1. COMMENTS TO MY JOINT PAPER WITH DENNIS [13], SEPT. 11, 2017

1.0.1. The notation DGCat from [13] corresponds to the category denoted DGCatcont
n ([15], ch. L1, Sect. 10). The notation Vect is that of ([15], ch. I.1, Sect. 10.1,
so Vect is both left and right complete for its t-structure. This is used, in particular,
in Sect. 1.6.1, where it is claimed that Shv : (Sch“ff)OP — DGCat*¥™Mon - Namely,
for any S € Sch®7 . the unit of Shv(S) is the pull-back of the constant sheaf E under
S — Spec k. Now indeed for f : S; — S5 in Sch®/ the functor f': Shv(Ss) — Shv(S)

is symmetric monoidal.

1.0.2. The category (Schc}{f)(’p admits finite colimits, so Ind((Sch‘;{f)OP):?(Schaff)"p
is presentable by ([18], 5.5.1.1).

The definition of Shv : (PreStk)®” — DGCat should indeed be a right Kan ex-
tension of (Sch®/)? — DGCat under (Sch®/)? — P(Sch® /)P, That is, if Y €
PreStk is written as any colimit colim;c7.S; in iP(Schaf f ), where S; € Sch*/ then
Shv(Y) = limicror Sho(S;) in DGCat.

A prestack given by a functor F : (Sch®7/)? — Spec is locally of finite type iff this
functor preserves filtered colimits. Then it is completely defined by its restriction to
(Sch{?)? by (HTT, 5.3.5.10).

1.0.3. For 1.2.1. We may take here S indeed only as a filtered limit of S, in Sch®//,
because the functor Shv : (Sch‘}{ f )P — DGCat maybe does not preserve finite colimits.

See ([18], 5.5.1.9). Maybe Shv : (Sch®//)*? — DGCat does not preserve all colimits.

1.0.4. For 1.2.1. The functor (1.2) inherits a right-lax symmetric monoidal structure
by (HA, 4.8.1.10).

1.0.5. If K, € € 1—Cat, the relation between Funct(K, ES?~1*¢(@)) and ESP ™™ (Funct (K, €))
is as follows. One has Mon(Ptd(C)) = Mon(C) canonically. Clearly,

Mon(Fun(K, C)) = Fun(K, Mon(€))

So, for any n > 1, E,(Fun(K, €)) = Fun(K, E,(C)). The full subcategory E&?~"*¢(Fun(K, €)
identifies via this isomorphism with Fun(K, EZ"?~'*¢(€)) because of ([22], section
label{sec_Nick_equivalence fiberwise} and (HA, 5.2.6.2).

If f:C — D is a left-exact functor, and G, D admits finite limits then f induces a
functor E,(€) — E,(D) for all n > 0, and also E§P~"*¢(€) — EJP~'ke(D),

1.0.6. For any oo-topos G, let C° C € be the full subcategory of connected objects.
Recall that © : Ptd(C%) = Grp(€) is an equivalence ([18], 7.2.2.11). The functor  :
Ptd(€) — Srp(€) has a left adjoint B given by the composition Grp(€) = Ptd(C%) —
Ptd(€). For G € Grp(€) we have canonically G—= QB(G), because G is a part of the
Cech nerve of * — B(G).

Date: April 3, 2024



2

1.0.7. For 1.3.4. The category E;"” ~like(Q) is defined for k > 1. For example, we have
a natural functor Q : Mon(C) — Grp(Mon(C)) = EJ?~"**(C). If C is an oco-topos,
it has a left adjoint B : E'” ~like(C) = Mon(C). It takes values in Grp(C) because
of ([19], Lm. 5.2.6.16). Namely, for X € EJ"7"*¢(C), B(X) is connected, that is,
1-connective because of ([18], 7.2.2.11), now B(X) is grouplike by ([19], Lm. 5.2.6.16).

Assume C is an co-topos. Since the colimits in C are universal, the forgerful functor
Mon(C) — C preserves sifted colimits by (HA, 3.2.3.2). So, given G € Grp(Mon(C)),
B(G) can be calculated either as a geometric realization of the diagram

%
[...GXG:;G:;*}
in Mon(€) or in €. So, B(G) is connected by ([18], 7.2.2.11).

1.0.8. Explanation for ([13], 1.3.5) coming from ([1], Appendix E). Consider the co-
cartesian fibration f : X — 1 — Cat corresponding to id : 1 — Cat — 1 — Cat. So, X
classifies C € 1 — Cat and ¢ € C. A morphism in X from (C,¢) to (C’, ) is, roughly, a
pair (f,g), where f : C' — C"is a functor and g : f(c) — ¢ is a morphism in C’. Then X
is a symmetric monoidal category with the product (C1,c1), (Co, c2) — (C1xCa, 1 X ¢2).
The unit of X is given by (C = %,*). Then f is a monoidal functor.

Write X’ € X for the 1-full subcategory, where we keep all objects, and only mor-
phisms cocartesian over 1 — Cat. So, X’ — X is a cocartesian fibration in spaces. Then
X' is a symmetric monoidal category.

Recall that Mon(Spc) is a symmetric monoidal category ([15], ch. 1.1, 3.3.5). Now
we have a symmetric monoidal functor F : X’ — Mon(Spc), (C,¢) — Mapq(c, ¢), here
Mon is the category of monoids in Spc.

The fact that the above functor is symmetric monoidal is expressed as follows: given
(C,c),(D,d) € X one has naturally

MapC(C> C) X MapD(d> d) — MapCXD((Cv d)7 (Cv d))a

and Map, (, *) = * in Spc.

Now if A € Mon(1 — Cat) is a monoidal category then (A,14) € Mon(X') with the
product (A x A,1 x 1) — (A,1) given by the multiplication m : A x A — A. So,
F(A,14) = Mapy(1,1) becomes a monoid in Mon(Spc). Thus, Map 4(1,1) € Es(Spc).

Unwinding the definition, the interiour product on Map 4(1,1) is given by the com-
position in A sending f1 : 1 — 1,f5 : 1 — 1 to f1 o fo. The exteriour product in
Map 4(1,1) is defined as the composition

Map 4(1,1) x Map4(1,1) = Map 4, 4(1 x 1,1 x 1) 8 Map 4(1, 1),

here the first isomorphism is given by the right-lax monoidal structure on F, and the
second one is the morphism of Map-spaces for the functor m : A x A — A. In other
words, the exteriour product in Map4(1,1) sends (f1, f2) € Map4(1,1) x Mapy4(1,1)
to f1 ® fa. '

Let A € EJP71"¢(Spc), so B(A) € Grp(Spe). A datum of C' € 1 — Cat together with
C — B?(A) gives a B(A)-action on C := % X B2(A) C. It is given by a morphism « :
B(A) — Funct(C,C) =: O in Mon(1 — Cat). In particular, x — B(A) — Funct(C, C) is
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the identity functor. Passing to the Map-spaces from 1 € B(A) to 1 € B(A) in B(A),
the functor « yields a morphism

a: A= Mappg4(1,1) = Mapg(lo, lo)

Since B(A) € Mon(1 — Cat), Mapp(4)(1,1) € E2(Spc) by the above construction, and
a is a morphism of Eg-objects by functoriality. (Since « is a functor, & preserves
the compositions, that is, respects the interiour products). In fact, & takes values in
Mapgsoe(lo, lo) € Egm_hke(Spc), which is a full subspace in Mapg(lo,lo)-

Remark: if A,B € Mon(1 — Cat) and a : A — B is a morphism in Mon(1 — Cat)
then the induced map Map 4(14,14) — Mapp(1lp,1p) is a morphism in Ey(Spc) by
functoriality. .

We claim actually here the following. Let A € E§? ~like(Spe), C € 1 — Cat, O =
Funct(C, C'). Then to give a morphism B(A) — O in Mon(1—Cat) is the same as to give
a morphism A — Mapy(1,1) in Ea(Spc), equivalently, a morphism A — Mapgspe(1, 1)
in Egrp*hke(Spc).

Given A — Mapy(1,1) in E2(Spc), how to get B(A) — O in Mon(1 — Cat)? I think
as follows. First, Mon(1—Cat) C 1— Cat is stable under small limits, and Mon(1 — Cat)
admits all small limits. Besides, Ptd(Mon(1— Cat)) = Mon(1 — Cat), see HA. Consider
the functor 2 : Mon(1 — Cat) — Grp(Mon(1 — Cat)) = EJ"P~""*¢(1 — €at). The existence
of left adjoint to this functor is not clear, as 1 — Cat is not a topos (are both categories
presentable?). Instead, we do the following.

If © € Mon(1 — Cat) then O¢ € Mon(Spc), so Q(O%¢) ¢ Egrp*like(Spc) and

grp—like

Mapgspe (1o, 1o) € E3 (Spc). We have canonically

Mapgspe (1o, 1) Q(OP°)

in EJP7"¢(Spe). By adjointness in B : EJP7"*¢(Spc) S Grp(Spe) : Q, it yields
a morphism B(Mapgspc(lo, 1)) — O°P¢ in Grp(Spc). This is also a morphism in
Mon(1 — Cat), then compose with OSP¢ — O.

1.1. If Y is a prestack, A is a commutative group object in PreStky then by

Map y(Y; By, y(A))

we mean the mapping space in PreStky. In particular, if A is a torsion abelain group,
Map(Y, B,(A)) denotes the mapping space in PreStk.

Notation throughout, I think: let Y be a prestack, A a group like E,-object in
the category PreStk/Y. Then we have the functors B : ESP "¢ (PreStk /Y) —
E9"P~1ke (PreStk /Y) for 0 < i < n defined as in Section 1.3.4 for the category € =

n—

PreStk /Y. So, B*(A) always has this meaning.

1.1.1. Explanation for 1.4.3. Let Stk C PreStk be the full subcategory of stack for
the etale topology. This inclusion is stable under all small limits. Recall that its left
adjoint is accessible and left exact (topological localization) functor L : PreStk — Stk.
By ([18], 7.2.2.5), L induces a functor Grp(PreStk) — SGrp(Stk). If G € Grp(PreStk)
then QBet(G) ’_\;Get-



Let A be a torsion abelian group, write A for the sheafification of A on Sch®//.
Then B!,(A) is the i-th delooping of A, in the topos Stk.

We have QMap(Y, Z) = Map(Y,QZ) for any Y,Z € PreStk. For j < i we get
VB, (A)= B.;”(A), and the claim in this case is mo Map(Y, B%,(A)) = H.,(Y, A) for
r > 0.

For j > i we get the following. Recall that for any D € 1 — Cat, ;<;D C D is stable
under all limits that exist in D. So, (A, 1) can be calculated in 7<o Spc = Sets. We
get QY(A,1) = * for i > 0. For this reason, /B! (A) =  is the final object in the
category Stk, and the corresponding 7; is zero.

1.2. In fact, the functor Sho' : (Sch)®” — 1 — Cat takes values in presentable stable
cocomplete oo-categories. Consider the ”context of constructible sheaves” as in [8]. Let
f : Y1 — Yo be a morphism of prestacks. By ([8], Cor. 1.4.2), fi : Shv' (Y1) — Shv'(Ys)
is always defined. Let Y be a prestack.

Consider the category Sch/Y. We have a functor (Sch/Y) — 1 — Catbcoompl,
(S —=Y) — Shv(5), and

Sh'(Y) = lim  Shwv(S)
S€(Sch/Y)op
For each map « : S; — Sz in Sch/Y we have the left adjoint «y : Shv(S1) — Shv(S2)
to o : Shv(Sy) — Shu(Sy). Let Y — Sch/Y be the cartesian fibration corresponding
to the above functor (Sch/Y)°? — 1 — Cat. Then it is bicartesian, so we get the functor
Shuy : Sch/Y — 1 — Cat>:™ (G 5 Y) s Sho(S).

Let (Sch/Y)” be obtained from Sch/Y by adjoining a final object. Consider an ex-
tension Shuy : (Sch/Y)” — 1— Cat>bemPl of Shyy, which is a colimit diagram for Shu,.
The opposite to (Sch/Y)" is the category ((Sch/Y)°P)¢ obtained by adjoining an initial
object to (Sch/Y)°P.

Passing to right adjoints in Shuy, we get a functor
(Shv')®: ((Sch/Y)°P)? — 1 — Cat

extending Shv'. By ([15], Ch. L1, 2.5.7), this is a limit diagram. That is, the corre-
sponding map

colim Shv(S) — lim Shv(S)
SeSch/Y SeSch/Y

is an equivalence (alternatively, use [15], Ch. 1.1, 5.3.4). Note that for o : S1 — Sa
a morphism of schemes both a; and o' preserve colimits. So, the limit in the above
formula could be taken in 1 — Cat“"“™! or 1 — Catp, or 1 — Cat by ([15], 2.5.2(b)).

Let now A — Shv'(Y) be a functor, a — F¢. For each (S,y) € Sch/Y, herey : S — Y
we get the functor A — Shv(S), a — y'F% If F, = limuea y'T* exists for any
(S,y) € Sch/Y, and for any a : S; — So in Sch/Y the natural map o'F,, — F,, is an
isomorphism then lim,e 4 F¢ exists in Sho'(Y), and the natural map y'(limge 4 F¢) — F,
is an isomorphism by ([15], Ch I.1, 2.6.2). This is ([8], Lemma 1.3.5).

If B:Y; — Yo is a morphism of prestacks, F € Shv'(Y;) then for /i F we have some
formulas as colimits. For example, let A — PreStk, a — S, be a functor that factors
through Sch < PreStk and Y1 = colimgea S, with colimit taken in PreStk. Then for
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the contructible context Shv'(Y) = colimgea Shv(S,), and /F = colim(Ba)(a®)'F,
here a® : S, — Y is the natural map. See ([8], 0.8.5).

1.2.1. Let A be a torsion abelian group. If S is a smooth scheme of dimension n,
Y C S is closed of codimension > 2 then Map(S, B%(A)) — Map(S — Y, B%(A)) is an
isomorphism.

1.2.2. For Sect. 1.5.1, just to note. We could consider A(—1) := lim,, Hom(uy,, A) over
n invertible in k, where for n | n’ the transition map Hom(ju,, A) — Hom(uy,, A) is the
composition with the inclusion p, < /.

In other words, A(—1) is defined by the isomorphisms

Hom(B(1),A) = Hom(B, A(—1))

functorial in an abelian group B. If A is an N-torsion group then A(—1) vanishes, but
A(—1) does not. So, this is a different thing!

1.2.3. Let € € 1 — Cat admit finite products. Write Mon(€) for the oo-category
of monoids in €, Mon™(€) for the category of left modules over a monoid in C, so
Mon™(€) C Funct(AT°P €) is a full subcategory. We have the forgetfull functor
Mon™(€) — Mon(€). If we are given A € 1 — Cat and a functor F' : A’ — Mon(C),
we may think of it as a presheaf of monoids in €. Then a lifting of F' to a func-
tor BT : A%? — Mon™(€) can be thought of as a presheaf of left modules over the
corresponding presheaf of algebras.

This is used in ([13], 1.6.2). Namely, the functor (1.2) can be seen as a functor
Shv : (Sch®/)P — Mon(DGCat). We have a projection Sch*//Y — Sch®//. A
presheaf of DG-categories on Sch®//f /Y is a lifting of the composition

(Sch®7 /YyP — (Sch®/ /)P — Mon(DGCat)

to a functor (Sch®/ /Y)P — Mon*(DGCat).
Let € be a presheaf of categories over Y € PreStk. Note that for a map f: .57 — So
in Sch*™/ and ys : So — Y with y; = yof the diagram commutes

Shv(S2) x C(S2,42) — C(S2,¥2)

{ I
Shv(S1) x €(S1,y1) — C(S1,v1)

This is the sense of: (1.9) interwines the actions.
Def. of a sheaf of categories in 1.6.6 makes sense, because DGCat contains all colimits

(this is the category of modules over some algebra in 1 — Cat’ %>“P!.

1.2.4. The category of étale sheaves Stk C PreStk is a topos, so Stk is presentable, in
particular, contains all small colimits and limits ([18], 5.5.2.4). The inclusion Stk —
PreStk does not preserve colimits. Indeed, let S +— S,p¢ be the sheafification functor,
the left adjoint to the above inclusion. By ([18], 5.2.7.5), given an functor f : K — Stk,
the colimit of f is Suf, where S is the colimit of f in PreStk.

The category Disc(Stk) of discrete objects of Stk is the category of sheaves of sets
on Sch®/ with respect to the étale topology. Let A be a group objects in Disc(Stk).
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We could directly construct B(A) € Stk using ([18], 7.2.2.12). If A is a commutative
group object of Disc(Stk), we could similarly construct B*(A) € Stk for all i > 0.
Dennis procedes differently. He considers the topos

P(Sch® /) = Funct((Sch® /)P, Spc)

Then Disc(P(Sch®//)) is the category of presheaves of sets on Sch®/. Given a group
object A in Disc(P(Sch®f)), we get the Eilenberg-MacLane object B(A) € P(Sch®/7)
via ([18], 7.2.2.12). Namely, A can be seen as a functor A : A% — P(Sch®/) actually
taking values in the full subcategory Disc(P(Sch®//)) ¢ P(Sch®//). Then A extends to
a colimit diagram A, : (A4)% — P(Sch®//) of its restriction to A°?. Then B(A) =
colim per A calculated in P(Sch®//).

In general, if K,S,€ € 1 — Cat and € admits K-indexed colimits then Funct(S, C)
admit K-indexed colimits, and they are computed pointwise ([18], 5.1.2.3). Therefore,
for each S € Sch®/, we have a functor A(S) : A%’ — Spc, and the value B(A)(S) =
colim por A(S).

If we assume in addition that A is a sheaf for étale topology then A € Disc(Stk), and
the functor A factors as A% — Stk — P(Sch®/). By the above, By (A) := colim por A
in Stk is calculated as the sheafification of the colimit B(A) := colim aer A in P(Sch®/ /).

We have B(A)(S) = colimaer A(S) (colimit in Spc) for any S € Sch®/. T don’t
know if the natural map B(A) — Bet(A) is an isomorphism in PreStk.

Now assuming that A is an abelian group object in Disc(P(Sch®//)), on the pointed
object * — B(A) we get a structure of a group object in the category Ptd(PreStk).
Indeed, recall that for a usual category €, Grp(Grp(C)) — Ab(C), here Grp(C) is the
category of group objects, Ab(C) is the category of abelian group objects ([18], 7.2.2.12).
We get a functor A! : A% — P(Sch®//) roughly given by a diagram

x < B(A) = B(A) x B(A) £ ...

Then B%(A) = colimper A', the colimit is taken in P(Sch®7). Then again * — B2(A)
is a group object in Ptd(PreStk), and we continue the procedure. We get the functor
A% : A% — P(Sch®7) given by a diagram

x + B2(A) = B*(A) x B*(A) &£ ...

and B3(A) = colim aer A2, the colimit is taken in P(Sch®7). And so on.

1.2.5. Let f : S — Z be an étale surjective map of schemes. Let S® : A%’ — Sch be the
groupoid underlying the corresponding Cech nerve. Let A be a torsion abelain group,
assume the orders of elements in A are prime to the characteristic of k. Let Y — Z be
a A-gerb whose restriction to S is trivial. By definition, Be;(A) : (Sch®//)P — Spc is
a group prestack (actually, stack for étale topology).

What is the data on S that allows to recover Y? Our A-gerbe is a map Z —
B2,(A). So, the answer is given by the sheaf condition: the map Map(Z, B%(A)) —
Tot(Y(S*/Z)) is an isomorphism, where Y(S’) = Map(S’, B%(A)), and S*/Z is the
Cech nerve of § — Z.
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1.2.6. Recall that for usual category €, Grp(Ab(€C)) = Ab(C) canonically. If A is a
commutative group object in Sets, view A as discrete object in Grp(ComGrp(PreStk)).
We get a functor A? — ComGrp(PreStk). Take the colimit of the latter functor, we
get B(A) € ComGrp(PreStk). Is this the usual way to see that B(A) is a group like
object of PreStk?

1.2.7. For A a torsion abelian group and i > 1, QB%,(A) = B';(A), here the functor
Q : Stk — Stk is the loop functor in the co-topos Stk. This is true for any topos, and
is explained in Section 1.0.6.

Why B!,(A) is an Eilenberg-MacLane object of degree i in Stk? This is because A
is an Eilenberg-MacLane object in degree 0 in Stk, now apply ([18], 7.2.2.11) several
times.

1.2.8. For 1.4.3. Let A be a finite torsion abelian group. Consider the functor
(Sch® 7)o — PreStk®” — Spc, where the second arrow sends Y to Map(Y, B, (A)).

Why this functor is the left Kan extension from (Sch'}{ ! )°P? Let J be a small filtered
category, p : J — (Sch;{f)"p a diagram j — S;, whose colimit in (Sch®f)or is §. We
have to show that

MapPreStk(jlei%p S, Bét(A)) - colim;e s Map(Sj, Bét(A))

1.2.9. Let 1 = A - H — G — 1 is a central extension of groups in an oco-topos X,
so A € ComGrp(X). It yields a morphism G — B(A) in Grp(X). Indeed, according to
([13], 1.3.2), such a map is given by a A-torsor on G, namely H — G is equipped with
an oo-action of A on H such that H/A— G, hence the desired map G — B(A).

Actually, B(A) is a commutative group object in X, because A was a commutative
group object. Applying B, we get a morphism B(G) — B%(A) in Srp(X).

This can be used to explain our construction of the gerbe £ in ([13], 1.5.2). Namely,
the central extension 1 — i, — Gy, — Gy, — 1 in PreStk yields B(G,,) — B2(A).

Another way to say, the object Lw € PreStk /Y defined in 1.5.2 is equipped with an

action of Bey(uy), and L%/Bet(un) =Y, hence the desired map Y — B2 ().

1.2.10. For 1.5.4. Here A is a torsion abelian group. Recall that B2(A) € ComGrp(Spc),
B2,(A) € ComGrp(PreStk). Now for a collection of gerbes f; : Y — B2 (A) we denote
by ®f; : Y — B2,(A) the composition Xf; : Y — [[, B34(A) — B2(A), where the last
map is the multiplication.

1.2.11. For 1.55. If f: X — Y isamap in Spc, z € X,y = f(z) and X, = X xy y
then we have a long exact sequence of groups (at the end of pointed sets)

o ( Xy, ) = (X, 2) = (Y, y) = mpo1( Xy, z) = ... = mo(Xy) = mo(X) — mo(Y)

So, for the space X := Gey(Y) XGea(y—2z) * We get the above long exact sequence.

It shows essentially that the complex RI'(Z,4'A) controls the homotopy groups of X.
Namely, we should have 7;(X) = H?%(Z,i'A) for 0 < i < 2, by H/ we understand the
etale cohomology. So, if dim Y = n then we need to understand RI'.(Z, A)[2n](n) in de-
grees [—2,0]. Since dim Z = n—1, the latter complex is placed in degrees < —2, and its
cohomology in degree -2 is Map(I, A(1)). Dualizing, we get H?(Z,i'A) = Map(I, A(—1)).
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1.2.12. ([13], 1.6.8) is true because the colimit in a topos are universal.

1.2.13. I have to learn the following (to be checked as found on internet): the endo-
morphisms of the unit object in an E,-monoidal category € naturally form an E, -
monoidal category. These kind of questions seems to be studied in ([19], 5.3).

Let € € 1 — Cat be symmetric monoidal, 1 € € be the unit object. Then Mape(1, 1)
is naturally a Ep-object of Spc, that is, lies in Algg,(Spc). Indeed, let €® — Fin,
be the corresponding cocartesian fibration. Given x;,y;,2; € C for ¢ = 1,2 and maps

T; f# Yi E2e zi, we get x1 @ xo € (‘35@ with a cocartesian arrow 1 @ x9 — 1 ® X2 over
a: (2) — (1) active, similarly for y and z. Consider the commutative diagram

1 DT — T1 QX2

I ner I Aot
Yy1DY2 — Y1 Y2
i g1Dg2 ¢91®g2

21D 22 — 21 2,

where the horizontal arrows are cocartesian maps in ¥ over (2) — (1). The composi-
tion in the left column is (g1 f1) @ (g2f2), this yields an isomorphism

(91.f1) ® (92f2) = (91 ® g2)(f1 @ f2)

This means that the two operations ® and the composition on Mape(1,1) are compat-
ible.

1.2.14. Let Y € PreStk, A be a grouplike Eg-object in PreStk /Y. Then we have
B2(A) — Y a pointed object in PreStk /Y. Let v : Y — B%(A) be the distinguished
point, a map in PreStk /Y. The square is cartesian

BZ(A) — BZ(A) x B%(A)
4 4 v
Bet (.A) — 13

Indeed, B2,(A) is obtained from A by applying the delooping functor B : Ef,” _like(Stk /Y) —
E9™P %€ (Stk /Y) twice. The delooping for the topos Stk /Y of étale sheaves over Y.

This is why an automorphism of the trivial gerb B2 (A)= B2, (A) over Y is an element
of the mapping space MapMapPreStk/y(va2t(A))(1)7 v) is 7777

1.2.15. For 1.7.1. Let T — Y be a morphism of prestacks, J{ a group object in
PreStk /Y acting on T. Then T is a H-torsor over Y by definition here if it comes from
amap Y — B (H), so it would be better to call it Hei-torsor in etale topology maybe.

For 1.7.3. Let Y € PreStk. The commutative group object Bei(E*!%) acts on any
presheaf of categories on Y, because we have a morphism of groups Be;(E*") — L8,
and £8§ acts on it.
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1.2.16. For 1.7.5. Let H € Grp(PreStk), € : H — L8 be a character sheaf on H. So,
for any S € Sch®™/, H(S) € Srp(Spc). For each h € H(S) we are given a rank one
local system &£(S,h) on S functorially on (S,h). Let m : H(S) x H(S) — H(S)
be the product, 1 € H(S) be the unit section. Then we are given isomorphisms
E(S,m(h1,h2)) = E(S,h1) @ E(S,ha) on S, and £(S,1)— FE on S.

A character sheaf on H can also be seen as a map B(H) — B(£8) in Ptd(PreStk).

Therefore, if H acts on a prestack Y, and Y — Y/H fits into x X B(H) 9 =Y, we get the
composition Y — B(H) — B(LS).

1.2.17. For 1.8.3. If Y € PreStk then Yyr € PreStk is defined by Y4r(S) = Y(Sreq)
for any S € Sch®. We have a canonical map p : Y — Ygr. Namely, Syeq <> S yields
Y(S) — Y(Sreqd) = Yar(S). Twistings on Y are the kernel of Map(Yar, B%(G,,)) —
Map(¥, B2(Gnm)).

By ([16], 6.4.2), the commutative group Tw(Y) € ComGrp(Spc) of twistings on Y
actually lies in oo — PicGrpdy, so is a k-module. The example ([16], 6.4.6) produces
for a line bundle £ on Y an element of T(£%*) € Tw(Y), hence the forgetful functor
Tw(Y) — Gegx (Yar) gives the object denoted by L% € Gegx (Yqr) in our Sect.1.8.3.

1.2.18. Sect. 2.2.1. The definition of a factorization prestack over Ran is not correct
in the cases when Z is not discrete, higher compatibilities are missing (the correct
definition is found in Raskin).

Precise definition of a non-unital associative algebra object in a monoidal co-category
is (Lurie, HA, 5.4.3.3), non-unital commutative algebra objects (Lurie, HA, 5.4.4.1).

I proposed the following definition of a factorization structure on a prestack over
Ran, Dennis says it is correct one.

Recall that Lurie denotes by Surj C Fin, the subcategory with the same objects,
and a morphism (n) — (m) is in Surj iff it is surjective. Let €® — Fin, be a symmetric
monoidal co-category. Let C'Alg™*(€®) C Functgyy,, (Surj, €?) be the full subcategory
spanned by functors F sending inert morphisms to inert morphisms in €®. This is
equivalent to requiring that for i« € I — {x} the inert map (x € I) — (x € (x,17)),
i1, x for j £ i is sent by F' to a cocartesian arrow over Fin,.

Let M be a non-unital commutative algebra object in C®. One has the notion of a
subobject of M in the category Functgyy,, (Surj, C®). This is a map M’ — M such that
for any n > 0, M'({n)) C M((n)) is a subobject. Assume M'({1)) = M((1)). Then M’
is ’stable by the multiplication’ automatically, and also stable under the permutations
of I —{x} for any (x € I) € Surj. Note that M € Functgy,, (Surj, €®) is not a non-unital
algebra itself!

For example, Ran is a non-unital commutative algebra in PreStk. Its subobject
Ran®®J is defined by the property that for any pointed finite set (% € I), its value on
(x € I) is (Ran!—*)dis],

Since Ran®/ is a subobject of Ran, it is stable by the multiplication. Besides,
Ran®®7((1)) = Ran((1)).

Let C' be an infinity-category admitting finite limits. Let M be a non-unital com-
mutative algebra object in C' (with its cartesian monoidal structure), let M be its
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subobject. Assume M'((1)) = M((1)) =: M. Let a : Z* — M be a map in
Functgiy, (Surj, C*). Set Z = Z*((1)).

Let (x € J) € Fin,. For j € J—{*} we have the inert map p/ : (x € J) — (x € (x,5))
in Surj given by j — j,k — x for k # j. It gives the induced map

Z¥(xed) = Z(x € (x]) =2

for each j € J — {*}. We want to require that together these maps give rise to an
isomorphism

Z%(x € 1) 277 Xopey M (x € J)

In other words, Z*((n)) = Z™ x pm M'({n)).

Say that a factorization object over M’ is a pair (Z*,«) satisfyng the following
property. For any (x € J) € Surj there is a unique active map a : J — (1) in Surj, it
sends each j € J — {x} to 1. Then Z*(a) fits into a diagram

77—+ X ppa—(s3 M (x € J) Z—(>a) A
1 \J
M (x € J) W vy = M

We require in addition that for any (x € J) € Surj this diagram is pull-back square in
C. Compare with the def. from (Raskin, Chiral categories).

Then as far as I understand, the diagram (2.3) is the functoriality of Z* for the
diagram I U — JU* — (1) of active morphisms. I mean you take further € = PreStk
with its cartesian monoidal structure.

When Dennis talks about ”compatibilities for higher order compositions” in this
subsection, he means compositions of surjections of pointed finite maps Iy — o —
I3 — ... — I, where there are more than two maps involved.

1.2.19. In 2.2.2 the definition looks like a linearized (over the sheaf of symmetric
monoidal categories Shv on Sch®// /Y) version of a right-lax monoidal functor.

For 2.2.3. Check that for a diagram Y — S <+ Y’ of prestacks, we have a natural
functor Shv(Y') ®@gpe(sy Shv(Y’) — Shu(Y xg Y'). This is used in the claim 2.2.3.

Ifs — Ran({isj is given by the sets I;,j € J then for I = UI; making the base
change in (2.2) by this map we get S xp,s 7738 XRan Z. Since we have a natural

map S X gan z7 5 [1,(S x1;Ran Z), it yields

@ Shv(S X1, Ran Z) = Shv(S X pans Z7) = Shv(S XRan Z)

We can further pass to the quotient tensoring over Shv(S), because we do base change
by the diagonal map S — S7. Everywhere the index like S X1Ran Means that the
corresponding map S — Ran is I. The map £ is a closed immersion.

1.2.20. For 2.2.6 In the case of D-modules this should be a factorization structure on
this sheaf of categories.
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1.2.21. For 3.1.3. The map (3.3) has to be an isomorphism of A-gerbes on S.

For 3.1.4. We interprete P as a map S x X — B (G) x X, where the second
component is the projection on X.

The displayed formula in 3.3.4 is true for ¢ = 0,1, but wrong for ¢ = 2, should be
corrected.

Remark: the calculation of homotopy groups (see 3.2.8) shows that the spaces
FactGe4(Grg) are not isomorphic in local and global case! Do I understand correctly
that (3.10) holds for both complete and noncomplete X7

1.2.22. The definition of 7y 4;4(G) in 3.2.5 is correct and taken from ([5], formula (7),
p. 5), where it is proved also it is independent of a choice of Gi. We always have an
exact sequence 1 — p(—1) = 7 414(G) = Hom(Gyy,, Gap) — 1, where G = G/[G, G,
and p = Ker(G — [G,G]). Here G is the simply-connected cover of [G, G].

I think this is the usual fundamental group (quotient of A by the roots lattice),
the complicated definition is to be able enentually to see the action of Aut(k) maybe?
What is it for?

A calculation of H*(Be(G), Q) for G semisimple is done in ([17], Prop. 2.2.5).

1.2.23. For 4.3.1. I think compatibility of § € FactGe4(Gry) with the group structure
on Grr means, first, that the morphism Gry — B2(A) x Ran is a morphism of group
prestacks over Ran, so that the total space § — Grpg of this gerbe is a group prestack
over Ran, and moreover the isomorphisms (2.5) on p. 21, Sect. 2.2.4 are required to
be isomorphism of group prestacks over Ranjl-sj.

Problem: find a precise rigorous definition here!

1.2.24. For 4.3.4. 1 think the map Map(X, B%(Hom(A, A)) — FactGe}™(Gry) is
analogous to the fact that a T-torsor on X yields an object of Ext(Div(X,A),G,,)
given by ([2], 3.10.7.3).

Namely, commutative factorization A-gerbes on Grp give gerbes § — Grp such that
for any finite set J our isomorphism (2.5) extends to an isomorphism

XJ -~
9 |GI‘TJ - 9 |GrT X Ran Ran’

over the whole of Ran”.

