z→ ZH of the gerbe of square roots of ΩX .
This answer is obtained via the procedure of Section 6 of the paper without any

critical twist (the latter happens in Section 5 of the paper).

3.11.5. For C.1.2. Let b ∈ Bil(Λ, A) be given by a matrix (bij) in a base {ei} of Λ,
that is, b(ei, ej) = bij . Then b is alternating iff bii = 0 and bij = −bji for i < j.

Recall that d1 : Bil(Λ, A)→ Bil(Λ, A) sends b to b′ with b′(λ, µ) = b(λ, µ)− b(µ, λ).

Then Ker(Alt(Λ, A)
d1→ Bil(Λ, A)) = Alt(Λ, A2−tors). Any b ∈ Alt(Λ, A2−tors) writes

as b(λ, µ) = q(λ + µ) − q(λ) − q(µ) for suitable q ∈ Quad(Λ, A2−tors). Indeed, for
q(x) = xixj we get q(x+ y)− q(x)− q(y) = xiyj + yixj .

The kernel of Bin(Λ, A) → Quad(Λ, A) is Alt(Λ, A). Is the map d1 : Alt(Λ, A) →
Alt(Λ, A) surjective? Yes, because A is divisible: At the level of matrices, d1 sends (bij)
to the matrix with ij-term bij − bji. So, if b is alternating then the matrix of d1(b) has
ij-th term 2bij . Since A is divisible, this map is surjective.

3.11.6. For C.4.2, for clarity. For any b′ ∈ Bilin(Λ, A(−1)) we get a theta datum Θb′ .

It attaches to λ the gerbe Gλ = (ω−1X )q(λ) for q(λ) = b′(λ, λ) and isomorphisms

cλ1,λ2 : Gλ1+λ2 →̃Gλ1 ⊗ Gλ2 ⊗ (ω−1X )b(λ1,λ2)

Given b′′ ∈ Bilin(Λ, A(−1)), we get an isomorphism ϕb′′ : Θb′ →̃Θb′+d1(b′′) given on Gλ

by (−1)b′′(λ,λ). Now given q′′ ∈ Quad(Λ, A(−1)), we get a 2-morphism ϕb′′ → ϕb′′+d2(q′′)
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in Θ(Λ). This 2-morphism is essentially a trivialization, for each λ ∈ Λ, of the A-torsor

(−1)d2(q′′)(λ), which squares to the identity. This trivialization, as we have seen in
Section 4.2.5 of the paper, is a datum of c ∈ A(−1) with 2c = d2(q

′′). Our c is then
q′′(λ).

3.11.7. For C.6. To see that the cohomology in degree −1 of D̃(Λ)G is trivial, we have

to show that M
d2→ Alt(Λ, A2−tors) is surjective, where M = Ker(Quad(Λ, A2−tors) →∏

i∈I A2−tors). Given b′ ∈ Alt(Λ, A2−tors), let q ∈ Quad(Λ, A2−tors) be any such that
d2(q) = b′. We may correct it by an element γ ∈ Hom(Λ, A2−tors) with prescribed
values on αi. However, any map ⊕iZαi → A2−tors extends to a map Λ→ A. Why the
latter is in values with A2−tors?

3.12. Recall that the functor f : Spc → DGCatcont, X 7→ X ⊗ Vect is symmetric
monoidal and preserves colimits ([22], 9.2.20).

