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1.0.1. For Lurie, Gaitsgory, Weil’s conjecture for function fields. About Def 2.1.1 and

Remark 2.1.2: the infinite complex

M=1[.272/422%7/4757/47 > ]

is not K-injective. For example, consider W/ = [Z EN Z./27Z] placed in degrees 1,0. We
have the evident inclusion W’ C W, where W = [3Z RN 3Z/2Z] placed in degrees 1,0.

This is a quasi-isomorphism. Consider the map W’ — M given by the diagram

23 oz S 74z S

T1 12
z 5 72 o0

This moprhism does not extend to a morphism of complexes W — M.

Date: May 14, 2025.
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1.0.2. T've read the note ” An inroduction to simplicial sets” found in
preprinty chizhie/infty_categories on my notebook. This is an MIT open course,
it introduces the Kan extension condition for a simplicial set. There is a nice construc-
tion of a chain complex associated to a simplicial abelian group. What is the sense of
its homology groups? Examples?

The simplicial sets A} CA™ are used by Lurie in ‘Higher alegbra’.

1.0.3.  The definition of DG-category over a commutative ring k is found in ([28], Def
1.3.1.1), where Lurie uses chain convention (different from cochain conventions used by
Keller in [39]). Things related to simplicial sets are discussed in ([27], A.2.7). For chain
conventions, the DG-category structure on Chain(A), where A is a commutative ring,
is as follows. For X,Y € Chain(A), so X =[... = X; — Xo — ...] the component
Map(X,Y),, is the A-module of a degree m graded morphism f : X — Y. That is, a
datum of a A-linear map f : X; — Yy, for all 7. The differential of f is given by

fdeOf—(—l)mfodX

1.0.4. Lurie uses the notation [n] = {0,...,n}. Recall that A"= Hom(-, {0,...,n}) is
the simplicial set represented by [n]. Then (A™), contains the identity id : [n] — [n]
denoted E,, and d;F,, € (A™),—_1 are the standard faces of A™ for i = 0,...n. Then
A CA™ is the smallest subsimplicial set that contains all the faces d;E, for i # k.
Lurie gives a different description in ([22], 2.1.7), where for a simplicial set X he defines
A?(X) as a morphism of simplicial sets A? — X. It is given by a finite collection of
data: something given for all the subsets J C [n] such that {0,...,i—1,i+1,...,n}is
not contained in J.

Recall that for a simplicial set X one has X,, = Hom(A", X), where Hom is calculated
in the category of simplicial sets. So, the inclusion A} <A™ yields the restriction map
X, — AP(X).

1.0.5.  Write Set, for the category of simplicial sets as in [28]. Given X,Y € Set,, the
simplicial set Fun(X,Y’) from Notation 2.1.20 exists for the following reason. Recall
that A™= Homget, (-, []). The functor Set, — Sets sending Z to Hom(Z x X,Y) is
representable by Fun(X,Y). Namely, Fun(X,Y), is defined as Homge, (A" xX,Y).
For a non-decreasing map f : [m] — [n] we get f. :A™—A"™ in Set,, hence a morphism

Homge, (A" xX,Y) — Homget, (A™ xX,Y)

which is the restriction under f, x id :A™ xX —A™ x X.
Recall that X x Y here is the categorical product in Set,. So, (X xY), = X, xY,,
and for f: [m] — [n] the map f*: (X xY), = (X xXY),, is the map

ffx Xy xY, = Xy x Y,

1.0.6. A simplicial category is a category enriched over the category Set, of simplicial
sets. Write Cat for the category of (small) categories. Then a simplicial category € gives
a simplicial object X, in Cat. For z,y € C we have the simplicial set C(x,y). Here X,
is the category, whose objects are ob(C), and for z,y € X,, we let X,,(z,y) = C(z,y)n.
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Given z,y, z € ob(C), the composition X, (y, z) x X,(x,y) = X,(x, z) comes from the
morphism of simplicial sets

C(y, 2) x €(z,y) = C(z,2)
by passing to n-simplexes:
e(y> Z)n X e(l'ay)n — G(SL', Z)n

Write % for the constant simplicial set. Then for x € ¢C we have the identity map
id : * — C(z,x), it gives for each n > 0 the element id(x), € C(x,z). The identity
in X,,(z,y) is id(x),. For a non-decreasing map f : [n] — [m] the restriction functor
Xm — X, is the identity on objects id : 0b(X,,) — ob(X,), and for z,y € X,, the
corresponding map X,,(z,y) — X, (z,y) is the strucure map

f* : G(x,y)m — e(xay)n
of the simplicial set C(z,y) (cf. [27], Def 1.1.4.1).

Conversely, given a simplicial object X, in Cat, assume that for each non-decreasing
map f : [n] — [m] the corresponding map f* : ob(X,,) — ob(X,,) is a bijection. Then
we may identify all the sets ob(X,,) with ob(X() via the unique map [n] — [0]. Then
we get a simplicial category.

A functor F' : ¢ — A from a simplicial category C to a usual category A is a
map F' : 0b(C) — ob(A) and a map F : C(a1,a2)o — A(Fay, Fay) compatible with
compositions and sending the identity * — C(a,a) (here x is the constant symplicial
set Hom(-, {0})) to the identity via C(a,a)q — A(Fa, Fa).

1.0.7. The homotopy category of spaces H can be defined as formally inverting all the
weak homotopy equivalences in Set,. A map f : S — T of simplicial sets is a weak
homotopy equivalence iff the induced map between the geometric realizations | S |—| T |
is a weak homotopy equivalence ([27], 1.1.4.3).

1.0.8. In (]27], Remark 1.1.5.2) Lurie uses a functor Sets — Set,, which one? I think
the only reasonable way is to say that a set A can be viewed as a category with the
only morphisms the identity morphisms. Then we may take its nerve (which means
disjoint union of constant simplicial sets corresponding to elements of A).

The notation Cat, for the category of simplicial categories means the usual category
Cat,, not a 2-category. Especially in ([27], Def 1.1.5.5), where one defines the simplicial
nerve of G € Cat,.

1.0.9. Let A be a partially ordered set, X be a simlicial set. What does it mean to give
a map of simplicial sets f : N(A) — X? This may be described on "nondegenerate”
simplxes of N(A), I think. Namely, we are given a map f : A — Xy, and for each
collection of strictly increasing elements ae = (ag < ... < ay) in A an element f(ae) €
X, in a compatible way. This uniquely extends to f as above.

For example, if J is a linearly ordered set [n] = {0,...,n}and A={I C J|0,n € [}
(so, A identifies with all the subsets in {1,n — 1}) then a map f : N(A) — X means
a collection of objects zg,...,z, € X, and for each strictly increasing collection of
subsets I = (Ip C ... C I,) in A an element f(I,) € X, in a compatible way. This is
a finite datum.
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Let A as in [27] denote the category whose objects are [n]| for n = 0,1, ..., and maps
from [n] to [m] are non-decreasing maps f : [n] — [m]. Recall that [n] denotes the
linearly ordered set {0,...,n}. Then Set, is the category of functors A% — Sets.

For a simplicial set X write A} X for the category of elements of the presheaf X :
A% — Sets. Its objects are pairs (n,z), where n > 0 and an element x € X,,. A
map (n,z) — (m,y) is a morphism f : [n] — [m] in A such that f*(y) = z. Here
f*: X, — X, is the structure map of the simplicial set X.

We have the functor AJX — Set, sending (n,z) to A™. The map f : (n,z) = (m,y)
then goes to f :A"—A™. By Proposition 3 here

https://ncatlab.org/nlab/show/category+of+simplices

we know that the colimit of this functor is X itself.

On ([27], p. 23, before 1.1.5.9) the functor € : A — Cat, extends to a colimit-
preserving functor Set, — Cat, using the above colimit construction, I think. Namely,
X € Set, gives rise via the composition to a functor A} X — Cat,, and we take the
colimit of the latter.

1.0.10. Recall that the homotopy category of a simplicial category € is the H-enriched
category hC with ob(h€) = 0b(€), and maps from z to y in hC is the image of Mape(x, y)
under Set, — H ([27], 1.1.3).

Now for X € Set, the homotopy category hX is defined as the homotopy category
h€[X] of the simplical category €[X] ([27], 1.1.5.14). Here € : Set, — Cat, is the
functor left adjoint to the simplicial nerve N.

1.0.11. Note that A} is not an oo-category for 0 < i < n, because the identity:
A? — A? does not lift to a map A™— A7.

Note that A! is not a Kan complex. Since A™ is a nerve of the category [n], A" is
a category (in particular, an oo-category). According to the conventions of [27], we
identify a category with its nerve.

1.0.12. Let S be an oco-category. For ([27], 1.2.2.2) we have to explain the definition
of the simplicial set HomZ(z,y). Here for a finite linearly ordered set .J one uses
the notation A7 from ([27]), this is the simplicial set given by the functor A — Sets
represented by J. That is, Homs, (A", A7) = Homea([n],J) with evident structure
maps.

If 0 < i < n we have to define the maps d; : HomZ(z,y), — HomZ(x,y),_; and
s; : Hom®(x,y), — Hom%(2,9),11. In fact, for these i the diagrams commutes

Sn+1 % Sn Sn+1 84 Sn+2
U U U U
HomISD”(x, Y)n — Hom?(w, Y)n—1 Homg(:r, Yn — Homg(:v, Y)nt1

and define the corresponding maps. He used the inclusion [n] C [n+ 1] giving z |5» for
z:A"H 5 8.

About remark 1.2.2.5. T think for two partially ordered sets A, B the disjoint union
A x B should be considered as partially ordered, namely (a1,b1) < (ag,b2) iff a1 < ag
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and by < bo. It is not clear where the inclusions of the last displayed formula before
([27], 1.2.3) come from. I think there are suitable morphisms A" x Al—A"™T1 that
induce these inclusions. How to define them?

I suggest the map of sets [n] x [1] = [n + 1] sending (k, a) to

k, for k <n
n, fork=nanda=0
n+1, fork=nanda=1

This is a map of partially ordered sets. So, it induces by functoriality a morphism
a A" x A'— A" Moreover, it induces the usual inclusion A" = A" x A0} a7+,

1.0.13. The boundary 9 A"CA™ is the simplicial subset generated by all faces d; E,, €
(A™)p—1, here E,, € (A™), is the identity map [n] — [n]. The simplicial set 9 A™ can

also be described as the image of the map 0<'—.|< A1 A™ given by all faces.
<i<n

Recall that for a simplicial subset Y C X the quotient X/Y € Set, is defined so
that (X/Y), is obtained from X,, by identifying the elements of Y;, to each other.

1.0.14. Let f : X — Y be a morphism in Set,. In ([27], 1.1.4.3) it is called a weak
homotopy equivalence if the induced map of geometric realizations | X |—| Y | is a
weak homotopy equivalence.

Inhttps://ncatlab.org/nlab/show/simplicial+homotopy+group another defini-
tion is given. Namely, the above f is called a weak homotopy equivalence if it induces
an isomorphism on all the symplicial homotopy groups. These homotopy groups are
defined on the same web page, but usually these homotopy groups of X € Set, are
only defined for X a Kan complex. To define homotopy groups of any symplectic set
X, pick a weak homotopy equivalence X — X', where X’ is a Kan complex. Then it
induces an isomorphism of all the homotopy groups.

I hope the two definitions are equivalent.

Recall that for any S € Set, the canonical morphism S — Sing | S| is a weak
homotopy equivalence ([27], 1.1.4.3). Here Sing denotes the singular complex, which
is a functor €§ — 8Set,, and Sing(Z) is a Kan complex for any Z € €G. Here CG is
the category of compactly generated weakly Housedorf topological spaces. We see that
any S € Set, admits a weak homotopy equivalence with a Kan complex.

Let J be a finite partially ordered set, ¢ < j € J. For the contant simplicial set
X = x, the unique map N(FP;;) — X is a weak homotopy equivalence.

1.0.15.  (Proposition 1.2.3.1, [27]) uses the functor H — Sets associating to a homotopy
type of a simplicial set some set. What is it? I think it sends X to mo(X). More
precisely, we first need to replace X by a weakly homotopically equivalent Kan complex
X'. Then my(X) is the quotient of X by the equivalence relation: zp ~ z; iff there
is z € X| with di(z) = 2o and do(z) = z1. Here dy : [0] — [1] has image {0}, and
do : [0] — [1] has image {1}.
Can one define g of any simplicial set directly?

A good definition is given by Lurie: the functor mg : Set, — Sets is the left adjoint to
the inclusion functor Sets — Set,.
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If € is an oo-category then for x,y € Cy the set Mape(x,y) is the set of equivalence
classes of morphisms from x to y. A morphism z from z to y here is a map z € ©;
with di(z) = = and dp(z) = y. Two morphisms are equivalent if they are homotopic
in the sense of the definition ([22], p. 31 after example 2.1.16). So, the set Mape(x,y)
identifies with 7o Hom& (x, y), the notation of (|27], Prop. 1.2.2.3).

The inclusion functor 7 : Cat — Cat, is right adjoint to the functor Cat, — Cat,
C — hC. Here hC is viewed as an ordinary category, that is, for z,y € € we have
Hompe(x,y) = mo Mape(z,y). (see [27], the proof of 1.2.3.1).

For n > 0 and X € Sets we get Homgets(mo(A™), X) — Homget, (A", Xo) = X. Here
X, is the image of X under the inclusion functor Sets — Set,. We conclude that
mo(A™) is the point set.

1.0.16. Starting from Proposition 1.2.3.5 in [27] Lurie uses the following convention to
denote a map A3 — € of simplicial sets. The faces of A? are (123), (023), (013), (012).
They are ordered by the rule that the vertex 0,1,2,3 is missing in the corresponding
face.

Here for example by (023) we mean a non-decreasing map f : [2] — [3] with image
{0,2,3}. When he considers a map A$ — C it is denoted by a collection (a, e, b, ¢), which
means the following. First, the face (023) is missing in A3, which is denoted by the bullet
e on the second place. The above notation means that (123) — a, (013) — b, (012) — c.

1.0.17. Last point of the proof of ([27], Prop. 1.2.3.9) not completely clear for me,
where the equality id, op = ¢’ comes from? I think a way to explain this would be as
follows. o :A%— C gives a functor €[A%] — €[€], hence also a functor h A%2— h€. The
desired equality holds already in h A2.

To be precise, for the definition of w(€) for a oo-category € in ([27], 1.2.3.4) we have
the following. Given f,g € C; a homotopy from f to ¢ is a datum of o € €y whose
border is given by the diagram

1
S lid
0o % 2

1.0.18.  'We have the functor A — Set, sending [n] to the corresponding representable
functor A™, and a nondecreasing map f : [m] — [n] to the induced map A™—A". This
is nothing but the Yoneda embedding. It induces a functor A% — 8et?. So, given any
functor F : Set? — Sets we get a simplicial set X associated to F' as the composition

AP — Set)F L Sets

Conversely, I think we can recover F out of X assuming that F' commutes with small
colimits. See 1.0.9 (and [23], Digression 1.8).

For example, for X,Y € 8et, the simplicial set Fun(X,Y’) is obtained this way.
Namely, we have the functor F : Set’ — Sets, Z + Homge, (Z x X,Y). It is repre-
sentable by Fun(X,Y).
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1.0.19. Let X,Y be simplicial sets, f : X — Y be a morphism in Set,. According
to Def. 1.2.10.1, we should say that f is an equivalence if f induces an equivalence
of H-enriched categories hX — hY. This is the same that the notion of categorical
equivalence introduced in Def 1.1.5.14. This corresponds to amap f: X — Y in 1 —Cat
to be an equivalence.

1.0.20. T think a contractible Kan complex is the same as a Kan complex S € Setx
such that all its homotopy groups are trivial.

1.0.21. Let € be an oo-category, p : K — € a morphism in Set,. Let f be an object
of €/p, that is, a diagram in Set,

A XK hoe
) ' p
K

Here « is the join operation ([27], 1.2.8). Then f is final in C/p iff for any n > 1 and
any diagram the dotted arrow h can be filled.

0 A" xK — A"xK
T n \ ho i
P QI
Here n is the unique map sending the vertex 0 of A? to the vertex n of 9 A™.
A related description. Assume given another object g of C/p given by g :A? xK — €
extending p. What does it mean that Homg/p(g, f) is a contractible Kan complex?

An n-simplex of Homg/p(g, f) is a diagram

At} K
l N\ f
ALK S C
) Ty

PN G SN '

where € :A"—AY is the unique map is Set,. Here the top vertical arrow is obtained from
Al AnH1and A" =A™ comes from the non-decreasing inclusion [n] — [n + 1]
whose image is {0,...,n}.

1.0.22. If K is an oo-category then K< =A" K is an oo-category, so gives rise to
the usual category m(K“). It has as objects the elements of Ky and the distinguished
object ® € K< belonging to A?. For each € Ky we have an arrow f, : @ — x in
7(K<), and for each h € K; giving rise to a morphism h : z — y in m(K), we also get
the morphism h € 7(K<) and the diagram commutes in 7 (K<)

L & xT

N fyd R
Yy
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Therefore, given a map p : K — € in Set,, where € is an oo-category, a datum of an
object z € €/p can be seen as a candidate for a limit of the functor p.

1.0.23. Let K be a Kan complex. The property of K to be contractible (that is, all
the hotomopy groups are trivial), is not very visible for me. Formally, it means that K
is connected and for n > 0 the group m, (K, z) vanishes (for z € Ky). That is, for any
diagram
on" — Y
! le

e

AT = K

the simplex o is equivalent to the constant simplex A"—A%5 K.

1.0.24. What is the limit of a functor = :A°— @ for a given oo-category C? Note that
for n > 0 we have (0 A™)x A® :?AZE Therefore, the problem is to undestand the
lifting for the diagram

n+1 n+1
AT = A

TN

Al ¢

Here the left vertical map sends the nondegenerate simplex of A' to {n,n + 1}. So,
by Section [1.0.29] id :  — x veiwed as a map A? x A= C is the limit of the functor
x :A"— €. Indeed, id is an equivalence in €.

1.0.25. We have an equivalence A — A sending a finite linearly ordered set J to the
same set J with the opposite order. It is important for obtaining results about S°P for
S € Setp.

We have the evident notion of an opposite to a simplicial category. Then I think for
S € Set, one has €[S]P = €[SP].

Let us consider first a finite linearly ordered set J. For¢ < j in J we have the partially
ordered set P;;(.J) from ([27], 1.1.5.1). Now let .J be the set J with the opposite order.
Then j <j i in J, and Pj;(J) = P,;;(J) as partially ordered sets. So, for i,j € J the
set Mapc[Aj] (4,7) is nonempty for ¢ <j j, that is, j < 4, and in this case it equals

N(Pji(J)). So, Q:[AJ]:;Q:[AJ]OP canonically.

Remark 1.0.26. IfJ is a usual category and F': J — Cat, is a functor then it induces
a functor I : J — Caty sending i € J to F(i)® and 7 : i — j to the induced functor
F(i)°? — F(j)°P. Then X € Caty, is the colimit of F iff X°P € Cat, is the colimit of F.

Recall that each S € Set, is written as the colimit of the functor AJ]S — Set,. So,
S is the colimit of the corresponding functor AJ(S?) — Set,. An object of AL(SP)
is a pair: a finite linearly ordered set I and a map x : [ — S. So, €[S?] is the colimit
of the functor AJ(S°) — Cat, sending (I,z) to €[A7]P. Its colimit is €[S]P = ¢[SP].

We conclude that the homotopy category of S € Set,, as a H-enriched category, is
the opposite to h(SP).
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1.0.27. Tt is easy to see that for A, B € Set, one has Fun(A, B)? = Fun(A°%, BP) in
Set, canonically.

For A, B € Set, one has (A x B)? = B x A° naturally.

If p: K — S is a morphism in Set, one has the map p? : K? — S° and we have
canonically

(S/p)Op ,—\; Spop/

Let now S be an oo-category, and p : K — S is a morphism in Set,. We see that an
intial object of Sjop/ is the same as a final object of S/,. That is, a colimit of p° is the
same as a limit of p.

1.0.28. A vertex x € @ for C € 8et, is strongly initial if any map fy: 0 A™— € with
fo(0) = X can be extended to a map f :A"— C.

1.0.29. Let ¢ : * — y be a morphism in a oco-category €. Then ¢ is an equivalence
iff ¢ : y — x is an equivalence in C°P. Therefore, ([27], 1.2.4.3) rewrites as follows: let
@ be an oo-category, ¢ :A'— € a morphism in €. Then f is an equivalence iff for any
n > 2 and any fo: A? — C with f [A{"~1™ = ¢ there is an extension of fy to A™.

1.0.30. Let X,Y,Z € Set,. The map Fun(Y,Z) x Fun(X,Y) — Fun(X,Z7) is as
follows. Given A € Set,, a A-point of Fun(Y, Z) is a map A x Y — A x Z, whose first
component is the projection A x Y — A. Given A-points f: AXxY — A x Z and
g: Ax X — AxY, the composition fg is the corresponding A-point of Fun(X, 7).

According to ([27], 1.2.16.2), if A, B € Set, are Kan complexes then Fun(A4, B) is a
Kan complex (no proof was given).

1.0.31. The product of two categories A, B € Cat in Cat is the category whose objects
are pairs (a,b), a € ob(A),b € ob(B). A morphism from (a;,b1) to (az,bs) is a pair
(f,g), where f € Homy (a1, az2), g € Homgz (b1, b2). Note that N(AxB) = N(A)x N(B)
canonically in Set,. The following is proved in ([23], Lemma 2.2). Write Fun(A, B) for
the category of functors from A to B. Then

N(Fun(A,B)) = Fun(NA, NB)
naturally.

1.0.32. Given an oo-category C, for x,y € C the role of n-morphisms from x to y is
played by Hom&(x,y)y, see ([23], Remark 1.16).

1.0.33. Fact: a small cocomplete category is a partially ordered set (cf. MacLane...)
Let F: C x D — Sets be a functor, where C, D are usual categories. Then there is
a canonical map in Sets

)\h%m@F%@th
c D D C

Deﬁn1t19n. One says that @DF commutes with hﬂcF iff the latter map is an
isomorphism.
Fact: In Sets the filtered colimits commute with finite limits.
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1.0.34. If Ais a small category, C is a cocomplete category then the category Fun(A, @)
of functors is cocomplete (and colimits are computed pointwise) ([23], before Th. 3.2).
Actually, it is also complete.

1.0.35. Let Grpd C Cat be the full subcategory of groupoids in the category Cat of
categories. This inclusion admits a left adjoint L : Cat — Grpd called groupoidification

n ([23], p. 8).

The composition 71 : A — Cat L Grpd sends A" to the ‘free groupoid on [n]’, it has
objects {0,...,n}. For 0 <i < n it has an arrow a; : i — i+1 and a;l :1+1 — 4, which
is its inverse. It also has the identity maps for each vertices and various compositions
of a; and aj_l. The automoprhism group of an object in this grupoid is trivial. The
procedure of ([23], Digression 1.8) gives an adjunction (7, N) : Set, = Grpd. So,
m1(X) for X € Set, can be calculated as a colimit. Can similarly m;(X) be calculated
as similar colimits?

For a simplicial set X the notation h(X) of [27] is the same as 71(X) € Cat from
([23], p. 8). So, by ([23], Digression 1.8), h : Set, — Cat preserves the small colimits.

1.0.36. I don’t understand why in ([23], Th. 1.18) in the base change diagram after
this theorem, F) is contractible. If i* is an acyclic Kan fibration then Fy —AY is a Kan
complex (because in any model category fibrations are stable by base change). But
why all the fundamental groups of F)\ are trivial?

Theorem 1.0.37 ([2I], Th.11.2, p. 65). Let g : X — Y be a morphism in Set,.
Then g is a Kan fibration and a weak homotopical equivalence iff g has the right lifting
property with respect to all inclusions @ A""—A", n > 0.

This implies immediately that the property (¢ : X — Y is a Kan fibration and a
weak homotopical equivalence) is stable under base change. For this reason F) —AY is
a weak homotopy equivalence in ([23], Th. 1.18)!

1.0.38. The category Set, is monoidal with respect to the operation of product of
simplicial sets. I think the fact from [27] that each simplicial category gives rise to a
H-enriched category uses in a hidden way the fact that the category of spaces H is
monoidal, where the monoidal structure is induced by the above monoidal structure on
Set,. Then the projection Set, — JH should be a monoidal functor.

1.0.39. The category Cat has a ‘natural’ model structure, where the weak equivalences
are the equivalences in the 2-category of small categories ([23], Perspective 1.33).

1.0.40. Important: a zig-zag of categorical equivalences A < B — C in Set, can
always be replaced by a single categorical equivalence f : A — C in Set, ([23], Re-
mark 2.8).

1.0.41. If C € Setp and z,y € Cy then we have a canonical cartesian diagram in Set,

Homg(:v, y) — Cly
{ {
A0 5 C

That is, the corresponding product identifies with Homg(x, y) canonically.
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1.042. If u : A — B is a functor between small categories and C is a cocomplete
(usual) category then the left Kan extension Lan, : €4 — @F always exists ([23],
Perspective 2.31).

1.0.43. For any K € Set, one has canonically Fun(AY, K) = K.

1.0.44. View Set, as a simplicial category with the usual enrichment, that is, for
A, B € Set, we use Fun(A, B), the simplicial set of maps. If B is a simplicial category
then we get the simplicial functor B? x B — Set, sending (a,b) to Mapg(a,b). On
the level of morphisms, the morphism space from (a,b) to (a’,b") is Mapg(a/,a) x
Mapg (b, b). The corresponding morphism in Set,

MapB (ala (I) X MapB (b7 b/) - Fun(MapB (CL, b)7 MapB (CLI, b/))
comes from the composition map
MapB (CL/, CL) X Map% (CL, b) X MapB(b7 b/) - Mapﬁ(alv b/)

Recall that if A, B € Kan then Fun(A4, B) is a Kan complex ([27]). Then we may
view Kan as a symplicial category, where Mapq,, (A, B) = Fun(A, B). The simplicial
nerve of this simplicial category is the oo-category 8 of spaces.

Notation: for a simplicial set K, P(K) = Fun(K°P,§) is the infinity category of sim-
plicial presheaves on K. For example, P(A?) =5 8 canonically, so § is the ”cocompletion
of the point”.

1.0.45. Lurie starts by choosing a regular cardinal k. This means that for any maps
of sets f : X — Y with | Y |< k, here < means strictly less, and assuming for any
yeY,| Xy |<k then | X |< k. This garantees the following: the category Sets<, of
sets of size < k has all colimits of size < k.

He later assumes « is strongly inaccessible. Then something is small iff it is k-small.
For example, X € Set, is small iff for any n, X, is small (that is, X,, is k-small).

1.0.46. a ”canonical definition” of a right-lax monoidal functor between monoidal
categories in given in ([27], A.1.3.5).

If € is a right-closed monoidal category then € is enriched over itself as in ([27], Ex.
A.1.4.1). Namely, for a,b,c € C the adjunction isomorphism

Home(a ® b, ¢) = Home(a, Map(b, c¢))

defines the object Map(b, c¢) € C. It is equipped with a canonical map ev : Map(b, c) ®
b — c¢. The composition v : Map(y, z) ® Map(z,y) — Map(z, z) is then defined as
follows. The composition

Map(y, z) @ Map(z,y) @ = “S Map(y, ) ® y 5 =

yields by adjontness the desired map ~. For b,c € C Lurie uses rather the notation ¢
for the above Mape(b, ¢).
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1.0.47. Let C be a right-closed monoidal category, D a C-enriched category. Let x €
D, c € €. The functor D — €, y — Mapq(x,y) may be viewed as a C-enriched functor
between C-enriched categories. Further, the functor € — €, y — y¢ = Mape(c,y) is
also naturally C-enriched.

There is a minor mistake in ([27], p. 792, A.1.4.4). If under the above assump-
tions the functor D — €, y — Mape(c, Mapq(x,y)) is corepresentable then the object
that corepresents it should be denoted ¢ ® x € D. It is defined by the isomorphism
Mape(c, Mapq (z,y)) = Mapg(c ® x,y) functorial in y € D. If the object ¢ ® = exists
for any ¢ € C,x € D then we say that D is tensored over C. In this case we get a
functor € x D — D, (¢,x) — c® x.

1.0.48.  About Grothendieck opfibrations ([23], Def. 4.5). Let p : € — D be a functor.
Any isomorphism f : ¢;—co in € is p-cocartesian. The composition of two p-cocartesian

maps c i) Co EN c3 is also p-cocartesian.

1.0.49. Recall that Cat and Set, are locally presentable ([23], Example 3.4). Since
(11, N) : Set, = Cat is an adjunction, N preserves small limits. In particular, one has
N(A xp €)= N(A) x () N(C) for A,B,C € Cat.

1.0.50. Let S be an oo-category, a,b € S, f : a — b a morphism in S.

Question 1. is it true that f is an equivalence iff for any ¢ € S the natural map
Mapg(c,a) — Mapg(e, b) is an isomorphism in H? Here H is the notation from [27],
the category of spaces. Yes, as the infinity analog of Yoneda lemma is a full embedding.

1.0.51. Given a simplicial category €, a morphism €¢[A°] — € in Cat, is just an object
c € C. A morphism €[aAl] — € in Cat, is the same as an element f € Mape(z,y),
xz,y € C.

1.0.52. Given a category C, a map Aj — N(C) does not always extend to A3— N(C).
For example, if C is the category of abelian groups, A; is an abelian group fori =0,...,3
with Ag = 0, and we are given any maps f: Ay — As, g: Ay — A3, h: A] — A3 in C,
then this gives a map A3 — N(C). It extends to A3— N(C) iff h = gf.

On the other hand, if € is a category and d > 3 then any map A — N(C) extends
uniquely to A%~ N(€) ([27], proof of 2.1.1.3).

1.0.53. Let K € Set,. There is a canonical map K x A'— K« K. Indeed, given a finite
ordered set J, a J-point of Kx Al gives Jg = J x,1 {0}, J1 = J x,1 {1} and J — K.
Restricting the latter map to Jo and Ji, we get an element of K (Jp) x K(J;) C K+ K.

Composing with idxpr : K *x K — Kx A", we get a map Kx A'— Kx AY. Tt
is used for colimits in ([27], 4.2.4.3). Namely, if C is an oo-category, p : K A%— €
extending p : K — € with cone point = :A%— @ yields a morphism a : Kx Al— @ with
@ |gxqoy=p and o [gxq13= d(z). Here ¢ : € — Fun(K, C) is the diagonal map.

1.0.54. If A — B is an inner fibration, B is an oco-category then A is also an oo-
category.
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1.0.55. Given a diagram of simplicial sets

B & X
T laq
A — S

with 7 = gp, po = p |a, 7o = 7 |a, we get morphisms X, — X, XS,/ S,/ and
X/p — X/po XS/TO S/T

1.0.56. If n > 2 then Af is the coproduct in the diagram

{0}x An—2
/]\
{0} %0 A2 Al %0 A2

This is used in ([27], 1.2.4.3), proof after 2.1.2.2. Dualzing, we see that A]! for n > 2 is
the coproduct
A2 {1}
T
DA 2 x{1} 0" %%l
This is used in Remark 2.4.1.4 for description of p-cartesian morphisms.

1.0.57. Ifi: A — B is a left anodyne inclusion of simplicial sets, X is a Kan complex
then XB — X4 is a trivial fibration ([27], 2.1.2.9). For example, {0} <>l is left
anodyne. In fact, for X € Set,, X is a Kan complex iff X2 = x{ is a trivial
fibration ([27], 2.1.2.10).

1.0.58. Consider a diagram of simplicial sets X doy % 7. 1 g and gf are trivial
fibrations then f is a homotopy equivalence.

1.0.59. Recall that the class of left anodyne maps is weekly saturated ([27], A.1.2.2),
the same for anodyne (right anodine, inner anodyne) maps. Let X be any symplicial
set. Then X x {0} — X x Al is left anodyne. Indeed, any weekly saturated class is
closed under push-outs. Pick a point € X then X — Xllp Al is the push-out of
{0} —a!, so is left anodyne. By ([27], 2.1.2.7) the map Xl A= Xx Al s left
anodyne, so their composition is also left anodyne ([27], A.1.2.3). This was used after
(27], 2.1.1.3).

1.0.60. Question: does a trivial fibration of simplicial sets always admit a section?

A trivial fibration is the same as a Kan fibration and homotopy equivalence. In ([27],
2.0.0.2) the definition of trivial fibration is different, via the right lifting property with
respect to every map 9 A"—A".

To memorize: let p: S — T be a Kan fibration of simplicial sets. Then p is a trivial
fibration iff each fibre of p is a trivial fibration ([27], 2.1.3.4).

1.0.61. Let F': A — B be a functor between usual categories. If N(F) : N(A) — N(B)
is a trivial fibration then F' is an equivalence of categories, and F’ is surjective on objects.
As far as I undestand, F still may be non injective on objects (so, F' is not always an
isomorphism of categories).
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1.0.62. Let X,Y be contractible Kan complexes, f : X — Y a right fibration. Then
f is a trivial fibration. Proof: f is a homotopy equivalence. By ([27], 2.1.3.3), f is a
Kan fibration. So, f is a trivial fibration.

1.0.63. Let X 3 Y ﬁ) Z be a diagram of simplicial sets, a be a trivial fibration, 3 a
right fibration such that Sa is a trivial fibration. Then S is a trivial fibration. Proof:
for z € Z consider the trivial fibration of fibres X, — Y,. We know that Y, is a Kan
complex, and Y, —AY is a homotopy equivalence. So, Y, is a contractible Kan complex.

1.0.64. In ([27], 2.4.1.7) it is used also that A101— A? is left anodyne as a push-out
of {1} —a{12} Tt was used that for a diagram of simplicial subsets A’ < A — B in A2
with B’ coproduct, the square is cartesian

C/B XD/B D/ AQ — C/A XD/A D/ Az
T T
C/B, XD/B/ D/ A2 — C/A/ XD/A’ D/ AQ

Here p : C'— D is an inner fibration of simplicial sets.

1.0.65. Let p: X — Y be an inner fibration, f an edge in X. From ([27], 2.4.1.3,
point (2)) it follows that if f is cartesian then it is locally cartesian.

1.0.66. In ([27], 2.4.3.2) it is used that (Afix A™) Upnygam (A" %0 A™) =A™ x AT is
equivalent to AZITH ey pEmAL

1.0.67. Let C' be an oo-category, x,y € C. Recall that Homg(:c,y) = C/y x¢ {z}.
For the discussion just before ([27], 2.4.4.2). First, o = s¢(€). The diagram consists of
cartesian squares

C’/e — C/y XD/p(y) D/é — Cxp D/é
T T T (z,0)
F - o t(e) — A"

R

Ch(a)

those elements of HomZ(x, 2’) that "induce the identity map” p(z) — p(x) in D.

Here Cppy = C xp {p(x)}. For x,2’ € Cp,) the space Hom (x,2') is the space of

1.0.68. comment for ([27], 2.4.4.3). Recall that {0} —A? is left anodyne. If € is an
oo-category, f :y — z is an edge in € then C/f — C/y is a trivial fibration by ([27],
2.1.2.5). So, C/f xe {x} represents Mape(z,y) in the homotopy category of spaces H.
Indeed,

€/f xe{r} = €/y xe {z}
is a trivial fibration, and C/y x¢ {z} = Hom®&(z,y). Therefore, the diagram in the
proof really represents the diagram in the claim of ([27], 2.4.4.3).

Lemma 1.0.69. Let p: C — D be fully faithful map between oco-categories. Then any
edge in C is p-cartesian.
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Proof. We want to deduced this from ([27], 2.4.4.3(2)). For any y € C, C/y —
D/p(y) xp € is a trivial fibration. Indeed, it is a right fibration, and after any base
change {x} — C by a vertex, this becomes a trivial fibration (see [27], 2.4.4.1).

Let f:y — z be any edge in €. We want to prove that f is p-Cartesian. Let x € C.
Consider the diagram from ([27], proof of 2.4.4.3)

c/f >1@ {z} — C/z j@ {z}
D/p(f) xo {p(x)} — D/p(2) x> {p(x)}

All the vertices of this diagram are Kan complexes (see 1.0.68). The right vertical
arrow is a trivial fibration. The left one is a homotopy equivalence and a right fibration
(2.1.2.1). By 2.1.3.3, the left vertical arrow is a Kan fibration, so it is a trivial fibration.

Asin ([27], 2.4.4.3), the induced map ¢x : €/ f xe {2} — C/2 Xp/p) D/p(f) xe {7}
is a Kan fibration. We see also it is a homotopy equivalence from the digram

C/f xe {z} %% ¢/ X /pz) D/P(f) xe {2}
l V4
D/p(f) xo {p(x)},

where the unnamed arrows are trivial fibrations. So, ¢x is a trivial fibration. O

In fact, a categorical equivalence is not necessarily a cartesian fibration. Indeed,
by ([27], 2.4.4.6) it would be a trivial fibration. But if A — B is an equivalence of
usual categories, which is not surjective on objects, then N(A) — N(B) is a categorical
equivalence, but it is not a trivial fibration.

1.0.70. Explanation of the proof of 2.4.4.4. One does not have to assume p inner.
Take z,y € C. We have the diagram

Mape(z,y)  — Mapp(p(z), p(y))
! V%
Mape (gp(x), qp(y))

Take any € : gp(z) — ¢p(y). Pick a locally gp-cartesian section « : 2’ — y over e.
By the assumptions, p(«) : p(z’) — p(y) is locally g-cartesian. Let z = gp(z). By the
assumptions, Mape_(z,2") — Mapyg,_(p(); p(2')) is an isomorphism in . The map b is
represented by a Kan fibration Hom&(z,y) — HomZ% (p(z), p(y)), whose each fibre is a
homotopy equivalence. So, each fibre is a trivial fibration, so b itself is an isomorphism
in 3.

1.0.71. For a diagram of co-categories € — D «+— D' set € = € xp D’. Let u/,v" € €
objects with images u,v € €, 2/,3/ € D', x,y € D. Then the square is cartesian
(”,”/1/ Xer {U,} — 'Dl/y/ Xy {Jj/}
\J 3
@/U X@{U} — Dy XD {w}
and consists of Kan complexes. The vertical arrows are Kan fibrations. If the right
vertical arrow is a homotopy equivalence, it is a trivial fibration, so the left one is also
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a trivial fibration. So, if D’ — D is fully-faithful then €' — € is also fully faithful. This
is used in ([27], 2.4.4.5).

1.0.72. In [27], Proposition 2.1.2.5 is stated incorrectly; in place of ”Suppose either
that ¢ is right anodyne or that 7 is a left fibration”, it should read ”Suppose either that
i is right anodyne or that ¢ is anodyne and 7 is a left fibration.” Also, the parenthetical
”(right fibration)” in the proof should be replaced by ” (left fibration)”. Jacob told me
this in his email.

1.0.73. Let K be a Kan complex. Then for z,y € K the mapping space Mapy (z,y)
is usually not contractible.

Lemma 1.0.74. Let K be a nonempty Kan complex. Assume for any z,y € K,
Mapg (z,y) is contractible. Then K is contractible.

Proof. For any y € K, K, — K is a trivial fibration (its a right fibration, and its
fibres are contractible). So, any map fy : 9 A"— K with fy(n) = y may b extended to
f:A"— K. Since y was arbitrary, K is contractible. O

Lemma 1.0.75. Let p: C — D be a fully faithful map between co-categories. Assume
p s a cartesian fibration. Then p is a right fibration.

Proof. Apply [27], 2.4.2.4. O

1.0.76. Consider a cartesian square of simplicial spaces
f

X 45 X
Ly ip
S

Assume p (so p’ also) is a cartesian fibration. Then an edge e in X’ is p/-cartesian iff
f(e) is p-cartesian. Indeed, any locally p-cartesian edge is p-cartesian by ([27], 2.4.2.8).
The claim follows now from ([27], 2.4.1.12).

1.0.77. If p : K — C is a map of simplicial sets, p :A? xK — C extends p, view
p :0%— C/p. Then (C/p)/p = C/p naturally. So, p is a limit of p iff C/p — C/p is a
trivial fibration. See ([27], 4.3.1).

1.0.78. If p : X — S is a trivial fibration of simplicial sets then p is a categorical
equivalence. Indeed, p is a cartesian fibration. Now apply ([27], 2.4.4.6).

1.0.79. If f: C'— D is an inner fibration, ¢ € C, the property that c is f-initial object
of €' means by definition that C.; — C Xp Dy, is a trivial fibration. This implies
that for any = € C, Mapq(c, z) — Mapp(f(c), f(x)) is an isomorphism.

1.0.80. Let C be an infinity category, €0 C € is a full subcategory, ¢ € €Y, €°/c :=
€Y x¢ €/c. Then id : ¢ — c is the final object of C°/c. Indeed, (€°/c)/id — €%/c is an
isomorphism of simplicial sets.

Similarly for any simplicial set C, (C*)/cone point — C* is an isomorphism of sim-
plicial sets, so the cone point is the final object of C”.
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1.0.81. Explanation for ([27], 4.3.2.2), left Kan extension. We have F' : € — D
extending Fy : C° — D. For ¢ € C the functor F yields a composition C°/c < €/c —
D/ f(c), which can be seen as a map (€°/c)x A’ D extending F, : €°/c — D.

The sense of the definition ([27], 4.3.2.2) of left Kan extension. Consider a diagram

el D, Fy is the composition. Usually, one takes D’ = *. The idea, I think, is
that F : € — D behaves as if the objects of € were colimits of C°/c = €° x¢ €/¢, and
F 7 preserves this colimits”.

By the way, taking F' = id,D = C, the property that id is the LKE of the inclusion
@% < € becomes a property of this subcategory. Is there a name for such subcategories?

1.0.82. About ([27], 4.3.2.8). If D’ = « then the assumption that D — D’ is a cate-
gorical fibration is automatically satisfied, which establishes that the LKE is transitive.

2. JUSTIFICATION OF GAITSGORY-ROZENBLYUM’S VOCABULARY FROM [I4]

2.1.  For a usual category C one has N(C)°"%" = C canonically. A morphism f:z — y
in N(C) is an isomorphism iff it is an isomorphism in C. So, N(C)°P¢ is N(CSP¢).

Here C'°P¢ is the groupoid, whose objects are the same as objects of C. A morphism
in C'°P¢ is a morphism in C, which is moreover an isomorphism.

2.2.  The oco-category of co-categories denoted Catoo by Lurie is defined in ([27], 3.0.0.1).
Since Kan C Cat%, is a full simplicial subcategory, 8§ C Caty, is a full subcategory. Here
S is the oco-category of spaces.

If C € 8Set, then mo(C°P¢) is the set of isomorphism classes of objects of C. The
natural map m(CP¢) — mo(C) is surjective, but not injective in general.

(1 — Cat)?"¥" is the category whose objects are co-categories, morphisms from € to
D are isomorphism classes of functors f : € — D. In particular, f : € — D is an
equivalence iff there is a functor g : D — € such that fg and gf are isomorphic to the
identity functors. Is it the same notion as ‘categorical equivalence’ from Lurie [27]7
Yes.

If A, B are usual categories then Funct(N(A), N(B)) = N(Fun(A, B)) canonically. A
functor f : N(A) — N(B) is the same as a functor f : A — B. A morphism of functors
e :Al— Funct(N(A), N(B)) is the same as a natural transformation e : f — g, that is,
a morphism in Fun(A4, B). Further, e :A'— Funct(N(A), N(B)) is an isomorphism iff
e : f — g is an isomorphism in Fun(A, B). Thus, the isomorphism classes of functors
N(A) — N(B) are precisely the isomorphism classes of functors A — B in the usual
category Fun(A, B).

So, a functor f : N(A) — N(B) is an equivalence (in the sense of [14], 1.1.7) iff
f: A — B is an equivalence of usual categories in the usual sense.

2.2.1. For A, B € 1 — Cat, Funct(A, B)°? = Funct(A°, B°?) canonically.

2.2.2. I think one may add ([27], 2.3.2.2) to the vocabulary of Dennis. Namely, for
€ € 1— Cat the natural map Funct(AZ, €) — Funct(A2, €) is an isomorphism in 1 — Cat.

Besides, for any space X € Spc the map Funct(A!, X) — Funct({0}, X) = X is an
isomoprhism in Spc ([27], 2.1.2.10). One may probably add that for X € 1 — Cat we
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have X € Spc iff the natural map Funct(Al, X) — Funct({0}, X) is an isomorphism in
1 — Cat.

This implies the following. If X € Spc, z,y € X then Mapy(z,y) = X X xxx {z,y}.
Indeed, {z} x x Funct([1], X) xx {y} = Mapx(z,y).

2.2.3. The ordinary category Spc®™ is as follows. Its objects are Kan complexes.

For two Kan complexes K, K', Homg, oran (K, K') = mo(Funct(K, K')). Recall that
Funct(K, K') is a Kan complex, so mo(Funct(K, K')) is the set of isomorphism classes
of maps K — K’. This is true because Kan is a fibrant simplicial category.

2.2.4. If A, B are usual categories we have the usual groupoid Fun(A, B)°P¢. Then
Map; _cq:(N(A), N(B)) = N(Fun(A, B)?¢) is a Kan complex.

2.2.5. For C € 8ety, mo(C) glues all the arrows (into identities). If X isaset, b: a — o
is an arrow in €, f: € — X is a map in Set, then f(b) : f(a) — f(a’) = f(a) is the
identity.

2.2.6. If A is a usual category, z,y € A then Mapy,4)(z,y) is not just a space, but it
is actually a set Homy (z,y). Indeed, A/y x4 [0] is a set, not just a usual category, and
N(A)/y XNy {z} identifies with its nerve.

2.2.7. My understanding is that ([27], 1.2.3.3) means H-enriched categories. This
would mean the following. Given a fibrant simplicial category €, if z,y € N(C) then
Map e (2,y) is represented in Spc by Mape(z,y). Is it true?

At least, ([14], 1.1.7) gives the following. Given C,D € Spc, one has Mapg,.(C, D) =
Funct(€, D).

228 IfCel—Catand f:a — bis an isomorphism in € then one should add to
Dennis’ axioms that for any z € €, Mape(z,a) — Mape(z, b) is an isomorphism in Spec.
Any isomorphism has to be cartesian with respect to € — .

2.2.9. If h,h : € — D are two functors between €,D € 1 — Cat, u : A — Cis a
morphism in 1 — Cat, and « : h — k' is an isomorphism in Funct(€, D) then composing
with u one gets an isomorphism hu — h'u in Funct(A, D). Similarly for a composition
with functors D — B.

More generally, if € € 1 — Cat, a,b,c € €, h,h/ € Mape(b,¢), « : h — h' is an
isomorphism then for any v € Mape(a, b) the induced map hv — h'v is an isomorphism
in Mape(a, c). Probably, if we denote h, k' : Mape(a,b) — Mape(a, ¢) the two induced
maps then « yields an isomorphism A — A/ in

Mapg(Mape(a, b), Mape(a, c))

2.2.10. If h,h' : € — D are two maps in 1 — Cat and o : h — h’ is a morphism in
Funct(C, D) then for any x,y € C we get a commutative diagram

Map@(a:, y) — MapD (hIE, hy)
1 1oy
Mapy, (h'z, h'y) =% Mapy(hz, h'y)
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This resembles of course the definition of an enriched natural transformation from the
enriched category theory. If, moreover, « is an isomorphism then a1, @y are isomor-
phisms.

Lemma 2.2.11. Let f : € — D be an isomorphism in 1 — Cat. Then f is fully faithful
and essentially surjective.

Proof. Let g : D — € be a functor such that fg and gf are isomorphic to the identity
functors. Pick isomorphisms « : fg— id, o/ : id = fg such that aa’ and o'« are
isomorphic to the identities. Pick isomorphism 3 : gf — id, 8’ : id = ¢ f such that 53’
and ('3 are isomorphic to the identities.

Take z,y € €. We must show that the natural map ¢ : Mape(x,y) — Mapqg (fz, fy)
is an isomorphism. The above choices yield a map

q' : Mapy (fz, fy) — Mape(gf(x), 9f(y)) = Mape(z, y)

It remains to show that ¢’q and gq¢’ are in the connected component of the identity.
This follows now from Section 2.2.8
If z € D then fg(z) is isomorphic to z according to Sect. O

Note that if €y C € is a full subcategory, € € 1 — Cat, then (Cy)°? C €% is a full
subcategory.

2.2.12. For a pointed space 8 € Spc with z :A%— S, its 0-th loop space is the pointed
space Q°(S,z) = (S, ), its 1st loop space is the pointed space Q!(S,x) = * xg * with
the diagonal point. Then Q7(S,z) = QY(Q""1(S,z)) for n > 1. Finally, m,(S,z) =
Wo(Qn(S, x))

2.2.13. Let f:C — D be a map in 1 — Cat. Assume f l-replete. If h : ¢c; — co is
a morphism in € such that fh : f(c1) — f(c2) is an isomorphism in D then h is an
isomorphism. So, f is conservative.

2.2.14. The functor 1 — Cat — 1 — Cat” ", C s C°"" preserves finite products,
because so does m : Spc — Sets.

If A, B are usual categories then Funct(A, B) is also a usual category, not just an
object of 1 — Cat. Now given C,D € 1 — Cat, it is not clear how Dennis’ axiomatics
provides a morphism Funct(D, €) — Funct(D° %", @°r4"). The latter should come from
a morphism Funct(D, €)% — Funct(D°"", €. Should not this be added to the
axiomatics?

Let I € 1 —Cat, D € 1 — Cat°™ ™. The natural map Fun(1°"%", D) — Fun(I, D) is an
equivalence. Indeed, it suffices to show that for n > 0 the natural map

Map _ gt ([, Fun(I”®", D)) = Map; e, ([n], Fun(1, D))

is an isomorphism in Spc. This is true, because 1 — Cat — 1 — Cat®™ ™ (C — COrdn
preserves finite products. Thus, when calculating limits or colimits in D indexed by I,
we may replace I by I°7",
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2.2.15. Assume given a map f : D° — D in 1 — Cat. Damien Calaque claims that f
is fully faithfull iff the induced functor Funct([1], D°) — Funct([1], D) x pxp D° x D°
is an equivalence ([14], Ch. A.1, 1.4.3).

If this is true then one may derive the following.

Lemma 2.2.16. Let D° C D be a full subcategory, C, D € 1—Cat. Then Funct(C, D°) —
Funct(C, D) is fully faithful.

Proof. The functor Funct(C,-) commutes with limits according to Lemma [2.4.18 So,
the equivalence Funct([1], D) — Funct([1], D) X pxp D° x D° yields

Funct(C, Funct([1], D°)) =
FU.HCt(C, FunCt([l]v D)) X Funct(C,D) x Funct(C,D) (FunCt(Ca DO) X FunCt(Cv DO))
This reads

Funct([1], Funct(C, D°)) =
FUHCt([l], FunCt(C7 D)) X Funct(C, D) x Funct(C,D) (FUIICt(C, DO) x FunCt(Cv DO))

Our claim follows. O

Lemma 2.2.17. Let I x [1] — 1 — Cat be a functor i — (A; 2t B;). Assume f; is fully
faithful for all i. Let f : A — B be obtained by passing to the limit over I. Then f is
fully faithful.

Proof. We will check that the natural functor Funct([1],/A) — Funct([1], B) xgxsA X A
is an equivalence. This functor is obtained by passing to the limit over ¢ € I in the
diagram in 1 — Cat

Funct([l],.Ai) — Funct([l], BZ) X B, xB; .Al X .Al

We used also the fact that the functor lim : Funct(/, 1 — Cat) — 1 — Cat preserves small
limits. O

Example 0: let Idem x[1] — 1 — Cat be a functor given on the unique object of Idem
by a full subcategory D° C D. Then passing to the limit over Idem, we get a full
subcategory (this is passing to retracts).

Example 1: consider a diagram C & D % C in 1 — Cat with ay=> id, and D L)
in 1 — Cat with 83— S~ya. Then v is a retract of 3. So, if 8 is fully faithful then 3 is
also fully faithful.

Example 2: let Y =& X %Y be a diagram in 1 — Cat with pi = id. Let 8: Z - Y
be a functor and « = i8. If « is fully faithful then § is also fully faithful as a retract
of a. Indeed, the diagram 8 : Z — Y is obtained from « : Z — X by passing to the
limit over Idem. The corresponding idempotent acts on X as ¢p and on Z as id.

Remark 2.2.18. If I x [1] — 1—Cat is a functor i — (C; 5 D;) and each f; is 1-fully
faithful, let C =lim; C;, D =lim; D;. Then C' — D is 1-fully faithful.
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2.219. If f: X — Sin 1 — Cat is a bicartesian fibration in spaces then for any
a:s— s in S the induced functor a; : Xy — X is an equivalence ([27], 2.1.3.1). This
is also seen in the following. If X,Y € Spc, f: X — Y is left adjoint to g : ¥ — X
then f and g are isomorphisms in Spc. Indeed, any map id — ¢gf in Funct(X, X) is an
isomorphism, similarly for fg — id.

Note also that ([27], 2.1.3.4) says: if f: X — Y is a cocartesian fibration in spaces,
and for any y € Y, X, = * in Spc then f is an equivalence in Spc.

2.2.20. For the terminology of [27]: a Kan fibration is a bi-cartesian fibration in spaces.
Left fibration (resp., right fibration) is a cocartesian fibration in spaces (resp., cartesian
fibration in spaces). The notion of a locally cartesian fibration ([27], 2.4.2.6) makes
sense in the model-independent setting. If f: X — S, h: [1] — S is a map in 1 — Cat,

h:s1 — sp and 22 € X with f(x2) = s2 then an arrow h : 21 — 22 in X over h is
locally f-cartesian if h is a cartesian arrow for the projection X xg [1] — [1].

2.2.21. For 1.3.1. Let F': D — C be amap in 1 — Cat. The definition of a F-cartesian
arrow in 1.3.1 is different from that of [27]. The equivalence of the two definitions is
([27], 2.4.4.3). Recall that for any a : do — dy in D the induced functor & : D/, —
D /a4, XC)pay) C/F(a) I8 a cartesian fibration in spaces ([27], 2.1.2.1). According to [27],
« is F-cartesian iff £ is an equivalence.

Note that the diagram

D/a — D/d1 XC)ray) C/F(Oé)

N\
D

is a morphism of cartesian fibrations in spaces over D. According to my Section [2.2.99]
¢ is an equivalence iff its any base change by a point d’ : * — D is an equivalence. This
base change is essentially calculated in ([27], 2.4.1.10), it becomes the map

Mapp(d', do) = Mapp(d', di) Xnap,.(P(d),F(d)) Mapc(F(d'), F(do))

Namely, Lurie claims there that the diagram

{d'} xp (Dyay XCypga;y Crre) — AF(d)} xc Crpay)
\ 3
{d/} XD D/d1 — {F(d/)} X C/F(d1)

is cartesian. Note also that D /a’—TD /d, naturally in 1 — Cat.

2.2.22. The fact that for C € 1—Cat, F': I — C a morphism in 1 —Cat, €,;p — Cis a
cartesian fibration in spaces is ([27], 2.1.2.2).

If p: X — 8 is a cartesian fibration, let X’ C X be the 1-full subcategory, where we
keep only those (connected components of) edges f : 2 — 2/, which are p-cartesian.
Then the restriction p’ : X’ — 8 is a cartesian fibration in spaces ([27], 2.4.2.5).
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2.2.23. If p:X — 8 is a cartesian fibration in spaces then any edge f :z — 2’ in X is
p-cartesian ([27], 2.4.2.4). This is used by Dennis in 1.4.1. Namely, (coCart/C)strict N
0 — coCart/C simply coincides with 0 — coCart/C.

question for 1.4.1: if f : D1 — Dy is a morphism in coCart/C, why the condition that
f sends C-cocartesian arrows to C-cocartesian arrows depends only on the connected
component of f in mo Map,,cqre/e(D1, D2) ?

2.2.24. If C € 1— Cat then C — * is a cartesian fibration (cf. [27], 2.4.1.5), hence also
cocartesian fibration.

If € is a simplicial set then €2 — €{% is an inner fibration by (271, 2.3.2.5). Tt is
actually, a cartesian fibration by ([27], 2.4.7.12). Moreover, given f :x — vy, f' : 2/ — ¢/
objects of C2' assume given a morphism o :A!'— Funct(Al, €) from f to f’ such that
evaluating at 1 it gives a map h : y — 3. Then « is cartesian over G0} iff h is an
equivalence in C. So, h is cartesian with respect to the projection € — .

Therefore, for € € 1—Cat the functor Funct([1], €) — €0 x {1} takes €10} -cartesian
edges to @19 -cartesian edges.

2.2.25. For Yoneda and 1.5.4. For C € 1 — Cat the diagram
Funct([1],€) — €0} x eil}
N\ $

c{o}
is a morphism in (Cart/C)sirict, it gives rise to the diagram

C? — (1-—Cat)/C

N\ {
1 — Cat

where the horizontal arrow sends ¢ to the object (€., — €) of (1 — Cat)/C. Since
€.; — Cis a cocartesian fibration in spaces, we got the functor C% — 0 — coCart/C.
That is, a functor Yone : €% — Funct(C,Spc). The functor Yone : C? x € — Spc
sends (¢, z) to Mape(c, ).