1.2.25. Thedefof A(1)in 1.5.1 is wrong, it is corrected as follows. For each n > 1 prime
to char(k) let A, = {a € A|a™ =1}, set A,(1) = A,, @z ptn. Then A(1) = colim A, (1)
with respect to maps n | n’ for n,n’ prime to char(k).

Problem: The definition of the Kummer map from 4.3.4 is not clear.

1.2.26. Formulas in 4.3.9 is a formal consequence of Prop. 4.3.7, proof of 4.3.7 not
clear for me.

1.2.27. For 4.4.1. The action of Grrp, on Gryp, is free in any sense one can imagine. So,
Grrge,, can be seen as a stack classifying (I € Ran, P, «), where P is a Grpgg,,-torsor
on X with a trivialization over U;. Here U; is the complement of the union of the
graphs of points of X given by I. This is clearly a factorization prestack over Ran.
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1.2.28. For 4.4.5(a), in the displayed formula Ran should be replaced by X. The object
of FactGe}{"(Grrgg,,) factorize in a stronger sense, such gerbe gives a morphism of
commutative group prestacks § — Grrgg,, XRan Ran”’ over Ran and for any finite set
J an isomorphism of commutative group prestacks over Ran”

where f : Gr%@)Gm — GIT®G,, XRan Ran’ — Grrgg,, is the composition.

For 4.4.5(b). The following notation is used here. For abelian groups I'; A we can
define Quad(I', A). Namely, this is the space of maps ¢ : I' = A such that (writing A
additively)

1) I'xT'— A, (a,b) — g(a+b) — g(a) — q(b) is bilinear;
2) forn € Z,a €T, q(na) = n%q(a).

In 4.4.5(b), Hom(I'; A(—1))2—¢0rs denotes the group Hom(I', A(—1)a_¢ors) if char(k) #
2 at least, where A(—1)2_tors = {a € A(—1) | 2a = 0}.

The functoriality that Dennis meant in 4.5.1 is as follows. We may replace I by I'/2T",
then there is an isomorphism I'/2I' = (Z/27Z)% for some finite set K, so Hom(T', A) =

Homyges (K, Ag). For any finite set K he says he claim one has canonically for a prestack
Z

Map(Z, B4, (Homses (K, A2))) = Hom(K, Map(Z, B4(A))
So, if we have construction for Z/27Z, we get a contstruction by functoriality for
(7./27)K.
Even better, Hom(T', A2) = Hom(I',Z/2Z)® Ay. Each map f € Hom(I',Z/27Z) yields
a morphism Grrgg,, — Grz/2z¢G,,- The construction of Grrgg,, is functorial in I'.
That is, if I'y — I'y is a homomorphism, we get a map Grr,¢g,, = GITysG,,, and the
map of factorization gerbes in the opposite direction.

1.2.29. For 5.1.3. No section M — P is needed here to get a map FactGea(Grg) —
FactGea(Gryy).

1.2.30. For 5.1.4. The meaning of p' is as follows. In 1.2.2 we defined the functor
Shv : (PreStk)? — DGCat. It is understood that for a morphism « : Z — Z’ in
PreStk the corresponding morphism Shv(Z') — Shv(Z) is denoted o,

1.2.31. For 7.2.2. The action of £(G) on Grg can be spelled as follows. For S € Sch®//
and a point I : S — Ran we have Dy, Dy asin 7.1.2. An S-point of Grg over [ is given
by (cPg, «), where Pg is a G-torsor on Dy, « : fPoGngG over Dg. An S-point of £(G)

is a map £ : Dy — G. The action change the trivialization « by &.

1.2.32. For 5.2.1. To be precise, let us understand by detrel(gp,,, g?%) the line bundle
det RI'(X, gp,,) ® det RI'(X, gT%)_l.

For 5.2.4. The ratio of det |s and detys |g here is gsttﬁ
The line

K(L) = det RT'(X, E ® L) ® det R['(X, E* @ L)
" detRI(X, Eo® L)det RT'(X, B} ® L)
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is canonically independent of L € Bun;. One sees that K(L(x)) — K(L) canonically
for z € X. This argument can be also done locally, in the case when X is not complete.
This is related to my paper [23].

For 5.3.1. We have pg,m = pa — pum-

1.2.33. Explanation about Quad(A, A)", where A is a torsion divisible abelian group.
Here G is any split reductive.

Note that Quad(A,Z) ®z A= Quad(A, A). Let x; € Quad(A,Z)" be the Killing
form for the i-th connected component of the Dynkin diagram. Let ¢; € Quad(A, Z)"
be the corresponding quadratic form, so ¢;(\) = k;(A, A)/2 for A € A. Pick a short
coroot «; for any such i.

For any ¢ € Quad(A, A)" there are multiples b; € A such that b;q;(a;) = q(a;) in
Quad(A,Z)" ®7 A. Let now R = q—Y_, bjq;. Let bg be the bilinear form associated to
R, that is, br(A1, A2) = R(A1 + A2) — R(A\1) — R(A2) for A\; € A. Let @ be the coroots
lattice. Then 2R vanishes on @, and for p € Q,\ € A, 2br(u,A\) = 0. So, there is
g € Quad(my,q14(G), A) such that 2R is the composition A — 7y 414(G) 4 A.

An example showing that the map Quad(A,Z)" ®z A — Quad(A, A) is not al-
ways surjective: let Ay = {a € A | 2a = 0}, we write A additively. A quadratic
form ¢ : A — Ay such that ¢(a) = 0 for any short coroot a does not always lie in
Quad(A,Z)V ®z A. For example, G = Sp,, so that A = Z2, where we identify in a
usual way Hom(G,,,,T) = Z for a maximal torus 7' C GLy C Sp,. For ¢ € Ay the

quadratic form defined on (ay,as) € Z? by q(a1,az) = cajay is W-invariant, and is not
in Quad(A,Z)V @7 A.

1.2.34. I claim that the image of
Quad (7 414(G), A) = Quad(A, A)

does not lie in Quad(A,Z)" ®z A in general.

Consider an example of G = (Spiny,, )aq With n € 4Z. In this case 71 414(G) = (Z/27Z)>.
We have A = Z" + Zw, where w = (3,...,3), the coroots are £(e; + €;), =(e; — €;)
for i # j. Consider the quadratic form g(x1,...,2,) = >, 22 for z € A. It takes
values in Z, we have an isomorphism Quad(A,Z)" = Z sending ¢ to 1. So, elements
of Quad(A,Z)"V ®z A are those of the form x — aq(z) for a € A, we are writing A
additively.

Let e = (1,0,...,0), so {e,w} is a base of 7 (G) over Z/2Z. We get aq(e) =
a,aq(w) = Ga. So, take for example ¢ : 71(G) — Az linear given by g(e) = 0,q(w) = ¢
for some ¢ € Ay. The restriction of § to A does not lie in Quad(A, Z)" @7z A.

This leads to the following contradiction in the paper. By Cor. 4.4.5, any ¢ €
Quad(m1(G), A) can be lifted to an element of FactGea(Grr, . (¢)®G,,). Consider its

image under
FactGea(Grr, ., (¢)2G,,) — FactGea(Grg) — Quad(A, )W @y A,

where the second map is as in Sect. 3.2.9. We get a contradiction. So, either Cor. 4.4.5
is wrong as stated or the calculation of H2,(B(G), A(1)) from Sect. 3.2.6 is wrong.
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1.2.35. The lemma of Reich ([32], Lm. I1.7.2) badly explained should be formulated
as follows I think.

Let A be a torsion divisible abelian group. For i-th connected component of the
Dynkin diagram pick a corresponding short coroot «;. Let k; : AQ A — Z be the Killing
form for the i-th connected component of Dynkin diagram, and ¢; the corresponding
quadratic form, so g;(A) = k;(A; N)/2. Let @@ C A be the coroots lattice of G.

Lemma 1.2.36. Let ¢ € Quad(A,Z)W ®7 A. Let b; € A such that bg;(c;) = q(v)
in Quad(A,Z)W @z A for each i-th connected component of the Dynkin diagram. Set
R = q—Y,bigi. Let Ay, be the coweights lattice of G/|G,G). Then there is R €
Quad(Agup, A) whose restriction to A is R.

Proof. Our g is a linear combination of forms of the form ag, where ¢ € Quad(A, Z)"
and a € A. If we prove our claim for g of the form aqg then it is also true for a linear
combination. So, assume ¢ = aqg as above. Pick r € N large enough such that there are
integers d; with rq(a;) = d;qi(cy) for all 4. Consider qo = rq — ), diq; € Quad(A, ALS
Let by be the bilinear form associated to qg, that is bo(A1, A2) = go(A1 + A2) — go( A1) —
qO()\z) for \; € A.

As in ([37], Lemma 1.2), we get 2bg(c, \) = 2¢p(«){c, A) = 0 for any A\ € A and any
short coroot a. Since our forms take values in Z, this gives by(a, A) = 0 for any A € A
and any short coroot a.

As we have seen in the previous section, 2gy vanishes on @, and 2by(u, A) = 0 for
€ QNeAN Let Q={\eA|thereis m > 0 with m\ € Q}. Pick m € N such
that mQ C Q. We see that 2mbo(p, A) = 0 for p € @, A € A. So, mqo descends to a
quadratic form 7 : Ay, — Z. Since A is divisible, we are done. O

Corollary 1.2.37. The images of the Killing forms rk; and of Quad(Ag, A) generate
the subgroup Quad(A,Z)V @7 A.

1.2.38. For 6.2.1 The torus T" is the maximal torus in G* defined as A ® G,,, so Af
are coweights of G¥, and A? are weights of G*.

For 6.2.2. Since the bilinear form corresponding to the gerbe STﬁ vanishes, to show
that the quadratic form vanishes on the roots lattice of (T*, Gﬁ), it suffices indeed to
show that the pull-back of g7 to Grg,, for any simple coroot of : G,,, — T of (T*, GF)
is trivialized.

1.2.39. For 6.2.3 .The Z/2Z-graded factorization line bundle detg,, » has fibre in the
global case det R['(X, L") ® det RT'(X,0™)~! at (L,a : L= 0O |y,) € Grg,, over I €
Ran.

For 6.2.4: we should precise here that it suffices to show that detg,, 2, admits a
canonical 2n-th root at a factorization line bundle (the corresponding Z/2Z-grading
should be triviall!).

For 6.2.5: the factorizable line bundles detg,, 2, detg,, 1 correspond to some f-data,
and the theta datum corresponding to detGm72n®(detGm71)*4n has trivial Z-valued
bilinear form, so is given (according to [2], 3.10.3.1) by some G,,-torsor, Dennis claims

this torsor corresponds to Q?((anl).
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Since the precise definition of detrel is not given, it is impossible to verify the 2nd
displayed equation in Sect. 6.2.5. That formula is true for one normalization of detrel,
not for both!!

Note that we have canonically

m(m—1)

det(O(mx)/0) @ det(O(z)/O) ™ =Q, 2

This calculates detg,, ,, ®(detg,, 1) essentially.

1.2.40. For 6.3.1. It is important that (9’711“9(@)@)@”)60’” gives a gerbe Ran —
Bgt(Hom(m,alg(Gﬁ), E*trs)) over the whole of Ran.
The Zy(E)%s-gerbe Gz on X is an element of

Map(X, BSt(HOm(WLazg(Gﬁ), Eritors))

corresponding to (Sﬂl!alg(Gﬁ)(@Gm)Com. Here Zy (E)trs = Hom(my q14(G*), E*°79).
So, Gz gives rise to a Zy(F)'$-gerbe on Ran.

1.2.41. By a symmetric monoidal DG-category in 6.4.1 we mean a commutative alge-
bra object of DGCat.

For 6.4.5: my understanding is that Fact(C)g, and Fact(C)g, are prefactorization
sheaves of monoidal DG-categories on Ran, we have an equivalence

Fact(€C)g, — Fact(C)g,

of sheaves of monoidal DG-categories on Ran, but this equivalence is not compatible
with the prefactorization structures.

1.2.42. Since T is an abelian group, the factorization isomorphism for Grr for a finite
set J exends to a morphism of group prestacks over Ran’

h: Gr% — Gry XRan Ran”

sending an S-point (J;,c;,I; € Ran), where J; is a T-torsor on S Xpan Grr, a :
F; = FY |x—1, is a trivialization to (®;F;, a = ®ay, I = U;1;).

For a multplicative gerbe G € FactGe}(Grr) we get an isomorphism h*G =
over Grr_‘ﬁ. However, say if we consider this over X2 — Ran, this isomoprhism does not

descend to isomorphism of gerbes over Grp Xgan X ), see Sect. 4.2.

S&J

1.2.43. Dennis proposed a more general Satake equivalence (on Jan 13, 2018) as fol-
lows. Let I' be a finitely generated abelian group. View Hom(I',G,,) as an algebraic
group. Then Satake equivalence for Grrgg,, is an equivalence

Fact(Rep(Hom(I', G,,,))) = Shv(Grreg,,)

in the notations of [13].
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1.2.44. To better understand the relation between commutative and multiplicaive A-
gerbes on Ran, one may ask the following question. Let Y be a commutative monoid
in Sets, Let S be a commutative monoid in -_, Spc.

What can we say about maps of spaces MapéomMon(spc) (Y, S) — Mappopspey (Y5 5) —
MapSpc(Y7 S )

Are the above morphisms fully faithful embeddings? This would help to think about
multiplicativity or commutaivity of a factorization gerbe. We want to apply the above
to S = B2(A). It is not clear that commutativity defines a full subspace.

2. COMMENTS TO [13], FILE VERSION MAY 25, 2018

2.0.1. One has Quad(A,Z) ® A= Quad(A, A). The subgroup Quad(A,Z)"V C Quad(A, Z)
is saturated, that is, the cokernel is torsion free. For this reason for any abelian group A
the map Quad(A,Z)" @z A — Quad(A, A) is injective and takes vales in Quad(A, A)"W.

2.0.2. For Sect. A.1. Let A be a torsion abelian group, whose elements have orders
prime to char(k). We have H2,(B(T),Z) = A(—1), and H%,(B(T), A) = A® A(-1). So,
H2,(B(T), A) is the So-coinvariants in H2,(B(T), A) @ 4 H2,(B(T),A) S A A® A(-2).
Consider the map Hom(A ® A,Z) — Quad(A,Z) sending a bilinear form s to the
quadratic form ¢ given by ¢(A) = s(A, A). This map identifies canonically Quad(A, Z)
with the Sp-coinvariants of A® A. For this reason we get HY(B(G), A) = Quad(A,Z) ®
A(—2) in such a way that the coproduct is the above map Hom(A®A, Z) — Quad(A, Z),
5 q.

2.0.3. Any reductive group of semi-simple rank 1 writes as G; x Go, where G3 is a
torus, and G — SLo, PSLy, GLy. Indeed, just consider possible actions of the simple
reflection s on A. Let Ag = Ker &. The nontrivial case is when Ag ® Za C A is of index
2. Then A is generated by Ag ® Za and an element QT*“ for some u € A. If u/2 € A
then we get PSLy XG5, Otherwise, we get GLo xGs, where G is a torus.

Remark 2.0.4. Consider G simple simply-connected. Then Quad(A,Z)Y =7, and
there is a distinguished generator q given by the property that q(a) = 1 for any short
coroot.

2.0.5. Consider the example of G = PSL,, A is the coroots lattice. In this case
Quad(A,Z)" = 7Z is generated by a quadratic form g such that go(c) = n for any
coroot.

Lemma 2.0.6. Assume A a divisible torsion group. Let ¢ € Quad(A, A)W Then

restr-
there is qz € Quad(A,Z)V @ A such that ¢ — qz comes from Quad(my a4(G), A).
Proof. For each connected component of the Dynkin diagram let x; be the correspond-
ing Killing form for G, so k; = ZdeRjd R : A®A — Z, and Gyg = HjGj'
Here Rj is the set of roots of G;. Let ¢; € Quad(A,Z)" be the quadratic form
¢j(z) = kKj(z,x)/2. Pick a;j € A such that for each j, ¢(a) = a;gj(c) for each
short coroot of Rj. Set gz = Zj a;jq;. So, q(a) = gz(a) for any short coroot of
G. Let § = q—qz, let b: A® A — A be the bilinear form associated to g, that is,

B(ml,xg) = q(x1 + x2) — G(x1) — @(x2). By our assumption, § € Quad(A,A)}f‘e/stT, SO
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b(a,A\) = 0 for A € A and a short coroot . So, b(p, A) = 0 for p € Age, A € A. Here
Ase C A is the coroots lattice of G. So, for A € A, g(\) depends only on A + As.. O

2.1. Just to underline: if say A = E>!°"¢ is the group of torsion elements of order
prime to char(k) then Be(A) is a prestack that has a modular interpretation. For a
prestack Y, Map(Y, Be:(A)) is the space of A-torsors on Y. Question: is it possible to
make sense of this without higher category theory?

2.2. For 1.7.1. Let Y € PreStk. Via the strengthening for cartesian fibrations, the
category PreStk /Y identifies with the cartesian fibraions in spaces over Sch®/ /Y. Let
H € Srp(PreStk /Y), let X — Sch®// /Y and G : X — Sch®7 /Y be the cartesian fibration
in spaces corresponding to B(H) — Y and Be(H) — Y. We have the natural map
X — X over Sch®7 /Y. Now given a H-torsor on Y, that is, a section Y — Bes(H) of
the projection Be;(H) — Y, it can be seen as a section s : Sch®7 /Y — X of . Then
Split(T) is defined by the cartesian square

Split(T) — X
y :
Sch*fry 5 X

2.3. For 1.8.3. We have £8'~4™(Spec k) = { 1-dimensional local systems within Vect},
this is the space B(E*) € Spc of E-lines. Therefore, we have B(E*'°"$) — B(E*) —
lefdim.

2.4. For 3.2.8 in the paper. Since
FactGea(Grg) = Map(Be(G) x X, BL(A(1))) X Map(X,BL, (A(1))) *:

we have the corresponding long exact sequence of homotopy groups
oo m = H3(Ba(G)x X, A1) — H3(X, A(1)) — mo — HY(B4(G)x X, A(1)) — HY(X, A(1)),
where m; = m;(FactGea(Grg)). It gives the desired calculation.
2.5. Consider a diagram G; — G2 — G3 in ComGrp(Spc) such that G is the cofibre
of G1 — Go. Since ComGrp(Spc) = Sptr=" C Sptr is stable under small colimits, it is
cocartesian in Sptr, hence cartesian in Sptr, hence GG is a fibre of Go — G3 in the full
subcategory Sptr=" = ComGrp(Spc).

S0, Bet(G1) — Bet(G2) — Bet(G3) is a cofiber sequence in ComGrp(PreStk), because

Byt preserves colimits. For any S € Sch®//, the value of the above sequence on S is a
fibre sequence in ComGrp(Spc) by the above. Since

ComGrp(PreStk) = Fun(Sch®//, GomGrp(Spc)),
we see that Bei(G1) is the fibre of Bey(G2) — Bet(G3) in ComGrp(PreStk). Indeed, the

limits in functors are computed pointwise.
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2.5.1. The above applies in 4.4.4, 4.4.5 of the paper. Namely, given a finitely-generated
abelian group I, pick a presentation I' = Ay /Ay, where As C A; are lattices. Since
our torsion abelian group A is divisible, the sequence is exact 0 — Hom(I',A) —
Hom(A;, A) - Hom(A2, A) — 0. So,

(1) B%,(Hom(T', A)) — B%(Hom(A1, A)) — B2 (Hom(Asg, A))

is a fibre and cofibre sequence in ComGrp(PreStk).
The oblivion functor Fun(Sch®”, GomGrp(Spc)) — PreStk preserves small limits, so
(1) is a fibre sequence in PreStk also. So, Map(X, B2 (Hom(T', A)) is the fibre of

Map(X, B (Hom(A;, A)) — Map(X, B%(Hom(A3, A))

in Spc.

If ¢ € Quad(I', A(—1)) there is a factorization gerbe in FactGes(Grrgg,,) with this
quadratic form ¢. Indeed, pick any factorization gerbe G on Grp, with the quadratic
form g, the restriction of q. Let Ga be its restriction to Grp,. Then Gy is given by
a map X — B%(Hom(As, A)). Note that H?(X,Hom(A1, A)) — H?(X,Hom(Az, A))
is surjective. So, we may pick § € FactGe}{"(Grp, ) whose restriction to Grp, is

isomorphic to Go. Then (§')~! ® G will give rise to a factorization gerbe on Grrgg,,-

2.6. Let J be the category of finite nonempty sets, whose morphisms are surjections
I — J. We have a functor J°? — 1 — Cat, I — Schaff/XI. If I — J is a surjection, the
functor Sch®// /X7 — Sch®/ /X1 is the evident one. Then

colimyegop Sch®/ / X1 =5 Sch®/ /Ran ?

Here the colimit is taken in 1 — Cat. This would be true it we considered the colimit
in 1 — Catyrgn, C 1 — Cat, the full subcategory of ordinary categories. However, the
inclusion 1 — Caty.g, <> 1 — Cat does not preserve colimits. Since J°P is not filtered,
this is not evident.

I wonder if the natural functor

Fun(Sch®// / Ran, DGCat) — llmjl Fun(Sch®// /X! DGCat)
€

is an equivalence, where the limit is calculated in 1 — Cat.

2.7. If F is a sheaf of DG-categories on Y € PreStk, € € DGCat is it true that

S+ F(S5) ® € is a sheaf of DG-categories?
St,cocmpl

For this we ask the following. Is it true that the tensor product in 1—-Cat_ pre-
serves totalizations separately in cach variable? The natural functor 1 — Cat> =Pt

1—Cat preserves limits, so the corresponding limit can be calculated in 1 —Cat. The an-
swer is not clear. Question: does the tensor product in Pr” preserves limits separately
in each variable? (Maybe some special limits?
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2.8. If one wants a more general sheaf theory than the 3 examples in 1.1.2 then one
will need the following. For a closed immersion i : Y — Y the functor i, : Shv(Y) —
Shv(Y”) such that for a cartesian square

y X oy
Tr 1
S X g

we have (f')'iys« —igssf. This is needed for the functor iy, : Shv(Y) — Shv(Y”) to
be symmetric monoidal. The latter property is used in the construction of Fact(C) in
6.4.1.

2.9. For 6.4.1. Let I be a finite non-empty set, f : I — I’ a surjection. Then f induces
a full embedding Tw(I') C Tw(I) sending I' — J' — K’ to I £ J' - K'. Here f is
the composition I — I' — J'.

Let Q(I) be the set of equivalence relations on I. Recall that Q(I) is partially
ordered. As in [2], we write I’ € Q(I) for a quotient I — I’ viewed as an equivalence
relation on I. We write I” < I' iff I” € Q(I'). Then Q(I) is a lattice. For I', 1" € Q(I)
we have inf(I’, I"”). Let now a surjection f : I — I’ be given. We get a functor
Q) = Q(I') sending J € Q(I) to inf(J,I') € Q(I').

Define a functor & : Tw(Il) — Tw(I’) sending I — J — K to I' — J — K’, where
J'=1inf(J,I'), K/ = inf(K,I"). It sends a morphism

I—>J1—>K1

(2) | | T
I — J2 — K2

to the induced diagram
I > J > K|
I | i
I' - Jy —» K}
Let F7 : Tw(I) — Shv(X!) — mod be the functor sending (I — J — K) to
Shv(X ) @ ¥/
Recall that Fact(C) associates to X! — Ran the category

Cyr i= colim  Shv(X¥)® e®/ ¢ Shv(X') — mod
(I=J—K)eTw(I)

Let now f : I — I' be a surjection. To the closed immersion X" — X! the
sheaf Fact(C) associates the restriction functor Cxr — € given as follows. For each
(I -J— K)eTw()let (I' = J — K') € Tw(I') be its image under . Consider
the functor

(3) (A @m : Shv(X5) @ €27 — Shv(XK) @ 27,

where m : €%/ — €27 is the product map, and A: XX — XK is the diagonal. Now
(3) extends to a morphism of functors 5 — T o ¢ in Funct(Tw(I), Shv(X!) — mod).
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Namely, for any morphism (2) the diagram commutes

Shv(XK1) @ e “E™ Shy(XKi) @ e

I m Lm
Shv(X k1) ® @7 Shv(X51) ® €%
\L Ay \l/ Ay

Shv(XE2) @ ez “E™ Shy(XK2) @ €%
It uses the fact that the square is cartesian

XK & XK
$a $a

XK & xK;

and the base change holds AN, = AL
We get natural functors

colimTW([) Fr— COHHITW(I) H:I’ o (g — COlimTW([/) 9:11

This is the desired restriction functor. Now given S — X!, one may impliment S x y -
in the above formulas.

2.10. Kummer theory. For 4.2.4 of final version. Let A be a torsion abelian group,
whose elements have orders prime to char(k). Then (A(—1))(1)= A. The Kummer
map A x G, — Bet(A(1)) is defined as follows. Replacing A by A(—1), it suffices
to define a map A(—1) x G,;, — Bet(A). We have for each n prime with char(k) the
cover Gy, — Gy, +— 2™ giving a homomorphism G,,, — Bet(iy,) in ComGrp(PreStk).
Together they yield a map G,, — lim, Be;(uy), the limit over n prime to char(k).
Here if n | m then the map Bei(ptm) — Bet(in) is induced by the hohmomorphism
L — fin, T — ™™ The desired map is the composition A(—1) X G,, — A(—1) x
limy, Bet(tn) — Bet(A), where the second map is

(colimy,, Hom(ptym, A)) x lim Bet(ptn) — Bet(A)

restricted to Hom (g, A) x1im,, Be; (i) is the composition Hom (i, A) xlimy, Bey(pin) —
Hom( iy, A) X Bet(ptm) — Bet(A), the latter map being the extension of scalars via
f: pm — A of our p,-torsor.

My understanding is that the Kummer theory claims that the induced map A(—1) —
Homg,p,(prestk) (Gm, Bet(A)) is an isomorphism. The Kummer theory is: let T' be a split
torus over our field k. Then the canonical map

HOHI(A, A(_ 1)) - Homgrp(PreStk) (T7 Bet (A))

is an isomorphism. It associates to T — Bei(A) the map v : A — A(—1) such that for
A € A, v(\) corresponds to the composition Gy, AT Bei(A).
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2.11. For 6.4.1. One needs to assume that that € is dualizable.

Dennis explained that if Y € PreStk, € € DGCat is dualizable then we can garantee
that S +— Shv(S)®C is a sheaf in Fun(Sch®” /Y, DGCat), not just a presheaf. Moreover,
under this assumption, colimry,(p) Shv(S x xr X &) ® %7 can be rewritten as a limit
over Tw(I) of the right adjoint functors. For this reason Fact(C) will be a sheaf.

This works because for any surjection of finite non-empty sets K — K’ the functor
Ar: Shv(XE') — Shv(X ) admits a right adjoint.

2.12. Dennis claims the following suprising thing! Let A be a torsion abelian group,
so B(A) € ComGrp(Spc). Then there could be a nontrivial exact sequence 1 — B(A) —
G — Z — 1 in ComGrp(Spc). In other words, this is a fibre sequence in ComGrp(Spc),
and 7y(G) — Z is surjective. There could be the situation when G is not isomorphic
to B(A) x Z in ComGrp(Spc).

He proposes to take G = B(A) x Z as an object on Grp(Spc) and to introduce a
nontrivial commutativity constraint. Namely, define the commutativity constraint by
the isomorphism: for n,m € Z,

(n+m, Ty © 5%) = (n,T%)(m, 5%) 7 (m, F3) (n, TY) = (n +m, T} © 73)

given by multiplication by some (n,m) : F4 ® F4 = F ® F4. Here 5(n,m) € A, and
%, are A-torsors.
A definition of a strictly commutative Picard category (champs de Picard strictement
commutatifs ) is given in (SGA4, Exp. 17, Deligne, Formule de la dualité globale, Sect.
1.4.1). By this definition, to get a strictly commutative Picard category structure on

the above GG, we must impose the following conditions:
e forn € Z, B(n,n) = 1;
e for n,m € Z, f(n,m)B(m,n) =1
e hexagon axiom, which in this case says that for z,y, z € Z,

By, 2)B(x, z) = Blx +y, 2)

(we write A multiplicatively). So, 8 : Z x Z — A is bilinear, anti-symmetric and
alternating. We see that in our case there is no nontrivial strictly commutative structure
on B(A) x Z.

But there exist nontrivial commutative structures! Under the equivalence

ComGrp(Spc) = Sptr=’

(we use cohomological idexing conventions), the subcategory of G € ComGrp(Spc)
with 7;(G) = 0 for ¢ > 1 becomes Sptrl=1%. This is the category of Picard groupoids
described in ([21], Sections 2-3). For a free abelian group A of finite type and abelian
group M, Extéptr(A, M)= Hom(A, Ms), where My C M is the subgroup of 2-torsion
in M.

2.13. The definition of FactGe}“(Gry) and FactGe{™(Grr) was not given in the
paper. Dennis meant the following definition.
There is the (0o, 1)-category FactPreStk/Ran of factorizable prestacks over Ran.
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3. COMMENTS TO THE 1ST JOINT PAPER WITH DENNIS: VERSION JULY 4, 2018
(ESSENTIALLY THE SAME AS APRIL 28, 2019)

3.0.1. For 0.4.6. For C,D € DGCat the tensor product C ® D denotes the tensor
product over Vect. The isomorphism (R; — mod ) ® (Ry — mod )= (R; ® Rg) —
mod is a particular case of (ch. 1, Prop. 8.5.4, [15]).

3.0.2. In 1.1.7 if H is a monoidal (oo, 1)-category, by an action of H on € € 1— Cat we
mean a monoidal functor H — Fun(C, ). We have a monoidal functor B(E*) — Vect
sending a line £ to £. Since Vect acts on any € € DGCatcont, we get an action of B(E™*)
on C.

3.0.3. Recall that 7<,, Spc C Spc is stable under filtered colimits (HTT, 5.3.5.6). This
is used in 1.2.4: if F € PreStk;; is such that its restriction to (Sch(}{f)Op takes values
in n-trunctaed spaces then Y itself is n-truncated.

3.0.4. In 1.2.5 the sheafification functor L.; : PreStk — Stk sends n-truncated objects
to n-truncated objects, because it is left exact (HTT, 5.5.6.16).

3.0.5. For 1.2.6. The formula Stk;s; := Stk N PreStk;s; C PreStk from that section is
to be compared with 1st displayed formula in ([15], ch. 1.2, 2.7.8).

3.0.6. For 1.3.3. Let Y be a prestack. Recall that we have an equivalence

F : PreStk,y SFun((Sch?{,f)‘)p, Spc)

Write Stky for the category of objects of Fun((SchC/”éf )°P, Spc) that satify the descent
for the etale topology on the category Sch?{,f . Clearly, F' sends Stk,y to the full sub-
category Stky. The obtained functor Stk < Stky is fully faitful but not essentially
surjective in general. For example, if Y is not a stack, consider the constant functor

f: (Sch%/f)of’ — Spc with value *. Then F~1(f) =Y, so it is not in Stky .

Write L : Fun((Sch‘/léf )P Spc) — Stky for the sheafification functor. Let X €

PreStk, X its sheafification on Sch®/. Is it true that L(X x Y) identifies with
Xet x Y? In the main body of the paper we rather use spaces like Map(S, B%(A))
without refering to any base prestack Y, that is, we rather use X¢ X Y instead of
L(X xY).

If Z is a truncated prestack (taking values in ;< Spc for some m then for the etale

sheafification Let(Z), the restriction of Lt (Z) to (Sch‘/”;f )°P concides with the sheafifica-

tion in the etale topology on Sch‘/”;f of the composition (Sch?{,f )P — (Schaffyer 2 Spc.
This follows from the explicit formula for the sheafification of truncated prestacks ([15],
ch. 2, 2.5.2).

In particular, for an abelian group A the restriction of BZ,(A) to (Sch?{/f )°P coincides

with Bét,/Y(A)'
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3.0.7. The inclusion PreStk;s; C PreStk is stable under the finite limits because of
(HTT, 5.3.4.7) and under all colimits. See also ([15], ch. 2, 1.6.8). In particular,
if F* : A — PreStk;s then | F* | is also locally of finite type. In particular, if
G € Grp(PreStk), and G € PreStk; s then B(G) € PreStk; .

Example, if Z € Spc, we may consider the constant prestack Z with value Z. It is
locally of finite type. Indeed, for any Y € PreStk,

Map()/a Z) = MapPreStk(Y7 Z) - MapSpc(Y((b)’ Z)

If S € Sch®// then S(f)) = *, and we get Mapp,ege(S, Z) = Z. So, if S = limer S; is a
filtered limit in Sch®/ then Map(S, Z) = colim; Map(S;, Z), because I is contractible.

In particular, if A is an abelian group then A € PreStk;s;, hence Bi(A) € PreStk; ¢4
for any i. Now Bf,(A) € Stk;s; by Cor. 1.2.8 from the paper.

3.0.8. Let K,C € 1 — Cat and € admits finite limits. Then for k > 0,
E;(Fun(K, C)) = Fun(K,E;(C))

naturally. So, if X € Eg(C), Y € € then Mape(Y,X) is naturally an object of
Ex(Spc). Indeed, the Yoneda embedding ¢ — P(€) induces by applying Ej a func-
tor Ex(C) — Ex(P(C)) = Fun(C°,Ex(Spc)), because the Yoneda embedding preserves
all limits, which exist in € by (HTT, 5.1.3.2). The diagram commutes

Ex(€) — Fun(C°,E(Spc))

) )
e - P(C),

where the vertical arrow are the oblivion (forgetful) functors. This is used in Section
1.3.2 of the paper.