Let A be a finite abelian group. Let us show that B(A) ⊗ Vect →̃ QCoh(B(A)).
Since B(A) →̃ colim[n]∈∆op An in Spc, and f preserves colimits, we get

B(A)⊗Vect →̃ colim
[n]∈∆op

An ⊗Vect →̃ colim
[n]∈∆op

QCoh(An)

Here for a morphism β : [m]→ [n] in ∆ and the corresponding morphism β̄ : An → Am

of finite sets, the corresponding functor QCoh(An)→ QCoh(Am) is β̄∗. It has the right
adjoint β̄∗. We may pass to the right adjoints in the functor ∆op → DGCatcont, [n] 7→
QCoh(An), and thus we get a functor ∆ → DGCatcont, [n] 7→ QCoh(An). For a
morphism β : [m]→ [n] in ∆ the corresponding transition functor is β̄∗ : QCoh(Am)→
QCoh(An). Now applying ([22], 9.2.6), we get lim[n]∈∆QCoh(An) →̃ QCoh(B(A)). We
are done.

Since B(A) ∈ CAlg(Spc), B(A) ⊗ Vect ∈ CAlg(DGCatcont). We claim that this
symmetric monoidal structure on B(A)⊗Vect corresponds to the convolution symmetric
monoidal structure on QCoh(B(A)). Indeed, recall first that, by ([15], I.3, 3.4.4),
m∗ : QCoh(B(A)2) → QCoh(B(A)) is continuous. Note that for any [n] ∈ ∆ and the
corresponding map γ : An → B(A) the functor γ∗ : QCoh(B(A))→ QCoh(An) admits
a left adjoint, which is actually given by γ∗. For any [n] ∈ ∆ we have a commutative
diagram

(A×A)n
γ→ B(A×A)

↓ hn ↓ m

An γ′→ B(A),

where m : B(A) × B(A) → B(A) is the product map, and hn is induced by the
product in A. We see that passing to the colimit over [n] ∈ ∆op in the functors
(hn)∗ : QCoh((A×A)n)→ QCoh(An), we get the functor m∗ : QCoh(B(A)×B(A))→
QCoh(B(A)). We are done.

Let C ∈ CAlg(Spc) be the symmetric monoidal groupoid defined in Sect. 4.8.2 of
the paper. Then C ⊗ Vect ∈ CAlg(DGCatcont). Since C →̃ ⊔Z/2Z B(Z/2Z), we get
C ⊗ Vect →̃ ⊔Z/2Z B(Z/2Z) ⊗ Vect, let refer this coproduct as grading by Z/2Z. We
also get a Z/2Z-action on C ⊗ Vect by the automorphisms of the identity functor by
functoriality. It is given by a map B(Z/2Z) → Funk,cont(C,C). Let Vectϵ ⊂ C ⊗ Vect
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be the full subcategory of those objects, on which the parity concides with the values
of the Z/2Z-action by the automorphisms of the identity functor. We should refer to it
as the DG-category of super-vector spaces. It inherits a symmetric monoidal structure
from C⊗Vect.

Let now D ∈ CAlg(DGCatcont) equipped with a monoidal functor B(Z/2Z) →
Fun⊗k,cont(D,D). We simply denote by ϵ the corresponding automorphism of the identity

functor of D. The object Dϵ ∈ CAlg(DGCatcont) defined in Sect. 8.2.4 of the paper
is, in fact, the category of even objects in Vectϵ⊗VectD ∈ CAlg(DGCatcont). Here we
view both Vectϵ and D as Z/2Z-graded, where the grading on D is given by the action
of ϵ.

3.12.1. For 9.5.1. Let us explain the monoidal structure on Shv(GrG)
L+(G), without

any gerbes on GrG. We have the following analog of the convolution diagram from [28].
Let GrG ×̃GrG be the prestack whose S-point is a collection I1, I2 ∈ Ran(S), G-

torsors F1,F on S×X with isomorphisms ν1 : F
0 →̃F1 |X×S−ΓI1

and η : F1 →̃F |X×S−ΓI2
.