2.2.26. About 1.6.1. An arrow in Funct®“?*([1],1 — Cat) gives rise a diagram

D, %% D,
U e
Cl — 02,

the adjective commutative’ diagram here does not seem to mean something, just the
fact that this comes from [1] x [1] — 1 — Cat.
The fact that (1.5) is a cartesian fibration is obtained as follows. Given a map

Ci1 — C5 in 1 — Cat and an object Do ik} Cy of FunctCOC“Tt([l}, 1 — Cat)gtrict over Co,
set D1 = C1 X¢, Da. The corresponding map Fj : D1 — C} is a cocartesian fibration.
Besides, the obtained map D7 — Dy sends Ci-cocartesian arrows to Cs-cocartesian
arrows (this follows from my Section [L.0.76).

For any C € 1 — Cat, the evaluation Funct([1],€) — € at 1 is a cocartesian fibration,
so the above is strange. Does this mean that we actually get a Kan fibration here?
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2.2.27. For section 1.7.2, adjoint functors. Let o : E — [1] be a bi-cartesian fibration.
Set Cgp = a~1(0),C; = a~(1). Let G : Cyg — C; and F : C; — Cy be the functors
corresponding to E via unstrenthening. Let ¢y € Cp,c; € C1. Pick a-cartesian edge
a1 @ ¢y — c1, and a-cocartesian edge aqg : ¢g — ¢1. Then, roughly, we should take
F(c1) = éo, G(co) = ¢1. From definition, the canonical maps

Mapy(co, ¢g) — Mapg(co,c1) and Mapg(éi,c1) — Mapg(co, c1)

are isomorphisms. Now ([27], 2.4.4.2) gives isomorphisms Mapc, (co, ¢o) = Mapg(co, ¢o)
and Mapg, (¢1,c1) = Mapg(é1,c1). This gives an isomorphism in Spc

Mapg, (co, F(c1)) = Mapg, (G(co), c1)

2.2.28. For convenience, in 1.7.5 we formulate the notion of partially defined left ad-
joint. Let F': C1 — Cp be a map in 1 — Cat. View it as a map [1]°? — 1 — Cat, let
« : E — [1] be the corresponding cartesian fibration. Let C{j C Cj be the full subcate-
gory of those ¢y € Cp for which there is a a-cocartesian edge co — ¢ over 0 — 1. Let
FE be the corresponding full subcategory of E, so its fibres over 0,1 are respectively
C}, C1. Then E — [1] is a cocartesian fibration, let G : Cjj — C be the corresponding
functor. This is the partially defined left adjoint to F'.
For ¢y € C, ¢1 € C1 we have canonically Map¢, (G(co), c1) = Mapg, (co, F(c1).

2.2.29. 0y 5 ¢y L Cy is a diagram in 1 — Cat, G’ : C{; — C} is the partially defined
left adjoint to F”, G : C] — C is the partially defined left adjoint to F. If ¢ € Cj such
that ¢ € C, and G'(c) € C] then the partially defined left adjoint G to F'F is defined
at ¢, and G(¢) = GG'(¢). T don’t see how to prove this, but no doute this should be
true. See also ([27], 5.2.2.6).

Remark 2.2.30. IfC,D € 1— Cat then by (27], 5.2.6.2), Fun’(C, D) = Fun(D, €)°P
canonically. Here Fun®(€, D) C Fun(C, D) is the full subcategory spanned by left adjoint
functors and Fun®(D, @) C Fun(D, C) is the full subcategory spanned by right adjoint
functors.

2.2.31. For 2.1.1, left and right Kan extensions. Let F': D — C be a map in 1 — Cat,
E €1 — Cat. Let a : Funct(C, E) — Funct(D, E) be the composition with F'.

Then LK Ep is as follows. It defines a full subcategory Funct(D, E)’ C Funct(D, E)
and a functor b : Funct(D, F)" — Funct(C, E) with the following property. Given
f € Funct(C, E), g € Funct(D, E)" we have canonically

MapFunct(C,E) (b(g)7 f) - MapFunct(D,E) (97 a(f))

Let ® : D — E be a functor such that LK Ep(®) : C — E exists. Then the functor
LKEp(®) : C? — E is the right Kan extension of ® : D? — E° with respect to
F:D% — C.

2.2.32. For 2.1.2. Let D,E € 1 — Cat, consider the functor a : E — Funct(D, F) of
”constant functors”. Its left Kan extension is the colimit functor colimp : Funct(D, E) —
E. Tt is not everywhere defined in general.

Given f € E, g: D — E a functor, we have canonically

Mapg(colimp(g), f) = MapFunct(D,E) (9,a(f))
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Here a(f) is the constant functor D — x J, B. The compatibility with Lurie is given
in ([27], 4.2.4.3).

The right Kan extension of a is the limit functor limp : Funct(D, E) — E. Fiven
f, g as above, we have canonically

MapE(fv I%n(g)) - Ma‘pFunct(D,E)(a(f)7 g)

2.2.33. Let g: D — E be amap in 1 — Cat. If e = colimp g then for ¢°P : D°? — E°P
the element e is the limit limpop g°P. Assume K € 1 — Cat, and D admits K-indexed
limits. Then D admits K°P-indexed colimits. If in addition g preserves K-indexed
limits then g°P preserves K°P-indexed colimits.

2.2.34. If @ € 1 — Cat” ", that is, € is an ordinary category then the notion of an
(00, 1)-limit/colimit in € coincides with the usual notion of limit/colimit.

2.2.35. Let p: K — C be a diagram in 1 — Cat. Any z € €,/ is the same as a map
p: K” — C extending p. Then (C),/)., — €5,. So, p is a colimit diagram iff the natural
map €5, — €,/ is an equivalence.

2.2.36. If Cy LN 4 E/) Cy is a diagram in 1—Cat, F¥ € 1—Cat, consider the composition

Funct(Cy, F) LA Funct(Cy, E) % Funct(Cy, E)
Let ® € Funct(Co, F). Assuming that & := LK FEp(®) exists, and LK Fp(®') exists,
it follows that LK Epp(®) exists, and

LKEpp(®) = LKEp LK Ep(®)

2.2.37. A nice application of the transitivity of right Kan extensions. For a map
f:I— Jinl—Catand C € 1 — Cat, write f* : Funct(J,C) — Funct(I,C) for the
composition. Write f, : Funct(I,C) — Funct(J, C) for its right adjoint when it exists.

Then for a diagram I 7% K in1— Cat we get g« f« — (gf)« when both f, g, exist.
Now assume we are given a map F': [ x J — C in 1 —Cat. Consider the commutative
diagram

IxJ & J
lq {
1 — %

The functor p, sends F' to the functor j — lim;er F'(7,7). The functor ¢, sends F' to
the functor i — limjec s F'(4, j). So, the transitivity of right Kan extensions gives in this
case
lim(lim (4, 7)) = lim F = lim(lim F'(, j
(g F5.9)) = Jim 1= Ll (6. )
For colimits it is similar. For f : I — J call f : Funct(Z,C) — Funct(J, C) its left
adjoint when it exists and repeat.
For example, if € € 1 — Cat admits limits, and for ¢ € I we are given a diagram
a; — bl — ¢, let dl = a; Xy, Cj. Then Hie[ dzf—\)/(l_[ CLZ‘) XHbi HCZ'.
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Example: if K,I,D € 1 — Cat, K, I are small, D admits [-indexed limits then let
€ C Funct(“K, D) be the full subcategory spanned by the limit diagrams. Then € is
stable under I-indexed limits.

2.2.38. For 2.1.3. We are in the situation of 2.1.1, He says if for each ¢ € C the colimit

of the composition D x¢o C/c — D % E exists then LKFER(®) exists, it is a functor
C — E sending c to colimpy o/ P.

Proposition 2.2.39 ([27], 4.3.2.15). Let C,D € 1 — Cat, €Y C € be a full subcategory.
Let X C Funct(C, D) be the full subcategory spanned by those functors which are LKE of
their restriction to C°. Let X' C Funct(€®, D) be the full subcategory of those functors

F such that for any c € C, the diagram C° x¢ Cre = € 5 D has a colimit. The
restriction map KX — X' is an isomorphism in 1 — Cat.

Example: let C,D € 1 — Cat, ¢ € C be an initial object, d € D giving & : * 4 .
Then the LK E(®) along * = € is the constant functor € — D with value d.

Another important case is ([27], 5.2.6.6): Let f: € — D be a left adjoint to g : D —
G, these are maps in 1 — Cat. Let T': € — X be any functor. Then Tg : D — X is a
LKE of T along f.

If A € 1 — Cat is small then id : P(A) — P(A) is the LKE of the Yoneda embedding
j: A — P(A) along itself ([27], 5.1.5.3). So, for § € P(A) we get

§=  colim jp,
AxpayP(A)/S

where p : A xpq) P(A)/G — A is the projection.

Lemma 2.2.40. Let ® : A — D be a functor, assume D cocomplete. Let @ : P(A) — D

be the LKE of ® along j : A — P(A). Let R : D — P(A) be the functor correspnding

to A x D — Spe, (a,d) — Mapq(®(a),d). Then R is right adjoint to ®.

Proof. Recall that ® is comilit preserving. For G € P(A) we have =  colim  jp,
AxpayP(A)/S

where p : A xpq) P(A)/G — A is the projection. For d € D, € P(A) we get

Mapyp, (9(9), d) = Mapy (colimys,, , v(a)/5 Bp, d) = i Eiggr(lﬂ) . Mapy, (®(a), d)
P(A
- lim Mapgpg) (j(a), R(d)) = Mapp4)(  colim jp, R(d))

(AXpayP(A)/9)oP AxpayP(A)/S

— Mapg(4) (5, R(d))
O

For more details on this see ([32], Remark 4.4.4) and ([27], 5.2.6.5). Closely related
claims: ([27], 5.2.6.3, 5.3.5.13).

Example: let € € 1 — Cat admit finite colimits. Recall that Ind(C) is presentable
by ([27], 5.5.1.1). The inclusion € — Ind(€) has a LKE ® : P(€) — Ind(€) along
€ < P(C). Let R : Ind(€) — P(C) be the right adjoint to ® then R is the natural

inclusion, so ® is a localization functor.
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Lemma 2.2.41. Let C be a small category, D be cocomplete, Y € P(C), f:C/y — D
be a functor. Here Cjy = CXpryyP(Y)/y. Let f: P(€);y — D be the LKE of f under
€y = P(C€))y. Then f preserves colimits.

Proof. Let F' : P(€;y) — D be the LKE of f under the Yoneda embedding €,y —
P(C/y). Recall that I preserves colimits. Let g : P(€);y — P(C/y) be the functor

sending Z — Y to the presheaf (¢ = Y) — Z(c) Xy () 10}, here ¢ % Y is an object
of €/y. Then the composition F'g is isomorphic to f. Indeed, for (Z - Y) € P(€) v,

we get from definitions Fg(Z) = colim F(c)= f(Z). Recall that the projection
(C—>Z)€G/Z

€y — € preserves colimits. Now g preserves colimits, because for any ¢ € C/y the

composition P(C) /y EN P(Cy) 5 Spc preserves colimits. The latter is true, because
the colimits in Spc are universal. Since F' preserves colimits, we are done. O

The above claimed is strengthened in the next subsection.

2.2.42. Let C be a small category, Y € P(€). Consider the functor a : P(C),y —

P(C/y) sending Z to the presheaf (c 5Y) = Z(c) Xy () {a}. Consider also the
functor b : P(C;y) — P(C),y sending Z’ : (€;y)® — Spc to the presheaf given
informally by S — {a € Y(5),z € Z'(S,a)}. The formal definition: let Z" — (€/y )
be the cocartesian fibration corresponding to Z’. Then b(Z’) is the functor €% — Spc
such that the corresponding cocartesian fibration in spaces over C° is the composition
Z' — (€/y)°? — €%. Then a and b are inverses of each other.

Another definition of a: the projection €,y — C is a cartesian fibration in spaces cor-
responding to Y : C% — Spc. Given Z € P(C)y, let f : X — €y be the corresponding
morphism of cartesian fibrations in spaces over C via strengthening for cartesian fibra-
tions. Then f itself is a cartesian fibration in spaces by remark below. Then a sends
the above point to the corresponding functor (€ /y)"p — Spc.

Remark 2.2.43. If X; — C are cartesian fibrations in spaces, and f : X1 — Xo is a
map over C then f itself is a cartesian fibration in spaces. (reason: any map in X; is
cartesian over C).

Remark 2.2.44. An accessible category may be non complete. If k is reqular cardinal,
C € 1 — Cat does not admit k-small colimits then Ind,(C) may be non complete. Here
is an example. Let R be a commutative ring, C the category of finitely generated free
R-modules, k = w. Then C does not admit finite colimits, for example, R < R does
not always have a cokernel. By (27, 5.4.2.3), Ind C is the category of flat R-modules.
Then Ind @ does not admit finite colimits in general. For exzample, R % R does not
always have a cokernel.

(28], 5.3.6.8) seems important! If x is a regular cardinal, ¢ € 1 — Cat be small and
admitting x-small colimits then for any cocomplete category D we have an equivalence
Functy (Ind,; €, D) = Functy(C, D). Here the subscript X' means that we take all
colimit preserving functors, and X that we take all functors preserving x-small colimits.
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2.2.45. Relative colimits. They are defined in ([27], 4.3.1). Let K> % @ D be a
diagram in 1 — Cat, let p : K — € be the restriction of p. Then p is a f-colimit diagram
iff €5y — €, XD, Dypy is an equivalence in 1 — Cat.

Important example ([27], 4.3.1.4): for K =+ amap p: [1] = K* — € is a f-colimit
iff the corresponding arrow in € is f-cocartesian.

([21, 4.3.1.11) is a nice result providing existence of some relative colimits (its claim
is model-independent).

By definition, ¢ € € is f-initial in C if (¢,id()) is an initial object of C xp Dy(),. In
other words, the partially defined left adjoint L to f is defined at f(c), and the natural
map Lf(c) — c is an isomorphism.

Question: how to reformulate the notion of a relative colimit in terms of adjoint
functors? One may consider the following notion. Let D € 1 — Cat, h : € — Co
be a morphism in 1 — Cat;p. For &€ € 1 — Cat;p we have the restriction functor
Functp(C2,€) — Functp(Cr, ). What about its left/right adjoints for the role of
relative Kan extension? This is a wrong answer already in the case C; = (), Gy = .

It seems completely about the functor €,, — Dy,/. Let ¢ : K* — D be an extension
of fp: K — D. It is given by an object, say h € Dy,/, and (Dyp/)n, — Dy/. Now
giving p : K* — € extending p means giving an object r € €/, so that Gﬁ/g (Gp/)r/.
Let now 7 be such that its image in Dy, is denoted by h. We get a morphism

(Cpp)ry = Cpp XDy (Dipsny

This is an isomorphism in 1 — Cat iff the partially defined left adjoint L to the natural
functor f : €, — Dy, is defined at h = f(r), and the natural map Lf(r) — r is an
isomorphism. In other words, this means that

Mape, (r,2) = Mapp, (7(r), J(2))

functorially on 2 € C,,. In other words, r is f-initial object of €y

Cofinality is applicable to relative colimits as for usual colimits. Namely, we have
([27], 4.3.1.7), which follows immediately from ([27], 4.1.1.8), and the proof is model-
independent.

2.2.46. For the convenience of the reader, here is the notion of a relative p-limit. Let
K Be i) D be a diagram in 1 — Cat, p : K — € be the restriction of p. Then p is a
f-limit diagram iff €5 — €/, xp e D ¢p is an equivalence.

Let f: €/, = D/, be the induced map. As above, the notion of a f-limit of p is
the same as a f-final object of C,.

2.2.47. Lurie defines also relative Kan extensions in ([27], 4.3.2.2). The definition is
model independent. Namely, given a commutative diagram in 1 — Cat

e I g
(1) 1 JF lp
cC — D,
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where €% — @ is a full subcategory, this is a p-left Kan extension of Fyy at ¢ € € iff the
induced diagram

e, 5 D
AR

(G(/)C)l> — D
exhibits F'(c) as a p-colimit of F,.. Here G?C = €% xe C/e, Fe is the composition

G(/)C — € 58 D. Here the functor ((?90)D — D is obtained from €/, e L5 D via the

composition with (G(/)c)'> — €/c, the cone point is sent to ¢ Ydece Ce-
F is a p-left Kan extension of Fy if it is a p-left Kan extension of Fjy at each ¢ € C.

If F'is a p-left Kan extension of Fp then Dy, — D Xy Dp / 1s an equivalence
pF/ pFy/ 0

([27], 4.3.2.7), the proof seems depending on a model of quasicategories. The criterium
for existence of the p-left Kan extension of Fj is the same as in the absolute case ([27],
4.3.2.13). We also have a description of the full subcategory of

2.2.48. For the convenience of the reader, the notion of a relative right Kan extension.
Given a diagram , where C° C € is a full subcategory, F is a p-right Kan extension
of Fy at ¢ € C iff the induced diagram

¢, 5 D

o e
<](G(C)/) — ®/7

exhibits F'(¢) as a p-limit of F.

2.2.49. Let €' C € be a full subcategory, € € 1 — Cat. Let F : I — € be a functor, I

small. Assume that ¢ is the colimit of the composition I 5 @ — eandce €. Then
c is the colimit of F. Indeed, Funct(Z,C’) C Funct(l,€) is a full subcategory and for
d e 6/7 Map@’(cﬂ C,) - MapFunct(I,@)(F7 6<C,)) - MapF‘lJnct(I,(?’) (F7 5(0/))

2.2.50. ([27], 5.2.7.11) is a model-independent proof, ([27], 5.2.7.12) is also model-
independent modulo ([27], 4.3.2.15).

2.251. Let f: C — D be a map in 1 — Cat. You may define the notion of f-
initial object of C. This is an object ¢ € C such that for any x € C, Mapq(c,z) —
Mapp(f(c), f(z)) is an isomorphism. See ([27], 4.3.1.1). Then ([27], 4.3.1.13) claims
that c is a f-initial object of C iff (¢,id) is an initial object of C X p Dy,

2.2.52. Important: Lurie means by a finite colimit a colimit in an infinity category C
with respect to a functor K — €, where K is a simplicial set, which has only finitely
many nondegenerate simplices!

For example, if € € 1—Cat admits finite colimits, it may be idempotent non complete
(see example HT'T, 4.4.5.1). That is, a colimit over Idem is not a finite colimit.

In a model independent setting we may define the property ”C has finite colimits”
by requiring that € admits finite direct sums and push-out squares. I don’t know an
" official definition”.
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2.2.53. It seems in 2.1.3 one may add ”if and only if”, that is, the converse is also
true? At least, if @ C @ is a full subcategory, and we consider the LKE of the functor
Funct(C, D) — Funct(CY, D) then we have the corresponding pointwise property in
(7], 4.3.2.13).

2.2.54. For a full subcategory C° C @ there is a property that the identity id : € — @
is the left Kan extension of the inclusion € — €. There should be a name for such full
subcategories? There is one, see [32].

If id : @ = C is the LKE of the full embedding i : C° < € under i then the following
holds. For any full subcategory €% ¢ € C €, id : € — € is the LKE of the full
embedding €° — € under itself.

If f:C— Dismapin 1— Cat, f strongly generates D if id : D — D is the LKE of
f along f ([32], 4.4.2).

Lemma 2.2.55. Let L : € = D, R : D — € be a pair of adjoint functors, €, D € 1—Cat,
L is left adjoint to R.

i) R is fully faithfull iff LR — id is an equivalence.

i1) L is fully faitfull iff id — RL is an equivalence.

Proof. i) Assume co : LR — id is an equivalence. Let u : id — RL be the unit
id ou cooid uoid id oco

map. Then L. = LRL = L and R — RLR =~ R are isomorphisms. So,
idou : L - LRL and uwoid : R — RLR are isomorphism. The assumptions of ([27],
5.2.7.4(3)) are verified, so ([27], 5.2.7.4) shows that R is fully faithful. O

Note that L (or R) is an equivalence iff both id — RL and LR — id are isomorphisms.

Lemma 2.2.56. Let L : B — B’ be a left adjoint to R : B' — B. Let A € 1 — Cat.

1) Let L : Funct(A, B) — Funct(A, B") be the composition with L, R : Funct(A, B") —
Funct(A, B) be the composition with R. Then L is left adjoint to R.

2) Let L : Funct(B’, A) — Funct(B, A) be the composition with L, R : Funct(B, A) —
Funct(B’,.A) be the composition with R. Then L is right adjoint to R.

Proof. 1) We want to use ([27], 5.2.2.8). We have unit and counit transformations
w :id = RL in Funct(B,B), ¢ : LR — id in Funct(B’, B’). The unit transformation is
constructed in ([27], 5.2.2.8). The counit transformation can be obtained from the unit

transformation for the pair of adjoint functors R : B'P — BP [°P : BP — B'°P, For
b€ B,b € B’ the composition

Mapa (Lb, ) — Mapg (RLb, RY) " Mapy (b, RY)

is an isomorphism in Spc. Similarly for the counit transformation.
For F € Funct(A, B),G € Funct(A, B’) we get maps

MapFunct(A,B) (F7 RG) - MapFunct(A,‘B’)(LFa LRG) £> MapFunct(A,‘B’)(LF7 G)
and
MapFunct(A,B/) (LF, G) - MapF‘unct(A,B) (RLF, RG) = MapFunct(A,‘B) (Fa RG)

It suffices to show they are inverse to each other. This should be a consequence of the

following. The compositions L Lo TRE Y I and R “2F RLR %8° R are isomorphisms.
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Justin Campbell suggest to apply a general thing: if F: ¢ — D is a functor between
(00, 2)-categories and [ : b — b, r : b’ — b are 1-morphisms in € which are adjoint (in
the sence of [14], ch. 12, 1.1.4) then F(I) : F(b) — F (') and F(r) : F(') — F(b) are
also adjoint. O

Corollary 2.2.57. Let L : B = B’ : R be an adjoint pair of functors, A, B, B" € 1—Cat.
If R is fully faithful then L : Fun(B’',A) — Fun(B,A) given by composing with L, is
fully faithful.

Proof. Combine Lemma [2.2.56] and Lemma [2.2.55 O

Remark 2.2.58. For A, B € 1—Cat let Fun®(A, B) C Fun(A, B) be the full subcategory
of functors which are right adjoint, Fun® (A, B) C Fun(A, B) the left adjoints. One has
canoncally Fun®(A, B) = (Fun® (A%, B))? sending f : A — B to f : AP — BP.

2.2.59. Dennis’ claims 2.1.5-2.1.6 are proved in Nick’s email of 3.09.2016. Namely, if
F : € — Spcis a functor, € € 1 — Cat, X € Spc let € — € be the cocartesian fibration
in spaces associated to F'. Then

Mapg,,.(colim F, X') =5 MaPpypneq(e,spe) (F> const(X)) = Mabg_cocart /e(é, exX)=>
Mapl—@at(ca X)

Now first if F'is the constant functor with value * the above shows that € — colime *
is the left adjoint to the inclusion Spc — 1 — Cat. Besides, 2.1.6 also follows from the
above.

2.2.60. Dennis’ claim 2.1.8 follows from ([27], 5.1.5.6). The important observation here
is as follows. If X € Spc then * xgp. Spc /X — X. The projection on Spc /X yields
a morphism X — Spc/X whose composition with Spc /X — Spc factors through
* — Spc. If ¢ : x — Spc is the inclusion, let € € 1 — Cat and ¢ € €. F : Spc — C
is the left Kan extension of ¢ : * — € via 7 then for any X € Spc, the colimit of the
composition X = * xgpe Spe /X — * = C is F(X) by ([27], 4.3.2.2).

2.2.61. Enhaced version of strenthening for spaces. Consider the full subcategory
Funct?~¢¢"([1], 1 — Cat) C Funct([1],1 — Cat)

whose objects are functors F' : D — C which are cocartesian fibrations in spaces.
Evaluation at 1 € [1] defines a functor

Funct®~°([1], 1 — Cat) — 1 — Cat,

which is a cartesian fibration (for this see my Section [2.2.26)). The functor 1 — Cat®” —
1—Cat corresponding to this cartesian fibration is canonically isomorphic to the functor
C' +— Funct(C, Spc).

2.2.62. Let p:C — Ebeamapin 1—Cat. Then E,, = (Funct(C, E),/) Xpunct(c,E) F
in 1— Cat naturally according to Dennis’ definition from 1.3.6. Let p : [1] x C' — E lie in
E,,. Why the propety that p is an initial object of E,,/ is equivalent to requiring that p
is a colimit of p in the sense of 2.1.27 This can be deduced from my Corollary
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2.2.63. Normalization of strengthening for cartesian fibrations. Let C' € 1 — Cat. The
functor 1 — Cat — 1 — Cat, C'— C°P is an equivalence. Composing with Funct(C,.), it
gives an equivalence a : Funct(C, 1 — Cat) — Funct(C, 1 — Cat). The composition

Funct(C, 1 — Cat) 5er (cocart/C)strict — (cart/CP) sprict 5¢ Funct(C, 1 — Cat)

is a. Here SCC' (resp., SC) is the strengthening for cocartesian (resp., cartesian fi-
brations), and the arrow in the middle — sends a cocartesian fibration X — C' to the
cartesian one X — CP.

2.2.64. 1 — Cat admits all small limits and colimits ([27], 4.2.4.8 and 3.3.3).

([27], 3.1.2.1) seems important and maybe should be added to Dennis’ book? It says
in Dennis’ framework that given a cartesian fibration p : X — S and K € 1 — Cat,
the induced map p¥ : X% — SK is a cartesian fibration. An edge f : [1] — XX is

pX-cartesian iff for any k € K the composition [1] Lt 1] x K I, X is p-cartesian.

Dually, if p : X — S is a cocartesian fibration then p® : X* — §K is a cocartesian
fibration.

If p: X — S is a cocartesian fibration in spaces then X* — S is also a cocartesian
fibration in spaces ([27], 2.1.2.9).

2.2.65. ([27], 3.3.3.4) can be formulated in Dennis’ framework as follows. Let p : K —
Spc be a morphism in 1 — Cat, here Spc is the co-category of spaces. Let X — K be the
cocartesian fibration in spaces associated to p. Then there is a canonical isomorphism
in Spc
lim p = Functg (K, X)

(confirmed by Nick). Here Functy (K, X) is the space X xx {id} of sections of
X — K. Actually, Functg (K, X) is a space, because XK — KK is a a cocartesian
fibration in spaces.

For the convenience of the reader, a version for cartesian fibrations: Let p : K —
Spc be a functor, X — K the corresponding cartesian fibration in spaces. Then
lim p = Functg (K, X).

Important question: how to reformulate (J27], 3.3.3.2) in Dennis’ framework?

Notation. Given a diagram X — S <& K in 1 — Cat, write Functg(K, X) for the
object XX x gx{q} of 1—Cat. One is tempted to give the following definition (according
to
https://en.wikipedia.org/wiki/Fibred_category).

Let f: X — € be a cocartesian fibration, p : € — 1 — Cat be the corresponding func-
tor via unstrenthening. Then we may define the full subcategory Funct&*(C, X) C
Functe(C, X) whose objects are functors f : € — X over € such that f is a morphism
in (coCart/C)surict- In other words, f sends any edge of C to a f-cocartesian edge of
X.

Given a cocartesian fibration f : X — €, one may define a 1-full subcategory X? C X,
where we keep only those edges of X, which are f-cocartesian. We have a natural map
Functe(€, X7) — Funct$*(€, X), which is not an equivalence (the 2-morphisms are
not the same). A way to formulate ([27], 3.3.3.2) in Dennis’ framework would be as
follows.
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Proposition 2.2.66 (Nick). Let f : X — C be a cocartesian fibration in 1 — Cat,
p: € — (1 — Cat) be the corresponding functor via unstrenthening. Then there is an
isomorphism lim p = Funct§&™* (€, X) .

Proof. 1t suffices to establish an isomorphism
Funct(Z, lim p)5P° = Funct(Z, Funct$ (€, X))5°

in Spc functorial in Z € 1 — Cat. Write co(Z) : € — 1 — Cat for the constant functor
with value Z. We have

FunCt(Z7 hmp)Spc - MapFunct(@,l—@at) (CO(Z)7 p) - Map(coCart/e)stmct (G X Z, X)

For an arrow a : ¢ — ¢2 in €, z € Z the map (id,«) : (2,¢1) — (z,¢2) in € X Z is
cocartesian over C. So, a functor € x Z — X over € is a morphism in (coCart je)strict
iff the corresponding functor Z — Functe(€, X) factors through Funct&™(€, X). We
are done. O

For the convenience of the reader, the version of the above claim for cartesian fibra-
tions. It comes from the fact that the functor 1 — Cat — 1 — Cat, Z — Z°P, being an
equivalence, preserves limits and colimits.

Proposition 2.2.67. Let f : X — C be a cartesian fibration in 1 — Cat, p : CP —
1 — Cat the corresponding functor (strengthening for cartesian fibrations). One has
canonically lim p = Funct&* (€, X).

We have denoted by Funct{*(€, X) C Functe(C, X) the full subcategory of those
functors that send any arrow in C to a cartesian arrow in X.

For a cartesian fibration f : X — @, write X7 for the 1-full subcategory of X, where
we keep only f-cartesian edges.

Lemma 2.2.68. 1) Let p: I — 1 — Cat be a functor, i — C;, let C =limp. Forie€ I
let ev; : C'— C; be the canonical projection. Let K € 1—Cat, p: K — C be a diagram
such that for any i € I the composition K* — C — C; is a colimit diagram. Then
K" — C is a colimit diagram.

2) Letp : K< — C be a diagram such that for any i € I the composition K¢ — C — C;
is a limit diagram. Then K< — C is a limit diagram.

Proof. 1) Let X — I°? be the cartesian fibration corresponding to p. By Proposi-
tion C = Funct§%!(I°?, X). The functor C — C; is given by the evaluation at
i€ IP. Let p: K — Funct§%!(I°P, X) be a diagram such that for any i the induced
functor K* — X; is a colimit diagram. Then, by ([27], 5.1.2.2), the composition

K* & Funct$%!(I°P, X)) < Functor (17, X))

is a colimit diagram. So, p is also a colimit diagram (we are passing to a full subcate-
gory).

2) The functor p : (KP)” — C = lim;e; C7 satisfies the assumptions of 1). So,
pP 1 (KP)® — CP is a colimit diagram. O
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The previous lemma may be strengthened in the case any limits replaced by a carte-
sian square, namely one has GREAT CLAIMS ([27], 5.4.5.4 and 5.4.5.5). The analog
of ([27], 5.4.5.5) with K-colimits replaced by K-limits is also true and is obtained by
passing to opposite categories.

It can also be strengthened in the case when any limit is replaced by a product

indexed by a set, see Corollary below.

Lemma 2.2.69. 1) Let p : I — 1 — Cat be a functor i — C;, let C = limp. Let
q: K — C be a map in 1 — Cat, denote the composition K — C — C; by q; fori € I.
Then Cqy— lirrIl(Ci)qi/ in 1 — Cat.

1€

2) Assume that each q; admits a colimit e; in C;. For any map i — j in I let Fyj :
C; — Cj be the corresponding transition functor. Assume that for any i — j in I the
induced map e; — Fij(e;) is an isomorphism. Then the colimit e of q exists, and the
image of e in C; identifies with the colimit of q;.

3) Assume each g; admits a limit e; in C;. For any map i — j in I let Fy; : C; — C;
be the transition functor. Assume for any i — j in I the induced map Fj;j(e;) — e;
is an isomorphism in C;. Then the limit e of q exists, and the image of e in each C;
identifies with e;.

Proof. 1) Transitivity of Kan extensions. We have
Cq/ :;{Q} X Funct(K,C) FunCt(K X [1]7 C) X Funct(K,C) C—

{4} Xtimuer Funet(K,C5) 1Z16D§1 Funct(K x [1], C;) Xjim,e; Funct(k,c;) im C; =
111611}({(]2} X Funct(K,C;) FunCt(K X [1]’ CZ) X Funct(K,C) C)

2) Each (Cj),,/ admits an initial object and the transition functors (Cj),,, — (Cj)g,/
preserve the initial objects. Now apply Lemma [2:2.70] below.
3) Is obtained from 2) by applying 1 — Cat — 1 — Cat, D +— D°P. O

Lemma 2.2.70. Let I — 1 — Cat be a functor i — Cj, let C = limC; in 1 — Cat.
Assume that each C; admits an initial object, and for any i — j in I the transition
functor C; — Cj preserves initial objects. Then C admits an initial object c, and the
tmmage of ¢ in any C; is an initial object of C;.

Proof. Let ¢ : X — I°P be a cartesian fibration corresponding to I — 1 — Cat. By ([27],
2.4.4.9), there is a section p : I’ — X in Functjor (I°P, X) such that for any i € I,
p(i) is intial object of X; = C;. We have to show that p € Funct{%!(I°, X) that is, for
any a : i — j in I°? the map p(a) : p(i) — p(j) is g-cartesian. Indeed, let = — p(j)
be a g-cartesian arrow over a. Then z,p(i) are an initial objects of X; = C;. By the
universal properties of cartesian arrows, there is a map p(i) — x in X; such that the
composition p(i) — x — p(j) is p(a). Since p(i) — z is an isomorphism, p(a) is a
g-cartesian arrow. O

The proof of ([27], 2.4.4.9) given by Lurie depends on a model, here is a model-
independent proof of this result:

Lemma 2.2.71. Let f : X — S be a cartesian fibration. Assume for any s € S, X
admits an initial object. Let X' C X be the full subcategory spanned by those objects x
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such that x is initial in Xy ). The composition X = X i> S is an isomorphism in
1 — Cat.

Proof. Since X, has an initial object for any s, f is essentially surjective. Let x1,z9 €
X'. Tt remains to show that Mapy (z1,22) — Mapg(f(z1), f(z2)) is an equivalence.
It is surjective. Indeed, any ¢ : f(z1) — f(z2) admits a cartesian lifting to an arrow
To — To with xg € Xf(:vl)' Since we have a map x1 — xg, we get a morphism z; — 9
over g.

Pick now g : f(z1) — f(x2) in S. It remains to show that Mapy (z1,22)y — * in
spaces. Pick a cartesian arrow g : xzg — x2 over g. By definitions,

Mapy, . (21, 20) = Mapx (21, 22)g
Since 1 € Xj(,,) is initial, the latter space is *. O
Lemma 2.2.72. Assume given two functors p,p’ : I — 1 — Cat and a map o : p — p’
in Funct(I,1— Cat). Let p be given by i+ Cy, p' byi— Cl. Let C =limp, C' =limp/.
Assume given a map K — C in 1 — Cat. Assume each C;, C admits K -indexed limits,
and each functor o, : C; — C! preserves K -indexed limits. Assume for any i — j in I
the transition functors C; — Cj and C] — C; preserve K-indeved limits. Then C,C"
admits K -indexed limits, and the induced functor C — C' preserves K -indexed limits.

Proof. This follows from Lemma [2.2.69] and [2.2.68] O

Lemma 2.2.73. Let I — 1 — Cat, i — C; be a functor, D € 1 — Cat. Then
(colim;er C;) x D= colim;er C; x D canonically.

Proof. For any € € 1 — Cat there is a canonical equivalence

Funct((colim C;) x D, €)5P¢ = Funct(colim C;, Funct(D, &))5P¢ =
'li?lp Funct(C;, Funct(D, €))5P¢ = 'li}np Funct(C; xD, €)5P° = Funct(colim(C; x D), &)5P°
el° 1el°

O

2.2.74. Important: the strengthening for cartesian fibrations is normalized as follows.
If X — Cis a cartesian fibration then the corresponding functor F': €’ — 1—Cat sends
c € Cto X.. Foramap a:cy — ¢ in €%, F(c) is the pull-back functor X., — X,
with respect to the corresponding map ¢; — co in C.

2.2.75. The analog of ([27], 3.3.4.3) in Dennis’ should be as follows. Let p : K —
1 — Cat be a map corresponding to a cartesian fibration X — K. Then colimp is
characterised by the property: for € € 1 — Cat,

Mapl—@at (COlimp, 6) - Mapl—@at (Xa e)

is the full subspace consisting of those functors X — € that send every cartesian edge
to an equivalence.

For example, if for K € 1 — Cat we consider the constant functor p : K — 1 — Cat
with value * then colimp— | K |. Since Spc < 1 — Cat admits a right adjoint, it
preserves colimits by the adjoint functors theorem ([27], cor. 5.5.2.9). So, the colimit
of the constant functor p : K — Spc with value * is also | K |.

Actually, Spc < 1 — Cat preserves both limits and colimits.



COMMENTS TO: D. GAITSGORY, N. ROZENBLYUM [14] 35

2.2.76. One is also tempted to define a ‘cartesian equivalence’ ([27], 3.1.3.3) in Dennis’
model independent framework. Let S € 1 — Cat and p : X — Y be a morphism in
(1 — Cat)/S. One may try the following definition: p is a cartesian equivalence iff
for any cartesian fibration Z — S, that is, an object of Cart/S, the induced map
Functg(Y, Z%) — Functg(X, Z%) is an isomorphism in 1 — Cat.

2.2.77. (]27], 4.1.1.5) in a model independent way says the following. Let p : K —
C,q: K" — € be maps in 1 — Cat. There is a canonical isomorphism in Spc

Funct (K, C/q) Xpunct(k,e) {p} = Funct(K', €,/) X punce(k,e) {¢}

Recall that €/¢ — C is a cartesian fibration in spaces, so (€/¢)X — €K is also a
cartesian fibration in spaces, so the left hand side is a space. Similarly for the right
hand side. The above isomorphism rewrites

Functe (K, €/,) = Functe(K’, C,))
2.2.78. Let p: K — € be a map in 1 — Cat, x € €. Then we have canonically

ep/ Xe {:E} - MapFunct(K,C) (pa 5($))
Here 6 : € — Funct(K,C) is the precomposition with K — . Indeed, use Dennis’
description of under category. Taking in Section K =xandz=q:x — C, we
get canonically
Gp/ xe {x} = Functe (K, G/r)
The map €/, — € is a cartesian fibration in spaces corresponding to the functor
C? — Spc, ¢ — Mape(c, ). So, €/y xe K — K is a cartesian fibration on spaces

corresponding to the composition p : K L @or Spc. From Section [2.2.65) we get
kliglp Mape(p(k), z) := limp — Functe(K, C/,) = Mape(colim p, z)
e O]

Example: if z is a final object of € then d(c) is a final object of Funct(K, C).

2.2.79. The previous subsection allows to prove a part of the adjoint functor theorem.
Let L : ¢ — D be left adjoint to R : D — Cin 1 — Cat. Let p: I — € be a functor,
i+ ¢;. Assume ¢ = colim p exists. Let us show that L(c) is the colimit colim;er L(c;).
For y € D this follows from
Mapyp(L(c), y) = Mape(c, R(y)) = lim Mape(ci, R(y)) = lim Mapg(L(ci), y)
— Mapy (colimier L(¢;), y)

2.2.80. A dual version of Section [2.2.78 with colim replaced by lim. Let p : K — C
be a functor, x € C. Then

Mape (2, limp) = lim Mape (2, p(k))
€
It is obtained by applying the functor op to the last isomorphism in Section [2.2.78

We use the observation that (Mape(z,y))°P identifies canonically with Mapeoy (y, x).
Besides, Spc — Spc, S +— S is an equivalence, so preserves limits.
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2.2.81. Apply Section [2.2.78/for € = 1—Cat. We get that for p : K — 1—Cat, k — C},
and Y € 1 — Cat we get

lim (Funct(Cy,Y)P°) = Funct(C,Y)5°
Jim (Fanct(C, Y)5%%) 5 Funet(C, V),
here C = colim p. On the LHS, the limit is taken in Spc.

See Lemma [2.4.17| for a generalization.

2282 IfCKel—Cat,zeCletp: K— % € be the composition. If y € €
then Funct(K, Mape(r,y)) — €, xe {y}. A colimit of p is described in ([27], 4.4.4.9).
Namely, assume K € Spc in addition. Then y € C is the colimit of p iff the corre-
sponding object of €, x¢ {y} — Mapg,. (K, Mape(z,y)) induces an equivalence for any
zeC
Mape(y, z) = Mapg,. (K, Mape (2, 2))

The notation to be used by Lurie for this colimit is K ® x € €. If € admits all small
colimits then we see that € is tensored over Spc.

2.2.83. For 2.1.5. Let € € 1 — Cat. The space | € |€ Spc is characterized by the
property that for any Y € Spc one has a natural isomorphism
Mapg,(| € [,Y) = Map;_eq(€,Y) = Funct(€, Y)*
On the other hand, the colimit colime * of the constant functor € — Spc with value %
is characterized by the following property. For any Y € Spc,
Mapg, (colime *,Y) = Mappynct(e,spe) (6(*), 6(Y)) = Spes(yy, Xspe{Y } = Functgpe(€, Spe/y )

Here 6(Y) : € — Spec is the constant functor with value Y.
Proof of 2.1.6. Let ® : € — Spc be a functor, € — € be the corresponding cocartesian
fibration in spaces, X € Spc. We have

MapSpc (COhm P, X) - NIapSpce ((I)a 5(X)) = Mapofcocart/e(é7 € x X)

The latter identifies with Map;_e,, (G, X) = Mapg,.(| € |, X), see my Section [2.2.88
So, colim® =5 | € |.
For € € 1 — Cat we have | C? | = | C|.

2.2.84. For C; € 1 — Cat we have naturally | C; x C2 | = | €1 | X | C2 |. Indeed, for
A € Spc,

Fun(C; x Cg, A) = Fun(Cy, Fun(Cy, A)) = Fun(Cy, Fun(| C2 |, A)) =
Fun(| €; |,Fun(| C2 |, A)) = Fun(]| C1 | x | C2 |, A)

2.2.85. As far as I understand, the inclusion Grp(Spc) — Mon(Spc) admits a left
adjoint L, which we think of as inverting all morphisms of a monoid.

Denote by Age the following non-full subcategory in 1 — Cat® ", whose objects are
indexed by n > 0. The object 7 corresponding to n is a set {0,...,n} considered as a
category, so there are no nontrivial maps between i # j in this category. A morphism
7 — m is an order-preserving map {0,...,n} — {0,...,m}. So, as abstract categories,
we have an equivalence Az —5 A. However, as subcategories in 1 — Cat® ¥ < 1 — Cat
they are different. The inclusion into 1—Cat®"¥" gives a natural functor A g— A sending
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{0,...,n} to [n]. So, given a functor 1 — Cat — D, we can restrict to to A and further
to Nget-

Lemma 2.2.86. Let C € 1 — Cat, ¢ € €. Then Map(c, c) = Funct([1], C) xcoxc {c, ¢}
has a natural structure of a monoid in Spc.

Proof. Recall that we have a functor 1 — Cat®” — 1 — Cat, D — Funct(D,C). We
want to consider the natural functor A— 1 — Cat, [n] = [n] Uy, . We have
Funct([n|Ugo,... ny %, C) = Funct([n], C) X cn1C. We set F([n]) = Funct([n], C)xcn+1C.
The functor F' :A°’— 1 — Cat is almost the desired one.

To get the correct one, we use a characterization of 1 — Cat via the complete Segal
spaces ([14], ch. 10, 1.2). Consider the category CSeg(Spc) of complete Segal spaces
in Spc from loc.cit., it is a subcategory in Funct(A°,Spc). Given € € 1 — Cat, let
€ € Funct(A°, Spc) be the corresponding complete Segal space, set X = Gy = €5,
Consider now Y € Funct(A°, Spc) the Cech nerve of X — . So, we get Y1 = X x X,
Y,, = X1 The inclusion {0,...,n} = [n] yields a morphism €,, — X"*1. This is in
fact a morphism of functors € — Y in Funct(A°, Spc). Consider co(x) € Funct(A°
,Spc) the constant functor with value *. Now ¢ € € gives a map co(¥) — Y in
Funct(A, Spc) such that the corresponding map * — Y, = X"+ is ¢"*1. The product
€ xy co(*) in Funct(A°, Spc) is the desired monoid in Spec. O

Assume € € 1 — Cat has just one object c¢. Then we can consider M = Mapq(c, ¢)
and the corresponding group in spaces L(M). I wonder if | € |€ Spc identifies with
B(L(M))? Check with the construction of 1 — Cat via Spc-valued Segal spaces.

Let 1 — Cat(x) be the co-category of pairs € € 1 — Cat, and an isomorphism C5P¢ =5 %
in Spc. From ([I4], ch. 10, 1.3.4) we get an equivalence 1 — Cat(x) = Mon(Spc).

2.2.87. Iflisaset, C€1—Cat, f: I — Cis a functor then the colimit ¢ = U;crf () of
f is caracterized by Mape(c,z) = [[;c; Mape(f(i), z), the product being taken in Spc.

2.2.88. Let C€1—Cat, a:c— a be amap in C. Assume € admits fibred products.
Then we get a functor C;, — C/., (¥ — a) = x X4 ¢ — c. This is the ”composition”

€/a — Funct(A3,C) i e /c. How to define it rigourously? Consider the natural map
€. — €/, given by composing with a. Its right adjoint should be the desired functor.

For € € 1 — Cat the projection €,. — C preserves fibred products. Indeed, * 50
preserves fibred products, because the diagram % <— x — * in 1 — Cat is contractible,
now apply my Lemma [2.2.69

Remark 2.2.89. i) Let X € 1 — Cat be presentable, g : I — X be a small diagram,

x = colimgq. Then viewing q as a map ¢ : I — X/x we have colim§ = x, that is, the

object id : ¢ — = of X/x. .

i1) Assume in addition that colimits in X are universal. Let y — x be a map in X. Let q

be the composition I = X/x — X/y. Then colim ¢ =y in X/y, so chiIm(q(i) XzY) =Y
1€

m X also.

Proof. i) The functor X/z — X, (y — x) — y admits a right adjoint, so preserves
colimits. The category X/x is also presentable, so admits colimits. Let Z — z be the
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colimit of §. Then Z is the colimit of q.
ii) the projection X/y — X preserves colimits. O

Note also that if v : @’ — a, 8 : a”” — a are maps in € then we should have canonically

Map@/a(’% /8) - FunCt(A27 G) ><Funct(A(Q),G) {’77 /8}

For y € € and a cartesian square in C

/

X — a
3 \J
r — a

the square has to be cartesian in Spc

Map@(y>$/) — Map@(yval)

\: 1
Mape(y, ZL‘) - Map@(ya a)

2.2.90. If € € 1 — Cat is presentable, x € C then let f : I — €/x be a map in
1 — Cat, y — x be a colimit of f. The functor €/z — € preserves colimits, so y is
the colimit of the composition fo : I — €/ — €. Now if F : € — € is a colimit
preserving functor between presentable categories and x € € then the corresponding
functor €/x — €'/F(z) is colimit preserving. Indeed, if f : I — C/z is a diagram, y — =
is a colimit of f then let f : I> — € be the corresponding colimit diagram extending
fo:I — C. Then Ff:I> — € is a colimit diagram extending F'fy. Since the functor
C'/F(y) — C/F(x) is colimit preserving, our claim follows from Remark More
generally, colimits in the slice diagrams are described in ([27], 1.2.13.8).

If in addition F : € — € is left exact then for any x € € the functor C/x — €'/ F(x)
is also left exact by ([27], 5.3.2.8).

2.2.91. For the slice categories. The mapping space is described in ([27], 5.5.5.12):
Let Ce1—Cat. If f:c—d,g:c— e are maps in € then Mapec/(f,g) is the fibre of

Mape(d, e) — Mape(c, e) over g.

Lemma 2.2.92. Let X : D — C be a map in 1—Cat, K € 1—Cat. One has canonically
Funct(K o D, C) Xpunet(p,c) {X} — Fun(K, C) x)

and Cyx — Fuanct(*D, C) Xpunet(p,c) 1 X}

Proof. We have in the model independent setting

C/x = C Xpunet(n,c) Funct([1] x D, C) X pynct(p,c) {X } = Funct(*D, C) X punet(p,c) {1 X }

This gives

Funct(K, C/X) = Funct(K, C) X punct(k x D,y Funct([1] x K x D, C) Xpunet(k x 0,cy 1X }

Recall that Ko D = K Uk pxqoy K X D X [1] Ugxpxq1y D. This gives

Funct(KoD,C) = Funct(K, C) X punct (& x p,cy Funct ([1]x K x D, C) X punct (5 x p,cy Fanct (D, C)

Our claim follows. O
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For Y € 1—Cat the functor 1 —Cat — 1— Caty, given by X — X oY commutes with
colimits. This is the transitivity of left Kan extensions combined with Lemma [2.2.73
Similarly for the functor 1 — Cat — 1 — Caty, given by X — Y o X.

By ([27], 1.2.8.1) for n,m > 1 we have [n—1]o[m—1] = [n+m—1]. This by the above
implies the associativity of the join construction in the model-independent setting: for
X,)Y,Zel—-Cat, Xo(YoZ)=(XoY)oZ. In particular, (X oY) = (“X)oY.

The limits in the slice categories are calculated as follows:

Lemma 2.2.93. Let X : D — C be a map in 1 — Cat, F : K — €,x be a diagram.
Let F: K oD — @ be the functor given by F in the sense of Lemma [2.2.93. Then
(G/X)/F’%/G/p. So, lim F' can be identified with lim F. More precisely, if (K D) — C
is a limiting cone for F then (K)o D= (K o D) — € defines a map ‘K — C/X,
which is a limiting cone for F.

Proof. 1) Model-dependent proof. Use the interpetation of join via quasi-categories
then it is clear that this is a monoidal operation on simplicial sets. The claim follows
easily from the description of the overcategory C/X via the simplicial set representing
the functor Set, — Sets, I — Homy (I x D, C).

2) Model-independent proof. First, F' corresponds to F in the sense of Lemma [2.2.92
We get
(€/X)/F = Funct("K, C/X) Xpunct(k,c/x) {F} =
Funct(“K o D, C) Xpunet(kon,) 1F} = €/
0
Remark 2.2.94. Given a diagram € — D < D’ in 1 — Cat let € = C xp D', let

qd : K — € beamap in1l— Cat. Denoteq: K - C,p: K - D', p: K — C the
composition maps. Then @;,/363(1/ XD, D;)// naturally.

2.2.95. The parametrized join construction: given X — S < Y in 1 — Cat, set

XogY =X L X xgY x |1 L Y
s X><SY><{0}( S [ ])Xstx{l}
Given S € 1 — Cat and amap p : K — Y in 1 — Cat /S, the relative undercategory
Y,/ € 1—Cat /S could possibly be defined by the property that we have an equivalence
functorial in X € 1 — Cat /S

(2) Fung(X,Y)s/) = {ps} Xruncts(k,y) Functs(K og X,Y)

This is inspired by ([27], 4.2.2.1). However, its existence is not clear! It is a question
of presentability. Namely, we ask if the functor

8)  (1—Cat/S)” — Spc, X = {ps} XMap, ey, /s(k,Y) MaD1_eat /5(K 05 X,Y)

is representable. Since 1 — Cat /.S is presentable, this is equivalent to the fact that this

functor preserves limits ([27], 5.5.2.2). The analog of Lemma here is what?
The parametrized join construction does not seem to preserve colimits in X and Y

respectively. The situation becomes better for the following its version. For S € 1—Cat
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consider the functor 1 — Cat x (1 — Cat /S) — 1 — Cat given by
(L,X - 8)— (LxS)osg X= (L x S)Ll_IXLl> x X
X

This functor preserves colimits separately in each variable.

Now for amap p: K =L xS — Y in 1 — Cat /S the functor (3] preserves limits, so
is representable (see also Remark [2.2.96| below), the corresponding object of 1 — Cat /S
is denoted Y, /. The isomorphism then holds for this Y./, and moreover Y, , is
given by the formula from my Section [3.0.21

Remark 2.2.96. Let Y — S be a map in 1—Cat. The functor (1—Cat /S)°P — 1—Cat,
Z — Fung(Z,Y) preserves limits.

2.2.97. Let C € 1 — Cat be presentable, ¢ € C'. Recall that C/c is presentable. We
equip it with the cartesian monoidal structure. Then (for any ¢ € €, €/c admits inner
homs) iff the colimits in € are universal.

Indeed, given b,d € C/c the representability of the functor (C/c)”? — Spc, a —
Mape,.(a X b,d) is equivalent (by [27], 5.5.2.2) to the fact that it preserves limits.
However, given a functor I — C/c, i — a;, we get

lim Mape.(a; X¢ b, d) = Mape.(colimier(a; X b), d)

ielor
The latter identifies with Map@/c((colim a;) X b, d) iff (colim a;) X b and colim;er(a; X .b)
corepresent the same functor. We are done.

For example, the category 1 — Cat /S with the cartesian monoidal structure does not
admit inner homs.

2.2.98. Let C €1 — Cat, assume for i € N we are given a full subcategory C; C € such
that if ¢ < j then C; C C;. Assume € = U;enC;. Then € = colim;en C;, the colimit
taken in 1 — Cat. This follows from the description of the maps spaces in colim;cy C;
given in [46].

2.2.99. Nick: if F;G : € — €y are two maps in 1 — Cat, f : ' — G is a map in
Funct(€y, C2) then f is invertible iff for any ¢ € Cy, f(c) : F(¢) — G(c) is invertible in
Ca. (Proof in his email 6.09.2016).

In particular, if X is a space, € € 1 — Cat then Funct(C, X) is a space.

Lemma 2.2.100. Let Y € 1 — Cat, X = Y, Z — Y be cocartesian fibrarions and
f:X — Z a morphism in (cocart/Y )sirict- Then f is an equivalence iff for any y € Y
the base change X, — Zy is an equivalence.

Proof. Assume f, : X, — Z, is an equivalence for any y € Y. We must show f is an
equivalence.

1) Assume this claim is established under additional assumption: X,Y,Z € Spc.
Clearly, f is essentially surjective. Let us show that f is fully faithful. Let xq,z9 €
X over y; = f(x;). Let @ : y1 — y2 be a map in Y. It suffices to show that
Map x (21, 22)o — Mapy (f(z1), f(22))a is an isomorphism in Spc. Here Map yx (x1, 22)q
is the fibre of Mapy (x1,x2) over a.
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Pick a cocartesian arrow & : 21 — x5, in X over a. By definition,
Mapy (21, 72)a = Mapy (zh, 72) 5 Mapy, (zh,72) = Map,_ (f(z4), (z2))
Since f(&) : f(x1) — f(2f) is cocartesian over Y, the latter space also identifies with

Mapy (f(23), f(22)) = Mapz(f(z1), f(22))a
We are reduced to the special case when X,Y, Z € Spc.

2) Now we assume X,Y,Z € Spc, so f : X — Z is a cocartesian fibration in spaces.
By Lemma [2.2.101| below, it suffices to prove that for any z € Z, X, = x in Spc. Let
y € Y be the image of z. Then X, = X, xz, *. Since X, = Z, by assumption, we are
done. 0

Lemma 2.2.101. If f : X — Z is a cocartesian fibration in spaces, for any z € Z,
X, = * in Spc then f is an equivalence.

Proof. According to the strengthening, f corresponds to the functor F' : Z — Spc with
F(z) = for any z € Z. O

Example of an application: let € € 1 — Cat and a = b x4 ¢ in €. Then the square is
cartesian in 1 — Cat

e/b — e/d
T T
Cla — Cle,

where each map is given by the composition. For example, the top horizontal map is
given by the composition with b — d. Indeed, this is a diagram in 0 — Cart/C, and for
each r € C after base change {r} — C it becomes an equivalence.

2.2.102. If X is a space, consider the usual category A consisting of objects 0,1 and
two morphisms 0 — 1 and 1 — 0 (and the identity morphisms). View [1]? as the
category with objects 0,1 and one morphism 1 — 0. We get a diagram

{1} = [1]? — A« [1] «+ {0}
Applying Funct(., X), we get a diagram
X < Funct([1], X) < Funct(A, X) — Funct([1]?, X) - X

Since A < {0} is an equivalence of usual categories, it is an isomorphism in 1 — Cat, so
the induced map X < Funct(A, X) is an equivalence. From ([27], 2.1.2.10) we see now
that all the maps in this diagram are isomorphisms in 1—Cat. Pick inverse equivalences,
then the obtained map X — X sends zq to the end x1 of ”an arrow” zg — x1.

2.2.103. (Nick) Let C be a space. One may construct an equivalence C — C as
follows. The diagonal morphism C — C x C is a cocartesian fibration, so gives a
functor C' — Funct(C,1 — Cat). By construction, we may assume it sends ¢ to the
corepresentable functor ¢ — Mapq(c,c’). By Yoneda, this defines a functor C' — CP,
which is an equivalence.



42 COMMENTS TO: D. GAITSGORY, N. ROZENBLYUM [14]

2.2.104. Cofinality. Why the definition of cofinality in Dennis and ([27], 4.1.1.1) are the
same? A category C € 1—Cat is contractible iff there is an isomorphism Funct(€C, X) = X
in Spc functorial in X € Spc. If € was a simplicial set, this would mean that the map
C — x in Sets, gives an isomorphism in the homotopy category of spaces H (notation
from [27]), that is, C is contractible.

Let f: € — D be amap in 1 — Cat. By ([27], 4.1.3.1), f is cofinal iff for any d € D,
€ xp Dy is contractible. Dennis takes this as a definition of cofinal maps.

Let F: D - €Cbeamap in1— Cat, ¢c € €. Let h : € — Spc be the map
corresponding to the cocartesian fibration in spaces €., — €. We get a natural map
| D xe €./ | = colim(hF) — colimh— | € |.

Lemma 2.2.105. Let C € 1 — Cat with an initial object e € C. Then C is contractible.

Proof. Since id : € — € is cofinal, from ([27], 4.1.3.1) we conclude that for any ¢ € €,
€./ is contractible. If e € € is an initial object that C,, — € is an isomorphism in
1 — Cat, so € is also contractible. ]

For example, if € € 1 — Cat has a final object ¢ € € then the map % — € is cofinal.
So, a cofinal map is a generalization of the inclusion of a final object.