If moreover X € Grp(C) then Mape(Y, X) € Grp(Spc). Indeed, this follows from
([22], Remark 2.5.18).

3.0.9. The Z-module p5° = lim p,, is flat, bacause it is torsion free. Here the limit
is taken over the poset N. If n | m then p, — pn,z — ™™ For any n > 1
we have pb.’ ®z Z/nZ = p,. If A is a torsion abelian group then for any n > 1,
Un®7 /nZAn,tors = B @7. A5 _tors C 1B’ ®7.A is a subgroup. Tensor product commutes
with colimits, so 5’ @z A= colim,, (15’ @7 An_tors)-
In 1.4.1 given n | n/ | n”, we identify g, @7z An—tors With finr @717, An_tors Via
the map pnr = phyr, x +— 2. In
ng{}l(ﬂn’ ®Z/n’Z An—tors)

the transition maps are as follows. Given n | m | m/, we have p,, ®z /m'Z An—tors <
My ®Z/m’Z Am—tors-

3.0.10. For 1.4.2. A generalization of this procedure for T-torsors instead of line
bundes. Let Ay C A be free abelian groups (subgroup of finite index). Let T} =
A ®G,,T = A®G,,. The map T7 — T is surjective, let K be its kernel. Then
K = (A/A1)(1) canonically. We have the natural map 7' — Be/(K) in ComGrp(Stk),
hence in turn B(T) — B2%(K) in ComGrp(Stk). So, for a homomorphism a : K — A,
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each T-torsor F on a prestack Y yields a A-gerbe (Fr)? via extension of scalars. It is
referred to in 4.3.6 of version June 1, 2020.

3.0.11. For 1.5.4: the functor Shv : (PreStk;s)”” — DGCat preserves small limits
by (HTT, 5.1.5.5). Indeed, its opposite (PreStk;s;) — DGCat® is the LKE under
Sch?c{f — PreStk s, :?T(Sch'}{f).

The symmetric monoidal structure on (Sch% f )°P is cocartesian (HA, 3.2.4.10), so
CAlg((SCh;{f)OP) — (Sch;{f)"p by (HA, 2.4.3.10). This is why the symmetric monoidal
structure on the functor Shv : (Sch;{f)ol’ — DGCat gives rise to a functor (Sch‘}{f)ofj —
CAlg(DGCat).

The category (PreStk;s)? admits finite colimits, we consider it as equipped with
the cocartesian symmetric monoidal structure, so C Alg((PreStk;s;)?) = (PreStk; ¢ ).

Consider the functor Shv : (PreStk; ;) — DGCat. It inherits a right-lax non-unital
symmetric monoidal structure? Nonrigorous explanation: if Y7,Ys € PreStk;s; then
pick presentations Y7 = colim; S}, Y2 = colim; 5’% with S%, Sg € Sch‘}{ 7. Then clearly
Y1 x Yo = colim, ; S{ X Sg in PreStk; s, as PreStk; s is an oo-topos (colimits are univer-
sal). This gives a natural map Shv(Y;)®Shv(Y2) — Shv (Y] x Y3) = lim; j Shv (S} x Sg),
because Shv(Y1) = lim; Shv(S?) and similarly for Ya.

Recall that if f : € — Gy is a symmetric monoidal functor between symmetric
monoidal co-categories then f : C¥ — €7 is also symmetric monoidal. So, Shv :
Schj‘c{f — DGCat is symmetric monoidal. However, we can not apply now (HA,

4.8.1.10) to its left Kan extension ?(Sch;{f) — DGCat?; as DGCat? does not satisfy
the assumptions.

3.0.12. For 1.6.2. The rigorous definition of the oo-category ShvCat(Y') of sheaves
of DG-categories over Y € PreStk is given as in ([9], Sect. 1.1.1). Namely, we take

the RKE of the functor (Sch?{f)ol’ — 1 — Cat, S — Shv(S) — mod with respect to

(Sch‘;c{f )P C (PreStk;s)°?. We see also ShvCat(Y) is a symmetric monoidal oo-
category. Indeed, the forgetful functor C'Alg(1 — Cat) — 1 — Cat preserves limits,
so we may first consider the functor (Sch?{f)"p — CAlg(1 — Cat), then take its RKE
to (PreStk;s)°. The category ShvCat(Y') admits small colimits (proof using my [22],
around Lemma 2.2.67).

On the other hand, it is not clear if the category ShvCat(Y) admits small limits,
because for a map f : S — S in Sch®/ the functor f': Shv(S") — Shv(S) does not
preserve small limits. It only does preserve them for f proper, Dennis says. Indeed,
for f proper, f': Shv(S’) — Shv(S) is known to admit a left adjoint. For the sheaf
theory of D-modules, ShvCat(Y') admits limits, see my Section 3.7.

We get a functor T : ShvCat(Y) — Shv(Y) — mod as in [9], it is right-lax
symmetric monoidal. It has a left adjoint Locy : Shv(Y') —mod — ShvCat(Y) sending
C to the sheaf of categories S — C ®gpy(y) Shv(S). The functor Locy is symmetric
monoidal.
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IfS e Sch?c{f, Z € PreStk;y and f : Z — S then the functor coresy : ShuCat(S) —
ShvCat(Z) of restriction has a right adjoint. Indeed, by (Th. 2.6.3, [9]), Sqr is 1-affine.

Locy

Now cores; is the composition Shv(S) —mod — Shv(Z) —mod =~ ShvCat(Z). Each
functor in this diagram has a right adjoint, so coresy also has one.

For an arbitary map f : Yy — Y5 in PreStk;s; the functor coresy : ShvCat(Ya) —
ShvCat(Yy) probably does not have a right adjoint, not clear.

3.0.13. For 1.6.4. If Y is an ind-scheme of ind-finite type then Yyg is 1l-affine. By
definition, Y is a filtered colimit of S; € Sch'}{ / , the transition maps S; — S; being
closed immersions. For Y € PreStk, D — mod(S) is defined as QCoh(Yyr). For any
map f : S1 — Sy in Sch?{f and a prestack Z locally of finite type with Z — Sy the
functor

(4) Shv(51> @ Shv(Sa) ShU(Z) — Shv(S1 xg, Z)

is an equivalence. Indeed, apply ([9], Lemma 3.2.4) for (S1)ar ER (S2)dr L Zgr and
the sheaf € = coind},(QCoh) using the fact that (S;)qr is 1-affine by ([9], Th. 2.6.3).

Remark 3.0.14. If S € Sch®/ is not of finite type then we don’t know if Syp is 1-
affine. For this reason, it is not clear if (4) is an isomorphism. For this reason, we
should note that in [9] the original definition of a ”quasi-coherent sheaf of categories”
used the whole category Schc/l{,f for a prestackY . In our situation, ShvCat(Y') is defined
as lim(

Sch®/ 1),y Shv(S)—mod. Such theory of sheaves seems to be adopted to prestacks
ft

locally of finite type. Indeed, for Y € PreStkjs, Y = colimg_,y S, the colimit over
(Sch;{f)/y. So, for'Y € PreStk; s,

lim  Shv(S) — mod— lim Shv(S) — mod
(Sch9J/)or ((8chff’) v )er

3.0.15. For 1.6.5. Let Y &€ PreStk;s;, C be a sheaf of DG-categories over Y. Let
C: ((Sch?{f)/y)"p — DGCat be the functor obtained from € by forgetting the Shv(S)-

module structure on each €(S,y). Then € satisfies the etale descent. Here ([9], Th.
1.5.2) is good but is not sufficient.

The following is true. Let T — S be an etale surjective map in Sch. Then Tyr — Sgr
is an etale surjection in PreStk. Indeed, let S’ € Sch®f and y : S’ — Syqr be any map
given by S!_, — S. Let us show that S” xg,, Tyr is a scheme etale over S’. First, there
is an equivalence of categories {schemes etale over S’} = {scheme etale over S/_,} given
by U U xg S!.4 see ([35], 15.2). So, the etale surjective map a: S, xsT — S/,
yields an etale morphism a : 77 — S’, where T” is a scheme. The base change of a by

S’ < S"is a. We claim that

red
S/ XSin TdR/;;T/
over §'. Indeed, for Z € Sch®/, Z-point of S’ XS, Tar is a map Z — S’ and a

compatible map Z,.q — S, ., xs T over S!_,. By ([35], 15.1), this is precisely a datum
of amap Z' — T".
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Now by ([9], 1.5.5), Shv : (Sch‘}{f)"p — DGCat satisfies etale descent. Question.
How this argument extends to any sheaf € € ShvCat(Y') for a prestack locally of finite
type as in our Sect. 1.6.57

It seems, in ([16], Sect. 3) it is proved more generally that Shv satisfy fppf descent
(namely, crystals satisfy it).

3.0.16. If Y € PreStk;s; then ShvCat(Y') admits limits? It is not clear. The problem
is to check that if S — S’ is a map in (Sch;’;{f)/y then the functor Shu(S’) — mod —
Shv(S) —mod, C +— C @gpy(sry Shv(S) preserves limits.

It is true that for S € Sch‘}{f, Shu(S) = QCoh(S4r) is dualizable. Indeed, the latter
category is compactly generated.

To see this, use ([16], Lemmas 2.2.6) saying that oblv' : QCoh(Szr) — QCoh(S) is
conservative, and ([16], 3.4.7) saying that this oblv' has a left adjoint. Apply ([15], ch.
I.1, 5.4.3) and the fact that QCoh(S) is compactly generated.

Though we know dualizability of Shv(S), it is not clear if Shv(S) is dualizable as
a Shv(S")-module, because Shv(S’) is not rigid in general. However, we know this for

D-modules (Sam Raskin email of 6.02.2020 and Lin Chen).

3.0.17. For 1.6.6. There we may take indeed arbitrary colimits in the formula for €(Z)
because of the following. Let € € 1—Cat be small, D € 1—Cat be cocomplete, Y € P(C)
and Cjy = € xpe) P(€)/y. Let f: €y — D be a functor, f : P(€);y — D be the
LKE of f along C/y < P(C),y. Then f preserves colimits (see [22], Lm. 2.2.40).

In Sect. 1.6.6 the assumption Z — colim; S; means that (S;,y;) € Sch‘}{f/y and the

colimit is taken in (PreStk;ys;) y, or what is the same, in PreStk;y, 3T(Sch;{f).

3.0.18. For 1.6.7. The colimits in PreStk are universal. Let Z — Y be a map in

PreStk; ;. Since colim(sﬁ%)e(sch;{f)/% S=Yin PreStk;y; and PreStk, we get
colim SxyZ—=2Z
(S—Y)e(Sch! ) sy
So, for € = Shv(Z) y we get C(Y) — lim Shv (S xy Z) = Shv(Z) by Sect.

(S—Y)E((SchlT) )P
1.5.4 of the paper.

3.0.19. For 1.6.8. The fact that these functors are mutually adjoint is proved as in
([9], 1.3.1), where there is no proof actually. I wrote down the corresponding proof in
my file ([24], 0.0.4).

3.0.20. Let C be a small category, Y € P(C). Consider the functor a : P(C),y —
P(C/y) sending Z to the presheaf (c 5Y) = Z(c) Xy () {a}. Consider also the
functor b : P(C;y) — P(C),y sending Z’ : (€;y)”® — Spc to the presheaf given
informally by S — {a € Y(S),z € Z'(S,a)}. The formal definition: let Z' — (€/y )
be the cocartesian fibration corresponding to Z’. Then b(Z’) is the functor €% — Spc
such that the corresponding cocartesian fibration in spaces over C° is the composition
Z' — (€/y)°P — €. Then a and b are inverses of each other.
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3.0.21. Category of equivariant sheaves. Sam explains by email how to define the
category of equivariant objects (our definition of the twist of a sheaf of categories by
a gerbe in 1.7.2 is not rigorous). If the map f : X — Y in Sch®// is smooth of
relative dimension n then the functor f' : Shu(Y) — Shv(X) admits a continuous
right adjoint, say f«[—2n] : Shv(X) — Shu(Y). Now if f : X — Y is an affine
schematic morphism in PreStk, assume it is smooth of some relative dimension. That
is, for any S € Sch[/l{/f , 8 Xy X — S is a smooth morphism of affine schemes. Then

the functor f': Shv(Y) — Shv(X) also admit a continuous right adjoint by ([15], ch.
1, 2.6.4).

More generally, if I — Fun([1], PreStk; ;) is a functor sending i to (X Lt Z;), assume
that each f! : Shv(Z;) — Shv(X;) admits a continuous right adjoint (f;).[—2n]. Then
let f: X = colim X; — Z = colim Z; be the colimit in PreStk;s;. For any ¢ — j in the
index category let o;; : X; — X and f;; : Z; — Z; denote the transition maps, assume
the square is cartesian

x;, 4z
T T
x. 4z

Then the diagram commutes

Shu(X;) < Sho(X;)

4 (fi) L ()
8,

ShU(Zi) (—J ShU(Zj)

Then f': Shv(Z) — Shv(X) also admits a continuous right adjoint by ([15], ch. 1,
2.6.4). This is because our functors are actually functors out of correspondences (see
15)).

Let G be a group object of Sch®/ it is given by a functor G : A% — Sch®. Assume
G is locally of finite type and smooth of dimension n. Then for any map « : [i]| — [j] in

A the induced map G : G; — G, is such that (§%)" : Shv(G;) — Shv(G;) admits a right

adjoint. Passing to the right adjoints in the functor A N (Scha//yer Shy DGCatcont,

we get a functor A? — DGCateop. I think this uses the (oo, 2)-category structure on
DGCatcont, and the procedure of passing to right adjoint is described in ([15], vol. 1,
Appendix: (oo, 2)-categories).

Then incorporating shifts and additionally composing with the corresponding mor-
phisms Shv(G)®...@Shv(G) — Shv(G x...xG) = Shv(G,,) for all m > 0, we get on
Shv(G) a structure of a monoidal DG-category, that is, an algebra object in DGCat.
So, the product in Shv(G) is given by Shv(G) ® Shv(G) — Sho(G x G) ™% Shu(G).
Even if Shv is only right-lax monoidal, this construction works.

A better explanation (similar to the one given in [15], ch. 1.3, 2.2.4 for quasi-coherent
sheaves, see also ([22], 10.2.5)): consider the 1-full subcategory PreStkinq—scr, C PreStk s,
where we restrict 1-morphisms to be ind-schematic. Then we have a well-defined func-
tor

Shvprestk : PreStkind—sen — DGCateont

ind—sch
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sending Y to Shv(Y) and a morphism f : Y — Y’ to f. : Sho(Y) — Sho(Y’).
Moreover, this functor is right-lax symmetric monoidal, so sends algebras to algebras.
So, if G is an algebra in PreStk;,q—sch, Shv(G) will become a monoidal DG-category
with the monoidal convolution structure.

Similarly, if X € PreStk;; is equipped with a G-action then for any map a : [i]* —
[1]7 in AT and the corresponding map T® : G x ... x G x X - G x ... x G x X in
PreStk; s, the correspnding functor (7%)" : Shv(Gx...xGx X) — Shv(Gx...xG x X)
admits a right adjoint. For example, the action map G x X — X is smooth, as it is

the composition G x X AP X o P X By the same token, we see that Shv(X)
is equipped with a left action of Shv(G). The action map is the composition

Shv(G) ® Shu(X) — Shv(G x X) ™ Shu(X)

Let now L be a character sheaf on (G. Sam says that since L is placed in the heart
of the t-structure of Shv(G), the notion of a character sheaf should not involve any
coherent-homotopy issues. What is the precise claim?

Our L is a local system on G equipped with m*L = LK L, where m* = m'[—2n], n =
dim G. For the unit ¢ : Speck — G we have a distinguished trivialization ¢ : i*L = E.
Note that i, F is the unit of the convolution monodal structure on G. Thus, ¢ yields
the counit map L — i.E in Shv(G), and L is naturally a coalgebra in Shv(G) for
the convolution monoidal structure. Sam proposes to define the category Shv(X)(¢1)
of sheaves on X that are (G, L)-equivariant as L — comod(Shv(X)), the category of
comodules for this comonad.

In such a way, given a E*""_gerbe on Y € PreStk, one defines Shvg(Y). Namely,
let Y be the total space of this gerbe, so this is a Be;(E**")-torsor over Y. Equip
Shv(Bet(E*T%)) with the convolution monoidal structure, then it acts naturally on
Sho(Y). Besides, E € Shv(Be (E*1°7%)) is a character sheaf on this stack, and E>ts
acts on it by the tautological character. So, F is a coalgebra in Shv(Bei(E*'°"®)) giving
rise to a comonad on Shv(Y). Then Shvg(Y) is defined as the category of comodules
over this comonade. More general definition of the twist is giving in my Section 3.6.1.

3.0.22. Consider the situation in the previous subsection with L = E. Recall that

Shv(X/G) = lim[Shv(X) = Shv(G x X) 3 ...] taken in DGCatpn:. We claim that

the natural functor ev’ : Shv(X/G) — Shv(X) is comonadic. Namely, apply ([9],
Lemma C.1.9). To check that our co-simplicial category satisfies the ([9], Def. C.1.3),
we note that for any n for the map id x act : (Gx...xG)xGxX = (Gx...xG)x X
the functor (id x act)' : Shv((G x ... x G) x X) — Sh((G x ... x G) x G x X)
admits a right adjoint, and for any map « in A denoting o' : Shv(G x ... x G x X) —
Shu(G x...xGx X) the corresponding map, we have o' (id x act), = (id x act),(a+1)".

The corresponding comonad is the functor (act), pr* : Shv(X) — Shv(X) for act :
GxX = X,pr:GxX — X and n = dimG. Here pr* = pr'[—2n]. We see that this
comonad comes from the fact that the constant sheaf E is a coalgebra in Shv(G) for
the convolution monoidal structure. This justifies the definition of Shv(X)(EL) from
the previous subsection.

3.0.23. Ran € PreStk;;, because PreStk;s; C PreStk is stable under all colimits.
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3.0.24. The 1-affineness of Syg for S € Sch;{f gives the following. First, if Z €

PreStk; s, S € Sch;{f then Shv(S x Z)= Shv(S) ® Shv(Z). Assume now Shwv(Z)
dualizable. Recall that for € € DGCat dualizable, the functor DGCat — DGCat,
D — D ® € commutes with limits by ([22], Lm. 3.1.2). So, if Z' € PreStk;y is
written as Z'— colim; S; in PreStk;y; with S; € Sch‘}{f then Shv(Z')= lim; Shv(S;)
and Shv(Z') ® Shv(Z) = lim;(Shv(S;) ® Shv(Z)) = lim; Shv(S; x Z) = Shv(Z' x Z),
because 2’ x Z—= colim;(.S; x Z) in PreStk;s.

This was used in 2.2.3: if Z is a factorizable prestack such that Shv(X?! xpan Z) is
dualizable for any I then for a surjection of finite nonempty sets I — J one gets

® Sho(X" Xpan Z) =5 Sho(J (X" XRan Z))
et jeJ

We also used the following consequence of Th. 1.6.9: if S € Sch; non necessarily affine
then the functors denoted (1.14) and (1.15) in the paper are equivalences. This is why
it suffices to get the equivalence of Section 2.2.3 in the case S = Xéisjj‘] form: I —J
surjective, this scheme is not necessarily affine! Here X éi sj.J 18 the scheme of (z;) € X!
such that if 7(i) # mw(¢') then x; # xy. There is a misprint in the paper, where the
scheme X éi sj 18 mentioned instead.

We also used the following: given symmetric monoidal DG-categories A; with C; €
A; —mod and a map ®™_, A; — B in DGCat>¥mMon

ot , we have

(trivial: extend the scalars first to ®;A4; and then to B). The first isomorphism in
the long displayed formula in the paper uses the fact that Shv(X% XRgan Z)

Sho(XT) = Shv(X! xRan Z) for the projection X! — X% by 1.6.4.

Oghy(xh)

3.0.25. For 1.6.9. The reference for [Gal, Th. 1.5.2] in the paper is a wrong reference,
the correct one is [Gal, Th. 2.6.3].

3.0.26. Factorization prestacks over Ran. For 2.2.1. Let Z — Ranx be a map in
PreStk. The definition of a factorization structure on Z is not precise. The correct
one is given as in [30]. Namely, let PreStk..» be the category of correspondences in
prestacks ([30], 4.28). Equip Rany with the structure of a non-unital commutative
algebra in PreStk.,.- given by the chiral mutliplication. The chiral product in Ranx
is given by Ran% « Ran?xydisj — Ranx. Then Z — Ranx has to be a morphism of
non-unital commutative algebras in PreStk,,,, such that for any nonempty finite set J
the induced map

ZJ XRani (Rang()disj = Z XRanx (Rang()disj

is an isomorphism.

Similarly, let C' be a sheaf of DG-categories over Rany (in the sense of ([13], 1.6.2).
A precise definition of a factorization structure on C is a non-unital chiral category
([30], Def. 6.2.1).
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3.0.27. For 2.2.4. The rigorous definition of a factorization gerbe is as follows. Let
Z be a factorization prestack over Ran, A be a torsion abelian group. Since A is a
commutative group in Spc, B2 (A) is a commutative group in PreStk, hence also in
PreStkeo. So, Ran x B%(A) is an object of C Alg™ (PreStkeyy), the category of non-
unital commutative algebras in PreStk,... The space of factorization gerbes on Z is
the space

2
MapCAlg”“(PreStkcorr) (Z7 Ran x Bet (A)) X Mapc a1gnu (PreStkeory) (Z:Ran) *

based changed by Mapp,egy(Z, Ran x B%,(A)) — Mappyesik.,.. (Z, Ran x B%,(A)).
However, Ran x B%(A) is a not a factorization prestack over Ran in our sense!
If Z is O-truncated, the space of factorizable A-gerbes on Z lies in ,_, Spc.

3.0.28. For 2.3.2. If §' € Sch‘}{f it is known that Shv(S) € DGCatop is dualizable.

Now if Z = colim;¢ Z;, where Z; € Sch?{  and the transition maps Z; — Zj are closed
immersions then Shv(Z) is dualizable!

Indeed, for i« — j in I let h : Z; — Z; be the corresponding closed immersion, so
h': Shv(Z;) — Shv(Z;) admits a left adjoint hy : Shv(Z;) — Shv(Z;) by ([8], 1.5.2).
By definition, Shv(Z) = lim;ecor Shv(Z;). Tt also rewrites as colim;c; Shv(Z;) because
of ([22], Section 9.2.6), the colimit taken in DGCatcon:. Now we may apply ([10], Lm.
2.2.2), which is actually an analog of ([15], ch. 1, Pp. 6.3.4). This shows that Shv(Z)
is dualizable.

3.0.29. For 3.1.2, line 3: there the category Mathd(PreStk/X)(B(G) x X, BL(A(1)))
does not make sense, it is actually

(5) Mappesek(B(G) X X, By (A(1))) Xnapp, o (X84 (A(1)) *

where the distinguished point is the map X — * — B%(A(1))). In (5) we may replace
if needed B(G) by Bet(G), because sheafification is a localization functor.

3.0.30. For 3.1.5. More precisely, for i = 3 or 4 and any element s of H,(S x X, A(1))
or H, 1 (U7, A(1)) there is an etale cover S’ — S such that the restriction of s to S’ x X
(or respectively, Uy for S’) vanishes.

For 3.1.6. Note that A is O-truncated prestack, so for Y € PreStk, H%,(Y, A) =
Map(Y, Act) is a set.

In the version of June 1: a simple idea. If 7 : Y — Z is a morphism, Y = LJ;Y; then
i'F= @ ijF.

In our case the isomorphism 7' Agy x (1)[2] =5 7' Ag is the isomorphism

@i Asxx(1)[2] = ' Ag
J

It is the sum of isomorphisms i!jAgXx(l)[Z] :W}As, where 7; : I'; — S is the projec-
tion.
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3.0.31. For 3.1.11. By relative cohomology here we mean really the abstract definition
as on nlab, because X — B(G) x X is not a closed immersion. Formula (5) shows this
is the relative cohomology of the map X — B(G) x X with respect to * — B (A(1))
in the co-topos PreStk.

In general, given amap f : Y — X of prestacks, let K —+ A — f.A be a distinguished
triangle in the derived category of sheaves on X then by H’,(X;Y, A) one should mean
H,(X,K). If

Z = Map(X, By (A)) Xnpap(v,B,(4)) *

then for j <i we get Fj(Z):Hé;j(X;KA>.

3.0.32. For 3.2.3. If § € A then b(s(5),s(A)) = b(5, A) for the reflexion s correspond-
ing to «. This yields b(a, \) = (&, A\)q(«).

The map Quad(A,Z) ® A — Quad(A, A) is an isomorphism. First, we check surjec-
tivity. Given ¢ € Quad(A, A) we may first pick a bilinear form ¢ : A ® A — A such
that ¢(z,y) + ¢(y,x) = b(x,y) for any =,y € A, where b is the bilinear form associated
to q. Indeed, if e; form a base of A then b(e;, e;) = 2q(e;). Take ¢ such that for i < j,
o(eirej) = bles,e;) and ¢(ej,e;) = 0. Besides, ¢(e;,e;) = q(e;). So, we may assume
b=0. Then ¢ : A — A is linear with values in As_;,rs. Such quadratic form also writes
as ¢(x,x) for a suitable diagonam bilinear form ¢ : A ® A — A. If {e;} is a base of
A, it gives a base of the free A-module Quad(A,Z) ® A. Namely, if we write é; for the
dual base then we have the images of & ® ¢, ® 1 € A® A ® A in Quad(A,Z) ® A for
i < j. This shows injectivity also: a quadratic form on A sends ), z;e; to

Z ail’? + Z Qi T 5
i i<j
with a;, aij € A.

Note that Quad(A,Z) C Quad(A,Z)" is a direct summand. So, Quad(A,Z)"V ®7 A
is a direct summand in Quad(A, A), and Quad(A,Z)" ®z A — Quad(A, A)W,,. is
injective.

For 3.2.4. Assume A divisible. Let us verify that for ¢ € Quad(A, A)YV,, there is
qz € Quad(A,Z)" ®z A such that ¢ — gz comes by restriction from a quadratic form
on m(G). Indeed, if ¢; : A — Z is the Killing form of i-th connected component of
Dynkin, pick a; € A such that a;q;(a)) = ¢(«) for any short coroot in the i-th connected
component of the Dynkin diagram. Let gz = Y, ai¢i, ¢ =q¢—qz. Let bV : AQ@ A — A
be the bilinear form attached to ¢’. That is,

V'(A1,A2) = ¢' (A 4+ A2) — ¢'(\1) — ¢/ (D)

For any reductive group G, the Z-span of all W-orbits of all short coroots equals
the coroots lattice (this is verified separately for any irreducible root system via their
classification). So, b'(u,A) = 0 for any p in the coroots lattice and A € A. Thus,
b’ comes from a bilinear form on 7;(G). This also shows that ¢’ is additive on the
coroots lattice. Again, since the Z-span of all W-orbits of all short coroots equals the
coroots lattice, ¢’ vanishes on the coroots lattice. By the above, for A € A, p in the
coroots lattice ¢/(A + u) — ¢'(N) = V(A ) = 0. So, ¢’ descends to a quadratic form
q:m(G) — A. We are done.
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Note also that Quad(my qy(G)) C Quad(A, A)W,,...
For A.4. We use the fact that any coroot is in the W-orbit of some simple coroot.

Remark 3.0.33. Consider G simple simply-connected. Then Quad(A,Z)V = 7Z, and
there is a distinguished generator q given by the property that q(a)) = 1 for any short
coroot.

3.0.34. Consider the example of G = PSL,, A is the coroots lattice. In this case
Quad(A,Z)" =7 is generated by a quadratic form g such that go(a) = n for any
coroot.

3.0.35. For A.6. Our ¢ is a sum of expressions of (I) and (II). Recall that
ComGrp(Spc) = Sptr=Y c Sptr

is closed under all colimits. So, ComGrp(Spc) admits all small colimits. We may first
define B(T')/B(Ts.) as the cofibre of B(Ts.) — B(T) in ComGrp(Spc). Then it is also
a cofibre in Sptr, hence

B(Ts) — B(T)
(6)

<—

!
pt  — B(T)/B(Ts)

is cartesian in Sptr. So, this square is also cartesian in Sptr=°" = ComGrp(Spc).

The oblivion functor ComGrp(Spc) — Spc preserves small limits (Proof: each of the
inclusions ComGrp(Spc) C ComMon(Spc) C Fun(Fin,, Spc) is closed under limits.
The evaluation Fun(Fin,, Spc) — Spc at (1) preserves limits). So, (6) is also cartesian
in Spc.

As for any quotient of some Z € Spc by an action of some group H € Grp(Spc), the
square is cartesian in Spc

B(T) — pt
\ \:
B(T)/B(Ts.) — B*(Ts)

The forgetful functor Spc, — Spc preserves limits and push-outs.
Consider the B(Ts.)-torsor q : B(T) — B(T)/B(Ts.) and the exact triangle on
B(T)/B(Ts.)
A— qA— 220, A
The corresponding long exact sequence in cohomology gives
H?(B(T)/B(Ts.), A) = Hom(m(G), A(-1)), H'(B(T)/B(Ts.),A) =0 fori=1,3.

We also get an exact sequence 0 — H*(B(T)/B(Ts.), A) — Quad(A, A(—2)) — M,
where M itself fits into an exact sequence 0 — Hom(71(G), A(—1))® 4Hom(As., A(—1)) —
M — Quad(Ase, A(—2)) — 0. It follows that we have a commutative diagram

H4(B(T)/f3(Tsc),A) - Quad(ﬂl(?),A(—Z))

HY(B(T), A) = Quad(A, A(-2)),

where the vertical arrows are natural maps.
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Construction of the canonical T*“-torsor over GG. Recall that T%¢ is the maximal

torus of the simply-connected cover G*¢ of [G,G]. Pick an exact sequence 1 — 17 —
G — G — 1, where T} is a torus, G is reductive and [G G] is simply-connected (see
[34], Lemma 7.2.2). Let T be the preimage of 7" in G, so T is a maximal torus in G. Our
T acts by conjugation on [G G], and [G,G] — (G, G] is the simply-connected cover.
Since T7 is in the center of G, it acts trivially on [G, G], so T" acts on G* =[G, G], and
this action does not depend on a choice of the above extension G.

Now consider the semi-direct product G*¢ x T'. We get a homomorphism G*¢ x
T — G,(g,t) — gt, where g is the image of g in G. This gives an exact sequence
1 =T — G**xT — G — 1. This is the canonical T**-torsor over G. It yields a
diagram B(T*¢) — B(G* x T') — B(G) in Ptd(Spc).

We have have the projection homomorphism v : G*¢ x T — T. Let us include T7°¢
to G¢ x T by t + (t71,%), so v commutes with the actions of T°¢ by left translations.
Here t € T%¢ acts on t; € T as tt;.

Since T°¢ is central in G** xT', B(T°) acts on the left on B(G**%xT'), and B(G) is the
quotient of B(G* x T') by the left action of B(T"¢) is PreStk, see ([22], Section 7.2.18).

The map B(G*° x T) — B(T) is B(T*¢)-equivariant, so passing to the quotient we
get the desired map B(G) — B(T')/B(T*¢) (cf. [22], Section 7.2.18).

The calculation of H'(G/B, Q) is done in Proposition 1.3(ii) in [4].

3.0.36. For 3.3.1. We assume A divisible or m(|G,G]) = 0. Let q : ¥+ — B(G) be
the trivial torsor. Define M by the distinguished triangle M — A(1) — ¢.A(1) on
B(G). Let px : X — * be the projection. For the map id xpx : B(G) x X — B(G) by
definition we get

Hy, "(B(G) x X; X, A(1)) S Hy, ' (B(G) x X, (id xpx)*M) = Hyy (X, p (B )« M),
the second isomorphism is by the base change under pp () : B(G) — *. The diagram

* B(G) PR yields a diagram A — (pp(g))«A — A in the stable category of

sheaves of abelian groups on *, the composition is id : A — A. So, A is a retract of
(PB(G))«A. Any retract in a stable category splits, so (pp(@))«A— A® (TZI(pB(G))*A).

Applying (pp(q))« to the fibre sequence M — A(1) — g.A(1), we get a fibre sequence
(PB(G))«M — (p (G)) A1) = A1), so (ppc))«M = 7= (pp(c))«A(1). For i > 0 this
gives for K := 75%((pp(q))+M) the isomorphism

Hey '(B(G) x X5 X, A(1) = Heg (X, px K)
Thus, we get an exact sequence
0 — H?(X,Hom(m (G), A)) — HY(X,p% K) = Quad(A, A(-1))V,,, — 0

of abelian groups. The claim that it splits non-canonically. Indeed, if L is a divisible
abelian group then L is an injective Z-module. This implies that

K= Hom(m (G)a A)[ ] D Qua‘d(A A( ))restr[ 4]
non-canonically. Namely, the map ~ in the triangle

K — Quad(A, A(~1)),¢yr[~4] % Hom(m (G), A)[~1]
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is an element of Ext3(Quad(A, A(—1)), Hom(7(G), A)) in the category of abelian groups.
The exact sequence 0 — Ase — A — m(G) — 0 shows that Hom(m (G), A) is
quasi-isomorphic in the derived category over % to the complex of injective modules
Hom(A, A) — Hom(Ag., A). So, RHom(Quad(A, A(—1))¥ ., Hom(r(G), A)) is the

restr?
complex

Hom(Quad(A, A(—1))¥ .., Hom(A, A)) — Hom(Quad(A, A(=1))%Y,,., Hom (A, A))

restr>
placed in degrees 0,1. Thus, the above Ext® vanishes. Actually, Ext? also vanishes, so
the splitting is canonical. Indeed, the latter map is surjective, because it rewrites as
Hom(? x A, A) — Hom(? x Ag, A)
with ? = Quad(A, A(—1))¥,,,. Since A is divisible, the latter map is surjective.

restr:

This also shows that 7; FactGea(Grg) = 0 for j > 2, because RI'e;(X,p% K) is
placed in degrees > 2.