Let CG,X be the prestack whose S-point is a collections I1, I2 ∈ Ran(S), G-torsors Fi

on S×X with isomorphisms νi : F
0 →̃Fi |X×S−ΓIi

and a trivialization µ1 : F
0 →̃F1 |DI2

.
We get a diagram

GrG×GrG
p← CG,X

q→ GrG ×̃GrG
m→ GrG×Ran(Ran×Ran)

id×u→ GrG,

where p forgets µ1, so keeps ((F1, ν1, I1), (F
2, ν2, I2)) ∈ GrG×GrG. The map q is given

by the property that F is obtained by gluing of F1
X×S−ΓI2

and of F2 |DI2
via

ν2µ
−1
1 : F1 →̃F2 | ◦

DI2

The map q is a torsor under the group scheme on GrG ×̃GrG, which is the pull-back
of L+(G) under GrG ×̃GrG → Ran sending a point as above to I2. We may take the
quotient of p under a suitable action of L+(G), and get a morphism p̄ : GrG ×̃GrG →
GrG×(L+(G)\GrG). So, we get a diagram

GrG×(L+(G)\GrG)
p̄← GrG ×̃GrG

m→ GrG×Ran(Ran×Ran)
id×u→ GrG

Now write GrG ×̃GrG as the prestack whose S-points are I1, I2 ∈ Ran(S), G-torsors
F1,F on DI1∪I2 with isomorphisms ν1 : F

0 →̃F1 |DI1∪I2−ΓI1
and η : F1 →̃F |DI1∪I2−ΓI2

.

This allows to conclude that Map(DI1∪I2 , G) acts on (GrG ×̃GrG)(S). Moreover m is
equivariant with respect to the actions of L+(G) pulled back under u : Ran×Ran →
Ran.

We have a natural map ξ : Map(DI1∪I2 , G) → Map(DI1 , G) given by compos-
ing with DI1 → DI1∪I2 . Consider the pull-back of the group scheme L+(G) under

GrG×(L+(G)\GrG) → Ran×Ran
u→ Ran. So, it maps naturally to the pull-back of

L+(G) under GrG×(L+(G)\GrG)
pr1→ GrG → Ran. The map p̄ is equivariant under the

actions of Map(DI1∪I2 , G), where on the target it acts through the above homomor-
phism ξ. Taking the quotients, we get a diagram

(L+(G)\GrG)× (L+(G)\GrG)
p̃← L+(G)\(GrG ×̃GrG)

m̃→ L+(G)\GrG
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Here we used the action of L+(G) on GrG ×̃GrG described above. Now the monoidal
operation on Shv(L+(G)\GrG) is given by (K1,K2) 7→ m̃!p̃

∗(K1 ⊠ K2). The functor
m̃! makes sense, because the map m̃ is pseudo-proper.

Question. How to justify the existence of the functor p̃∗?
The definition of the category Shv(L+(G)\GrG) and the correspnding convention is

as in ([27], 0.0.40). In 9.5.1 he meant a version of this definition with gerbes incorpo-
rated.

3.12.2. Hecke action of Shv(L+(G)\GrG) on Shv(BunG). Recall the stack HeckelocG

from Section 7.3.1 of the paper, it classifies I ∈ Ran, G-torsors FG,F
′
G on DI and

an isomorphism FG →̃F′G | ◦DI

. We have HeckelocG →̃L+(G)\GrG, where the quotient is

understood in the stack sense (etale sheafification of the prestack quotient). We have the

involution of HeckelocG given swapping FG and F′G. We denote by ∗ : Shv(HeckelocG ) →
Shv(HeckelocG ) the induced involution.

Now we may define the Hecke functors as in ([6], Section 3.2.4). Let G → Bun be
the prestack classifying I ∈ Ran,FG ∈ BunG and an isomorphism F0

G →̃FG |DI
.