I think the key property here is ([27], 4.1.1.8): let v : K’ — K be a map in 1 — Cat.
Then v is cofinal iff for any € € 1 — Cat and any map p : K — € the induced map
€,/ — €,/ is an equivalence.

In particular, if X € Spc,z € X then X,, — X,,—* in Spc. A generalization:
if f:€ — D is a cartesian fibration in spaces and ¢ € € then €. — D,y is an
equivalence in 1 — Cat.

If amap f: K — K’ in 1 — Cat is cofinal then | K |—| K’ | is an isomorphism in
Spc (HTT, 4.1.1.3(3)).

Remark. Let A C B be a full subcategory, B € 1 — Cat. Let Y’ € P(A), and YV
be the LKE of Y’ along A% C B°. Then the inclusion A /)y <> B,y is cofinal. Here
By =B xp3y P(B))y-

Proof. For o € Y (b) with b € B we check that Ay x5, (B,y)s/ is contractible. Recall
that
Y(b)=  colim Y'(a),
a€(AxpBy,)oP
the colimit taken in Spc. Since the colimits in Spc are universal,
* =Y (b) Xy @) {a} = ae(/?(x)gglb/)op Y'(a) xy@) {a}
The latter colimit is the space obtained from Ay x5, (B/y)p) by inverting all mor-
phisms by ([14], ch. 1.1, 2.1.6). O

2.2.106. Let L : B — B’ be left adjoint to R : B’ — B, maps in 1 — Cat. Then
the induces maps | L |:| B |=| B’ | and | R |:| B |—=| B’ | are equivalences in Spc.
Indeed, for any space A the induced map R : Fun(B, A) — Fun(B’, A) is left ad-
joint to L : Fun(B’,A) — Fun(B, A), hence L and R are equivalences. Note that
Fun(B, A) = Fun(| B |, A) is a space. The map | L | is an isomorphism, because for any
space A it induces an equivalence Fun(| B’ |, A) — Fun(| B |, 4) in Spec.
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According to Lurie’s terminology, a functor F' : A — B in 1 — Cat should be called
a weak homotopy equivalence iff | F' |:| A |—| B | is an isomorphism in Spc.

2.2.107. Why the property 2.2.2(iv) is equivalent to F' : D — € being cofinal? Here
is the proof that 2.2.2(iv) implies that F is cofinal. Take in 2.2.2(iv) ® : € — E to
be the constant functor d(e) with value e, it sends all morphisms to isomorphisms. Let
® : € — E be any functor. Then Mappy,cq(e, ) (P, 0(e)) = Functg(C, £/, ) according to
my Section [2.2.78] So, by our assumption the map

Functg(C, E/e) — Functg(D, E/e)

is an isomorphism in Spc. Note that £/, — E is a right fibration in spaces. Let X — €
be any cartesian fibration in spaces. It corresponds to a map € — Spc® such that
(SpcP) /+ Xspeer € — € is isomorphic to X — € in 1 — Cat/e. The above isomorphism
implies that Functe(C, X) — Functe(D,X) is an isomorphism in Spc. So, F' is cofinal
according to ([27], def. 4.1.1.1).

Lemma 2.2.108. (Nick) Let F : D — € be a map in 1 — Cat, ¢ : € —| C | be the
natural map. Then F' is cofinal iff for any map ® : € = E in 1 — Cat the natural map
LKE;r(®F) — LKE,(®) is an isomorphism.

Proof. We use the diagram

Funct(| € [,E) % Funct(C, E)

N\ aF L F
Funct(D, E)

The natural map LK Ep(®F) — & yields the natural map in the lemma. By Yoneda,
we may assume F = Spc.

Note that F' : D — € is cofinal iff for any map 7 : € — Spc the natural map
colim 7F — colim 7 is an isomorphism. In other words, for any cocartesian fibration in
spaces €’ — C the natural map | ¢’ xeD |—| € | is an equivalence in Spc. Our claim is
reduced to Lemma below. Indeed, let ® correspond to a cocartesian fibration in
spaces €' — €, let D' = € x¢ D. Then LK E,(®) is the cocartesian fibration in spaces
| ¢ |=| €|, and LKE,p(®F) is the cocartesian fibration in spaces | D’ |[—| € |. O

Lemma 2.2.109. Let ® : D — Spc be a functor given by a cocartesian fibration in
spaces X — D. Let F : D — C be a functor, where C is a space. Then the cocartesian
fibration corresponding to LKEr(®) : C — Spc is given by | X | = colimp ® —
colimp * =| D |— C.

Proof. Let Y — C be a cocartesian fibration in spaces. Its image under Funct(C, Spc) —
Funct(D,Spc) is Y x¢ D — D. Note that Y is a space, because composition of left
fibrations is a left fibration. Now

Map(]—coca'rt/@ (Xv Y x¢ D) - Mapl—@at/c (X> Y) - MapSpc/c(‘ X ’7 Y)
Since 0 — cocart ;o = SpC/C, we are done. O

Here is the proof that that F': D — € cofinal implies 2.2.2(iv). First, we may assume
E has all colimits (by embedding it into a cocomplete category). We may also assume
@’ = Wq, where U :| € |— E is some functor, ¢ : € —| € | is the natural map.
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By adjointness for Funct(| € |, E) <% Funct(€, E), we get
Mappnet(e,£) (P, V) = Mappyney(je),p) (LK By (), ¥)

By adjointness for Funct(| € |, E) & Funct(D, E) we get
MapFunct(@,E) ((I)F, \Iqu) - MapFunct(\@\,E) (LKEQF(CI)F)? \Ij)

By Lemma [2.2.108] LKE,r(®F) — LKE,(®) is an isomorphism, and our claim
follows.

2.2.110. If X is a space then 0 — cocart,x = Spc/x. In other words, if f:Y — X is
a morphism in Spc then f is cocartesian fibration.

2.2.111. If € € 1 — Cat then the natural functor € —| € | is cofinal. Indeed, for any
cartesian fibration in spaces X —| € |, we have X € Spc. By ([27], 4.1.1.1) it suffices
to show that the natural map Mape|(| € |, X) — Mape|(€, X) is an isomorphism in
Spc. This is nothing but the map

FllIlCt(’ ¢ |7X) X Funct(|€],|€]) {ld} - Funct((“,’,X) X Funct(€,]€)) {Oé}

Here o : € —| € | is the canonical map. Since X is a space, Funct(C, X') = Funct(| C |,X)
canonically, and both are spaces. We are done.

2.2.112. Let F : D — € be a functor, assume it admits a left adjoint F*. Pick ¢ € C,
let a : ¢ — FFX(c) be the canonical map. We get a diagram (of cocartesian fibration
in spaces over D)

DFL(C)/ — DX@ GC/

D

The horizontal map sends F*(¢) — d to the composition ¢ = FF(¢) — F(d). The
horizontal maps exists even on the level of simplicial sets, it comes as the composition
DFL(C)/ —D Xe GFFL(C)/ —D Xe GC/.

The fact that FL is left adjoint to F' implies that for each d € D, the fibre of the
above horizontal map over d is an isomorphism

MapD(FL(C), d) - Map@(c, F(d)>

From my Section [2.2.99 we conclude that Dpr(,), — D xe €., is an equivalence, so
D xe €./ has an initial object.

2.2.113. Let F': D — C be a cocartesian fibration. Then for any c € €, a € D x¢ €/,

given by d € D, : F(d) — ¢, the category Dy, X€pay/ {a} admits an initial object.

Such initial objects are precisely a F-cocartesian morphisms d — d’ over « : F(d) — c.
We have an equivalence

De X(pxee,.) (D xe €re)ay = Day Xepy, {0}

So, if F'is cocartesian then D. — D x¢ €/, is cofinal, as is claimed in 2.2.4.
If F': D — € is cocartesian then any d € D gives rise to a functor £ : Cp(q), — Dy,
sending « : F(d) — ¢ to a cocartesian arrow d — d' over «. It has the property that it
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sends any arrow o : F'(d) — ¢ to an initial object of Dy; Xep,, {o}. The existence of
£ is explained below. B
Let 8 :d — dy be a map in D. Recall that § is cocartesian iff

§:D5; = Daj Xy, Cra),

is an equivalence. Given an object o : d — d’ of Dy / the fibre of £ over a becomes a
morphism in Spc

Made/(Ba a) — MapeF(d)/ (F(B)v F(a))

So, 3 is cocartesian iff the latter map is an isomorphism for any «.

We have the functor F: Dy, — Cpgy, sending a : d — d' to F(a) : F(d) — F(d').
Note that F is a cocartesian fibration by ([27], 2.4.3.1). The desired functor £ is its
left adjoint. Indeed, for any 8 € Cp(g), the category

Dd/ XCray, Cﬁ/f—\;Dd/ XCr(ay, (CF(d)/)ﬂ/

has an initial object. So, by Corollarybelow, F has a left adjoint £. If 5 : d — dy
is cocartesian over € then £ sends F(3) to 3. The natural map id — F£ an isomorphism
of functors, so £ is fully faithful.

If, in addition, F': D — € is a cocartesian fibration in spaces then F: Dy, — Cp(g),
is an equivalence. Indeed, in this case any arrow in D is F-cocartesian, so LF — id.

Lemma 2.2.114. (Nick) Let C € 1 — Cat, let F : X — C be a coCartesian fibration
in spaces. The corresponding functor C' — Spc is corepresentable iff X has an initial
object.

Proof. 1If X is corepresented by ¢ € C, we have that X — C,, over C, and it has an
initial object. Now assume X has an initial object z € X. Then we get a functor
L : Cp(z)) — X sending a : F'(x) — ¢ to the end 2’ of a cocartesian arrow z — z’ over
a, see my Sect We will show this is an isomorphism. Our £ is left adjoint to
R: X = Cpyys y= (F(z) = y). Fory € X let 3:2 — y be amap in X. By ([27],
2.4.2.4), B is F-cocartesian. So, the natural arrow LR — id is an isomorphism. We
know already that id — RL is an equivalence. We are done. O

The dual claim is ([27], 4.4.4.5):

Lemma 2.2.115. If f : € — C is a cartesian fibration in spaces, let c e Candc= f(e.
Let F : C%? — Spc be the functor corresponding to f. Note that C'— C xpe) P(C)/p.

Then (C, ¢ € F(c)) represents F iff ¢ is a final object of C.

Corollary 2.2.116. Let F': D — C be a functor, ¢ € C.

i) The partially defined left adjoint F¥ to F is defined at c iff D x¢ C./ has an initial
object.

i4) The partially defined right adjoint F® to F is defined at c iff D x¢ C/c has a final
object.

Proof. i) 1t is defined at c iff the functor D — Spc, d — Mape(c, F'(d)) is corepre-
sentable. This functor is given by the cocartesian fibration in spaces D x¢€.; — D. U
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2.2.117. Asin ([27], 3.3.2) let ¢° : 2° — Spc® be the universal cartesian fibration in
spaces, it corresponds to id : Spc — Spc. Let 2 € 22 be the unique object of id(x) = *.
Recall that xg is final in 2° ([27], 3.3.2.6). The functor id : (Spc®?)°? — Spc is repre-
sented by x € Spc?. Indeed, for X € Spc, Mapg,cor (X, ) = Mapg,.(*, X)? = XP = X
functorially.

2.2.118. For 2.4.1. Let C; : I — 1 — Cat be a functor, C — I the corresponding
cocartesian fibration. Assume that for any « : ig — 41 in I, the corresponding functor
F, : Ciy — C;, admits a right adjoint. Why C — I is a cartesian fibration? By
assumption, it is a locally cartesian fibration (after the base change o : [1] — I, it
becomes bi-cartesian, now apply [27], 2.4.1.12). Now from ([27], 5.2.2.6) we see that a
composition of two locally cartesian arrows in C is a locally cartesian arrow. The claim
follows now from ([27], 2.4.2.8).

The following is useful for future applications.

Remark 2.2.119. Let f: X — S be a cartesian fibration in 1 — Cat, f': X' — S’ be
obtained by base change S — S in 1 — Cat. Then an arrow h in X' is f’'-cartesian iff
its image in X is f-cartesian (combine [27), 2.4.1.3, 2.4.1.12, 2.4.2.8).

([27], 2.4.2.13) implies: if f : X — S is a cartesian fibration then an arrow h in X is
f-cartesian iff it is locally f-cartesian.

2.2.120. Example of passing to right adjoints: The map ¢ : Fun([1],€) — G} is
a cocartesian fibration always. Let € € 1 — Cat admit fibred products. Consider the
functor € — 1—Cat sending ¢ € € to €/, and a : ¢; — ¢2 to the functor ay : €/, — €.,
given by the composition with . It exists according to my Section[2.2.24] The functor
o has a right adjoint o' : Crey = Cjepy T T Xy 1. By ([14], 2.4.1), we may pass to
right adjoints and get a functor € — 1 — Cat, ¢ — C/.. It sends o : ¢c1 — ¢3 to the
pull-back functor o' : @ Jes = €je,. We have just proved that under our assumption §
is bicartesian fibration.

2.2.121. 2.5.7 can be explained as follows. Write Pr’, Prf for the categories defined in
([27], 5.5.3.1). Consider the canonical inclusion F : Prl € 1 — Cat. Applying ([14], 2.4),
we may pass to the write adjoints % : (Prl)P — 1 — Cat. Then ([28], 5.5.3.3) means
that the functor F# factors uniquely through the 1-full subcategory Pr’t ¢ 1 — Cat,
and the resulting functor (Pr)? — Prf is an equivalence. So, if I — Prl is a colimit
diagram then (I*)? — (Prf)? = Prf is a limit diagram. Besides, Prf* ¢ 1 — Cat
preserves small limits.

Sam Raskin claims Pr” is not presentable, there is a mathoverflow discussion of this
[42].

Let I — Prl be a diagram, i — Cj;, let C' = colim;c; C; in Prl. For i € I let
ins; : C; — C be the natural functor, ev; : C — C; its right adjoint, which is the
projection ev; : limjeror C; — Cj. For ¢ € C the natural map colim,c ins;evi(c) is an
isomorphism (same proof as in my Section 9.2.6)).
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2.2.122. About the last claim before 2.5.8. I think in general, limjor C; can not be
calculated in 1—Cat p,s, because C’ﬁ,p : I°P — 1—Cat does not factor through 1—Catp,..
So, in (2.6) the limit in the RHS is calculated in 1 — Cat.

About 2.6.1, there I — 1—Cat should be actually a functor I — 1—Catp;s, otherwise
ev; : C — C; for i € I are not defined.

2.3. For 2.6.2. I think there the assumption for Lemma 2.6.2 is the following. For a
map « : i — j in I, we have the right adjoint o' : C; — C; to the functor ay : C; — Cj
given by Cr : I — 1 — Cat. Then they assume that o'(limge 4 ¢§) — limgea cf is an
isomorphism. Then they claim their lemma 2.6.2.

2.4. For 2.6.3. For i — 7 in I we have an isomorphism <I)jF£ — Fg@i, it gives

Fl-lj) — @ng@i. Composing with ®f we get

D& R R:C R RC
We used in the latter map the natural transformation @i(I)f% — id.

Lemma 2.4.1. Let I € 1—Cat, I x[1] — 1 — Cat be the diagram sending i to f; : C; —
D;. Fori— jin I let Fg : Gy — O, FUD : Dj — Dj be the corresponding transition
functors. Assume each f; has a left adjoint g; : D; — C;, and the natural transformation
ngil]? — I*—’Z(]JgZ is an isomorphism. Then f:=1lim f; : C =1lim C; — D = lim D; admits
a left adjoint g : D — C, and for any i € I the natural transformation g;evP — evicg

s an isomorphism.

Proof. Consider the composition I — 1—Cat X 1—@at. Thisis the diagram sending i to
fi7: CP — DJP. Then each f; has a right adjoint g;”, and the natural transformation
Fgoﬁ g7 — g]o-p szjj " is an isomorphism. Our claim follows so from (ch. 1, 2.6.4). O
2.4.2. The description of 1 — Cat via complete Segal spaces gives the following. Let
F : C — D be a functor in 1 — Cat. To show that it is an equivalence, it suffices to
show that for any n > 0 it induces an isomorphism of spaces

Map; _gat ([n], €) = Map; _ea([n], D)

2.4.3. The alternative join construction from ([27], 4.2.1.1) makes sense in model in-
dependent framework. So,
XoY =X U (XxYx[]) U
X xY x{0} X XY x{1}
It is equivalent to the usual join in 1 — Cat, see ([27], 4.2.1.2). In particular, X* =

(X< [I]) U

The relative undercategory construction from ([27], 4.2.2.1) could maybe be defined as
follows (I am not sure, a good definition is given in my Section. Let S € 1—Cat,
I,C €1~ Cat/S, let ps: I — C be a morphism of 1 — Cat /S. Then C,, should be
defined as

{pS} X Functg(I,C) FunCt([l]v FunCtS(Iv C)) X Functg (I,C) FunCtS(S’ C)
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2.4.4. Let K be a regular cardinal, w the first infinite cardinal. As in ([27], 5.3.1.7),
C € 1 — Cat is s-filtered iff for any x-small K € 1 — Cat, every functor K — C can be
extended to a functor K* — €. Say that C € 1 — Cat is filtered iff it is w-filtered.

For example, A is not filtered.

If € € 1 — Cat has a final object then C is s-filtered for every regular cardinal s ([27],
5.3.1.15).

Definition 2.4.5. Let f: A — B be a map in 1 — Cat. As in ([21], 5.5.2.1), say that
f is right exact iff for any cartesian fibration in spaces B’ — B, where B’ is filtered,
A xg B’ is also filtered. If in addition A admits all finite colimits then this property is
equivalent to requiring that F' preserves finite colimits ([27], 5.5.2.3).

Claim ([27], 5.3.3.3): Let I € 1 — Cat, k be a regular cardinal. Then I is s-filtered
iff the functor colim : Funct(I,Spc) — Spc preserves k-small limits.
It does not seem true in general that filtered colimits are left exact. In ([27], 7.3.4.2)

Lurie considers a class of presentable categories with this property. For example, in an
oo-topos this holds ([27], 7.3.4.7).

Definition 2.4.6. ([27], 5.5.4.5). 1) Let C € 1 — Cat admit filtered colimits. A functor
f:€—=D inl— Cat is continuous iff it preserves filtered colimits. Let ¢ € C. Then ¢
is called compact iff the functor € — Spc, y — Mape(c,y) is continuous.

2) Let k be a regular cardinal, let C € 1 — Cat admit small k-filtered colimits. A functor
f € — D is k-continuous iff it preserves r-filtered colimits. In addition, ¢ € C is
k-compact if the functor € — Sf)c, z — Mape(c, z) is k-continuous. Here Sf)c s the
oo-category of not necessarily small spaces.

([27, 5.3.4.12) has a model independent meaning I think: let ... ELt Cq Eit Co be
a tower of co-categories. Assume each C; admits small x-filtered colimits, and each f;
is k-continuous. Let C = lim; C; in 1 — Cat. Then C admits small x-filtered colimits,
and each projection C' — C; is k-continuous. (Lurie’s assumption that each f; is a
categorical fibration is not needed). Assume x uncountable. Then if ¢ € C has k-
compact image in each C), for n > 0 then ¢ is k-compact. (All this follows from my

Lemma [2.2.69)).

Remark 2.4.7. The following is also obtained from my Lemma and (HTT,
5.8.4.7). Let k be a regular cardinal, I a k-small co-category. Let f: I — 1 — Cat be a
diagram such that for any i € I, C; = f(i) admits k-filtered colimits, and for i — j in
I, C; — Cj is k-continuous. Let C =lim; f. Then C admits k-filtered colimits. If c € C
is such that for any i € I its projection ¢; € (C;)" then ¢ € C".

Definition 2.4.8. ([27], 5.1.5.7). Let C € 1 — Cat admit all small colimits. Let A be a
collection of objects of €. Then A generates C under colimits if the following holds: for
any full subcategory C' C € such that A C €', if €' is stable under colimits then € = €.
A functor f : S — C generates C under colimits if the image f(S) generates C under
colimits.

2.4.9. Let € € 1 — Cat admit small colimits. In ([27], 5.1.6.2) Lurie defines a notion
of a completely compact object of €. Let us show that the only completely compact
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object of Spc is x. If X € Spc is completely compact then for any Y € Spc we have the
following. Let F' : Y — Spc be the constant functor with value * then Y = colimy F,
so Funct(X,Y) = colimyecy Funct(z, F(y)) =Y. So, X = | X | = *.

2.4.10. Let s be a regular cardinal. For € € 1 — Cat the category Ind,(C) of ind-
objects of € is defined in ([27], 5.3.5.1). This is the full subcategory of those F €
P(€) = Funct(C°, Spc) such that for the corresponding cartesian fibration in spaces
€ = @, € is x-filtered.

The key thing about ind-objects seems to be ([27], 5.3.5.10).

Important special case: Let k be a regular cardinal, let € € 1 — Cat admit k-small
colimits. Then the full subcategory of P(€C) spanned by functors F' : C” — Spc
preserving k-small limits coincides with Ind,(C) ([27], 5.3.5.4).

A related claim in ([27], 5.3.5.14), its proof is badly explained in my opinion. It can
be reformulated as the following improvement of ([27], 5.3.5.4):

Lemma 2.4.11. Let C € 1 — Cat be small, F : C°’ — Spc be an object of Ind,(C).
Then

1) F preserves all k-small limits that exist in C°P.

2) j: € — Ind,(C) preserves all k-small colimits which exist in C.

Proof. 1) Let K € 1 — Cat be k-small, K — C be a diagram k — ¢ having a colimit
cin €. So, ¢ = limgegor ¢ in CP. Using ([27], 5.3.5.4), pick a small s-filtered
J € 1 — Cat and a diagram p : § — € such that F is the colimit of § 5 € — P(C),
j — F; € P(C). Each F}; preserves all s-small limits that exist in C?. We have
to establish an isomorphism F(c) = limgegor F(ck), here F(c) = colimjecy Fj(c) and
F(c) = colimjey Fj(cg). So, we are looking for an isomorphism
C(J)lelamjgfr(r}m Fj(er) = jél}r(r})p C(J)lelgll Fj(ck)
It follows from ([27], 5.3.3.3).
2) Let p : K* — C be a colimit diagram, where K € 1 — Cat be s-small. It suffices to

show that for any C' € Ind,(C), the composition (K P) LNYCEN (Indk(C))°P g Spc is
a limit diagram, where F¢ is the functor represented by C. But F¢ o j identifies with
C, and C preserves all k-small limits which exist in C°P. O

2.4.12. If kK < 7 are regular cardinals, A admits small k-filtered colimits, f : A — B
is k-continuous then f is also 7-continuous. Note that each 7-filtered category is also
k-filtered. Roughly, we should think that all reasonable functors are 7-continuous for
7 large enough I think ([27], 5.4.2.5).

Strange question: if € € 1 — Cat, is there always a regular cardinal x such that C
admits r-filtered colimits? It is adressed in ([27], 5.4.3): if € is small and idempotent
complete then C is accessible.

If ¢ € 1 — Cat admits s-filtered colimits then it admits 7-filtered colimits for any
T > K, and C° C C7.

I think the definition of Ind, in families from ([27], 5.4.2.18) extends that of ([27],
5.3.5.1).
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(HTT, 5.4.7.7): Let G : C — C’ be a functor between accessible co-categories. If G
admits a right or a left adjoint, then G is accessible.

2.4.13. Any presentable category C is cotensored over Spc ([27], 5.5.2.6). For any
K € Spec, X € @ there is XX € @ and a collection of natural isomorphisms for Y € €

Ma'pe(K XK) - MapSpc(Ka Map@ (Y7 X))
A presentable € € 1 — Cat admits all (small) limits and colimits ([27], 5.5.2.4).

2.4.14. Description of accessible localizations. If C € 1 — Cat, S is a collection of mor-
phisms in €, Lurie says that z € € is S-local if for any s : x — y in S, Mape(y, 2) —
Mape(x, 2) is an isomorphism in Spc ([27], 5.5.4.1).

If € € 1 — Cat is presentable, S is a small set of morphisms in € the full subcategory
S~1€ C @ is defined in ([27], 5.5.4.15) as the full subcategory consisting of S-local
objects. This is an accessible localization of C, and S~1€ is presentable ([27], 5.5.4.15).
See also the notion of strongly reflective subcategory in a presentable category (HTT,
5.5.4.16). In [28] Lurie uses the notation S™'C in a more general case, for exam-
ple, when discussing inverting the quasi-isomorphisms in the derived infinity-categories
(28], 1.3.4.1).

Lemma 2.4.15. IfC € 1 — Cat, S is a collection of morphisms of C, for X € 1 — Cat
write Fung(C, X') C Fun(C, X) for the full subcategory of functors sending elements of
S to isomorphisms. Consider the functor h : 1 —Cat — Spc, X +— Fung(C, X)SP°¢. This
functor is corepresentable by a category that should be denoted S™1C.

Proof. 1 — Cat is presentable. So, to see that h is corepresentable, it suffices to show
by (HTT, 5.5.2.7) that h preserves limits and is accessible. If X = lim;c; X; in 1 — Cat
then Fun(C, X )P = lim;e; Fun(€, X;)5P¢ as always. Restricting to full subcategories
we get a map a : Fung(€, X)P° — lim;c; Fung (€, X;)SP¢, which is fully faithful. Let

now f : € — X be a functor such that for any ¢ € I the composition C i> X = X;
sends elements of S to isomorphisms. Then f € Fung(€, X)5P°. Thus, « is essentially
surjective. O

(If B is a map in X = lim;e; X; such that for any 4 its image is an isomorphism
in X; then 8 is an isomorphism. Indeed, the functor lim : Fun(/,1 — Cat) — 1 — Cat
sends an isomorphism to an isomorphism). If in the situation of Lemma Cis
presentable, and S is of small generation then S~'€ is an accessible localization of €
by (HTT, 5.5.4.20).

Remark In the situation of Lemma [2.4.15] the canonical functor h : C — S™1C is
cofinal. Proof by Nick: our h gives the full embedding Fun(S~1C, Spc) < Fun(C, Spc).
Let a : S~'C — Spc be a functor. Then the LKE of a o h along h identifies with a. So,
colima — colima o h. This implies that A is cofinal.

2.4.16. Consider the diagram [n] <~ * RN [m]. The colimit in 1 — Cat identifies with
[n+m]. This has to be taken as a definition (expressing the fact that the compositions
are unique). In the framework of [27], let S(n,m) be the colimit in the category of
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simplicial sets. The natural map S(n,m) —A™t™ is an acyclic cofibration in the Joyal
model structure (combinatorial exercice).
This implies that the square is cartesian

Funct([m],C)  — Funct(x,C)

T T
Funct([n +m|,C) — Funct([n],C)

Lemma 2.4.17. If h : I — 1 — Cat is a functor, i — C;, let C = colim;c; C;. If
D €1 — Cat then

Funct(C, D) — Zlelglp Funct(C;, D)
Proof. 1 think we accept without a proof the fact that Funct : 1 — Cat®? x1 — Cat —
1 — Cat, (C, D) — Funct(C, D) is a functor. So, h yields h : I°? — 1 — Cat?, the latter
yields the functor I°? — 1 — Cat, i — Funct(C;, D).

Let h : I — 1 — Cat be the map realizing C as the colimit of h. Composing
h:9(I°P) — 1 — Cat? with the functor Funct(., D), we get a cone “(I°?) — 1 — Cat
for the natural functor I — 1 — Cat, ¢ — Funct(C;, D). So, we get a natural map
Funct(C, D) — lim;e jop Funct(C;, D).

Let n > 0. Let us check that the induced map

Mapy gy (1], Funet(C, D)) — Mapy ey, (], limy Fanct(C;, D)
is an isomorphism in Spc. We have

Map; _eat ([7], Funct(C, D)) = Map;_eat ([n] X Cy, D) = Map_e, (colim;er([n]xC;), D)

= lim Map;_cea([n] X Ci, D)= Map;_e,:([1n], lim Funct(C;, D))
ielop ielop

O

Reversing the arrows in the above proof, one similarly gets the following.

Lemma 2.4.18. Let D € 1—Cat, h : I — 1—Cat be a functori — C;, let C = lim;c; C;.
Then the canonical map
Funct(D,C) — hn}l Funct(D, C;)
1€
s an isomorphism in 1 — Cat.

2.4.19. For ([14], Chapter 1.2, Sect. 2.2.1). Let C € 1 — Cat, ¢ € C. The functor
Fin? — C, I — ¢! is rigorously defined as follows.

In general, given Ay, A2 € 1 — Cat and two functors F; : A; — Spc, one gets the
functor A" x Ay — Spe, (a1, az) — Mapg,.(Fi(a1), Fa(az)) = Funct(F1(a1), Fa(az)),
because there is a functor 1 — Cat”” x1 — Cat — 1 — Cat given by A, B — Funct(A, B).

It suffices to construct the corresponding functor Fin”” xC°? — Spe, (I,c) —
Mape(c/, ¢!) = Mapg,.(I, Mape(¢/,c)). This can be done as above, namely we have
two functors Fin — Spc, I — I, and C%? — Spe, ¢/ — Mape(c/, ¢). As above this yields
the desired functor Fin®”” xC°? — Spec.
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2.4.20. Let € € 1 — Cat be nonempty and admit push-outs. Assume also for any pair
z,y € C there is a diagram =z — z < gy in C. Then C is filtered? Not clear, but this
could be a variation of (HT'T, 4.4.2.4).

2.5. Let f: A — B be amap in 1 — Cat. To show that this is an equivalence, it
suffices to show that for any K € 1 — Cat the map Funct(K, A)°P¢ — Funct(K, B)°P¢
is an equivalence (they should represent the same functor).

2.5.1. Let I €1~ Cat, assume given a diagram h: I x [1] — 1 — Cat, i — (A; =% B;).
Here oy : A; — B, is a functor. Set A = lim;e; A;, B = lim;e; B;. Let ao: A — B be
the limit functor. Assume given an object b € B, write A, = {b} x5 A. Write b; for
the image of b in B;.

Lemma 2.5.2. There is a canonical isomorphism Ay — lim;er {b;} x5, A;.

Proof. Transitivity of the right Kan extension. Namely, Consider the category J =
{0" — 1 + 0}, it has three objects 0,0', 1. Consider the functor

h:IxJ—1-Cat

extending h such that h(i, 0') = * € 1—Cat, and the map h(i, ') — h(i, 1) is b; : ¥ — B;.
We have the commutative diagram

IxJ — J
] 1
I — %
Calculate the right Kan extension of h via both paths. O

Corollary 2.5.3. 1) Let F: I — 1 — Cat, i — C; be a functor, let C = lim;c; C;. For
z,y € C let x;,y; € C; be their images. One has canonically

Mape (2, y) = 11151 Mapg, (74, i)

2) Let I x [1] — 1 — Cat be the map i — (C; 5 D;). Assume for each i € I, f; is
conservative. Let f : C — D be obtained by passing to the limit over I. Then f is
conservative.

Proof. 1) Recall that Mapq(z,y) = * Xoxc Funct([1],C) for the map (z,y) : ¥ —
C x C. The functor Funct([1],-) commutes with limits in the sense of Lemma
Apply Lemma for the functor h : I x [1] — 1 — Cat, where h(i) is the functor
Funct([1], C;) — C; x C; and the object of lim;c; (C; x C;) = C x C'is (z,y). We are
done.

2) Let a: ¢ — ¢’ be a map in C' with f(«) isomorphism. Then for each i € I we have
@; : ¢; — ¢ in Cj such that fi(ag) @ fi(ci)=fi(c)). So, a; : ¢; — ¢ is an isomorphism,
hence « is an isomorphism. O

From (2.5.2)) we get immediately the following.

Corollary 2.5.4. Let I € 1 — Cat be small. Let I — 1 — Cat be a functor, i — B;,
let B = lim; B;, b € B. Let b; € B; be the image of b. Then B/b— lim;cs B;/b;

canonically.
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Corollary 2.5.5. Let I be a set, for i € I, C; € 1 — Cat and C = [[;c;Ci. Let
K €1 — Cat, assume each C; admits any K-indexed colimits. Then colimits in C are
computed pointwise. Namely, assume p : K* — C is a diagram given by the collection
of diagrams p; : K® — C;, here p; is the composition of p with C — C;. Then p is a
colimit diagram iff for any i € I, p; is a colimit diagram.

Proof. The ‘if’ part is given by Lemma Assume now p is a colimit diagram.
Let us show that each p; is a colimit diagram. For x = (z;),y = (y;) € C we have
Mape(z,y) = [Licr Mape, (i, yi). Let ¢ = (¢;) = colimyp, let d; = colimp; and d =
(d;) € €. Then for y = (y;) € C we get

Mape(c,y) = lim Mape(p(k),y) = kgpongapei (pi(k). yi) =

lim M k),95) > [] Mape, (colim p;, ;) = Mape(d,
gkellrg’l’ ape, (pi ),yz)%g ape, (colim p;, y;) = Mape(d, y)

So, c—=d in €, and each ¢; is a colimit of p;. O

2.5.6. If A, B € 1— Cat are presentable then Funct’ (A, B) = Funct®(B,.A)°P canoni-
cally by ([27], 5.2.6.2). Here Funct’ (B, A) C Funct(B,A) is the full category of functors
which are right adjoints (that is, small limit-preserving and accessible), Funct® (A, B)
is the category of functors, which are left adjoints.

2.5.7. Let C € 1 — Cat be idempotent complete. Pick uncountable regular cardinals
k < 7T such that € is 7-small, and for each ¢,d € €, Mape(c, d) is essentially k-small.
Then j : € — Ind;(C) is an equivalence by ([27], 5.4.3.5). Since for any c € €, j(c) is
T-compact in Ind,(€) by ([27], 5.3.5.5), the full subcategory €7 C € coincides with C.
This is used in ([28], 1.4.4.2).

2.5.8. Let K,S,C € 1 — Cat. Assume C admits K-indexed colimits. Let h : K* —
Funct(S, C) be a diagram extending h : K — Funct(S,@). Clearly, h is a colimit
of h iff h°P : (K°P)Y — Funct(S°,C%) is a limit of h°P : K — Funct(SP,CP).
So, by ([27], 5.1.2.3), Funct(S°, €°?) admits K°P-indexed limits. Moreover, a functor
(K"p) — Funct(S°,C) is a limit of its restriction to K iff for each s € S the
induced diagram (K°)9 — €% is a limit diagram.

2.5.9. For Lemma ([27], 5.5.2.3), ”calculating colimits of colimits”. This is a useful
thing (used, for example, in [28], 3.2.3.3). In the case D = x it says: assume we
have a functor K — Fun(L,C) in 1 — Cat, which is extended to a colimit diagram
f: K* — Fun(L,C). So, for any [ € L, f; : K* — C is a colimit diagram. Assume
C admits L-indexed colimits, so we may pick a colimit diagram L” — Fun(K",C)
extending f. Then for the corresponding functor L” x K> — C its restriction to the
cone point of L” is a colimit diagram K” — €. Is not it simply the transitivity of left
Kan extensions?
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2.5.10. About (HTT, 5.3.6) "adjoining colimits”. The example (HTT, 5.3.6.8) seems
non evident for me. Namely, let € € 1—Cat admit finite colimits. Let K be the collection
of w-finite simplicial sets, X’ the collection of all small simplicial sets. Then to show that
Ind(€) = PX'(C), we need to prove the following. Recall that Ind(C)* is the idempotent
completion of € (HTT, 5.4.2.4). Given D € 1 — Cat, say presentable, and a functor
h : € — D preserving finite colimits, let A : Ind(€) — D be the continuous extension
of h. We have to show that the restriction h : Ind(€)*¥ — D preserves finite colimits.
This is easy for finite direct sums: given a collection Fi,..., F,, € Fun(Idem, C) let ¢;

be the colimit of Idem 23 € < Ind(€)“ then @&} ,¢; is the colimit of the composition

Idem 5 @ — Ind(C)*, where F' = F} @ ... ® F, in Fun(Idem, C). So, h preserves finite
direct sums. It remains to show h preserves push-out squares. This is not clear for me
(one has to rewrite it as a filtered colimit in Ind(C) of some elements in C).

For (HTT, 5.3.6.10): let X C X’ be two collections of oo-categories. The functor
CatX — catX € — PX (€) is symmetric monoidal according to (HA, 4.8.1.8). Its right
adjoint is right-lax non-unital monoidal.

2.5.11. There is a notion of a relative adjoint functor ([28], 7.3.2) for a diagram G :

DECL ein1— Cat By definition, G admits a left adjoint relative to € if there is a
left adjoint F': € — D of G such that for any ¢ € € the functor ¢ sends the unit map
¢ — GFc to an isomorphism in €. Let p = Gq: D — &, in this case pF — q. The key
thing about this seems to be ([27], 7.3.2.6): the existence of relative left adjoint functor
F is equivalent to two properties: (i) for e € €, the map of fibres G, : D, — C, admits
a left adjoint; (ii) G sends a locally p-cartesian arrow in D to a locally g-cartesian arrow
in D.

2.5.12. Groupoid objects. Thisis ([27], 6.1.2). Let A, be the category of finite (possibly
empty) linearly ordered sets. A simplicial object in € € 1 — Cat is a map A°” — C. An
augmented simplicial object is a map (A4 ) — C.

Definition 2.5.13. Let U, : A°? — @ be a simplicial object. By ([27], 6.1.2.7), U, is
a groupoid object of C iff for any n > 0 and any decomposition [n] = S US" such that
SNS"={s} is a single element, the square in C is cartesian

U(s) <« U(n))
\ )
U({s}) < U
Let Grpd(€) C Funct(A, Q) be the full subcategory spanned by groupoid objects.

Here for S C {0,...,n} we view S as linearly ordered, hence an object of A.
For a groupoid object U, we should think of colim U as the quotient of Uy by the

. . . 0,1
corresponding ”equivalence relation” U; = Uj.

Let AE" C A, be the full subcategory spanned by the objects [k] for —1 < k < n.
An augmented simplicial object U, in € is a Cech nerve if it is a right Kan extension
of its restriction to (A_%O)Op. Then the underlying simplicial object U, is a groupoid
object, and Uy — Uy xy_, Uy (see [27], 6.1.2.11). This U, is determined by the map
Uy — U_q in C.



COMMENTS TO: D. GAITSGORY, N. ROZENBLYUM [14] 55

Definition 2.5.14. ([27], 6.1.2.14). Let U, be a simplicial object in C. Then U, is an
effective groupoid iff it can be extended to a colimit diagram UJS : (A4)P — C such
that U} is a Cech nerve.

Definition 2.5.15. ([27], 7.2.2.1). Let C € 1 — Cat, 1 be a final object of C. A pointed
object is a morphism 1 — X in C. A group object of C is a groupoid object Uy : AP — C
such that Uy is a final object of C. Write Grp(C) for the oco-category of group objects
of C.

For example, if * — ¢ is a pointed object in C, its loop space is * X, * € C. It has a
structure of a group object, because this is the beginning of the Cech nerve for * — c.

Definition 2.5.16. (28], 4.1.2.2). For C € 1—Cat a monoid object in C is a simplicial
object Uy : A°? — C such that for any n > 0 the maps U, — U({i,i + 1}) ewibit U,
as a product U({0,1}) x ... x U({n — 1,n}). Let Mon(C) C Funct(A%,C) be the full
subcategory of monoid objects.

For example, a group object of € is a monoid object, we have a full subcategory
Grp(€) C Mon(C).

Definition 2.5.17. Let C € 1 — Cat. A commutative monoid object in C is an object
R € Funct(Finy, €) such that for any (x € I) the induced map R(I) = [[;e;_ . R(x €
(xU7)) is an isomorphism. Here we are using the inert maps p' : (* € I) — (x € (xU1i))
sending 1 to itself. Let ComMon(C) C Funct(Finy, C) be the full subcategory spanned
by commutative monoid objects.

We have a map A% — Fin, (cf. Sect. 3.3.2), in Lurie this is ([28], 4.1.2.5), it is based
on the identifications of cuts of [n] with the set (n). It has the property: if f : [n] — [m]
is a map in A whose image is convex then the induced map f* : (m) — (n) is inert.
Indeed, if f(j) = i+ j for all 0 < j < n with i +n < m then the map f* satisfies
f*(i+r)=rforr=1,...,n and for other elements s € (m) we get f*(s) = . In other
words, the functor A°? — Fin, sends an inert map to an inert map.

Precomposing yields ComMon(€) — Mon(€C). I think ComGrp(C) is defined as
ComMon(€) X yron(e) Irp(€).

According to ([28], 2.4.2), ComMon(1 — Cat) is essentially the same thing as sym-
metric monoidal categories.

Remark 2.5.18. Let C € 1 — Cat admit finite products, M be a monoid in €. Then by
(28], 5.2.6.2) M is a group iff (pri,m): M x M — M x M and (m,pry) : M x M —
M x M are isomorphisms.

The above implies that Grp(€C) C Mon(C) is stable under small limits (this happens
at the level of the homotopy categories). Indeed, Mon(€C) C Fun(A®, C) is closed under
limits, and our claim follows from my Section Similarly, each of the embeddings
ComGrp(€C) C ComMon(C) C Fun(Fin,, €) is closed under limits. So, the projections
Mon(€) — € and ComMon(€C) — € preserve limits (for a strengthening of this see
([28], 3.2.2.5).
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2.5.19. The notion of a factorization system in an co-category € from ([27], 5.2.8.8) has
a model-independent meaning. According to ([27], 5.2.8.17), let Sp, Sg be collections
of morphisms in € stable under equivalences in Fun([1], €) and containing every equiva-
lence in €. Then we may call the pair (S, Sg) a factorization system in € if the natural
map Fun'([2],€) — Fun({0,2}, €) is an equivalence. Here Fun'([2],€) C Fun([2],C) is
the full subcategory of those functors f for which f(0 — 1) € Sg, f(1 — 2) € Sg.

Related ([27], Lemma 5.2.8.19) is used in ([28§], 2.2.4.14), it says: let D C Fun([1], C)
be the full subcategory spanned by Sgr. Then the inclusion D C Fun([1], C) has a left
adjoint, so D is a localization of Fun([1],C). For example, inert and active morphisms
give a factorization system on any oo-operad O%.

2.5.20. Let Pr’ be the 1-full subcategory of 1 — Cat, whose objects are presentable
categories, and whose morphisms are colimit preserving functors. If K is the collection
of all small co-categories then Pr” is closed under tensor products in Cato, (X) by ([28],
4.8.1.14), so Pr¥ inherits a symmetric monoidal structure.

A poset A, considered as a small category, is complete (and cocomplete) iff it is
a complete lattice (that is, any subset B C A admits sup and inf). For example,
[n] € 1 — Cat is cocomplete and complete (actually, presentable).

For S € 1 — Cat one has the notion of a presentable fibration X — S over S ([27],
5.5.3.2). Then Fun(S, Pr’)Sr¢ = (Pres/S)%P° = Fun(S°, Prft)SP¢ here Pres/S c 1 —
Cat /S is the full category spanned by presentable fibrations ([27], 5.5.3.3).

Remark 2.5.21. ([28], 4.7.4.19) for a given functor x : S x T — Prl garantees under
some assumptions that limit over T and colimit over S commute in Pr.

If I is a small category, I — Pr”, i — @; is a diagram such that for any i; — 49 in
I the corresponding functor C;; — C;, admits a left adjont then for D € Prl one has
(limy C;) ® D= lim;(€; ® D). Here the limit is taken in 1 — Cat or in Pr’ or in Prf.
Indeed, this limit can be rewritten as a colimit of left adjoint functors over I°P.

2.5.22. Property of n-categories. The following is exracted from (HA, proof of 1.3.3.10).
Let AS™ C A be the full subcategory spanned by [0],...,[n].

Lemma 2.5.23. Let C € 1 — Cat be a n-category, that is, for a,b € €, Mape(a,b) €
T<n—1Spc. Assume C has finite colimits. Then C admits geometric realizations of
simplicial objects. For any F : A% — C let F' : (AS™)P — @ be the restriction of F.
Then the natural map colim F' — colim F' is an isomorphism in C.

Proof. The first claim is (HA, 1.3.3.10(1)). The second part is done in loc.cit. also as
follows. Let D = Ind(€). We may and do assume € small, so D is presentable. Let
F: A? - D be the LKE of F' under (AS")? C A%. Let o : F' — jF be the natural
map. We have colim F' = colim F’ € €, because j : € C Ind(C) is stable under finite
colimits (HTT, 5.3.5.14). So, it suffices to show that the map colima : colim F' —
colim(jF) in D is an isomorphism. This is done in the proof of (HA, 1.3.3.10(1)).
Namely, let L : P(€) — D be the left adjoint to the inclusion D C P(€C). Write
| F|,| jF | for the corresponding colimits in P(C), let | a |:| F' || jF | be the map
in P(€) induced by a. The functor L factors as P(€) ="' 7<,_1P(€) — D by (HTT,
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5.5.6.22). So, it sufiices to show that the map 7<,—1 | @ |t T<p—1 | F |= 7<p—1 | jF |
is an equivalence in 7<,,—1P(€). Using (HT'T, 6.5.3.10), this follows from the fact that
| a | is n-connective. O

The dual claim is as follows.

Lemma 2.5.24. Let C be a n-category. Assume C has finite limits. Then C has
totalizations. For any F : A — @ let F' : AS™ — @ be the restriction of F. Then the
natural map lim F — lim I’ 4s an equivalence in C.

In [T4] ch.2, 2.8.4) the limit over AS" is denoted Tot=".

2.5.25. Base change of a colocalization. Let B € 1 — Cat, L : A C B be a full subcat-
egory, R : B — A be its right adjoint. So, R is a colocalization. Let f : A" — A be
any map in 1 — Cat, set B’ = A’ x4 B. Let R’ : B — A’ be the projection. Then R’
admits a left adjoint L' : A" — B’ sending o’ to (a/, L(f(a’))). This follows from the
calculation of the mapping spaces in B’ given in Corollary It seems R’ is also a
colocalization, that is, the canonical map id — R'L’ is the identity. This is used in the
following.

Lemma 2.5.26. Assume given a cartesian square in 1 — Cat

C - ¢
laq La
p Lo

where f is a cocartesian fibration. If ¢’ is cofinal then q is also cofinal.

Proof. Let d € D. Let us show that € xp Dy, is contractible. Let d' = ¢'(d). We have a
functor R: Dy/ — @&,/ given by composing with f. The left adjoint L : D:i,/ — Dy to
R is fully faithful, so R is a colocalization, see my Section We have an evident
functor R’ : €' xq Dy = € xp Dgy — € Xy ZDél,/. By my Section [2.5.25| this functor
admits a left adjoint L. So, the induced map | R |:| € xp Dg/ | =] € xpr Dii,/ | is an
equivalence in Spc by my Section O

2.5.27. Sam says: if € € 1 — Cat is presentable, C°P is essentially never presentable,
as it fails to be accessible.

2.5.28.  Jacob confirmed by email: in (HTT, Prop. 5.5.1.9) the condition that D is
presentable may be relaxed, one may just require D cocomplete.

2.5.29. A misprint in (HTT, 5.4.1.8): if €,D € 1 — Cat, D is essentially small, C is
locally small then €7 is locally small.

2.5.30. For (HTT, 5.4.7.9). Let K,C € 1 — Cat. Assume C admits all K-indexed
limits. Let D C Fun(“K, C) be the full subcategory spanned by the limit diagrams.
Then D= Fun(K, C) via restriction to K. The objects of D are precisely the RKE
from K, so the inclusion D — Fun(“K, C) is a right adjoint.
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2.5.31. The following is true. If € € 1 — Cat, h : I x [1] — € is a functor given by

i (x Bl y;), assume for any ¢ € I, f; is an isomorphism. Assume f : x — y is the
limit of f; over ¢ € I in €. Then f is an isomorphism. Indeed, it suffices to show that
f in an isomorphism in €°"¥", but x is the limit of z; in ", same for y. In the usual
categories this is easy to check. This is also (HTT, 5.5.4.9).

2.5.32. (HTT, 4.3.3.8) allows sometimes to calculate the LKE with respect to a functor
5 : €0 — @', which is not necessarily fully faithful. Namely, let fy : € — D be a map
in 1 — Cat, and f; : €' — D with a : fo — f10 be its LKE along §. If ¢ € €Y such that
for any ¢/ € C° one has Mapeo (¢, ¢)= Mape1 (6(c'), 6(c)) then a(c) : fo(c) — f1(6(c)) is
an isomorphism.

2.5.33. (HTT, 6.2.1.6) is useful: Let X € 1 — Cat be presentable. Every topological
localization L : X — Y is accessible and left exact. (However, accessibility here is
maybe problematic, not explained in HT'T).

2.5.34. The pull-back of sieves from (HTT, 6.2.2.1). If €€ 1—Cat, f : d — cis a

map in C, 6’5? is a sieve on ¢ then f*@;?:) C €4 denotes the full subcategory f those

(0)

h :d — d such that the composition d’' Madcisin G/C )

2.6. If C € 1 — Cat is small, admits finite coproducts, one has the full subcategory
Ps(€) € P(€) from (HTT, 5.5.8.8). Note that € C Ind(€) C Px(€). Then Px(C) is
generated inside P(€) by € under sifted colimits, and Px(€) is presentable by (HTT,
5.5.8.10(1)), its universal property of is given in (HTT, 5.5.8.15).

Let € € 1 — Cat admit geometric realizations of simplicial objects. Then x € C
is projective if the functor € — Spc, y — Mape(z,y) commutes with the geometric
realizations of simplicial objects (HT'T, 5.5.8.18). The Yoneda embedding € — Px(C)
takes values in projective compact objects of Px(C), and (HTT, 5.5.8.22) describes
intrinsically the categories of the form Pyx(C). For example, the full subcategory of
compact projective objects of Spc is the category Setsco, of finite sets. By (HTT,
5.5.8.25), the inclusion Sets<o, C Spc extends to an equivalence Py (Sets<) — Spc.

2.7. Let C € 1-Cat,leta: € C € be a 1-full subcategory with the same class of objects
as C. Let R : P(C) — P(C') be the restriction via €'? — €%, and L : P(C') — P(C)
be the LKE along a. I think L is 1-replete, that is, an equivalence to a unique 1-full
subcategory. We prove that L is 1-fully faithful.

Note that R preserve colimits. Let Fun®(P(C"),P(C)) c Fun’(P(€’),P(€)) be the
full subcategory of colimit preserving functors. The unit id — RL is a map in
Fun®(P(€),P(€")). By (HTT, 5.1.5.6), Fun’(P(€"), P(€")) = Fun(€’, P(€")). The func-
tor RL viewed as a functor ¢’ — P(€’) sends ¢’ € € to the presheaf z — Mape(z, ).
The functor id sends ¢ € € to j(¢) € P(€). So, the map id(¢) — (RL)(¢)
in P(€") evaluated at x € €' is the monomorphism Mape (x,c) < Mape(z,c’) of
spaces. This formally implies that for any f € P(€’) the map Mapgpe)(f,id(c')) —
Mapgpen (f; (RL)(c')) is a full subspace. Thus, id(c) — (RL)(c') is a monomorphism
in P(¢).
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The propety of L being 1-fully faithful is equivalent to the fact that for any f € P(C)
the map id(f) — RL(f) in P(€’) is a monomorphism in P(€’). By my Lemma [2.2.17]
it suffices to check this for f = j(¢’) with ¢ € €. So, L is 1-fully faithful.

Assume € has pull-backs, and a pull-back of a map « : ¢; — ¢o in €’ by any morphism
& — ¢ in € remains in €’. Call a map 8 : g1 — g2 in P(C) nice if for any ¢ — g5 in
P(€) with ¢ € € the base change 3 : g1 X4, ¢ — ¢ has the property: there is a diagram
I — €',i v y; such that g1 xg, c is the colimit in P(€) of the composition I — €' — €,
and for ¢ € I, the corresponding map y; — ¢ is a map in €. I think the composition of
nice maps is nice. We should get the 1-full subcategory X C P(C), whose objects are
those g € P(€) for which there is a diagram I — €’ — € such that g is the colimit of the
composition, and where we restrict the morphisms to nice maps. I have not checked

the details. Maybe one needs to impose a condition: given a diagram x i> Y S zine
such that g, gf are in €’ then f is in €’. Maybe one also needs to require ¢’ — € be
left exact.

2.7.1. If L: A — B is left adjoint to R : B — A, L is fully faithful, R is conservative
then (L, R) are mutually inverse equivalences.

2.7.2. Let C € 1—Cat, so is small. The product of f,g € Fun(C, 1—Cat) is the functor

C — 1—_Cat given as the composition C — C' xC fgg 1—Cat x1—Cat — 1—Cat, where
the last map is the cartesian product in 1 — Cat. View Fun(C,1 — Cat) as equipped
with Cartesian symmetric monoidal structure. Does it has inner homs? The cartesian
product in Fun(C, 1 — Cat) preserves colimits in each variable, and Fun(C, 1 — Cat) is
presentable, so Fun(C,1 — Cat) has the inner homs.

2.73. If X € Spc,C € 1— Cat then lim,cxy €= Fun(X, C), the limit taken in 1 — Cat.

2.74. Let L : A S B : R be an adjoint pair in 1 — Cat, assume LR — id is an
isomorphism, that is, R is fully faithful, and L is a localization. Let o : B’ — B be a
map in 1 — Cat, o/ : A’ — A is obtained from « by the base change L : A — B. Let
L' : A" — B’ be the projection. Define R’ : B — A’ by R'(V') = (Ra(V'), V') with the
evident isomorphism LRa(b) = a(V’). Then R’ is right adjoint to L', this is easy.

2.7.5. Let I — 1 — Cat be a diagram, i +— C;, with I small. Set C = lim; C;.
Assume each ev; : C' — C; has a right adjoint ins; : C; — C. Assume for ¢ — j the
transition map C; — C; has a right adjoint. Then for ¢ € C' we get a diagram I — C,
i — ins;ev;(c). The natural map ¢ — lim; ins;ev;(c) is an isomorphism in C. Indeed,
for z € C we get

Map¢ (2, limins;ev;(c)) = lim Map(z, ins;evi(c)) = lim Map, (evi(2), evi(c))
(2 7 7

= Mapq(z,¢)

2.7.6. The following is due to Dima. Let C' € 1 — Cat admits small colimits. Let I be
a set. Let J be the partially ordered set, whose elements are nonempty subsets of I,
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ordered by reversed inclusion. Let F': J — C be a diagram, I’ — cp. It gives rise to a
functor G : A°? — C sending [n] to
Gn = . I—l Cig,y.ooyins
10yeyin

where each iy, runs through I. Namely, given a : [m] — [n] in A, {iy0),---%a@m)} C
{i0,...,in}, hence amap c;,,._;, — Ciaoys--sia(m) — Gm, which together give a morphism
Gy — G,,. Then colim G = colim F' naturally.

Proof: let K — A be the category over AP, whose objects are [n] € A and a
sequence (i, . .., Ip) with i, € I. A morphism from [n], (io, ..., %,) to [m], (ip, ..., 1
is a datum of « : [m] — [n] such that

/
m

1) = a0y, -+ s T = Gam)
Let G’ : K — C send [n], (io,...,in) t0 ¢y, . i,. By transitivity of Kan extensions,
colim G’ identifies with the geometric realization of G. Consider the functor f : K — J

sending [n], (ig, ... ,in) to {ig,...,in} € J. Then G’ factors as K I, 7 5 ©. The claim
is that f is cofinal. Namely, for I’ € J consider the category K xj Jp /- It classifies
[n], (0, ... ,in) € K such that {ip,...,i,} C I'. I don’t see why the latter is true. Dima
says this is inspired by barycentric subdivision of simplicial complexes.

2.7.7.  Let I be small, filtered, I°? — 1—Cat be a diagram, i — C;. Assume for i — j in
I, C; — C; is fully faithful. Assume g € [ is an initial object. Then lim;csor C; = N;C;
as a full subcategory of Cj,. Indeed, by Lemma lim C; — Cj, is fully faithful.
Since for each i we have the inclusion lim; C; C Cj, we get lim; C; C M;C;. The
compatible system of maps N;C; — C; must factor through lim; C;. We are done.

2.7.8. Right adjoint to limits of full subcategories. Let I € 1 — Cat, I x [1] — 1Cat,

i (D L C;) be a diagram, where each h; is fully faithful. Assume each h; admits a
right adjoint hfz, SO hﬁ is a colocalization functor. Let h : D — C be the map in 1 — Cat
obtained by passing to the limit over I. For a map ¢ — j in I write FZJJj :D; — Dj and

Fg : C; — () for the transition maps. Assume FiJD ) Fg have left adjoints 3"5 , 3"5 , and

the natural map 3’5 hj — hi?g is an isomorphism. Then h admits a right adjoint A%,
and for any i we have hﬁevi:)/evihR. Here ev; : C — C; and ev; : D — D; are the
projections.

Proof: we apply ([14], ch. I.1, 2.6.4). The natural map Fi?hﬁ — hng is an
isomorphism, it is obtained by passing to right adjoint in the isomorphism frrghj —
hFP.

2.7.9. Let I,C € 1 — Cat with I filtered. Then lim;c; C = C, where the limit of the
constant functor is calculated in 1 — Cat. Indeed, I°P? —| I°P | is cofinal, and I is
contractible by ([28], 5.3.1.20). The same holds for I = A, because A is contractible.