The explanation in 3.3.4 is complicated, but clearly from the above we see that
RI'(X, p Hom(71(G), A))[~2] gives a commutative group in spaces FactGe%(Grg),
which is so a connective spectrum. The above complex should correspond to the con-
nective spectrum Map (X, B%(Hom(m (G), A)) somehow by definition, namely

7 Map(X, B%,(Hom(m (G), A)) = H2 7 (X, Hom(m1 (G), A))
identifies with 4 — j-th cohomology group of RI'(X, p% Hom(7(G), A))[—2].
The above calculation shows also that
Mappiq(presi) (B(G), B3 (A(1))) = Hom(m (G), A)
Indeed, (pp(a))«M = 721 (pp(G))«A(L).

3.0.37. For 3.3.4. The equivalence Mon(PreStk) = Fun((Sch®//)?, Mon(Spc)) restricts
to an equivalence

Grp(PreStk) = Fun((Sch® /)P, Grp(Spc))

by ([22], Remark 2.5.18). Besides, Eo(PreStk) = Fun(Sch®/)°P, Ptd(Spc)). Recall that

Grp(Spc,) = 9rp(Spc) by (HTT, 7.2.2.10). Similarly, Srp(PreStk) = Grp(Ptd(PreStk)).

So if H € Grp(PreStk), Y € Ptd(PreStk) then Mappq(pres) (Ys H) is a group in Spe
If A is a commutative group in PreStk, Y € Ptd(PreStk) then

Q Mappyq(presii) (Ys Bi ' (A)) = Mappyg(presi) (Y Bl (4))
in ComGrp(Spc) By adjunction, this yields a morphism

(7) B(Mappq(presik) (Y Bii(A))) = Mappq(presin) (Y Bi ' (A))

in ComGrp(Spe). If Mappyq(presti) (Y- B'1(A)) is connected, that is, HTH(Y, 4) = 0
then (7) is an isomorphism.
Question Do I understand correctly that Mathd(PreStk/X)(B(G) x X, BL(A(1)))

rewrites as Mapp,g (X, Mathd(PreStk)(B(G)7Bgt(A(l)))et)7 because Bg,(A(1)) is a
stack?
We have the natural map

Bet(Mappyg(presiy) (B(G), B3 (A(1))) = Mappq(presii) (B(G), Bi(A(1)))et
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but not to the constant prestack Mappq(presti) (B(G), B%(A(1))), I think. This is why
we get indeed a map 7

Map(X, Be(Mappq(presii) (B(G), B3 (A(1))) — Mapp;d(prestk, ) (B(G) X X, B(A(1)))

An easy calculation of homotopy groups of Map(X, B%(Hom(71(G), A))) shows that
Corollary 3.3.6 is true.

The etale-local triviality claim for FactGe%(Grg): for the bilinear form b we see that
Gea(X?) X Gea(x2—n) * — A, so it does not change if we replace X by an etale cover.
This etale-local triviality is used in 4.3.2.

3.0.38. If X,Y € PreStk, write Map(X,Y') for the inner hom in PreStk. Note that if
Y € Stk then Map(X,Y) € Stk. Let H € Grp(PreStk) then Bei(H)— Bei(Het). Let
Y € PreStk. We claim that there is a natural map in PreStk

(8) BetMap(Y, Het) — Map(Y, Bey(H))

Indeed, for S € Sch®/ one has QMap(S x Y, Be;(H)) = Map(S x Y, Hy) in Srp(Spe).
By adjunction, this gives a natural map

Map(S, BMap(Y, H;)) = BMap(S x Y, Het) — Map(S X Y, Bet(H))

in Ptd(Spc). These maps organize into a morphism of prestacks BMap(Y, Het) —
Map(Y, Bet(H)). Since the target is a stack, in turn this yields the desired morphism
(8). We used the fact that Mapp s (S, B(H)) — B(H(S)) in Spc, so is connected.
For X € PreStk we get a morphism Map(X, BetMap(Y, Het)) — Map(X XY, Bet(H))
in Spc. Dennis claims that the image of this map is the full subspace of those maps
X xY — Be(H), which are étale-locally trivial along X. By ([15], ch. 2, 2.3.10),
BMap(Y, Het) — BetMap(Y, He;) is an etale surjection. So a map X — BeMap(Y, Het)
etale-locally over X lifts to a map X — . -

3.0.39. For 4.1.1. Given a surjection I — J the map X7 — X! is the composition
I—J—=X.

3.0.40. Recall that Ran = colimjcgor X! in PreStk, here J is the category of finite
nonempty sets and surjective maps. So, Shv(Ran) = limsecg Shv(X7). On the other
hand for a surjection ¢ : I — J of finite nonempty sets the diagonal d : X/ — X' the
functor d' : Shv(X') — Shv(X’) admits a left adjoint dy : Shv(X”7) — Shv(XT). So,
by ([22], 9.2.6), Shv(Ran) = colim;egor Shv(X7).

More generally, this holds for pseudo-proper prestacks in the sense of ([8], 1.5.1).
Let us check formally the proof of ([8], 1.5.4). A map f :Y; — Y3 is PreStk is preudo-
proper if for any S € Sch, Y; Xy, S is a pseudo-proper prestack over S. Consier the
functor f': limg_.y, Shv(S) = Shv(Ys) — Shv(Y1) = limg_,y, Shv(Y1 Xy, S), here the
limit is over (Sch‘/”;f )°P. Tt is obtained by passing to this limit in the system of functors

fs 1 Sho(S) — Shu(Y1 xy, S) for fg : Y1 xy, S — S. Each fi admits a left adjoint
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(fs)r by ([8], 1.5.2). If S = §' = Yy is a map in Sch{/, for the diagram

Yl Xy2 Sl f—S; Sl
1oy To
Y1 XYy S fg S

the natural transformation (fs)1g}- — ¢'(fs)1 is an equivalence by ([8], 1.5.2). Passing

to the limit over (Sch?{,ﬁ)"p, we get the functor h := limg_,y;, (fs)r : Shv(Y1) — Shv(Y?2).

It is left adjoint to f' because of ([22], Lemma 2.4.1). Now given a cartesian diagram
of prestacks

i b v
Tgl T92
vy 5oy

with f pseudo-proper, we want to check that the natural transformation e : f,’gll — g!2 i

is an isomorphism. We get for each S — Y5 in Sch[;{/f the base changed diagram

92,5 . — .
Yis 3 g % Yy ¢ with Y/ ¢ x5 Y, ¢ =Y/ ¢, and a natural transformation

es: (fohgis = ga,s(fs)

of functors Shu(Y1,5) — Shv(Yy g). If we show that g is an isomorphism then passing
to the limit over S € (Sch‘;{,f )P, we will conclude that € is an isomorphism. Thus,

we may and assume Y € Sch®/. Similarly, now for each S — Y] in SchL/”;]: let
2
fs Y] g = Y, g be the base change of f’. For the diagram

v, 4 v
Tas 1 g2.5
vis 5 vl

we know that the transformation (fé)!gll g = gs gfi is an isomorphism by ([8], 1.5.1).

I think passing to the limit over S & (Sch(;{/’f )P, we may conclude that e is an isomor-
2
phism.

3.0.41. If X € PreStk is a pseudo-scheme ([8], 7.4.1) then the diagonal map X — X x
X is pseudo-proper. Indeed, if X = colimye 4 Z,, where Z, € Sch, and the transition
maps Zg, — Zg, are proper then for any S € Sch®/ and amap h: S — X x X there is
a,b € A such that h factors through h : Z, x Z, — X x X, and the claim follows from the
fact that Z, — X is pseudo-proper by ([8], 7.4.2). Indeed, X X xxx Zo X Zp = Zg X x L.
The morphism Z, xx Z, — Zg X Zp comes in the sense of ([8], Remark 7.4.4) from a
morphism in PreStky,oper by LKE, hence is pseudo-proper.
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3.0.42. For ([8], Pp 7.4.2). Let us show that Schyroper — Sch preserves finite limits.
Because of (HTT, 5.3.2.9), it suffices to show that this map is left exact in the sense of
(HTT, 5.3.2.1). To this end, it suffices by (HTT, 5.3.2.5) to show that for any S € Sch
the category (Schyroper Xsch Schg)? is filtered. This is true, because the category
Schyroper Xsch Schg, admits pullbacks.

Now it remains to prove ([8], Lm 7.4.3). In the case when C’ admits finite limits,
this is nothing but (HTT, 6.1.5.2). For € € 1 — Cat, Pro(C) is defined as (Ind(C°))°P.
By (HTT, 5.3.5.14), the Yoneda embedding € — Pro(C) preserve all finite limits which
exist in C. As formulated, I don’t understand the proof of ([8], Lm 7.4.3). However,
consider a little different claim, namely assume F' : C' — C left exact in the sense of
(HTT, 5.3.2.1). Then by (HTT, 5.3.2.5), for ¢ € C, C"? xcop (CP) ;.. is filtered. Let now
® € Fun((C")°P,Spc) and ¢ € C. It suffices to show that the functor ® — LK E(®)(c)
preserves finite limits. One has LK E(®)(c) = colim._,p() ®(c'), the colimit in Spc
over the filtered category C*? x cop (C?) /o The claim follows now from (HTT, 5.3.3.3).

For ([8], Remark 7.4.4). It is essential that if X Ly % 7 are morphisms in Sch,
gf,g are proper then f is automatically proper. For this reason any pseudo-proper
morphism Y7 — Y5 in PreStk, where Y; are pseudo-schemes, comes from a morphism
in PreStkproper-

3.0.43. From ([8], Lemma 7.4.7) it follows that for a proper morphism of separated
schemes f: X — Y, the functor fi: Shv(X) — Shu(Y') preserves limits in the context
of constructible sheaves, so has a left adjoint. It should be f* for f, = fi. In the context
of D-modules this is not true, fi in general does not preserve limits!

3.0.44. By ([8], 7.4.11), if f : S’ — S is a morphism of separated schemes of finite
type, which is surjective on k-points, then f' : Shv(S) — Shv(S’) is conservative. There
this is claimed without a proof. For a Zariski cover Lin Chen has proposed a proof in
his email.

It should be true that if a : F' — F” is a map in Shv(S) such that for any field-valued
point i : s — S, i'F — ¢'F’ is an isomorphism then @ is an isomorphism (see emails of
Sam).

3.0.45. The following holds for the sheaf theory: let f : X — Y be a proper morphism
of separated schemes of finite type. The commutative diagram

Shv(Y) ® Shv(X) — Shv(Y x X)
T id x f! T (id x f)"
Shv(Y) ® Shv(Y) — Shv(Y xY)

coming from the right-lax structure on Shv gives rise to a natural transformation
(dxfW(FXH) - FX(fiH) functorial in F' € Shv(Y),H € Shv(X). This map
is an isomorphism, because Shvprestk;, , .., 15 right-lax symmetric monoidal, see Sec-
tion 3.0.21 of this file. This is not really explained in [8], though Dennis refers to this
as the base change.

I think ([8], Lm 7.2.3 in the constructible context) should be also an axiom for the
sheaf theory.
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More generally, if f : X7 — Xs,g9 : Y1 — Y5 are pseudo-proper maps of prestacks,
K € Shv(Xy), H € Shv(Y1) then (fiK) X (g H) = (f x ) (K X H).

3.0.46. Under the conventions of [8], one has the projection formula for a pseudo-
proper map f : X — Y. Let F € Shv(X),G € Shv(Y). Denote by ® : Shv(Y) x
Shv(Y') — Shv(Y") the functor sending G1, G» to diag'(G1 K Gs), this is the ”pointwise
symmetric monoidal structure” on Shv(Y'). Then

(AF) ® G= fi(F ® (f'G))
in Shv(Y).

Proof. Since f xid: X xY — Y x Y is pseudo-proper, (fiF) X G= (f xid)(F X G).
Write Gry : X — X x Y for the graph of f. By the base change for the pseudo-proper
map f x id ([8], Cor.1.5.4), one gets for diag: Y - Y x Y

(fiF)® G~ diag'(AF) X G) = diag'(f x id)(FRG)= f(Grp) (FRG) =
fidiag (F R (f'G)) = f(F ® (f'G)),

di id
because the composition X 2Exxx' —X>f X xY is Gry. O

3.0.47. For ([8], 7.1). If f; : X; — Y; is a map in PreStk then the diagram commutes

ShV(Xl) & ShV(XQ) — ShV(X1 X XQ)

T rief T (fixfa)
ShV(Yl) & ShV(YQ) — ShV(Yi X Yg)

in particular, wx, Kwx, = wx, xx,. Here wy is the dualizing sheaf on X.

3.0.48. For ([8], Lm. 7.4.9) a strengthened version: write Y — colim, Z,, where Z, €
Sch, and the transition maps Z,, — Z,, are proper. If Y is a pseudo-scheme with a
finitary diagonal then for any a,b one may write Z, Xy Z, — colim;es Z;b in PreStk,
where Zé,b is a scheme proper over both Z, and Z;, and the indexing category I is
finite.

Indeed, both projections Z, < Z, xyZ, — Z, are pseudo-proper. Pick a presentation
Zg Xy Zy— colim;er Z;b in PreStk, where Zé}b is a scheme proper over Z; for any 1.
Since Z, Xy Zy, — Z, is pseudo-proper, for any ¢ the composition Z;b — Lo Xy ly — Zg,
is pseudo-proper by ([8], 7.4.2). Finally, use the following consequence of ([8], end of
proof of Corollary 7.5.6): if h : S} — Sy is a pseudo-proper morphism between schemes
(recall that schemes are assumed separated) then h is proper, see also ([8], Remark
7.4.4). So, for each i, Z;b — Z, is proper.

3.0.49. If f : Y7 — Y5 is an etale morphism of prestacks then d : Y7 — Y] Xy, Y] is
affine schematic and pseudo-proper, so d; exists. Besides, for any S € Sch, Y;(S) —
(Y1 Xy, Y1)(S) is a monomorphism of spaces. So, d is fully faithful, that is, id — d'd
is an isomorphism ([8], 7.4.11).
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3.0.50. For 4.1.2 and 4.1.4. First, for finite nonempty sets I,J, X! xgan X7 is the
prestack, whose S-points are pairs of morphisms S — X!, 5 — X/ such that the
corresponding subsets of Map(S, X) coincide (they are quotient sets of a set of | J |-
elements and of a set of | I |-elements. It is described in ([8], 8.1.2) as 1&?]1(131 XK,

Let J be the category whose objects are (I, A\!), where I is a nonempty finite set,
M T — Ais amap. A morphism (J, A7) — (I, \!) in J is a surjection ¢ : I — J such
that \; = Zi€¢,1(j) A; for all j. Recall that Grr comp = colim(“\z)eg X7 in PreStk. So,
Gr7,comb XRan X 7 = colimz xr)eg (X XRan X7).

For a finite non-empty set J consider the category Jj, whose objects are triples
(I, J 5 I), where 7 is a surjection, and A/ : I — A is a map. A morphism from
(LM, J—= 1) to (I, A, J i I') is a surjection ¢ : I’ — I compatible with surjections
from J such that \; = Zi’eqﬁ*l(i) Ai. We have a map

(9) " /\thr?)ea X! — Gr7 comb X RanX "
) s = J

Namely, for (I,\,J — I) € J; we get the map X! — GI7 comb XRanX”, where the
projection on Grr comp is the natural map, and the projection X I' 5 X7 comes from
J — I. The map (9) is an isomorphism in PreStk, I think.
Indeed, one has
Gr7,comb XRanX e colim  X¥
(I I—-K+J

Here the colimit is over the diagram, whose objects are collections (I, A, I — K <« .J),
the maps being surjective. A morphism from (I', A", I’ — K’ « J) to (I, A, — K «
J) is a pair of surjections I — I’ and K — K’ such that the diagram commutes

I — K <+ J

l¢ N
I' - K

and \y = > $(i)=i" Ai. This diagram maps naturally to J; sending the above point to
(J — K, \F), where A\ is the direct image of A’ along I — K. We first calculate the
LKE along this projection. This is easy, and produces precisely the colimit in the LHS
of (9).

For each A € A consider the object ay = (x,A) € J, let J,,, be the corresponding
undercategory. Then the geometric realization of J,,, is *, because it has an initial

object. So, (colli)rn * — A in Spc. Recall also that for any €€ 1 — Cat, | €| = | CP |.
IM)eg

The prestack Gry Xran X writes as colim,j_, i Grp xx over the category opposite to
the category of surjections J — K, where K is a finite non-empty set. Here we denoted
by Grp xx the prestack classifying a point % € XX a T-torsor F on X together with
a trivialization 8 : F= F9 over X — 2%. The map Gry xx — X K is pseudo-proper.

The map

(10) GI'T,comb XRanXJ — GI"T XRanXJ
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is pseudo-proper and surjective on k-points. It is finitary pseudo-proper. Indeed, pick
a base {¢;} in A. For N > 0 let Grp x1 y C Grp x1 be the closed subscheme classifying
(z! € XT,7, B) such that for any i one has

V%(—le) cVg C V;{;;(le),
where V¢ is the 1-dimensional T-module with weight &;. Then Grp x1 = cojl\}m Grp x1 N-

For N > 0 and a surjection J — I, the base change of (10) by the natural map
GrT7 XI,N = Grp XRan X is written as a finite colimit of proper schemes.

To check that (10) is a monomorphism of prestacks, it is easier to check that the
diagonal map Y7 — Y1 Xy, Y] is an isomorphism, where Y7 — Y5 is the map (10). Indeed,
if S is say an affine scheme of finite type, an S-point of Y7 Xy, Y7 comes from a collection:
(I, I, U N2y 2 J — Lm0 J — I,2lt € X11(S), 22 € X2(S) over the same
point z7 € X7(S) and an isomorphism ?%(Zjej >‘71r1(j)) ’—79’%(2]»@ )\ZQ(].)) over Sx X,
whose restriction to the complement of 27 is the identity. We see that the diagonal map
Y1 — Y1 Xy, Y1 is an isomorphism. This is to apply ([8], 7.4.11(d)). This gives the claim
from 4.1.2 in our joint paper: the natural map Shvg(Grr)/ran — Shvg(GIT comb)/ Ran
is an isomorphism of sheaves of categories.

The isomorphism (9) also gives the fact from 4.1.4 of the paper that

Shuvg(Gr XRanX7) = lim  Shvg (X!
9( T,comb XRan ) (I J—>1)ede? 9>\I( )

The latter also rewrites as

colim  Shvg_ (X7),

(IALJ—1)€ds 5 (X7)
because for each morphism from (7, MoJ — I) to (I, )\I/, J — I') in J; and the corre-
sponding closed immersion h : X! — X!’ the functor h' : Shvgv, (X" — Shug, , (X1

admits a left adjoint hy : Shug, (X1 — Shvgﬂ, (XT') as in my Section 3.0.28.

3.0.51. The factorization structure on Gry comp is as follows. Let ¢ : J — J' be a sur-
jection of finite nonempty sets. Let X &{ disj be as in (18). We construct an isomorphism

Gr7,comb XRaan{,disj —=( H Gr7comb XRanX 7') X x7 X‘l{,disj
j/eJ/
as follows. The LHS is
colim  XT) xys X7 .
(I, J—I)Ed, ) 7 X dis
By Lemma 3.3.1 of this file, X7 x ys Xidisj is empty unless ¢ factors as J — 1 2 J',

and then X' xy; X/ =X/,

‘ Bodis So, the index category becomes []. ., ds,. We
ge

,disj*

I colim X[j/ = GrT,comb XRanXJj/
(Ij/, i Jj/—>Ij/)€5Jj,

and the claim easily follows.
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3.0.52. For 4.1.5. The identification of f-data with factorization Z/2Z-line bundles on
Grr,comp is as follows. A datum of a factorization line bundle on Gz comyp gives for each

finite nonempty set I with A\’ : I — A a Z/2Z-graded line bundle LN on X!. For a
surjection ¢ : I — J we have an isomorphism
I
2 S(e LM’
|X<115,disj ((§J ) |X<115,disj
The corresponding 6-datum is a collection A7, here A7 = IN for T =+ and M : % — A

given by . For a pair 71,72 € A the isomorphism L7 |ys, — L7 X L2 ]X2|A
extends to an isomorphism

L2 ’;;L’Yl X L’YQ(_H(,YI’ ,)/2) A)

over X? for a suitable symmetric bilinear form x : A ® A — Z. Resticting to A, this
gives the isomorphisms ¢1:72 : \11H72 AN @ A2 @ QF(172) on X

Consider the sheaf denoted by Div(X,A) in ([2], 3.10.7). We get a morphism
Grr comp — Div(X,T"). What is the relation between Div(X,I") and Gry? They are not
the same. Given a T-torsor F on Sx X trivialized away I'; for some I € Ran(5), we get a
relative Cartier divisor on S x X proper over S. Namely, for each A € A the correspond-
ing line bundle Lﬁj\r with its trivialization over S x X —I'; is a relative Cartier divisor. So,
if we pick a base of A, we get a point of Div(X,T"). This gives a map Grp — Div(X,T),
which is not an isomorphism (already at the level of k-points). For example, for
z # y € X,A € A consider the k-point (I,0(\y),0(A\y) =0 |x_z—y) € Grp with
I = {z,y} C X. We may also consider the k-point (y, 0(Ay), O(\y) =0 |x—,) € Grr.
Their images in Div(X,A) are the same, but these are different points of Gry.

Dennis claims that the map Gry — Div(X,T') induces an isomorphism between any
factorizable structures on both prestacks. More generally, for G an algebraic group,
one has the version GRASg of the affine grassmanian defined in ([3], 4.3.14). Namely,
for S € Sch®f its S-points is colimy Cpr, here the colimit is taken over (the opposite) of
the category of open subsets U C X x S such that the fibre of U over any point of S is
nonempty. We denoted by Cpy the groupoid of G-torsors on X x S with a trivialization
over U (in fact, Cy is a set, so the above colimit is also a set). This GRAS¢g is not a
factorization prestack in the sense of our paper, but one may define for example the
notion of a factorizable line bundle on GRASg.

Probably for G reductive, the natural map f : Grg — GRAS¢ induces an iso-
morphism of any factorizable structures on both prestacks. Though GRAS¢ is not a
factorization prestack over Ran, one defines factorizable structures on it naturally. For
example, FactPic(GRASg) is the groipoid classifying a line bundle L on GRASg and
a factorization structure on f*L. Are the fibres of f contractible?

There is a subtlety in the definition of a Z/27Z-graded factorization line bundle on a
factorization prestack. It is crucial to require a suitable sign for the commutativity con-
straint. For example, in the definition of the -datum in the commutativity constraint
it is crucial to require the sign: ¢"172 = (=1)*0172) 274 in ([2], 3.10.3(ii)).

If we do not require the sign, the following would be a factorization Z/2Z-graded line
bundle £ on Grz /275G, ,comp- Write k[—1] for the k-vector space k placed in degree one
as Z/2Z-graded. We define a the Z/2Z-graded line bundle £ on Grz/275G,,,coms 50 that
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its restriction to X for (I, Al : I — Z/27Z) is (k[-1])®* with A = >°,.; A;. It would have
the following factorization structure as a Z/2Z-graded line bundle. Given a surjection
¢ : I — J of finite nonempty sets, one has a canonical Z/27Z-graded isomorphism

® (@ (K[-1])%%) = (k[-1))*?,
jeJ iel;
where \j = > I Ai. We view the latter as the corresponding factorization isomor-

phism over X q[S disj- However, the sign for the commutativity constraint is not correct!

3.0.53. For 4.2.4. The map (4.8) given by A(—1) X G,,, — Be:(A) is bilinear. The
linearity with respect to the second variable is the multiplicativity of the A-torsor y,

on G,,. For its definition: if n | n’ then we have the p,/-torsor G, 28 G,y over
Gm. Its extension of scalars under fi,y — pn, & — x™/™ is canonically the torsor

G et Gyy. For this reason the maps Hom(up, A) X G,,, — Bei(A) are compatible,
so yield the morphism (4.7). The corresponding map A(—1) — Torsa(G,),a — xq is
a group homomorphism.

3.0.54. For 4.2.7, version June 1. Let v, x, © Gap00 — Gay B Ga, ® O(2)PA122) be the
isomorphism as in 4.2.1. Then for A\; # A9 the canonical commutativity datum for
the diagram (4.14) does not give something additional, as the two isomorphisms in the
horizontal lines of (4.14) are not the same. The isomoprhisms o*yy, », and vy, \, are
identified in (4.6), but they are not the same, so this is just and abstract A-torsor on
X with a trivialization of its square.

3.0.55. For 4.2.8. The relation g(\ + p) = q(\) + q(p) + b(\, ) is proved as in ([32],
I1.3.4). Namely, consider Gy ,, x, on X 4. The factorization isomorphism becomes

(11) Saurp ~ (SA K G WG K G,) ® 0(812)" M) @ 0(834)" M

O(Agg)b(’\’“) ® O(A14)b()"“) ® O(Alg)Zq(’\) ® (‘)(A24)2q(“)
Reich restricts it to A1a N Ay, this gives
(12) Grtprin = (G2 ®G,) R (522 G,)) @ (‘yb(&u) X ‘yb(/\vu)) ® O(A)2b(%u)+2q(>\)+2q(u)
Here T = Q! on X. The factorization isomorphism G, , = (S K G,) ® O(2)*#) on
X2 restricts to the diagonal as

Grtn =~ (Gr®Gu) ® T0H)
So, (12) becomes

Gt = (Satn B Gagy) ® O(0) 2200 F2000

on X2. On the other hand, we have the factorization isomorphism for (A + u, A + p)
given by

Gxnturtn — (S X Gy ® O(a)2aFH)
on X2, This gives the equality 2¢(\ + u) = 2b(A, 1) + 2¢(\) + 2g(u). Consider now
the permutation 7 = (13)(24) € S4. Its action on X* preserves the closed subscheme
A1z N Azy = X2, and gives the nontrivial permutation o on it. Our 7 preserves A3
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and Agg. The isomorphism (11) is 7-equivariant. This allows to extract square root of
the above equality.

Recall ([22], 7.2.20). It shows that a base of A indexed by a finite set I yields an
isomorphism B2, (Hom(A, A)) = [[; B%(4).

3.0.56. In Sect. 4.2.10, in the diagram (4.14) the commutativity datum is the identity
one, because the quadratic form vanishes, not only the bilinear form (this quadratic
form precisely is given by this commutativity datum).

3.0.57. For 4.3.13 version June 1, 2020. The exact sequence of constructibel sheaves
0 — *A1 — (s1)+A1 @ (s2)xA1 — (s1,2)+A1 — 0 yields a distinguished triangle

(51,2)«A1(=2)[—4] = (51)«A1(=1)[=2] & (s2) A1 (=1)[-2] = ' A
by passing to the Verdier dual.

3.0.58. For 4.3.1. For a notion of a factorization group prestack over Ran. Let Z be
a factorization prestack over Ran, that is, we are given a map Z — Ran in PreStk
lifted to a morphism in C Alg™" (PreStkeo,r). Moreover, we assume that for any finite
nonempty set J the induced map Z”/ X Ran” Ranj — Z XRan Rané is an isomorphism.
To provide a structure of a factorization group prestack on Z means to lift it to an
object of

(13) 9rp((CAlgnu<PreStkCO7”7”))/ Ran) X Srp((PreStkeorr) / Ran) 9rp(PreStk/ Ran)

In other words, product m : Z Xgan Z — Z should be a map of factorization prestacks
over Ran, and similarly for the unit u : Ran — Z over Ran.

A good way to say is as follows I think. Let FactPreStk,g,, be the co-category of
factorization prestacks over Ran. It afmits products. So, we may consider the category
Grp(FactPreStk/g,y,) of groups in this category.

Our Grr is such a factorization group prestack over Ran. Let H € ComGrp(Spc)
then H is a commutative group in PreStk, hence also in PreStk.,... So, Ran xH €&
C Alg™ (PreStkeorr). The product for Ran x H is given by the diagram

Ran? x H? < Ran3 x H* P pan x H
Moreover Ran x H € Grp(C Alg"™* (PreStkeorr) /Ran)- A map
Z — Ran xH
in PreStk, gay lifted to a morphism in C'Alg™ (PreStkeorr) / Ran should be called multi-
plicative if it is a morphism in
Grp(C Alg™ (PreStkeorr) ) Ran)

In particular, such a morphism yields morphism in Grp(PreStk / Ran)- Note that Ran x H
is not a factorization prestack in our sense.

Taking H = B%(A), we get a definition of a FactGeP“!(2).

Question. I think the proof of Pp. 4.3.2 in the paper is correct, but not very clear,
because not sufficiently conceptual. Can you give a conceptual proof? I have as a

model a claim like this: if C' € 1 — Cat then ComGrp(ComGrp(C))—= ComGrp(C)
canonically. Maybe it would become clearer if formulated more generally?
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The idea of your proof is that for Z a factorization group prestack the desired iso-
morphisms for (z,1) € (Z XRan Z) XRan Ranfhsj over (z1,z2) € Ranfhsj corresponding
to factorization and to the multiplication by 1 are the same.

Formally, for a finite nonempty set J the diagram commutes

Z XRan Ranj — z/ X Ran? Ranj
tm T
(Z XRan Z) XRan Ran = (Z XRan Z)” xR, Ran;
and we apply this for J = {1, 2} and the point of (Z XRan Z) XRan Ranj over (z1,x2) €
Ran?l given by (z1,1) at x1 and (1, 22) at xo. Here m is the multiplication on Z.

3.0.59. For the definition of a multiplicative gerbe from the previous section. If Z €
Grp(PreStk), A is a torsion abelian group then multiplicative A-gerbes on Z are defined

as Mapg,(presti) (2, Bet(A)) = Mappqpresin) (B(Z), BE(A)).

3.0.60. For 4.3.3. Actually we need A = E*°" the group of torsion elements in E* of
order coprime to char(k). Since E is of characteristic zero alg. closed, {1} = puo C E
canonically indeed.

3.0.61. For 4.3.4. For k > 11 think the definition of FactGeIEl’“(GrT) can be given as
in my Section 3.0.58 replacing (13) by

rp—like nu rp—like
B ((CAlG™ (PreStkeorm)) /an) X otk (prescon) o) Bl (PTEStR) o)

Its description is proposed in Remark 4.3.5 of the paper.

8.0.62. For Remark 4.6.7. Mapg,(spc)(A, B*(A)) classifies central extensions € of A
by B(A), see ([22], 7.2.18).

We have Mapg, (gpe) (A, B%(A)= Mapptd(spc)(BQ(A), B*(A)) by adjointness. To lift
an object € of Mapg,(spe)(A, B?(A)) to an object of Mapg, (spc) (A, B%(A)) means to
provide a braiding on the monoidal category €, see [19].

Dennis says here that

2 Mathd(Spc) (BZ (A)7 B4(A)> - 7r0Q2 Mathd(Spc) (B2(A)7 B* (A))
Further, Q Map pyq(spe) (X, Y) = Map pyg(spe) (X, 2Y) for any X, Y € Ptd(Spc). So, the
above group identifies with mo Mapg, (gpc) (A, A) = Homap(A, A).

My understanding is that Dennis claims that mo(Mapg, gpe) (A B2(A)) = Quad(A, A),
this is the set of isomorphism classes of such braided monoidal categories €, see ([22],
7.3) for that. Moreover, mo(Mapg__(spe) (A, B2(A)) = Hom(A, Az_ors), this corresponds
to symmetric monoidal categories. Note also that

ma(Mapg,__(spe) (A, B*(A))) =5 70 Mapg__ (spe) (A, A) = Hom(A, A)
This gives a canonical map
(14) B*(Hom(A, A) — Mapg__ (spc) (A, B*(A))
in Eo(Spc) by adjointness. It is used in Section 4.3.7 of the paper. Besides,
m1(Mapg__ (spe) (A, B*(4))) =0
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3.0.63. For 4.3.7. The fact that Mapg__(gpe) (A, Gea(X)) = FactGe"*(Gry) is ob-
tained as follows. The description of Mapg__(gpe) (A, Gea(X)) can be given as in Sect.
4.2.10 of the paper with the following change: for A € A, we are given §* € Gea(X).
For \; € A we are given an isomorphism ghitl2 I gM @ Gr2 on X associative in the
natural sense. We are also given a datum of commutativity for the square

9>\1+>\2 N 9>\1®9>\2

1 1

9/\2+)\1 — 9>\2 ® 9>\1

satisfying the hewagon axiom. Moreover, the square of the commutativity constraint is
the identity. However, we do not require any more that the datum of the commutativity
for (4.14) in the paper is the identity one!

This datum of commutativity gives precisely a map Mapg__(gpe) (A, Gea(X)) —
Hom(A, As_tors). As in (4.11) of the paper, we get a fibre sequence in ComGrp(Spc)

Map(X, B%(Hom(A, A))) — Mapg,__(spe)(A; Gea(X)) — Hom(A, Ag—tors)
See also my Section 3.0.62.
To explain his formula
Mapg_ (spe) (A, Gea(X)) = Mapg,__(gpe) (A, B2(A))x B HomAADNap (X, B2 (Hom(A, A)))

note the following. First, 7o Map(X, B (Hom(A, A))) = Hom(A, A), as X is connected.
By adjointness, this gives a morphism B?(Hom(A, A)) — Mapp,esi (X, B2 (Hom(A, A)))
in Ptd(Spc). We also have the map (14) above, which together give a diagonal action
of B?(Hom(A, A)) on

Ma‘pEoo (Spc) (Av B2(A)) X Map(Xa Bgt(Hom(Av A)))
We have also 71 Map(X, B (Hom(A, A))) = HL, (X, Hom(A, A)) and

mo Map(X, B2 (Hom(A, A))) = HZ, (X, Hom(A, A))

So, at the level of homotopy groups this seems to give the correct result, same homotopy
groups as for FactGe 7 (Grr).