Let Hecke(G)Ran be the global Hecke stack classifying I ∈ Ran, G-torsors FG,F
′
G

on X, and an isomorphism β : FG →̃F′G |X−ΓI
. Let h←, h→ : Hecke(G)Ran → BunG be

the map sending the above point to F, F′ respectively.
We have isomorphisms idl, idr : Hecke(G)Ran →̃ (GrG×RanG)/L

+(G) such that the
projection of the RHS to BunG corresponds to h←, h→ respectively. This gives a dia-
gram

HeckelocG
pr1← (GrG×RanG)/L

+(G)
pr2→ BunG

We set for S ∈ Shv(HeckelocG ),K ∈ Shv(BunG),

(S⊠K)l = (idl)!(pr1×pr2)
∗(S⊠K) and (S⊠K)r = (idr)!(pr1×pr2)

∗(S⊠K)

The map pr1×pr2 is a torsor under the placid group scheme L+(G), so the functor
(pr1×pr2)

∗ is defined as in ([27], 0.0.36).

Now define Hecke functors H→G ,H←G : Shv(HeckelocG )× Shv(BunG)→ Shv(BunG) by

H←G (S,K) = h←! (∗S⊠K)r and H→G (S,K) = h→! (S⊠K)l

My understanding is that this defines a left and right action of Shv(HeckelocG ) with
the above monoidal structure on Shv(BunG).

3.13. Category of Hecke eigen-sheaves. Dennis says the definition from [11] is not
a good one for objects K ∈ D(BunG) which are not in the heart of a t-structure!!

The following idea is from ([12], Section 4.4.2). Let Hecke(G)Ran be the Ran version
of the Hecke stack. Its S-point is a finite subset I ⊂ Map(S,X), which is a S-point of
Ran, two G-torsors F,F′ on S×X and an isomorphism F →̃F′ |S×X−ΓI

, here ΓI is the
union of the graphs of maps S → X given by I. Let h←, h→ : Hecke(G)Ran → BunG
be the map sending the above point to F, F′ respectively. Let UI = S ×X − ΓI
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We get diagrams

Hecke(G)Ran ×
h→,BunG,h←

Hecke(G)Ran
b→ Hecke(G)Ran ×Hecke(G)Ran

↓ a

Hecke(G)Ran ×Ran (Ran×Ran)
↓ id×u

Hecke(G)Ran

Here u : Ran×Ran→ Ran is the product map. The map a sends

(I, J ∈ Ran,F,F′,F′′, β : F →̃F′ |UI
, γ : F′ →̃F′′ |UJ

)

to (F,F′′, γβ : F →̃F′′ |UI∪J ).
The maps h← × supp, h→ × supp : Hecke(G)Ran → BunG×Ran and u are pseudo-

proper in the sense of ([8], 1.5), so the functors (id×u)!, a! are defined between the
corresponding categories of sheaves by ([8], 1.5.2).

He claims Shv(Hecke(G)Ran) has a non-unital monoidal structure with the product
given by (K,K ′) 7→ (id×u)!a!b!(K ⊠K ′).

Similarly, we have the diagram

Hecke(G)Ran
id×h→→ Hecke(G)Ran × BunG

↓ h←

BunG

He proposes to define a left Shv(Hecke(G)Ran)-module structure on Shv(BunG) via
the action map Shv(Hecke(G)Ran) ⊗ Shv(BunG) → Shv(BunG) sending (K,F ) to
h←! (id×h→)!(K ⊠ F ). Since Ran → Spec k is pseudo-proper, the functor h←! makes
sense.

We see that Hecke(G)Ran has a structure of a groupoid acting on BunG. Besides,
Hecke(G)Ran has a structure of a non-unital associative algebra in PreStkcorr. This is
why applying Shv, one gets a non-unital monoidal category.

We may also consider the (non-integral) Hecke functors defined as follows. For the
diagram

Hecke(G)Ran
id×h→→ Hecke(G)Ran × BunG

↓ supp×h←

Ran×BunG

we could consider the functor H : Shv(Hecke(G)Ran)×Shv(BunG)→ Shv(Ran×BunG)
given by H(K,F ) = (supp×h←)!(id×h→)!(K ⊠ F ).