2.7.10. Let j*: C = Cy : j, be an adjoint pair in 1 — Cat, and assume j' = j* admits
a left adjoint j : Co — C. If j, is fully faithful then j is also fully faithful. Indeed,
pass to left adjoints in the diagram j*j,— id.
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2.711. Let C € 1 —Cat and f : ¢ — ¢1 is a map in C. Recall that C //., =

Fun([2], C) X pun((1),0) *, where the map * — Fun([1], C) is f, and we used the map [1] 03

[2] to get the morphism Fun([2],C) — Fun([1],C). One has Tw(C) — Tw(Cey /e, )
naturally by ([28], 5.2.1.4). If C is presentable then C, /., is also presentable. Indeed,
Ceo/jer = (Cey)eyy and apply (HTT, 5.5.3.10, 5.5.3.11).

2.7.12. If C° C C is a full subcategory and the final object ¢ of C lies in C° then
CY c O, is a full subcategory. Indeed, C? = C° x¢ C,, and the base change of a full
embedding is a full embedding.

Lemma 2.7.13 (Nick). Let C € 1 —Cat admit finite limits and geometric realizations.
Then there is an adjoint pair B : Grp(C) S Cy : Q, here Cy = Ptd(C) = C,/, where
* € C is a final object. We have B(G)— colimp,jc aor G™ taken in Ci.

Proof. (First proof). Replacing C' by C, we may and do assume C' pointed, recall that
Grp(Cy) = Grp(C) canonically by (HTT, 7.2.2.10). We have Grp(P(C)) = Fun(C, Grp(Spc))
canonically. The Yoneda embedding C' — P(C) yields a fully faithful embedding
g : Grp(C) < Grp(P(C)). Similarly, applying Eg to the full embedding C' — P(C),
one gets a full embedding y : C' — P(C). = Fun(C, Spc,.). Since P(C) is a topos, we
have an adjoint pair B : Grp(P(C)) = P(C), : Q, where Q(F) = % x5 *.

Let y* : P(C), — C be the partially defined left adjoint to y. Then for ¢ € C,G €
Grp(C) we have

MapGrp(C) (G7 Q(C)) - MapFun(COP,Grp(Spc)) (Q(G), Qy(c)) - MapC(yLB(g(G))7 C)

provided that y” is defined on the object B(j(G)). Now let A°? — C, [n] — ¢, be any
functor. Then for ¢ € C' we get

M 1 7 :; M 'un(C'°opP c 1 n) )
apo([gfe im, ¢ c) aPFun(Cor Sp *>([g]06 glgpy(c ),y(c))

because y is fully faithful. This means that y” is always defined on objects of the form

[c]oliAmp y(cn) and sends this object to [c}oliAmp cn. We are done.
n]cA° n]c A°

(Second proof) Since A is contractible, A°? — x is cofinal. So, by ([14], ch. I.1,
Lm. 2.2.2), the restriction functor const : C — Fun(A,C) is fully faithful. It has
a left adjoint given by the geometric realization. Let P C Fun(A°,C) be the full
subcategory of those f : A°? — C such that f(0) is final in C. Then Grp(C) C P is
a full subcategory. He claims the inclusion P C Fun(A°, (') admits a right adjoint R,
and R(const(c)) = Q(c). If yes then for z € C,G € Grp(C)

Mapg,p(c) (G, Qx))= Mappyn(aor (G, const(x)) = Mapc(c%lgzgn G, x)

%
The functor P sends (. ..z = 71 X 20) to (.. L1 Xapgxag * 2 *). O
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2.7.14. About presentability from Nick. Fact: Let C be a presentable category and
M : C — C' a monad such that the underlying endo-functor is accessible. Then the
category M — Alg(C) of M-algebras is presentable.

This can be proved using the following basic statements about presentable categories:
1) Limits of accessible categories along accessible functors are accessible.
2) An accessible category is presentable iff it admits all limits.

This can also be used to show that if C' is presentable, then the category Grp(C') of
group objects in C' is also presentable.

2.7.15. Fact. For C € 1—Cat, ComMon(oblvyse,) : ComMon(Mon(C)) — ComMon(C)
is an equivalence (related to [2§], Th. 5.1.2.2). Besides, oblv o, : Mon(ComMon(C)) —
ComMon(C) is an equivalence.

2.7.16. Let I € 1—Cat be filtered, E € 1 —Cat and I x [1] - 1—Cat, i — (C; C E) be
a diagram, where C; C F is a full subcategory (our diagram is constant after restriction
to I x {1}). Then the natural map colim;e; C; — E is fully faithful, here the colimit
is calculated in 1 — Cat. This follows from the description of the mapping spaces in
colim;ey C; from [46].

2.7.17. Let C' € 1 — Cat admiiting colimits. Then it is tensored over Spc. The functor

Spe xC' — C, (X,c¢) — X ® c preserves colimits separately in each variable. This is

less trivial in the first variable. Let I € 1 — Cat be small and f : I — Spc, i — X; be a

functor. Let I — I be the cocartesian fibration attached to f. Recall that coéilm Xi— |
(2

I | in Spe. Let ¢ € C. Now ¢ := colim;er X; ® ¢— colim;er colimy, ¢ = colime. By
I

Section [2.2.63] we get for d € C

Mapg (e, d) = lim Mapg(c, d) = Fun((1)”, Mapg(c, d)) =
(Tyer

Fun(| (1)° |, Mapg(c,d)) = lim Mapg(c, d) = Mapc(colimm ¢, d)
|

We used the fact that | (I)? | = | I | = | I |°. By ([14], ch. 1.1, 2.1.6), | I |
= colim;e; X; =: X in Spe. So, colim;e; X; ® ¢— colimy ¢ in C.

2.718. Let C,D: A — 1 — Cat be cosimplicial categories [n] — C,,, [n] — D,. Let
C' — D be a morphism of functors from A to 1 — Cat for [n] € A given by a fully
faithful functor au, : C, — D,,. Let € =1lim C,D = lim D. Assume «g : Cy — Dy is an
equivalence. Then the map a : € — D obtained by passing to the totalizations is an
equivalence.

Proof: we know that & is fully faithful, and its essential image is the full subcategory
of spanned by collections (d,) € D such that for any n > 0, d,, € C,, C D,. Let
(dp) € D and let n > 0. It remains to show that d,, € C,,. However, d,, is the image of

dy € Co under Cy % C,, — D,,, where say v corresponds to [0] RN [n]. O
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2.7.19. Let I be small filtered, I — 1 — Cat, i — C; be a diagram, C' = colim; C; in
1 — Cat. Assume each C; admits finite colimits, and each transition functor C; — C;
for i — j, preserves finite colimits. Then using [46] one shows that C' admits finite
colimits, and each map ins; : C; — C preserves finite colimits.

2.7.20. Letr: A — B be a morphism in 1 — Cat of symmetric monoidal co-categories
admitting a left adjoint [ : B — A. Assume [ is symmetric monoidal, so r is right-
lax symmetric monoidal. In particular, r(1) € CAlg(B). Then r lifts to a morphism
A — r(1) — mod(B). Indeed, we have a morphism r(1) — A of monads in Fun(B, B),
where A = rl. Since r is a A-module in Fun(A, B), it is also a r(1)-module, apply (ch.
1.1, 3.7.3).

2.7.21. Let C € 1—Cat, H be a groupoid in C acting on S € C, so we have X : A —
C,[0]— S,[1]— H. Let 7: Y — S be amap in C. I propose the following definition.
A lifting of the action of H on S to one on Y is a groupoid X' : A°? — C together with
a morphism X’ — X of groupoids in C such that the following holds: X'([0]) = S, and
X'([0]) — X([0]) is id. The map X'([1]) — X([1]) is 7. For any « : [n] — [m] in A, the
diagram is cartesian

X(m)) X ()

+
X'([m]) =" X'([n])

How good is this definition?

2.7.22. By a category object in C' € 1 — Cat we mean a map X : A’ — C such that
for any n > 0 the morphisms [1] (S [n] yield an isomorphism

X([n]) = X[1] xajop X([A]) xxpoy - - - X[1],

where [1] appears n times. Then we say that X[1] acts on X[0].

Now given a map 7 : ¢ — X[0] in C, we may define the notion that the X[1]-action
on X[0] is extended to a right X-action on c¢. This means that we get a category object
X': A? — C and a map X’ — X of category objects in C' such that X'[0] — X[0] is
the map 7, and the square is cartesian

X'0] « X'[1]
b 1
X[ & X[

Here s is the source map attached to [0] 9 [1]. The action map X'[1] — ¢ is then

attached to [0] 4 [1].

The following is established in ([I4], published version, Cor. 4.4.5 of Chapter 9). As-
sume C' admits finite limits, and X is a category object in C. Then X[1] € Alg(Corr(C))
with the product given by the diagram X[1] x X[1] <= X[1] xxjo X([1]) ™ X[1], where
m is the product map. The unit is the diagram * < X[0] = X[1], where u is the unit.
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2.7.23. If k is a regular cardinal, by k-small co-category I think Lurie means an oco-
category, which is k-small as a simplicial set, that is, the set of non-degenerate simplices
is < K.

2.7.24. Decomposition of colimits into pieces is discussed in [27],[45]. Let € be a
cocomplete oco-category, let K be a small co-category written as K — colim;c; K; in

the category of small co-categories. Then for f : K — €, colim fgcolilm ckol%n f(k)
1€ cK;

calculated in C.

Proof. Consider the functor b : I — 1 — Cat, i — K;. Let Y — I be the cocartesian
fibration attached to b. Then K is obtained from Y by inverting all the cocartesian
arrows. By Remark in Section [2.4.15] the canonical arrow Y — K is cofinal. Now we

can calculated the colimit of the composition ¥ — K 1y first taking the LKE along
Y — I and then calculating the colimit over I. By ([14], 1.1, 2.2.4), the value of this
LKE at i € I is colimgeg, f(k) as desired. O

Application: let Y € Spc, let G be a finite group acting on Y, write B(G) € Spc for
the corresponding prestack. Then
colimp(g) Y = colim colimY = colim G" x Y =Y/G,
[n]e A°P geG™ [n]e AP
the quotient in the sense of prestacks.

We have an action of G on B(G). Namely, for each h € G let Adj, : B(G) — B(G)
be the map * — * and sending a morphism g € G to hgh™!. Then Ady Ady, = Adpp,
so this is an action of G on B(G). Write G — mod(Spc) for the category of spaces with
a G-action. We have G —mod(Spc) = Spc/B(G), X — X/G, the prestack quotient. On
the other hand, we have a functor Spc — G — mod(Spc), Y — Fun(B(G),Y), where
we view Fun(B(G),Y) as equipped with the G-action coming from the above G-action
on Y. For Y € Spc calculate Fun(B(G),Y)/G, where the quotient is taken in PreStk.
What we get?

2.7.25. Let f : C — D be a fully faithful morphism in 1 — Cat. Then the partially
defined left adjoined f” of f is defined on objects of the form f(c),c € C by fXf(c) = c.

2.7.26. Let I be finite category, I — 1 — Cat, ¢ — C}; be a functor such that for ¢ € I,
C; admits filtered colimits, and the transition maps C; — C; for i« — j in I preserve
filtered colimits. Recall that C' = lim;c; C; admits filtered colimits. Let z € C given
by a compatible collection x; € C;. Assume for any ¢ € I, x; € C{. Then z € C°.

Proof. Let K be small filtered, K — C given by k +— ¢*. For i € I write cf for the
image of ckin C;. Let ¢ = colimge g ¢ in C. Note that the image ¢; of ¢ in C; identifies
with colimpe g Cf. We get in Spc
lim M = colim lim M i, ) = lim colim M LS
colim Mapg (@, ¢) = colim lim Mape, (2, ¢;) = lim colim Mapg, (2, ¢;) =

lzlen? Map¢, (2, c]g)elill(m M= 1zlenll Mapc, (zi, ¢;) = Mapg(z, ).

We used ([27], 5.3.3.3) as I is finite (in the sense of Lurie). O
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3. ALGEBRA

The notion of an oo-operad from ([28], 2.1.1.10) makes sense in the model inde-
pendent framework. We may replace the condition (3) in the def by requiring that
(‘)‘a) — O" is an equivalence. Namely,

Definition 3.0.1. An oco-operad is a map p : O — Fin, in 1 — Cat such that

1) for every inert morphism f : (m) — (n) in Fin, and any C € O(?m) there is a p-
cocartesian morphism f : C — C' in OF over f;

2) Let C € O%m>, C' e O%l)’ let f : (m) — (n) be a morphism in Fin,, and Mapg(g,(C, ")
be the union of those connected components of Mapgs (C, C") which lie over f. Choose
p-cocartesian morphisms C' — C! over the inert morphisms p' : (n) — (1) for 1 <i <
n. Then the induced map

Map{ (C,C") =[] Mapgd(C.C)
1<i<n
1 an isomorphism in Spc. .
3) For each n > 0 the functors {p} : (‘)%% — Ohi<i<n determine an equivalence O%@) —
on.

If O% is an operad then O% = [0], and each object of O% is final in 0%,

Given two operads 0% — Fin,, 0'® — Fin,, the category Algy(O’) is the full sub-
category of Functgy,, (0%, 0'®) spanned by those functors that send inert morphisms of
O® to inert morphisms of O’®. Recall that a morphism in O is inert if it is cocartesian,
and its image in Fin, is inert. The category Algy(0O’) is the category of co-operad maps
from O® to O"®. (Such maps between monoidal categories are usually called right-lax
non-unital monoidal functors).

For example, if p : O® — Fin, is an oo-operad then p is a morphism of oo-operads.

Consider the 1-full subcategory in 1 — Cat / Fin,, where we keep only those objects
0® — Jin,, which are oo-operads, and only those morphisms, which are maps of
oo-operads. Nick claims it is canonically equivalent to Ops from ([28§], 2.1.4.1).

Definition 3.0.2. Let O% be an co-operad, and p : €% — OF a cocartesian fibration.
Then the composition C° — O% — Fin, is an oo-operad iff for any T =T\ ®...®T), €
(‘)a) the inert morphisms T — T; induce an equivalence @%3 I, G%. In this case

we say that C® is a O-monoidal co-category.

For example, for O® = Fin,, O-monoidal co-category is also called a symmetric
monoidal infinity category. Thus, a symmeric monoidal co-category is a cocartesian
fibration p : C® — Fin, such that for any n > 0 the functors P O%% — O for
1 <i < n induce an equivalence O‘a) =0

Let g : €® — O%® be a map of oo-operads. Then, in the model-independent setting,
q is automatically a fibration of oco-operads in the sense of ([28], 2.1.2.10). That is,
for C' € GQ_@ and an inert morphism f : ¢(C) — X in O® there is an inert morphism
f:C — X in €% with f= q(f). Moreover, the inert morphisms of €% are precisely
the g-cocartesian morphisms in C® whose image in O% is inert.
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Notation If p : €€ — 0% and o : O® — 0% are maps of infinity operads then
Algy /0(€) C Functpe (0@, C®) is the full subcategory spanned by maps of co-operads.
It is called the category of ’-algebra objects of €. If a = id then Alg/o(e) =
Alggrjo(€). In the case O = Fin, Lurie denotes Algy (€C) = Algg/o(€). For O =
O" = Fin,, he denotes C'Alg(C) := Alggy,, (C).

Example. If p : C® — Fin, is a symmetric monoidal oo-category, then CAlg(€) is
the oo-category Algy(C) of commutative algebra objects of €. That is, the full subcat-
egory of Functgy,, (Fin,, €®) spanned by those functors that send inert morphisms in
Fin, to inert morphisms in C®.

Definition 3.0.3. If O% is an occ-operad, p : C® — O% and q : D® — O% are O-
monoidal co-categories then Funct$ (C, D) C Functye (C®,D®) is the full subcategory
spanned by those functors that send p-cocartesian morphisms to q-cocartesian mor-
phisms. This is the category of O-monoidal functors from C to D. If in addition
O = Fin, then he writes Funct®(C, D) := Funct (€, D), this is the category of sym-
metric monoidal functors from C® to D®.

The oo-category Opso of oo-operads is defined in ([28], 2.1.4.1). For 0%, 0'® € Opso
one has Mapg,, (0%, 0"®) = Algy(0’)5P¢.

Let Caty C Opso be the 1-full subcategory, whose objects are symmetric monoidal
categories, and morphisms from C® to D® are symmetric monoidal functors inside
Mapg,,.. (C®,D®) (28], 2.1.4.13). This is the co-category of symmetric monoidal cate-
gories.

Write Triv C Fin, for the subcategory with the same objects as Fin,, and whose
morphisms are inert morphisms ([28], 2.1.1.20), this is the trivial operad. We have the
functor Ops, — 1 — Cat, 0% = O = O%. Its left adjoint functor ¢ : 1 — Cat — Opso
sends O to the operad O® — Triv® C Fin,, where O%ﬁ = 0™, and for an inert morphism
a : (n) — (m) the functor ay : O — O™ is the corresponding projection. For a
morphism b in Fin,, which is not inert, there are no morphisms in 0% over b.

To see this, one may show that ¢(O) is the right Kan extension of the functor O :
% — 1 — Cat via * — Triv®. The following generalizes ComMon(C).

Definition 3.0.4. ([28], 2.4.2.1). Let C € 1 — Cat, O%® be an infinity operad. Then
O-monoid in € is a functor M : O® — € such that for anyx =21 @ ... D x, € O((%W

the canonical maps M(z) — M(z;) yield an isomorphism M (x) = []i; M (x;). Let
Mong(C) C Funct(0%, @) be the full subcategory of O-monoids in C.

For example, for an infinity operad 0%, a functor O® — 1 — Cat is a O-monoid iff the
corresponding cocartesian fibration C®¥ — 0% is a O-monoidal category ([28], 2.4.2.4).

The composition with 1 — Cat — 1 — Cat, C +— C° preserves the full subcategory
Mong(1 — Cat) C Fun(0®,1 — @at). If €% — O is a cocartesian fibration of oco-
operads, let F' : O® — 1 — Cat be the corresponding functor, F’ be its composition
with the involution 1 — Cat — 1 — Cat, € — C°. Then C®P — O%° is a carte-
sian fibration corresponding to F’ via the strengthening (for cartesian fibrations). We
may also introduce the cocartesian fibration €% — O® corresponding to F” via the
strengthening.
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Remark 3.0.5. In ([28], Def 2.1.1.26 and 2.1.1.27) Lurie means by a fibrant simplicial
colored operad a simplicial colored operad OF such that each Mul({X;}icr,Y) is a Kan
complez.

Question: is it checked that Mongy,, (1—Cat) is equivalent to the co-category Cateo ®
from ([2§], 2.1.4.13)7

Remark 3.0.6. Let g : C® — O% be a cocartesian fibration of co-operads, o : 0% - 9%
a map of co-operads. Then C® = e® X 9® 0% % O® is a cocartesian fibration of oo-
operads. Besides, C® — €% is a morphism of co-operads. The inert morphisms of c®
are precisely the G-cocartesian morphisms whose image in O is inert.

Assume in addition O'® — 0% is a map of co-operads, set ' = C® x e O'®, we

get ¢ : C'® — O'® by base change. Then we have a natural functor Algy /0(0) —

Alge /e(C) given by base change.

Proof. The map ¢ is a cocartesian fibration. For T =T1 @ ... d T, € 6%0 the inert
maps T — T; induce an equivalence é?’—T IL é%, as a(T) — «(T;) are inert and
a(T)=a(Th) @ ... ® a(Ty). By ([28], 2.1.2.12(b)), ¢ is a cocartesian fibration of co-
operads. Now if f € Algy /(0) let F € Funes (C'®, €%) be obtained by base change. If
h is an inert arrow in €'® then GF (k) = fq'(h) is inert in O®. Since h is q'-cocartesian,
from Remark [2.2.119| we see that F(h) is G-cocartesian, so F'(h) is inert in C®. So, F
is a morphism of co-operads. O

Remark 3.0.7. Let p : C® — 0% be a map of oc-operads. For x € O there is an
essentially unique map Triv® — OF of co operads with (1) = x. Then C® xye Triv® —
Triv® is a cocartesian fibration realizing C® X 9o Triv¥ as an oc-operad. One has
canonically Alggyiy /0(€) = Alg) 514, (€ X0 T1iv) = Cy.

Proof. 1t follows from definition of a fibration of co-operads that C® xge Triv — Triv
is a cocartesian fibration. For any n > 0 the diagram commutes

er, = IIe

Ip L1Ip
O% = 1,0,

where the horizontal arrow are the functor pj for the inert maps p' : (n) — (1). So,
z € O yields an equivalence C2=[[,C,, where T = 2@ ... D x € G%l>. So, the

conditions ([28], 2.1.2.12(b)) are satistfied, and the claim follows from ([2§], 2.1.2.12).
The last claim follows from (]28], 2.1.3.5). O

Remark 3.0.8. Let p :~C‘3® %~(9® be a cocartesian fibration of co-operads, 0® 5 0% ¢
map of oco-operads, p: C® — O®~be obtained from p by base change.
i) We have Algé/o(e):; Alg/@(e) canonically .

i) Assume in addition that O® — Fin, factors through Triv. Then Algé/o(e) ZFun@(@, e).

Proof. 1) By Remark p is a cocartesian fibration of co-operads, and a : C® — @®
is a morphism of oco-operads. The composition with a gives a functor Alg /6(8) —
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Algg o(€). We also have the evident functor Algg (C) — Funge (0%,€®), f — f. To

see that f is a morphism of operads, let h be an inert arrow in (~9®_ Then f(h) is an inert
arrow in C%, and f(h) = (f(h), h). Since f(h) is p-cocartesian, f(h) is p-cocartesian by

Remark [2.2.119 Since p(f(h)) = h is inert, f(h) is inert. Thus, we obtained a functor
Algé/o(e) — Alg/o(e). They are inverse to each other.

ii) follows from ([28], 2.1.3.5). O

Proposition 3.0.9. For maps of co-operads C® 202 L 0%, 0% = €% xye OF is an
oo-operad, and its projections to C®, 0% are maps of co-operads.

Proof. Any object of C%% writes ¢; @ ... D ¢y, ¢; € €, its image in O® is 01 ... D o,

with o; = p(¢;). So, any object of é%w is of the form ¢ := (®;¢;, P;0;) with p(¢;) = q(6;).

Given 1 <4 < n for the inert map p’ : (n) — (1) we have to show that the projection
¢ — (ci, 0;) is cocartesian over p'. This follows from ([27], 2.4.1.3(2) and (3)).
So, for each n > 0 the maps p’ yield functors pf : G%% — €, hence a functor

. P® noQ PY X E® \®
£:€F) =TTy € We have €7, 5 €7 xps OF,

and similarly for C, O. They show that & is an equivalence. 3
It remains to check condition 2) in Definition |3.0.1} Let ¢ = (¢,d') € G%W, S0 we

and the equivalences G%ﬁ/_\; 1,0

are given p(¢) =5 q(d). Let & = (¢;,0;) € C. Let f: (m) — (n) be any map in Fin,.
We must show that

n .
(4) Map, (¢,8) — [ [ Map (@, &)
=1

is an isomorphism in Spc. The mapping spaces in the fibred product are described in
my Corollary We get

Mapé@ (5/’ 6) - Map€® (Cl, C) ><Mapo® (o’,0) Map@@ (5a 6,)

and

Mapl (¢, = Mapls (¢, ¢) Xy I 00) Map?_ (6,8)
We have similar decompositions for each factor of the RHS of . Since the maps
analogous to for €%, 0% O% are isomorphisms, is also an isomorphism. (Iso-
morphisms remain isomorphisms when passing to the limit). (Jacob confirmed in email
15feb2018). O

Note that for an co-operad €% the category € could be empty. Then €= x is over
(0) € Fin,.

3.0.10. The oo-operad Fin’™ is obtained from the colored operad, whose set of objects
(or colors) is *. If I is a finite set, | I |[> 1 then Mul; = 0, Mul(x,*) = {id}, and
Mul(0, %) = *.
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3.0.11. I think the following is true. For any oc-operad p : O® — JFin, consider

the inclusion 0% x s 2 02 % Triv. Then id : 0® — 0% admits a p-right Kan

extension along the above inclusion, say a : O%® x Jriv — O®. Here a is a bifunctor,
it sends (z,(m)) to x & ... @ x, the sum taken m times. Moreover a realizes 0% as a
tensor product of O® with Jriv. Now the unique map of operads Triv — E? yields for
0% € Opso amap O = ORTriv — O®IE8§ . This is a unit transformation for the functor
Opos — Opso, 0% = 0P ® EJ realizing the latter as a localization functor (see [28],
2.3.1.8-9). The proof given in [28] depends on a model, but this does not seem very
complicated. The image of this functor is the full subcategory of unital co-operads in
Opoo. It is also a colocalization of Ops in view of ([2§], 2.3.1.11):

Let O® € Opso, let OP be its category of pointed objects. The projection O — O
is a map of co-operads, and 0% is unital. For any unital €® € Op the above projection
yields an equivalence Alge(O,) = Alge(0O).

3.0.12. For a monoidal co-category A® write A®°P for the opposite monoidal category.

That is, the one obtained by composing AP A—% 1— Cat & 1 — Cat.

For 1 < i < n write p' : [1] — [n] for the map in A given by i — 1,i. We may view
p' i [n] — [1] as a map in A°?. Recall that a monoidal co-category is a cocartesian
fibration X — A’ such that for any = € X over [n], the functors pf : X m] — Xpu for
1 <4 < n define an equivalence X, = [[i; Xp-

Right-lax monoidal functors from A5 to AT form the full subcategory Funct aer (A5, AT)
spanned by those functors that send any cocartesian arrow in A§ over p : [n] — [1] (in
A°P) to a cocartesian arrow in AY.

If F: A(‘? — A? is a right-lax monoidal functor then for z,y € Aq it gives rise to
morphisms F(z) ® F(y) » F(z®vy), 1 - F(1).

Example: let A 5 B % ¢ be monoidal functors between monoidal oo-categories.
Let v = Ba. Assume ~%, 5% are the right adjoints to 7, 3. We have the natural
morphism of functors a(y®) — B%. Then it is a morphism of right-lax monoidal
functors in addition.

Proof given by Nick. Consider the (0o, 2)-category €, whose objects are monoidal co-
categories, and whose morphisms are right-lax monoidal functors. If f : A — Bis a
1-morphism in C', which is a strict monoidal functor and as a plain functor admits a
right adjoint f®: B — A then f% is the right adjoint in € to the 1-morphism f.

Now the desired 2-morphism in € is defined as the composition ay® = gEBayE S
BE. where u : id — %4 is the unit, and ¢ : yy® — id is the counit. O

3.0.13. In ([14], 3.2.3) let A7, AY — A’ be monoidal co-categories, F : Ag — A;
a functor. The structure of a left-lax nonunital monoidal functor on F' is defined as
follows.

View Al® as functors A — 1 — Cat. Let X9 = A, X; — A be cartesian fibrations
corresponding to AY, A} respectively. Then e € Funct (X, X1) is left-lax nonunital
monoidal iff for any injective map f : [n] — [m] with convexe image, e sends a cartesian
arrow over f to a cartesian arrow.
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More generally, given cocartesian fibrations of oc-operads C® — 0% < D® we
may define a notion of a left-lax O-monoidal functor as follows. Recall the notation
C®¥% — 9® from my Section m By definition, a left-lax O-monoidal functor from
C to D is a functor F' that fits into a commutative diagram

e2op I peop
N4
0%,
such that F' is a map of co-operads. Now

Fun{)™ (€, D) := (Algcs.op jge (D))

If G: Ay — Ay is a map in 1 — Cat, A;g’ — A are structures of monoidal oo-
category on A; then providing on G a structure of a right-lax nonunital monoidal
functor is equivalent to providing on the corresponding functor G : A — A7’ the
structure of a left-lax nonunital monoidal functor.

([14], ch.1, Lemma 3.2.4): let X® — AP Y® — A be monoidal oco-categories,

X® % y® L A% be a right-lax monoidal functor such that the underlying functor
G : X — Y admits a left adjoint F': Y — X. Then F' is equipped with a structure
of a left-lax monoidal as follows. For each n > 0 the fibre an} : X[% — Y[f] is
the functor X" — Y" 21 & ...z, — G(z1) & ... & G(z,), it has a left adjont
ND...0yn — F(y1) ® ... ® F(yn). So, we may apply my Corollary Let
XV® —» A YV® — A be the corresponding cartesian fibrations. We get a functor
F':YV:® — XV:® in Cart/ A, which is a left-lax monoidal structure on F.

3.0.14.  An inert morphism in A is a morphism [n] — [m] that induces an isomorphism
with a convex subset [n] = {i,i+1,...,} of [m]. If €% — Fin, is a symmetric monoidal
oo-category then
Mon(C®) C Functgy,, (A%, C%)

is a full subcategory spanned by those functors that send morphisms of the form [1] —
[n], 04,1+ i+ 1in A to cocartesian morphisms in €® ([28], 4.1.2.15). This is the
category of associative algebras in C®. Indeed, using the notations from ([28], 4.1.2.15),
Functgyy,, (A%, C®) identifies with the full subcategory of

Funct 4o (A%, C¥ Xpyy, Ass®)

spanned by functors that carry inert morphism to inert morphisms.

Equivalently, a functor A%? — €% over JFin, is an associative algebra in C® iff it
sends an inert morphism to a cocartesian morphism.

Let F': A°? — €% be an associative algebra in €, set A = F([1]). The map [1] X 2]
yields the multiplication m : A® A — A. The map [1] — [0] yields the unit 1 — A.
The diagram

2 = [
1 02 1 023
1 3 2

yields the associativity axiom for m.
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Lemma 3.0.15. Let n > 1, C® — Fin, be a symmetric monoidal co-category, where
C is an n-category then C Alg(C) is also an n-category.

Proof. Given ¢ € @?my d e let f: (n) — (1) be the active map in Fin,. Then
Mapes (¢, ) X Mapigy, ((n),(1)) {f}= Mape(®;c;, ), where ¢ = ¢1®. . . B¢y, Since Fin, is
a 1-category, this shows that €% is a n-category. Now by (HTT, 2.3.4.8), Fun(Fin,, C%®)
is also an m-category. Let 1 — Cat™ C 1 — Cat be the full subcategory spanned by n-
categories. The full embedding 1 — Cat™ — 1 — Cat admits a left adjoint, so 1 — Cat”
is a localization of 1 — Cat. So, the full subcategory 1 — Cat™ C 1 — Cat is stable under
all small limits (by my Lemma . So, Fungy,, (Fin,, €%®) is a n-category. So, its
full subcategory C'Alg(C) is also a n-category. O

3.0.16. Cartesian symmetric monoidal structure. For 3.3.3. Let € € 1—Cat admit finite
products. Their functor (Fin,)°? — 1—Cat is defined as follows. It sends (x € I) € Fin,
to Funct((, %), (C, *)), the full subcategory of Funct(/, C) spanned by functors sending
x to x. Here x € C is the terminal object. Since Funct : 1—Cat?” x1—Cat — 1—Cat is a
functor, this is well defined. They claim further that one may pass to right adjoints, and
this gives a functor Fin, — 1 — Cat. The latter corresponds to a cocartesian fibration
C* — Fin,.

For I finite, the right adjoint to the diagonal map € — €I is the functor ¢/ — C,
(ci) = ILier i

If a : (J,x) = (I,%) is a map in Fin, then the restriction along « is a functor
el=* — €©7=*. Its right adjoint is the functor C/~* — €/=* sending (c;)jcs_« to the
collection (7;);cr—«, where r; = Hjea,l(i) cj.

The category C* is equipped with a canonical functor cart : €* — €, which is a
Cartesian structure (in the sense of [2§], 2.4.1.1). This functor for each (I, *) restricts
to a map G(X*e[) = €/=* — € sending (¢;) to [[;c;_, ¢i- For any map o : (J,%) — (I, %)
in Fin, and any (c;) € €7* the image of ay : /~* — €I~* under cart is the projection

M= I o

je€J—x jea—1(I—x)

If O% is an oo-operad then, by ([28], 2.4.2.5), the composition with cart induces an
equivalence Algo(C*) = Mony(C).

I think if «: (J, %) — (I, %) is a map in Fin, and = = jeSB—* cj € G(><J7*), y= ieélB—* ¢ €

eX

(1.4) then

Mapg. (z,49) = [] Mape( [ ¢
1€l —x jE€a—1(7)

(I have not checked honestly).

3.0.17. Let C® — Fin, be a symmetric monoidal co-category. Let a : Fin, — C® be
a commutative algebra in €. The relation with the classical notions: set M = a((1)).
For the unique map b : (0) — (1), a(b) : 1 — M is the unit section. Both compositions

i

(1) = (2) 7, (1) are the identity maps, which shows that a((2)) = M x M € C2. The
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unique active map ~ : (2) — (1) yields a diagram in C®

a(2)=MxM — mMxM) =MeM

Nee
M

Here the vertical arrow is given by the universal property of cocartesian arrows, it
defines the product on M.

3.0.18. For ([28], 2.2.1). If O® — Fin, is an oo-operad, D C O is a full subcategory
stable under equivalences, he denotes D® C 0% the full subcategory spanned by objects
of the form D1 @ ... ® D,,, D; € D. Then D® is an oc-operad, D® — 0% is a map of
oo-operads.

(28], 2.2.1.1) evidently rewrites in the model-independent setting:

Proposition 3.0.19. Let p : C® — O be a cocartesian fibration of oco-operads. Let
D C C be a full subcategory stable under equivalence. Assume for any f € Mulo({z;},y)
the functor @y : [y Cz, — Cy sends [[;—; Da, to Dy. Then

1) the restriction map D® — O% is a cocartesian fibration of co-operads;

2) the inclusion D® — C® is a O-monoidal functor;

3) Suppose, for any x € O, the inclusion D, — C, admits a right adjoint L. Then
there is a commutative diagram

L®

e® = D¥
Nep
O®

and a natural transformation o : L® — ides which exhibits L® as a colocalization
functor (that is, admitting a fully faithful left adjoint). Besides, L® is a morphism of
oo-operads.

(28], 2.2.1.2-2.2.1.3) make sense in model independent setting. 2.2.1.3 says: let
€ € 1 — Cat™ be equipped with a monoidal structure €% — A such that the tensor
product € x € — € is exact in each variable. Assume C is equipped with a t-structure.
He says the t-structure is compatible with the monoidal structure if the tensor product
sends C>¢ X €>p to €>¢. In this case C>¢ inherits a monoidal structure, and the tensor
product sends C>p X C>p, t0 C>pqmy (recall Lurie uses homological conventions about
t-structures!).

3.0.20. ([28], 2.2.1.9-10) seems important! That’s a nice was to get a monoidal struc-
ture on a localization of a monoidal category, roughly.

The proof of ([28], 2.2.1.11) is model-independent (the reference to a categorical
fibration used at the end is not needed!). But the proof of 2.2.1.9 does depend on a
model of quasi-categories! A nice application is ([28], 4.8.2.7).

A comment by Lurie in his email 4/06/2017: assume we are in the situation of ([28],
2.2.1.9). Let 0" — O be a map of cc-operads. We get functors L' : Algy ,(C) —
Algey /o(D) given by composition with L? : €¥ — D® and R : Algy /o(D) —
Algey /0(€) given by composition with D¥ — €®. Then L' is left adjoint to R'.
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3.0.21. ([28], Def. 2.2.2.1) has a model independent meaning: let S x K % X % S be
a diagram in 1 — Cat such that the composition is the projection. Then X, , is defined
by the cartesian square in 1 — Cat

S X Funct(K,X) FunCt(KD¢X) X Funct(K®,S) S = 8 X Funct(K,S) S

/[\

X

ps/ - S

the product in 1 — Cat. Here pg/ is just a symbol, no other meaning, this is a relative
over S situation! His presentation via two squares diagram is more comprehensive!
This is just a family of under-categories. Compare with ([27], 4.2.2.1).

([28], Theorem 2.2.2.4) seems an important unexpected result! It says the following.
If ¢ : C¥ — 09 is a map of co-operads, let p: K — Alg/o(€) be a diagram in 1 — Cat.
Then for each z € O we get a functor p, : K — €, obtained from p : K x 9% — @®
by restricting via * — O®. Then the undercategories (Cz)p, / (resp., overcategories

(€2)/p, ) naturally organize into a fibrations of oo-operads Gf?o ;= 0% (‘3%)0.

For example, the map Gf’o ;= 0% is defined as follows. Given Y € 1 — Cat and a
functor Y — 0%, its lifting to a map Y — Gfo / is given by a commutative diagram

YxK —- YxKr —- Y
{ { {

OPxK & @ 5 0%,

where the composition in the low row is the projection. The evaluation at the cone
point of K* gives a map fo’o ;) C®. He then claims that an arrow in Gfo / is inert iff

its image in C® is inert.

3.0.22. Monoidal envelopes. ([28], 2.2.4). Let €® — 0% be a map of oo-operads, write
Act(0®) C Fun([1],0®) for the full subcategory of active morphisms. Lurie denotes
Envp(C)® = €% Xpun({o},09) Act(O®), this is the monoidal envelope of €¥. The eval-
uation at 1 gives a morphism Envy(€)® — 0% which is a cocartesian fibration of
oo-operads ([28], 2.2.4.4).

In particular, let C5, C €% be the subcategory with all objects, whose morphisms are
precisely active morphisms in C®. Then cht has a canonical structure of a symmetric
monoidal category (this is an underlying oco-category of a symmetric monoidal oo-
category) (28], 2.2.4.5).

The fully faithful embedding i : €® < Env(€)® comes from the pull back under the
map 0% — Act(0O®) given by constant maps O® — Fun([1], 0®). The key claim here
is ([28], 2.2.4.9): for any cocartesian fibration of oc-operads D® — 0% the inclusion i
induces an equivalence of oo-categories

Fun(f (€2, D%) = Fun (Bnve (€). D)

Here Funl$(C®, D) C Funge(C®,D®) is the full subcategory spanned by maps of
oo-operads.
The proof uses ([28], Lemma 2.2.4.11), its proof is model-independent!
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3.0.23. The notion of a bifunctor of co-operads is given in ([28], 2.2.5.3). For Lurie,
the lexicografical order on (m)? x (n)? is

(1,1),...,(1,n),(2,1),...,(2,n),...,(m,1),...,(m,n)

He identifies in this way (m)? x (n)? = (mn)?. Then the functor A : Fin, x Fin, — Fin,
sends (m), (n) to (mn), and for a pair of maps f : (m) — (m'),g: (n) — (n’) the map
fAg:{mn)— (m'n')is induced by the above identification (m)? x (n)? = (mn)°. The
key property is that if both f, g are inert then f A g is also inert!

Given oo-operads 0%, 0'®, 0"® the category of bifunctors

BiFunc(0®,0'®; 0"®) ¢ Functgy,, (0% x 0", 0"®)
is a full subcategory.

Definition 3.0.24. ([28], 2.2.5.3) Let f : 0% x O'® — 0" be a bifunctor. For any co-
operad C® the composition with f yields a functor 6 : Algy,(€C) — BiFunc(0%,0'®;%).
Then f exhibits O"® as a tensor product of O% and O'® if 0 is an equivalence for any
oo-operad C%.

The proof of the existence of the tensor product of oco-operads in ([28], 2.2.5.6)
depends on a model, not clear what would be a model-independent proof.

The tensor product of infinity operads actually comes from a symmetric monoidal
structure on Opo, ([28], 2.2.5.13).

3.0.25. Day convolution. ([2§], 2.2.6.1-2.2.6.2) have a nice model-independent meaning.
Given a map of oo-operads C® — % and a cocartesian fibration of oo-operads p : C© —
O® this defines a notion of a norm of €2 along p. The fact that this definition makes
sense, that is, the existence of the base change functor Algo//o(@) — AlgO/Xo@/@(@ X C)
comes from my Remark

Recall the oo-category Ops of oco-operad from Section Let O® — 0% be
the norm of C® along p. It is characterized by the functorial isomorphism for O’¢ €
(Opso) ok

Map 0py) e (0"°,0%)= Map(opoo)/m((f)’@ X 9o €%, C%)

([28], 2.2.6.4) is correct model-independent. Construction ([28], 2.2.6.7) and exam-
ples 2.2.6.9, 2.2.6.10 have model independent meaning, they seem important! The Day
convolution itself is given in ([2§], 2.2.6.17).

If C® — 0% is a cocartesian fibration of oc-operads, D® — O% is a map of oo-
operads, the map Fun®(C, D)® — O® from (28], Construction 2.2.6.7) is characterized
by: functorially for O'® € (Opwo) 9o one has

Map(opoo)/o® (0% Fun®(C, D)) = Manp(()%())/O® (0" xge C¥, D)

3.0.26. For colimits of algebras ([28], 3.2.3). The important thing here is, I think,
([28], 3.2.3.1), a model independent claim. To formulate it recall that K € 1 — Cat is
called sifted iff K is not empty, and K — K x K is cofinal.

Proposition 3.0.27 ([28], 3.2.3.1). let K € 1—Cat be sifted, p : €% — O® a cocartesian
fibration of oo-operads, which is compatible with K-indexed colimits. Then
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Funge (0%, C®) admits K -indexed colimits;

a map f: K> — Funge (09, C®) is a colimit diagram iff for each x € 02, f, :
K> — €% is a colimit diagram;

the full subcategories Fungy (O, C) C Alg5(€) C Fungs (0%, €%) are stable under
K-indexed colimits;

amap f: K> — Alg,o(€) is a colimit diagram iff for each x € O, fo: K® — C,
s a colimits diagram

(in the above proposition the last property implies that the forgetful functor Alg /0 (€) —
Fung (0, €) preserves colimits).

The following idea is hidden in some proof by Lurie, but is useful to underline (its
proof uses the oo-categorical Bar-Beck theorem). Let x be an uncountable regular
cardinal, O% a k-small oc-operad, p : C® — O% a cocartesian fibration of oco-operads
compaible with x-small colimits. Then the forgetful functor Alg,(C) — Fune(O,C)
admits a left adjoint denoted, say F. Say for brevity that A € Alg /O(G) is free if it is
in the essential image of F. Then any A € Alg /O((i’) can be presented as a geometric
realization of a simplicial object As € Algo(C) such that for any n > 0, A,, is free.

Remark 3.0.28 (28], 3.2.2.6). Let p: C® — O%® be a map of co-operads, v : A — A’
a morphism in Alg,o(C). If for any x € O, v(x) : A(x) — A'(z) is an equivalence in
€ then vy is an equivalence. That is, the forgetful functor Alg,o(C) — Fung(O,C) is
conservative.

For example, if € is the category of vector spaces over a field k, C® is the usual
symmetric monoidal structure on it then the coproducts in AssAlg(C) are complicated
(a description is found in wiki), and the forgetful functor AssAlg(C) — € does not
preserve coproducts.

3.0.29. Let O® — Fin, be an oc-operad. Lurie calls it unital if for any z € O and
(any) * € Og), Mapge (¥, z) = * in Spc.

If C® — 9% is a map of oo-operads and O% is unital, Lurie defines a notion of a
trivial algebra object in Alg,o(C) in ([28], 3.2.1.7). When it exists, this is an initial
object of Algo(C).

For example, if €% is a symmetric monoidal category then trivial algebra object in
Alg(C) exists, and A € Alg(C) is initial in Alg(C) iff the unit map 1 — A = A((1)) is
an equivalence in € (28], 3.2.1.9). Here 1 € C is the unit.

3.0.30. If f: 0% x O® — O”® is a bifunctor then for any x € O the restriction of
f to {z} x O'® is a map of cc-operads O'® — O”®. If, more generally, z € 0%, the
induced map O'® — 9”® is not a map of operads but sends an inert morphism to an
inert morphism. Thus, f yields a functor O — Algy (0”).

If f:0%x 0% — 0" is a bifunctor and ¢ : €% — 0”® is a map of cc-operads then
([28], 3.2.4.1) actually says the following. The category Algy: o (€)® is defined as the
full subcategory of

O® XFunct(O’®,(‘_)”®) Funct((f)’®, @®)
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consisting of those objects whose projection to Funct(O’®, €?®) is a functor sending an
inert morphism to an inert morphism. (However, the latter projection is not necessarily
a map of infinity operads, it may not respect the projection to Fin,).

For any z € O its image in Funct(0’®, 0”®) is a map of co-operads, and then the fibre
of Algy /(€)% at x is Alge o/ (€) for this particular map of oo-operads 0" — 0"®.

Proposition 3.0.31. ([28], 8.2.4.8) i) Alge /o/(C)® — O is a map of co-operads. A
morphism a in Algol/o//((i’)@ is inert iff its image in O% is inert and for any v € O’
the evaluation a(x) is inert in C®.

i) If q is a O"-monoidal category then p : Algo,/o,,(e)@’ — 0% is a O-monoidal category.
In this case a map o in Algol/o//(e)® is p-cocartesian iff for any x € 0" C O'® the image
a(z) in C® is cocartesian with respect to q : €% — 0%,

Example: for an oo-operad ¢ : €® — Fin, and the unique bifunctor Fin, x 0% — Fin,
this gives the oco-operad denoted by Lurie

(5) Algy(€)® = Alg(’)/ffin*(e)® — Fin,

So, Algy(€)® C Finy X pynct(0® Fin,) Funct(0®, €¥) is a full subcategory. The fibre of
Algg(€)® over (1) is Algy(€). For each x € O we get the evaluation functor e, :
Algy(€)® — €%, which is a map of co-operads.

If ¢ : €® — Fin, is a symmetric monoidal category then Algy(€)® is a symmetric
monoidal category, and for x € O, e, : Algy(C)® — C% is symmetric monoidal. This
means that the tensor product here is taken pointwise. Namely, if f; € Algy(C) for
i=1,...,nand ({n),®f;) € Algy(C)® over (n) € Fin, then for the unique active map
a:{n) = (1) let b: ((n),®f;) — ((1),g) be a cocartesian morphism in Algy(C)® over
. Then for each x € O the map

b(x) : Bz fi(x) — g()

is cocartesian in €% lying over a. In other words, (®%, f;)(x) = ®, fi(z) in C. By
(]28], 3.2.4.7), the symmetric monoidal structure on C' Alg(€)® is cocartesian, so that
C'Alg(C) admits finite coproducts.

By ([28], 3.2.4.5), the map A exhibits Fin, as the tensor product of Fin, with itself.
The functor Ops — Opso, O% — 0P ® Fin, is a localization functor, its essential image
consists precisely of cocartesian oo-operads (28], 3.2.4.6).

®

Remark 3.0.32. Let O%, B® C?® be co-operads, consider Algg(C) as the underlying
co-category of the oo-operad Algg(C)® defined above. Then one has an equivalence
Bifun(0%, B®;C®)= Algy(Algg(C)).

3.0.33.  About the cocartesian monoidal structure Let € € 1 — Cat then we have the
oo-operad G2 — Fin, defined in (28], 2.4.3.1). That construction is model-dependent.
Assume € has final object *. To get €~ in a model-independent way, consider the functor
Fin? — 1 — Cat sending (x € I) € Fin, to Fun((I,x*), (C, %)), the full subcategory in
Fun(/, C) sending * to x. Let €~ — Fin, be the cartesian fibration associated to this
functor. This is the desired operad. The fibre €<un> = C". Given a map f : (n) — (m)
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inFing,c=c1®..®c, €€, =, ®...c, € C™, the mapping space is

Mapgu(e,d)= ] T Mape(e;. )
iem)° £()=i

If C admits finite coproducts iff €Y — Fin, is a symmetric monoidal category. Then
this symmetric monoidal structure is cocartesian.

Under this assumption (28], 2.4.3.5) says the following. The projection I'* — Fin,
yields a map € x Fin, — € over Fin, sending (c,(n)) to c® ... &c€ €" = Cp,. It
corresponds via the bijection of ([28], 2.4.3.1) to the projection

(G X 3’111*) X Fin, I"=exIr*—=e¢

The map h : € x Fin, — € is not a morphism in (Cart / Fin, )strict, the image of
a cartesian arrow is not always cartesian! In the model-independent setting the map
h can be defined as the left Kan extension of its restriction to the full subcategory
Cx D C € x Fin,. Here D C Fin, is the full subcategory spanned by (1). The functor
C x D — €Y is easy to define.

For an operad O® the base change O® — Fin, gives the map C x 0% — €Y x4y, OF.
Let A® = €Y xgy,, O%, this is an operad, and the latter map yields a functor € —
Algy(A). In particular, for O® = Fin, this gives a functor € — CAlg(€), where we
regard € as the underlying oco-category of C. By ([28], 2.4.3.10), the latter functor is
an equivalence.

Example: for € = x the operad C" is Fin,.

Definition 3.0.34. ([28], 2.4.3.7) An operad is cocartesian if it is equivalent to the
operad G- for some oco-category €.

Example: for any operad C® consider C'Alg(C)® given by (f), then CAlg(€)® is a
cocartesian operad by ([28], 3.2.4.10), so C Alg(C) — C Alg(C' Alg(C)) is an equivalence.

([28], 2.4.3.9, 2.4.3.18) are formulated model-independently. ([28], 2.4.3.9): Let O®
be a unital oo-operad and let ¥ be a coCartesian oo-operad. Then the restriction
functor Algy(€) — Fun(0O,C) is an equivalence in 1 — Cat. ([2§], 2.4.3.18): let C €
1 — Cat, D® € Opy. Viewing € as the oco-category underlying €Y, one has canonically
Alge(D) = Fun(C,CAlg(D)).

If € admits finite coproducts then € is a symmetric monoidal category (28], 2.4.3.17).

3.0.35. The section ([28], 3.1.1) about operadic colimits diagrams contains the follow-
ing useful Definition ([28], 3.1.1.18). Let ¢ : €% — 0% be a cocartesian fibration of
oo-operads, K € 1 — Cat. Then ¢ is compatible with K-indexed colimits iff the two
conditions are satisfied:

e for any z € O, C, admits K-indexed colimits;
o for every operation f € Mulo({x;}1<i<n,y) the functor ®@; : [[;C;, — €y
preserves K-indexed colimits separately in each variable.

This notion is used, for example, in his study of colimits of algebras in (28], 3.2.3).
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3.0.36. For (28], 3.2.1.1), initial objects of Algy(€). Let p : €% — O® be a map of
oo-operads, assume O% unital. Lurie introduces the following notion. For = € O, a
morphism ¢ : ¢cg — 1, in C® exhibits 1, € C, as a x-unit object iff co € G%, and ¢ is
p-cocartesian. One does not need to know the notion of ”operadic p-colimit” here.

Lurie says that €® — O%® has unit objects iff each x € O admits a z-unit object
cop — 1, (this is equivalent according to 3.2.1.5 to his definition ([2§], 3.2.1.1)).

Main results here are ([28], 3.2.1.8, 3.1.2.9): assume O%® unital, p : €® — 0% be a
map of oo-operads, A € Alg;o(C). Then A is initial in Alg,(€) iff for any = € 0% the
induced map (recall that O% is pointed) A(0) — A(z) exhibits A(z) as a unit object,
here 0 € O% is the zero object.

3.0.37. Limits in Algy(C) are easy to calculate, see ([28], 3.2.2), even in a relative
situation when we have a map of operads €% — D® over some O%, and we are interested
in limits relative to the map Algy(C) — Algy (D). The basic thing here is ([2§], 3.2.2.4).
(Fibration of oo-operads in the model-independent setting means simply a map of oo-
operads).

3.0.38. I think a comparison of Dennis’ definition of a monoidal infinity category with
that of Lurie may be obtained from ([2§], 4.7.1).

In ([28], 2.3.3.6) Lurie introduced a notion of a (weak) approximation to an infinity
operad O® — Fin,. This is a categorical fibration € — O%® with some properties. Then
he introduced the following notion.

Definition 3.0.39 ([28], 2.3.3.20). Let O® — Fin,, O"® — Fin, be operads, f: C — O
be a weak approzimation to O°. A functor A : € — O'® is a C-algebra object of O if
two conditions hold:

i) the diagram commutes

e 4 o®

1 \J

O® = Fin,
i) Let ¢ € C over (n) € Finy, for 1 < i < n pick a locally cocartesian (over Fin,)
morphism «; : ¢ — ¢; over p': (n) — (1). Then A(ay) is inert in 0'®.

Then Alge(O’) denotes the full subcategory of Functge (€, O’®) spanned by C-algebra
objects. The key thing about approximations is ([28], 2.3.3.23) saying the following in
particular: let O® — Fin,, O'® — Fin, be operads, f : € — O be a weak approximation
to O®. Let 0 : Algg(O") — Alge(O’) be the functor given by composition with f. If f
induces an equivalence C(;y — O then 6 is an equivalence. A version of ([28], 2.3.3.23)
for monoids instead of algebras in general is ([28], 4.1.2.10).

For example, by ([28], 4.1.2.10), the functor Cut : A — Ass® is an approximation.
For this reason taking into account ([28], 4.1.2.11), Dennis and Nick’a definition of a
symmetric monoidal category coincides with that of Lurie ([2§], 4.1.1.10).

3.0.40. If € is a monoidal infinity category, assume that C admits countable colimits
and the tensor product € x € — C preserves countable colimits separately in each
variable. Then the forgetful functor Alg(€C) — € admits a left adjoint F'r : € — Alg(C),
which associates to ¢ a free algebra Ll,>o ¢®™ ([28], 4.1.1.14).
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More general claims about free algebras are obtained in (28], 3.1.3). In particular,
([28], 3.1.3.5), a model-independent claim. Its further simplification ([2§], 3.1.3.6): let &
be an uncounable regular cardinal, O® a s-small co-operad, p : €% — O% a cocartesian
fibration of co-operads compatible with k-small colimits. Then the forgetful functor
Alg/o(€) = Funy (0, €) admits a left adjoint.

The construction of free algebras ([28], 3.1.3.9) uses the following idea. Let ¥, be
the symmetric group on n elements. The full subcategory of Jriv generated by the
object (n) is B(X%,). Given a functor h : B(3,) — € in 1 — Cat sending % — ¢ € C, we
get an action of ¥, on ¢. The colimit of h should be thought of as the definition of the
coinvariants of this action of ¥,, on c.

One more example is ([28], 3.1.3.14): let F : €® — Fin, be a symmetric monoidal
oo-category, assume € admits countable colimits, and for any « € € the functor € — €,
y — = ®y preserves countable colimits. Then C'Alg(€C) — € admits a left adjoint given
by ¢+ Up>0 Sym”™(c). The notation Sym"(c) is that of ([28], 3.1.3.9-10). In this case
it can be interpreted as follows. Let D C Triv be the full subcategory spanned by (n),
so D= B(X,). Pick an equivalence (3% = [[i., €. We get a functor a : D — [[;", €

n)
sending (1) to ¢ @ ... @ ¢ and sending o € ¥, to the corresponding permutation. Let
B : (n) — (1) be the unique active map in Fin,, fi : G%L> — @ the corresponding product

functor. Let F' = fia: D — €, then Sym"(c) is colim F'.

If p: C® — 0% is a cocartesian fibration of co-operads and ¢ € € then there is
a notion of a free O-algebra in Algy(C) generated by ¢ ([28], 3.1.3.12), its concrete
description is given in ([28], 3.1.3.13).

3.0.41. For 3.1.5. Apply my Section we get that the evaluation Fun([1],1 —
Cat) — 1 — Cat at 1 is a cartesian fibration, because 1 — Cat admits fibered products.
Let X C Fun([1],1 — Cat) be the full subcategory spanned by cartesian fibrations. By
Remark below, this is also a cartesian fibration. By strengthening, we get a
functor J : (1 — Cat)®? — 1 — Cat sending C to Cart/e. Restricting, we get a functor
F: A% — 1 — Cat sending [n] to Cart,er, and a map a : [n] — [m] to the pull-back
along « : [n]? — [m]°P.

We have functorially €5P¢ C € for € € 1 — Cat. We can similarly define a functor
F: (1 - Cat)?? — 1 — Cat sending € to Cart espe, and a natural map F — JF' given by
the pull-back under €5P°¢ C €. So, we get a functor F’ : A’ — 1 — Qat sending [n] to
Ca/r't/([n}op)Spc =1—Catx...x1—Cat. We have a constant functor G : A’ — 1 — Cat
with value *. Consider the map G — F’ given for any [n] by the arrow (C,...,C) : x —
1—Catx...x1—Cat. Then F xp G € Fun(A°,1 — Cat) is the desired functor.

Remark 3.0.42. Let f : D — € be a cartesian fibration, D° C D a full subcategory
with the property: for any d € D° and any arrow o : ¢ — f(d) in €, let d' — d be a
f-cartesian arrow in D over o, then d' € D°. This implies that D° — € is a cartesian
fibration.

3.0.43. Flat morphisms. Let f: X — 8 be a map in 1 — Cat. The property of f being
flat defined in ([28], B.3.8) makes sense in a model-independent setting.

Recall first that given € € 1—Cat and an arrow ¢p — ¢; in €, one has €./, € 1—Cat
defined in ([14], ch.1, 1.3.7). Now ([28], B.3.2) could be used as a definition of a flat
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morphism f : X — [2]. Namely, let € = Xo,D = X1,€ = X2 be the fibres. Then
f X — [2] is flat iff for any morphism « : ¢ — e in X with ¢ € C,e € € the category
D xx X/ /e is contractible, that is, | D xx X/ | = * in Spe.

Examples ([28], B.3.4-5) here are a good illustration: let f : X — [2] be a map in
1 — Cat. Assume for any c € € there is a cocartesian arrow ¢ — d in X over 0 — 1 in
[2]. Then f is flat. If for any e € € there is a cartesian arrow d — e over 1 — 2 then f
is flat.

Now we define a map f : X — 8 in 1 — Cat to be flat iff for any morphism [2] — §
the induced map X xg [2] — [2] is flat. For example, if f is a cocartesian or cartesian
fibration (in particular, if § € Spc) then f is flat.