3.0.64. It should be noted I think in the paper that the notion of a Hecke eigen-sheaf
could be spelled as in the paper ”On the de Jong conjecture” instead of complicated
definition using sheaves of categories!

3.0.65. For 4.4.1. Dennis uses the ”topology of finite surjective maps”, no precise
definition given!

Lemma 3.0.66. Let Y 25 Z & 7' be a diagram in Sch;lc{f. Let f': Y — Z' be obtained

from f by the base change g. Assume both f’, g are finite morphisms surjective on k-
points. Then f is also finite surjective on k-points.

Proof. (Alain Genestier) Write Y = Spec B, let A — A’ be the homomorphism of k-
algebras corresponding to g. Let B = A’®4 B, let I be the kernel of h : B — B’. Since
B’ is a finite B-module, each element of I is nilpotent. Since B is noetherian, there
is n > 0 such that I" = 0. Let By be the image of h. Since B’ is a finite A-module,
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A is noetherian, we conclude that By is a finite A-module. For any 4, the Bo-module
I'/I**! is of finite type, so I'/I*t! is also a finite type A-module. Thus I is a finite
type A-module. We are done. O

We equip Sch‘;{ 7 with a collection of coverings, where a covering of S € Sch‘;{ s
a finite collection of maps f; : S; — S such that f; is finite and the map L;S; — S is
surjective on k-points. The axioms of ([36], Definition 6.2) are verified, so we get a site.
Thus for PreStk;s; = Fun(Sch‘;{ ! ,Spc) we get the corresponding localization.

Dennis proposed the following. Call a morphism ¥; — Y5 in PreStk;s; ind-finite if
for S — Y5 with S € Sch?{ s , Y1 Xy, S can be written as a filtered colimit colim;es Z;,
where each Z; is a scheme finite over S.

Remark 3.0.67. Let f : Y1 — Yo be an ind-finite morphism in PreStk;s; inducing a
surjection on k-points Y1(k) — Ya(k). Then it is a surjection in the topology of finite
surjective maps.

Proof. Let S = Spec A € Sch;{f with a section S — Ys. Write S xy, Y1 — colim Z;
with Z; a scheme finite over S. Let S; C S be the schematic image of Z; xy, S — 5.
Then we get an inductive system {S;};c; such that for the corresponding system of
their ideals I; C A any maximal ideal m C A contains some I;. Then there is i € I
such that Z; xy, S — S is surjective on k-points. It is also finite, so we can localize in
our topology using the cover Z; xy, S — S. We get the desired lifting Z; xy, S = Y;
of S — Y5. So, f is a surjectiion in this topology. O

3.0.68. Combinatorial Grassmanian. For a finitely generated abelian group I' we may
define Grrgg,, comp similarly to the case of a torus. Namely, consider the index category
@ whose objects are pairs (I, ') with I a finite non-empty set, Al : I — T'. Write \;
for the value of A! on 4. A map from (J,A\7) to (I, \!) in € is a surjection ¢ : [ — J

such that \; = Z¢>(i)=j Ai. Set Grrgg,, comb = (g(;\lli)rge X7

T = Ay /A, we get a diagram Gryy, comp — GIT, comb — GIT®G,.,comb, hence a map
Grry comb / Gr1y.comb — GITgG,,,comb- Probably, the latter map is an isomorphism after
sheafification in the topology of finite surjective maps. Why?? This would imply that
the sheafifications of Grrgg,, comp and of Grp, / Grp, in this topology are isomorphic.

3.0.69. For 4.4.5. If bj(A2,—) = 0 then we get b : I' x I' — A(—1). If in addition
q1 |a,= 0 then we get the quadratic form ¢ : I' — A(—1) given by ¢(A mod As) = q1(A)
for A € Aq.

Hopefully a proof of 4.4.5 could be obtained as follows. Recall the isomorphism
Mappiq(prestk, ) (Bet(Ti) X X, BL(A(1)) x X)= FactGea(Grz,) in ComGrp(Spc) for
T, = A; ® Gy, We assume I' = Ay /Ay. Consider the map
Mappia(prestk, ) (Bet(T1) X X, Bey(A(1)) X X) = Mappia(presk ) (Bet(T2) X X, Bgy(A(1)) x X)
given by restricting along Bei(T2) — Bet(11). Does Dennis claim that the fibre of the
latter map identifies canonically with FactGe4(Grrgg,,)? I think no, because the kernel

of Quad(A1, A(—1)) — Quad(Ag, A(—1)) is too big: for g in the kernel the bilinear form
b(Ag, —) does not becessary vanish.
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3.0.70. For 4.4.6. In the last displayed formula if that section one needs to replace
B2,(Hom(T, A)) by B?(Hom(T, A)).

If T'=A1/Ag, where 0 — Ay — A; — I' — 0 is an exact sequence in abelian groups,
A; are lattices then A1 — A — T is a fibre sequence in Sptr, hence a cofibre sequence
in Sptr. Now Sptr=C = ComGrp(Spc) is stable under small colimits, so I is a cofibre
of A1 — Ag in ComGrp(Spc). So, MapeomGrp(spe) (T, B2(A)) is the fibre of the map
MapeomGrp(SpC)(Al,BQ(A)) — MapeomGrp(SpC)(AQ,BQ(A)) in ComGrp(Spc), and also
in Spc.

Similarly, the fibre of the natural map

Map(‘?omGrp(Spc) (A17 Gey (X)) — Map@omGrp(Spc) (A27 Gey (X))

in ComGrp(Spc) is MapeomGrp(spe) (I's Gea(X)).
To be clear: if I" is torsion free then the assumption that A is divisible in 4.4.6(e,f)
is not needed according to Sect. 3.3 of the paper.

3.1. For 4.4.7. Pick a presentation 1 — Th — Go — G — 1, where T5 is a torus, and
[Ga, Gy is simply-connected, set T = Go/[Gl2, Go]. We get the maps Grp, — Grg, —
Grr, = Grr (@86, and G (@)e6,, — Grry / Grr,. Actually, Ty is central in Go, 50
Grr, acts on GTGQ’ and we get a map of quotients Gré2 / Grp, — Grp, / Grp,. The
natural map Gdrc;,2 / Grp, — Grg is a monomorphism of prestacks. Yifei claims that
the map GI'éQ — Grg is surjective in any topology including finite surjective maps as
coverings. This would imply that f : Gré2 / Grp, — Grg becomes an isomorphism
after the sheafification in this topology.

Note that f is surjective on k-points. I think it is pseudo-proper. Is it true that after
any base change S — Ran with S € Sch% T it becomes finitary pseudo-proper? This
looks plausible. Then we would apply ([8], Lemma 7.4.11(d)). Dennis will treat this
question in a new version.

Question. If Z — Ran is a factorization prestack, Z € PreStk;s, consider the
sheafification Z' of Z in the topology of finite surjective maps. Why Z’ is still a
factorization prestack? This is not clear at all!

It is not clear if Ran is a sheaf in this topology. We could in principle consider
the sheafification on the category of (Sch% ! )/ Ran> but even then it is not clear why a
sheafification of a factorization prestack is still a factorization prestack. This will be
changed in a new version.

Remark: A! is not a sheaf on Sch% T in the topology of finite surjective maps.

3.1.1. For 4.5. We are mostly interested in the case A = E*!"_the group of torsion
elements in E* of orders coprime to char(k). If check(k) = 2 we get Aa_yors = 0,
otherwise As_iors = Z/27Z. In the case of char(k) = 2 there is no problem of splitting
of multiplicative gerbes.

Dennis claims that m Mapg,_ (spe) (T, B*(A)) = Hom(T', A2 _tors), see ([22], 7.3). In-
deed, if I' = A1 /Ag, we get that Mapg__ (gpe) (I B?(A)) is the fibre of

MapIEoo(Spc) (A17 B? (A)) — MapEoo(Spc) (A27 B’ (A))
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in E(Spc). This allows to calculate the homotopy groups of Mapg_(
since we know the answer for I' a lattice. We get

T2 Mapg__ (gpe) (I B%*(A))= Hom(T, A)

Now 71 Mapg__(spe) (T, B*(A)) = 0, because this is a cokernel of Hom(A1, A) — Hom(Az, A),
and A is divisible.

3.1.2. For 4.8.2. Misprint: he meant my(C) = m1(C) = Z/2Z. This C = Z/27 x
B(Z/27) is equipped with the braiding &' (\, 1) : * @ c# — * @ for any A,y € Z/27.
Here ¥’ is a bilinear form on Z/2Z with values in Z/27Z given by b'(1,1) = 1. Then the
square of the brading ¢* ® ¢ — ¢* @ ¢* = ¢* ® ¢* is the identity, and the quadratic
form q(z) = b/'(z,z) in Hom(Z/27Z) = Quad(Z/27Z,7/27) is the identity map g = id.

By functoriality he means the following. We have a morphism Hom 4, (I",Z/2Z) x
Mapg,__ (spe)(Z/2Z, B2(A)) — MapEOO(SpC)(F,B2(A)) given by composing with I' —
Z/2Z. 1t is bilinear. So, our distinguished element of Mapg__(gpe)(Z/2Z, B?(A)) by
restriction gives a map Homap(I', Z/2Z) — Mapg__ (gpe) (I, B2(A)) in E,(Spc), whose
composition with the projection to Hom(I', Z/2Z) is the identity.

3.1.3. For 4.5.3. The gerbe G¢ is defined for € € Hom(I", A3_;r5) under the assumption
that Aa_sors C Z/27 imposed in 4.5!

Spc) (F7 Bz(A))a

3.1.4. For 4.5.6. The determinant line bundle detg,, s; is not defined on Grg,, ex-
plicitly however it is uniquely recovered from what is written in that section. Namely,
detg,, s is the line bundle sending (I, L, 3 : L= 0O |sxx-1,) € Grg,, to det RI'(X, L) ®
det R[(X, 0)~1. In the local setting this is

o det(L/L)
for any L' C LN O.

Similarly, detgr,, s¢ is the line bundle sending (I, L, 3 : L= 0?% |sxx_r,) € Grsp, to
det(L : ©?).

3.1.5. In the last paragraph of Sect. 4.6.1 it is affirmed that (£®2)% identifies canoni-
cally with G |,. T think this is correct but not completely clear. In particular this
implies that the factorization line bundle £®? is not triviall

3.1.6. For 4.6.3. Let C be a sheaf of categories on Grz,975c,,- By a "factorization
structure on € compatible with the factorization structure on Grz szsc,, Wwe mean a
multiplicative sheaf of categories over Grz ozg¢,, € CAlg™ (PreStke,) in the sense of

[30]. So, given S € Sch?{ ! and a map
s: 85 = Grz/270G,, XRan Rang = Gr%/QZ@Gm X Ran? Rané,

which is a collection s; : S = Grz/274G,, XRan Ranj — Grz/2256G,, for j € J, we have
an equivalence

®  C(S,s5)=C(S,s)
jeJ,Shv(S)

functorial in (S, s).
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3.1.7. For 4.6.5. The definition of the endofunctor ¢ — c[d] given by (4.23) was ex-
plained to me by Dennis: he meant the cohomological shift ¢ — ¢[d] over the connected
component given by d.

3.1.8. For 5.1.4. About a formalism: if f :Y; — Y5 is an ind-schematic morphism in
PreStk; s, why fi : Shv(Y7) — Shv(Y>2) exists and how it is defined? Dennis says this is
done in [13] in the case when f : Y] — Y5 is a morphism of schemes. The general case:
it suffices to define the direct image for S xy, Y1 — S for any S — Y3, S € Sch‘;c{ !,
Write S Xy, Y1 = colim; Z; so that Z; is a scheme and h : Z; — Z; is a closed immersion.
Then Shv(S xy, Y1) = colim; Shv(Z;) as in ([8], 1.5.2). The desired functor comes from

a compatible system of functors (g;)« : Shv(Z;) — Shv(S) for ¢; : Z; — S.

3.1.9. For 5.2.1. To be precise, let us understand by detrel(gyp,,, 950, ) the line bundle
det RT(X, g,) ® det RD(X, ggpo, ) '

3.1.10. For 5.2.2. We have pg,a = pg — pm- Here pg is the half sum of positive roots
of G.
For 5.2.4. The line
K(L) = det RI'(X,E® L) @ det RI'(X, E* @ L)
det RI'(X, Ey ® L) det RT'(X, E§ ® L)

is canonically independent of L € Bun;. One sees that K(L(x)) — K(L) canonically
for x € X. This argument can be also done locally, in the case when X is not complete.
This is related to my paper [23].

The factorization Z/2Z-graded line bundle dety on Grg comes from a theta-datum
such that corresponding symmetric bilinear form on A is the Killing form kg i =
> s @® @, the sum over all roots. So, the factorization Z/2Z-graded line bundle det,p)
corresponds to the bilinear form %(KG’ Kil — KM,Kil)-

In general, if £ is a factorization Z/2Z-graded line bundle on Gry corresponding to
a symmetric bilinear form x : A ® A — Z when viewed as a §-datum (cf. 4.1.5 of the

paper) then £®2 is a factorization line bundle, and the factorization po-gerbe (£2)2
corresponds to the quadratic form ¢ : A — Z/27Z, where q(z) = k(z,z) mod 2. So,

(L®2)% is a multiplicative factorization gerbe.
In 5.2.3 the following calculation is used: set g(z) = 3k¢ ku(z,z) mod 2 € Z/2Z
for x € A. Then ¢(x) = (2p,z) mod 2.

3.1.11. For 6.2.3. The Z/2Z-graded factorization line bundle detg,, , has fibre in
the global case det RI'(X, L") ® det R['(X,0")~! at (L,a : L=0 |y,) € Grg,, over
I € Ran.

The factorization line bundle detg,, 1 ® detg,, —1 on Grg,, corresponds when viewed
as a f-datum, to the symmetric bilinear form b : Z ® Z — Z,b(z,y) = 2zy. So, the
quadratic form ¢ : A — A(—1) with A = 7Z corresponding to the factorization gerbe
(detg,, 1 ®detg,, —1)* is given by ¢(1) = a.

Let n = ord(a). Then the pull-back of the factorization line bundle detg,, 1 ® detg,, —1
under G,, = G,z — 2" identifies with (detg,, 1 ®detGm’_1)”2 canonically by ([23],
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Lm. 5.7). In particular, the restriction of the factorization gerbe (detg,, 1 ® detg,, —1)"

under this map is canonically trivialized.

3.2. Let us think about the question: is there X € ComGrp(PreStk) such that Grr ()%,
identifies with the prestack classifying I € Ran(S), a map S x X — X together with a
trivialization of the composition Uy — § x X — K7

Write Stk C PreStk for the full subcategory of stacks in etale topology. Pick an
exact sequence 1 — Ty — G — G — 1 with [G,G] simply-conneted. Write B(G)
for the corresponding colimit in PreStk. Clearly, Be;(T3) acts on By (G) € Ptd(Stk)
on the left. Since our extension is central, the corresponding map G — Be(T5) is a
morphism in Grp(Stk), hence induces after applying B a morphism B (G) — B%(T3)
in Ptd(Stk). The fibre of this morphism is Bet(é), so B(G) is the quotient of Bet(é)
by the action of Be(T3) in the co-topos Stk. Let T1 = G/[G, G].

Let (B(T1)/B(1%)). be the cofibre of B(T3) — B(T1) in ComGrp(PreStk). We have
a full subcategory ComGrp(PreStk) C Fun(Sch®//, Sptr), this is also a cofibre in the
stable category Fun(Sch"“f 7 Sptr), because Sptr=C C Sptr is stable under all colimits.
So, B(T3) is the fibre of B(Ty) — (B(T1)/B(T3)). in Fun(Sch®/ Sptr), hence also in
its full subcategory ComGrp(PreStk).

Write Bet(Th)/Bet(T2) for the quotient of Bet(Th1) by Bet(T2) in the oo-topos Stk.
We have a natural map Be(T1)/Bet(T2) — B2,(Ty) whose fibre is Be;(T1). The map
G — T gives a morphism of quotients

(15) Bet(G) = Bet(G)/Bet(Ty) — Bet(T1)/Bet(T3)

in Ptd(Stk). How Bei(T})/Bei(Tb) depends on a choice of G?

Consider the case of 71 (G) finite. Then the kernel of 75 — T} is K := 71(G)(1). The
fibre sequence 1 — K — Ty — T} — 1 gives a map By (T1) — B2 (K), whose fibre is
B¢ (T). This means that Bei(T1) is the quotient of Bei(T5) by Bet(K) in Stk (cf. more
generally [22], 7.2.18). Considering now the natural map Bet(T2) — Bet(T2)/Bet(K)
and taking its quotient by the action of Be(T3), we should get * — B2 (K). So, I
hope that Be(T1)/Bet(T3) identifies with B%(K) in Ptd(Stk). I think this can also be
checked calculating the homotopy groups of Bei(T1)/Bet(12) using the fibre sequence
Bet(Th) — Bet(Th) /et B(Ty) — B%(T2) in Stk.

So, (15) is a canonical morphism Be;(G) — B2 (K) in Stk.

Let Yx be the prestack (locally of finite type) over Ran sending S € Sch‘}{f to

I € Ran(9), a map X x S — B%(K) together with a trivialization of the composition
Uy — X xS — B2(K). This s a factorization prestack over Ran, we have a natural map
Grg — Yx of factorization prestacks over Ran. In 3.1.6 of the paper we constructed a
map of prestacks Yx — K(—1)¢ under the assumption that K is of order coprime to
char(k).

Let us interprete Gry, / Gry, as the quotient in PreStk;s;. My understanding is that
the natural map Grr, / Grp, — Yk is an isomorphism. Is this correct?

More generally, remove the assumption that m1(G) is finite. Then I think that
Bet(T1)/Bet(T) € Ptd(Stk) is independent of our choice of G. Indeed, let 1 — T3 —
G’ — G — 1 be another exact sequence with T} a torus, and [G’, G’] simply connected.
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Then we may argue as in ([33], 7.2.5). Namely, let G” = G x¢ G'. The projection
G" — G fits into an exact sequence 1 — Ty, — G” — G — 1. Moreover, the exact
sequence splits

1Ty =G — Gay — 1,
where G, stands for the abelinization of G,,. We have the natural map
Bet(Giy) [ Ber(To x Ty) = Bet(T1)/Ber(T2)
The fact that this map is an isomorphism follows from the fact that
Bt (T1 x To) = Bet(Th) X Bet(T3)

Let Y be the prestack sending S to I € Ran(S), a map X x S — Bei(T1)/Bet(T3)
together with a trivialization of the composition Uy — X xS — Bey(T1)/Bet(T2). Then
Y is a factorization prestack, and we get a natural map Grg — Y over Ran.

Question. It seems that (Grp /Grp,)e — Y in general. Is this correct? Here
(Grry, / Grr,)er is the sheafification in the etale topology.

Maybe then we can take Y for Gry, (g)xg,,"

3.2.1. For 7.4. To describe the multiplicative A-torsors on T, we have to analyse
Mapg,(Prestk) (T, Bet(A))/—\?Mapptd(PreStk)(B(T),Bgt(A)). This is the relative coho-
mology Mappresc(B(T), BZ(A)) XMapp,.u(+B2,(4)) *- Let ¢ 1 ¥ = B(T) be the nat-
ural map in PreStk. Define K by the fibre sequence K — A — ¢.A in the corre-
sponding stable category of sheaves on B(T'). The corresponding long exact sequence
in cohomology gives 0 — H%,(B(T),K) — H2,(B(T),A) — 0 is an isomorphism, so
H2,(B(T), K) = Hom(A, A(—1)) by Th. 3.2.6 of our paper. So,

o Mapgrp(PreStk) (T, Bet(A)) = Hom(A, A(—1))

If G is an A-gerbe over *, to provide its descent datum under the map *+ — B(T) means
essentially to provide a point of Mappq(presti) (B(T), B2,(A)). Indeed, we may assume
our gerbe on * trivial. The corresponding multiplicative A-torsor on T is obtained as
follows: we have QB(T)=T. So, for h : T — * we get an automorphism of h*§, which
is given by a A-torsor on T

3.2.2. For 7.5.1. The quotient by £%(G) in (7.10) is understood as the quotient in
the topos of prestacks sheafified in etale topology. The prestack Z" sends S € Sch®//
to the collection: Fy,...,F,, where F; is a G-torsor on S x X, I € Ran(S), and
a; : F;_1 = F; |y, is an isomorphism. The simplicial structure comes from the fact that
for any finite nonempty linearly ordered set I we may similarly define Z! sending S
to: Fy,i € I, I € Ran(S) and isomorphisms «.F;_; = F; |y, for i € I different from the
initial element. Here ¢ — 1 is the element preceding .

The factorization structure on Z™ can be obtained using the Beauville-Laszlo the-
orem: Z" sends S € Sch®™/ to the collection: I € Ran(S); G-torsors Fy,...,F, on

Dy together with isomorphisms Fop = F1 — ... —=F, over D;. If {I;};e; € Ran{ﬁsj
then Dy = U;Dy;, so the above data factorize. So, Z° is a simplicial object in
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CAlg™ (PreStkeorr). Then Z :=| Z* | is a colimit in PreStk,g,,, and Dennis claims
that the corresponding maps

J J J
Z XRanJ Randisj —Z XRan Randisj

are still isomorphisms for all finite nonempty sets .J, so that Z is a factorization prestack.
I think the category of factorization prestacks over Ran admits all small colimits.

Dennis says that if § is a factorization A-gerbe on Grg then G¥" constructed in
Sect. 7.3 over Grg XRan® Ran descend to a gerbe on Z", and can be see as a map
Z"™ — B%(A)*™. This gives a morphism of simplicial prestacks, and passing to the
geometric realizations (shifified in etale topology), one gets a morphism | Z® |— B32,(A).

For 7.5.2. My understanding is that, more generally, let H C G be a subgroup in a
group maybe in some oo-topos €. Then the Cech nerve of B(H) — B(G) is obtained
as follows. For n > 0 it sends [n] to G\((G/H)*(™+V), where G acts diagonally on
the product (G/H)*(™+1). The latter identifies also with H\((G/H)™), where H acts
diagonally.

The identification of Z™ with the prestack S(G)\(Gré(nﬂ) ) is as follows. For a point
(Fo, ..., Fn,«a;) of Z™ as above, pick trivializations d; of Fy,..., F,, over the disk D,.
Then our datum becomes a collection 71, ..., v, € G(F'), where F is the field of fraction

-1
of O,. Namely, ~; is the induced isomorphism F° 5i> Fh—F — ... > F; % FY over
Spec F. This gives a point of £1(G)\(Grg).

Dennis claims that, according to (HT'T, 6.2.3.4), the map Bet(£1(G)) = Bet(£(G))
is a (—1)-truncated object of PreStk,p,,(¢(g))- This is equivalent to saying that the
diagonal morphism

B (£7(G)) = Bet(£4(G)) X B,,(2(c)) Bet(£7(G))

is an isomorphism in PreStk.
The space of multiplicative gerbes on £(G) with a multiplicative trivialzation of their
restriction to £7(G) is (the one in the LHS of formula (7.3) in the paper)

Mapg,, (prestk) (£(G), B (A)) X Map gy presi (S+(G), B2, (4)) *

et
Mappyq(prest) (Bet (£(G)), B, (A)) X Mappyacpresii) (Bet (8+(G)), B2, (4)) *

So, we produced an object of this space out of a factorization gerbe G on Grg.

3.3. About Fact(C). For 8.1.4. For a finite nonempty set I, the notation Tw(I) here
is not standard. Write fSets for the category whose objects are finite noempty sets,
and morphisms are surjections. For € € 1 — Cat write TJw(C) for the twisted arrows
category (cf. [25], Appendix). Then Tw(fSets) X sers fSets;, — Tw(I).
For (I — J — K) € Tw(I), the 2nd displayed formula in 8.1.5 means ka G?}J’c
€

rather. That is, in ® G’;@}‘]k we make! base change by ® Shv(X) — Shv(XK).
keK keK

For D-modules this is not necessary, as the corresponding map is an equivalence, but we want a
consruction working for other sheaf theories also.
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We use everywhere the fact that in any sheaf theory an ind-scheme of ind-finite type
is 1-affine (this is proved by Lin Chen in his email).

The colimit of the functor (8.6) can be understood also in Shv(X') — mod instead
of DGCatcont, the projection Shv(X I ) — mod — DGCatcyp: preserves colimits. For a
map (16) in Tw(I) the diagram commutes

X e“?}(‘jl)k ﬂ) X e?}(h)k

keK; keK,
' (J1) i( )
%4 e® J1)k mw < e@ J2)k
kEKy X keKy ~

where the vertical arrows are direct image functors for X 51 — X &2,
For 8.1.6. To check that the construction of 8.1.2-8.1.5 produces a factorization sheaf
of symmetric monoidal categories on Ran, we do the following.
Let I be a finite non-empty set, f : I — I’ a surjection. Then f induces a full
embedding Tw(I') C Tw(I) sending I’ — J" — K’ to I Ly J' & K'. Here [’ is the
composition [ — I' — J'.
Let Q(I) be the set of equivalence relations on I. Recall that Q([) is partially
ordered. As in [2], we write I’ € Q(I) for a quotient I — I’ viewed as an equivalence
relation on I. We write I” < I' iff I” € Q(I"). Then Q(I) is a lattice. For I', I" € Q(I)
we have inf(I’, I"”). Let now a surjection f : I — I’ be given. We get a functor
Q(I) — Q(I') sending J € Q(I) to inf(J,I') € Q(I'). It can be seen as a push-out in
the category of finite sets.
If Jo < Jy in Q(I) then for J! = inf(J;, I') we get X72 x sy X1 = X2,
Define a functor & : Tw(l) — Tw(I’) sending I — J — K to I’ — J — K', where
J'=1inf(J,I'), K' = inf(K,I"). It sends a morphism
I — J1 — K1

(16) R
I —- Jo = K

to the induced diagram
I' - J - K|
L1
I' - J — Kj

Let F7 : Tw(I) — Shv(X') — mod be the functor sending (I — J — K) to

X e
kek X

(the latter category is actually an object of Shv(X®) — mod). By definition, Fact(@)
associates to X! — Ran the category

Cxr = colim X Y
X LIS K)eTw() kek X )
the colimit taken in Shv(X’) — mod.
Let now f : I — I' be a surjection. To the closed immersion X! — X7 the
sheaf Fact(C) associates the restriction functor Cxr — € given as follows. For each
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(I -J— K)eTw()let (I' - J — K') € Tw(I') be its image under . Consider
the functor
J/
17 K ek 5 & eYH
(17) ek "X perr TX

given as the composition

/ J!
K e & (R %k S(XK)VS ® e o ®oeYH
ek CX (keK X ") ®shy(xry Shu(X™) pew X pegr X
where the second map is the product in € along the natural maps Jir — J}, for any
k' € K'. We also used the closed immersion X% — XX Now (17) extends to a
morphism F; — T o € in Funct(Tw([I), Shv(X') — mod). Namely, for any morphism
(16) the diagram commutes

X e?(Jl)k N %4 e?}(t]{)k

keK, keK]
{ { /
J.
X eg(h)k - %4 6;82( 2k
keKso keK)

It uses the fact that the square is cartesian

XK £ xKi

$a $a
Xk £ xK
and the base change holds A'A, = A,A'. Here K{ =inf(Ky, K}).
We get natural functors

colimry, 1) Fr — colimry 1) Fp 0 § — colimrpy, ) Fr

This is the desired restriction functor. Given S — Ran with § € Sch;{ ! , it factors
through X! for some I finite nonempty set.

Example: if I = x then Fact(C)(X) = Cx. If I = {1,2} then Fact(€)(X’) is the
colimit of the diagram Cx X Cx « G?}Q — Cyx, so factorizes over X! — X.

Let us show that Cyr ®gpy(x1) Shu(X!) — Cyr is an isomorphism. Denote by
Tw(I)f ¢ Tw(I) the full subcategory of (I — J — K) such that K € Q(I'). The
embedding Tw(I)/ € Tw(I) has a right adjoint 8 : Tw(I) — Tw(I)! sending (I —
J—= K)to(I—J— K') with K/ =inf(I', K). We have

¢ Shu(x") = I 2 e
x1 Osh(x1) Sho( )%(IﬁJgoffl)rgTw(I) ek % )

here (I — J — K') = B(I — J — K). The expression under the colimit is the
composition

f /
Tw(I) LA Tw(I)! X Sho(X") — mod,

wher 3'“{ : Tw(I) — Sho(XT") — mod is the restriction of F7 to this full subcategory.
So, we first calculate the LKE under § : Tw(I) — Tw(I)! of 3’"{ o 3. By ([15], ch. I.1,
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2.2.3), ( is cofinal, so the above colimit identifies with

colim (X @?}J’“).
(IsJ—K)eTw(I)! k€K
Consider now the full embedding Tw(I’) C Tw(I)f. It has a left adjoint &/ : Tw(I)f —
Tw(I'). Here &7 is the restriction of &. So, the full embedding Tw(I') € Tw(I)! is
cofinal. We so rewrite the above colimit as

. ®Jr/\ ~—
colim X Cy*¥)=Cyr
(' J' S KN eTw(I') KK’

To prove the factorization property, we use the following lemma from ([26], 1.3.35).
Recall that for a surjection ¢ : I — I’ of finite nonempty sets we write

(18) XJ gisj = {(@:) € X | if¢(i) # ¢(i') thenw; # xy1}

Lemma 3.3.1. Let I' & 1 — K be a diagram of surjection of finite nonempty sets.
Then qus,disj x 1 X is empty unless I' € Q(K), that is, ¢ decomposes as I — K o
In the latter case the square is cartesian
I I
X bdisi X
i i
Xgraisjg = X7
where A is the diagonal.

Given a surjection ¢ : I — I, we want to establish an isomorphism
(19) Cxr ’XI = (KX @XIZ,,) ‘XI

¢,disj el ¢,disj
Write Tw([I) for the full subcategory of Tw([I) spanned by objects (I — J — K) such
that I’ € Q(K). We have the equivalence Tw(I)y = [[;cp Tw(Iy) sending (I — J —
K) to the collection (I;; — Jy — K1) € Tw(Iy) for i' € I', the corresponding fibres
-/
over .
The base change by Shu(XT) — Shv(X(;{’disj) commutes with colimits, so the LHS
of (19) is

: J
(IﬁJgOI?)IgTw(I)((kéEK CX™) Dsmv(xr) Sho(X 4isy))

By my Lemma 3.3.1, the above colimit rewrites as the colimit over Tw(I)g. For (I —
J = K) eTw(l)y we get

(IEK ey Ry (x1) SM(X] 4ij) = (K (K e%) Rshy(x1) V(X gisi)

el keK,
Since
: ®Jp\ ~
colim X Cx™)—=Cyrys

Iy—=Jy—Kg)eTw(Iy) keKy
passing to the colimit we get the desired isomorphism.
An alternative construction of Fact(C) is given in ([31], 6.6). Dennis says the defini-
tion from our joint paper is better, because it is more general. I think the advantage of
defining Fact(C)(X?) as a colimit is that for any morphism f : Y — Y’ in PreStk the
restriction functor f': ShvCat syt — ShvCat y for any theory of sheaves will preserve
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colimits. For limits this is not clear, because for a morphism S — S’ in Sch?{ T it is
not clear in general if Shv(S) is dualizable as an object of Shv(S’) — mod. Even the
existence of limits in ShvCat y is not clear for this reason in general. (However, if Y’
is 1-affine then ShvCat y has limits).

The structure of a commutative chiral category on our Fact(C) is as follows. Given
finite nonempty sets Iy, Iz let I = I; LI 1. Consider the functor a: Tw(Iy) x Tw(Il3) —
Tw(I) sending a pair (I; — J; — Ki),(Ia — Jo — K3) to (I — J — K) with
J =JUJy, K = Ky U K5 given by the coproduct. Note that « is fully faithful. For
an object of Tw(l;) x Tw(Iz) whose image under « is (I — J — K) we have an
isomorphism

®J1,k ®J2,k\ ~ ®Jk
(20) (kg(l CK (kg(z E)= lEK Cx
It extends naturally to an isomorphism of functors ¥, K Fr, = Fr o« in Fun(Tw(l;) x
Tw(Iy), Shv(X!) — mod). Passing to colimits over Tw(I1) x Tw(I3) (using the fact
that for a morphism of commutative algebras A — B in DGCatyy; the functor A —
mod (DGCatcont) — B — mod (DGCateont), M — M ® 4 B commutes with colimits)
we get a morphism

21) Fact(C)(X ) X Fact(C)(X 2 li F lim F; = Fact(C) (X'
(21) Fact(C)(X™) X Fact(C)( )%Tw(ﬁ?x%(@ Ioa—mT%l(rIr)l 1 = Fact(C)(X")

in Shv(X') — mod. Let us check it becomes an isomorphism after the base change by
Sho(XT) — Shv((Xt x X'2)4). Here (X1t x X12); ¢ X' is the open subscheme given
by the property that if i; € 1,42 € I5 then (x;,,7;,) € X? — X.