Question What is the compatibility of H with the symmetric monoidal structure on
Rep(Ǧ)?

3.14. For version June 7, 2021.

3.14.1. For 4.5.7. Here A is assumed divisible (and the of its elements are coprime
to char(k)). Recall that I is the set of vertices of the Dynkin diagram. We have an
exact sequence of abelian groups 0 → Hom(π1(G), A) → Hom(Λ, A) →

∏
i∈IA →

0, where the second map is given by evaliation on simple coroots. This gives a
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map Map(X,B2
et(Hom(Λ, A))→ Map(X,B2

et(
∏

i∈IA) →̃
∏

iGeA(X) in ComGrp(Spc),

whose fibre in ComGrp(Spc) is Map(X,B2
et(Hom(π1(G), A))).

3.14.2. For A.3. By definition, GrΓ⊗Gm is the prestack over Ran whose S-points are
I ∈ Ran(S), and a map S × X → Bet(Γ ⊗ Gm) together with a trivialization ofg its
restriction to UI ⊂ S ×X. Here UI is the complement of ∪iΓi, here Γi is the graph of
i-th map S → X.

3.14.3. In Remark 4.6.9 and elsewhere we denote by Ab the derived DG-category of
abelian groups. In 4.6.7 Dennis mentions instead the ∞-category of chain complexes
of abelian groups, but he actually means the derived DG-category . In other words, let
Ab be the usual category of abelian groups. Then it is a Grothendieck abelian category,
so we may consider D(Ab) in the sense of ([19], 1.3.5.8). We have the canonical functor
Ab → Sptr≤0 given by the universal property of derived DG-categories ([19], 1.3.3.2).
I think it coincides with the Dold-Kan functor used in Remark 4.6.9.

3.14.4. For 4.6.8. We consider MapE∞(Spc)(Λ, B
2(A)) as a connected spectrum, by

this we mean the inner hom I think in Sptr≤0 →̃E∞(Spc).

3.14.5. For Cor. 4.7.6. Let Γ be a finitely denerated abelian group whose torsion part
is of order prime to char(k), let A be a divisible abelian group. To summarize, we have
a fibre sequence

FactGe0A(GrΓ⊗Gm)→ FactGeA(GrΓ⊗Gm)→ Quad(Γ, A(−1))
in ComGrp(Spc). Moreover, we have MapAb(Γ, B

2(A)) →̃B2(Hom(Γ, A)) by Remark 4.6.9
of the paper, because Ext1Ab(Γ, A) = 0, and

FactGe0A(GrΓ⊗Gm) →̃ Map(X,B2
et(Hom(Γ, A)))

is an isomorphism now by Remark 4.7.7 of the paper.

3.14.6. For 4.8.1. Here A is divisible I think. Here MapE∞(Spc)(Γ, B
2(A)) classifies

C ∈ CAlg(Spc), which are usual groupoids with π0(C) →̃Γ as a commutative monoid,
and the group of automorphisms of an object is A.

3.14.7. For 9.1.1. For a theory of sheaves, which are not D-modules, the formula
S 7→ Shv(S ×Ran Z) does not in general define a sheaf of categories for a factorization
prestack Z over Ran.

To define a sheaf of categories over Ran for any sheaf theory, not that ShvCat :
(PreStklft)

op → 1 − Cat preserves limits. Since Ran →̃ colimI X
I over the category

of non empty finite sets and surjections, we get ShvCat(Ran) →̃ limI ShvCat(XI).
Besides, ShvCat(XI) →̃Shv(XI)−mod(DGCatcont) for any of our 4 sheaf theories.

So, for any sheaf theory we understand SphGG(G) as a compatible family of objects

of Shv(XI)−mod for all non empty finite sets I.

3.14.8. For 9.2 line 2. I think there is a mistake there, namely, GG ⊗ det
1
2
g should

be replaced by GG. Otherwise, no critical shift would be needed in the formulation of
Satake.
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