The flat morphisms appear in ([2], Def. 5.13) under the name of exponentiable
fibration. A GREAT claim is ([2], Lemma 5.16): Let 7 : E — B be a morphism in
1 — Cat, the following conditions are equivalent:

e the base change functor 7* : 1 — Cat,p — 1 — Cat g, K — K xp E has a right
adjoint;

e the functor 7" : 1 — Cat,;p — 1 — Cat,p preserves colimits;

e the map 7 is flat

Example of an application: (HTT, 3.2.2.13).
If : E — Bisflat and Z — E is a map in 1 — Cat then the functor (1 —Cat /B)? —
Spc, K+ Map;_c,e /p(K X E, Z) is representable.

3.0.44. Coherent oco-operads. The definition of a coherent oo-operad makes sense in a
model-independent setting. Let O® — Fin, be an oc-operad, f : 71 ® ... ® x,,, —
Y1 D ...Dy, be a morphism in O®. The definition of a f being semi-inert (28], 3.3.1.1
and 3.3.1.2) makes sense in the model-independent setting.

For a unital oc-operad 0% let Ko C Fun([1],0®) be the full subcategory spanned
by semi-inert morphisms, let e; : Ky — O% be the evaluation at i. Now we may use
([28], 3.3.2.2) to give a model-independent definition of a coherent co-operad. Namely,
consider a unital oc-operad O® — Fin, such that such that © € Spc. Then it is
coherent iff eg : Ky — O is a flat morphism. (See my Section for the notion of
a flat morphism).

Examples: ]E%9 ,E?, Fin,, Ass® are coherent.

3.0.45. For 3.4. If a : [n]t — [m]" is a map in A" then a~!(+) = +. This is not
said explicitly in their Sect. 3.4. Let A™® : AT — 1 — Cat be a functor lying in
1— Cat™"" . So, A := AT®([1]) is a monoidal co-category, and M := AT®([0]*) is a
left A-module category, here M € 1 — Cat. Recall that [0]" ay [1]7 yields the action
map a: A x M — M. The diagram
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yields
AxAx M 3% AxM
4 mxid da

a

Ax M — M

Besides the composition
o = [t = ol

is the identity, and this yields the fact that the composition M DA A M M s the
identity.

The full subcategory 1 — Cat™ ont Funct(A T 1 — Cat) is spanned by functors F
such that for any n > 0 the map F([n]") — F([n]) x F([0]*) given by morphisms

[n] = [n]T,iri and [0]T < [n]T,0— n,++— +,

is an equivalence, and the restriction of F' to A is a monoidal category.

In the whole discussion of 3.4 we may replace 1 — Cat by any C € 1 — Cat admitting
finite products. This would produce an oo-category @Mon™ of left modules over a
monoid in €. If A is a monoid in € given by a functor F : A? — C with F([1]) = A,
we may also define the category €M°"" xouon {F} as in 3.4.4. This is the category
A — mod(C) of left A-modules in C. Here CM°" is the co-category of monoids in €.

3.0.46. Lurie’ version of a notion of a module over an algebra is given in ([28], 4.2.1.13).
In particular, we have the operad LM® defined in ([28], 4.2.1.7). Do we have an
approximation AT — LM®? Yes, this is claimed in ([28], 4.2.2.8).

There is an isomorphism of categories A x [1] = A™ given by ([n],0) — [n], ([n],1) —
[n]T. Now Dennis and Nick’s definition of a left module from 3.4.2 becomes a particular
case of definition ([28], 4.2.2.2).

3.0.47. For 3.5.1. Recall that 1 — CatMon" (cocart/ AT°P) 4401 is a full subcategory
spanned by ”left modules”. The category (1 — GatMO”+)

follows. It is defined as the subcategory of cocart/A'°’ having the same objects

right—laznon—uni; 15 defined as

as 1 — Cat™°"" . For two objects I, F' € 1 — CatMon™ corresponding to cocartesian
fibrations X — AT X' — AT°P a morphism e : X — X' over AT is in

+
(1 - eatMon )rightflamnonfunit
iff the following conditions are verified:
e for any n > 0 and the map p: [1] = [n],0 =i, 1—i+1, (0<i<n)in A, e
sends a cocartesian arrow in X over p to a cocartesian arrow in X';
e If p is a morphism in AT of the form [n] < [n]T, i — i or [0]T < [n]T,
0 — n,+ — + then e sends a cocartesian arrow in X over p to a cocartesian
arrow in X'
I think this is equivalent to requiring that for any injective morphism p in A", whose
image is convexe, e sends a cocartesian arrow in X over p to a cocartesian arrow in X'.

If X — AT is a cocartesian fibration given by an object of 1 — (‘BatM‘”ﬁ, let
A= Xpjj and M = X[+ be the fibres, so that we have the multiplication A x M — M.
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Let e : X — X’ be a morphism in (1 — GatM°"+),,ight_lwmn_umt as above, set A’ =
X[’l],M’ = X[/0]+' So,e: A— Ae: M — M.

Leta€ Aym e M. Let §: [0]" Ay [1]*, write as in Lurie, a®m for the corresponding
object of X+ — A X M, so am := di(a © m) is the result of the action. Since e(a ©

m) = e(a) ® e(m), we get a canonical map
e(a)e(m) — e(am) in M’
Recall also that we have for a; € A the corresponding maps e(a;) ® e(az) — e(a1 @ az),
1—e(1)in A
Fix a monoidal category F € 1 — CatM°". We have the natural functor
+
(]‘ - eatMO" )Tight_laxnon—unit _> (]‘ - eatMon)right_lamnon—unit

The category of right-lax non-unital functors between left F-modules is
{F}

Let e : X — X’ be a morphism in (1 — Ca right—laznon_uni 8 above, let (A, M)
and (A’, M) be the corresponding monoidal categories and modules over them. Recall
that Alg+mod(A, M) is the category of right lax non-unital functors x — X, its object
is a pair (a, m), where a € Alg(A),m € a—mod(M). Composing with e gives a functor
Alg + mod(A, M) — Alg + mod(A’, M").

3.0.48. If AH®: AT — 1 — Cat is a left module M over a monoidal co-category A

then composing AT® : AT 5 1 — Cat & 1 — Cat, we get a A%’-module structure on
MeP,

Mon*t
(1 - ea’t )Tight*laxnonfunit x(lfCatM‘m)

right—lax, on —unit

tMon*)

3.0.49. Let A be a monoidal co-category, recall A—mod = 1 — Cat™o"" X1 _eatMon 1A}
from ([14], ch.1, 3.4.4). Given M, M’ € A — mod, a morphism in A — mod from M
to M’ is what is called in ([28], 4.6.2.7) a A-linear functor M — M’. Namely, for
the corresponding cocartesian fibrations X — AT < X' this is a map X — X'
in (coCart / A+wop)strict, Whose base change by A% < AT is the identity. Write
Xo = X X pt,00 A%, similarly for X{. Asin ([28], 4.6.2.7), let

LinFuna (M, M') C Fun g+ (X, X') X Fun gon (Xo,X4) 11d}

be the full subcategory spanned by A-linear functors.

If F: M — M’ is an A-linear functor, composition with F' yields a commutative
diagram

AssAlg+ mod(A, M) — AssAlg + mod(A, M')
hN )
AssAlg(A)

In particular, for A € AssAlg(A) a functor A — mod(M) — A — mod(M'). For an
application see Section [3.1.9

My understanding is that LinFun (M, M")5P¢ = Map s_oq(M, M') for M, M’ <
A — mod naturally. I think there should be an (oo, 2)-category, whose underlying
(00, 1)-category is A — mod and such that the corresponding Map(M, M') becomes
LinFuny (M, M").
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Lin Chen confirms that there is an equivalent definition of LinFun4 (M, M) is as the
relative inner hom: we have functorially in £ € 1 — Cat an isomorphism

Mapy _eq (E, LinFung (M, M")) = Map 4_,.oq(M x E, M")

Here we view A — mod as a right module over 1 — Cat naturally. This implies easily
that A —mod — 1 — Cat, M’ — LinFun4 (M, M') preserves limits.

Idea of the proof of their equivalence: Let X, X’ — A™°P be the cocartesian fibra-
tions corresponding to M, M’. Let Xg = X X p+.0p AP, Then the cocartesian fibration
attached to the A-module M x FE is obtained as the push-out in 1 — Cat of the diagram

XX FE+ Xgx E— X

Indeed, by Lemma [3.0.50| below, the desired cocartesian fibration 7 — A°P is the push-
out in 1 — Cat of the diagram Xy x E x [1] X! Xo x E — X1, and our claim follows

from Lemma 2.2.731

Lemma 3.0.50. For a functor F' : I x [1] — 1 — Cat let Xg — I,X; — I be the
cocartesian fibrations attached to Fy, Fy respectively. Then the cocartesian fibration
X — I x [1] attached for F is the push-out in 1 — Cat of the diagram

XO X [1] iCL—XI XO i} X1
Here f: Xg — X1 is the map over I attached to F via strenthening.

Proof. Apply ([18], Th. 1.1) describing the cocartesian fibration attached to a functor
I — 1 — Cat as the oplax colimit of this functor. This gives, for example, that for
F : [1] - 1 — Cat given by a functor h : Fy — F; the corresponding cocartesian
fibration is the push-out in 1 — Cat of

Fox[1]'C' R B By

The category Tw([1]) is the diagram idy +— o — id;, where v : 0 — 1 is the map in
[1]. So,

X= colim I, x 1]y, x F(i,a
(imi)eTw(I)(asb)eTw([]) [Hey x F(isa)

Fix an element (a — b) € Tw([1]) first and calculate the corresponding colimit over
Tw(I), we get the diagram

X() X [1] 1%1 X() i> X1
indexed by Tw([1]). Our claim follows. O

Remark: If f: M — M’ is a A-linear functor then f°P : M — M'°P is A°P-linear.
If A € coAlg(A), f yields a functor A — comod(M) — A — comod(M’).

Important generalization: let S be a symmetric monoidal co-category, A € Alg(S).
Assume inner homs exist in S, given M, N € S write Hom(M,N) € S for their
inner hom. Let now M, N € A — mod(S). Then Hom(M,N) is a A-bimodule nat-
urally. By Homu (M, N) € S we mean the object such that one has functorially on
X € S, Mapg(X,Homa(M,N)) = Map4_poq(s)(M ® X, N). Then Nick claims that
Homa(M, N) = Hom g_pimod(s) (A, Hom(M, N)) € S, where the RHS is the relative
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inner hom in S of two A-bimodules. We use here the fact that A ® A" — mod(S) is
equipped with a right S-action.

3.0.51. For 3.5.2. Dennis refers here to the following ([28], 7.3.2.7): Suppose we are

given a diagram of maps of ooc-operads C® 5 pe 4 0%, let p = ¢F. Assume p
and ¢ are coCartesian fibrations. Assume that, for every x € O, the induced map of
fibers F, : €, — D, admits a right adjoint G,. Assume that F' sends a p-cocartesian
arrow to a g-cocartesian arrow (this condition is missing here in ([28] 7.3.2.7), as Jacob
confirmed). Then F admits a right adjoint G relative to O%. Moreover, G is a map of
oo-operads.

3.0.52. For 3.5.4. Let A™® : AT 5 1 — QCat be a left module given by a pair
(A, M), here A is a monoidal oo-category, we have the action map, say A x M 5 M.
Let F : xP® — AT® be a right-lax non-unital monoidal functor. It is given on [1] by
an object A € A with A € AssocAlg(A), and on [0]T by an object M € M. Applying

my Section [3.0.47] we get a morphism
AoM —->M

in M satisfying the usual properties of a A-module.

3.0.53. For 3.5.5. Let A™® : AT 5 1 — QCat be a left module given by a pair
(A, M). Let X — AT be the corresponding cocartesian fibration. The category
denoted AssocAlg+mod(A, M) in 3.5.4 is the full subcategory of Funct 4+,0» (AT, X)
spanned by those functors, which are right-lax non-unital monoidal. Consider the
forgetful functor 6 : AssocAlg + mod(A, M) — AssocAlg(A). It seems the fact that
0 is a cartesian fibration (the construction of cartesian arrows) can be explained as in
the next section.

A reference for the fact that this is a cartesian fibration is ([28], 4.2.3.2). Moreover,
a morphism f in AssocAlg + mod(A, M) is f-cartesian iff the image of f in M is an
equivalence.

In addition, ([28], 4.2.3.3) says: let A be an associative algebra object in A. Let
K be an infinity category such that M admits K-indexed limits. Then A — mod(M)
admits K-indexed limits. A map K< — A —mod(M) is a limit diagram iff the induced
map K< — M is a limit diagram.

The forgetful functor A — mod(M) — M is conservative (this follows from my
Sect. [2.2.99).

([28], 4.2.3.5): let A be an associative algebra object in A. Let K be an infinity
category such that M admits K-indexed colimits, and the tensor product functor M —
M, M~ a®M by any a € A preserves K-indexed colimits. Then A —mod(M) admits
K-indexed colimits, and the forgetful functor A — mod(M) — M preserves K-indexed
colimits.

3.0.54. For € € 1 — Cat admitting finite products write Mon(C) for the category of
monoids in €, Mon™*(€) for the category of left modules over a monoid in €. Assume
given map f : B’ — A" in Mon(C). Here A, B’ : A? — C. Write A = A'([1]),B =
B'([1]). The corresponding map B — A is a morphism of monoids in €. Assume
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G : ATP — Cis a left A-module, set M = G([0]7). We want to show that M is
naturally a left B-module.
We have the diagram of functors

At B
N

B b
o

Here the slanted arrow is the natural inclusion, p([n]*) = [n], and p acts naturally on

morphisms.

Let A: AH° — @ denote the composition AP £ Acp 4 @. Let B denote the
composition ATP £ Aor 5 e.

We have a natural map p(z) — z in A" functorial in 2 € AT. Applying G, we get
a map G(z) — G(p(z)) functorial in z € A¥, that is, a morphism of functors G — A.

The map f gives rise by composing with p to a morphism of functors B — A.

The desired functor A™°P — € is obtained as B x 5 G, the product being taken in
Funct(AT @).

S

3.0.55. Let A® : A%’ — 1 — Cat be a monoidal category. Restricting via AT — A,
[n] = [n],[n]T — [n+ 1] we get AT® : ATP — 1 — Cat realizing A = A®([1]) as a
left A-module. Let X — AT be the cocartesian fibration associated to A™®. Let
X — A% be its restriction corresponding to A®. Let A € AssocAlg(A) be given by a
functor F' : A% — X. The notation A — mod := A — mod(A) from 3.5.6 is the fibre of
AssocAlg + mod(A, A) — AssocAlg(A) over F.

3.0.56. We also have ([28], 4.2.3.7) saying the following. Let A™® : AT — 1 — Cat
be a left module category given by (A, M). Assume M presentable. Assume for each
a € A the functor M — M,x — a ® x preserves small colimits. Then for any A €
Alg(A), A — mod(M) is presentable, and for any morphism A — A’ in Alg(A) the
induced functor A’ — mod(M) — A — mod(M) preserves small limits and colimits (so,
admits both left and right adoints by [28], 4.2.3.8). Moreover, the forgetful functor
0 : AssocAlg+mod(A, M) — AssocAlg(A) is a presentable fibration (so, a cocartesian
fibration).

There is a related claim ([28], 4.6.2.17), in which the existence of a left adjoint to the
forgetful functor A" — mod(M) — A — mod(M) is affirmed under weaker assumptions.

3.0.57. Let A® : A — 1 — Cat be a monoidal category. To better think about
right A-module categories, one is tempted to introduce a category TA. It is a full
subcategory of 1 — Cat® " its objects are categories of the form [n] € A and

tnl=(+—=0—>1—...5n), n=0,1,...

The morphisms are morphisms in A, morphisms [n] — *[m] whose image does not
contain +, and functors f : T[n] — *[m] such that f~1(+) = +.

Given a monoidal category A®, a right module for it is an extension of A® to a
functor F': T A% — 1 — Cat such that for any n > 0 the functor

F(*[n)) — F(T[0]) x A%([n])
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given by
[n] = T[n],i+ i and *T[0] = T[n],0 — 0,4+ — +
is an equivalence.

The map *t[0] — [1], + — 4,0+ 1 yields an action map M x A — M.

We have the functor p: TA — A, T[n] — [n+ 1], + + 0,7 — i + 1 extending the
identity id : A — A. For a monoidal category A® : A°? — 1 — Cat the composition
F = A® o p realizes A as a right A-module category (via the tensor product on the
right).

Let F': T A — 1—Cat be a right A-module for the monoidal category A®. Let X —
T A be the corresponding cocartesian fibration. A functor e € Functy gor (T A%, X)
is ”lax non-unital” if it satisfies the following;:

e for any injective morphism p in A, whose image is convexe, e sends p to a
cocartesian arrow in X.
e for the morphism p of the form [n] — *[n],i +— i or T[0] — +[n], + — +,0 > 0,
e sends p to a cocartesian arrow in X.
Let M = F("[0]), we have the action functor M x A — M. Let A® : A? — X
be the restriction of e, this is an algebra object of A given by A = e([1]) € A. Let
M = e(T[0]) € M. Our e yields a canonical map M ® A — M in M. So, actually M is
a right A-module.

Let Mod+AssocAlg(M, A) denote the category of lax non-unital functors T A% — X.
This is the full subcategory of Funct+ gor (T AP, X) spanned by lax non-unital functors.
We should think of it as the category of pairs A € AssocAlg(A) and M € A—mod" (M).
The fibre of Mod + AssocAlg(M, A) — AssocAlg(A) over A® is the category of right
A-modules in M, it should be denoted A — mod" (M).

Should the above functor e be called "right-lax non-unital”? What is the good
terminology? Does the notation ™A appear somewhere in their book? We have an
equivalence A x [1]= 1A, ([n],0) — [n], and ([n],1) — T[n].

3.0.58. Non-unital algebra objects. Let A® 1 AP — 1 — Cat be a monoidal co-category,
A = A®([1]). Let A — AP be the corresponding cocartesian fibration. Let A; C A be
the subcategory with the same objects, where we keep only injective morphisms [n] —
[m]. The category Alg"™(A) of non-unital associative algebras in A should be defined
according to ([28], 5.4.3.3) as the full subcategory Alg""(A) C Functgor((As)%,.A)
spanned by functors F' that send morphisms of the form [1] — [n],0 — i,1+— i+ 1 to
a cocartesian arrow.

This should be equivalent to the property that F' sends any inert morphism to a
cocartesian arrow. Here inert in Ay (by [27], 5.4.3.1) is an injective map [n] — [m]
whose image is a convex subset in {0,...,m}.

([28], 5.4.4.1). Let Surj C Fin, be the subcategory with the same objects, and
a morphism (n) — (m) is in Surj iff it is surjective. Then Surj — Fin, is an oco-
operad. Let €® — JFin, be a symmetric monoidal co-category. Let CAlg"“(C®) C
Functgyy,, (Surj, @) be the full subcategory spanned by functors F sending inert mor-
phisms to inert morphisms in C®. This is equivalent to requiring that for i € I — {x}
the inert map (x € I) — (x € (x,1)), i — 4, j > * for j # i is sent by F' to a cocartesian
arrow over Fin,.
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We may also view non-unital symmetric monoidal categories as Surj-monoids in
1 — Cat, that is, functors M : Surj — 1 — Cat such that for any n > 0 the maps p’ :
(n) — (1) yield an isomorphism M ({n)) = [[;; M((1)). Let fSet be the category of
finite nonempty sets and surjective morphisms. We identify fSet with the subcategory
of Surj, where we keep all objects and only active morphisms. Then fSet is a non-unital
symmetric monoidal category with respect to the disjoint union. Restriction to fSet
yields an equivalence Mong,,j(1 — Cat) = Fun®(fSet, 1 — Cat), where Mong,,j(1 — Cat)
is the category of Surj-monoids in 1 — Cat. Indeed, fSet is the monoidal envelope of
Surj in the sense of ([28], 2.2.4.1).

3.0.59. Definition of idle map in Fin, in ([14], ch. 9, 1.2.3) is correct in the published
version, I think. The difference between the notions of a right-lax monoidal functor
and non-unital right-lax monoidal functor is also explained there.

3.0.60. For ([27], 4.4.5.2). The notion of an idempotent in a model independent setting
is as follows. The oo-category Idem from ([27], 4.4.5.2) is actually a usual category.
It has one object x, and Map;g.,,(x,z) = {id, f}. The composition Map; g, (x,z) X
Map;iem (2, ) = Mapgem(x,z) is given by fo f = f. If now € € 1 — Cat then an
idempotent in € is a functor Idem — €. Then Funct(I/dem, C) is the oo-category of
idempotents in €. An idempotent f : Idem — C is effective iff it has a colimit in
C. Lurie defines C to be idempotent complete if every idempotent is effective ([27],
4.4.5.13).

We have a fully faithful embedding Idem — Idem/x, x — (x EN x). This is not an
equivalence, as Idem has no final object.

Definition 3.0.61 ([28], 4.2.4.1). Let AT°P : ATP — 1—Cat be a left module category
given by (A, M), here A is a monoidal co-category (Lurie’s terminology is to say that
M s left tensored over A®). Consider an object of AssocAlg + mod(A, M) given by
(A,M). Let A : My — M be a morphism in M. Then X\ exhibits M as a free left
A-module generated by My if the composition AR My — ARM — M is an equivalence
i M. Here the second map is the action.

The main result about free A-modules is the following.

Proposition 3.0.62 ([28], 4.2.4.2). Let A™? : AT? — 1 — Cat be a left module
category given by (A, M), here A is a monoidal co-category. Let A € Alg(A), My € M.
Then

i) there is M € A —mod(M) and a map X\ : My — M in M, which exhibits M as a free
left A-module generated by M.

it) Let M € A —mod(M), let X : Mo — M exhibit M as a free left A-module generated
by My. Let (B,N) be an object of AssocAlg + mod(A, M) then the composition with A
induces an isomorphism in Spc

MapAssocAngrmod(A,M) ((‘Aa M)7 (Ba N)) - MapAlg(A) (‘A? B) X MapM (MO’ N)

For example ([28], 4.2.4.6) reads: Let AT : AT? — 1 — Cat be a left module
category given by (A, M). Let A € Alg(A),M € A —mod(M). Assume X : My — M
is a map in M, which exhibits M as a free left A-module generated by My. Then
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for any N € A — mod(M) the map Mapy_,oq(ar) (M, N) — Map, (Mo, V) given by
composition with A is an isomorphism in Spc.

(HA, Corollary 4.2.4.8): let AT°P : AT°P — 1 — Cat be a left module category given
by (A, M). Let A € Alg(A). The oblivion functor oblv : A — mod(M) — M admits a
left adjont sending My to the free A-module A ® My generated by My. In [14] this left
adjoint is usually denoted indy : M — A — mod(M).

3.0.63. In [28] the convention is that the set of linear ordering on an empty set is .
For example, for the operad LM® there is a unique map m — a in LM®.

3.0.64. 1 think one may define a notion of a A-bimodule in the style of Dennis and
Nick book as follows. Let T AT denote the usual category, it will contain A as a full
subcategory. Our + A% will be a full subcategory of 1 — Cat?™¥" (the category of usual
categories). The objects of T AT are of two types:

e objects of A;
e for any n,m > 0 an object [n,m]*, which is the category

-n—-—-mn+1)—»...5—-0—>4+—-0—-1—...5m

The morphisms in * AT are as follows. The morphisms in * A™ are as follows.

e the morphisms [n] — [m] in A;

e the morphisms f : [r] — [n,m]", where the image of f is contained in {—n, ..., —0}
and f preserves the orders;
e the morphisms f : [r] — [n,m]*, where the image of f is contained in {0, ..., m}

and f preserves the orders;
e the morphisms g : [n/,m]T — [n,m]T such that g~ 1(+) = +, and g preserves
the order.

We underline that 0 and —0 here are different object of the category [n,m]".

We view TA C TAT as the full subcategory spanned by the objects [n], [m,0]"
for n,m > 0. We view AT C T AT as the full subcategory spanned by the objects
[n], [0, m]T for n,m > 0.

Let € € 1 — Cat admit finite products, we view € as equipped with the cartesian
monoidal structure given by cartesian products. Let A® : A’ — € be an associative
algebra in € (that is, a monoid). A A®-bimodule is a an extension F : TA1T — € of
the functor A® : A°? — € with the following property. For any n,m > 0 the injective
morphisms

e [n] — [n,m]" with image {—n,...,—0},
o [m] — [n,m]T,i— i
e [0,0]" = [n,m]t, -0~ —0,+— +,0—0

yield an isomorphism
F([n,m]") = F([n]) x F([0,0]7) x F([m])

Let A = A®([1]). The object M := F([0,0]7) € € then gets a structure of a left
A-module and a right A-module, and these two actions commute. Is this a correct
definition?
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3.0.65. Recall the involutions rev : A= A and o : Ass® = Ass®. The map Cut :
A% — Ass® commutes with these involutions. Recall the projections
RM® — Ass®, LM® — Ass®

) to (n). There is a unique isomorphism o : LM® — RM® in 1 — Cat
) to ((n),S) which fits into the diagram

LM® 5 RM®
{ 1

Ass® 5 Asgs®

sending ((n),

S
sending ((n), S

In ([28], 4.2.2.8) Lurie has constructed a map v : A% x [1] — LM®, which is
an approximation of the oo-operad LM®. Similarly, one has an approximation " :
A% x [1] — RM® defined as follows.

Let RCut : A°? — RM® be defined as the composition

AP Y AP PG on® 2 @

Recall that Cut : A%? — Ass® sends [n] to the set Cut[n] of equivalence relations
on {0,...,n} with at most two equivalence classes, which are convex. The functor
LCut : A — LM® sends [n] to (LCut[n],{[n]}), where LCut[n] is the set of all
downward-closed subsets S C [n]. The map « is the transformation in LM® given for
each [n] € A by the map

(LCwut[n],{[n]}) = (Cutln], D)

sending a subset S C [n] to the equivalence relation with equivalence classes S, S (here
S is the complement of S in {0,...,n}).

Denote also by Cut the composition A M fss® < LM®. The map y €
Funct( A, LM®) by composing gives rise to the map 4" = goyorev € Funct( A%, RM®).
Then ~" is also an approximation, right?

Define the map a : A% x (A)P x [1] — LM® x RM® as (o prys,7" 0 prys). Is it
true that the composition

A% x (A) x [1] % LM® x RM® & BME

is a (maybe weak) approximation for the oo-operad BM®? Here Pr is the map defined
in ([28], 4.3.2.1).

Definition from [I4]: an A-bimodule is a A ® A°’-module.

It would be nice to have a simplicial version of a definition of the category of bimod-
ules in terms of this approximation. Does the projection BM® — Ass® given in ([28],
4.3.1.8) lifts to a map of approximations A% x (A) x [1] — AP?

Let A®, B® : A% — 1 — Cat be two monoidal co-categories. Can one define a notion
of a A®, B®-bimodule category simply as an extension of the corresponding functor
A°PLJAP — 1—Cat to a functor (AT x T A) — 1—Cat with some properties? So that
hopefully we would get as an answer a full subcategory in Funct((A™ x T A)°P 1 —Cat)?
Then we could as usually define lax monoidal functors via strengtening to get usual
bimodules inside for a pair A € Alg(A), B € Alg(B).
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3.0.66. Approzimation to BM®? We try to construct an approximation to the oco-
operad BM® of (28], 4.3.1.5). Define a functor

(6) F: AP x A? x [1] - BM®

as follows. For [n] € A recall that LCuto([n]) denoted the set of all downward-closed
subsets S C [n] with the distinguished point * given by the empty set ([28], 4.2.2.6).
We identify LCuty([n]) = (n+1) via the map sending i € (n+1) to {j € [n] | j < i} as
in loc.cit. In other words, LCuto([n]) is ordered by inclusion. For a map « : [n] — [m]
in A the induced map o : LCuto([m]) — LCuto([n]) sends S to a=1(S). Given
T € LCuto(|n]) the set o/~1(T) is ordered by inclusion. Let ¥ € LCuto([n]) denote the
set [n]. The map o/ preserves .

Write also RCuto([n]) for the set of all downward-closed subsets S C [n] with the
distinguished point * given by [n]. We view it an an object of Fin,. For a map
a:[n] — [m] in A the induced map o’ : RCuto([m]) — RCuto([n]) sends S to a=1(S).
Given T € LCuto([n]) the set o/~1(T) is ordered by inclusion. Write ¥ for the element
) € RCuty([n]). The map o preserves *.

For [n],[m] € A set

BCut([n], [m]) = LCuty([n]) {*Ijlg} RCuto([m])

We view it an an object of Fin, with the distinguished point *. Given « : [n] —
[n'], B8 : [m] — [m] in A the induced maps o : LCuty([n']) — LCuto([n]) and g’ :
RCuto([m']) = RCuto([m]) yield a morphism

v := BCut(a, B) : BCut([n'], [m]) — BCut([n], [m])

For S € BCut([n],[m]) the preimage v~1(S) is ordered as follows. If S # %, S
LCuto([n]) then y~1(S) C LCuto([n']) is ordered as above. Similarly if S # %, S
RCuto([m]) then v~1(S) C RCuto([m']) is ordered as above. Finally, for S = ¥
BCut([n],[m]) the preimage v~!(S) has a linear order such that the induced orders on
7~ 1(8) N LCuty([n']) and on v~ 1(S) N RCuto([m']) are as above, and all the elements
of v71(S) N LCuty([n']) are less than the elements of v~ 1(S) N RCuto([m’]).

We constructed a functor BCut : A% x A°? — BM®. It is understood that c_,cy =
0 (resp., 1) on elements of LCuty([n]) — {*,*} (resp., RCuto([m]) — {*,*}). Besides,
c_ and cy take different values 0,1 on *.

Since Cut : A? — Ass® is a functor, we get another functor bCut : A% x AP —
BM® sending ([n], [m]) to

S
S
S

Cut([n]) U Cut(m])

and defined naturally on morphisms.
Finally, we have a transformation F' : BCut — bCut defined as follows. On
([n], [m]) € A x A it is induced by the map
LCuto([n]) x RCuto([m]) — Cut([n]) x Cut([m])
sending (S, T) € LCuty([n]) x RCuty([n]) to the pair of equivalence relations

~g,~1) € Cut([n]) x Cut([m)])

)
(
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Here ~g is the equivalence relation on [n] whose classes are S and its complement,
similarly for the equivalence relation ~7 on [m]. Our F is the desired functor ()

Is F is an approximation of oo-operads? No! Condition ([28], 2.3.3.6(1)) is not
satisfied I think. Namely let n,m > 0, pick an equivalence relation in Cut([n]) whose
equivalences classes are given by (0,...,7 — 1), (4,...,n) for some ¢ > 0. Consider
the inert map p : (n +m) — 1 sending 7 to 1 and j # i to 0. Then ([n],[m],1) €
A%Px AP x[1] is over (n+my), but there is no locally cocartesian arrow in A% x A x[1]
over p.

3.0.67. Modules over a coherent operad. For ([28], 3.3.3). Let O% be a coherent operad
then by ([28], 3.3.2.2) the map ey : Ko — 0% is flat. Let ¥ — O% be a map
of oc-operads. In ([28], 3.3.3) for an algebra object A € Alg,y(€) Lurie defines an

oco-operad Mod9(€)®. Its construction in a model-independent way uses results of

— 0
my Section |3.0.43, Now Mod (€)® from ([28], 3.3.3.1) can be defined in a model-
independent setting. It is given by the functorial isomorphism for X € 1 — Cat/ge

' N .
Map; _ea , (X, Mod (©)%®) = Funpyn (13,02 (X Xpun({0},09) Ko, €*)"P

The objects maps making the diagram commutative

X Xpun(foy,09) Ko — C®
1
Ko a4 0%

Then mo(€)® C Modo(€)® is a full subcategory. This yields a construction of a
map of oo-operads Mod9 (€)% — 0% in (28], 3.3.3.9).

This operad is used, most importantly, for the tensor product of modules over a
commutative algebra in ([28], 4.5.2.1). Namely, let €® — Fin, be a symmetric monoidal
oo-category, A € CAlg(€). Since Comm® = Fin, is a coherent operad, we get the oo-
operad ModG°™™(€)®, the underlying co-category is

ModGo™™(€) = A — mod(€) = A — mod" (C)

([28], 4.5). View Ass as the underlying oo-category of the associative operad Ass®.
Then Mod4** (€)= ABMod(C) by ([28], 4.4.1.28). Lurie writes for brevity in ([28],
4.5.1.1)

ModGo™™ (@) = Mod4(€), ModGo™™(€)® = Mod4(C)®

The key thing here is maybe ([28], 4.5.2.1): assume C is a symmetric monoidal co-
category, € admits geometric realizations of simplicial objects, and the tensor product
€ x € — C preserves geometric realizations of simplicial objects separately in each
variable. Recall that A € CAlg(€). Then Mod4(€)® — Fin, is a symmetric monoidal
oo-category, and the tensor product operation in Mod4(€)® is the tensor product of
A-modules over A. This is also claimed in ([14], ch.1, 4.2.4).



92 COMMENTS TO: D. GAITSGORY, N. ROZENBLYUM [14]

3.0.68. Bimodules. If € — Fin, is symmetric monoidal co-category, A, B € AssAlg(C)
are associative algebras in € then A— B-bimodule in € can be defined as a ARIBrev—mult.
module. Here we view C as a module category over the monoidal oco-category € ®
Grev—mult'

The construction of ([28], 4.3) is more general, but maybe not need. Namely,
for any map of oc-operads C®¥ — BM® with M := C, one may consider the cat-
egory BMod(M) = Alg,p)(C) as in ([28], 4.3.1.12). We have the projection pr :
BMod(M) — Alg(€_) x Alg(€4), where € = €% xpgye {ar},Co = €% xgye {a_}.
Recall that a_, a;, m are the three objects of BM. The fibre of pr over A, B is denoted
ABModp(M) in ([28], 4.3.1.12).

The map Pr: LM® x RM® — BM® from ([28], 4.3.2.1) is not a bifunctor. How-
ever, it is used further in ([28], Section 4.3) as if it was a bifunctor. Namely, for a map
of co-operads ¢ : €% — BM® the map of oc-operads p : LMod(Cy)® — RM® defined
n ([28], 4.3.2.2-5) makes sense in the model-independent setting. This construction
is similar to the construction of ([28], 3.2.4.3), see also my Section Main re-
sults here are ([28], 4.3.2.5-7), their formulation makes sense in the model-independent
setting.

Simplified version of ([28], 4.3.2.7): let € be a monoidal co-category, A, B € Alg(C).
One has

ABModp(C) = B — mod (A —mod(C)),
here the LHS is the category of AKX B"*~™%t_modules in C.

3.0.69. Let AT®: AT — 1 Cat be a left module category given by (A, M), where
A is a monoidal co-category, let K € 1 — Cat. Then Fun(K, M) is also naturally a left
A-module category (in Lurie’s terminology, left tensored over A).

We may assume the pair (A, M) is given by a cocartesian fibration of co-operads
¥ — LM®. By ([28], 2.1.3.4) then D® := Fun(K, C®) Xpyn(x,mey LM® — LM®
is also a cocartesian fibration of co-operads and Dy — Fun(K, M). Thus the category
Fun(K, A) = D, is monoidal, and Fun(K, M) is a module category over Fun(K, A). Let
C? = C¥ x o Ass®, similarly for D®. The diagonal functor

€® — Fun(K, C%) X Fun (K, Ass®) Ass® 5 D®

is Ass®-monoidal. Restricting the action with respect to the later functor as in my
Section we get the desired A-action.

For example, this shows that Fun(D, €) is a left module over Fun(C, €).

More generally, if €% — 0% is a cocartesian fibration of co-operads, K € 1—Cat then
we get a cocartesian fibration of operads over O® whose fibre over X € O is Fun(K, Cx)
with the pointwise monoidal structure by ([28], 2.1.3.4).

3.0.70. Let A, B be monoidal co-categories, and F' : A — B be a right-lax non-unital
monoidal functor. Then we may view (A, A) and (B, B) as objects of 1 — CatMon”
F gives a morphism from (A4, A) to (B, B) in (1 — @atMo"+),ﬂight_lawmniuml.

and
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Our F induces a commutative diagram

AssAlg +mod(A, A) — AssAlg+ mod(B, B)

\ 1
Alg(A) — Alg(B),

the low row sends A to F'(A). The top row sends (A, M) to (F(A), F(M)). Here the

product on F(A) is F(A) @ F(A) > F(A® A) i) F(A), where m : AQ@ A — A is

the product on A. The action of F(A) on F(M) is the composition F(A) @ F(M) —

F(A® M) e F(M), where a : A ® M — M is the action.
In particular, for A € Alg(A) this induces a functor A —mod(A) — F(A) —mod(B).

3.0.71. The relative inner hom Hom 4 (m,m) in ([28], 4.7.1) is called an endomorphism
object of m, here m is an object of a monoidal co-category A. By loc.cit, if A € Alg(A)
is an associative algebra in A then Map 444y (A, Hom 4 (m, m)) = A —mod(A) x 4 {m}.

I have not understood 3.6.5, how Homp 4(M,N) € A acquires a structure of a A-
module? There is however a natural map A ® Hom 4 4 (M, N) — Hom 4 4(M, N), which
probably gives the structure of a A-module. Indeed, by definition, we have a natural
map Homy 4 (M, N)®@M — N in A—mod. The desired map corresponds via adjointness
to the composition

A@HomA7A(M,N)®M—>.A®N—>N,

where the second one is the action map.

From ([28], 4.7.1) one should maybe remember the following. Let AT™® : AT —
1 — Cat be a left module category given by (A, M), where A is monoidal, and M
is left tensored over A. Let (A,m) be an object of AssAlg + mod(A, M), so A €
AssAlg(A),m € A —mod(M). Then ([28], 4.7.1.41) says: assume A = Hom 4(m,m) is
the relative inner hom, let B € AssAlg(A) be an associative algebra. Then

Map g5 a19(4) (B, A) = B — mod(M) xpr {m}

The forgetfull functor AssAlg + mod(A, M) xp {m} — AssAlg(A) is a cartesian
fibration in spaces ([28], 4.7.1.42).

3.0.72. The notion of a split simplicial object from ([28] 4.7.2.2) is a very useful idea.
To be precise, A_, is the category, whose objects are finite (possibly empty) linearly
ordered sets I. A map from [ to J is a morphism o« : ILI{—00} — JU{—o0} preserving
the orders such that a(—o0) = —oo. The full subcategory of A_,, with the same set
of objects, where we require a~!(—o00) = —oco is Aj.

For example, let € € 1 — Cat admit finite limits, f : T'— S be a map in €. Then we
have the augmented simplicial object (A )P — €, I + T1/S, the product of T' € C/s
over the set I. This is the Cech nerve of f, it is not split in general. Consider now
the augmented split simplicial object (A_~ ) — € sending I to (T/IS) xg T. This is
indeed a functor out of (A_)%, because this can be seen as the product of T' € €/g
over the set I LI {—oo}. So, amap a : I U {—oco} — JU{—o0} with a(—00) = —00
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induces a morphism (T/S) xgT — (T/IS) xs T. By (HA, 4.7.2.3),

lim (T TT
ggAlgr,;( 15) Xs T=T,

the colimit taken in C.

3.0.73. Split simplicial objects again. In ([28], 4.7.2.7) there is a correction needed. The
functor ¢ : A% — A is given by {—oo}U[n] — {—oco}*[n]. Amap f: {—oo}U[n] —
{—o0} U[m] in A_ is sent to the induced map {—oo} x [n] = {—o0} * [m].

So, if X : A°? — (' is a simplicial object of C € 1 — Cat, it yields a split simplicial
object A% 2 A% % . Thus,

lim X({—o0} % — X0
colim X({=oc} « [n]) = X[
in C'. This is very useful!

The inclusion [n] < {—o00} * [n] = [n + 1] sending i to 7 + 1 is functorial in [n] € A.
This gives a morphism of simplicial diagrams X({—occ} * [n]) — X([n]) as [n] varies in
A°P, In turn, this gives passing to the colimit the morphism

X[0] = colim X({—oc} — colim X
0 colim X({—oc} » [n]) = colim ()
which is insg I think.
One more point. We may also consider X with reversed multiplication denoted X",

that is, the composition A? — AP X , where the first map reverses the arrows on
each category. Then we can get another split simplicial object composing ¢ with X™™.

Bar construction. Let ¢ : M® — LM® be a cocartesian fibration of oo-operads, €% =
M the corresponding monoidal co-category, M := M is a module category over C%.
If X : LM® — M® is a map of operads over LM®, let A= X(a) € €, M = X (m) € M.
The unique active map ((2), {2}) — ((1), {1}) in LM® yields the action map A®@ M —
M.

Let ® be the composition A% & Ao LCut LM®, as in loc.cit, we get a natural
transformation a : ® — ®g, where &g : A — LM® is the constant functor with
value m. Since ¢ is a cocartesian fibration, we may lift a to a ¢-cocartesian natural
transformation @ : X o ® — X' for some functor X’ : A% — M. Note that for
any n > —1 the unique map —oo < —oo U [n] in A_, after applying ® becomes an
active morphism 8 : ((n + 2),{n + 2}) = ((1),{1}) in LM®, the corresponding order
on B71(1) = {1,...,n+2} is the natural one. The object X®(n)is A®...®ADM €
M®, where A appears n + 1 times. So, & pick, in particular, a cocartesian arrow
A®...0ADM — A®"L @ M in M® over B. So, X'(n) = A" @ M for n > —1.

The restriction X’ | por is the simplicial object

A®3®M§A®2®M:;A®M

For the corresponding augmented simplicial object we get that the colimit is the value
X'(—1) = M is the colimit of X' |pe».
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3.0.74. Bar-Beck-Lurie. The last claim in ([14], ch.1, Sect. 3.7.3) is not clear. Lurie in
[28] says only three lines about this, just after ([28], 4.7.3.3).

The reference to [2§] in ([I4], ch.1, 3.7.4) is not correct, the first claim is ([2§],
Lemma 4.7.3.1).

The main result in [28] about Bar-Beck-Lurie is ([28], 4.7.3.5). My understanding
is that by left action of €% on € Lurie means there the structure of a £®-left module
category on C.

It is maybe useful to remember Proposition ([28], 4.7.5.1): given a small co-category
J and a diagram ¢ : J — 1 — Cat, 0 € J and C° = ¢(0), assume € = limgq. It gives
sufficient conditions for € to be monadic over C’. There are also ([28], 4.7.5.1-3) giving
a version of descent theory in oco-categories setting.

If A a monoidal co-category, a comonoid a in A is a monoid in A°?. A comodule over
a is then an a-module in A°?. However, the subtlelty is that the category a — comod(A)
should be defined as (a — mod(A°))°P.

Let now € € 1—Cat. Then a comonad on € is a comonoid in the monoidal co-category
Fun(C,C). If F/: €= D : G is an adjoint pair of functors then G : DP = CP : F is
an adjoint pair. Then A = FG is a comonoid in Fun(D, D), because A is a monoid
in Fun(D, D) = Fun(D, D). The composition CP? — AP — mod(D?) B pop i
F°P. Passing to opposite functors, we get a diagram

e "5 (AP — mod(D?)® = A - comod(D)

N\ F 4 oblv
D

Now F' is called comonadic iff " : C — A — comod(D) is an equivalence (it is
equivalent to F'°P being monadic).

If M € 1 — Cat is a left module category over a monoidal co-category A, and a € A
is a coalgebra in A then a — comod(M) is defined as (a — mod(M°P))°P. We use the
fact that M is naturally a left A°’-module category.

The version of Barr-Beck-Lurie for comonads: if F' is conservative and preserves
totalizations then F' is comonadic.

3.0.75. If I® — Fin, is a symmetric monoidal category, consider Spc as a symmetric
monoidal category Spc® with the cartesian symmetric monoidal structure. Let F : [ —
Spc be a functor which is extended to a symmetric monoidal functor F® : I® — Spc®.
Then colim; F' in Spc has a structure of a commutative monoid in Spc, this was used
in [48].

Informal explanation: write x; = F(i) for i € X, let © = colim F'. The product map
x X & — x is obtained as the map x x o — colim; jerxr ; X ; — x. It comes from the
compatible system of maps x; X x; = Tig; — T.

Similarly, if I is a non-unital symmetric monoidal category and F' is a non-unital sym-
metric monoidal functor then colim; F' is naturally a non-unital commutative monoid
in Spc.

In ([9], 2.2.1) the following generalization is used. Let K € 1 — Cat be a small
symmetric monoidal category, A € 1 — Cat another symmetric monoidal category, and
U : K — A aright lax symmetric monoidal functor. Then colimg ¥ is a commutative
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algebra object in A. My understanding is that this holds both in unital and non-unital
setting. Informally, in the unital setting we have a natural map 1 — colimg,y; ¥ —

colimg W, where « : * L K is the unit, and the map 1 — colimy,, ¥ —= W¥(1) comes
from the right lax structure of W.

3.0.76. On weak enrichments. Recall the category AT from ([14], ch. L1, 3.4.1). A
map [m| — [n] in A is inert iff it is an isomorphism of [m] onto a convex subset of [n].
The inert maps in A" are the inert maps in A, the maps [n]* — [m]", which identify
[n]* with a convex subset of [m]™, and also the maps [n] — [m]*, which identify [n]
with a convex subset of [m]. Let X® — A% be a cocartesian fibration defining a
monoidal co-category A. Let M € 1 — Cat.

I hope the notion of a weak enrichment of M over A given in ([2§8], 4.2.1.12) can
be equivalently reformulated as a morphism g : X® — A™° in 1 — Cat whose base
change by A% — AT is identified with X® — A° and such that ¢ satisfies some
properties, in particular:

e for any inert morphism a : a — b of AT and x € Xl‘?, there is a g-cocartesian
morphism x — y over a.

e for any [n]T € AT, the inert morphisms [n] — [n]*, [0]t 5 [n]T yields an
equivalence X[%]* 3)?% X X[%}*

Is this true?

Let now b : B — A be a right-lax monoidal functor between monoidal co-categories.
Assume M is left-tensored over A, so ¢ is cocartesian fibration. Then by restriction we
get a right-lax action of B on M. The following construction then should produce the
corresponding enrichment of M over B.

Let p: AT — A be the functor from my Section Let Y® — A be the
cocartesian fibration corresponding to B, so we have the map : Y® — X over AT
attached to b. Write Y® — AT for the pullback of Y® — AP by p. it corresponds
to B viewed as a left B-module, we have X® — AP defined similarly, it corresponds
to A as a left A-module. The map 3 yields by pullback a morphism 3 : Y® — X® over
AT We have a natural transformation p — id of functors AT — AT from my
Section It yields by base change a morphism X® — X® over AT, Consider
the product Z® = X x ¢q Y® in 1 — Cat (equivalently, in 1 — Cat)p+.op). I think
Z%® — AT is the desired operad. The map Z® X p+.00 A% — A identifies with 3.

If b: B — A is left-lax instead of right-lax, then I think the construction should be
the same, right?

Now the category LMod(Z) is the full subcategory of Fun g+, (AT, Z®) sending
an inert morphism to an arrow cocartesian over A1°P,

For B € Alg(B) we can now define B — mod(M) along the fibre of the projection
LMod(Z) — Alg(B).

3.0.77. The following is due to Lurie and generalizes Section |3.0.20}

Remark 3.0.78. Let C® — O% « D® be a diagram of cocartesian fibrations of
oo-operads. Let A® — O® be a map of oo-operads. Assume given an adjoint pair
L:C® <= D®: Rin1—Cat, where L, R are maps of co-operads over O%. Assume that
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L is a morphism of O®-monoidal categories, that is, sends a cocartesian arrow over
O% to a cocartesian arrow over O®. Let L' : Alga,;0(C) S Algaso(D) : R’ be obtained
by composing with L and R. Then (L', R') is an adjoint pair in 1 — Cat.

Example: let A be a monoidal co-category, M, N be A-module categories and L :
M — N a morphism of A-module categories having a right adjoint R. So, R is right-
lax functor of A-module categories. Taking A® = O® to be the oco-operad classifying
associative algebra + module, we get an adjoint pair

L:Alg+ Mod(A, M) = Alg+ Mod(A,N) : R

over Alg(A). In particular, we may make a base change by A : x — Alg(A) by some
associative algebra A in A, and get an adjoint pair A — mod(M) = A — mod(N).

3.1. Duality. First, one has to define the exponential as in (HA, 4.6.1.1). Namely, if
A is a monoidal co-category, ¢, m € A then m¢ is defined as the object that represents
the functor A’ — Spc, © — Mapy(x ® ¢,m) (if it exists). It is equipped with the
structure morphism m°® ® ¢ — m.

If A is presentable and the tensor product A x A — A preserves colimits separately
in each variable then the exponential always exists (HA, 4.6.1.2). Now (HA, Lemma
4.6.1.6): let ¢,b € A and assume given a map e : b® ¢ — 1 in A. Then e extends to a

duality datum on the pair (b, c¢) iff for any a € A the map a®@b® ¢ 4e | exhibits a @b
as an exponential a®. In other words, for any d € A one has functorially

Map4(d,a ® b) = Map,(d ® ¢, a)

For 4.1.1. Let A be a monoidal co-category, a € A admitting a right dual a"%. For
a’ € A the isomorphism Map 4(a ® a’,1) — Map 4(a’,a"%) opposite to that of 4.1.2 is
defined as follows. It is defined as the composition

V,R
Map 4(a ® a’,1) 5@ Map 4(aV" B ®a®d,a"T) = Map4(d',a"""),

. . . it@id
where the second map is the composition with o’ “"= a2 @ a @ d'.

Naively, the functor (Aright—dualizable)op N (Aleft—dualizable)Tev—mult is defined as fol-
lows. It sends a to a""®. Now a map ¢ : a — b in A"ght—dualizable vie]ds o morphism of
functors of y € A

Map 4(y, b""") = Map 4(b® y,1) — Map,(a ® y,1) = Map,(y,a*"")

represented by a morphism ¢¥-f : bV — ¢V:F in A,

The left dual of @ € A is defined as the object a¥' € A representing the functor
a’ — Map 4(a’ ® a,1) (with an additional property!). It is equipped with maps counit :
'l ®a—1,unit:1 —a®a"r.

For 4.1.4. The full category Aright—dualizable — A ig stable under the tensor product.
Namely, if a, b € Aright—dualizable it} right duals ¢, b then b ® @V is a right dual of
a ® b. The corresponding unit and counit maps are defined as the compositions

unity counit
A S

axbb' @a’ B e 1

unit,

1 UV o b e BV o 0V 9 a @ b
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For 4.1.5. Let a1, as € A with a; left dualizable. For y € A one gets the isomorphism
Map 4(y ® a1, a2) — Map 4(y, a2 ® aY’L) as follows. It is defined as the composition

L

)

®a” L
Map,(y ® a1,a2) = Mapa(y ® a1 @ a;"" > @ a}"") = Map,(y, a2 © a;""),

where the second map is the composition with id Qunit : y — y Q@ a1 ® a\l/’L.

Remark 3.1.1. A property symmetric to (ch.1, 4.1.5) is missing in that section of
the book: let A be a monoidal (co0,1)-category, b € A be right-dualizable. Then for
d,c € A we have functorial isomorphism Map4(b ® d,c) = Map4(d, b ® ¢). It is
proved similarly to (chl, 4.1.5). This map sends o : b @ d — ¢ to the composition
4R @b d ST VR g e,

One may strengthen (ch. 1, Lm. 4.1.6 a)) as follows.

Lemma 3.1.2. Let A be a monoidal co-category. Assume K € 1 — Cat, and A
admits K-indexed limits. Let a € A be left dualizable. Then the functor A — A,
d — Hom 4 (a,d) = d ® a""" preserves K-indexed limits.

Proof. By (ch. 1,4.1.5), for any d € A, Hom 4 (a, d) exists and one has Hom 4 (a, d) = d®
aV'l'. Let K — A be a diagram i — d; for i € K. For any b € A one has

Map 4 (b, Hom 4 (a,lim d;)) = Map4(b ® a,limd;) = lim Map4(b ® a,d;) =
lim Map 4 (b, Hom 4 (a, d;)) = Map 4 (b, lim Hom 4 (a, d;))
U

Remark 3.1.2.1 Let A € CAlg(1 — Cat), a € A be dualizable. Then the dual map
to the counit ¢: a ® a¥ — 14 identifies with the unit v : 14 — a" ® a.

3.1.3. For 4.1.7. Let A be a monoidal co-category, A be an associative algebra in A,
and a € A be left-dualizable. Then Hom 4(a,a) = a ® a"** by 4.1.5. This object of A
has a natural structure of an associative algebra by 3.6.6 (in [28] this is done in 4.7).
This is done as usually for monads. Namely, 1 — a ® a"°* is the unit map, and the
product

a®a"t®a®ad"l = axad""
is the map id ®counit @ id.

Now a gets a structure of a left Hom 4 (a, a)-module by 3.6.6, where the action map
(a®a""t)®a — aisid @counit. Now assume given a structure of a left A-module on
a. This is the same as a morphism of algebras A — Hom 4 (a, a), see my Section
So, to get a right A-module structure on a"'r, it suffices to do it in the case when
A — Hom 4 (a, a) is an isomorphism.

Recall the action map a"" ® (a ® a"'%) — a"+* is the composition

id ®unit cRc®id
oVl (a® av,L) dymit. V,L o (a® av,L) ®(a® av,L) cgid VL
So, this action map rewrites as

counit ®id : a"'* @ (a ® aV'L) — oV
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Vsl on aV'F is the same as acting by

Now it is easy to see that acting twice by a ® a
their product. So, a"' is a right Hom 4 (a, a)-module.

About the second claim of 4.1.7. We don’t assume anymore that a is left-dualizable,
but assume that for o’ € A, Hom 4(a, a’) exists, and a is a left A-module. First, we have
a canonical map Hom 4 (a, a’)®a — a’ corresponding to id : Hom 4 (a, a’) — Hom 4(a, a’).
Now define the action map Hom 4(a,a’) ® A — Hom 4(a,a’) as the map corresponding
to 8 : Homy(a,a') ® A® a — a'. Here [ is the composition

Hom 4(a,a') ® A ® a 5" Hom 4(a,d') ® a — a'

Here o : A ® a — a is the action map.
Addition: assume Hom 4(a, b) exists, and b € A is a left A-module. Then Hom 4(a, b)
is also a left A-module. The action map corresponds to the composition

A®HomA(a,b)®aid§TA®ba—>db,

where 7 is the canonical action map, and act comes from the A-module structure.

3.1.4. One may add to their Sect. 4.1.7 the following. Let A be a monoidal co-category,
a; € A such that Hom 4 (a1, az), Hom 4 (a9, a3), Hom 4 (a1, a3) € A exist. Then there is a
natural map 7 : Hom 4 (a2, a3) ® Hom 4 (a1, a2) = Hom 4 (a1, a3) defined as follows. We
have canonical maps « : Hom 4(a1,a2) ® a; — ag, f : Hom 4 (a2, a3) ® ag — az. They
yield the composition

Hom 4 (a2, a3) ® Hom 4 (a1, a2) ® a; g Hom 4 (a2, a3) ® as LA as

It corresponds to 7.

Remark Let C' € 1 — Cat be a monoidal category, Cleft—dualizable — ' he the full
subcategory of left-dualizable objects. Assume C' is idempotent complete, and all the
inner homs exist. Assume the tensor product preserves colimits (and limits) over Idem
in each variable. Then

1) Qleft—dualizable jg gtable under retracts (similarly for

2) Assume given a functor Idem — C' sending the unique object x to ¢ € C. Assume
¢ is self-dual, and the duality datum ¢ ® ¢ — 1 is equivariant under the diagonal
Homigem(x, z)-action. Let r be a retract of c¢. Ther r is also self-dual.

Proof: 1) Let ¢ € C be left dualizable. Let f : Idem — C be a diagram, sending
the unique object of Idem to ¢. Let » = lim f be the corresponding retract of ¢. We
have the natural map 1" @ » — 1, and we must show it extends to a duality datum
on the pair 1",r. For a,d € C the canonical map 1¢ ® ¢ — 1 yields an isomorphism
Map(d,a ® (1¢)) = Map(d ® ¢,a) which is compatible with the action of Hom¢(c, ),
hence with f. We see the latter is an isomorphism of functors Idem — Spc. Passing to
the limit over Idem, we get the desired ismorphism Map(d,a ® (1)) = Map(d @ r, a).
O

Cright—dualizable)

3.1.5. Tensor products of modules. For 4.2.1. 1 think the assumption there are: A
monoidal oco-category. The geometric realizations distribute over the monoidal oper-
ation in A should mean the following. Given A” — A [n] — a,, b € A, one has
colim por (ay, ® b) = (colim a,) ® b naturally, and similarly for the second variable.
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For 4.2.2. Dennis applies here the following. Let O® — JFin, be a symmetric
monoidal co-category. Then AssAlg + mod(O,0) is the category Algrar(O), that is,
the category of maps of operads LM® — O%®. It is the underlying oo-category of the
symmetric monoidal oo-category Algra(0)®, see Prop. Moreover, the evalua-
tions eq, em : Algrar(0)® — 0P are symmetric monoidal. The inclusion Ass® C LM®
yields the restriction functor Algra(0)® — Algs,s(O), which is symmetric monoidal
by ([28], 3.2.4.3).