For an object (I — J — K) € Tw(I), XX x5 (X' x X™); is empty unless
(I — J — K) lies in the full subcategory Tw(Il1) x Tw(I2). So, (21) becomes an
isomorphism over (X7t x X12),.

Let now Iy — I{,Io — I, be maps in fSet. Then (21) fits into a commutative
diagram

zel X GXI2 — GX11“12
(22) ! !
(21)
qu X eXzé — GXIiuIév

where the vertical maps are l-restrictions along the closed immersions X711 — X1 X2 <
X2 and X1z <y XhUL | Pagsing to the limit over I;, Iy € fSet x fSet, the above
diagram yield the functor

(23) B : T'(Ran, Fact(€)) X T'(Ran, Fact(C)) — I'(Ran x Ran, u* Fact(C))

for the sum map « : Ran x Ran — Ran.

3.3.2. Question. How does one gets a unital commutative chiral category structure on
Fact(C) (similar to ([31], 6.6))7
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3.3.3. As in ([31], 6.6), we get the following. For any finite nonempty set I, Fr :
Tw(I) — CAlg™(Shv(XT) — mod), however, we take the colimit rather of the com-
position Tw(I) — CAlg"™(Shv(X') — mod) — Shv(X!) — mod. The structure on
Cy: of a sheaf of symmetric monoidal DG-categories on X' is not clear, has to be
precised. The category Tw(I) has an object (I — I — I). So, we get the morphism
Loc : EI Cx — Cyxr of sheaves of (symmetric monoidal?) DG-categories on X!.

The morphisms Loc are evidently compatible with surjections I — I’. That is, the
diagram commutes
X GX — exl

el
\ \
ig’ GX — GXI'

Here the right vertical arrow comes from the isomorphism €y 1® g, (x1)Shv(X m=e X1’

and the left vertical arrow comes from the !-retsriction to X! and the corresponding
product map along I — I'.

3.3.4. For 8.1.7. The construction of the non-unital symmetric monoidal structure
on Fact(C)(Ran) is as in ([30], Sect. 7.17). This uses ([30], Pp. 7.15.5), which is
formulated only for D-modules, but holds for any sheaf theory. Namely, if f:Y — Z
is a map of pseudo-indschemes in the sense of ([30], 7.15.1), C is a sheaf of categories
on Z then there is a canonical morphism I'(Y, C |y) — I'(Z, C), see ([25], 0.4.13) and
Section 3.7.10 of this file, see also ([24], Section 2) for sheaves on categories for any
sheaf theory.
The product in Fact(C)(Ran) is given by the diagram

I'(Ran, Fact(C)) ® I'(Ran, Fact(€)) — I'(Ran x Ran, Fact(C) X Fact(C)) —
T'(Ran x Ran, u* Fact(€)) ~“5"“ I'(Ran, Fact(€))

Here u : Ran X Ran — Ran is the multiplication, wu, pac(e) is the left adjoint to
the restriction map I'(Ran, Fact(€)) — I'(Ran x Ran, u* Fact(C)). Since u is pseudo-
indproper morphism of pseudo-indschemes in the sense of ([30], 7.15.1), u, pact(c) exists
by Section 3.7.10 of this file.

Since Ran = colimye fgeror X I for any sheaf of categories E on Ran,

I'(Ran, B) = lim T(X', E),
IefSet

and we may pass to left adjoint in this diagram. So, I'(Ran, £') = colim;¢ getor (X', E).
In the latter colimit for a map I — J in fSet let a : X/ — X! be the corresponding
closed immersion. Then the transition map I'(X”, E) — I'(X!, E) is a. g.

3.4. Let us again be as in 8.1.4. We want to compare the definition of Fact(€) from
8.1.4 with the one from ([31], 6.8). Let C € CAlg(DGCatcont). Work with any of the
4 sheaf theories from [14]. We take € ® Shv(X) as our sheaf of categories over X and
apply Dennis’ construction of Fact(C).

In Section 3.4 we assume that € is compactly generated, and the product C® € — C
admits a continuous right adjoint.
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Lemma 3.4.1. Let I be a finite nonempty set. For any (I — J — K) € Tw(I) the
natural functor €%/ @ Shv(X®) — €1 admits a continuous right adjoint, which is a
strict morphism of Shv(X!)-modules. One may pass to right adjoints in Ir1,c and get

a functor FE, : Tw(I)°P — Shv(I) — mod. Then Cxr 3Tli(rg FE . naturally.
] w op )

Let 3’}/,0 : Tw(I)°P — Shv(XT) —mod be obtained from Fr o by passing to the duals.

Then Cxr is dualizable as a Shv(X')-module, and its dual is (6X1>V:>/Th(r}’; FY o
w(l)or ’

Proof. For any (I — J — K) € Tw(I), C®’ @ Shv(XX) is compactly generated, hence
dualizable in DGCatcont. Indeed, Shv(S) is compactly generated for any S € Schji{ I ,
and Vect is rigid, so we applied ([15], ch. 1.1, 8.7.4).

Note that Shv(X¥) is dualizable as a Shv(X!)-module (see my Section 3.7.1 below).
The functor DGCateons — Shv(X?!) —mod, D + D ® Shv(X?!) is symmetric monoidal,
so sends dualizable objects to dualizable. So, C' ® Shv(X') is dualizable in Shv(X!) —
mod. The product of dualizable objects is dualizable, so €®7 @ Shv(XX) is dualizable
in Shu(X7) — mod.

Since the product € ® € — € admits a continuous right adjoint, for any J — K the
product €7 — CF admits a continuous right adjoint also by ([22], 4.1.6). We claim
now that any morphism in Tw(I) is sent by F; to the functor €%/ @ Shu(XX) —
C®" @ Sho(XX') admitting a continuous right adjoint, which is moreover Shuv(X7)-
linear (not just right-lax). Indeed, for a surjection K’ — K and the corresponding
diagonal § : XX — XX’ the functor § admits a continuous right adjoint ', which is
Shv(XT)-linear. Write ?ﬁc : Tw(I)°P — Shv(XT) —mod for the functor obtained from

JF1,c by passing to right adjoints. We get C'xr — lim ?ﬁc.

Tw(I)er
Now proceed as in ([15], ch. L1, 6.3.4) replacing only 1 — Cat’ %™ by Shy(X!) —
mod. We used the fact that the projection Shv(X I ) — mod — DGCatons preserves
colimits and limits. O

Let us also construct a functor ¢ from Dennis version to Sam’s version of Fact(C).
So, Cx = C® Shv(X). Sam’s definition is

(IB T K)eTw(I)op ’

His transition map attaches for the diagram (16) the functor

Shu(X), gis;) ® €52 = Sho(X] 4is;) ® €251

o,disj 1,disj

which is the tensor product of the product C®%2 — E®K1 along Ky — K; and the
restriction along the open immersion X;{hdisl C Xé%disj. D?note by 1 : Tw(I)? —
Shv(XT) — mod the above diagram defining €y:. We write F ¢ if we need to express
the dependence on C.

For any C € CAlg(DGCateon) the functor ¢ : Cxs — Cxr is defined as follows.
Pick (I % J — K) € Tw(I). We define a compatible system of morphisms Cyr —

Shv(X]{’disj) ® C®K as follows. Given (I — J; — K;) € Tw([), X;’disj x 1 XK1 is
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empty unless J € Q(K7). The map
(24) Shv(X51) @ €7 — Sho(X] 45,;) ® €¥F

vanishes unless J € Q(K7). In the latter case we get a diagram I — J; - K1 — J —
K, hence a map C®/1 — C®K given by the product along .J; — K. Then (24) is the
composition

Shv(X 1) ® €/ — Shv(X™) ® €8 — Sho(X] 4,;) ® C&K,

where the second map is the restriction (followed by the direct image under closed im-
mersion). These maps are compatible, so yield the desired functor Cxr — Shv(X ZI,, dis j)®

C®K The latter functors are compatible, hence yield ¢ : Cxr — Cyr.
By construction, Cy; € CAlg(Shv(X') — mod), and for each (I — J; — Kj) €

Tw(I) the corresponding map Shv(X51) ® €/t — Cyr is a map in CAlg™(Shv(XT) —
mod). So, ¢ : Cxr — Cx1 is Shv(XT)-linear.

Lemma 3.4.2. Recall that C is compactly generated and m : C®%* — C admits a
continuous right adjoint. Then
i) the functor ( : Cxr — Cxr is an equivalence.

ii) for each (I — J — K) € Tw(I) the projection Cx1 — Shv(Xz{’d) ® C¥K admits a
continuous Shv(X')-linear right adjoint.

Proof. For S € Schy, E € Shv(S) —mod, z, 2" € E write Homp(z,2") € Shv(S) for
the relative inner hom for the Shuv(S)-action.

Our Cy1 is ULA over Shv(X') by Section 3.4.6. The functor Loc : Sho(XT)@C®! —
Cxr was defined in Section 3.3.3. We first prove i).

Step 1 We claim that ¢ : Cxr — Cys admits a Shv(X')-linear continuous right adjoint.
Using Lemma 3.5.2 and Proposition 3.7.7, it suffices to show that if ¢ € (C®7)¢ then
¢(Loc(c®w)) € Cxr is ULA over Shu(X'). Indeed, the objects of the form ¢ ® K with
K € Shv(X1)e, c € (C®T)¢ generate C®! @ Shv(XT). Let ¢ € (C®1)°.

By ([22], 2.4.7), if L € €y is such that for any (I & J — K) € Tw(I), the image of
L in Shv(X;;d) ® C®K is compact then L is compact in €y, because Tw(I) is finite.
For X € Shu(X')¢ the image of ¢(Loc(c® X)) in each ShU(X;’d) ® C*K is compact, so
¢(Loc(c ® X)) € (Cxr)¢. This shows that ¢ admits a continuous right adjoint (.

Let L € Shv(XT), M € Cx:. We must show that the natural map

(25) L' Homg _, (((Loc(c®@w)), M) — Homg _, (((Loc(c®@w), L ® M)

is an isomorphism in Shu(X'). For ¥ = (I % J — K) e Tw(I) write My, for the
projection of M to ShU(Xzid) ® C®K write fx for the composition

Sho(XT) @ C®1 ¥ Cxr & Cxr — Shu(X[] ) © C®K
One has

Homg  (¢(Loc(c®@w)), M) = lim Homgpyx! yocox (folc®@w), My)
X (I5JK)eTw(I)op prd
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in Shv(XT). Clearly, fx has a Shv(XT)-linear continuous right adjoint f&, and
Homgpy(x1 )ecor (folc ®w), Ms) = Homgpyxngoer (¢ @ w, fH(Ms))

The key point is that the functor Shv(X') — Shv(XT), - — L ®' - commutes with
finite limits, as this functor is exact. So, the LHS of (25) identifies with

lim L& Homgpyxnygce (¢ @ w, fE(Mx))
(IBJ—K)eTw(I)op

Since ¢ ® w € Shv(X!) @ C®! is ULA over Shv(X7), the latter limit becomes

lim }ComShv(XI)®C®I(C®W,L®f§(ME))f—\>/
(I J—K)eTw(I)or

lim Homgpy(xngosr (¢ ®w, fF(L© My)) =
(IBJ—>K)eTw(I)or

lim Homgp,x1 ypcox (fu(c@w), LOMs) = Homs , (¢(Loc(c®w)), LOM)
(IBJ—K)eTw(I)op P X

Step 2 Let U ¢ X! be the complement to the main diagonal X — X’. By Propo-
sition 3.7.8, it suffices to show now that ¢ becomes an isomorphism after applying
@ ghe(x1y Sho(X) and - ®gpy(x1y Sho(U). But both properties follow from factoriza-
tion. For the open part, we use here that the union of X]f’d forp: I — Jin fSet with
| J |> 1is U. We also use the following claim. If v : B — B’ is a map in Shv(U) —mod,
which becomes an equvalence after Zariski localization then v is an equivalence. So, i)
is proved.

ii) For any (I — J; — K1) € Tw(I) the functor (24) admits a continuous Shv(X7)-
linear right adjoint. Recall that each transition functor in the diagram 37 ¢ admits also
a Shv(X')-linear continuous right adjoint. Passing to the right adjoints in Shv(X?) —

mod, we get a canonical map Shv(X]fd) ® COK Tli(r}% FR. =S Cxr in Sho(XT) —
) w op i
mod. By ([22], 9.2.6), this is the desired Shv(X)-linear continuous right adjoint to the

projection Cxr — Shu(X] ;) © C¥K. O

Note that we may pass to right adjoints in the functor F; ¢ : Tw(I)? — Shv(XT) —
mod and get a functor denoted (F; o) : Tw(I) — Shv(X!) — mod. Moreover, by
the above lemma we may pass to right adjoints in the limit diagram “(T'w([)°?) —
Shv(X!) — mod of the functor F7 ¢, this produces a functor denoted (Frc)f> :
Tw(I)> — Shv(X!) —mod, whose value on the final object is C'y:. In other words, we
constructed a map in Shv(X!) — mod

2 lim(F;. o) — Cyr.
(26) ggug(?z,c) — Cx1

3.4.3. Question. Is the map (26) an equivalence?
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3.4.4. We hope that for any C € CAlg(DGCatcont), Cxr can be lifted naturally to
an object of CAlg(Shv(X!) — mod) such that for each (I — J; — K;) € Tw(I) the
corresponding map Shv(X%1) ® €/t — €y is symmetric monoidal. (The definition of
the symmetric monoidal structure on the Shv(X!)-module €y is not clear in general,
as Tw(I) is not sifted, so C Alg(Shv(XT) — mod) — Shv(XT) — mod does not preserve
the Tw(I)-indexed colimits maybe.

Note however that under the assumptions of Section 3.4, we have indeed Cx, = C'xs €
CAlg(Shv(XT) — mod).

Remark 3.4.5. Assume in the situation of Lemma 3.4.1 in addition that 1 € C is
compact. Since XX is smooth, the unit object w € Shv(XX) is compact. Indeed, the
functor T(XK, =) : Sho(XE) = Shu(x) is continuous. Thus, 1 ® w € (€ ® Shv(X))e.
So, the image of 1 ® w under the natural map € ® Shv(X) — Cxr (corresponding to
(I = % — ) € Tw(l)) is compact by Lemma 3.4.1. So, the unit of Cx1 is compact.

3.4.6. Asin [31], we want to show that Cyr is ULA in the sense of Section 3.7.6 below.
Let ¢ € €®f be compact. Then ¢ ® w € Shv(X') ® € is ULA. Here w is the unit
object of Shv(S) for S € Sch';c{f. Indeed, we have an adjoint pair L : Vect = €®! : R,
where L(K) = K ® c. Tensoring by Shv(X'), we get an adjoint pair L : Shv(X!) =
e®l @ Shu(XT) : R. Since R is continuous and Shv(X')-linear, ¢ ® w is ULA.

Recall the functor Loc : EI Cx — Cxr1 of Section 3.3.3 above. By Lemma 3.4.1, Loc

admits a continuous right adjoint, which is Shv(X?)-linear. If ¢ € €% is compact then

Loc(c ® w) € Cxs is ULA by Proposition 3.7.7 below. Indeed, C®! @ Shv(X') Loy Cxr

admits a continuous right adjoint, which is Shv(X7)-linear.
By Lemma 3.5.2 below, the essential image of Loc : X[ Cx — Cxr1 generates Cyr
1€

under colimits. We also check below in Lemma 3.5.12 that Cy: is ULA over Shv(X7').

Concretely, if ¢ € C®! is compact then Loc(c ® w) € Cys is ULA. Since C®! ®
Shv(XT) is compactly generated by objects of the form c®z, ¢ € (C®1)¢, z € Shv(X1)¢,
this shows that C'yxs is ULA over Shu(X!) using Lemma 3.5.2.

3.4.7. If € = Vect then Cy: — Shv(X') in Shv(X') — mod. Indeed, as in the proof
of Lemma 3.5.2 we see that (28) is an isomorphism in this case. In turn, °Tw(I)°

has an initial object (I drdr ), so the limit (28) in this case becomes the value at
(I8 12 7), that is, Sho(X7).

3.4.8. Let I' be an affine algebraic group of finite type. Let € = Rep(I') = QCoh(B(T")).
It is known to be rigid. We have a conservative forgetful functor € — Vect. The
functoriality of Fact yields a conservative functor Oblvyr : Cxr — Fact(Vect)(XT) =
Shv(X7'), here we use the definition of Cys as a colimit.

Write J ¢ for the functor J; is we want to underline the dependence on the category
C. Write ?ﬁc : Tw(I)? — DGCatopns for the functor obtained from F; by passing

to the right adjoints, then we do not have a map of functors ?ﬁc — grﬁ\/'ect for the
forgetfull functor oblv : € — Vect. That is, to get Oblvy: we can not use the definition
Cxr = lim ?ﬁc, we consider the colimits instead.
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As in ([31], 6.22.1) we derive from Proposition 3.7.7 that Oblvys has a Shv(X7)-
linear right adjoint Av'Y, : Sho(XT) — €x1777?

3.4.9. For I € fSet the union of X;disj for p: I — Jin fSet with | J |> 1 equals

X! — X. For ¥ = (I - J — K) € Tw(I) we have a morphism

I 5 J - K
Tid T 1

I 5 J = «

functorial in ¥. The corresponding functor Shv(le,d) ® COK g Shv(XZf’d) ® C is
functorial in 3.

Let ins : fSet;; C Tw([I) be the full subcategory of objects of the form (I — J — ).
We get an adjoint pair fSet;, = Tw([l) : 7, where 7(I — J — K) = (I — J — *).
Lemma 3.4.10. One has lim Shv(X;d) = Shv(XT), these are the sections

(I—»J—K)eTw(I)or ’
over X! of the factorization category Shv.

Proof. Consider the functor
n: (fSetr))” = DGCateont, (I 5 J — ) Shu(X] ),

where the transition functors are restrictions. Its RKE along the inclusion (fSet;,)? —
Tw(I)°P is no 7P by ([22], 2.2.39). So,

Shv(X] 4) = lim Shv(X] )

lim
(I—»J—=K)eTw(I)er (I—J—*)E(fSety,)oP

The category fSet;, has the final object (I — ), so the latter limit identifies with the
value at (I — * — %). O

Since C' is assumed dualizable, we have

Sh(X") o C= li Shv(X}4) ®C
U( )® _)(I—>J—>IgrelTw(I)0P( U( p’d)® )
Passing to the limit over ¥ € Tw(I)°, the above gives a functor Cxr — Shv(XH)®C.
For U = X! — X tensoring by Shv(U), we get a morphism Cy: Qsho(x1y Sho(U) —
Shv(U) ® C. The square is cartesian

Oxl — CXI ®Sh’U(XI) ShU(U)
\ \
Sho(XHeC — Sho(U) ® C,

where the horizontal arrows are restrictions. This is ”a way to do induction” over | I |.

3.4.11. For a reductive group G such that the set of irreducible representations of G
is infinite the functor m : Rep(G)®? — Rep(G) does not have a left adjoint. So, one
should not hope to be able to pass to the left adjoints in the diagram defining Cr

li Sho(X! %K = &
(I—>J—>IgrelTw(])0p v( p,d)® — Cxr1
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3.4.12. Recall that C € CAlg(DGCatcont) is assumed compacty generated, and we
assume that m : C®? — C admits a continuous right adjoint.

Let ¥ = (I &% J — K) € Tw(I). By Section 3.7.1, Shv(X] ) is self-dual in
Shv(XT) — mod. Besides, C®% @ Shv(X) is dualizable in Shv(X!) — mod, so their
tensor product Shv(XZf’d) ® C®K is dualizable in Shv(X') —mod, and its dual is

Sho(X] g) ® (CV)®F
Let D € Shv(X!) — mod. Then we get an equivalence
Fungp,xn)(Sho(X} g) ® (CV)®K, D)= C¥F @ Sho(X]) ;) ®spu(xy D
Our purpose is to understand the limit

: QK I
(Iﬁjﬁ}grelTw(l)opC ®© Shv(Xp’d) Dshoxn) Dy

where this diagram is obtained from the one defining C'y: by applying - ® Sho(x1y D-
We rewrite it as
27 li Fu Shu(x?! CV)*E D
(27) (I%JHIgTelTw(I)op Nopy(x1)(ShV(X) 4) @ (CY)5F, D)

Denote by gj]v,c : Tw(I) — Shv(X!) — mod the diagram obtained from Fr ¢ by
passing to the duals. The diagram (27) is obtained by functoriality from 5"}/70 by
applying Fung,x1)(+, D). So, the limit (27) identifies with

Fungy,xr) (%3}}%1 F{c: D)

3.4.13. Question. The equivalence Cxr f—v>Tli(1}% f}"[,c of Lemma 3.4.2 yields by pass-
w([l)°P

ing to the duals a morphism coli(gr)l FY o — (Cx1)V, where the colimit is calculated in
Tw ’

Shv(X') —mod. Is the latter an equivalence?

Remark 3.4.14. Assume in addition C rigid in DGCateont. Then in the case of D-
modules the answer to Question 3.4.13 is yes, this follows directly from ([31], Lemma 6.18.1).

3.5. Additional results about Fact(C).

3.5.1. We work here with any of our 4 sheaf theories. The theory of sheaves of cate-
gories in this context is developed in [24]. Let C' € CAlg(ShvCat(X)). Write Iy ¢ for
the functor F; : Tw(I) — Shv(X?) — mod if we need to underline the dependence on
the category C(X).

The category Tw(I) has an object (I — I — I). So, for I € fSet we get the
morphism Loc : EI C(X) — Cxr = Fact(C)(X1).

Lemma 3.5.2. The functor Loc : &I C(X) — Cx1 generates Cx1 under colimits.
1€

Proof. Tt suffices to show, by ([32], ch. I.1, 5.4.3) that the right adjoint Loc® : €y; —

&I €(X) is conservative. Denote by F; : Tw(I) — Shv(X!) —mod our functor sending

1€

(I - J— K) to k®K0®Jk(X), so Cyr := colimF7. Denote by j : O Tw(I) c Tw(I)
€
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the full subcategory spanned by objects of the form (I 5T K ), where p is an
isomorphism. We have an adjoint pair
j:%Tw(l) = Tw(I) : 5%,
where jRI 5 J % Ky =13
We may write

I & K).

Cxr lim X C®/k(X)
(I=J—=K)eTw(I)or keK
the limit of the functor ff‘"ﬁ obtained from F; by passing to right adjoints. Restricting
to the full subcategory °Tw(I)° the functor 3"}%, we get a morphism

28 e li FR
(28) X T Ky edTw(ryor

Let % denote the RKE of F% o 5 under "Tw(I)°? — Tw(I)°. By ([22], 2.2.39),
T =51 0 o (7).

The map of functors FE — FE evaluated at an object (I L T5 K)=% e Tw()”
becomes

X C®(X) - X C®hk(X).
keK keK

It is conservative, as its left adjoint is surjective. So, passing to the limit over Tw([I)?,
we conclude by ([22], Cor. 2.5.3) that (28) is conservative.
The category Tw(I)°P has an initial object (I d i I). So,

lim FES X CO(X)
(I—J—K)eOTw(I)op i€l

Thus, Loc® is conservative. O

From this lemma it follows that there could be at most a unique symmetric monoidal
structure on Cxr for which Loc is symmetric monoidal. Add the proof that it exists
indeed. I assume moreover that for any (I — J — K) € Tw(I) the corresponding
functor k?}( C®/k(X) — Cys is symmetric monoidal.

3.5.3. Factorization algebras in Fact(C). Let in addition A € CAlg(C(X)). We want
to analyse the construction of the corresponding commutative factorization algebra in
Fact(C).

For J € fSet write * : C®/(X) — C(X) for the product map, so we get the product
map A*/ — A in O(X) for A, here A*/ € C(X) is the image of A%/(X) under *. Now
given a map ¢ : J — J' € fSet, for the product map my : C®/(X) — C®'(X) we get
the product map mg(A®7) — A% in C®/'(X) for the algebra A.

We define the functor 7 4 : Tw(I) — Cx1 as follows. We will write ??:A =T if
we need to express its dependence on C. The functor I7 4 sends (I — J — K) to the
image under F;(I — J — K) — Cxr of the object

X A%k e R C¥(X)=F/(I - J = K)
keK keK
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Now for a map in Tw(I) given by (2) we get a morphism in k%( e®(2)k(X) and
546

hence in Cxr
3517A(I — Jl — Kl) — 35[7,4([ — Jg — KQ)

as follows. First, for the diagram (defining the transition functor for Fr)

K e2Ui(x) S ® eix) L R eeUr(x)
keK, keK, keKs

we get natural product map a( & A®Ur) — K A®2kin K e2(2)k(X) for the
keK1 keKy keKy
algebra A. Further, for A: X%t < X2 we have

A!( X A®(J2)k)’;; X A®W2)k
keKo keK,

in i E}( e®(2)k(X). So, we compose the previous product map with
53461

(R APURD AN (R ARV o )] AR

’ ke K4 ke Ko keKs>
Finally, Axr € Cxr is defined as colim Frain Cxr. That is,
Yo Sxt X (I=J—=K)eTw(I) LA X!
Axr— colim X A®k

(I—=J—=K)eTw(I) keK

taken in Cyr.

3.5.4. Let us check that this defines indeed an object of Fact(C)(Ran). That is, for a
surjection I — I' in fSet, the restriction functor Cxr — Cyy defined in Section 3.3
sends Ay to AXI"

We argue as and use the notations of Section 3.3. First, the image of Axr under
Cxr — Cyp writes as

colim X A%k
(I[—=J—K)eTw(I) keK’

taken in C'yp, where K’ = inf(K,I’). So, this is the colimit of the composition

f
T,A

B F
Tw(I) 5 Tw(l)! 5 Cyr,
where ?{A is the restriction of ¥ 4 to the full subcategory Tw(I)/ C Tw(I) composed
with the natural map Cx: — €. Since [ is cofinal, the above colimit rewrites as

colim A®k)

(I—»J—K"NeTw(I)f keK’
taken in Cyp. Since Tw(I") — Tw(I)f is cofinal, the above colimit rewrites as
A®J,’€)

colim
(I'=J' = K"eTw(I') kK’

taken in C'y 1/, hence identifies with A ;7. We obtained an object Fact(A) of Fact(C')(Ran).
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3.5.5. Given ¢ : I — J a map in fSet, arguing as after Lemma 3.3.1, one gets an
isomorphism

Ax1 |X£’disj _>(i,§], Ayry) |X<;,disj

in Cxr Qgpy(x7) Shv(Xé’disj), where we use the equivalence (19) to see both sides in
the same category.

3.5.6. Recall that in Section 3.3.4 we equipped I'(Ran, Fact(C)) with a structure of

an object of C Alg™ (DGCateons). Write x for the monoidal operation on Fact(C')(Ran).

Let us lift Fact(A) € Fact(C')(Ran) to a non-unital commutative algebra in Fact(C')(Ran).
Let I,y € fSet with I = I, U I5. Let

(11 — J1 — Kl) S Tw(Il), (12 — Jy — KQ) S Tw(fg)

Recall the functor o : Tw(l;) x Tw(Ily) — Tw(I), let (I — J — K) is the image of this
pair under «. Under the equivalence (20) one gets an isomorphism

(x A@(Jl)k)x( X A@(J2)k)/:; K A®k
keKy keK> keK

in k&K C®7k(X), hence also in Cy1, KCy1,. Passing to the colimit over Tw(I1) x Tw(I3)
€

in Cyr, X Cxr1,, we get in

Axn KAy, = colim X A®Tk,
(L= —K1)eTw(I) kek
(Ia—=J2—K2)eTw(I2)

where K = K U K>. Applying further the natural functor Cyr, X Cy1, = Cx1, we
get a natural map in Cyrs

(29) 6117[2 IAX11 &AXIQ — AXI

Now if I} — I{, Iy — I} are maps in fSet, using the commuttaive diagram (22) we
l-restrict (29) under X! < X!, where I’ = I LI I}, and get the same morphism

Brg Ay WA 1 — Ay
Passing to the limit over I, I’ € fSet x fSet, this gives a map
B(Fact(A) K Fact(A)) — u' Fact(A)

in I'(Ran x Ran, u* Fact(C)), here (3 is the morphism (23). We have denoted here by
u' : T(Ran, Fact(C)) — T'(Ran x Ran,u* Fact(C)) the natural ”shriek-pullback” for
sections. Recall from (][24], 2.0.2) that this u' has a left adjoint

Uy pace(c) * I'(Ran x Ran, u* Fact(C)) — I'(Ran, Fact(C)),

because u is a pseudo-indproper morphism of pseudo-indschemes. By definition of the
monoindal structure on I'(Ran, Fact(C')), this gives a map

Fact(A) x Fact(A) — Fact(A)
This is the product on Fact(A) in (I'(Ran, Fact(C)), *).
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3.5.7. From now on for the rest of Section 3.5 we assume that C(X) is compactly gener-
ated, dualizable as a Shv(X)-module, the functor C®?(X) 5 €(X) admits a continuous
right adjoint, which is Shv(X)-linear, and Shv(X) g C(X) admits a Shv(X)-linear
continuous right adjoint. Recall that €®7(X) denotes the J-tensor power of €(X) in
Shv(X) — mod.

Recall that for D-module dualizability of C(X) as a Shv(X)-module is equivalent
to its dualizability as a plein object of DGCateon:. This is maybe not true in the
constructible context.

Lemma 3.5.8. Let I be a finite nonempty set. Then Fact(C)(X?) is dualizable as a
Shv(X!)-module. Besides, for any (I — J — K) € Tw(I) the natural functor

(30) B CO®k(X) — Cy1

admits a continuous right adjoint, which is a strict morphism of Shv(XT)-modules.
Proof. Step 1 Forany (I — J — K) € Tw(I), kéEK C®7k(X) is dualizable in Shv(XT)—
mod. Indeed, M;c;C(X) is dualizable as a Shv(X”)-module, as the functor

H Shv(X) — mod — Shv(X”) — mod

J

of exteriour product is symmetric monoidal. Now the extensions of scalars functor

Shv(X7) — mod — Shv(XX) — mod with respect to A': Shv(X7) — Shu(XX) is

symmetric monodal. So, kXK C®7k(X) is dualizable in Shv(X%) — mod. Finally, ap-
€

plying ([22], 9.2.32) for the colocalization Shv(X¥) < Shv(X'), we conclude that

k&}( C®7k(X) is dualizable in Shv(X') — mod.
€

Step 2 Consider a morphism in Tw(I) given by (2). We claim that in the diagram

X U1k (X)—» K 6®(J2)k(X) 5 X e@(JQ)k(X)
keKy keK, keKs

both maps admit continuous right adjoints, which are Shv(X?)-linear. For the first
map we first check that it is Shv(X51)-linear using ([22], 4.1.6), and apply the functor
of direct image Shv(X%1) — mod — Shv(X!) — mod. For the second map we use the
fact that for any M € Shv(X%2) — mod, we have an adjoint pair

A!I M ®Sh’u(XK2) ShU(XKl) <:> M 1A!

in Shu(K?) — mod, which is also an adjoint pair in Shv(X') — mod.
So, we get the functor F; : Tw(I) — Shv(X') — mod, sending (I — J — K)
to k&}( C®/r(X), and we may pass to right adjoints here and get % : Tw(I)? —
€

Shv(X') —mod. Recall that the functor oblv : Shv(XT) —mod — DGCat e preserves
limits and colimits, so we may understand lim ff‘"ﬁ either in DGCatopns or in Sho(X 4 ) —
mod. Recall that colim F; = lim 97}?”, where the limit is understood in DGCat oy, the
claim about the right adjoint to (30) follows. To get the dualizability of Fact(C)(X7)
is Sho(XT) — mod we may apply ([22], 3.1.10). O
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3.5.9. The right adjoint m® : C(X) — C®*(X) of m together with 1Z : C(X) —
Shv(X) defines on C(X) the structure of a cocommutative coalgebra in Shv(X) —
mod. Write CV(X) for the dual of C(X) in Shv(X) — mod. Passing to the duals,
CY(X) becomes a commutative algebra in Shv(X) — mod with the product (m®)V :
(CV)®2(X) — CV(X) and unit (18)V : Sho(X) — CV(X).

Our our assumptions, the map C(X) — CV(X) is an involution. It interacts nicely
with the construction of Fact(C'), we discuss this in the next subsection.

3.5.10. Under our assumptions, for ¥ = (I — J — K) € Tw(I), the dual of

k&}( C®k(X) in Shv(XT) — mod is kXK(CV)®Jk (X). From Lemma 3.5.8 we conclude
€ €

that the dual of Cyxr in Shu(X!) — mod writes as

1 VvV~ li X V\®Jg X
(3 ) (CXI) - (I—)J%Ii’rgTw(I)op keK(O ) ( )

(limit taken in Shv(XT) —mod). For a map (16) in Tw(I) the transition map in the
latter limit is

VA®(J2)k Al VA®(J2)k m/ VA®(J1)k
B (CVU(X) B R0V () T B (O (X)

for A: X5t — X%z and m" is the dual to the product map m in Shv(XT) — mod.
We may pass to the left adjoints in Shv(X') — mod in the diagram (31), and get

vV —~ li X V\®Jg X
(Cxr)™ = (I T SKeTw(1) ST

The corresponding diagram is nothing but the functor 7 cv. We conclude that
(Cx1)" = (CY)x1

naturally.
Note that for D € Shv(X!) — mod one has

Fung,,x1(Cxr, D) = (Cxr)Y Qsho(x1y D — (€Y)xr Qsnu(xty D

3.5.11. Though we don’t know how to define the symmetric monoidal structure on
Cxr, for (I — x — x) € Tw(I) the corresponding functor C(X) — Cxs has to be
symmetric monoidal. Since 1¢ € €(X)¢, the unit of Cx: has also to be compact by
Lemma 3.5.8.