For 4.2.3: the fact that this is a cocartesian fibration follows from ([2§], 4.6.2.17) I
think, see also my Section [3.0.56

3.1.6. For 4.3.1. Let A be a monoidal oco-category, A € AssAlg(A). Let N € A —
mod", M € A — mod be in duality. Assume that A admits geometric realizations, and
the tensor product in A preserves geometric realizations in each variable. Then we have
a natural isomorphism functorial in S € A — mod"

Mapy _0ar (S, N) = Map ggarm _moq(M @ S, A)

counit

sending a : S — N to the composition M ® S 98 A @ N M A The inverse map
sends 8 : M ® S — A to the composition

Uit N o MeSs S Ne, ASN

More general claim is given in (HA, 4.6.2.1). Namely, we get an adjoint pair
FM:A‘:A—mod:ff"N,

where Fy (X)) =M @ X, and Fy(Z) = N @4 Z.
Besides, we get an adjoint pair

Fy ASA—mod : Fy,

where F(X) =X ® N and F,(Z) = Z @4 M.

For 4.3.2. Let A be a monoidal co-category, A € AssAlg(A), M,N € A — mod".
Assume M admits a dual M € A—mod. Then Hom 4 4(M,N)= N®,M" canonically.
Indeed, given H € A, the isomorphism Map 4 (H, N ®4 M) = Map4_,oq- (H ® M, N)
sends a: H — N ®4 MY to the composition

HoM“S'Neoys MY oM 3" NoyA=N

For 4.3.3: a condition is missing. They have to assume there that A admits geomet-
ric realizations, and the tensor product in A preserves geometric realizations in each
variable.

3.1.7. An application of the operad Mod A(C)®. (28], 4.8.2.10) combined with my Sec-
tion gives an interesting application: let C be a symmeric monoidal co-category,
assume C has geometric realizations of simplicial objects, and the tensor product
€ x € — C preserves geometric realizations of simplicial objects separately in each vari-
able. Let A be an idempotent object of C'Alg(C€), that is, the multiplication A® A — A
is an isomorphism. Let L : € — € be the functor z — A ® x, recall that L is a local-
ization functor, L€ inherits a symmetric monoidal structure ([28], 4.8.2.7), L : € — LC
is symmetric monoidal functor, and LC < C is right-lax nonunital monoidal ([2§],
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2.2.1.9). Finally, LC identifies with A —mod(€), and the symmetric monoidal structure

on LC is the tensor product of A-modules over A according to my Section
Note that ([28], 4.8.2.9) is unexpected nice result!!! It says that given e : 1 — E in

C, which exhibits E as an idempotent of €, F automatically has an algebra structure!

3.1.8. Relative tensor product. In (HA, 4.4.1) there is a definition of the ‘bilinear map’
in the situation: let € be a symmetric monoidal co-category, A, B,C € Alg(C), M €
ABModg(€), N € gBMod¢(€),X € 2BModc(€). Then a map M @ N — X is
bilinear if we are given the following. He defines the category Tens® — Ass® x A% in

(HA, 4.4.4.1). Now for the map [1] — A given by [1] 02 [2] in A he considers the
base change Tens? = Tens%o,[1]. Then a map of operads o : Tens? x;{0} — €%
is a datum of (A, B,C) as above and M, N. Besides, Tens? x[l]{l}/;;BM@), and a
datum of X is a datum of a map of operads 7 : TensZ x[;){1} — €®. Now a bilinear
map M ® N — X that coequalizes the B-actions on M on the right and on N on
the left up to coherent homotopy, is an extension of 7y, to a map of generalized
operads v : Tens® — C®. This seems impossble to use in practice (except maybe for
n-categories with small n)?

The functor ¢ : A% — Ass® used by Lurie (defined in HA, 4.1.2.9) has an additional
property: if ag : [n] — [n/] is a map in A, the induced map ¢(ap) : (') — (n)
satisfies the following. If j € (n)? then ¢(ag)~1(j) is a segment [ig, . ..,4,]. Namely,
Ck(](j — 1) = ig — 1,040(j) = im.

For (HA, 4.4.1.12). Let us check that the functor ® : Step — Tens® from (HA,
4.4.1.12) is well-defined. If o : f/ — f is a map in Step given by the diagram in
Fun([1], 4)

m L K]
I ao / la
] Lo

D)

then we want to check that ((n'),[K'],c_,c,) =" ((n),[k],c—,cy) is indeed a map in
Tens®.

For each j € (n)? we have ¢(ag)~1(j) = [io, .- -, im] With ig — 1 = ag(j — 1), im =
ag(j). So, c(io) = f'(io — 1) = an(f(j — 1)) = arc—(j), and &\ (im) = f'(im) =
a1f(j) = arc4+(j). The inequalities

d_(ig) <y (io) = c_(i1) < (i) = (i) < ... < (im)

are clear, because ¢(ag)~1(j) is a segment.
Recall that Tens‘f]%] := Tens® x aer{[k]}. The functors u : A% — Step, uy : AY —

Step are well-defined. The composition
U: A 5 Step 2 Tens®

takes values in Tens%7 the composition

Uy: AP X Step 2 Tens®
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takes values in Tens®. The image of ([1] q [1]) € Step in Tens% is m. This is why

in (HA, 4.4.2.7) we get a map of functors U — U’ in Fun(A°, Tens?). The definition
of the bar construction Barg(M,N), € Fun(A° €C?®) in (HA, 4.4.2.7) is clear, this
uses the notion of cocartesian natural transformation, see the end of this subsection.
Informally, we have Barp(M, N) given by [n] — M @ B" ® N.

(HA, Example 4.4.2.11) seems sufficient for most purposes, so that I do not need
to know what is ”a map of generalized co-operads”, but just accept that Tensg_’ —
Tens® — Ass® is a map of generalized operads, where the second map is the natural
projection. (HA, Examples 4.4.2.11-13) are sufficient for a definition of relative tensor
product in most cases I think.

Think of Tensg] as an oo-operad. Recall that any object of Tenspy is one of the

following mg1, my9, ag, aq, as. The object U([n]) € Tensg] ismogrPa; B...P0a Qmya,
where a; appears n times. Now the two maps 0,1 : [0] — [1] in A give after applying
U respectively the maps mgp; @ a; @ mio — mg; & mys in Tens%], the first being the
multiplication on mys on the left, the second being the multiplication on mg; on the
right.

For example, the map [1] o [2] in A gives the map (id, id, action) : mpy ® a3  a; &

®

2+ The map 1] 3 [2] in A gives the map (action,id, id) :

mio — Moy P a; dmys in Tens

mo1 Da; Da; Dmya — mo; Da; Bmyg in Tens%. The map [1] % [2] in A gives the map

(id, mult,id) : mp; ® a1 & a1 B myz — Mo $ a3  myz in Tens%, where mult denotes
the multiplication on aj.

Key case (HA, Example 4.4.2.11): let €®¥ — A be a monoidal co-category ad-
mitting geometric realizations of simplicial objects. Assume the tensor product in €
preserves geometric realizations of simplicial objects in each variable. Given algebras
A,B,C € AssAlg(C), we get a functor 4 BModg(€C) x g BMod¢(€) — 4 BMode(€),
(M,N) — M ®p N, the relative tensor product. It is given as the geometric realiza-
tion of the simplicial object A”? — €, [n] — M ® B®" @ N by (HA, Th. 4.4.2.8).
Let in addition K € 1 — Cat such that the tensor product on € is compatible with
K-indexed colimits (that is, € admits K-indexed colimits and the tensor product pre-
serves K-indexed colimits separately in each variable). Then the relative tensor product
preserves the K-indexed colimits separately in each variable (HA, 4.4.2.15).

Recall that AgP<A°P is cofinal by (HTT, 6.5.3.7), so in the above M @5 N depends
only on the nonunital B-module structures on M, N.

(HA, 4.4.3.12): let C® — A be a monoidal co-category, admitting geometric re-
alizations of simplicial objects. Assume the tensor product in € preserves geometric
realizations of simplicial objects in each variable. Given A € AssAlg(C), the category
A BMod4(€) is equipped with a monoidal structure, the tensor product is given by the
relative tensor product over A.

Associativity of the relative tensor product is (HA, 4.4.3.14), Unitality of the Tensor
Product in (HA, 4.4.3.16). It says that for M € 4Bmodp(C) one has A ®4 M — M,
and M g B=M.
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Preservation of colimits separately in each variable by the relative tensor product is
(HA, 4.4.2.14-15).

(HA, 4.4.2.12): Let A, B be monoidal oco-categories, M € 4 BModg (1 — Cat). Let
A,B € Alg(A),C € Alg(B), M € 4BModg(A),N € gBModc(M). Assume A, B, M
admit geometric realizations of simplicial objects, and all the tensor product functors
AxM - MAxA—ABxB — B, M xB — M preserve geometric realizations
separately in each variable. The relative tensor product M @ g N € 4 BModc (M) exists
and is given by the bar construction: M ®@p N — colimp,jcaor M @ B" @ N.

(HA, 4.4.2.13) is similar with the roles of left and rights exchanged.

The notion of a cocartesian natural transformation: given a cocartesian fibration
p:X — Sinl—Cat, K € 1 — Cat the induced map X¥ — SK is a cocartesian
fibration by ([27], 3.1.2.1). So, given f,g € Fun(K,S) and a map o : f — ¢ in
Fun(K, S) assume given also f € Fun(K, X) with an isomorphism pf = f. Then there
is a cocartesian arrow & : f — g in Fun(S, X) over a. Lurie refers to & as a cocartesian
natural transformation. It is used in bar construction, in particular.

3.1.9. We formulate the results from ([28], 4.8.4) in the language of ([14], ch.1). Let A
be a monoidal co-category, N € A —mod be a left A-module category, A € AssAlg(A).

([28], 4.8.4.1): Assume A, N admit geometric realizations of simplicial objects and
tensor products A x A — A, A x N — N preserve geometric realizations of simplicial
objects separately in each variable. Then

LinFun% (A — mod"(A), N) = A — mod(N)

by ([28], 4.8.4.1). The notation LinFun,4 is that of my Section and LinFun¥X C
LinFun 4 is the full subcategory of functors preserving the geometric realizations. The
A-module structure on A —mod"(A) is defined in (28], 4.3.2).

Corollary: assume A € Alg(l — Cat) admits geometric realizations, and tensor
products A x A — A preserves geometric realizations of simplicial objects separately
in each variable. Let I — A — mod be a diagram, i — M;. Assume each M; admits
geometric relaizations, the action maps A x M; — M, preserves geometric realizations
of simplicial objects separately in each variable, and for ¢ — j in I the transition functor
M; — M; preserves geometric realizations. Let A € Alg(A). Then the natural functor
A — mod(lim;e; M;) — lim;er A — mod(M;) is an equivalence, where in the RHS the
limit is calculated in 1 — C'at, and lim;c; M; is calculated in A — mod.

Proof. Recall that for N € A—mod the functor A—mod — 1—Cat, M’ — LinFun (N, M")
preserves limits, cf. Section Set M = lim; M; in A — mod. So,

LinFuny (A — mod" (A), M) = l'iHIl LinFun4 (A — mod"(A), M;)
1€
For i € I the projection M — M; preserves geometric realizations. This gives a fully
faithful functor
a : LinFun’ (A — mod™ (A), M) — 1{irr11 LinFun’ (A — mod™ (A), M;)
1€
Let now f € LinFuna(A — mod"(A), M) be such that for any i its composition with

M — M; preserves geometric realizations. Then f preserves geometric realizations, so
a is an equivalence. The claim follows now from ([28], 4.8.4.1). O
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Let A € Alg(1 — Cat). Recall the notation A — mod from my Section |3.0.49

Claim: 1) Assume C' = limye 4 Cy, in A—mod and A € Alg(A). The natural functor
A —mod(C) — 1irr}‘.A — mod(Cy) is fully faithful, here lim is taken in 1 — Cat.
aE

2) Assume each C, admits geometric realizations, and each transition functor f, s :
Co — Cp preserves geometric realizations. Then the natural functor A — mod(C) —
1in}‘ A —mod(Cy,) is an equivalence.

aE

Proof. 1) Let z,v € A—mod(C). For a € A write z, for the image of z in A —mod(C,,)
and also in Cy. Recall that 2 — colimy,)c aer A"+ given by the bar construction ([28],
4.7.3.13). We get

M S M lim A"z, 0v) = lim M A
AP A—mod(C) (Za U) AP A—mod(C) ([S]OEIAHolp 2, U) [n?énA apA—mod(C’)( 2, U)

— lim Mapg(A"z,v) = lim lim Mapc,, (A"za,va) = lim limMapy_p,.qc )(A”Hza,va)
[nleA [njleA « “ [nleA « O‘

— lim Map/—l—mod(C’a)( colim 'AnJrlZou voz) — lim MapA—mod(Ca) (ZOH UOJ) - Maplima A—mod(Cq) (Z7 7))
« [n]EADP «

2) Consider for each « the left adjoint freey : Co, — A — mod(Cy) of oblvy : A —

mod(Cy) — Cq. The functors free, are compatible with the transition functors f, g :

Co — Cp for a« — [ in A, so in the limit give a functor L : C' — limy, A — mod(Cy).
Applying ([14], ch. 1.1, 2.6.4), we see that L admits a right adjoint R : lim, A —
mod(Cy) — C, which is the limit over & € A of the functors oblv,. The monad RL

identifies with A. Indeed, for each a we have a commutatie diagram

c = ¢
l 4
Ca 2—Az Ca

Thus, we get the functor R®™ : limy, A — mod(Cy) — A — mod(C). Clearly, R is
conservative.

By our assumption and Lemma C admits geometric realizations, and ev, :
C — C, preserves geometric realizations. To show that R is monadic we apply ([28],
4.7.3.5). Let A? — lim, A — mod(C,,), [n] — x, be a simplicial object, which is R-
split. Its image in each C, is split, so by ([28], 4.7.3.5), [n] = %, admits a colimit in
A—mod(Cy,), which is preserved by oblv,. Here z,, , is the image of z,, in A—mod(Cy,).
We see that the transition functor f, g : A — mod(Cs) — A — mod(Cg) preserves
colimp,jc aor T a, because oblvg is conservative. Thus, by Lemma m[n] T, in
lim, A — mod(C,) exists. Moreover, it is preserved by R by Lemma So, R is
monadic. [l

(28], 4.8.4.6): TO BE INCLUDED!!!!

3.1.10. Dualizability of colimits. Let A € 1 — Cat be symmetric monoidal such that
the tensor product preserves colimits separately in each variable, and admitting small
colimits. Let I — Adualizable 1o 5 diagram, i — a;, where Adualizable — A ig the full
subcategory of dualizable objects. Write a = colim;¢y a;, the colimit in A. Passing to
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duals, we get a diagram [P — Adualizable 4, , a). Assume this diagram admits a limit

b. Assume moreover that for any d € A the natural map d ® .li}np al — lli}np(d ®a)) is
rel@ el®

an isomorphism. Then a € A%uatizable and b is isomorphic to the dual of a.

Indeed, the unit and counit map a ® b — 1, 1 — b ® a are constructed as in ([14],
ch. 1.1, 6.3.5-6.3.6).

Here is an application. Let A € 1 — Cat be symmetric monoidal such that the tensor
product preserves colimits separately in each variable, and admitting small colimits.
Let a € A be dualizable, x be a retract of a. Then x = colim;c1dem @i, Where a; are dual-
izable. The dual diagram over Idem® admits a limit y in A. Indeed, Idem“”? = Idem.
So, by ([27], 4.4.5.14), this y can be rewritten as a colimit over Idem, its existence
is garanteed because A admits small colimits. (In fact, ([27], 4.4.5.14) can be for-
mulated more precisely saying that if a diagram f : Idem — C extends to a functor
Idem™ — € then colimygem f — limigem f). For this reason, for any d € A, the natural

mapd® lim af — lim d®a) is an isomorphism. So, z is dualizable, and y = zV.
i€ldem®P i€ldem®P

3.1.11. Let G : C = D : G be an adjoint pair of functors, where C,D € 1 — Cat.
Then A := GG' € Fun(C,C) is a monad. Note that Fun(C,C) acts on the right on
Fun(C, D), so we have the category A — mod”(Fun(C, D)). Note that G* naturally
lifts to an object of A — mod"(Fun(C, D)). The action map is given by G*GGF =
(GFG)GE 5 G, where ¢ : GFG — id is the counit of the adjunction.

3.2. Addition about comodules. Let A € 1 — Cat be symmetric monoidal, A €
Alg(A). Assume A is dualizable in A. Recall that A" is naturally an A-bimodule (ch.
1, 4.1.7). In particular, the left A-action on A" is defined as the composition

act - A AV "BV g A0 A Ay OIS 4V o 4o aYI948e 4V

here u is the unit, ¢ the counit, m the multiplication.

The counit map ¢ : ARAY — 1is A-bilinear in the sense that given a,z € A, z* € AV,
c(ra®z*) = c(x @ az*), where we use the left action of A on AY. That is, the diagram
commutes

ADA@AY E g o qv
J,m@id J,c
A AY N 1

Note that if A € CAlg(A) then the left A-module and right A-module structure on
AV are the same.

Lemma 3.2.1. For any M € A — mod the composition € : M uAqd v RARM id ®get

AV ® M is a morphism of left A-modules, where the A-module structure on AV @ M
comes from that of AV.

Proof. Under the duality isomorphism Map (A ® M, M)= Map (M, AY @ M) the

map € corresponds to the action map act : A ® M — M. Consider the composition
act

AM % M S5 AY ® M. Under the duality Map,4(A®?,-) = Map(?,AY @ -) it

mid act

corresponds to the map A AR M "= A® M — M. Under the same duality, the
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composition A ® M 9e A AV e M * 89 4ve M corresponds to AQA Q@M — M,
which is the same because of the above! O

We claim that for M € A —mod, N € A one has functorially
MapA (M7 N)/;; MapA—mod(Ma AY & N)

Namely, given a map h : M — N in A4, it yields a morphism of left A-modules g : M -
AV e M S" 4V e N, Conversely, given a map of left A-modules g : M — AY ® N, we
get a map M — N as M A oN AN,

So, the functor oblv : A —mod — A has a right adjoint A — A —mod, N — AV ® N,
where the latter is equipped with left A-action via its action on AY.

Note that AV is a coalgebra in A. We get the functor A — mod — AV — comod
commuting with the forgetful functors to A. Assume for simplicity that A admits
totalizations. Then the above map A —mod — A" —comod is an equivalence commuting
with the forgetful functors to A (Sam Raskin confirms this). This question for usual
categories is discussed here [4I]. Proof: the projection oblv : A—mod — A is comonadic
because we can apply ([14], ch. 1, 3.7.7) with the comonad A — A, N — AV ® N.
Indeed, we must show that the corresponding functor (A — mod)®? — AY — mod(AP)
is monadic. This is true, because the projection (A — mod)? — A°P is conservative
and preserves geometric realizations (by my Section .

Remark 3.2.2. Under the assumptions of Section the map c¢: AY @ A — 1 is also
A-bilinear, that is, "given” a,x € A,z* € AV one gets c(x*a @ x) = c(a* ® ax). More
precisely, the diagram commutes

id @mult

AV A® A = AV o A
J act®id e
AV ® A 5 1

3.2.3. Let A, B be symmetric monoidal (co,1)-categories with A small. Assume B
admits all small limits, f : A°? — B is a right-lax symmetric monoidal functor. Assume
the tensor product B x B — B preserves colimits separately in each variable. By (HA,
4.8.1.12), the symmetric monoidal structure on A extends to the one on P(A). Let
F : P(A)°? — B be the RKE of f. Does it inherit a right-lax symmetric monoidal
structure?

Sam suggest that F' inherits a right-lax symmetric monoidal structure. Proof: with-
out loss of generality, we may assume B admits small colimits. By [20], a right-lax
symmetric monoidal functor f is the same as a monoid in Fun(A°, B) for the Day
convolution product.

Is the restriction Fun(P(A)°?, B) — Fun(A°, B) symmetric monoidal? Then the
right adjoint given by the RKE : Fun(A°, B) — Fun(P(A)°?, B) would be right-lax
monoidal. So, it will sends an algebra given by f to an algebra given by F'.

Let f,g € Fun(P(A)°, B), f,g their restrictions to A°?. Since A% — P(A)P is
symmetric monoidal, there is a natural map f ® § — f ® g. Namely, for a € A,

(f®@g)(a) = colim flar) @ g(az),

(e
a1,a2€A°P ,a—a1®az
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the map « in A. Further,

f®gla)= colima f(F) ® f(Fy)
F1,FeP(A)oP,a S FLoFy

the map a is in P(A). I don’t think Fun(P(A)?, B) — Fun(A°, B) is symmetric
monoidal.

3.2.4. Let C € 1 — Cat be symmetric monoidal. It is known that
Alg(CoAlg(C)) = CoAlg(Alg(C))

Let A be an object of this category, assume the coalgebra A is cocommutative. Consider
A —mod = A — mod(C). It becomes a symmetric monoidal category with the tensor
product sending Vi, V5 to Vi ® Vo, which is considered as A-module with the morphism
A — A® A of algebras. Note that 1 € A — mod with the module structure € : A — 1,
the counit. This is the unit object of A — mod.

Let oblv : A — mod — C be the projection, it is symmetric monoidal. So, if V &
A —mod is dualizable then oblv(V) is also dualizable. Conversely, if oblv(V') dualizable
in O, is V € (A — mod)ualizable?

3.2.5. I picked the following idea from ([I], Appendix B). Let O be a symmetric
monoidal category admitting geometric realizations and such that the tensor product
preserves geometric realizations separately in each variable. Let B € ComCoAlg(O),
which is dualizable in O, so BY is a commutative algebra in O. Then the functor
O — BY —mod(0), M — BY @ M admits a left adjoint sending N to B ®pv N, where
we used the natural BY-module structure on B.

Proof. Let N € BY—mod(O), M € O. We have N = BY®pv N = [c]oliAmp(BV)@”“@N

n)eA°

be the usul Bar complex then

MapBV—mod(N7 BV ® M) — [l}lmA MapBV—mod((Bv)®n+l ® N? Bv ® M) —
nle
lim Mapg((BY)®" ® N,BY @ M)= lim Mapy(B ® (BY)®" @ N,M)=
[njea [n]eA
Mapo([c?hAmp B® (BY)*" ® N, M)~ Map,(B ®@pv N, M)
n|€A°

One should check that the complex obtained in the last but one expression is the usual
bar complex for B @ gv N. O

3.3. On Bar construction and Koszul duality.

3.3.1. The key results of ([28], 5.2). Let € € Alg(1 — Cat) be a monoidal category. Let
Alg™9(C) = Alg(C) /1 be the oo-category of augmented algebras. Here by Alg we mean
unital associative algebra.

([28], 5.2.2.3): assume C admits geometric realizations of simplicial objects, and the
tensor product € x € — C preserves geometric realizations of simplicial objects sepa-
rately in each variable. Let A € Alg®9(C). Then the functor oblv : € — 4 BMod 4(C)
admits a left adjoint M — 1 ®4 M ®4 1. For M = A this left adjoint gives the bar
construction Bar(A) = 1®4 1 € C. It is given by the two-sided bar construction of
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Section of this file: 1®41= colimp,)c gor A®™. Moreover, the following is summa-
rized after 5.2.2.15: Bar(A) is naturally a unital augmented coassociative coalgebra.
The comultiplication map is

Bar(A)=104151®04A®41 - 1041®4 1= Bar(A) ® Bar(A)
The augmentation is the natural map
1®1—1®41= Bar(A)

appearing in the two-sided bar construction calculating Bar(A). This gives a functor
Bar : Alg*9(C)P — Alg®™9(CP).

Assume in addition that € admits totalizations of simplicial objects (we do not need
here that the tensor product in € preserves totalizations of simplicial obejcts separately
in each variable!). Then we apply the bar construction to augmented unital associative
algebra objects of C? and get a functor Cobar : Alg®9(CP) — Alg*9(C)°P. For
A € Alg™9(CP), Cobar(A) is the totalization in € of the cosimplicial diagram

1Z3AZ A0A..

Moreover, we get an adjoint pair Cobar : Alg®9(CP) = Alg®™9(C)°P : Bar. If we define
coAlg®™9(C) as Alg®9(C°P)°P then we get an adjoint pair

Bar : Alg*9(C) = coAlg®(C) : Cobar

Remark 3.3.2. i) If C is presentable, ¢ € C then €. is presentable, and C;. —
C preserves colimits (as it is a left adjoint) and totalizations of cosimplicial obejcts.
Indeed, A is contractible by (HTT, 5.5.8.7), so for any x € C the totalization of the
constant functor A — x 5 @ is x. Indeed, the map AP —| A |= x is cofinal by
Section of this file.

ii) Assume C € Alg(1 — Cat) and C is presentable. We have an adjoint pair | : €/ =
Cy/1 : oblv, where [ sends (x — 1) to 1 — zU1 — 1. Recall that €, is presentable by
Section of this file. So, the forgetful functor €y, — C preserves totalizations of
cosimplicial objects. As in i) one shows that Cy//1 — € preserves geometric realizations
of simplicial objects.

Proof. ii) if D € 1 — Cat is presentable and f : A% — x % D is a constant functor
then colimf = d, because AP —| A |= x is cofinal. For this reason the map x —

Fun([1], C') given by 1 49 preserves geometric realizations. Now by Lemma [2.2.69| of
this file, C;,/; — C preserves geometric realizations of simplicial objects. U

3.3.3. IfC € Alg(1—Cat) then Cy,/; € Alg(1—Cat) naturally, and Alg(C; /1) = Alg**(C)
by ([28], 5.2.3.9). In addition, (€y,,1)®” = (€);,/; naturally as monoidal categories.
This gives an equivalence coAlg(Cy,//1) = coAlg™9(C).

3.3.4. The above together with ([28], 5.2.2.19) gives the following simplified result: let
C € Alg(1 — Cat) admit both geometric realizations of simplicial objects and totaliza-
tions of cosimplicial objects. Then there is an adjoint pair

Bar : Alg*9(C) = coAlg®9(C) : Cobar
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In particular, this applies to a monoidal oco-category C, which is presentable. Then
Cy//1 is also a presentable monoidal category.

3.3.5. For (28], 5.2.5.2). In that definition the functors 4 BModp(C) — LMods(C),
ABModp(C) — RModg(C) are just the forgerful functors, that is, commute with
oblv : 4BModg(C) — C,oblv : LModa(C) — C,oblv : RModg(C) — C. The
functors RModp(C) — C and LMod4(C) — C are oblv also.

3.3.6. Nick and Dennis in ([I4], ch. IV.2, 2.7.2) proposed the following general con-
struction. Assume A is a monoidal oo-category, C' € 1 — Cat, let F' : A — Fun(C,C)
be a left-lax monoidal functor, a € Alg(A) be a unital associative algebra. They define
the category a — mod(C') as follows.

Heuristically, its object is m € C' together with a map « : F(a) ® m — m and
compatibilities. In particular, the diagram should commute

Fla®a)®m — F(a)® F(a)®@m' 3" F(a)®m
J mult®id 1 id xa

F(a) ®@m — m
Besides, for the natural map F'(1) — id the diagram should commute

Fl)@m — F(a)®@m
1 la

lom = m

For example, if A = % then the desired category a — mod(C) is just C.

The definition in general is as follows. Equip Tw(A) with the monoidal structure
such that the product of (I — J) with (I’ = J') is (U I’ — J U J’'). It is understood
that the order on ILII" is such that any element of I is smaller than any element of I’ (the
lexicographical one). We have a strictly monoidal functor f : Tw(AL) — Fun(C,C)
sending (I — J) to ®;je F(a®’7). Note that for I € Ay, and a map I — A, +— a; the
product ®;a; makes sense using the order on I. For a map

I — J

{ S
I — J
the map ® F(a®li) - ® F (a®17/") is as follows. The left-lax monoidal structure on
jeJ j'ed’

F gives a map F(a'i) - ® F(a
J'eJ;

®1j), the desired map is the composition

® Fa®)—» ® ® Fa7)= ® F7)—= © F®7),
jeJ JET jre] j'eJ’ jeJ’
where the last map is given by the products in the algebra a.

Now they apply the following general construction. Let A be a monoidal co-category,
f: A — Fun(C, C) a strict monoidal functor. Then they define the category f—alg(C)
as follows. Let a € Fun(C, C) be a colimit of f assuming it exists. Then a is canonically
an algebra object in Fun(C, C), and they define f — alg(C) as a — mod(C).
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Applying this to f : Tw(Ay) — Fun(C,C) they get the category a — mod(C) :=
f—alg(C).

Note that if b — a is a map in Alg(A) let fu, fp be the corresponding functors
as above. The natural morphism of functors f, — f, gives a morphism of monads
colim f;, — colim f, in Fun(C, C), hence the restriction functor a — mod(C) — b —
mod(C).

Remark: assume F,G : A — Fun(C,C) are left-lax monoidal functors, and 5 :
F — @ is a left-max monoidal natural transformation. Let a € Alg(A). Let fr, fg :
Tw(A+) — Fun(C, C) be the corresponding functors, we get a natural transformation
B: fr — fg coming from B. This gives colim fr — colim fg in Alg(Fun(C,C)). This
gives a restriction functor a — mod®(C) = colim fg — mod(C) — colim fr —mod(C) =
a —mod® (C).

Definition: let A be a monoidal category, A — Fun(C,C') be a right-lax monoidal
functor, a € coAlg(A). Then a — comod(C) is defined as (a — mod(CP))°P.

Lemma 3.3.7. If A — Fun(C,C) is actually monoidal functor then a — mod(C) in
both senses are the same.

Proof. We have an adjoint pair [ : Ay S Tw(AL) : r, where r(I — J) = I, and
I(I) = (I — [0]). So, for any functor e : Ay — D, D € 1 — Cat the functor LK E(e) :

Tw(Ay) — D along l: Ay — Tw(A4) is LKE(e) = eor. So, colim eor— colime
Tw(Ay) Ay

assuming it exists.

The functor f : Tw(Ay) — Fun(C,C) is the composition e o r, where e : A, —
Fun(C, C) sends I to F(a)!, and e sends (I — J) to the product map F(a)! — F(a)’
along I — J for the algebra F(a) € Alg(Fun(C,C)). So, colim f = colima, e = F(a),
because [0] € A4 is a final object. So, a — mod(C) in the new sense is just F'(a) —
mod(C), so the same as in the old sense. O

3.4. Let C € 1— Cat admit fibred products and a final object. Let f : (A1)’ — C be
module over a monoid G : A — C'in C, so G = G acts on M = f([0]"). Consider the
restriction F: A% — C of f under A x {1} < A x [1]= AT. Assume F is extended
to an augmented simplicial object F : (A4)®? — C with F(()) = ¢. In other words,
the map o : M — ¢ is G-invariant. Here A is the category defined in (HTT, 6.1.2.2),
namely this is the category of finite (possibly empty) linearly ordered sets. Consider
the augmented simplicial object [n] — Y *(+e which is the Cech nerve of a.. Then
we get a morphism of augmented simplicial objects (A4 )P — C, sending [n] to

G”x]\f—)]\fcx""'1 = MxMXeo.. XM, (g1, s Gn,m) = (g1 gnm,g2...gnm,...,m)

where in the RHS, M appears n + 1 times. Indeed, since the RHS is the right Kan
extension from (A_%O)Op , by functoriality of the right Kan extension this morphism is
determined by the corresponding diagram over (AJSFO)OP , where it comes from the map

GxM— MxgM, (g,m)— (gm,m).

3.4.1. Let O® — JFin, be an oc-operad. The following holds. Consider the category
Mong (1 — Cat) of O-monoidal categories. By definition, Mong (1 — Cat) C Fun(0%®,1 —
Cat) is a full subcategory given in Definition m Then Mong(1 — Cat) is naturally a
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2-category. Its objects are cocartesian fibrations C® — O® such that the composition
C® — 0% — Fin, is an oo-operad. The category of maps Map(C®, D?®) is the full
subcategory of Funge (C®, D®) classifying functors sending O®-cocartesian arrows to
O®-cocartesian arrows.

Taking O = Surj, we get the 2-category C' Alg"™" (1 — Cat). Given E, E' € C Alg™*(1—
Cat), the mapping category in C'Alg"*(1 — Cat) from E to E' is Fun®(E, E’). Namely,
if E® — Surj, E'® — Surj are the cocartesian fibrations corresponding to E, E’ then
Fun®(E,E') C Fungyj(E®, E'®) is the full subcategory of functors sending Surj-
cocartesian arrows to cocartesian arrows.

3.4.2. Let O% be an co-operad, € be a O-monoidal category. Then Algy(€), CoAlge(C)
inherit O-monoidal structures (given by pointwise tensr product).

Recall that Pr” is the category of presentable co-categories and colimit-preserving
functors (endowed with its symmetric monoidal structure given by Lurie product).

Definition 3.4.3. An oo-category C is said to be presentably O-monoidal if C is O-
monoidal, for each object X € O%, the fiber Cg? is presentable, and for every morphism
f:X =Y in O%, the associated functor fi C’;‘? — C’{‘? preserves small colimits.

The following is ([44], Pp. 2.8): Let O® be an essentially small co-operad. Let C' be
a presentably O-monoidal co-category. Then CoAlgy(C) is a presentably O-monoidal
oo-category. In particular, it is presentable.

3.44. Let B C C be a full subcategory, B,C' € 1 — Cat. Let A be a monad on C
preserving the full subcategory B. Then A—mod(B) — A—mod(C) is a full embedding.

Proof. Let ind¢ : C — A — mod(C) be the left adjoint to oblv : A — mod(C) — C. It
is given by ¢ — A(c) informally. Let indp : B — A — mod(B) be the left adjoint to
oblv : A—mod(B) — B. Set X = {c € A—mod(C) | oblv(c) € B}, so X C A—mod(C)
is a full subcategory, and we have the evident functor f : A — mod(B) — X. We
must show f is an equivalence. Let o : X — B be the restriction of oblv : A —
mod(C) — C. We claim that f oindp is the left adjoint to o. Indeed, for c € X, b € B
wee get Map 4,040y (f indp(b), ¢) = Map¢ (b, oblv(c)) = Mapp(b, a(c)). Clearly, « is
conservative, and aa® : B — B coincides with A : B — B. Let X* be a simplicial
object of X, which is a-split. Since X C A —mod(C) is full, X* admits a colimit in X,
and « preserves this colimit. So, X —= A — mod(B), hence f is an equivalence. O

4. STABLE CATEGORIES

4.0.1. See ([28], ch. 1). For a pointed category €, we have the suspension functor
C — € X — > X, and the loop functor € — €, X — QX. Moreover, {2 is right
adjoint to ) .

If € is stable then > and 2 are mutually inverse equivalences. In this case for n > 0
we write X[n] :=>." X. For n >0, X[n] =Q"X.

The definition of a stable oco-category in ([I4], ch. 1.1, 5.1.1) is different from the
definition of Lurie ([2§], 1.1.1.9). However, they are equivalent because of ([2§], 1.1.3.4).

If € € 1—Cat is stable, z,y € € then the natural map xlly — = Xy is an isomorphism
([28], 1.1.3.5), and this object is denoted x & y.
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The category denoted 1 — Cat>* in 5.1.3 admits small limits. Moreover, the inclusion
1—Cat " — 1 — Cat preserves limits ([28], 1.1.4.4). This was claimed in 5.1.3 without a
reference. Besides, 1—Cat®* admits small filtered colimits, and the inclusion 1—Cat%t —
1 — Cat preserves small filtered colimits ([28], 1.1.4.6).

If @ is stable then for x,y € €, n > 0 one has my Mape(x[n],y) = 7, Mape(z, y)
by ([28], 1.1.2.18). Indeed, QF Mape(z,y) = Mape(>' z,y) for i > 0. Notation: for
x,y € C Lurie writes in ([28], 1.1.2.18) Extg(x,y) = Homeoran (z[—n], y).

For A, B € 1 — Cat®!, Fun,,(A, B) = Fun, (A%, B°) naturally. The embedding
Fun, (A, B) C Fun(A, B) is stable under finite limits and colimits.

For 5.1.2: If ¢4 = co — c3 is a fibre sequence in a stable category C' then the
boundary map ¢ : ¢3 — ¢1[1] can also be defined as the map 0 U, ¢3 — 0L, 0 coming
from c3 — 0.

4.0.2. If C is stable, x+ — y — z a diagram in €, the composition being id, then
y—x @ z, where z — y — z is a fibre sequence. Indeed, use axion TR3 from (HA,
Definition 1.1.2.5 of a triangulated category). It gives a morphism from the triangle
z = 2z®y — ytoz— x — ysuch that the exteriour maps are isomorphisms, hence
the middle map is also an isomorphism.

4.0.3. For 5.1.5. I think Dennis uses here ([28], 1.4.4.1-2).

Remark: let O be a stable category. Equip it with the cocartesian (=cartesian)
symmetric monoidal structure. Since Assoc® is a unital operad (defined in [28], 4.1.1.3),
the functor oblv : Mon(O) = Alg(O) — O is an equivalence by ([28], 2.4.3.9). The
inclusion Grp(O) — Mon(O) is also an equivalence by Sectio 1) of this file.

4.0.4. For 5.1.7. Let C,D be stable co-categories with D cocomplete (presentable).
The fact that Funct.,(C,D) is cocomplete follows from my Sect. Besides,
Fune,(C,D) C Fun(C, D) is stable under small limits and colimits. However, it is
not clear if Funct,,(C, D) is presentable in this case.

If C, D are stable cocomplete presentable then Functeg cont(C, D) is stable and co-
complete. Besides, Functeg cont(C, D) is presentable by ([27], 5.5.3.8). The subcat-
egory Functeg cont(C, D) C Functe,(C, D) is clearly closed under colimits, and for
F € Functeg cont(C, D) the functor QF is also continuous. Indeed, this functor is

the composition C 5 D & D of two continuous functors. So, the full subcategory
Functeg,cont(C, D) C Functe,(C, D) is stable under translations, hence is a stable sub-
category.

4.0.5. More about stable cocomplete categories is found in [29]. For example, if €
is stable cocomplete and x € € then x is compact iff the following holds: for any
map f : x — U;ery; in € there is a finite subset Iy C I such that f factors through
T — Uier, Yi-

4.0.6. If C is stable and 2’ — x — z” is a fibre sequence in € then for y € C,
Mape(z”,y) — Mape(z,y) — Mape(2/,y) is a fibre sequence of spaces, so one has the
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long exact sequence

— Ext®(2", y) — Ext®(x,y) — Ext(2/,y) — Extp(a”,y) — ...
— Ext™ (2", y) = Ext™!(z,y) = Ext™(a/,y)
— ...

going from low rows to top ones. Here Ext," (z,y) = 7, Mape(x,y) for n > 0. Similarly,
Mape(y, ') — Mape(y, 2) — Mape(y, 2”7) is a fibre sequence in spaces, and we get an
exact sequence

cee Extgl(y, 2") = Extd(y, ') — Bxtd(y, z) — Extd(y, ") — Extb(y,2”) — ...

In ([28], 1.2.1.11) for a stable category € with a t-structure Lurie defines the functor
€ — €Y,z m,(z). It factors through €% — €Y. For a fibre sequence 2/ — = — 2"
in € the sequence in the abelian category € is exact

coomo(a)) = mo(z) = mo(2") = g (2)) = o1 (z) = 71 (2”) — ...

If 2 € C>0,y € C<_1 then Mape(z,y) = * in Spc (with homological indexing conven-
tions) ([2§], 1.2.1.5).

Lemma 4.0.7. Let C be stable with a t-structure. Then for x € C, n € Z we have canon-
ically (T<p—12)[1] = 7<n(z[1]) and (T>p2)[1] = T>ni1(z[1]) in the notations of ([28],
1.2.1).

Proof. We have the fibre sequence 7>, — x — T<,—1x, hence a fibre sequence
(TZniL‘)[l] — 1‘[1] — (Tgn_lx)[l]. Since (TSn_lx)[l] S an, (Tan)[l] S Gznﬂ, this
is the unique fibre sequence 7>p11(x[1]) — z[1] = T7<p(z[1]). O

If € is stable with a ¢-structure then the category C<,, admits all finite limits and finite
colimits. If F': I — C«,, is a finite diagram, let F' be the composition I EN C<p — C.

— 7D n . . .
Let F” : I — € be a colimit diagram then the composition I” Be™ C<p, is a colimit
diagram extending F'. Similarly, €>,, admits all finite limits and colimits.

4.0.8. Let @ be stable with a t-structure. If f : @ — b is a map in €Y, let x = fib(f).
Then z € €_; 5 and the sequence in €Y is exact 0 — mo(2) — a — b — 7_1(2) — 0.
For example, if f is surjective in the abelian category €V then z € GV, and x is the
kernel of f in the usual sense in €Y. We see in particular, that if 0 =z —a — b — 0
is exact in €Y then  — a — b is a fibre sequence in €.

Remark 4.0.9. If C is stable co-category, 0 — x i> y 18 a fibre sequence then f is
an isomorphism. Indeed, this property is holds already on the level of the triangulated
category CoTI It follows from the fact that in a triangulated category each map can be
inserted into a fibre sequence in a unique (up to isomorphism) way.

4.0.10. Let € € 1—Cat be a stable with a t-structure. Then on € we get a t-structure
given by (C?)<y, = (C>_,)? and (C?)>,, = (C<_,)°?. The functor © : € — € induces
QP € — C°, which coincides with 3 (eopy. The functor 7>, : € = C>, induces a

functor (7£,)% : €% — (€%)<_,, which is isomorphic to 7£7, . Similarly, the functor

(Tgn)Op g (€%P)s_,, is the functor 7$” . Indeed, if L : A — B, R: B — A are
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adjoint functors, L is left adjoint to R then for L°P : A’ — B°P R :BP — AP L°P is
the right adjoint to R°P.

If C is the left completion of € then (é)‘”’ should be the right completion of C°P. This
forces the definition: the right completion of € is the limit over Z of the sequence

...62_27—2—7)1 62_1 Tgo 620—>

Let € € 1— Cat®tmPl he presentable stable category with an accessible t-structure.
Then C is right complete iff colim,cz C>_,, = € is an equivalence, where the colimit is
calculated in Pr¥. Indeed, C<,, is presentable for any m (HA, 1.4.4.13), so we use ([14],
I.1, 2.5.7). Note that if we calculate the latter colimit in 1 — Cat, we get €~ = U,C>y,
by [46].

If @ as above is right complete then for any z € € we get z— colim, 75"z by my
Section Conversely, assume € € 1 — Cat®»“™P! with an accessible t-structure.
Assume that for any z € € the natural map colim,, 7<"z — z is an isomorphism, where
the colimit is calculated in €. Then C is right complete for this t-structure. Indeed,
first € — lim €= is fully faithful: for z,y € € we have

<n

Mape(z,y) = li%anap@(TS”z,y)g lim Mape<n (75"2, 75"y)
neze

nezeP
We get a diagram colim,cz CS" — € — lim,ezor C=", where the colimit is calculated
in Pr’. Recall that colim,ez C=" — lim,czor CS" is an equivalence. So, any z €
lim,,czor C=™ is an image of a suitable element from C. We are done.

Corollary 4.0.11. Let C € 1 — Qat >4l with an accessible t-structure, which is
right complete. Let x € C° then there is n such that x € C=".

Proof. Since x = colim,, 7="z, id : * — z factors through 7"z for some n. O
In the above corollary, z € C¢ need not lie in CZ" for some n. For example, if
S = Spec A is a derived scheme, which is not eventually coconnective then A is not
bounded from below, however, A is compact in A — mod.
Remark: i) let C' be a stable category, which is left complete. Then for ¢ € C the
natural map ¢ — lian 727 "¢ is an isomorphism; ii) Assume C' € 1 — CatSteoempl gych
nezep
that C=? C C is stable under the countable products. Assume that for ¢ € C the

natural map ¢ — 111%1p 727 "¢ is an isomorphism. Then C is left complete.
neze

Proof. i) By assumption, F : C — lim CZ~" is an equivalence. So, for z,c € C' we

nezer
get
Mapc(z, lim 727"¢)= lim Mapg(z, 7 "c) = lim Mape(m= "z, 77 "¢)
nezor nezep nezor
— Map jy, cz-n(F(2), F(c))

nezoepP

So, ¢ and limy,ezor 7= "¢ represent the same functor.
ii) the argument as in (28], 1.2.1.19) apply here. O
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More generally, if C' is stable and C its left completion, we have a natural functor
C — C. If C admits limits, the functor C' — C,{c¢" € CZ7"} = lim,, ¢" is its right
adjoint. Then C' — C is fully faithful iff for any ¢ € C' the map ¢ — lim,cz 7= "¢ is
an isomorphism in C.

4.0.12. If Cis a stable category then for z,y € C on Mape(z,y) we have an operation.
Recall that x @y = x Uy — = X y canonically. Given f,g € Mape(z,y), the composition

T —TXT fig y X y—y Uy — y should be denoted f + g. It is maybe not uniquely
defined, but up to a contractible space of choices. The map —id € Mape(z, z) should
be understood as any morphism over —id € Mapeoran (2, ) = m Mape(z, z[1]), it is
defined up to isomorphism I think. Now for example, given a map f : x — y in €, we
may consider the fibre of f —id:zdy — y.

For x € € consider the functor € — Spc, y — Mape(z,y). Since € is stable, by
([14], ch. 1, 5.1.10), it factors naturally as the composition € — CGrp(Spc) — Spc, so
Mape(z,y) has a structure of a commutative group in spaces.

Recall the equivalence CGrp(Spc) = Sptr=C of ([I4], ch. 1, 6.2.9). We see that
for G, H € CGrp(Spc), MapCGTp(SpC)(H, G3) has a natural structure of a commutative
group in Spc. Note that CGrp(Spc) is presentable, because Sptr=" is presentable by
(HA, 1.4.3.4). For G, H € CGrp(Spc) consider the functor CGrp(Spc)®? — Spc, K
Mapcayp(spe) (K X H, G). It preserves limits, hence is representable by (HTT, 5.5.2.2).
Is it representable by Mapccyp(spe) (H, G) with the above structure of a commutative
group in spaces?

More generally, assume C has countable products. Given a diagram ... — z, ﬁl>

Tp—1 f"—7>1—> ... in €, we may construct its limit as the fibre of the map [ [, ,, = [],, Zn,

where the map [[,, ,, = @, is the composition

T fmy1—id
Hxn R 1 ®am S

n
This is used in (28], 1.2.1.19).
For the proof of ([28], 1.2.1.19): to see that the functor € — C, f + limg f is the
right adjoint to 6 : € — C, note that for c € C, f € C we get

Map;(0(c), f) = lim Mape__ (T<—ic, f(i)) = lim Mape(c, f(z)) = Mape(c,lim f(i))
1EZ =t 1EZ 1€EZ

4.0.13. Let € be stable, v; <& v 23 vy be a diagram in C, let v’ be the colimit of this
diagram in €. It can be calculated as the cofibre of v 5% 11 @ va, see the proof of

(HA, 1.1.3.4). Dually, the product vy X, ve is the fibre of v; ® vy sy,

4.0.14. Let C € 1 — Cat be stable with a t-structure. Not only C<, is stable under
extensions (by [27], 1.2.1.16), but C>,, is also stable under extensions. Indeed, if z —
y — z is fibre sequence, x,z € C>, then y is the cofibre of z[—1] — x. Since z[—1] €
C>p—1 and €, is closed under colimits in €, we get y € €>,_1. The exact sequence
T 1T — Tp_1y — Tp—12 in C¥ shows that m,_1y =0, so y € Conp.
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4.0.15. Let a — b %% ¢ be a fibre sequence in C, where C' is stable, N € Z. Let

>N

2Np, .

K — 72Np "% 72N¢ be a fibre sequence in €. We get a natural map 72Va — K.
The induced map 7>Va — 7>V K is an isomorphism.

4.0.16. For (28], 1.2.2) spectral sequences. If C € 1 — Cat is stable and F' € Gap(Z, C)
be a Z-complex in € then for ¢ < j < k one has a commutative square

F(G k) — F(i,j)[]
T T
F(i,k) — F(i,i)[1]

This is used after Rem. 1.2.2.3, so (C,,d) is a chain complex in C°"4",

For ([28], 1.2.2.3 and 1.2.2.4). Let C be a stable category, and Yj Eit Yi 53 Yo — ...

be a diagram in it. Set C,, = cofib(f,)[—n]. Then we get a chain complex ...C} ay
Cp — ... in C constructed in ([28], Remark 1.2.2.3). Namely, first for i < j, i, € Z let
F(i,7) be the cofibre of the composed map Y; — Y. Then F € Gap(Z,C), and we get
the complex C,.

For (28], 1.2.2.13): Let € € 1 — Cat be stable with a t-structure. Let C admit
sequential colimits, assume t-structure is compatible with the sequential colimits. Then
for any n, C<,, is stable under the sequential colimits. Since €>( is stable under any
colimits, A is stable under the sequential colimits. To show that m, : € — A preserves
the sequential colimits, let Z, — C,i — ¢; be a functor. It suffices to prove this for
n = 0. Since T<o preserves colimits, we may assume ¢; € C<g. For each i we have the
fibre sequence my(¢;) = ¢; = 7<—1¢;. The colimit diagram colim mp(¢;) — colime; —
colim 7<_j¢; is the cofibre sequence (hence, a fibre sequence). Since C<_; and A are
stable under the sequential colimits, the latter is the fibre sequence mp(colime;) —
colim ¢; = 7<_1(colim¢;).

Remark: let C' € 1 — Cat say admitting colimits, f : A’ — C be a functor. Let
fn : A°? — C be the n-skeleton, and ¢, = colim f,. Offen there is n such that
¢ := colim f = colim f,, := ¢,. Since we have a diagram ¢; = ¢2 — ... = ¢, = ¢ in C,
we get a filtration in C' on ¢ with the succesive quotients cofib(cy — cg11). What is it
on the relative tensor product?

4.0.17.  For Dold-Kan correspondence ([28], 1.2.3). Let d* : [n—1] — [n] be the unique
injective map in A whose image does not contains i. For a semisimplicial object A,
of an additive category let d; : A, — A,—1 be the corresponding face map. One has
did? = d’T1d" for i < j. It easily follows that dj_1d; = d;d;j for i < j. As in (]28],
1.2.3.8) let Ao be a semisimplicial object of an additive category. let d(n) : A, = A,—1
be d(n) = @ (—1)d;. Then d(n — 1)d(n) = 0 for n > 2. Indeed,

n—1 n
din—)d(n) => > (~1)did; = (~1)Mdid; + Y (~1)"did;
i=0 j=0 i<j i>j

In the first sum using the equality d;_1d; = d;d; for ¢ < j replace d;d; by d;_1d;. Then
the two summands are opposite, so the sum is zero.
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For ([28], 1.2.3.9): if A is an abelian category, A, is a simplicial object in A then
the map dy : N,(A) — A,_1 takes values in N,_1(A), because for j > 0 we have
djdy = dodj+1. Moreover, we get d3 = 0, so that ... No(A) — Ni(A) — No(A) — 0 is
a chain complex.

If Ao is a nonpositively graded chain complex with values in an abelian category A
then DK,(A) has the following property. Given a surjection « : [n] — [k] in A and a

map §: [n/] = [n] in A, the composition 4, C DK,,(A) g, DK (A) = O ijn)—[s]As
takes values in at most one of the summands. Here Aj is the summand indexed by
«. More precisely, if af is surjective, it takes values in Ay correspnding to «f; if
Im(afB) = {1,...,k} then there is a unique o’ : [n'] — [k — 1] such that d’a’ = ap,
and it takes values in Aj_; indexed by o/; otherwise it vanishes. This is used in (]28],
1.2.3.12).

Explanation for the end of the proof of ([2§], 1.2.3.13) with Lurie’s notations: in the
last paragraph of the prooflet z € A(i),, ' = a*(z) € A,,. To see that z—a' € A(i—1),
note the following. First, d’a = d*, so d;(z — 2’) = 0. Second, if j > i then there is
B:[n—1] — [n—1] such that ad’ = &8, so dj(z') = *(d;jz) = 0. Since d;jz = 0 also,
we get d;(z — 2') = 0 finally. We are done.

Note that an abelian category is idempotent complete so that for an abelian category
Dold-Kan correspondence gives an equivalence ([28], 1.2.3.7).

For ([28], 1.2.3.17). If A is any additive category and B € Ch(A)>o let A = DK(B).
Then inside C'(A) we have a chain subcomplex whose n-th component is @[, k] Bk
the sum over all surjections o with & < n. That is, the differential

B o(—1)"d; : Cr(A) — Cr_1(A4)

preserves the corresponding subobjects. This subcomplex is precisely Kerv : C(A) —
N(A) in the notations of ([28], 1.2.3.16).

The definition of the differential in the tensor product of complexes (and generaliza-
tions) appear in ([2§], 1.2.3.21).

4.0.18. Explanation for Alexander-Whitney maps defined in (28], 1.2.3.22). It is not
evident to check that the map AW : C(F(Al, ..., A") — Ch(F)>o(C(AY),...,C(A"))
commute with differentials, so defines a map of chain complexes. Let us check this is
the simplest case n = 2. For simplicity, we pretend that F' is the "tensor product”, for
more general F the argument is the same. Let A', A% be simplicial objects in A', A2.
Given p > 0, we have to show that the diagram commutes

1 2 1 2
AleA2 o o Al ®A4%

p1+p2=p
1 v 2 v 1 2
Al @A, — o Al ®A
p—1 p—1 Gtgep—1 & q2

Here the left vertical map is @?ZO(—I)J' d;, where d; : A’g — A’;_l is the standard face
map corresponding to d’ : [p— 1] — [p] whose image does not contain j. For a partition
p = p1 + p2, pi > 0 denote by a1 : [p1] = [p], a2 : [p2] — [p] the "beginning” and ”end”
convex parts, both maps are inclusions. Similarly, 81 : [¢1] = [p — 1], 82 : [¢2] = [p — 1]
are "beginning” and ”"end” parts.
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The key thing is the following

Lemma 4.0.19. Let 0 < j <p, let g = q1 + q2 with ¢; > 0. Let 5; : [¢;] — [p—1] be as
above. ‘

1) If 5 > q1 then the composition [q] By p — 1] & [p] is a1 : [@1] — [p], and the
composition [g2] % [p— 1] % [p] s [g2) “= (a2 + 11 B ).

2) If 7 < q1 then the composition [qi] By [p—1] & [p] is [q1] i (1 +1] 2 [p], and the
composition [q2] % [p— 1] % [p] s s : [q2] — [p].

Assume q1, ¢z < p first. Let us pretend that each map is applied to ' ® 22, where
zt e A;J. Fix a partition of ¢ as in the above lemma. We check that (g1, g2)-components
of the answer are the same. The partitions of p that contribute are only (¢1 + 1, ¢2)
and (q1,q2 + 1). We need to prove the following equality, where the two summands in
parenthesis correspond to the above two partitions of p

p q1+1 ' q2+1
D (1Y (diah @B (dja?) = (D (-1)'dj, afa' @asa®)+ (- )P ejzi®@ Y (—1)72dj,aba%)
j=0 Jj1=0 j2=0

To obtain it, rewrite the left sum as a sum ;11:0 +Z§:q1 41- In the second sum
make a change of variables jo = j — q1, in the first sum denote j; = j and apply the
lemma. This gives the desired result because the terms corresponding to j; = q¢1 + 1
and jo = 0 compensate:

(—D)2Hd, aia! ®@ aja? + (1) % air @ doasr® = 0

d (e . . . (03 . .
Indeed, [q1] uyt [q1 + 1] =} [p] coincides with a; and [go] Y [g2 + 1] =3 [p] coincides
with as.

The remaining cases g1 = p or g2 = p are easier.

4.0.20. For co-categorical Dold-Kan correspondence ([28], 1.2.4.1). Let € € 1 — Cat be
stable, F': A°? — € be a simplicial object in €. Let A<,, C A be the full subcategory
spanned by the objects [m] with m < n. By n-skeleton of a functor G : A . — C one
usually means the LKE of G under AZ — A%.

The Z -filtered object associated to F in ([2§], 1.2.4.1) is D(0) — D(1) — D(2) —

., where D(n) is the colimit of the composition AZ, — A% Le.

4.0.21. For DG-categories in ([28], 1.3.1). Let k be a commutative ring. Let Ch(k)
be the category of unbounded chain complexes of k-modules. Let k — mod be the
abelian category of k-modules. The functor Ch(k) — k —mod, A — Kerdy is right-lax
monoidal. Here ... A; 4 Ao U A_1 — A_5 —. This is used in ([2§], 1.3.1.4).

Besides, the functor Ch(k) — k —mod, A — Hy(A) is also right-lax monoidal. This
allows to associate to a DG-category its homotopy category.
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4.0.22.  Derived oo-categories. In ([28], 1.3.2.7) by Apo; he means the full subcategory
of the abelian category A spanned by the projective objects. Explanation for ([2§],
1.3.2.11). Recall that for a simplicial set K Lurie denotes ZK for the simplicial abelian
group, where (ZK),, is the free abelian group with base K,,. Further, for a simplicial
set K, N,(K) denotes the normalized chain complex of ZK. The complex N,(A") is
as follows. For m > 0, N (A") = ©q:fm]—[n]Zas the sum over a injective with Z, = Z.
The differential in the chain complex N,(A") is the map @Tzo(—l)jdj : Ny (A™) —
Ny—1(A™). This is in fact a subcomplex of C(Z A™) and also a quotient complex of
C(Z a™). Namely, (Z A")m = @aifm]—[n)La With Zo = Z, the sum over all maps
a:[m]—[n]in A, and

Z Lo C(Z 8" )m = Cp(Z 0")

a not inj

form a subcomplex of Cy(Z A™). The corresponding quotient is N, (A").