Lemma 3.5.12. Assume that C(X) is ULA over Shv(X). Then for any I € fSet, Cxr
is ULA over Shv(X?) in the sense of Definition 3.7.6. In particular, Cx1 is compactly
generated.

Proof. Step 1 Recall that our notation .%C(X) actually means (C(X)*) ® (Shv(X)8)

Shv(X1). Let us show that the latter category is compactly generated by objects of
the form

(32) (EI Ci) ®(Shu(X)B1) 2
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with ¢; € C(X) ULA over Shv(X), and z € Shv(XT)¢. In the case of D-modules,
Sho(X)® — Shv(XT) is an equivalence, and there is nothing to prove. Assume now
we are in the constructible context.

In this case for any S € Schy;, ®' : Shv(S) ® Shv(S) — Shv(S) has a continuous
right adjoint. Note that if ¢; € C(X) is ULA over Shv(X) then W;crc; is ULA over
Shv(X)®!. So, for any z € Shv(X1)¢, (32) is compact in (C(X)W)Q@(Shv(x)m)Shv(XI)
by Remark 3.7.3.

Let D C (C(X)®) @ gpoxymry Sho(XT) be a full embedding in DGCateons such
that D contains all the objects of the form (32). Then it contains all the objects
¢ @ (shu(x)mry 2 for ¢’ € C(X)®! 2z € Shv(XT) by ([15], 1.1, 7.4.2). Applying in addition
([15], 1.1, 8.2.6), we see that D = (C(X)®) @ (Sho(X)B1) Shu(XT).

Step 2 If ¢; € C(X) are ULA over Shu(X) then (EI ¢i) ®@(sho(x)pry w is ULA over
Shu(XT).
Indeed, consider the adjoint pair Shv(X)¥! = C(X)®! in Shu(X)®! — mod, where

the left adjoint is the multimlication by X;c;. Tensoring with Shv(X') over Shv(X)¥!,
we get the desired adjoint pair in Shv(X7T).

Step 3 By Lemma 3.5.2, the essential image of Loc : EIC'(X) — Cxr generates C'xr
1€
under colimits. Now if ¢; € €(X) are ULA over Shv(X), W;c; € EIC' (X) is ULA over
1€

Shv(XT). By Proposition 3.7.7 and Lemma 3.5.8, Loc(X;c;) is ULA over Shu(X7).
By Lemma 3.5.8, if ¢; € €(X) are ULA over Shv(X), z € Shv(X7)¢ then

LOC((J?I Cz‘) ®(Shv(X)‘Z”) Z)
is compact in Cxr, and these objects generate Cxr by Lemma 3.5.2. O

3.5.13. Assume in addition that we are given an adjoint pair O : €(X) & Shv(X) : OF
in Shv(X) —mod, where O is conservative, comonadic, and a map in CAlg(Shv(X) —
mod). The comonad OOF : Shv(X) — Shv(X) is Shv(X)-linear, so is given by some
coalgebra O¢ € Shv(X).

The map O is a morphism in C' Alg(ShvCat(X)), hence we may apply the construc-
tion of Fact to this map. For any [ € fSet,¥X. = (I — J — K) € Tw(I) we get an
adjoint pair

Os: B C®(X) = Sho(XE) : O

in Shv(X')—mod, where Oy, is obtained from O by the functoriality of the construction
of Fr. Since all the involved categories are dualizable, by ([22], 9.2.67), for any I €
fSet,¥ = (I - J — K) € Tw(I) the functor Oy is conservative. The comonad
OsO%f on Shv(XX) is given by tensoring with k?[( O%J’“ € Shv(X¥). The map A:

Sho(XK) — Shv(XT) is left-lax monoidal, so sends coalgebras to coalgebras. So, we
may think of kﬁK O%J’“ as a coalgebra in Shu(XT). Since for A: X® — X7 the functor
€

Ay: Sho(XE) — Sho(XT) is fully faithful, we have

kﬁK O?J’“ — comod(Shv(X¥) = k@K O?J’“ — comod(Shv(X1))
€ €
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canonically.

Assume that Oy, is comonadic for any I € fSet, ¥ € Tw(I). This is the case in the
main example below in Section 3.5.19 by ([31], 6.23.2). In particular, for any J € fSet,
C¥(X)= 0%/ — comod(Shv(X))

We assume in addition that O¢ € coAlg(Shv(X)) is lifted Oc € C Alg(coAlg(Shv(X)),
and the structure of an object of C Alg(Shv(X)) on C(X) comes now from this bialge-
bra structure on O¢.

Namely, the unit 1o, : wx — O¢ is a map in coAlg(Shv(X), so gives the extensions
of scalars map

Shv(X)—=wx — comod(Shv(X)) = O¢ — comod(Shv(X)) = C(X),
which is the unit of C'(X). For J € fSet, the product map O%J — O¢ in coAlg(Shv(X))
gives via extension of scalars the morphism

C¥(X) = 087 — comod(Shv(X)) — O¢ — comod(Shv(X)) = C(X)
which is the product for C'(X) along J — .

3.5.14. Passing to the colimit over Tw(I), Oy yields a functor denoted O : Cxyr —
Shv(XT) in Shv(X!) — mod. By ([22], 9.2.39), O; admits a continuous right adjoint
OF obtianed from OF by passing to the limit over Tw(I)?. We obtained an adjoint
pair
O1: Cx1 = Shu(XT) : OF
in Shv(X')—mod. The corresponding comonad is given by some coalgebra in Shv(X7).
Is it true that Oy is comonadic? Why is it conservative? In our main example, the
functor i}'ﬁ is not compatible with O.
Note that if I — I’ is a map in fSet then applying ®S,w(X1)Shv(XI/) to the above
adjoint pair, one gets canonically the adjoint pair
Op : Cyxr = Shu(XT) : OF
For Oy this follows from the functoriality of Fact, so for the right adjoint it is automatic.
This means that we get after passing to the limit over I € fSet the adjoint pair
ORan : Fact(C)(Ran) & Shv(Ran) : OF

by ([15], I.1, 2.6.4). This is an adjoint pair in Shv(Ran) — mod, where Shv(Ran) s
equipped with the ®' pointwise symmetric monoidal structure.

3.5.15. To a morphism (16) in T'w(I) we attach the composition

X o%ul)kg X O%(JZ)I@& X O%(b)k
ke Ky ke Kq keKy

in coAlg(Shv(X*2)), hence also in coAlg(Shv(X")). This defines the functor
3"?"’(‘9‘29 Tw(l) — coAlg(Shv(XI))

whose underlying functor F o, : Tw(I) — Shv(X') is as in Section 3.5.3 for the
factorization category Shv(Ran).
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The forgetful functor coAlg(Shv(X')) — Shv(X!) preserves colimits, so

O = li F
(Oc)xs (Iajiol(l)rg:ﬁw(l) Loc

can be understood in Shv(X') or equivalently in coAlg(Shv(XT)). Now Fr ¢ : Tw(I) —
Shv(XT) — mod is obtained from the functor St?oéég passing to comodules in Shv(X7),
that is, the equivalence

X C® (X)) K 0%k d(Shv(X!
keKC ( )—>k€K c comod(Shv(X"))

becomees functorial in ¥ € Tw([I), where on the RHS we use the functor 3'“;0642;9 :
Passing to the colimit over T'w(I) this gives a canonical diagram
Cx1 - (0¢) x1 — comod(Shv(X"))
Jor /oblv
Shu(XT)
Is it an equivalence?

3.5.16. The counit map O¢ — wx in CAlg(Shv(X)) by functoriality of the construc-
tion of factorization algebras in Shv(Ran) gives a morphism in

Fun(Tw(I), Shv(XT) — mod)
from F7,0, t0 Truy. Namely, for £ = (I - J = K) € Tw(I) the map X 057 —
S

wyrk is functorial in ¥ € Tw(I). Passing to the colimit over ¥ € Tw([), this gives a
map in Shv(XT)

(33) (OC)XI — WxlI.

It is compatible with factorizations, and gives as I varies in fSet the map Fact(O¢) —
Fact(wx) = wran in Shv(Ran).

3.5.17. In fact, in our situation Oc € CAlg(C(X)). For J € fSet the product for
J — % is given as follows. The J-th tensor power of O¢ in the symmetric monoidal
category C(X) is 05’ (where the tensor power is taken in (Shv(X),®')) with the Oc-

comodule structure given by O%J ™ O¢. Here my is the product on O¢ as an object
of CAlg(Shv(X)). Then m itself becomes the desired product map.
The unit of the symmetric monoidal category C(X) iswy € O¢c—comod(Shv(X)), on
which the O¢c-comodule structure is given by the map 1o, : wx — O¢ in coAlg(Shv(X)).
The unit of O¢ as a commutative algebra in C'(X) is the morphism 1¢,, : wx = O¢
in O¢ — comod(Shv(X)).
3.5.18. So, we may apply the construction of the factorization algebra to Q¢ €

CAlg(C(X)). In other words, we may think of the colimit of the functor ff"}g}g}c(x) :

Tw(I) — Shv(XT) as the image under Oy : Cyxr — Shv(X') of %Oli(?)lﬁrgoc.
By abuse of notations, we sometimes write (O¢)xr € Cxr. Now (33) is actually a

morphism O;((O¢) xr) = wxr. By adjointness, it gives the morphism in Cyr
(34) (0c)xr = Of(wxr)
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compatible with factorizations and base changes under A' for A: X" & x! , Where
I — I' is a map in fSet. Here we used the observation from Section 3.5.14 that the
formation of Of commutes with functors A'.

Since for I = * the map (34) is an isomorphism, we conclude that for any I it is also
an isomorphism.

We conclude that the comonad O;OF : Shv(X!) — Shv(XT) is given by (0¢)xs €
coAlg(Shv(XT)).

3.5.19. Ezample. Classically, for €(X) = Rep(G) ® Shv(X), where G is a reductive
group over e, the map x La yields the dual pair O : Rep(G)®Shv(X) S Sho(X) : OF
in Shv(X)—mod, while the left adjoint to O does not exist (when the set of irreducible
representations of G is infinite). All the assumptions of Section 3.5.13 are satisfied.

3.6. For 8.2. It is understood that C is a commutative algebra in DGCatcopt.

3.6.1. Twist of a sheaf of categories by a gerbe. For 8.2.2. There we need a general
definition of the twist. Let C € DGCatont, A be a torsion abelian group with a given
monoidal functor B(A) — Funy cont(C, €). That is, A acts on € by automorphisms of the
identity functor. (For example, if € € C'Alg(DGCatcont) then we have a version where
the input datum is a monoidal functor B(A) — Fun? cont(C, €), the latter category
denotes the category of k-linear continuous symmetric monoidal functors from € to
itself).

Let a A-gerbe G : Y — B2(A) be given. We want to construct a sheaf of DG-
categories (resp., a sheaf of symmetric monoidal DG-categories) Cg on Y. Recall that
ShvCat jy satisfies the etale descent (for any theory of sheaves). Pick f:Y’ — Y an
etale surjection and a trivialization of our gerbe over Y’. Then we get the Cech nerve
Y*/Y of Y = Y with Y/Y =Y’ xy x... xy Y’, the product taken n + 1 times.
The natural map ShvCat;y — Tot(ShvCatyrs y) is an isomorphism in 1 — Cat. We
construct the corresponding object of Tot(ShvCaty e /y) as follows. As an object of
ShvCatym y this is the constant sheaf € ® Sho(Y""/Y). Over Y/ xy Y' =YY we
get a A-torsor F giving an automorphism of the trivial A-gerbe over Y/ xy Y. Over
Y’ xy Y’ xy Y’ we get an identification pris F o pris F— pris F of the automorphisms
of the trivial A-gerbe.

Over Y/ xy Y’ we get an automorphism

T Shu(Y xy Y)IC® Shu(Y' xy V')
of this sheaf of categories given as the composition Y’/ xy Y’ EA B(A) — Fung cont(C, C).

Over Y2/Y we then get the commutativity datum for the diagram

CwShu(Y?/Y) P37 e Shu(Y?)Y)

N\pris T Loprss 7
C® Shu(Y/)Y)

and so on, which together define the desired object of Tot(ShvCatys y ).



73

More precisely, we are given as an input a commutative diagram

v % B%(A)
) )
Y — pt

Passing to the Cech nerves, we get a morphism of groupoids in PreStk, Y'*/Y —
pt*/B2,(A). Here pt"/B2,(A)= Bet(A) x ... x Be(A), the product taken n times for
n > 0. In this sense F extends to a what could be called a multiplicative A-torsor on
the groupoid Y’*/Y. Now J is a morphism of groupoids from Y’*/Y to the groupoid
in DGCatcont corresponding to Funy cont(C, €).

So, F looks like an algebra in the monoidal category Funy, cont (€, €) with the difference
that the symplicial object [n] — Fung cont(C, €)®™ defining this monoidal category is
replaced by the simplicial object [n] — Fung cont(C, €)™ @ Sho(Y'™/Y). It seems the
desired category Cg is the category of F-algebras in € ® Shv(Y’). One should still
give a sense to this notion similarly to the notion of a module over an algebra in the
(00, 1)-category setting. (To be improved later).

3.6.2. For 8.3.1. For a group H, Z(H) acts on Rep(H) by the automorphisms of the
identity functor (viewed as a symmetric monoidal category). This means that 1) for
z € Z(H),V; € Rep(H) letting z; be the action of z in V;, the action of z on V; ® V3 is
2122; 2) the action of z € Z(H) on the trivial representation is trivial.

3.6.3. For 8.3.3. The sheaf Shvg(Grg)ran was defined in 2.4.2.

Where the symmetric monoidal structure on the sheaf of categories Shvgr (Grr)/Ran
comes from?

Let Y € PreStkyy;, Z € Grp((PreStk;s)/y) and § be a multiplicative A-gerbe on
Z, that is, given by an element in Mapgrp((PreStklﬁ)/Y)(Z, B2 (A) xY). Then we can
consider the sheaf of categories Shvg(Z) /v over Y sending S — Y to Shvg(Sxy Z). We
need some assumptions to get the convolution monoidal structure on this sheaf of DG-
categories. Assume for example that f : Z — Y is ind-schematic, so that f, : Shv(Z) —
Shv(Y') is defined, see my Section 3.1.8. Let m : Z xy Z — Z be the product map, then
it is automatically ind-schematic, to that m, : Shv(S xy (Z xy Z)) — Shv(S xy Z)
exists for S € (Sch(;cic ! )y - The usual convolution product is the composition

Shv(S Xy Z) @spu(s) Sho(S Xy Z) = Shv(S xy (Z xy Z)) ™ Shv(S xy Z)
Twisting by G, we get the desired convolution morphism
Sth(S Xy Z) @ Shu(S) Shvg,(S Xy Z) — Sth(S Xy (Z Xy Z)) s Sh’Ug(S Xy Z)

For clarity, Shvg(S Xy Z) is naturally a Shv(S xy Z)-module, hence a Shv(S)-module.
Assume also the unit map u : Y — Z ind-schematic, so uy : Shv(S) — Shv(S xy
Z) exists. By assumption, u*§ is trivialized over Y. So, we get the morphism u, :
Shv(S) — Shvg(S xy Z) for S — Y with S € Sch/”.
If in addition Z € ComGrp((PreStk;s;)/y) and

§e Map@omGrp((PreStklft)/y)(Za Bc?t(A) X Y)
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then I think Shvg(Z),y will be a sheaf of symmetric monoidal DG-categories over Y.

Remark 3.6.4. We used without a definition the notion of a sheaf of (symmetric)
monoidal DG-categories on some Y € PreStk;s;. The definition is that it is an object
of CAlg(ShvCat y ), where ShvCat jy is considered as a symmetric monoidal category
with termwise tensor product: if C,C" € ShvCat,y then C ®Shv,y C' is the sheaf of
categories whose sections over S —'Y are C(S) @gpys)y C'(95)-

3.6.5. For 8.3.3 more. Let us check the equivalence (8.11) in the case when the gerbe

Gr is trivial. Note that Rep(7") = @xea Vect =[], ca Vect, where on the corresponding

piece Vect the group T acts by .
For I a finite nonempty set, the sheaf Shv(Grr),ran associates to X I the category

35 Sho(Gry comp Xran X ') = li Sho(XE
() U( I'T comb XR ) (K7A§3L%)631 U( )

as we have seen in my Section 3.0.50.

By definition, the sheaf of categories Fact(Rep(T)) associates to X! the following
category. Consider the category Tw(l)s, whose objects are collections: (I — J —
K) € Tw(I) and a map A\’ : J — A. A morphism from (I — J — K, \/) to (I = J' —
K’,\”") is a morphism from (I — J — K) to (I — J' — K') in Tw(I) as in 8.1.4 with
the surjection J — J' denoted ¢ such that for each j' € J' one has Ay = 37,5 A;.
Then the value of Fact(Rep(T)) on X7 is

(36) colim Shu(XK)
(I—~J—K A\ eTw(I)s
Indeed, we may rewrite X Re TV as @  Sho(XE).
¥ keK p(T)x AyiT—A (X7)

We have the functor Tw(I)y — J; sending (I — J 5 K, \’) to (I — K, \¥), where
M is the direct image of A7 under v. So, let’s calculate (36) in two steps: first take
the LKE along this functor and then colimit over J;.

Given an object, say a = (I — K,A\) € J;, we claim that Tw(I)a xg, (31)/q is
contractible.

An object of the latter category is given by a diagram (I — J' = K’, A7) € Tw(I)a
and a surjection ¢ : K — K’ compatible with surjections I — K,I — K’ such that
HNE =N,

Consider first the full subcategory Yy C Tw(I) X3, (d1) o consisting of those objects
for which K’ has only one element. Then the inclusion Y C Tw(I)x xg, (d1)/q is

not cofinal, however it induces an isomorphism of geometric realizations. Indeed, this
14

functor admits an adjoint Tw(I)a xg, (1)) — Y sending a point (I — J" = K’ a
K M) to (I = J — % + K,\'). Besides, Y has a final object. The final object of
Y is of course (I — * — %, A) € Tw(I)x, where A = Y7, - A\r. We have proved the
contractibility of Tw(I)x xg, (dr1)/a

So, the LKE in question produces precisely the colimit (35). The equivalence (8.11)
for G trivial follows.
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3.6.6. For 8.4.1. The definition of t-structure on Rep(H)g,(X) should be as follows
I think. Let S € Sch?c{f, S — X be an etale morphism such that the gerbe Gz
becomes trivial on S. Any trivialization of Gz over S gives a functor Rep(H)g, (X) —
Rep(H) ® Shv(S). Consider the forgetful functor Rep(H) — Vect given by restriction
to {1} € H. Composing with Rep(H) ® Shv(S) — Vect @Shv(S)—= Shv(S), we get a
functor rg : Rep(H)g, (X) — Shv(S). The t-structure on Rep(H)g, (X) is such that
rg is t-exact for the perverse t-structure on Shv(S).

In the definition of a twisted local system we have to require that the functor
Rep(H)g,(X) = Shv(X) is Shv(X)-linear, that is, comes from a morphism of sheaves
of categories Rep(H )g, — Shv,x over X. This is also used in 8.4.3 for the functoriality
of the construction.

3.6.7. My impression is that one of the advantages of the framework from the book
[15] is as follows. Consider BZ,(E**"$) in the classical algebraic geometry setting this
would be a stack over Spec E, but we view it as an object of PreStk = Fun(Schaff, Spc),
where Sch®/ are over k. For any Y € PreStk we may consider Map(Y, BE,(E*:0"5)).
I mean that was the following problem in the classical setting. For example, for Q-
sheaves given a scheme Y over a field k, we were not able to view a Q, 1S _serbe on
Y as a geometric object. More precisely, for a finite abelian group say H viewed as
a group scheme over k, we can consider a H-gerbe Y — Y. But to get the desired
category of Q-sheaves on Y, we need a character H — @Z

More basically, an abelian group H directly is an object of PreStk, a constant
prestack, while in the classical setting we need first to realize it as an algebraic group
over Spec k to get the corresponding geometric object.

1
3.6.8. For 9.1.1. We may view the gerbe 3¢ ® det? as a gerbe over the quotient
£7(G)\ Grg. This quotient is a factorization prestack over Ran, and this gerbe is a
factorization gerbe over the factorization prestack £7(G)\ Grg. So, by 2.2.6 we get a
factorization sheaf of categories over Ran.
The monoidal structure on (Sphge )/ Ran is obtained formally as follows. Consider the

—~2
map Grg = Grg XRan Ran? given by (7.6). Restricting to the diagonal under Ran —
~2 -
Rang, we get amap [ : Grg Xg,,2 Ran — Grg over Ran. Further f*SG = GEXGC as in
1

7.3.4. The gerbe §¢ ® det? satisfies the same property, because f*dety = detg X dety.
The desired convolution is the direct image fi, here f is ind-proper so fi is defined by
([8], 1.5.2).

3.7. Generalities about sheaves theories. Let us take Shv(S) = D —mod(S) for
S € Sch’}{ ! as the sheaf theory. Sam claims then Shv(S) is not rigid, however, the

following property holds. Let € € Shv(S) — mod(DGCatcont). Then € is dualizable as
an object of Shv(S) — mod iff it is dualizable as an object of DGCatcoy:. This is a non
evident result!

Proof. 1) Shv(S) is dualizable in Shv(S x S) — mod. Indeed, Shv(S) is a retract of
Shu(S x S).
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2) Let C, D € Shv(S) — mod. Then by ([22], Section 9.2.45) one has
FunShv(SXS) (ShU(S)v Funk,cont(ca D)) ’_\;FunShv(S) (Ca D)

Besides, by ([22], Section 6.1.17), Shv(S) QShu(S)@Shv(S) (Ce®D)=C ®Shv(S) D.
3) Assume C, D € Shv(S) — mod and C' is dualizable in DGCatgon:. Then we get

Fungp,(s)(C, D) = Fungpy(syeshe(s) (Shv(S), Fung cond(C, D)) =
Shv(S) @shu(s)eshu(s) C ® D= CY Qgpys) D

This implies that C is dualizable in Shv(S) — mod.

4) If C is dualizable in Shv(S)—mod then C®gj,(5)QCoh(S) is dualizable in QCoh(S)—
mod. Since QCoh(S) is rigid, C ®gp, sy QCoh(S) is dualizable in DGCateont. The
functor oblv : €' — C @gpy(s) QCoh(S) is monadic, so C' is dualizable as well. My
understanding here is as follows: there is a monad A acting on QCoh(S) such that A —
mod(QCoh(S)) = Shv(S). Then C = (C®gpy(5)QCO(S))@qcon(s)A—mod(QCoh(S)).
Since both A — mod(QCoh(S)) and C ®gp, sy QCoh(S) are dualizable in QCoh(S) —
mod, their tensor product is also dualizable in QCoh(S) — mod, hence dualizable in
DGCatcont. I have not checked the fact that Shv(S) — A — mod(QCoh(S)). The du-
alizability of A — mod(O) in O-modules for some O € Alg(DGCatcont) is in ([10],

47.1). 0
Recall that for any S € Sch{/, Shv(S) is dualizable. So, for a morphism f : ' — §
in Sch?{f, the functor Shv(S)—mod — Shv(S")—mod, & = E@gp,(s)Shv(S') preserves

limits for D-modules. For this reason, for any Y € PreStk; s, ShvCat/y admits small
limits for D-modules.

3.7.1. Consider a closed immersion f : Y < X of schemes. Then, for any theory of
sheaves, fi: Sho(Y) — Shv(X) is fully faithful by ([8], 1.5.2 and 7.4.11), and actually a
retract of Shv(X). Note that Shv(X) is dualizable in Shv(X)—mod. The assumptions
of ([22], 3.1.10) are satisfied, because Shv(X) — mod admits small colimits, and the
tensor product preserves small colimits separately in each variable. So, Shv(Y) is
dualizable in Shv(X) — mod, and is self-dual in Shv(X) — mod.

We especially need this for closed immersions X/ < X’ corresponding to surjections
of finite nonempty sets I — J for establishing factorizable Satake.

If j: U — X is an open immersion, X € Schy; then Shv(U) is a retract of Shv(X).
So, by ([22], 3.1.10), Shv(U) is dualizable in Shv(X) —mod and is actually self-dual in
Shv(X) — mod.

3.7.2. Consider any of our 4 sheaf theories. Let S € Sch;{f, C € Shv(S) — mod,
here we view Shv(S) with the ®'-symmetric monoidal structure. Recall that Shv(S)
is compactly generated in any sheaf theory. As in ([31], B.5.1), Sam proposes the
following.

Definition. (Sam Raskin) An object ¢ € C is ULA iff the functor Homc(c, —) :

C — Shv(S) is continuous and Shv(S)-linear. Here Hom¢ denotes the inner hom with
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respect to the monodal category Shv(S). Since Shv(S) is presentable, this inner hom
automatically exists. Moreover, for any = € C', K € Shv(S) we have a canonical map

(37) K @ Homcg(c,z) = Home(c,x @ K)

Indeed, it comes from the natural morphism K ® Home(c,z) ® ¢ — x @ K (the lat-
ter comes from Home(c,x) ® ¢ — x). The Shv(S)-linearity means that (37) is an
isomorphism for any K € Shuv(S).

Remark 3.7.3. Let C € Shv(S) — mod, ¢ € C. If ¢ is ULA then for any M €
Shv(S) —mod and m € M€, the product ¢ Mg, () m is compact in C Rgpy(s) M.

Proof. as in ([31], B.5.1). By assumption, the functor Shv(S) — C, K — K ® c has a
continuous right adjoint. O

Remark 3.7.4. If L : C — D is a Shv(S)-linear continuous functor admitting a
Shv(S)-linear continuous right adjoint then L sends ULA objects to ULA objects.

Lemma 3.7.5. Let j : U < S be an open immersion, S € Schy, C € Shv(S) — mod,
F € C be ULA over S. Then for any G € Shw(U), 7(G) ® F=j(G & F). In
particular, ji(F) is defined for the partially defined left adjoint ji : Cy := C @gpy(s)
Shv(U) — C to j'.
Proof. First, without any ULA assumptions, for any F', K € C,
Julwy @ Home(F', K)) = juj' Home(F', K) = (juwy) @ Home(F', K)

in C.

Since F's ULA, we get in addition (j.wy) @ Home (F', K) = Home (F, (jwu) ®' K).
Now for any F € C,

Home (jiG®'F, F) = Homgp,(s) (G, Home (F, F)) = Homgpuw) (G, j' Home (F, F))

= Homgp(w) (G, Homey, (' F, j' F)) = Home, (G &' j'F, j'F)

as desired. O
Definition 3.7.6. (Sam Raskin) Let S € Schy,, C € Shv(S) — mod. Say that C is

ULA if it is compactly generated as a Shv(S)-module category by ULA objects. That
is, C is generated by objects of the form ¢ ® m with ¢ € C ULA and m € Shv(5)°.

Write QU4 < @ for the full subcategory of ULA objects. For any sheaf theory
@ULA @, Indeed, for D-modules this is ([31], B.4.2), and in the constructible context

this follows from the fact that wg is compact, see below. Moreover, If C' is ULA over
Shv(S) then for any ¢ € CUVIA K € Shu(S)¢, K ®' ¢ € C°.

Proposition 3.7.7. Let C € Shv(S) — mod be ULA and F : € — D be a map in
Shv(S) — mod. Then F has a Shv(S)-linear continuous right adjoint iff F(CULA)
DULA

More generally, assume Co C CULA is a full subcategory such that the objects of the
form ¢ @gpy(sy I for ¢ € Co, ' € Shv(S)¢ generate €. If F(Cy) C DULA then F has a
Shv(S)-linear continuous right adjoint.
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Proof. For D-modules this is ([31], B.7.1), and the proof of loc.cit. holds for con-
structible context also. g

Proposition 3.7.8. Let j : U — S be an open subscheme, the compement to the closed
immersion i : Z — S. Let f: C — D be a morphism in Shv(S) — mod, assume C' is
ULA over Shv(S). Then f is an isomorphism iff f preserves ULA objects and induces
equivalences

C @ Shv(S) Shv(U) — D @ Sho(S) Shv(U), C @ Shv(S) Shv(Z) — D @ Shv(S) Shv(Z)

Instead of preservation of ULA objects, it suffices to require that f admits a Shv(S)-
linear continuous right adjoint.

Proof. as in ([31], B.8.1) O

3.7.9. Consider a sheaf theory from [14] in the constructible context. Let S € Schy; be
separated. Sam claims the Verdier duality gives an equivalence Shv(S)¢— (Shv(S)¢)P,
hence by passing to Ind, an equivalence Shv(S)= Shv(S)Y. What about D-module
case?

Consider the diagonal map & : S x S — S. The functor &' : Shv(S x S) — Shv(S)
preserves compact objects. Indeed, it identifies with Dé*ID, so it suffices to show that
0* preserves compact objects. This is true, because it has a continuous right adjoint
0s = 0.

(In the D-module case Lin and Sam claim that ¢ ' does not preserve compact objects.
CHECK!)

Consider the tensor product functor m : Shv(S) ® Shv(S) — Shv(S), K1 X Ko
§'(K1 R Ky). If K; € Shu(S)¢ then 6'(K; B K3) is compact. Since Sho(S) ®@ Shv(S) is
generated by compact objects of the form K; X Ky with K; € Shv(5)¢, we obtain by
(]22], 4.2.3) that the right adjoint m® to m is continuous.

The failure of rigidity of Shv(S) in the constructible context comes from the fact that
certain compact objects are not dualizable. Example of Lin Chen: let S be a smooth
scheme of finite type, z € 5,5 : S —x — S. Let 4, denotes the delta sheaf supported
at z. It is not dualizable. Indeed, assume it is dualizable, let M = (d,)". Then for
F,N € Shu(S) we get Map(F ®' 6, N) = Map(F, N ®' M), where Mapgp,(g) = Map.
Taking y € S closed with y # x and F' = J,, we get by base change for proper
morphisms &, ®' J; = 0, 50 Mapyq (k, z;(N ®' M)) = *. We could similarly take d,[n]
for any n € Z, which shows that Z;(N ®' M) = 0 (see [22], 9.2). On the other hand, take
F = jiws_, and N = wg, here wg is the dualizing complex of S. Then Map(jiws_) ®'

6z, ws) = Map(Qs_g, j' M) is nontrivial. Indeed, D(jiws_»)®'6:) = A* (5.Q,X(i,)1Qp)
is nonzero. Here we denoted by Qy the corresponding ”constant sheaves”, that is, Dw.

In the constructible context (at least) for S € Schy, the dualizing sheaf wg € Shv(S)
is compact. Indeed, the functor Shv(S) — Vect, M — RI'.(S,ws ® D(M)) is continu-

ous. We have RHom(wg, M) = DRI.(S,ws @ D(M)).

3.7.10. If f : Y — Zis a morphism in PreStk;s; and C' € ShvCat(Z) then for any sheaf
theory there is a natural functor I'(Z, C') — I'(Y, f*C). Indeed, I'(Z, C) is the value on

Z of the functor ((PreStk;s;),7)? — DGCatcont, which is the RKE of ((Sch;{f)/z)"p —
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DGCateont, S — I'(S,C). Since this RKE is a functor, it yields the desired functor. It
may happen that the right adjoint to the restriction ShvCat(Z) — ShvCat(Y) does
not exist, I think.

Assume Y, Z are pseudo-indschemes, and f : Y — Z is pseudo-indproper in the
sense of ([30], 7.15.1). Let C' € ShvCat(Z). Then the restriction functor I'(Z,C) —
(Y, f*C) admits a left adjoint f, o : I'(Y, f*C) — I'(Z,C). Same proof as in ([30],
7.15.5). Namely, let Z = colimjcy Z;, where the transition maps a : Z; — Z; are
proper, and each Z; € Schy; (separated). Recall that Z; is 1-affine, and we have the
adjoint pair oy : Shv(Z;) = Shv(Zj) : o' in Shv(Z;/) — mod. Tensoring this adjoint
pair by I'(Z;,C), we get an adjoint pair v ¢ : I'(Z;,C) 2 I'(Z;,C) : oM. Assume
now I — J is a diagram, and Y = colim;c; Y;, here Y; is a separated scheme of finite
type, and the transition maps Y; — Y;» are proper. Then I'(Y,C) = colim;c; I'(Y;, C).
The desired functor f, ¢ is obtained from the compatible system of functors fi ¢ :
['(Y;, C) — I'(Zj(;), C). Here the corresponding morphism 3 : Y; — Z;(;) is proper.

Compare with ([22], 9.2.21).

3.7.11. If we have a cartesian square

x £ v
g ih
x Ly

then it can not be true that f'g* = t'h*. For example take t = g : Speck % Al. Then
¢' is different from g*. Here we have taken the fibre product in the sense of non-derived
algebraic geometry (but the derived geometry does not cure this).

3.8. More for version June 1, 2020.

3.8.1. In Th. A.3.3 the quotient Grp, / Gry, is understood in the topos of prestacks,
using the fact that Gry, € Grp(PreStk).

3.8.2. For A.3.6. Let S € Sch‘}{f. If I € Ran(S) and G is a py,-gerbe on S x X (with
a trivilization over Us then localizing in etale topology of S), there is a line bundle £
on S x X and an isomorphism Lo =G over S x X. Indeed, for pr: X x S — 5, we
have pr, fin — pn ® HY(X, 1) [—1] ® H2(X, 1) [~2]. Localizing in the etale topology of
S, our class in H%(S x X) comes from an element of H?(X, u1,,). However, the map
HY(X,0*) — H3(X, ) = Z/n7Z coming from the Kummer sequence 1 — 1, — 0% —
0* — 1 is surjective: if L is a line bundle of degree 1 on X then Lo equals 1 € Z/nZ.