Fix 0 <4 < n. Similarly, for any m > 0, (ZA})m = Da:fm]—[n)Za With Z, = Z, the
sum over all maps « such that Im(a) U {i} # [n]. One gets Ny (ZA7) = 3_, 1 Za, the
sum over all a : [m] — [n] injective such that Im(a) U {i} # [n]. Actually, N, (ZA}) C
C+(ZA}) is a subcomplex, it is also realized as a quotient of C\(ZA}).

Let E(n) = (Z q Z) in degrees n,n — 1 as in Lurie. This immediately gives an
isomorphism of chain complexes N,(A') @ E(n) — N,(A™), they are placed in degrees
between 0 and n.

4.0.23. For ([28], 1.3.2.17). Let A be an additive category. If f : M — M’ is a
map in Ch(A) then the mapping cone C(f) is the object on Ch(A) given by C(f), =
M), & M,,_1 with the differential

My, 5 M,
©® v ©®
—0

Mn — Mn—l

For ([28], 1.3.2.10). If A is an additive category, M € Ch(A), the suspension functor
¥ 1 Ngg(Ch(A)) = Ngg(Ch(A)) sends M to the complex M’, where M) = M,_; and
the differential M) — M/ | is —d : M,_1 — M,,_3. See the proof of ([2§], 1.3.2.10).

4.0.24. 1If A is an abelian category with enough projective objects, M, N € D™ (A) then
Mapp- 4y (M, N) € Spc is represented by the Kan complex DK (>0 Map¢y,— 4y (M, N)).
In particular, mo Mapp-(,4)(M, N) = Ho Mapey,— () (M, N).
For example, if M € A is projective and N € D54(A) and i > 0 then
Ext! ()M, N) = Ho Mapy,- () (M[~i], N) = 0
The chain complex of abelian groups Mapcy,-(4)(M[—i], N) can have homologies in
degrees > 1.
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4.0.25. If A is an abelian category with enough projective objects, P, P’ € D™ (A).
A morphism f : P — P’ in D™ (A) is precisely a morphism P — P’ in Ch™ (Aproj)-
Here Apro; C A is the full subcategory spanned by projective objects. If f is a quasi-
isomorphism then f is an isomorphism in D7 (A). Indeed, this is a chain homotopy
equivalence.

For (28], 1.3.2.22). By an oco-category underlying a simplicial co-category Lurie
means the simplicial nerve.

In (28], 1.3.3.7) by "t-exact functor” he means a functor F' : D™ (A) — € which is
both left and right t-exact.

4.0.26. Universal property of D™ (A). For ([2§], 1.3.3.11). If € is a stable co-category
with a t-structure then for a < b the category €, 5 = (C>4)<p admits all finite colimits.
Indeed, if I — €,y is a finite diagram let ¢ = colim;erc;, the colimit in €. Then
c € C>q ([28], 1.2.1.6), and 7<pc will be the colimit in €[, 5}, because T<;, preserves small
colimits. If a < b < ¢ then the functor €, o — Clqp), T — T<p is right exact.

If a < b then for any x,y € Cl,p), Mape(w,y) is b — a-truncated space. So, Cpy is
equivalent to n-category with n =14 b — a (in the terminolofy of Lurie [28], 2.3.4.1).

For (28], 1.3.3.8). If A is an abelian category with enough projective objects then
D7 (A) is left complete, so D (A) admits geometric realizations of simplicial objects
by ([28], 1.3.3.11(2)). -

If @ is a stable co-category with a left complete t-structure, let €% be its heart.
Assume that €V has enough projectives. Then there is a canonical right t-exact functor
c:D7(CY) = € such that the composition €% — D~ (CY) 5 € 2eisid: ¥ e,
The universal property of D™ (A) (HA, 1.3.3.2) generalizes this claim. The above functor
¢ is actually t-exact, so its restriction to €V is ¥ — €.

In (HA, 1.3.3.5) we get the functor: D™ (Ab) — Sp of the generalized Eilenberg-
MacLane spectrum, it is t-exact and extends the canonical inclusion Ab < Sp.

Remark: if A is an abelian category with enough projectives, the proof of (HA,
1.3.3.7) depends on a model: namely, if X,Y € A with X projective, one has to show
that Exth(X,Y) = 0 for i > 0. Lurie’s proof of this uses a model instead of the universal

property.

4.0.27. A version of the universal property for DT (A), where A is an abelian category
with enough injective objects is an analog of (HA, 1.3.3.2): the category DT (A) is
defined as (D7 (A))°? by (HA, 1.3.2.8). Let C be a stable co-category with a right
complete t-structure. Let & C Fun(DT(A),C) be the full subcategory spanned by
those left t-exact functors that carry injective objects into C¥. The construction F —
<0(F |(p+(a)y°) gives an equivalence from € to the category of left exact functors

A— CY.

4.0.28. Let € be a stable category. A notion of a generator of € from (28], 1.4.4.1)
is correct. One could give also the following different definition: an object x € C is a
generator iff for y € € the condition Mape(x,y) = * implies y = 0.

([28], 1.4.4.2) claims: Let € be a stable category. Then C is presentable iff

e C admits all small coproducts
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e G is Jocally small in the sense of [2§]

e there is a regular cardinal k and a x-compact generator z € C

4.0.29. For 5.1.9. Let € € 1 — Cat be stable. Let M be a commutative monoid in
C. By (5.1), we may assume that the product map m : M & M — M is (id,id).
Recall that Mape(M, M) is an abelian group. To check that M is a group, it suffuces
by Remark to check that maps (pry,m) : M & M — M @& M and (m,pry) :
M @& M — M @ M are isomorphisms. For example, the inverse to (pr;,m) is the map
(pry, f), where f: M & M — M is the map (—id,id). Similarly for (m, pry).

Lemma 4.0.30. Let C be a stable category, F' : € — D a map in 1 — Cat, which
admits a left adjoint F : D — C. Then FT is conservative iff (for c € C the condition
FR(c)= FR(0) implies c=0).

Proof. Assume our condition. Let us show that F'® is conservative. Let o : a — b be
a map in € such that F®(a) — FE(b) is an isomorphism, let ¢ = 0 x; a. Since Ff
preserves small limits, Ff(c) = FZ(0) X pR(p) F%(a). For d € D this gives a cartesian
square

Mapy (d, F¥(c)) — Mapy(d, F(a))

1 !

* —  Mapyp(d, FE(b))
So, the map F®(c) — F(0) is an isomorphism in D, because Yoneda is fully faithful.
By assumption, ¢ = 0, so « is an isomorphism. O

4.0.31. A proof of ([14], 5.3.4). Recall that Prl admits all limits and colimits ([27],
5.5.3.13, 5.5.3.18). Let F: I — 1 — CatStcoempl 1o 4 diagram. Let F be the functor

cont

F composed with 1 — Cat5:«*™P _ prl here Prl is the notation from ([27], 5.5.3.1).
Let € = colim F. Let F' : I — 1 — Cat®“““Pl he obtained from F by passing to
right adjoints. Let F’ : I°? — 1 — Cat be the composition of F’ with the inclusion
1 — QatteoemPl .y 1 _ @at. Recall that €= lim F” canonically ([T4], ch 1, Prop. 2.5.7).
Recall also that Pr’* < 1 — Cat preserves limits, so lim F’ could also be taken in Prf.
Let us show that € is stable. We know already that for i € I°P the projection C — F”(i)
lies in Pr¥, that is, is accessible and limit-preserving.

For any map ¢ — j in I°? the corresponding functor F'(i) — F’(j) preserves all
limits, hence is exact. Since € is presentable, it has all limits and colimits. If ¢ is a final
object of € then for any 7 € I°P its image in F'(i) is zero. Since each of the functors
F'(i) — F'(j) preserves finite colimits, from my Lemma we see that ¢ € € is
initial.

Consider a cartesian square o in €. For any ¢ € I its image in F'(i) is a cartesian
square, hence a cocartesian square as F’(i) is stable. Since each transition functor
F'(i) — F'(j) preserves finite colimits, o is a cocartesian square by Lemma
Similarly, if o is cocartesian square in €, use Lemma 2) and Lemma 2).
They show that o is cartesian square. So, € is stable, and for each i € I°P the forgetful
functor € — F’(i) preserves all limits. Write 1 — Gatit’cocmp ' for the 1-full subcategory

of 1 — Cat¥tmPl where we keep only limit-preserving accessible functors. We have
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checked that the inclusion 1 — C’atii’focmp Lo el preserves all limits. This implies that

C = colim F, because (1 — Cat’s %mPhyor =51 — @atyheoempl,

cont lim
We have shown also that the inclusion 1 — Cat>:™" — Prl is stable under all
colimits.

Let us show now that 1 — Cat>bcoemp! C Prl is stable under all limits. Let F : I —

St . cont
1 — GatSheoemp

ot be a diagram, F' the composition

F St,cocmpl L
I —1-—Cat,, — Pr

Let D = lim F. By (HTT, 5.5.3.13), this is also a limit in 1—Cat. Since D is presentable,
it has all finite limits and finite colimits. For any map ¢ — j in I the transition functor
F(i) — F(j) preserves all colimits. From Lemma we see that D is pointed, and
for any 7 € I the projection D — F(i) preserves all colimits. Let o be a cocartesian
square in D. Then for any i € I its image in F'(i) is a cocartesian square, hence a
cartesian square. Since each transition functor F'(i) — F(j) is exact, applying again
Lemma we see that o is cartesian in D, and each projection D — F'(i) preserves
finite limits. Now one shows that if ¢ is a cartesian square in D then it is a cocartesian
square again by Lemma So, D is stable, and the diagram <I — Pr’ realizing D

as a limit of F' lies actually in 1 — Cat5o“™ Thus, 1 — Cats-™ < Prl is stable

under all limits. Recall also that the inclusion Pr” < 1 — Cat preserves all small limits
([21], 5.5.3.13).

To see that 1 — Gatfj;ffcmp ' 1 — atSh™! preserves limits, note that 1 —
CatseemPl _y | _ @at preserves limits by the above. Since 1 — Cat>* admits small lim-

its, and 1 — Cat> — 1 — Cat preserves limits, we sce that 1 — Cats ™ — 1 — Cat>

preserves limits. It actually takes values in the full subcategory 1 —

t ! o
1-— Gatfo;ftocmp — 1 — Cat hmP! preserves limits.

Note that we showed that 1 — Gatfjéocmp ' - Prl preserves colimits.

eatSt,cocmpl , SO

4.0.32. Stability of module categories. Let AT°? — 1 — Cat be a left module cat-
egory given by (A, M), where A is monoidal oo-category. Assume M stable, let
A € AssAlg(A). Assume that for any a € A the functor M — M, z — a® x
preserves small colimits. The forgetful functor A — mod(M) — M is conservative by
([28], 3.2.2.6). Using ([28], 4.2.3.3, 4.2.3.5) we conclude that A — mod(M) is stable.

The presentability of A — mod(M) is discussed in (28], 4.2.3.7). So, if in addition
M is presentable, and for any a € A the functor M — M, x — a ® x preserves small
colimits then A — mod(M) € 1 — Cat tcoemPl,

4.0.33. For 5.3.5. Let C € 1 — Cat™t™P! Recall that Funeg cont(C, C) is a monoidal
oo-category, and C' is a left module category over Funey cont(C,C). If A is an exact
continuous monad, that is, A € AssAlg(Funeg cont(C, C)) then, by my Section [4.0.32

A — mod(C) € 1 — Cat Pl The forgetful functor A — mod(C) — C preserves

colimits by ([28], 4.2.3.5), so is a map in 1 — Cat’s ™" as well as its left adjoint indy.

For 5.3.8. Let G : D — C be a map in 1 — Cat>o™! admitting a left adjoint GE :

cont

C — D. Suppose G does not send a nonzero object of D to zero. From Lemma [4.0.30]
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we see that G is conservative. It also preserves small colimits, so G is monadic by (ch.
1, 3.7.7).

4.0.34. ([14], chl, Lemma 5.4.3) easily follows from my Lemma [4.0.30

4.0.35. For the proof of 5.4.5. The full subcategory C’ C C is stable under colimits
in C, stable, containing c,, and the smallest with this propeties. The fact that C’ is
presentable follows from ([28], 1.4.4.2). So, i : ¢/ — C indeed admits a right adjoint.
A notion of kernel makes sense in any pointed infinity category. The category 1 —
CatSteoemPl i pointed, the zero object is x. Indeed, for & € 1 — Cat™?, an exact
functor * — & sends * to 0. So, for a map F : €; — Gy in 1 — Cat ™! we have
Ker(f) = €1 xe, *. This is the full subcategory of objects x € €; such that F(z)—0.
Since i# : C' — C’ preserves small limits, i¥ is exact, hence a map in 1 — Cat 5t
Recall that C contains all small limits, because C' is presentable, so C” admits all small
limits (in fact, C” C C is stable under all limits). Since % commutes with translations,
C” is stable under translations, so C” is stable (as in [2§], 1.1.3.3). In fact, the limits of

‘R
the diagram C' = " & & can be calculated in Prf?, recall that Prft < 1— Cat preserves
limits, so C” is presentable.
For any c € C,i%ii%(c) — i¥(c) is an isomorphism (see next section). Therefore, for

ceC,
il(c) = cofib(iif(c) = ¢) € C"

So, i1 : C — C" is well-defined. If z € C”, ¢ € C then, since Map.(-, z) preserves
colimits, the square is cartesian

Ma'pC(jL(C)a Z) - MapC<c7 Z)
\! \:

* —  Mapg(iifi(c), 2)
In addition, Mapq(#i%(c), 2) = Map(ifi(c), iff(2)) = *, because i%(z) = 0. So,
MapC(.jL(c)7 Z) - MapC(c7 Z)

naturally for z € C”, ¢ € C, so that j* is indeed the left adjoint to j.

The category (C')* is by definition {z € C' | for any y € C’, Mapy(y, 2) = *}, a full
subcategory of C. It coincides with C”.

The nontrivial part of the proof: if C” = {0}, why ift : C — (C’ is an equivalence?
It is essentially surjective, because i®(z) = z for z € €. Now the fact that i? is fully
faithful means that for any y1,y2 € C one has

Mapc (i (y1), y2) = Mape(y1,y2)
Indeed, the natural map 3% (y;) — v is an isomorphism, because its cofibre is j*(y1) = 0.
4.0.36. Let C € 1 — Cat, i : ¢/ C C be a full subcategory. Assume there is a right

adjoint i : C — C’ to i. Then for z € C’, the natural map z — i%i(z) is an
isomorphism. Indeed, both object represent the same functor on €.
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4.0.37. For 5.4.7, its formulation is not precise. It actually says the following. Let
F:D—Cbeamapinl— CatheemPl The essential image of F' generated C' iff for

cont

any morphism G : C — C’ in 1 — Cat %! guch that GF = 0 one has G = 0.

cont
In their proof of 5.4.7, the ‘if’ direction: the map j* : C — C” is a map in 1 —
Gatfﬁ;ftocmp ' For any z € C’ the map iif(z) — z is an isomorphism, because of
Section [4.0.36, Therefore, j2F = 0, so j¥ is zero by assumption. So, C” = 0. As in

the proof of 5.4.5 this implies that C’ = C.

4.0.38. Symmetric monoidal structure on Pr’. Tt is given by tensor product defined in
(28], 4.8.1.15). It has the following property ([30], Lemma 4.1.5): for C,D € Prl let
Fun® (€, D) ¢ Fun(€, D) be the full subcategory of colimit preserving functors, write
€ ® D for the tensor product in Pr¥. For C;, D € Pr’ one has an equivalence

Fun’(C; ®...... ® Cp, D) = Fung(Cq x ... x €y, D),

where the RHS is the full subcategory of Fun(C; x ... x €,,D) consisting of functors
preserving colimits separately in each variable.

Important remark is ([30], Remark 4.2.5): if n > 0 and €; € Prl are stable in
addition then €} ® ... ® @, is stable (for n = 0 this is wrong, the unit object of Prl s
Spc, it is not stable).

For D,€ € 1 — Cat>:“"™ we get € @ D= Fun’® (€22, D) by ([28], 4.8.1.17), where
Fun® ¢ Fun is the full subcategory of those functors, which are right adjoints (equiva-
lently, preserving limits, for the equivalence of the two definitions see my Section.

For ¢ € €,d € D denote cXd the image of (¢,d) under € x D — C®D. We underline
that the latter functor preserves colimits separately in each variable!

4.0.39. About 1—Cat bl et @, D € 1—Cat L™ Write C1®. ..... ®C,, for the

cont cont

tensor product in 1 — Cat>:™P! As in (]28], proof of 4.8.1.3) one has an equivalence
cont

Fun’(C; ®...... ® Cp, D) = Fung(Cy x ... x €, D)

where Fun” C Fun is the full subcategory of functors preserving colimits (we assume
that ”cocomplete” means, in particular, presentable, so this is equivalent to being left
adjoint). Here the RHS is the full subcategory of Fun(C; x ... x €,,D) consisting
of functors preserving colimits separately in each variable. This is a consequence of
Section

We have Mapl_eatcs(%ctocmpz(c‘l, D) = Fun®(&, )¢ = Funey cont (€, D)SPC.

St,cocmpl
cont

The fact the tensor product in 1 — Cat preserves colimits separately in each

_ eatSt,cocmpl

variables is similar to ([28], 4.8.1.24). Proof: given a diagram [ — 1 oot ,

i Oy, let C =colimCj, D, & € 1 — Cat>P! Then

cont
Map(C ® D, &)= Map(€, Fun®(D, €)) = lllgl Map(Cy, Fun®(D, €))
= lllgl Map(C; ® D, &) = Map(colim;(C; ® D), &),

here for brevity Map = Map, o st.coempi.
cont
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Recall that Pr” has a symmetric monoidal structure given by tensor product (28],

4.8.1.15), and the full subcategory inclusion 1 — Gatfj;ftocm]o L ek preserves tensor

products of n > 0 terms (but not the units!). By ([28], 4.8.1.23) for C € 1 — Gatcsj;ftocmpl

we get C®Sptr — €, where Sptr is the co-category of spectra, because of ([2§], 1.4.2.21).
The category 1 — Cator ™! ig denoted in ([28], 4.8.2) by Prot.

cont

For C; €1 — Gatf(f;iocmpl and ¢; € C; we have 0X ¢y = 0in C; ® Cy and
(01 [n]) X CQ: (61 X 02)[n] A—>JC1 X (Cz[n])

for n € Z.

Sam Raskin says 1 — @at Stcoempl

Comt is not presentable (similarly to PrF).

4.0.40. For ([I4], ch. L1, 6.2.1). Since Sptr is a unit object of 1 — Cats: ™! the
tensor product Sptr x Sptr — Sptr ® Sptr = Sptr gives a structure of a monoidal oco-
category on Sptr. By ([28], 4.8.2), Sptr is a symmetric monoidal co-category.

For ([14], ch 1.1, 6.2.7). The categories Spc, Sptr are presentable, and . : Spc —
Sptr preserves small colimits, so admits a right adjoint. Note that 1gp, € Sptr=?, see

Sect [4.0.71] and ¥ factors as Spc — Sptr=C < Sptr. So, Q> is the composition
7<0
Sptr — Sptr — Spc.

The key things in ([28], 4.8.2) are 4.8.2.18, 4.8.2.19, very important!! It affirms that
(Sptr, 1sptr) is idempotent in Pr” in the sense of ([28], 4.8.2.10). The forgetful functor
Sptr —mod(‘.PrL) — Prl s fully faithful, its essential image is the full subcategory
:PI'St —1_ eatSt,cocmpl

- cont
4.8.2.19).

Anymap f:C— Din1— Gatf;;ftocmpl is a map of Sptr-modules: for z € Sptr, c € €,
e )

. This also gives the symmetric monoidal structure on Sptr ([2§],

4.0.41. For ([28], 1.2.3.8). Let A4 C A be the full subcategory with the same objects,
where we keep only those morphisms [n] — [m], which are injective. (A conflict of
notations with the category of possibly empty finite sets from my Section . A
semisimplicial object of a category C is a functor A‘f — C.

4.0.42. About the notion of a left completion of a stable category with a t-structure
from ([28], 1.2.1.16). By Z Lurie means the category associated with the linearly
ordered set Z, where n < m is the usual order. If € is a stable oco-category with a
t-structure then the description of € = lim,cz C<_,, defined in ([28], 1.2.1.16) follows
from my Proposition Here for m < n the transition map C<_,, — C<_,, is the
functor 7<_,,.

Recall that for € € 1 — Cat stable Lurie says that C is left bounded iff C* = € (]28],
1.2.1.16), € is left complete iff € — C is an equivalence. If C € 1 — Cat is stable then
@t is left bounded, and € is left complete (by [28], 1.2.1.18).

Remark 4.0.43. Let D € 1 — Cat, ... C Dy C Dy C ...D be a filtration by full
subcategories. Assume that D; — D admits a left adjoint 7<, : D — D; for any i € Z.
Let X C Z x D be the full subcategory spanned by objects (i, x) such that x € D_;. Then
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the projection X — 7Z is a cocartesian fibration. For i < j in Z given x € D_; the
natural map v — T<_; is cocartesian over i — j in Z.

4.0.44. About ([28], 1.2.1.6). Let C be a stable oco-category with a t-structure. In
Lurie’s notation, 7<,, is a left adjoint to C<, C C, and 7>, is a right adjoint to C>, C
C. If we are given a diagram p : I — C<_1, let ¢ be the limit of the composition
of p with ¢ : C<_; — €. To check that ¢ € C<_y, it suffices according to (]28],
1.2.1.3) to show that for any y € C>o, Homeordn(y,c) = 0. The latter identifies with
lim;e; Homeoran (y, p(7)) = 0. So, C<_1 is closed under limits. Thus, C<,, is closed under
all limits which exist in C. Similarly, €>,, is closed under all colimits which exist in C.
More generally, one has the following.

Remark 4.0.45. Let A € 1—Cat, j: B C A be a full subcategory such that j admits a
left adjoint (that is, B is a localization of A). Then B is stable under all limits which
exist in A.

Proof. An element x € A lies in the essential image of L : A — B iff for any y €
A, Map 4(Ly,z) — Map,4(y, ) is an isomorphism in Spc (see [27], 5.5.4.2(1)). This
property is preserved under passing to a limit. O

4.0.46. The Brown representability theorem is ([28], 1.4.1.2). For a pointed oo-
category € admitting small colimits one defines a notion of cohomoogy theory on € as
n ([28], 1.4.1.6). The main application of Brown representability theorem seems to be
([28], Cor. 1.4.1.10). It says: if € € 1—Cat is presentable pointed, assume € is generated
under colimits by compact objects which are cogroup objects in 7", Let {H™, 6"}
be a cohomology theory on €. Then for each n € Z the functor H™ : (€°TI)P — Sets
is representable by some object F(n) € C.

4.0.47. For (28], 1.4.2). Lurie defines a notion of an excisive functor in ([28], 1.4.2.1):
let F': @ — D be a map in 1 — Cat and € admit push-outs. Then F is called excisive if
F carries pushout squares in € to pull-back squares in D. Assume also that € admits
a final object * then he calls F reduced if F(x) is a final object of D.

About (28], 1.4.2.3): let K,D,C € 1 — Cat, assume D admits K-indexed limits,
and € admits push-outs. Recall that Funct(C, D) admits K-indexed limits and they
are calculated pointwise. Then the full subcategory of excisive functors Exzc(C,D) C
Funct(C, D) is closed under K-indexed limits. This comes from my Section
Namely, let J be the category {0’ — 1 < 0}. If ¢ = colimjc jor ¢; is a push-out in €
and K — Fxzc(C,D),i+— F; is a functor let F' = lim;cx F;. Then

F(e)= Zlg}ré Fi(e)= Zlg}r% ileHJl Fi(cy)
and we may permute the limits.

4.0.48. Asin ([27], 5.5.4.16), for D € 1— Cat presentable and its full subcategory Dy C
D, we say that Dy is strongly reflexive iff Dy is presentable, stable under equivalences
in D, and the inclusion Dy C D admits a left adjoint.

Let C,D € 1 — Cat with D presentable. Recall that Funct(C, D) is presentable. For
¢ € C viewed a a functor ¢ : * — € we get the restriction functor R : Funct(C, D) —
D, F — F(c). This restriction functor commutes with limits and colimits, so admits left
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and right adjoints. Assume in addition that c is a final object of €. As in (28], 1.4.2.1)
we denote by Funct,(C, D) C Funct(€, D) the full subcategory of reduced functors (that
is, given by condition that F'(c) is final in D). To see that Funct.(C,D) C Funct(C, D) is
strongly reflexive, apply ([27], 5.5.4.17). Namely, the full subcategory Dy C D spanned
by final objects is strongly reflexive, see ([27], 5.5.4.19). So, Funct,(C, D) is the full
subcategory of F' such that R(F') € Dy, and now ([27], 5.5.4.17) yields the desired
claim. This is used in ([28], 1.4.2.4).

4.0.49. In ([28], 1.4.2.5) Lurie defines the full subcategory Spc/™ C Spc as the smallest
full subcategory that contains * and is stable under finite colimits. It is called oo-
category of finite spaces. Let Spci” C Spc, be the oco-category of pointed objects of
Spc/™. (Lurie denotes it differently). The inclusion Spc{m C Spc, is stable under
push-outs, and the projection Spc, — Spc preserves push-outs. So, the projection
Spcfm C Spe/™ preserves push-outs.

By definition, C' € Spe lies in Spc/™ if there is a simplicial set K with a finite number
of nondegenerate simplices such that C' is the colimit of the constant functor K — Spc
with value x. That is, C is obtained from K by inverting all morphisms. Then by
Section K — C is cofinal.

Lemma 4.0.50. If D € 1 — Cat admits finite colimits then any functor * D admits
a LKE along * < Spe/™.

Proof. Let C € Spc/™. Pick a simplicial set K with a finite number of nondegenerate
simplicies such that C = | K |. We have to show that the functor

C= * Xgofin Spc/™ /O — % 4P
admits a colimit. Since K — C' is cofinal, we are done. ]

For example, let € be a usual groupoid (not an infinity one), so an object of 1 —
Cat’¥" N Spc. The colimit of the functor € — Spc with constant value * is | € |
—C. So, if in addition € has finite set of isomorphism classes and finite group of
automorphisms of an object then € € Spe/™ (I don’t really why if this is true!). So,
Spc/™ is not contained in Sets.

Question: Let for n = 1 G be a finite group object in Sets, for n > 2 let G be a
commutative group object in Sets. Let X be the Eilenberg-MacLane object in Spc
equipped with 7,(X) = G (in the sense of [27], 7.2.2.12). Is it true that the image X
of X in Spc satisfies X € Spcf™? For n = 1 this is true by the previous paragraph.

4.0.51. If € € 1 — Cat is pointed, admitting finite limits and colimits then C° satisfies
the same property, and X : C? — C° is the functor Qeop. This is used in ([28],
1.4.2.11).

4.0.52. If € € 1 — Cat has a terminal object * and admits finite colimits then the
forgetful functor C, — € admits a left adjoint € — C, given by ¢ — c U x.
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4.0.53. According to ([28], 1.4.2.20), for n > 0 the n-sphere S™ is an object of the
category Spc/™ of finite spaces. By ([27], 6.5.1.1) as a simplicial set it is defined as
ST =09 A"t Ttis known that for the suspension functor X : Spel™ — Spcicm one has
Y57 = 57 in Spel'™, and S is the union of two points.

Question: is S™ a usual category?

Note that if a — b < ¢ is a diagram in Spc such that a Xy ¢ — ¢ is an isomorphism in
Spc then a — b is not always the isomorphism. For example, this is not true for usual
groupoids. However, this will be true if ¢ — b is an effective epimorphism, I think.

4.0.54. Let € € 1 — Cat admit finite limits, the category Sp(€) = Ezc.(Spci'™, €) is
the full subcategory of Funct(Spci'™, €) consisting of reduced excisive functors ([28],
1.4.2.8). The functor Q> : Sp(€C) — € defined in ([28], 1.4.2.20) is the evaluation at
% — x L x = SO Tt preserves finite limits, so is left exact. The zero object of Sp(C) is
the constant functor Spc*ln — @ with value *, here x € C is the final object.

The category Spcicm admits finite colimits, so one has the suspension functor 3 :
Spcl™ — Spel™, ¥(x) = * Uy *. It is known that ¥(S™) = S™*L in Spel™ for n > 0.

The inclusion Sp(€) — Funct(Spci™, €) preserves limits.

Assume C pointed in addition. The functor F' +— QF = F[—1] on Sp(C) is as follows:
if S € Spex™ then (QF)(S) = Qe(F(S)). For any F € Sp(€) the functor Spei™ — C,
S +— F(XS) lies in Sp(C) and is naturally isomorphic to the functor ¥F. Indeed,
Q : Sp(C) — Sp(C) is an equivalence, and after applying 2, these functors become
naturally isomorphic.

By definition, Q=" : Sp(C) — € is the functor F ~ (X"F)(SY) = F(£"S°) for
n > 0. So,

0% (F) = Q> (F))

for F' € Sp(€). For an object ¢ € € the condition that ¢ lies in the image of Q> :
Sp(€) — € seems very strong, because for any n > 0 there is x € € with ¢— Q"(z).
Such ¢ has a natural structure of a commutative group object in €, see (Ch. 1.1, Sect.
6.2.7, [14]). So, Q°° factors as Sp(€) — ComGrp(C) — C.

The oo-category of spectra Sp(Spc, ) — Sp(Spc) is presentable by ([28], 1.4.2.4).

If € is presentable pointed then for any n > 0, 27" : Sp(€) — € preserves lim-
its. Indeed, by ([28], 1.4.2.3), Sp(€) C Fun(Spci™, @) is closed under limits, and the
evaluation Fun(Spci™, C) — € at S™ preserves limits. So, Q" admits a left adjoint,
denote it by 37", Since Q> = Q" 0 Q™" as functors Sp(C) — €, we get X is

isomorphic to the composition € 2erh Sp(C).

For the functor ¥ : Spc, — Sptr left adjoint to Q> we have X°°(S%) = 1gp,. For
the functor Q2°°~" : Sptr — Spc, and its left adjoint 3°°~" : Sptr — Spc, this gives
¥o07(S9) = 1gp[—n], because T°°™ preserves colimits.

4.0.55. Let D%, D € 1 — Cat admit finite limits, D° C D a full embedding which is left
exact. Let C € 1 — Cat be pointed and admitting finite colimits. Then Exc,(C,D°) =
Exc,(C,D) N Funct(C, DY) is a full subcategory of those functors which take values in
DO,
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Let now G, D € 1—Cat, C be pointed admitting finite colimits, D admits finite limits.
Recall that Ezc.(C,D) C Funct(C, D) is a full subcategory closed under finite limits.
So, Sp(Exc.(C, D)) C Sp(Funct(€, D)) is a full subcategory.

4.0.56. In some places in [28] (and maybe [27]) Lurie says colimits/limits parametrized
by ”weakly contractible simplicial set”. This means in a model independent setting
colimit/limit over a contractible oo-category (for example, in [28], 1.4.2.26).

If S € 1 — Cat is contractible, and S’ is a retract of S in 1 — Cat then S’ is also
contractible.

4.0.57.  For the proof of ([28], 1.4.2.24). Let € be the limit of the tower ... — C 5

(4 2) ©. Write this tower as ...Cy — C; — Cp, where €; = €. For z € C let x; be its
image in C;. By my Lemma the projection € — C; preserves finite limits. So,
the functor Qp sends = to Qpz, where (Qp2); — Qe(z;). The functor € — € inverse to
Qg sends x to y, where y; = x4 for ¢ > 0.

The functor G : € — € appearing in the proof is the projection on Cy = €.

The functor G’ : € — Sp(€) in the proof has the following property. If € € and
F = G'(z) then F(S") = x; for all i > 0. In particular, we see that an excisive reduced
functor F' : Spci™ — € is completely defined by its restriction to the collection of
objects {S™},>0 together with isomorphisms Qe(F(S™1)) = F(S™) in C.

4.0.58. 1In the proof of (|2§], 1.4.4.11) Lurie uses the term colocalization. The definition
is as follows. Let f: A — B be a map in 1 — Cat then f is a colocalization if f admits
a fully faithful left adjoint. This is equivalent to the property that f° : AP — BP
admits a fully faithful right adjoint.

Then ([27], 5.2.7.8) has an analog for colocalizations. Namely, let ° C € be a full
subcategory, € € 1 — Cat. By definition, for ¢ € €, a morphism f : d — ¢ in € exhibits
d as a C%-colocalization of ¢ iff d € €° and composition with f induces an isomorphism

Mape(e, d) — Mape(e, ¢)

for each e € €. This is equivalent to requiring that f : d — ¢ is a final object of
€/c xe €. Indeed, viewing f € C/., we have (C/.)/; = €/, here we denote by C/;
the overcategory of € over the functor f : [1] — €. Let us show that the natural map
C/f — €/q is an equivalence. This follows from a dual version of ([27], 4.1.1.7):

Lemma 4.0.59. Ifv: K' — K, p: K — D are maps in 1 — Cat, and v°P : K'P — K
is cofinal then D/, — D /p, is an equivalence of right fibrations over D.

Proof. For any functor p : K — €, one has (C,/)%? = C% /yop for p? : K — €. [

For the inclusion v : 0 — [1] the map v’ : 0°? — [1]° is cofinal, our claim follows.
Now f is a final object of €/, iff the natural map €/; — €/, is an equivalence.
([27], 5.2.7.12) has an analog for colocalizations also.
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4.0.60. By ([28], 1.4.2.24), if C € 1 — Cat is pointed and admitting finite limits then
the functor Q2 : Sp(€) — € can be lifted to an equivalence Sp(€) = € for the diagram

Loselele

Here C is the limit of this tower. An object of € is a collection {x;} for i > 0, where
x; € C are equipped with Q(z;41) — z; for i > 0. We visualize this as a diagram

oo > T2 > T1 — X0

Lurie constructs a functor G’ : € — Sp(C) is the proof of (|28], 1.4.2.24), which is shown
to be an equivalence.

We restrict an excisive reduced functor f : Spci™ — € to the collection of objects
{S™}n>0. This gives a collection {z;};>0, where z; = Q®°7(f) € €. In view of the
isomorphisms €(z;,1) — x; for i > 0, we get an object # € €. This defines a functor
€ :Sp(C) — €. Then ¢ an inverse to the functor G’ : € — Sp(€) from the proof of
([28], 1.4.2.24).

The functor ¥ : € — € sends {x,} to the collection {Yn}n>0, where y; = x;y1.

With the above notations, assuming C presentable the definition of the full subcate-
gory Sp(€C)<_1 C Sp(C) from ([28], 1.4.3.4) becomes: x is final in C.

According to the proof of ([28], 1.4.3.6), for z = {x,}n>0 € Sp and m > 0 we get
T € Sp<_1-m iff 2., € Spc is final. For m > 0 we should get * € Sp<, iff Q™ () is
final. To formulate this uniformly, for m € Z, x € Sp we have x € Sp<, iff (for n > 0
we have QM7+l (z,) = %).

Notation: for X € Sp Lurie denotes m,(X) = 7>,7<n(X) in the proof of (28],
1.4.3.6) for the t-structure on Sp. So, m,(X) € Ab, here Ab is the category of abelian
groups.

4.0.61. To verify for ([28], 1.4.3.6): Write Spc, for the category of pointed spaces.

Lemma 4.0.62. For n > —1 and X € Spc, we have Q(1<p X) = 7<,,—1(Q2X). Here
T<n : Spc, — Spc, 15 the truncation functor.

Proof. Since Q(7<,X) € T<p—1(Spc,), the natural map Q(X) — Q(7<,X) yields a
morphism 7<,_1(QX) — Q(7<,X). It suffices to show that this morphisms induces
isomorphisms on all the homology groups. Note also that Q(X) (resp., Q(7<, X)) has
a structure of a group, so all of its components are isomorphic. The corresponding
homology groups of are calculated using (HTT, 6.5.1.9). O

Lemma 4.0.63. Let n >0 and (x — X) = X' € Spc,. The two conditions

i) X' € 7<n(Spcy), that is, every connected component of X is n-truncated;

ii) QLX) is final in Spc,

are not equivalent in general. However, they are equivalent if X' = Q(Y,*) for some
(Y, *) € Spc,.

Proof. X' has a group structure, so all the connected components of X are isomorphic
to each other in Spc. O

Because of the above lemma, for X € Sp we have X € Sp<,, iff each X,, is n + m-
truncated. This is used in ([28§], 1.4.3.6).
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Lemma 4.0.64. Let n > —1, X' = (x — X) € Spc,. Then X' € 7<,Spc, iff
X € 1<y, Spc.

Proof. Assume X’ € 7<,, Spc,. The functor Spc, — Spc forgetting the point has a left
adjoint sending Y to Y U . If for any Y € Spc, Mapg,. (Y U, X') = Mapg,(Y, X) €
T<n Spc then X is n-truncated.

Now assume X € 1<, Spc. The projection Spc, — Spc is the universal cocartesian
fibration in spaces. By ([27], 5.5.6.15), the diagonal map X — X x X is n— 1-truncated,
so Mapy (y,x) are n — 1-truncated spaces for any points z,y € X. So, * — X is a
n — 1-truncated object of the fibre Spc, — Spc over X (this fibre identifies with X).
Now ([27], 5.5.6.6) shows that (x — X) € 7<;, Spc,. O

The above claim generalizes as follows.

Lemma 4.0.65. Let n > —1. Let C € 1 — Cat admit finite colimits and a final object
x. Let X' = (x 4 X) € Ci. Then X' € 7<,Cy iff X € 7<,C.

Proof. The projection C, — € has a left adjoint given by y + y U . So, if X’ € 7<,,C,
then X € 7<,,C as above.

Let now X € 7<,C. The projection C, = C,, — C is a cocartesian fibration.
The fibre over X is Mape(x, X), it is a n-truncated space. So, the diagonal map
Mape (%, X) — Mape(*, X) x Mape(*, X ) is n — 1-truncated, so a is a n — 1-truncated
object of Mape(*, X). Applying ([27], 5.5.6.6) we see that X’ € 7<,,C,. O

The following is also used in (28], 1.4.3.6) without an explanation:
Lemma 4.0.66. The functor Q°° : Sp — Spc, preserves w-filtered colimits.

Proof. (This follows from (]|28], 1.4.3.9)). We claim that the functor Q : Spc, — Spc,
commutes with w-filtered colimits. Indeed, the inclusion Spc, C Funct([1], Spc) is stable
under filtered colimits and limits. For filtered colimits this follows from the fact that
each filtered category is weakly contractible ([27], 5.3.1.18). For limits this is because
the inclusion admits a left adjoint, and Spc, is presentable. Let J be a small w-filtered
category, p : J — Spc, a diagram. We have a natural map colim;c ; Qp(j) — Q(colim p)
in Spc,. To show this is an isomorphism, it suffices to check that its composition with
the projection €, — € is an isomorphism in €. This follows from ([27], 5.3.3.3).

Now each transition map in the diagram ... Spc, L Spc, 2 Spc, commutes with
filtered colimits. By Lemma Sp admits filtered colimits (this is automatic,
as it is presentable), and the evaluation functor Q> : Sp — Spc, preserves filtered
colimits. O

For 6.2.7: the projection Spc, — Spc preserves filtered colimits and limits. Indeed,
this is a composition Spc, < Fun([1],Spc) — Spc, and each functor preserves filtered
colimits and limits. The projection Spc, — Spc is conservative, hence reflects limits.

4.0.67. From (HA, 1.4.3.6) we also learn the following: the homotopy functors 7, :
Sptr — Ab preserve products and coproducts, besides 7, : Sptr — Ab commutes with

filtered colimits. Each of the functors Sptr N Spe, Spe 3 Sets preserves products and
filtered colimits! (Here mg : Spc — 7<o Spc is a left adjoint). Consider an object X €
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Sptr viewed as a collection (X,,)n>0 with X,, € Spc,, Q(Xp4+1) = X,,. For m € Z the
truncation 7<,, X in the sense of the ¢-structure on Sptr is the collection (7<y+m Xy )n>0-
Besides, X € Sptrs,, iff each X, is (n + m)-connective. The truncation 7>, X in the
sense of the t-structure on Sptr is obtained as the fibre of X — T<m—1X. So, for n > 0
the term (7>, X )y, is the fibre of the natural map X,, = T<ptm—1Xn.

Remark 4.0.68. The composition Sptr o Spe, 2% Sets equals Sptr =% Ab — Sets,
where my is the homology for the t-structure. The functor m, : Sptr — Ab preserves
products.

Proof. Write X € Sptr as a collection (X,,)n>0 with X, € Spc,,, Q(X,+1) = X,,. Then
mo(X) € Sptr is the fibre of the natural map 7<oX — 7<_1 X, where 7 is the truncation
in the sense of the t-structure on Sptr. So, the abelian group mo(X) is simply the fibre
of the map TS()(X()) = (TSOX)O — (T§_1X>0 = TS—I(XO) = % in SpC*. SO7 7T0(X) in
the sense of the t-structure on Sptr identifies with 7o(Xp).

The last claim is written in (HA, 1.4.3.6). It comes from the fact that 7 : Spc — Sets
preserves products. O

The above remark implies that the functor 72" : Sptr — Sptr preserves products.

4.0.69. Let € be presentable, let f : € — Funct([1],C) be the functor restriction via
[1] — . Its right adjoint f* sends ¢; — c2 to ¢1. Let Gy C € be the full subcategory
spanned by final objects. Then €y C € is strongly reflective. Now €, C Funct([1],C)
is the full subcategory of ¢; — ¢o such that ¢; is final in €. Now by ([27], 5.5.4.17) we
see that C, is a strongly reflective subcategory of Funct([1],C). Besides, C, is stable
under limits in Funct([1], ). Indeed, the functor * — C sending * to the final objects
preserves limits, and the category * admits limits. (See also HTT, 1.2.13.8).

If K — C, is a diagram in C,, it has a colimit in Funct([1],€). If K is weakly
contractible then this colimit actually lies in C.. (Indeed, if ¢ € € is final then the
colimit of the functor K — % —+ € can be calculated as F(colim h), where F : Spc — @
is colimit-preserving with F(x) = ¢, and h is the composition K — % — Spc). In
particular, this holds for s-filtered colimits. So, €, C Funct([1], C) is stable under x-
filtered colimits. This implies that the forgetful functor €, — € preserves k-filtered
colimits (actually, reflects s-filtered colimits). See also ([28], proof of 1.4.4.4).

For example, let K be the usual category (1 <— 0 — 2), it has 3 objects. Then K is
contractible, because K has an initial object. So, by the above, C, admits push-outs,
and C. C Funct([1],€) is stable under push-outs, and the forgetful functor €, — €
preserves push-outs.

4.0.70. ([28], 1.4.4.5) may be formulated more precisely: let C,D € 1 — Cat be pre-
sentable, D stable. Then composition with 2 : Sp(€) — € induces a commutative
diagram, where the horizontal maps are equivalences

Fun'(D, Sp(€)) = Fun/(D,0)

T 1
Funfy(D, Sp(€)) = Fun®(D,0e)
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Here in the first line ’ means that we take full subcategory of left exact functors (as in
[28], 1.4.2.23), and R means the full subcategory of functors, which are right adjoints
(equivalently, limit preserving).

4.0.71. Let X% : Spc — Sp be the left adjoint to 2°° : Sp — Spc. The sphere
spectrum in Sp is defined ([28], 1.4.4.5) as the image of * € Spc under X%° (I think
there is a misprint there in [28], namely ¥ should be replaced by X°).

Difference in NOTATIONS: if € € 1—Cat has finite limits, the functor Q5° : Sp(€) —
C, takes values in the pointed category Cs, its left adjoint is denoted X : C, — Sp(C).
The left adjoint to 2°° : Sp(€) — C is denoted £ : C — Sp(€) ([28], 1.4.4.4).

If X € Spc, then ¥*°(X) € Sp>¢. Indeed, for any Y € Sp<_; we get

Mapsp(Eoo(X), Y)= Mapg,. (X, Q%)) ==

What are the compositions Spc, = Sp(C) axr (Spc,)? How the functor ¥
interacts with the t-structure on Sp(€)? That is, what are the homotopy groups of
Y*°(X) for X € Spc, for the standard t-structure on Sp? See further in [28]7

4.0.72.  Question: let € be an co-topos, let Disc(C) be the category of discrete objects
of €. Since C is presentable, we have the t-structure on Sp(C) defined in (28], 1.4.3.4).
What is the heart of this t-structure, is it equivalent to the category of abelian groups
in Disc(C)? Toen says yes.

4.0.73. Grothendieck abelian categories. For ([I4], Ch. I1.1), 10.1.2). If R is a ring
then the category of R-modules is a Grothendieck abelian category A, so one has the
unbounded derived category D(A) defined in ([28], 1.3.5.8). It is equipped with a right
complete t-structure. By ([28], 1.3.5.24), we have a full embedding D™ (A) — D(A),
whose image is Uy, D(A)>_y,. So, D(A) is the right completion of D™ (A).

This category has an additional property that for any n the functor m, : D(A) —
A commutes with filtered colimits, and the category D(A)<g is closed under filtered
colimits proved in (HA, 1.3.5.21).

Lurie introduces a general notion: given a stable co-category C with a t-structure,
the t-structure is compatible with filtered colimits iff C<g is closed under filtered colimits
in €. In such a category the functors 7>0, 7<g commute with filtered colimits. Indeed, if
K = colim;er K; in € with [ filtered then for each i we have a fibre sequence 7>0K; —
K; — 7<_1K; in €, hence the sequence colim(7>0K;) — colim K; — colim(r<_;Kj;)
is also a cofibre sequence in C, here all the colimits are taken in €. We know that
colim(7>0K;) € C>p, as C>¢ is closed under all colimits that exists in €, and by assump-
tion colim(7<_1K;) € C<_1. So, 750K — colim(7>9K;) and 7<_1 K = colim(7<_1 K;).

In particular this holds for the category Vect = D(k) from (ch. 1, 10.1.1).

4.0.74. Let C € 1 — Cat be stable with a t-structure, which is right complete. Assume
€Y has enough injective objects. By (HA, 1.3.3.2), there is a natural t-exact functor
f: DT (C) — C extending the identity on €. We claim that f induces isomorphisms
for a,b e ¥ and i = 0,1

(7) Extbo(a,b) — Extp(a, b)
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For i = 0 this is by definition. For ¢ = 1 to see the injectivity, consider an exact
sequence 0 — b — = — a — 0 in €. Then b — = — a is a fibre sequence in €, hence
yields a morphism a = b[1] in €. If v = 0 in mo Mape(a, b[1]) = Ext}(a,b) the fibre
sequence x — a — b[1] is isomorphic to a®b — a RN b[1], and the initial exact sequence
splits. Indeed, a a map a — z in C giving the splitting is actually a morphism in C7.

Let now 4 € Extg(a,b) by represented by a map v : @ — b[1] in C. Let x be the fibre
of 4. So, we get a fibre sequence b — = — a in C. Then z € €V, and the sequence
0—b—x—a—0in €Y is exact. The corresponding element of Exté@(a, b) goes to
5. We checked the surjectivity.

Let us show that is injective for ¢ = 2. Pick an exact sequence 0 — b — by —
bo/b — 0 in €Y with by injective. We get a diagram

Extgo(a,by) — Extgo(a,bo/b) — Extio(a,bd) -0
\ i |
Exti(a,bp) — Extb(a,bo/b) — Extd(a,b) — Ext3(a,bo)

where the left two vertical arrows are isomorphisms. The diagram chase implies the
desired claim.

4.0.75. If C € 1 — Cat is stable then a set of objects ¢; € C, ¢ € I is a set of co-
generators iff for any z € C the assumption Mapq(z,c;[n]) = * for all n,i implies
x = 0. In other words, ¢; is a set of generators for CP.

4.1. For ([I4], ch. 1.1, 6.2.10). Let C € 1 — Cato-™ and ¢y, ¢; € C. Recall they
denote Mapsc(co, c1) = Homg, (co, ¢1). This relative inner hom always exists. Indeed,
the functor Sptr®” — Spc, x — Mapg(z K ¢g, ¢1) preserves limits, because the tensor
product Sptr xC — Sptr ® C — C preserves colimits separately in each variable.

For the sphere spectrum X*°(x) = lgp € Sptr we get

Mapg(co, ¢1) = Mapc(1sptr ® co, 1) = Mapsptr(lsptr, Mapsc(co,c1)) =
Mapgp,. (*, 2 Mapsc(co, c1)) = Q%Mapsc(co, 1)

4.1.1. 1In ([4], ch. L1, 6.3.4) by C, they denote the colimit of C; : I — 1—Cat’ %P,

cont

If I — 1 — Cat b is the colimit diagram for C, then it is claimed that C,

cont

is dualizable, and the dual diagram (I%?) — 1 — Cat>:™' is a limit diagram in

cont
1-— Gatf;ﬁocmp ! hence also in 1 — Cat.

The following is used without explanation in 6.3.6 (compare it with Lemma [2.2.56]):

Lemma 4.1.2. Let f : A — B be a morphism in 1 — Gatfg;ftocmpl whose right adjoint

g: B — A is continuous. Assume A, B dualizable. Then gV : AV — BV is left adjoint
to fV:BY — AV.
Proof. Consider the (00, 2)-category 1-Cat>- ™! from 5.2.1. Inside we have the full

cont

subcategory of dualizable objects (1-Cat’ 2emPh)dualizable  The dualization functor

should be a functor between (0o, 2)-categories

St,cocmply dualizable\op St,cocmply dualizable
((1_Catcont ) ) - (1_Catcont )
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Since our monoidal category is symmetric, we may not add rev — mult in the RHS.
Such a functor sends adjoint 1-morphisms to adjoint 1-morphisms. (Check this!!) O

For the proof of 6.3.4. In 6.3.5 they denote by limjor C}op the limit in 1— CatSLeoempl

cont

Then it is also the limit in 1 — Cat“t®“™P! by Cor. 5.3.4. For this reason in 6.3.6 we
may rewrite this limit as a colimit according to Cor. 5.3.4.

413. If f: C — Dis amapin 1 — Cat>0™! € D dualizable, let f¥ : DV — CV

cont
be the dual map. Then the dagrams commute

S N

cVelC = OCV®D CeD’V = CeCY
T A 1 | ev
Sptr % DY@D Do DY 5 Sptr

where p is the unit map, ev is the evaluation map. This was used in 6.3.5-6.
Actually this holds for any symmetric monoidal co-category € and amap f: C — D
in € between dualizable objects.

4.1.4. For the proof of 6.4.2. The functor j* : C — C” is continuous between stable
cocomplete categories. The universal property that they mention is that such a functor

L
is completely determined by the composition Cy x Co — C; @ Cy = C oo , and
this composition is exact and continuous in each variable. We need to show the latter

. 0
composition is zero. It factors through ¢/ - C L+ C”. The composition jXi = 0,
because j%(c) = cofib(ii’(c) — ¢) and i = id.

4.1.5. For Proposition 6.4.3. It is understood that F; : D; — C; are morphisms in

St,cocmpl
1 —Cat_,; .

4.1.6. Let F; : C; < Dy : G; be adjoint functors, maps in 1 — Cat5o™ Then
FiF:Ci®0Cy S D1 ® Dy : G ® Gy is also an adjoint pair.

Indeed, if p; : id — G;F; is the unit, ¢; : F;G; — id the counit of the adjunction
then py ® po @ id — (G1F1) ® (GaFy) = (G1 @ Ga)(F1 ® F») will be the unit, and
1 ®ce: (F1G1) ® (FoGa) = (F1 ® F3)(G1 ® G2) — id the counit of the new adjuntion.
The reason: tensor product of identity maps is an identity map. To prove this use
([14], ch. I, 4.4 and 5.3.2), that is, we use the (oco,2)-categorical enhancement of
1 — Cat2beoemPl and the fact that (Fj,G;) is a dual pair in the sense of that (oo, 2)-
category.

This is used in the proof of ([14], chl, 6.4.5), namely indq, ®indy, is the left adjoint
to oblvg, ® oblvg,.

IfC;el—- Gatfj;&ocmp then there is a natural morphism

Fune:z;,cont(cla Cl) & Funex,cont (017 Cl) — Funex,cont(cl & 027 Cl & 02)

in Alg(1 — (?atSt’cocmp).

cont
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4.1.7.  All the exponentials for 1 — Cat ™ oxist. Namely, if D, E € 1 — Cat>Lcocm?!

cont cont

then EP = Fune, cont(D, E). So, if D € 1 — Cat % is dualizable then

cont
DV SptrD = Funez,cont(D7 Sptr)

We always have the natural map e : D ® Funeg cont(D, Sptr) — Sptr. By (HA, 4.6.1.6),

St,cocmpl
Cat cont

it extends to a duality datum on D iff for any A € 1 —
induces an isomorphism

Funex,cont (Xa A® D)Spc — Fune:c,cont (X & Funex,cont (D, Sptr)a A)Spc

the above map e

4.2. Compactly generated stable categories. For 7.1. Let C € 1 — Gatf(f;;ocmp l,

c,r € C. Let X°°7™ : Spc, — Sptr be the left adjoint to 2°°~" : Sptr — Spc, as in my
Section [4.0.54 Recall that X°°7"(S%) = 15,4, [—n]. We get

Q" Mapsq(c,z) = Mapg,. (89, Q% "Mapsq(c,z)) =
Mapg i, (3%°7™(5%), Mapsc (¢, ) = Mape(Ispi[—n] @ ¢, #) = Mape(c, z[n])

Lemma 4.2.1. Let C € 1—€atSt’Cocmpl, c € C. The functor C — Spc, x — Mapq(c, x)

cont
preserves filtered colimits iff C' — Sptr, x — Mapsq(c,x) preserves filtered colimits.

Proof. The if direction follows from my Lemma Now assume C' — Spc, x
Mapq(c, x) preserves filtered colimits. Theh C' — Spc,, = +— Mapg(c, z) also preserves
filtered colimits. Let x = colimz; be a filtered colimit in C. Since C' — C,x — z[n]
preserves colimits, xz[n] = colim; z;[n]. So, Maps(c, z[n]) = colim; Mapq(c, z;[n]). So,
the functor C' — Spc,, = — Q® "Mapsq-(c,z) preserves filtered colimits. It follows
now from my Lemma that  — Maps-(c, z) preserves filtered colimits. O

Lemma 4.2.2. Let C' € 1 — Cat 0Pl then O is stable.

Proof. Clearly, 0 € C is compact. From ([27], 5.3.4.15) it follows that C¢ C C is
stable under finite colimits, so C° admits finite colimits. It also shows that for z €
Ce, z[1] € C°. Since C — C,x ~— z[l] preserves colimits, for z € C° the functor
x — Mapq(z, z[1]) = Mapg(z[—1], ) preserves filtered colimits, so z[—1] € C¢. Thus,
C¢ C C is a stable subcategory by (28], 1.1.3.3). O

4.2.3. Proof of ([I4], Lemma 7.1.5). Let F : C' — D be a map in 1 — Cat’> 27!

cont
having a right adjoint F'®. Assume F'® continuous. Then for z € C¢ and d = colimy d;

in D with I filtered we get
Mapp(F(z),d) = Mapq(z, FR(d)) — Mapq(z, colimy FR(di)) =
colim; Mapq(z, FE(d;)) = colim; Mapp,(F(2), d;)

So, F(C¢) ¢ D°. Conversely, assume F(C¢) C D Let d = colim;d; in D, where
J is filtered. It suffices to show that the natural map colimy F(d;) — Ff(d) is an
isomorphism in C'. For this it suffices to show that for any z € C¢ the induced map

Mape(z, colimy F2(d;)) — Mape (2, F(d)) = Mapp(F(2),d)
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is an isomorphism. Since z € C°, this map rewrites
colimy Mapp,(F(2),d;) = colimy Mapq(z, FR(d;)) — Mapp(F(z),d)

Since F'(z) € D¢, the latter map is an isomorphism. We are done. (cf. HTT, 5.5.7.2).
(ch. 1, Lemma 7.1.5) can be strengthened as follows: let F': C'— D be a map in
1— Gatf(f;ftocmp ', C compactly generated. Assume Cy C C¢ is a full subcategory such

that Ind(Co) = C and f(Cp) C D°. Then the right adjoint F'¥ is continuous.

4.24. In (ch. 1, 7.2.1) a condition is missing. If Cj is stable, f : Cy — Spc preserves
fibred products, it is not necessarily left exact. Indeed, for such a functor and Z € Spc
the functor Cy — Spc,x — f(x) x Z preserves fibred products.

On the other hand, if f : Cy — Spc preserves fibred products and final objects then
by ([27], 4.4.2.5) it preserves finite limits (that is, is left exact). If Cp is stable then
Ind(Cp) C P(Cyp) is the full subcategory of left exact functors f : Cg¥ — Spe.

In Dennis’ notations, 7<¢ : Sptr — Sptr=? is the right adjoint to the inclusion
Sptr=Y < Sptr, so T<o preserves all limits. So, composition with 7<¢ yields a functor
Fun’®®(CgP, Sptr) — Fun™®(CgP, Sptr="), where Lex stands for the full subcategories
of left exact functors. The projection ComGrp(Spc) — Spc preserves limits, this follows
from my Section[2.5.18and ([28], 3.2.2.5). So, this composition with this functor yields
a map Fun’**(Cg?, ComGrp(Spc)) — Fun™“®(CgP, Spc). Note that Sptr=" admits lim-
its, because ComGrp(Spc) admits small limits. By ([28], 1.4.2.23) the composition
Fun’e®(CgP, Sptr) — Fun“*(C§?, Spc) is an equivalence.