3.8.3. For A.3.6. If I is a finite abelian group of order coprime to char(k) and S € Schy,
is smooth and separated then S-points of Grrgg,, is the set: I € Ran(S) and a map
I — T'. More generally, the same holds for S irreducible if for 7 # j € I, I'; N T'; is of
dimension < dim S.

As in Sect. A.3.1 of the paper, present our S-point of Grrgg,, by an element of
H° of C*(T';,7'(T")), here 7 : I'; — S is the projection. Note that 7'(T") is placed in
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cohomological degrees > 0. Consider the map s : U;c7.S — I'; whose i-th component is
the natural map I'; — I';. We have a natural map
51(T) = sis'7' () — 7'(T)

Localizing S if necessary in the topology of finite surjective maps, assume S reduced
irreducible. Let also assume that for ¢ # j € I, I'; N I'; is of dimension < dim S. We
claim that the obtained map 7 : s(T') — 7=°7(T) is an isomorphism.

Indeed, the usual constructible sheaf TSOTI'!(P) has no subsheaves supported on closed
subschemes of dimension < dim S, because for such a sheaf F' we have Hom(m F,I") = 0.
This means that this sheaf is the nonderived *-extension of its restriction to I'; with all
the intersections I'; N T'; removed (for i # j). This gives Map(S, Grrgg,,) — Map(I,T)
in this case.

3.8.4. Let I be a finitely generated abelian group of order coprime to char(k). As in
Section 3.1 of the paper, one constructs a map
Mappyg(presk, ) (Bet ([ ® G) x X, BL(A(1)) x X) — FactGea(Grreg,, )
Is it an isomorphism? What are the homotopy groups of the LHS? See below.
3.9. More on Appendix A.

3.9.1. Maybe add the following in Appendix A?

Let T' be a finitely generated abelian group of order coprime to char(k). Define
GITgG,.,comp similarly to the case of a torus. Namely, consider the index category €
whose objects are pairs (I, \') with I a finite non-empty set, A’ : I — I'. Write \; for
the value of A’ on i. A map from (J, A7) to (I, \) in C is a surjection ¢ : I — J such

_ , _ : I
that \; = Z¢(i):j Ai. Set Grrge,, comb = (?3111)%%)( .

Pick a section of
(38) I — I/Ttors
We get a decomposition I' = I'/7ee x Ttors . So,

Gl‘p@@m /;; Grl‘*f'ree®Gm X Grl“tors®Gm
There is a natural map
(39) GrF@Gm,comb — GrF@Gm

Namely, for (I, \T) € € our X is a pair \I-f7ee . [ — Tfree \DLtors . [, Ttors  We have
the evident map

GrF@Gm,comb — Grl"fT“@Gm,comb X GrFtOTS®Gm700mb

We have already constructed the map Grpyreegg,, comp —> Grrsreegg,, 10 the paper.
The map

(40) GrFtOTs®Gm7COmb — GrFt0T5®Gm

is constructed as follows. For each (I, \! : I — I'**") apply Lemma 1.4.5 of the paper,
which shows that A/ gives a point of

Ge[‘tors(l) (X] X X) XGeFtDTS(l)(UI) *
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These maps as (I, A\ : I — I''") vary define the desired map (40). Composing the
above, one gets the map (39). I think this construction does not depend on a choice of
a section of (38).

The map (39) is compatible with the factorization structures. Moreover, (39) is a
map of factorization group prestacks over Ran. The map (39) is a monomorphism of
prestacks.

From Section 3.8.3 of this file we see that (39) is surjective after sheafification in
the topology of finite surjective maps. For i > 0, B%,(A) is a sheaf for the topology
generated by finite surjective maps. This implies the following.

Proposition 3.9.2. The map (39) becomes an isomorphism after sheafification in the
topology of finite surjective maps. U]

Remark 3.9.3. We can also inverse the logic now and derive Theorem A.3.3 of the
paper from the surjectivity, after sheafification in the topology of finite surjective maps,
of the map Grr, comby — GITgG,,. This would avoid Th. A.3.7 completely! This would
simplify the proof, I think.

3.9.4. As in Section 4.1.3 of the paper, we obtain an exactly similar combinatorial
description of FactGea(Grree,,,comb):

For a finite set I and a map A : I — T we specify a gerbe 6" on XI. For a
surjection of finite sets ¢ : I — J such that \; = ) (i)=j i, we specify an isomorphism

v (A¢)*9>‘139)‘J. These isomorphism are equipped with the compatibility data
for composition of surjections of finite sets. We are also given factorization data for
¢ : I — J compatible with compositions of surjections of finite sets, and compatible
with maps v.

The claim from Section 4.1.4 of the paper also extends to the case of I' ® G,,, I think.
The consruction of ¢ : I' — A(—1) from Section 4.2 of the paper extends to this case
as is.

This would help to understand Corollary 4.7.5 of the paper, whose proof was omited.

I think now the content of Sect. 4.3-4.4 of the papers extends to the case of A
replaced by any T'.

One more thing, we may define O(T") as in Section 4.5.1 of the paper for any finitely
generated abelian group I'. Let

0%(I") = FactGeY (Grrgg,,)

be the fibre of the projection ©(T') — Quad(T", A(—1)). We then get

FactGel} (Grras,,) 3 Mappyesy (X, B2(Hom(T, A)),
this is also claimed in Cor. 4.7.9 of the paper.
3.9.5. For Remark 4.7.7. He means by Ab the following. Consider the category of
chain complexes of abelian groups as a DG-category over Z first, to which we apply
the construction of a DG-nerve in the sense of ([19], 1.3.1.6), which is an co-category
by ([19], 1.3.1.10). This is Ab.

Dennis claims that Map 4, (T, B2(A)) has homotopy groups only in degrees 1,2. Re-
call that for A a free abelian group of finite type Map 4,(A; B2(A)) = B2(Hom(A, A).
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We have o Map 4,(T', B2(A)) = Map 4, (T, A) = Hom(T', A), and
m1 Map 4 (T, B3(A)) = m Map 4, (T, B(A4)) = Ext' (T, A),

the Ext calculated in the category of abelian groups.

If0— Ay - Ay — I' — 0 is an exact sequence in abelian groups, A; are free if
finite type then Map 4, (', B2(A)) — Map 4, (A1, B%(A)) — Map 4, (A2, B2(A)) is a fibre
sequence. The long exact sequence of 7; then shows that moMap 4, (", B2(A)) = 0,
because Map 4;,(A;, B2(A)) = B?(Hom(A;, B%(A))).

3.9.6. For 4.5.2: if A, D are abelian groups then view B(A) x D as a monoidal category.
To provide a braiding on it is equivalent to giving a bilinear form b: D x D — A. This
braided monoidal category is then symmetric iff b takes values in As_tops.

3.9.7. For I' a finitely generated abelian group let Bunrgg,, be the stack sending
S € Sch}]’ to Map(S x X, By(T @ Gyn).

Assume T finite. Then there is a natural map Map(S, Bunrgg,,) — Map(S,Te).
Namely, Be;(T'®G,,) = B%(I'(1)). Since H*(X,T'(1)) =T, we get a morphism as above.
For v € T" write Bun%@)(@m for the substack given by requiring that S — I'¢; equals y. We
have the projection Grrgg,, — Bunrgg,,. Let Grg®Gm be the preimage of Bung®Gm.

3.10. For 4.9.1. If S € Sch?{f with S — Gr7 970, for some a € Z/27, assume
the composition S — GraZ/2Z®<Gm — Ran is lifted to Ranjisj. Suppose for j € J the

J-thmap S — Grz/2756,, coming from the factorization takes values in Gr%zZ@Gm for

a; € Z/2Z. So, a = _;a;j. Let § be the trivial us-gerbe. What is the factorization
isomorphism §= §%/ over

aj J
(H GrZJ/QZ®Gm) X Ran’ RaNg;;
Jje€J
It is given by some po-torsor. What is this torsor?
My impression is that this is just the torsor sending a finite set J to the set of orders
of J up to an even permutation.

3.10.1. For 7.1.2. Recall that Ind(Sch®/) c PreStk is a full subcategory by definition
from HTT.

3.10.2. Write Grpd(C) for the category of groipoids in an co-category €. A multiplica-
tive A-gerbe on Z € Grpd(PreStk) is an element in Mapg,pq(prestx) (2, B2(A)).

3.10.3. For 7.3.3. The multiplicativity of this gerbe is obtained as follows. We have the

composition map m : Heckel(gC X g+ (G)\ Ran Heckelc‘;’C — Heckel(‘jc. We want to construct

an isomorphism m¥ = SKS. A point of the LHS is a collection F: D — Bet(G) fori =

1,2,3 and isomorphisms F¢ = Fit! |55 . The section of C%,(T';,i*A(1)) corresponding
I

to (F1,F3) is the sum of the sections corresponding to (F!,52) and (F2,F3). The

compatibilty with the factorization follows from the corresponding decomposition I'; =

LIz, when [ is decomposed into ;.
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3.10.4. For the proof of 7.3.5. If S € Sch®/, I € Ran(S) then I'; — S is flat. Indeed,
consider first the case of S = X! for a finite set I, let D C X! x X be the union of
A, here A; is the locus, where i-th coordinate coincides with the last one. Then D is
an effective Cartier divisor, hence is flat over X. The general case is obtained by the
base change under S — X7,

3.10.5. For 7.5.1, first claim: To understand the structure of £%(T') x-equivariance on
an A-gerbe Gx on A x X, he means

MapSrp(PreStk/X)(£+ (T)x, Bet(A) x X) = Mathd(PreStk/X)(X/£+(T)Xv Bgt(A) x X)
The LHS gives a multiplicative A-torsor on £+ (7)) x.
3.11. Ideas from Sam, twistings.

3.11.1. If A is a finite group then Shv(B(A4)) = QCoh(B(A)) in our case, where the
sheaf theory is D-modules. Indeed, B(A) = colim,c ao» A", hence

Shv(B(A)) S lim Shv(A")
[njleA

Now for a finite union of points ¥ = U;cs Spec k, Shv(Y') = [[,c; Vect = QCoh(Y"). In
turn, limp,c o QCoh(A") = QCoh(B(A)).

His idea is that B(A) and Be(A) should be 1l-affine for any sheaf theory. (In the
setting of quasi-coherent sheaves this is [9, Thereom 2.2.2, Remark 2.5.2]). Indeed,
since ShvCat : (PreStk; ;) — 1 — Cat preserves limits, we have

ShvCat(B(A)) = [l}mA ShvCat(A")
nje

If the sheaf theory is D-modules then, since ShvCat(A™) = QCoh(A™)—mod, ShvCat(B(A))
identifies with the same category in the setting of quasi-coherent sheaves. However, in
the latter case we know that B(A) is l-affine, so ShvCat(B(A)) = QCoh(B(A)) —
mod(DGCatcont). Thus, B(A) is 1-affine in this case.

For other sheaf theory we get ShvCat(B(A))—= Rep(A) — mod(DGCatcont), where
now the field of coefficients is E, maybe different from k. Here Rep(A) = QCoh(B(A))
with coefficients in F.

Recall also that QCoh(B(A)) = QCoh(Be:(A)) by ([15], 1.3, 1.3.8).

3.11.2. Let A be a finite abelian group. For the trivial torsor ¢ : Speck — B2?(A)
consider the induced restriction map cores, : ShvCat(B%*(A)) — ShvCat(Speck) =
DGCateont. We want to check it is comonadic and calculate the corresponding comon-
ade.
The functor ShvCat : (PreStk; ;) — 1 — Cat preserves limits. Since
B?*(A)= colim B(A)",
[n]e AP
we get
(41) ShvCat(B*(A))= lim ShvCat(B(A)")= lim QCoh(B(A)") — mod
[nleA [njeA
Write ShvCatgeon(Y) for the category of sheaves of categories on a prestack Y in
the quasi-coherent setting. We conclude that ShvCat(B?(A)) = ShvCatgeon(B%(A))
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naturally. In the setting of quasi-coherent sheaves we know that cores, admits a right
adjoint coindg, hence the same holds for any sheaf theory. Note that ¢ is 1-affine in the
sense of ([30], A.8), because B(A) is 1-affine. So, coind, preserves small colimits and
is a morphism of ShvCat(B?(A))-module categories, that is, satisfies the projection
formula by ([30], Pp. A.9.1(2)). Since B(A) is l-affine, from ([9], Lemma 3.2.4) we get
QCoh(B(A)") = QCoh(B(A))®™.

Consider the cosimplicial category

DGCateont = QCoh(B(A)) —mod = QCoh(B(A)?) —mod.. ),

given by (41). It suffices to check that this cosimplicial category satisfies the comonadic
Beck-Chevalley condition ([9], Def. C.1.2). For each ¢ > 0 consider the projection
pr : B(A)"!' — BY(A) forgetting the last factor. We must check the corresponding
functor pr* : ShvCatyeon(B(A)") — ShvCatyeon(B(A)™) admits a right adjoint pr,.
This follows from ([30], Lm. A.9.1). For every map « : [j] — [{] in A let a +1 :
[7+ 1] — [i + 1] be the map given by e on {0, ...,7} and sending j + 1 to i + 1. Write
T% : ShvCat(B(A)?) — ShvCat(B(A)!) for the corresponding transition functor in
the above cosimplicial category. We must check that the natural transformation in the
diagram

ShuCat(B(AY) & ShuCat(B(A)Y)

1 pr. T pr.
. a+1 .
ShoCat(B(A)*Y) T ShuCat(B(AY+)

is an isomorphism. In other words, for the corresponding diagram

B(AY & B(A)
T pr T pr
B(A)7+L T p(A)it!

we have to show that (¢4)* pr, = pr.(ga+1)". We have denoted by ¢, the corresponding
transition morphism in the simplicial object given by the group B(A). This base change
follows from ([30], A.9.1(1)). Thus, cores, is comonadic. The corresponding comonade,
by ([9], Lm. C.1.9), is isomorphic, as a plain endo-functor of DGCatont, to the functor
C+— C ®QCoh(B(A)).

(Does it also satisfy the monadic Beck-Chevalley condition?)

Now use the fact that QCoh(B(A)) is rigid (in the sense of [9], D.1.1). Consider
the product map m : B(A) x B(A) — B(A). Since QCoh(B(A)?) is rigid for i = 1,2,
we may apply ([15], 1.3, 3.4.4), it says that m. : QCoh(B(A)?) — QCoh(B(A4)) is
continuous, and m, — (m*)V. So, QCoh(B(A)) € CoAlg(DGCatcont) identifies with
the dual of QCoh(B(A)), where the algebra structure on QCoh(B(A)) is given by the
convolution m, : QCoh(B(A)?) — QCoh(A). Applying now ([22], 3.2.1-3.2.2), we
obtain an equivalence

(42) ShvCat(B*(A)) = QCoh(B(A)) — mod(DGCateont),

where we use the convolution monoidal structure on QCoh(B(A)).
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3.11.3. Twist of a category by a gerbe. For a finite abelian group A as above let
€ € DGCatcont be equipped with a monoidal functor 7 : B(A) — Fung cont(C, C).
That is, A acts on € by automorphisms of the identity functor. (For example, if
C € CAlg(DGCatcopnt) then we have a version where the input datum is a monoidal
functor 7 : B(A) — Fun? cont (€, €), the latter category denotes the category of k-linear
continuous symmetric monoidal functors from € to itself).

Since DGCatcopn: is cocomplete, it is tensored over Spc in the terminology of Lurie,

in this sense we have the tensor product B(A) ® Vect € DGCateopns. This is the colimit

of B(A) — x Vet DGCateont. By the universal property of the colimit, 7 extends to a

map 7 : B(A) ® Vect — Fung cont(C, €) in Alg(DGCateont). In turn, B(A) ® Vect as an
object of Alg(DGCatcon:) identifies with QCoh(B(A)) with the convolution monoidal
structure (cf. [22], 9.2.20). So, our C becomes an object of (42). For any of the 4 sheaf
theories, the functor (PreStk;s)? — 1 — Cat, Y +— ShvCat(Y') satisfies etale descent,
so we get an object of

ShvCat(B%(A)) = ShvCat(B?(A))

Now given Y € PreStk with a map G:Y — B%(A), we pull back the corresponding
sheaf of categories and get the twisted sheaf of categories Cg on Y.

3.11.4. Explanations from Dennis email of 1.06.2020.

Consider a factorization gerbe §¢ € FactGe4(Grg). The associated dual metaplectic
data (without the critical twist) in two particular cases.

i) If we start with G trivial then H = G, € = 0, Z trivial.

i) If ¢ = (detg)% then we get H = G, € = (2p)(—1) € Zyx(E) for 2p : G,,, — Zp,
and Gy is the extension of scalar via € : Z/2Z — Zy of the gerbe of square roots of Qx.

This answer is obtained via the procedure of Section 6 of the paper without any
critical twist (the latter happens in Section 5 of the paper).

3.11.5. For C.1.2. Let b € Bil(A, A) be given by a matrix (b;;) in a base {e;} of A,
that is, b(e;, e;) = b;;. Then b is alternating iff b;; = 0 and b;; = —bj; for @ < j.

Recall that dy : Bil(A, A) — Bil(A, A) sends b to b/ with &' (X, ) = b(\, ) — b(p, ).
Then Ker(Alt(A, A) B Bil(A, A)) = Alt(A, As_tors). Any b € Alt(A, As_ops) writes
as b(A\, ) = g\ + ) — q(A) — q(p) for suitable ¢ € Quad(A, Aa_tors). Indeed, for
q(v) = zix; we get q(z +y) — q(z) — q(y) = w3y; + yiv;.

The kernel of Bin(A, A) — Quad(A, A) is Alt(A, A). Is the map dy : Alt(A,A) —
Alt(A, A) surjective? Yes, because A is divisible: At the level of matrices, d; sends (b;;)
to the matrix with ij-term b;; — bj;. So, if b is alternating then the matrix of d;(b) has
ij-th term 2b;;. Since A is divisible, this map is surjective.

3.11.6. For C.4.2, for clarity. For any & € Bilin(A, A(—1)) we get a theta datum ©O.
It attaches to \ the gerbe G* = (w;(l)q()‘) for g(\) = V/(\, \) and isomorphisms

SV 9)\1-1-/\2 ’_‘;9/\1 ® 9/\2 ® (w)—(1>b()\1,)\2)

Given 0" € Bilin(A, A(—1)), we get an isomorphism ¢y : Oy = Oy 44,3y given on GA
by (—1)¥" Y. Now given ¢” € Quad(A, A(—1)), we get a 2-morphism ¢y — D7 4o (g
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in ©(A). This 2-morphism is essentially a trivialization, for each A\ € A, of the A-torsor
(—1)‘12(‘?’”)(”7 which squares to the identity. This trivialization, as we have seen in
Section 4.2.5 of the paper, is a datum of ¢ € A(—1) with 2¢ = da(¢”). Our c is then

q//()\)'
3.11.7. For C.6. To see that the cohomology in degree —1 of @(A)G is trivial, we have

to show that M % Alt(A, Aa_iors) is surjective, where M = Ker(Quad(A, Aa—tors) —
[Licr A2—tors). Given 0 € Alt(A, Ay_iors), let ¢ € Quad(A, Az_yops) be any such that
da(q) = b'. We may correct it by an element v € Hom(A, Ay_4,s) with prescribed
values on «;. However, any map ®;Zo; — Ags_tors extends to a map A — A. Why the
latter is in values with Ag_;ors?

3.12. Recall that the functor f : Spc — DGCateon:, X — X ® Vect is symmetric
monoidal and preserves colimits ([22], 9.2.20).

Let A be a finite abelian group. Let us show that B(A) ® Vect = QCoh(B(A)).

Since B(A) = colim,)cae» A" in Spc, and f preserves colimits, we get

B(A) ® Vect = colim A" ® Vect = colim QCoh(A")

(n]e AP (n]e AP

Here for a morphism 3 : [m] — [n] in A and the corresponding morphism 3 : A™ — A™
of finite sets, the corresponding functor QCoh(A") — QCoh(A™) is B,. It has the right
adjoint 5*. We may pass to the right adjoints in the functor A°? — DGCateont, 1]
QCoh(A"), and thus we get a functor A — DGCatcont, [n] — QCoh(A™). For a
morphism 3 : [m] — [n] in A the corresponding transition functor is 3* : QCoh(A™) —
QCoh(A™). Now applying ([22], 9.2.6), we get lim},jc 4 QCoh(A") = QCoh(B(A)). We
are done.

Since B(A) € CAlg(Spc), B(A) ® Vect € CAlg(DGCatcopnt). We claim that this
symmetric monoidal structure on B(A)®Vect corresponds to the convolution symmetric
monoidal structure on QCoh(B(A)). Indeed, recall first that, by ([15], 1.3, 3.4.4),
my : QCoh(B(A4)?) — QCoh(B(A)) is continuous. Note that for any [n] € A and the
corresponding map 7 : A" — B(A) the functor v* : QCoh(B(A)) — QCoh(A™) admits
a left adjoint, which is actually given by 7,. For any [n] € A we have a commutative
diagram

(Ax A" 2 B(Ax A)
\L hn ’ i m
A" L B(A),
where m : B(A) x B(A) — B(A) is the product map, and h,, is induced by the
product in A. We see that passing to the colimit over [n] € A in the functors
(hn)« : QCoh((A x A)™) — QCoh(A™), we get the functor m, : QCoh(B(A) x B(A4)) —
QCoh(B(A)). We are done.

Let € € CAlg(Spc) be the symmetric monoidal groupoid defined in Sect. 4.8.2 of
the paper. Then € ® Vect € CAlg(DGCateont). Since C— Uz oz B(Z/2Z), we get
€ ® Vect — Uz oz B(Z/2Z) @ Vect, let refer this coproduct as grading by Z/27Z. We
also get a Z/2Z-action on C ® Vect by the automorphisms of the identity functor by
functoriality. It is given by a map B(Z/27Z) — Fung cont(C, €). Let Vect® C € ® Vect
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be the full subcategory of those objects, on which the parity concides with the values
of the Z/2Z-action by the automorphisms of the identity functor. We should refer to it
as the DG-category of super-vector spaces. It inherits a symmetric monoidal structure
from € ® Vect.

Let now D € CAlg(DGCateont) equipped with a monoidal functor B(Z/2Z) —
Fungcom(@, D). We simply denote by € the corresponding automorphism of the identity
functor of D. The object D¢ € C'Alg(DGCateont) defined in Sect. 8.2.4 of the paper
is, in fact, the category of even objects in Vect @vectD € C Alg(DGCateont). Here we
view both Vect® and D as Z/2Z-graded, where the grading on D is given by the action
of e.

3.12.1. For 9.5.1. Let us explain the monoidal structure on Shv(Grg)£+(G), without
any gerbes on Grg. We have the following analog of the convolution diagram from [28].
Let Grg x Grg be the prestack whose S-point is a collection I1,Is € Ran(S), G-
torsors 1, F on S x X with isomorphisms v; : 70 = F1 \Xxg_pjl andn: F' 5T ]XXS_FIQ.
Let Cg, x be the prestack whose S-point is a collections I1, Iz € Ran(S), G-torsors Ji
on Sx X with isomorphisms v; : 59 = | xys_r, and a trivialization py : 59 = F* |D12.
We get a diagram '

~ id
Grg x Grg & Ca x 4 Gre x Grag 2 Grg XRan(Ran x Ran) X Gre,

where p forgets p1, so keeps ((F4,v1, I1), (F2, v, 1)) € Grg x Grg. The map ¢ is given
by the property that F is obtained by gluing of F% ST, and of F? | D,, via

vt FP I
Dy,
The map ¢ is a torsor under the group scheme on Grg x Grg, which is the pull-back
of £1(G) under Grg x Grg — Ran sending a point as above to I. We may take the

quotient of p under a suitable action of £7(G), and get a morphism p : Grg x Grg —
Grg x(£1(G)\ Grg). So, we get a diagram

Grg x(£7(G)\ Gre) 2 Grg X Grg = Grg XRan(Ran x Ran) id xu Grg

Now write Grg X Grg as the prestack whose S-points are I, Iy € Ran(S), G-torsors
1, F on Dy, with isomorphisms v : 0 = F! ‘DIIUIQ_FII andn:F' ST ’DIIUIQ_FIQ'
This allows to conclude that Map(Dy,ur,, G) acts on (Grg x Grg)(S). Moreover m is
equivariant with respect to the actions of £7(G) pulled back under u : Ran x Ran —
Ran.

We have a natural map £ : Map(Drurn,G) — Map(Dy,,G) given by compos-
ing with D;, — Dp,ur,. Consider the pull-back of the group scheme £1(G) under
Grg x(£7(G)\ Grg) — Ran x Ran % Ran. So, it maps naturally to the pull-back of

£7(@) under Grg x(£7(G)\ Grg) =¥ Grg — Ran. The map p is equivariant under the
actions of Map(Dy,ur,,G), where on the target it acts through the above homomor-
phism &. Taking the quotients, we get a diagram

(£7(G)\ Gra) x (£7(G)\ Grg) & £H(G)\(Gre % Gre) B £5(G)\ Gra
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Here we used the action of £7(G) on Grg x Grg described above. Now the monoidal
operation on Shv(£1(G)\ Grg) is given by (K1, Ko2) — myp* (K1 X K3). The functor
1My makes sense, because the map m is pseudo-proper.

Question. How to justify the existence of the functor p*?

The definition of the category Shv(£1(G)\ Grg) and the correspnding convention is
as in ([27], 0.0.40). In 9.5.1 he meant a version of this definition with gerbes incorpo-
rated.

3.12.2. Hecke action of Shv(£+(G)\ Grg) on Shu(Bung). Recall the stack HeckelS®
from Section 7.3.1 of the paper, it classifies I € Ran, G-torsors S"G,CT"’G on Dy and
an isomorphism Fg = I, |15 . We have Heckels® = £+(G)\ Grg, where the quotient is
understood in the stack Sensel(etale sheafification of the prestack quotient). We have the
involution of Heckelé’C given swapping F¢ and F,. We denote by  : Shv(HeckelGOC) —
Shv(Heckels¢) the induced involution.

Now we may define the Hecke functors as in ([6], Section 3.2.4). Let § — Bun be
the prestack classifying I € Ran, ¥ € Bung and an isomorphism ?%:?G D, -

Let Hecke(G)Rran be the global Hecke stack classifying I € Ran, G-torsors Fg, I,
on X, and an isomorphism § : Fg—= I |x—r,;. Let h*",h™ : Hecke(G)ran — Bung be
the map sending the above point to F, F respectively.

We have isomorphisms id,id" : Hecke(G)ran — (Grg XranS)/£7(G) such that the
projection of the RHS to Bung corresponds to h, h™ respectively. This gives a dia-
gram

Heckel2® & (Gra xran9)/£7(G) 23 Bung
We set for 8 € Shv(Heckels®), K € Shu(Bung),
(SR K) = (id) (pr; x pry)*(SKK) and (SKK)" = (id")'(pry x pry)* (S K K)

The map pry X pry is a torsor under the placid group scheme £1(G), so the functor
(pr; X pry)* is defined as in ([27], 0.0.36).
Now define Hecke functors Hg , H : Shv(Heckel%?) x Shv(Bung) — Shv(Bung) by

HE (8, K)=h{ (*8XK)"  and HZ($,K)=h"(SKK)

My understanding is that this defines a left and right action of S hv(HeckelC‘}C) with
the above monoidal structure on Shv(Bung).

3.13. Category of Hecke eigen-sheaves. Dennis says the definition from [11] is not
a good one for objects K € D(Bung) which are not in the heart of a t-structure!!

The following idea is from ([12], Section 4.4.2). Let Hecke(G)Rran be the Ran version
of the Hecke stack. Its S-point is a finite subset I C Map(S, X), which is a S-point of
Ran, two G-torsors F, 3 on S x X and an isomorphism F = F |sxx_r,, here I'r is the
union of the graphs of maps S — X given by I. Let h*,h™ : Hecke(G)Ran — Bung
be the map sending the above point to F, F respectively. Let Uy =S x X — T’y
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We get diagrams
Hecke(G)Rran X Hecke(G)Rran LN Hecke(G)Rran X Hecke(G)Rran

h= ,Bung,h*
la
Hecke(G)Ran XRan (Ran x Ran)
d id xu
Hecke(G)Rran

Here u : Ran x Ran — Ran is the product map. The map a sends
(I,J € Ran, 7,5 .5" .5 : F =9 U, : F =g lU,)

to (F,3", 468 :F=F" |u,,,)-

The maps h* x supp, h™ x supp : Hecke(G)ran — Bung x Ran and u are pseudo-
proper in the sense of ([8], 1.5), so the functors (id xu);,a; are defined between the
corresponding categories of sheaves by ([8], 1.5.2).

He claims Shv(Hecke(G)Rran) has a non-unital monoidal structure with the product
given by (K, K') — (id xu)jab' (K X K').

Similarly, we have the diagram

Hecke(G)Ran idxp™ Hecke(G)Ran X Bung
1 he
Bung

He proposes to define a left Shv(Hecke(G)Ran)-module structure on Shv(Bung) via
the action map Shv(Hecke(G)ran) ® Shu(Bung) — Shv(Bung) sending (K, F') to
hy~(id xh™)' (K ® F). Since Ran — Speck is pseudo-proper, the functor hy{~ makes
sense.

We see that Hecke(G)Ran has a structure of a groupoid acting on Bung. Besides,
Hecke(G)Ran has a structure of a non-unital associative algebra in PreStkee,,. This is
why applying Shv, one gets a non-unital monoidal category.

We may also consider the (non-integral) Hecke functors defined as follows. For the
diagram

Hecke(G)Ran dxg™ Hecke(G)Ran X Bung
\L supp xh*
Ran x Bung

we could consider the functor H : Shv(Hecke(G)Rran) X Shv(Bung) — Shv(Ran x Bung)
given by H(K, F) = (supp xh*" )i(id xh~)" (K K F).

Question What is the compatibility of H with the symmetric monoidal structure on

Rep(G)?
3.14. For version June 7, 2021.

3.14.1. For 4.5.7. Here A is assumed divisible (and the of its elements are coprime
to char(k)). Recall that J is the set of vertices of the Dynkin diagram. We have an
exact sequence of abelian groups 0 — Hom(m(G),A) — Hom(A, A) — [[;csA —
0, where the second map is given by evaliation on simple coroots. This gives a
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map Map (X, B2 (Hom(A, A)) — Map(X, B4([ ;e A) = [1; Gea(X) in ComGrp(Spc),
whose fibre in ComGrp(Spc) is Map(X, B (Hom(m (G), A))).

3.14.2. For A.3. By definition, Grrgg,, is the prestack over Ran whose S-points are
I € Ran(S), and a map S x X — B (I' ® G,,) together with a trivialization ofg its
restriction to Uy C S x X. Here Uy is the complement of U;T';, here I'; is the graph of
i-th map S — X.

3.14.3. In Remark 4.6.9 and elsewhere we denote by Ab the derived DG-category of
abelian groups. In 4.6.7 Dennis mentions instead the oo-category of chain complexes
of abelian groups, but he actually means the derived DG-category . In other words, let
Ab be the usual category of abelian groups. Then it is a Grothendieck abelian category,
so we may consider D(Ab) in the sense of ([19], 1.3.5.8). We have the canonical functor
Ab — Sptr=" given by the universal property of derived DG-categories ([19], 1.3.3.2).
I think it coincides with the Dold-Kan functor used in Remark 4.6.9.

3.14.4. For 4.6.8. We consider Mapg__(gp.c
this we mean the inner hom I think in Sptr=0 = E,(Spc).

)(A,BQ(A)) as a connected spectrum, by

3.14.5. For Cor. 4.7.6. Let I" be a finitely denerated abelian group whose torsion part
is of order prime to char(k), let A be a divisible abelian group. To summarize, we have
a fibre sequence

FactGeY (Grreg,,) — FactGea(Grrgg,,) — Quad(T, A(—1))

in ComGrp(Spc). Moreover, we have Map 4, (', B2(A4)) = B%(Hom(T', A)) by Remark 4.6.9
of the paper, because Extl, (', A) = 0, and

FactGeY (Grreg,,) = Map(X, B4 (Hom(T', A)))

is an isomorphism now by Remark 4.7.7 of the paper.

3.14.6. For 4.8.1. Here A is divisible I think. Here Mapg__ (s, (I, B*(A)) classifies
C € CAlg(Spc), which are usual groupoids with my(€) = I" as a commutative monoid,
and the group of automorphisms of an object is A.

3.14.7. For 9.1.1. For a theory of sheaves, which are not D-modules, the formula
S+ Shv(S X Ran Z) does not in general define a sheaf of categories for a factorization
prestack Z over Ran.

To define a sheaf of categories over Ran for any sheaf theory, not that ShvCat :
(PreStk;;)° — 1 — Cat preserves limits. Since Ran = colim; X! over the category
of non empty finite sets and surjections, we get ShvCat(Ran) = lim; ShvCat(X1).
Besides, ShvCat(X1) = Shv(XT) — mod(DGCateont) for any of our 4 sheaf theories.

So, for any sheaf theory we understand Sphge(G) as a compatible family of objects
of Shv(X') — mod for all non empty finite sets I.

1
3.14.8. For 9.2 line 2. I think there is a mistake there, namely, §¢ @ detd should
be replaced by G¢. Otherwise, no critical shift would be needed in the formulation of
Satake.
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