Recall that Sptr=C C Sptr is stable under all small colimits. If a functor f : CP —
Sptr=" is right exact then it is also left exact. Indeed, we have f(0) = 0. If ¥ = b, o’
in C% then f(b') = f(b)Ug(,) f(a’) in Sptr=?, hence also in Sptr. So, f(a) = f(b) X s
f(a') in Sptr. Since 7<q : Sptr — Sptr=C preserves limits, f(a)=> f(b) X sy f(a') in
Sptr=Y.

The inclusion Sptr=" < Sptr preserves products, but does not preserves finite limits.
Namely, Sptr” = Ab, if y — z is a map in the category Ab of abelian groups, let
x — y — z be a fiber sequence. Then 0 — my(x) - y — 2z — m_1(x) — 0 is exact in
Ab. Here 7; is Lurie’s notation for homotopy groups, so it corresponds to homological
indexing conventions (in cohomological conventions this means that H!(z) could be
nonzero).

If a functor f : C? — Sptr=Y is left exact, it is not necessarily right exact. For
example, take C' = Sptr?. In Dennis’ notations (cohomological indexing conventions)
the functor 7<¢ : Sptr — Sptr=? is left exact, but not right exact. Indeed, consider a
fiber sequence x — y — z in Sptr with y, z € Sptr"”. Its image by T<p is mo(x) =y — 2.
If 7_1(x) # 0 in our above notations then the latter triangle is not a fibre sequence in
Sptr, so

mo(z) — y
3 3

0 — =z

is not cocartesian in Sptr=", because Sptr=" < Sptr preserves colimits.
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Let us show the above functors
Fun,,(C¥, Sptr) — Fun’®*(CgP, Sptr=") — Fun™**(Cg?, Spc)

are equivalences. For the composition this is precisely ([28], 1.4.2.23), as Sp(Spc) = Sptr.
Since Sptr=C is pointed, by ([28], 1.4.2.24), Sp(Sptr=") identifies with the right com-
pletion of Sptr=C.

This is a general fact: if C' is a stable co-category, Sp(C=") identifies with the right

completion of C, as the diagram ...C<? £ 020 identifies with
s O ST 020
Since Sptr is right complete, we get Sp(Sptr§0)3 Sptr. So, the first isomorphism
also follows from ([28], 1.4.2.23) applied to Sptr=Y.

4.2.5. Compactly generated category. In addition to ([I4], ch.1, Def. 7.1.3), where the
property of being compactly generated is introduced for a stable cocomplete category,
there is a more general definition ([27], 5.5.7.1). Namely, € € 1 — Cat is compactly
generated iff C is presentable and accessible.

Let € € 1 — Cat be small. Then P(C) is compactly generated. Indeed, we invoke
([27], 5.3.5.12): for D = P(C)¢ we get Ind(D) = P(C). By ([27], 5.3.4.15) the inclusion
P(€)¢ C P(C) is stable under finite colimits. We also formally use ([27], 5.4.2.2(3)).

We may also invoke ([27], Example 5.4.2.7), it says that for any small € € 1 — Cat,
P(C) is accessible.

By ([27], 5.3.4.17), each h € P(C)¢ is a retract of some f € P(C)¢, where f = colim p

for the composition p: K 5 € < P(€), and K is an co-category coming from a w-small
simplicial set.

FACT ([28], 1.4.3.7): let C € 1 — Cat be compactly generated. Then Sp(C) is
compactly generated.

The category Sptr is compactly generated, and its compact objects are described in
([29], 9.7).

4.2.6. If D is stable, d’ is a retract of d then d’ is a direct summand of d. Indeed,
this happens already on the level of the underlying triangulated category (see Stack
project, Lemma 13.4.10).

4.2.7. For 7.2.3. If Cy is stable then the composition with Q> yields an equiva-
lence Fun,, (Cg?, Sptr)=Fun™®®(C¢¥, Spc), see ([28], 1.4.2.23). By definition, Ind(Cy) =
Fun’®®(CgP, Spc).

For the proof of 7.2.4: the essential image of Cp — Ind(Cy) generates Cy by ([14],
ch.1, Lemma 5.4.5). Indeed, by ([27], 5.3.5.4), Ind(C)) is obtained from C{ by adjoining
filtered colimits. The category Ind(C?)¢ is described in (HT'T, 5.4.2.4). If c is a compact
object of Ind(Cj) then its image in P(Cp) = Fun(Cp?, Spc) is compact in P(Cp). Indeed,
this follows from the fact that Ind(Cy) C P(Cp) is stable under filtered colimits ([27],
5.3.5.3). To describe compact objects of Ind(Cp) it seems useful to use ([27], 5.5.7.3).
Namely, according to my Section the inclusion Ind(Cp) — P(Cp) admits a left
adjoint ® : P(Cy) — Ind(Cp), which is the LKE of the inclusion Cy — Ind(Cp), so ® is
a localization functor. The functor ® is continuous. So, by ([27], 5.5.7.3) any compact
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object of Ind(Cp) is a direct summand of ®(z) for some compact object x € P(C)°.
Recall that P(C)¢ is described in ([27], 5.3.4.17). Since ® preserves small colimits, we
may now invoke ([27], 5.3.5.14) showing that j : Cp — Ind(Cp) preserves finite colimits.
We see that each compact object of Ind(Cp) is a direct summand of the image of some
j(z), where z € Cy. We amy also use ([27], 5.4.2.4) simply.

The part (2) of Lemma 7.2.4 can be derived from ([27], 5.5.1.9 and 5.3.5.10). Warning
here: a continuous functor (in Lurie’s sense) between stable co-categories is not neces-
sarily exact, because there are finite colimits, which are not filtered! This is why we
write Funeg cont. A suttle point here, if f : CY — C is exact, let f : Ind(C?) — C be its
continuous extension given by (HTT, 5.3.5.10). Then the restriction f : Ind(C%)¢ — C
preserves finite colimits! This is affirmed in (HTT, Example 5.3.6.8), and also follows
from (HTT, 5.5.1.9).

In part (3) of Lemma 7.2.4 one does not need to assume C° stable, just a full
subcategory. Part (3) of Lemma 7.2.4 follows from ([27], 5.3.5.11), and (3’) from ([27],
5.5.7.1).

4.2.8. For 7.2.5. Let Cr : I — 1 — Cat 1Pl e 4 functor, assume each C; compactly

cont
generated, and each transition functor C; — C; preserving compactness. Then by C,

they mean the colimit of C;. Note also that C%, : [P — 1 — CatStcoemPl ohtained by

cont
passing to right adjoints takes values in 1 — Gatfj;ftocmpl,

The colimit colIim Cfinl— Cat! is not known to exist apriori.

To correct the argument, use the fact that PrZ from ([27], 5.5.7.7) admits all colimits
by ([27], 5.5.7.6). Namely, C7 becomes a functor Cr : I — Prl, let D = colim C;. Then
D is compactly generated, presentable. Passing to right adjoints, we get a functor
CR,: 17 — Prll and D = lim CF, because of the equivalence Pr’ =5 (Prf)°P from
([27], 5.5.7.7). Since the map Pr? < 1 — at preserves limits, D is also a limit of the
composition 1P — iPrf — 1—Cat, hence also of the composition 1P — fPrf — Prf. We
see that D identifies with the colimit C, of the composition I — 1 — Gatfsﬁ)cmp b el

Now as in my Section |4.0.31] one shows that D is stable, and D is the colimit of

Cr:I—1- Gatfj;ftocmp !, We see that D is compactly generated, and we get a diagram

Cr:I" = 1—Cat®

by applying the functor X — X¢ to the colimit diagram I — fPrﬁ for Cf.

Instead of showing that C is a colimit diagram, consider the subcategory & C 1—Cat,
where we restrict objects to idempotent complete categories, which admit finite colimits,
and morphisms to those which preserve finite colimits. By (HTT, 5.5.7.8), we have an
equivalence iPrULJ =&, X — X¢. So, the colimit diagram I* — fPrﬁ by composing with
the above equivalence ‘Pr£ — & gives a colimit diagram. Finally, apply the functor Ind
to the obtained diagram I* — €.

We could want to show that C; is a colimit diagram. Pick E € 1 — Cat”!. Note
that Fung, (D¢ E) C Fung, (D¢ Ind(E)) is a full subcategory. We used the fact that
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E — Ind(F) preserves finite colimits (HTT, 5.3.5.14), so is exact. Recall that

Map, o, st.coompt (D, Ind(E)) = Funeg cont (D, Ind(E))%P =
cont
Fun,, (D¢, Ind(E))%7° = Map, _,,s¢(D¢ Ind(E))
We get

Mapl—eatst (‘Dc) Ind(E)) ,;; Mapl_eatSt,cocmpl (D, Ind(E)) —
cont
hm Mapl_eatfj;ftocmpl (027 Ind(E)) : l}g} Mapl—(?atSt (C,f’ Ind(E))

Iop

For each ¢ we have a full subspace Map, o,.s:(C5, E) C Map,_e,,.s:(C5,Ind(E)), so
limzor Map, e,.s¢(C5, E) C limjor Map, _o,,s¢(C5,Ind(£)) is a full subspace by my
Lemma This gives a full embedding Map, _e,,s¢:(D¢, E) C lim7or Map, _e,,s:(Cy, E).
Why it is essentially surjective? Any object of limzer Map, e, ,s:(Cf, E) comes from an
exact continuous functor D -5 Ind(E) sending C¢ to E. Since D = colim C;, the map

¢ is a map in Prl so ¢(D°) C Ind(E)¢. However, it is not clear if e(D¢) C F, because

F may be not idempotent complete.

Part (b) of their Cor. 7.2.7 is not clear.

4.2.9. The dual of a compactly generated category. Explanation for 7.3.1. Let C €
1 — Cat bemPl To see that C? x C' — Sptr, (¢, ¢) — Mapsc(c, ) is exact in each
variable, by my Lemma it suffices to show that for any n > 0 the functor
C x C' = Spc, (¢, ) = Q¥ " Mapsq(c, ) = Mapq(c, '[n]) preserves finite limits in
each variable. The latter isomorphism is given in Section This claim is clear.

For 7.3.2. Assume Cy € 1 — Cat™! and C' = Ind(Cp). The restriction of the above
functor Cy¥ x C' — Sptr is exact in each variable, and continuous with respect to
the second variable, because Cy C C°. So, this is the left Kan extension of its re-
striction to Cf¥ x Cy. The corresponding functor C' — Fun,,(Cy?, Sptr) is exact and
continuous (actually equivalence). So, their functor Ind(Cg?”) x C' — Sptr can be seen
as the LKE of its restriction Cy¥ x C — Sptr given by (¢, ') — Mapsg(c,c’). One
more way, the corresponding functor Cg¥ — Funeg cont(C, Sptr) is exact, so extends
unquely to a functor Ind(Cy?) — Funeg cont(C, Sptr) by ([27], 5.3.5.10), which is exact
and continuous. Actually, the latter is the identity functor (after the identification
Funeg cont(C, Sptr) = Fung, (Co, Sptr)). Its exactness follows from ([27], 5.5.1.9). So,
the functor Ind(Cy”) x C' — Sptr is exact and continuous in each variable, hence gives
rise to a functor

Ind(Cy?) ® C — Sptr,

where the tensor product is for the symmetric monoidal structure on 1 — @atcstf;ftocmp L

Another way to think about this: the exponent Sptr® identifies canonically with
Funeg, cont(C, Sptr) = Ind(CgP). It remains to show that the natural map C'® Sptr¢ —
Sptr extends to a duality datum on this pair (as in HA, 4.6.1.6).

For D € 1 — @atStcoemPl the functor Ind(Cy?) @ D — Funeg cont (C, D) corresponds to
the composition Ind(Cg¥) ® C ® D — Sptr ® D = D via the fact that Funeg cont(C, D)

is the inner hom object in 1 — Cat>>““™! (see [14], chl, Sect. 6.1.7).

cont
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Another way to say, in view of the equivalence Fun,g cont(Ind(Cp), Sptr) = Ind(Cp7),
this is the tautological functor Funey cont(Ind(Cp), Sptr) ® D — Funeg cont(C, D) coming
from Sptr @D = D.

To prove ([14], chl, Prop. 7.3.2), it suffices indeed to show that for any D € 1 —

Cat St,cocmpl

comt , their functor (7.4) induces as equivalence

Ind(Cgp) XD — Funea:,cont(ca D),

because the RHS is the exponent of D by C in 1 — Cat beoemPl 1 think their proof

cont
actually gives an equivalence of categories, not only of the underlying spaces: if £ €

1— eatSt,cocompl then
Funea:,cont (Funem (Co, D) ) E) — Fun, (Cgp7 Funex,cont (D7 E))
There is a problem in the proof of Pp. 7.3.2: they write
Map, _g,qst.coempr (£, Fune, (Co, D))

for example. The problem is that if E is presentable, E°P? does not need to be pre-
sentable (it is not in most cases), so their convention of footnote 7 in Sect 5.1.5 is
broken, is it?

In the setting of 7.3.4 if Fy : Cy — Dy is a map in 1 — Cat®* and F : C — D is
its ind-completion then the right adjoint F® : D — C sends each left exact functor
Dy’ — Spc to the composition Cy¥ — Dg? — Spe by (HTT, 5.3.5.13). I think for
this reason (ch. 1, Prop. 7.3.5) is correct, the functor F'® is continuous there (cf.
my Sect. . Namely, the functor FV : Fun®®®(Dy, Spc) — Fun’®®(Cy, Spc) is the
composition with Cy — Dy. Now its left adjoint is described by (HTT, 5.3.5.13). On
the other hand we know from Lemma that the left adjoint to FV is (FT)V.

4.2.10. TO MEMORIZE: for C,D € 1 — Cat>:%™! with C' compactly generated
we have canonically by (ch. 1, 4.1.5)

(8) cY ®D :Funex,cont(ca D)

One also has Funeg cont(Sptr, D) = D by ([28], 1.4.4.6).

TO MEMORIZE: let E, D,C € 1 — Cat5-““™" with C' compactly generated then
one has canonically

9) Funeg cont(E @ C, D) = Futeg cont (B, CY @ D)

Proof. the LHS is Fun®~%(E x C, D) = Fun®(E, Fun’ (C, D)) = Fune, cont(E, C¥ @ D).
Here L stands for the colimit-preserving functors, and bi — L for colimit preserving
functors separately in each variable. O

TO MEMORIZE: if C,D € 1 — Cat>r™ are compactly generated then the

cont

dual to amap F: C — D in 1 — Cat>5°“! can be obtained by applying the functor

cont

Funeg cont(?, Sptr) to F. (actually, this holds for any C, D dualizable).
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4.2.11. For 7.4. Recall that the full subcategory (1 — Cat’ 2emP!ydualizable jg gtaple

cont
under the tensor product. So, if C, D € 1 — Cat“t™! are compactly generated then

C®D el—Cat3ie is dualizable. By (9) and (g),

cont
Funeg cont(CY ® DY, Sptr) ’—V>FunL(CV, D)= FunL(Sptr, C®D)=C®D,

where L stands for the colimit-preserving fucntors. Recall that Fun®(DV, Sptr) = D
canonically. In 7.4 they prove additional properties of the last displayed isomorphism.

Assume C = Ind(Cp), D = Ind(Dy) with Cp, Dy € 1 — Cat®*. The equivalence from
7.4.5 is clear.

To explain a version of Yoneda used in 7.4.6, it seems natural to establish the fol-
lowing.

I think the following should be true. Let Cp € 1 — Catt, ¢ = Ind(Cp) € 1 —
Cat Pl We have the Yoneda embedding j : Cop — Fun,,(Cg?, Sptr) = C sending
z to the functor y — Mapsc(y,x). For F € Fun.,(Cy¥,Sptr) = C, ¢y € Cp we have
Mapsea(co, F') = F(cp).

4.3. Question. Let A € AssAlg(1—Cat>™P) N € A—mod"(1—Cat>:“™P) N e

cont cont

A—mod(1— Gatcsj;ftocmpl). Can we describe M ®4 N as a category of functors MP — N
with some properties? Or maybe instead of functors some suitable ”inner hom”. I am

asking about the analog of ([2§], 4.8.1.17) in this setting.

Lemma 4.3.1. Let F € 1— Gatf(f;liocmpl. The functor 1— Gatfj;ﬁocmpl —1- Gatcsj;ftocmpl,

D — Funeg cont(E, D) preserves small limits.

Proof. Let C € 1 — Cat2t™Pl Let I — 1 — Cat>:“! ;s D; be a diagram. For

cont cont

brevity in this proof write Map for Maplieatifhctocmpl. We get
Map(C, Funeg cont(E, lizm D;))= Map(C® E, lizm D)= liZIII Map(C ® E, D;) =
lilm Map(C, Funeg, cont(E, D;)) = Map(C, 11?1 Funeg cont(E, D;))
O
4.3.2. Given A, C € 1—Cat>b°™! e have the natural map C®Funeg cont (A, Sptr) —

cont
Funeg cont(A,C). It is not always an equivalence! Namely, let A be non dualizable.

This means by definition that there is C' € 1 — Gatf(f;ftocmp ' such that the natural

map C ® Funeg cont(4, Sptr) ® A — C does not realize C' ® Funeg cont(A, Sptr) as the
exponential Funeg cont (A4, C), see my Sect.

4.3.3. Let C €1 — Qat tcecoml  Agsume for i € I, K; — L; — M; is a fibre sequence
in C'. Then ®;c1K; — ®ierL; — DicrM; is also a fibre sequence.

Assume C is equipped with an accessible t-structure, L; € C=Y for i € I. We claim
that for n < 0 one has H"(®;erL;) = ®ier H*(L;).

43.4. If C € 1 — Cat is stable the forgetful functor Mon(C) — C' is an equiva-
lence. (Indeed, for any D € 1 — Cat admitting finite products, Mon(ComMon(D) —
ComMon(D) is an equivalence). Moreover Grp(C') — Mon(C') is an equivalence (see

my Section [9.5.7)).
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4.3.5. If C,D are stable categories with t-structures, let f : C — D be an exact
functor, which is t-exact. Let C', D be the left completions. Then the induced functor
f : C'— D is also exact.

Indeed, let us use the cohomological indexing conventions. For each n, 72" : C —
C=™ preserves colimits, same for D. So, it suffices to show that for n € Z the func-
tor f : C2Z" — DZ" preserves finite colimits. Let I — CZ" be a finite diagram,
then its colimit in C2" is TZ”(colimZ- ¢i), where colim; ¢; is calculated in C. We get
f (72" (colim; ¢;)) = 72" f (colim; ¢;) = 72" (colim; f(c;)). Since 72"(colim; f(c;)) is the
colimit of the diagram i + f(c;) in D=", we are done.

5. FOR TENSOR PRODUCT OF 00-CATEGORIES

5.1. Asin ([28], 4.8.1.1) let K be a collection of small co-categories, Cato (K) C 1—Cat
be the 1-full subcategory of those categories that admit K-indexed colimits and those
functors which preserve X-indexed colimits.

If C,D € Catoo(X) let € C Funct(C, D) be the full subcategory spanned by functors
preserving K-indexed colimits. Then € € Cato(X) and the inclusion € C Funct(C, D)
is stable under X-indexed colimits.

([28], 4.8.1.6) is clear and could be strengthen as follows I think: (the full subcate-
gory of Funct(T, €) spanned by functors preserving K-indexed colimits) equals the full
subcategory of Funct(C x T, D) spanned by functors which preserve K-indexed colimits
separately in each variable.

Given C; € Catoo(X) the tensor product €; ® ... €, € Catog(K) in Cato(K) defined
in ([28], 4.8.1.4) is the category P%(Cy x ... x €,) in the notations of the proof of ([28],
4.8.1.4). That is, it satisfies the following universal property from ([27], 5.3.6.2). There
is a functor j : €1 x ... x G, — C; ® ...C,, the category C; ® ... ® C, admits all
K-indexed colimits, that is, lies in Cato (K). For any D € Catoo(K), composition with
j induces an equivalence

Functy (€1 ® ... ® Cp, D)= Functg(Cy x ... x €, D)

Here the subscript K means that we take the full subcategory spanned by functors pre-
serving K-indexed colimits, and the subscript R means that we take the full subcategory
of functors preserving X-indexed colimits separately in each variable.

Let 1 — Cat™ — Fin, be the cartesian monoidal structure on 1 — Cat, Caty, (K)® —
Fin, the symetric monoidal category defined in ([28], 4.8.1.4). The inclusion Catq, (K)® —
1 — Cat™ is right-lax monoidal (28], 4.8.1.4).

5.1.1. Explanation for (28], 4.8.1.9). Let X C X’ be collections of simplicial sets
(oo-categories). Then the inclusion Cateo(K')® C Catoo(K)?® is a right-lax monoidal
functor. Indeed, for each inert map p : (n) — (1), the image of the cocartesian arrow
©7_1€; — C; is the same arrow &7_,€; — €;. On the other hand, in ([28], 4.8.1.8)
we have obtained a symmetric monoidal functor ‘P%/ : Catoo (K)® — Catoo (K')®. From
([27], 5.3.6.2) it follows that PX : Cateo(K) — Cateo(X') is left adjoint to the inclusion
Catoo (K') C Catos (K).
Note that if D € Catoo(K'),Y € Catoo(K) then Functy (Y, D) € Catoo(K').
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Lemma 5.1.2. The above functor Px : Catoo(K)® — Catoo(K')® is left adjoint to the
inclusion Catoo (K')® C Catos (K)®.

Proof. Let us verify the assumptions of ([28], 2.2.1.9). Write L for the functor T%l :
Catoo (K) — Cateo(K'). Let X — Y be a morphism in Cat, (K) such that L(X) — L(Y)
is an equivalence in Catoo(X'), let Z € Catoo(K). We must show that L(X ® Z) —
L(Y® 2Z) is an equivalence in Cato,(X'). Here the tensor product is taken in Catoo(X).
It suffices to show that for any D € Catoo(X') the restriction

Functy (L(Y ® Z2), D) — Functy (L(X ® Z), D)

is an equivalence. By ([27], 5.3.6.2), the latter map identifies with
Functy (Y ® Z,D) — Functy (X @ Z, D)
which in turn identifies with
Functy (Y, Functy(Z, D)) — Functg (X, Functy(Z, D))
and in turn with
Functy (L(Y), Functy (2, D)) — Functy (L(X), Functy(Z, D))

Our result follows now from ([2§], 2.2.1.9). O

My understanding is that under the assumptions of ([28], 2.2.1.9) if 0'® — 0% is a
morphism of co-operads then the following holds. Let £ : Algg /o(€) — Algy /(D) be
the composition with L%, let R : Algey /(D) — Algg 9(C) be the composition with
the inclusion D® C C®. Then £ is left adjoint to R (confirmed by Jacob in an email).

5.1.3. (HA, 4.8.1.10) says the following. Let X C X’ be collections of simplicial sets,
C® — 0% be a cocartesian fibration of co-operads such that the O-monoidal structure
on C is compatible with X-indexed colimits. For every X € O consider TP%I(G x). As
X wvaries in O these categories form a category D, which is naturally a O-monoidal
category (its monoidal structure is compatible with X’-indexed collimits). The natural
functor Cx — PE (Cx) extends to a O-monoidal functor C® — D®.

5.1.4. For (HA, 4.8.1.14). I think there is a misprint in the formulation. Namely, at the
end the arrow Fun®(Ind(€), D) — Fun(€, D) should be replaced by Fun®(Ind(C), D) —

Fun®(C, D). Indeed, the restriction of a symetric monoidal functor via €® % Ind(C)®
will be symmetric monoidal, because a itself is symmetric monoidal.

5.1.5. For (HA, 4.8.1.8): let K be the collection of all small simplicial sets. The functor
Cateo — Cate(K), € — P(C) is symmetric monoidal. In particular, Spc is the unit
object of Cato(X), and P(C1) ® P(C2) = P(C1 x Ca).

5.1.6. For ([28], 4.8.1.15). Let D € 1 — Cat be presentable. Let & C Funct([1],D) be
the full subcategory spanned by equivalences. Then & is an accessible localization of
Funct([1], D). Indeed, the functor & — D sending an arrow to its end is an equivalence,
hence € is presentable. This inclusion clearly admits a left adjoint.
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5.1.7. For (]2§], 4.8.1.20). Let C, D be presentable, then Funct(C?, D, ) = Funct(C?, D).
canonically. This yields an equivalence Funct’(€°P, D,) = Funct* (€%, D), of full sub-
categories. Indeed, for F': C°P — D, the condition of being limit preserving is equiva-

lent to the property that the composition C°P LN D, — D is limit preserving.

5.1.8. For ([28], 4.8.1.16). Let C,D € 1 — Cat be presentable, f : D? — € be a limit
preserving functor. Then f has a right adjoint. In other words, Funct®?(D, €) C
Funct(D, @) is the full subcategory of limit preserving functors.

Indeed, f° : D — C° is colimit preserving. Since D is presentable, from ([27],
5.5.2.9 and 5.5.2.10) we see that f°P is a left adjoint. So, f is a right adjoint.

This is used in the proof of ([28], 4.8.1.23): the functor ® : Prl x Prl — Prl
preserves small colimits separately in each variable.

Proof. Let f : I — Prk, i — C; be a diagram, I small, € = colim f. Let f&: ¢ — Prft

be obtained from f by passing to the right adjoints, let f% be the composition I°P f—>R
Prft < 1 — @at. Recall that € = lim f%. Let D € Prl. Then D ® €= Funct’(D?, ).
We have Funct(D, C) = lim;e ror Funct(DP, €;). In the projective system f%: [P —
1 — Cat all the transition functors are limit preserving, so our Lemma applies.
For ¥ € Funct(D,C) the condition of being limit preserving is equivalent to being
right adjoint, in turn it is equivalent to the property that each D°P — €; is limit
preserving, that is, each D°? — C; is right adjoint. So, the above equivalence restricts
to an equivalence of full subcategories Funct (D, €) = limyejor Funct?(DP, €;). The
latter identifies with lim;eor (D ® €;) = colim;er (D ® €;), where the colimit is taken in
Prl. O

If ¢,D,& € Prl then Fun®(€ ® D, &)= Fun®(C, Fun®(D,&)) (cf. HA, proof of
4.8.1.17). Here Fun®(D, &)) C Fun(D, &) is the full subcategory of colimit-preserving
functors (equivalently, left adjoints). The tensor product here is in Pr’, cf. Sect.[4.0.38

5.1.9. Question: recall that [n] € Pr¥. Let € € Prl, what is € ® [n] = Fun®([n]°?, €)?

6. ALGEBRA IN STABLE CATEGORIES

6.0.1. For 8.1.3: oblvg : A — modfjﬁ?cml} L1 — Gatfgt;;ocmp ! preserves colimits (and

.. St,cocmpl
even reflects colimits), and category A —mod_,;

explained in my Section |3.0.53| and (HA, 4.2.3.5).
Let A € AssAlg(1 — Cato ™y For D € 1 — Cat5-“ ™! consider the functor

admits all limits and colimits as

cont cont
(A—modr)Sheoempl _y (A —modr)3520emPt Ny D@ M. Tt preserves colimits, because
t ! t ! .
oblvy : (A — mod’”)fo;ftocmp —1- Gatfo;;ocmp reflects colimits.

In (ch. 1, 8.2.1) they mean that M,N € (A — mod")3-Pl and view (A —

cont
mod”)ftféocmp " as a module over 1 — Gatf(f;ftocmp " by tensor product on the left. Then

) t
the action functor 1— Cat’> ™! s (A—mod" )35 s (A —mod”) 352! breserves

colimits separately in each variable.

Sam claims for M, N € (A — mod")35°“™" the inner hom Funs(M,N) € 1 —

cont
Cat St,cocmpl

ont always exists, it is calculated as some totalization of functor categories.
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The difficulty here is that 1 — Cat 2! is not presentable, so it is not garanteed that

cont
a functor (1 — Gatcsg;ftocmp l)OP — Spc preserving limits is representable. In practice, the
corresponding representing object is usually constructed by hands.

If M,N € A— mod:>5“P! then Funa(M,N) € 1 — Cat> ™ s also defined as

cont cont
eatSt,cocmpl

a relative inner hom. Namely, by the universal property: for D € 1 — Cat_,; ,

Mapl_eatfot;iocmpz (D,Funy(M,N))—= MapA_mOdfot;::tocmpl (M ® D, N).

There is a natural map Funs (M, N) — LinFun (M, N), I think in general it is not
an isomorphism: for example, for M, N € DGCat.y,: and A = Vect, an object of
LinFun4 (M, N) is a functor, which is not necessarily continuous, it could be a map in
DGCat with additional properties I think.

6.0.2. For M,N € A — mod>:““"P! we have the natural functor Fung(M,N) —

cont
Funey, cont (M, N). Indeed, for any D € 1 — C’ati%ocmp ! we get a diagram
Mapl—eatfs,’ftocmw (D, F‘urlAA<]\4'7 N)) /;; MapA_modf;t;Lctocmpl (M ® D, N)

i
Maplfeatif;ﬁocmpl (.D, Funex7cont(M, N)) ’—\; Maplieatf;,;bctocmpl (M & .D, N),

where the right vertical arrow comes from the forgetful functor A — modsoe™?!

St,cocmpl
1—Cat,,;

6.0.3. (ch. 1, 8.2.2) follows from (HA, 4.2.4.6), see my Section [3.0.62] Namely, for
X €1—QatSbeoempl N A — mod" (1 — GatSt’cocmpl), one has

cont cont

. Is it a full subcategory?

MapA_mOdT(l_eatfot;;ocmpl) (X ® A, M) /;; Mapl—@atfj;ftocmpl (X, M)

6.0.4. In (ch. 1, 8.4.1), FF : N — M is a right-lax functor between A-module
OdSt,cocmpl.

ot They mean that FI is strict if F is a map

categories lying in A — m
in A — modfj,ﬁocmp L

6.0.5. If A € AssAlg(l — CatS:™y then A — modS: ™ admits all limits and

cont cont
colimits, this follows from my Section [3.0.53

In (ch. 1, 8.4.2) they consider a functor C; : I — A—mod-2 for some associative

cont
algebra A in 1 — Gatf(f;ﬁocmp !, If for any map i — 7 in I the right adjoint to C; — Cj is
St,cocmpl St,cocmpl

a map in A —mod_,; , one gets a functor CR, : I — A — mod, . Let now
C, = colim; C; € A —mod35™! et C' = limor CE, in A — mod55"™" . Tt has to

be explaned that the right adjoint to each C; — C\ is a not only a right-lax functor of

A-module categories, but it is strict.

St,cocmpl 41— eatSt,cocmpl

The projection A — mod preserves limits and colimits, so

cont cont
C, = colimie; G in 1 — Cat>0™Pl and €' = limjegor C; in 1 — Cat> o™l Recall

also that 1 — Cat>heomPl _, 1 — @atSteo™Pl preserves limits, and the natural map

C, — C in 1 — Cat Pl ig an isomorphism by (ch. 1, 5.3.4). So, the map C, — C

in 1 — Cat>:““™! is also an isomorphism. So, the right adjoint to C; — C, is the
dSt,cocmpl

cont So, in the whole

projection C' — Cj, hence this is a morphism in A — mo
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colimit diagram C7 : I — A — modfot;ﬁocmp :
St,cocmpl
cont :

we can pass to right adjoints in the (oo, 2)-
category A — mod

6.0.6. Recall that if A € CAlg(1 — GatSt’cocmpl) then A — mod>o“™P is naturally a

cont cont

2-category ([I4], ch. 1.1, 8.3). Let A — B be a map in CAlg(1 — Cat>><“"P!) " The

cont

functor A — mod>o°P _y B — modS™Pt M — M ®4 B is a map in 2 — Cat?

Given M; € A — modfj&ocmpl, the natural map Fung (M, Ms) ® 4 My — M; in
dSt,cocmpl

o yields after extension of scalars by A — B a map

(Funa(My, M2) ®4 B) @ (M1 ®4 B) — My ®a B

A — mo

dS t,cocmpl
cont

Here by Funs we mean the inner hom in A — mo . By definition of the inner

hom, it gives a map

FUDA(Ml,MQ) ®4 B — FunB(M1 ®a B, My ®4 B)

in B — mod>t¢P!  This is why the answer is yes, as we have the corresponding
morphisms of the mapping categories.
Consider the forgetful functor B — mod: !

ot — A —mod>5 P We claim this

cont

is a morphism of 2-categories also. Indeed, given N, N’ € B — modfjﬁ)cmp l, we have
canonical morphisms

Fung(N,N')®4 N — Fung(N,N')®@p N — N’,
the first is a morphism in A — mod>>%™ the second in B — mods ™. This gives

the desired map
Fung(N, N') — Funy (N, N')

od>teoemPl Tt should be compatible with compositions. So, the adjoint pair

in A —mod_,;

dSt,cocmpl =B_ mOdSt,cocmpl

A —mo cont cont

is a diagram in 2 — Clat.

Assume in addition that A, B are rigid, then B is dualizable in A — mod?2beoempt, So,

cont
the forgetful functor B — modfg;ﬁocmp Ny modf(f,’ftocmp ! has a right adjoint by my

Section In this case we claim that for M € B—mod>:"" N € A—mod:hem?!
one has canonically
Fung(M,N) = Fung(M,N ®4 B)

dSt,cocmpl 1 GatSt,cocmpl i

dS’ t,cocmpl
cont cont

omt . Since the forgetful functor A — mo

in A — mo S

eatSt,cocmpl

conservative, this follows from isomorphisms for any D € 1 — Cat_,);

Mapl_eatSt,ctocmpl (D7 FUHA(M, N)) = MapA_modSt,ctocmpl (M & D, N) =
MapB_mOdSt,ctocmpl (M ® D, N ®A B) /——\; Mapl_eatst,ctocmpl (D, FU.HB(M, N ®A B))

Now given M; € A—modSt’cocmpl, we get a map Fung(My, M) — Funy (M ®4 B, Ms)

St . cont
. ,cocmp
in A —mod_,; . o l
We claim now that for C,C" € A — mod.,»’"""", one has canonically

FunB(C ®a B, C’ XA B) ’—V>FunA(C', Cl) ®a B
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Indeed, we get by the above

Funa(C,C") @ 4 B=Fung(B,Funs(C,C") ® 4 B)=Fun (B, Funa(C,C"))
S TFuny(B®a C,C") = Fung(B®aC,B®4C")

We used the fact that for X € A—mod, M € B—mod, Fung(X®4B, M) = Funa (X, M)
canonically.

6.0.7. For (ch. 1, 8.4.4). If A € Alg(1 — Cat>t™y ¢ € A — mod>-"P! | and

cont cont
B is an algebra in Map,  st.coempt(C, C) = Funa(C, C) then it is nontrivial that
cont

dS t,cocmpl

ot , what is the reference?

B — mod(C') has a structure of an object of A —mo

6.0.8. For (ch. 1,8.5.2). Alg(1—Cat>>““™!) has a structure of a symmetric monoidal

cont
0o, 1)-category by (ch. 1, 3.3.5), so A1 ® A1 € — Cat_; . e projection
(00, 1)-category by (ch. 1, 3.3.5), so A} ® A1 € Alg(1 — Cat>-°P!) " The projecti
Alg(1 — @at3heoemply s 1 _ @at2hwmPl ig symmetric monoidal, see my Section [3.0.31
Since AssAlg + mod(1 — Gatf(f;ftocmpl) is symmetric monoidal by (ch. 1, 4.2.2), given
A1, M), (As, My) € AssAlg + mod(1 — atSteoempl , M1 ® Ms is a A1 ® As-module.
cont

Note that 1 — Cat™" from (ch. 1, 3.1.4) is a symmetric monoidal category. This
is in fact a corollary of Proposition [3.0.31} So, for two monoidal categories given by
functors F, G : A°? — 1 — Cat the functor [n] — F,, x G, is also a monoidal category.

Now if Ay, As € Alg(1 — Gatf(féocmpl) then the natural functor 47 x Ay — A1 @ Ay
is monoidal. Now given A; € Alg(A;), (A1, A2) € Alg(A; x Az) naturally, hence its
image A1 K As € A; ® Ay is an associative algebra.

For (ch. 1, 8.5.4). Recall the adjoint pair indg, : M; = A; —mod(A4;) : obluy, for i =
1,2. We see that the functor G¥ := indg, ®indyg, : M1®@4 My — A1 —mod(M;)®@4HA2—
mod(Ma) is left adjoint to the forgetful functor G : Ay —mod(M;) ® 4 A2 —mod(Msz) —
My ® 4 Ms. Compare with the idea from my Section m To prove (ch. 1, Prop.
8.5.4) by (ch. 1, Corollary 5.3.8) it remains to show that the functor G does not send
a nonzero object to zero. By my Lemma this is equivalent to requiring that G
is conservative. Now the proof is finished as in (ch. 1, Lemma 6.4.5).

Let A be a monoidal (oo, 1)-category and A € Alg(A). Then by definition A —
mod" (A) = Arev=mult _ mod(Are=mult) In (ch. 1, 8.5.8) misprints, they take

(A17A1,M1) — (A,.A,A), (A2"A2’M2) — (Arev—mult7‘Arev—mult’Arev—mult)
(ch. 1, Cor 8.5.9) reads
A—mod® s A—mod” 5 A—mod(A)® 4 A™ —mod(A™) 5 (ARA™) —mod(A@ 4 A™)

We have an isomorphism A ®4 A™ 5 A in 1 — Cat>2>““™! Viewing A as a A ®
Arev—mult_module, where A acts by multiplication on the left and A™V~"%* on the
right, we get A K ATv~mut ¢ Alg(A ® ATV~ By one of the definitions of a

bimodule, (A X A™) — mod(A) is the category of A — A-bimodules in A.
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6.0.9. Precision for (ch. 1, 8.5.10). Given a stable monoidal category A, the functor
Alg(A)°? — 1— Cat, A — A —mod lifts naturally to a functor Alg(A)%P — Arev—mull _
modS%“™P! Namely, if A € Alg(A) then A —mod is stable cocomplete, and the action

cont
map (A —mod) x A — A — mod given by the tensor product is exact and continuous

in each variable. Moreover, if A — B is a map in Alg(A) then the restriction functor

B — mod — A — mod is a map in ATVl _ gy oqSheoempl

If in addition A is stable symmetric monoidal then A™*~™% coincides with A, and
the above yields a functor Alg(A)P — A —modS:“™". Moreover, in this case Alg(A)
is a symmetric monoidal oco-category, and the above functor is symmetric monoidal:

given A; € Alg(A), one has by (ch. 1, 8.5.4)

A1 —mod ®4 (Az —mod) = (A1 ® Az) — mod

6.0.10. In (ch. 1, 8.6.3) the assumption is A € Alg(A).
In (ch. 1, 8.6.4) the assumptions: M € A —mod>:™" A e Alg(1 — Cat5teoomphy,

and A € Alg(A). To prove this Corollary 8.6.4, taking into account the equivalence

A —mod®@4 M — A—mod(M) of (ch. 1, 8.5.7), one needs to establish an isomorphism

eatSt,cocmpl

functorial in D € 1 — cont

Maplfeatf;;:fcmpl (D, A — mod XA M) = MapA*mOdfs;ftocmpl ((-A - mOdT(A)) ® D, M)

This is done as in (ch. 1, 4.3.2). Namely, the above map sends a functor a : D —
A —mod ®4 M to the composition

(A —mod"(A)) ® D 8" (A — mod"(A)) @ (A — mod 9 M) ™8 A@, M =M

Another way: (ch. 1, 8.6.4) follows from ([28§], 4.8.4.1).

6.0.11. In their (ch. 1, Prop. 8.7.2) an assumption is missing. One needs to assume

that the unit functor Sptr — A admits a continuous right adjoint. Here A is an algebra

St,cocmpl
Cat .

inl-—
6.0.12. Proof of (ch. 1, 8.7.4). From (ch. 1, 8.7.2) we see that N@ M — N ®4 M
sends compact objects to compact ones. Besides, N ® M is compactly generated. By
(ch. 1, Lemma 8.2.6), the essential image of N ® M — N ®4 M generates the target.
Now N ®4 M is compactly generated by remark below.

Remark 6.0.13. Given A, B € 1 — Qat>t™! with A compactly generated let f :
A — B be a map in 1 — Gatfﬁ;ftocmpl sending compact objects to compact ones. Assume

the essential image of f generates B. Then f(A€) generates B. So, B is compactly
generated.

Proof. Ind(A°) = A, so each b in the essenitial image Im(f) of f writes as a filtered
colimit of objects from f(A€). If B’ C B is a cocomplete stable subcategory containing
B¢ then Im(f) C B’, because f(A°) C B°. So, B’ = B by (ch. 1, 5.4.5). O
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6.0.14. For (ch. 1, 8.8.4) Note that for any m,m’ € M the relative inner hom
Hom 4(m,m’) exists, because A is presentable. Proof of part (a): assume m € M°¢.
Let I be a filtered (oo, 1)-category and z = colim;es 2z; in M. We want to check that
the natural map colim;c; Hom 4(m, z;) — Hom 4(m, z) is an isomorphism in A. Since
A¢ is stable, it suffices to show that for any a € A° the induced map

Map 4 (a, colim;e; Hom 4(m, z;)) — Map 4(a, Hom 4 (m, 2))
is an isomorphism in Spc. This map rewrites as
colim;er Map,;(a ® m, z;) — Map,,(a ® m, z)

It is an isomorphism, because a ® m € M¢ by assumption.

6.0.15. For (ch. 1, 8.8.5). If A € Alg(1 — Cat>hco™Ply then Aleft—dualizable = 4 jg
stable under translations. Namely, if counit : a ® b — 1 extends to a duality datum
then counit : a[l] ® b|—1] = a ® b — 1 extends to a duality datum.

Proof of (ch. 1, 8.8.6). Let a € A be compact relative to A. We have to show that
their map @’ ® Hom 4 (a, 1) — Hom 4(a,a’) given by (8.5) is an isomorphism, provided
that a’ is left-dualizable. Let b = a/V'', so a’ = b¥"®. To do so, we will show that for
any d € A the induced map

Map 4 (d, b @ Hom 4(a, 1)) — Map 4(d ® a,b"T)
is an isomorphism. The RHS identifies with Map 4 (b®@d®a, 1) = Map 4 (b®d, Hom 4 (a, 1)).
The desired isomophism follows now from my Remark
6.1. For (ch. 1, 9.1.1).

Lemma 6.1.1. Let f : Sptr — € be a map in 1 — Cat o™ Assume f(Lsptr) € C°.

cont
Then f(Sptr€) C €°. So, the right adjoint ff : C — Sptr is continuous.
Proof. By ([29], 9.7), every compact object of Sptr is a retract of ¥°°7"(Y") for some
Y € Spcicm and some n > 0. Here 3¥*°7" : Spc, — Sptr is the left adjoint to Q2°°~".
We have $°°77(5%) = 1g,,[—n]. Besides, € is stable and €¢ C € is closed under finite

colimits and retracts. Our claim follows now from the fact that Spc*m C Spc, is the

smallest full subcategory which contains SY and is stable under finite colimits. U
6.1.2. Let F: A — Bbeamapin C’Alg(l—@atfg;ﬁocmpl), A€ CAlg(A), B € CAlg(B).

Assume given a map F(A) — B in CAlg(B). Consider the functor o : A — mod(A) —
B —mod(B), M — F(M)®p)B. What is its right adjoint? Our « is the composition

A —mod(A) 23 F(A) — mod(B) 83 B — mod(B),

where «; sends M to F(M), and the second is the extension of scalars. Now s has a
right adjoint af = Res : B —mod(B) — F(A) —mod(B), here Res is continuous (recall
that oblv : B — mod(B) — B preserves colimits). Assume F' has a continuous right
adjoint F®: B — A. Then «; has the following right adjoint.

Since F® : B — A is right-lax monoidal, it induces a functor F(A) — mod(B) —
FREF(A)—mod(A). Restricting the scalars further via A — FEF(A), we get the functor
aft . F(A) —mod(B) — A —mod(A), which is the right adjoint to a;. Note that aff is

continuous. So, o = affal’ is continuous.
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Generalizing the previous, one has the following.

Lemma 6.1.3. Let F : A — B be a map in CAlg(1— Cat>h™Py A € CAlg(A). We
get a functor q : A — mod(A) — F(A) — mod(B), M + F(M). Let F® : B — A be
the right adjoint to F, it is right-lax monoidal, so induces a functor F(A) —mod(B) —

FEF(A) —mod(A). Let ¢® denote the composition
F(A) —mod(B) — FEF(A) — mod(A) = A — mod(A),

where the second arrow is the restriction of scalars via the natural map A — FEF(A).
Then g% is the right adjoint of q.

Proof. 1) Let B € Alg(B). The functor e : B — mod(B) — FT(B) — mod(A), M +
FE(M) admits a left adjoint £, because e preserves limits.

Our F is a map of right A-module categories, so F ¥ is a right-lax map of right A-
module categories. Namely, given b € B,a € A, we have the natural map FR(b) ®a —
FEb) @ FE(F(a)) - FE(b® F(a)). So, e is a right-lax functor of A-module categories.
For this reason, £ is a left-lax functor of A-module categories. We claim that £ is a
strict functor of A-module categories.

Indeed, the essential image of the induction functor A — FR(B) — mod(A), M
FE(B) ® M generates F(B) — mod(A) under colimits, as its right adjoint oblv :
FE(B) — mod(A) — A is conservative. Now given M € B — mod(B), N € A we have

Mapg_oq(p) (L(FH(B) @ N), M) = Mappr(s)_moda) (FH(B) @ N, FF(M))=
Map 4 (N, FF(M)) = Mapg(F(N), M) = Maps_noq(s)(B @ F(N), M)

So, B® F(N) = L(FE(B)® N) in B —mod(B). So, on objects of the form F(B)® N
with N € A, the functor £ is strict functor of A-module categories. Since £ preserves
colimits, it is strict.

2) The functor ¢® by 1) admits a left adjoint £, which is a strict functor of A-module

categories. Note that ¢ is also a strict functor of right A-module categories. Now it
suffices to show that L(A)— F(A) in F(A) — mod(B). This is easy. O

6.1.4. For 9.1.2. Note that mult? is a functor of A-bimodules catgeories iff for a € A
the natural maps are isomorphisms

mult®(a) « (¢®1) @ mult?(1), mult?(e) « mult?(1) ® (1Xa)
For 9.1.3. Let A € CAlg(Sptr). Let A — mod = A — mod(Sptr). Let us check that
A —mod € CAlg(1 — Cat>5emPl) i rigid. For M € A — mod we have

cont

MapA—mod(‘A7 M) - MapSptr(lsptra M)

The projection A — mod — Sptr preserves colimits (see my Section [3.0.53]). Since
Igptr € Sptre, A is compact in A — mod. Now A —mod ® A —mod = (A ® A) — mod,
where we used the symmetric monoidal structure on C' Alg(Sptr). The multiplication
map mult : A— mod ® A—mod — A —mod, (M, N)— M &4 N identifies with the
extension of scalars (A ® A) — mod — A — mod viam : A®@ A — A. Here m is the
product in the algebra A. So, the right adjoint mult® : A — mod — (A ® A) — mod is
the restriction of scalars via m, it is continuous.
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The functor mult® is a functor A — mod-bimodule categories, as far as I understand,
because of the following. Given M, M; € A — mod, consider M1 ® My € A ® A — mod.
Then (M; ® Mz) @aga M = (M1 ® Mz) ®aga A) ®a M, and

(My @ Ms) @aga A= My @4 My

More generally, let A € C Alg(1 — GatSt’cocmpl) be rigid, A € CAlg(A). Let us show

cont

that A — mod = A — mod(A) is rigid. Since for M € A — mod,
Ma’pfl—mod(‘A7 M) /;; Ma'pA(]'Aa M)7

A is compact in A — mod. The multiplication functor is the composition (A X A) —

mod(A® A) % (A®A) — mod(A) Ly mod, where [ is the extension of scalars via
the product p: A® A — A, and « is the functor M — m(M). Here m: A® A — A is
the multiplication functor. The right adjoint 3% of 3 is the restriction of scalars via p,
it is continuous. The right adjoint to a is the composition

(A®A) —mod(A) B mBA@A) —mod(A® A) B (AR A) — mod(A® A)

where 79 is the restriction of scalars via AXA — mf(m(AXA)), and 71 is the functor
H — mP(H). It exists because m® is right-lax symmetric monoidal, this is in turn
because m : A® A — A is symmetric monoidal. We see that the composition voy; 3%
is continuous.

Why ~271 6% is a functor of (A — mod)-bimodule categories? We have already seen
this for 8% above. We have to show that given M, N; € A — mod,

mP(Ny @4 M @4 No) = mB(M) @ g4 (N1 K Ny)

I think this is proved using the fact that m® is continuous and writing the bar resolution
of Ny ®q M @4 No.

6.1.5. For (ch. 1, proof of 9.1.5). They say that if A € Alg(1l — C’.atSt’Cocmpl) and

cont
F: M — N is a right-lax functor between A-modules, where M, N € A —mod5:2"
assume A is compactly generated and for any a € A, m € M, a® F(m) — F(a®m)
is an isomorphism. Then F is strict.

Suppose A rigid. Then for a € A° the functor R : A — Sptr,z — Maps 4(a, )

is continuous, its left adjoint is the functor L : Sptr — A,z — z ® a. Using my
Section we see that the functor id@R : A ® A — A is right adjoint to id ®L :
A—+ A® A. Here id®L sends b to bX a. So, the functor A — A, a/ — d’ ® a admits
a right adjoint. The left dual a“"" to a € A° is calculated as (id @ R)m®(1). Here
mf: A — A® A is the right adjoint to m : A® A — A. The right dual aV® to a € A°
is calculated as (R ® id)m®f(1).
Remark Let A € Alg(1— @atfghctocmp ") be rigid then mf : A — A® A is not necessarly
fully faithful. For an example of such a DG-category, take A = Rep(G), where G is
a reductive group. Then for A: B(G) — B(G x G) the map A*A, e — e is not the
isomorphism, where e is the trivial representation of G.
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6.1.6. For 9.2.1. Let us check that the composition A dgu 4 RARA A4 i
isomorphic to id. This uses the fact that (in any monoidal category) 1V-* = 1= 1V,
We have to show that for a € A the image of (a¥1)@mf(1) = mf(a) = mP(1)®(1Ka) €
A® Aunder Ry ®id: A® A — Ais a. Here Ry : A — Sptr sends b to Maps 4(1,b).
This follows from the fact that (R; ® id)mf(1) = 1% =1, see the previous section.

Similarly, the composition A v 4 RARA 48° 4 is the identity, this follows from
(id®Ry)mP(1)=1.

The isomorphism ¢4 : A = AY = Funey cont(4, Sptr) sends a to the functor A —
Sptr,b — Maps4(1,b ® a). The functor qﬁ;ll : AY — Asends f : A — Sptr to the
composition (id®f)m#(1), here id®f : A® A — A is the functor obtained from f
by tensoring with A on the left. Indeed, this map sends R; to 1, and is a map of left
A-modules.

6.1.7. For 9.2.3. Recall that Fune, cont(A, A) is the relative inner hom from A to A
in 1 — Cat>b°™! see my Section . The right action of h € Funey cont(A, A) on

cont

g € Funeg cont (A, Sptr) is gh. The homomorphism A™ — Funeg cont(A4, A) sends a to
the functor A — A,z — x ® a, and this gives a left action of A on AY. Then ¢4 is
compatible with the left A-module structure. The isomorphism ¢4 is not compatible
with the right A-module structures. Indeed, this is because A is not symmetric monoidal
in general: given a,x,b € A, Maps4(1,a®b® x) is different from Maps 4(1,a @ x @b).
6.1.8. For 9.2.6. Let L: A — B, R: B — A be maps in 1 — Cat5:%“™" Assume L is
left adjoint to R. Assume A, B dualizable, so we get the dual functors LY : BY — AV,
RY : AV — BY. The dualization extends to a functor of (co,2)-categories? Sam says
the answer is yes. So, R is left adjoint to LV.

The map m"” : AY — AV® AV is a map of left A-modules, so in their diagram 9.2.6(a)
all the maps are maps of left A-modules. It suffices to check that the images of 14 are
the same. One has ¢4(1) = Ry, this is the functor A — Sptr,z — Maps4(1,z). We
may think of AV as a free left A-module over A with generator R;. Commutativity
of the diagram 9.2.6(a) is obtained as follows: It suffices to show that the diagram
commutes

(m*)Y
AV T AV AY
T ¢a T 6a®¢a
A & AxA

Let h € AV. Since all the maps are maps of left A-modules, it suffices to show that
both images of Ry ® h coincide in A. We have seen above that (R; ® id)m®(1) = 1.
So, for a € A, (R; X h)m%(a) = (idXh)(R; Kid)(m®(1) ® (1Xa)) = h(a). So, h is the
image of Ry ® h by (mf)Y. Further, the image of h by ¢ ;" is (id®@h)mf(1) € A, see
my Section The image of Ry ® h under ¢ ;' ® ¢, is 1® ((id @h)mF(1)) € A® A.
We are done.

6.1.9. For 9.2.6(b). Let Ay act on AY on the left, so a € Ag sends h to the functor
Ay — Sptr,z +— h(z ® a). Similarly, A; acts on the left on AY. Since F : A; — A
is monoidal, FV : Ay — A} is a morphism of left Aj-modules, where A; acts on Ay
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on the left via composing with F' : A — As. So, if 9.2.6(b) is true, the map FF
should also be a morphism of left A;-modules. This means that for a; € A; we should
have FR(F(a1) ® az) = a1 ® F%(as). In the other direction, this property would imply
9.2.6(b). Indeed, given as € Ag,z € A1, we have to show that

Maps 4, (1, F(z) ® az) = Maps 4, (1,7 @ F%(as))

This is obtained as follows: for z € Sptr,

MapSptr(Z7 MapsAg(L F(.ﬁlf) ® (12)) — MapAg (Z @ 17 F(CB) ® a2) -
Map 4, (2®1, FR(F(a?)®ag)) — Map 4, (2®1, x®FR(a2)) = Mapgs, (2, Maps 4, (1, :1:®FR(a2)))

Clearly, F is a morphism of Aj-modules, so F'® is a right-lax map of A;-modules. Their
(ch. 1, 9.3) claims that any right-lax morphism of Aj-modules is strict. So, we have
reduced 9.2.6(b) to (ch. 1, 9.3), that is, their Lemma 9.3.6.

6.1.10. For 9.3.2. Explanation for the proof: the transformation from the identity
functor id : A® M — A ® M to the functor

AoM ™S9 A0 A0 M 1YY A9 M
uses the natural map 1 X1 — m®(1) in A® A. It gives functorially in a € A,m € M
the map (aX 1) = (a X 1) @ mf(1) = mf(a).
For (ch. 1, 9.3.3). Let A € Alg(1 — Cat>:%™"') be rigid, M € A — mod, N €

A" — mod. One may strengthen (ch. 1, 9.3.3) as follows. Consider the dual pair

I:NOQMS Ny M:rinl— Catf(f;;ocmp !. The functor r is monadic, and gives an

equivalence N @ 4 M =A — mod(N ® M), where A = rl is the corresponding monad.
This follows from (HA, 4.7.5.1). Indeed, we may pass to right adjoint in the diagram

N@aM = colim N@A"®@M and get N®@4 M — lim N®A"®M in 1 — Catteoempl,
[nJe AP [n]eA

cont

1— eatSt,cocmpl

comt — 1 — Cat preserves limits.

Besides,
6.1.11. For (ch. 1, 9.3.4). The nontrivial part is: let m € M be compact then
m is compact relative to A. To prove this let a« € A. We show that the functor

M — Spc,m’ — Map,;(a®@m,m’) is continuous. The functor M — M, m — a®m has
act?

a right adjoint given as the composition M "= A® M red M, where f: A — Sptr is
the functor f(z) = Maps,(a,z). Note that f is not necessarily continuous! However,
(f ®id)actf® : M — M is continous, because this is the functor m’ + u ® m’ of action
by u, where u € A is the element (f ® id)m®(1). Here m® : A — A ® A is the right
adjoint tom: A® A — A.

6.1.12. For the proof of (ch. 1, 9.3.6): there is a misprint, (9.5) maps to (9.2). This
map uses in addition the right-lax structure on F. Namely, given m € M, one gets
the map act(id ®@F)(id ® act)(mult®(1) ® m) — F(act(id ® act)(mult®(1) @ m)) =
F(act(mult mult’(1) @ m)) — F(act(1 ® m)) = F(m).

The desired map is a map of left A-modules, so it is easy to add a € A in the above.
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6.1.13. For (ch. 1, 9.4.4). Let A € Alg(1 — Cat>>““™!) he dualizable. The functor

cont
oblv : A — modfj;ﬁocmp 1 Gatfj;ﬁocmp ! has a right adjoint by my Section ﬁ This
right adjoint 1—Cat>22 ™ 5 A—mod5-“™ sends C to AY®C, where the A-module

structure is given by the left A-action on AV. This formally implies an equivalence
(10) Funeg cont (M, N) = Funs (M, AY @ N)

in 1 — Cat>beo™Pl for M € A — mod b N € 1 — Cat ™! Here the A-module

cont cont cont
structure on AY ® N comes from the left A-action on AV.
Note that Funeg cont(M, N) is naturally a right A-module, view Funs (M, AY @ N)

as a right A-module via the right A-action on AY. Then is an isomorphism in
(A — mod")352“mP! this follows from Remark

cont

Assume now A € CAlg(1—Cat>-™Ph) M € A—modSh™P! Assume M dualizable

cont cont
in the symmetric monoidal category A — mod>o™! Then for N € A — mod> Lo

cont cont
we get

Funs(M,N) =S M"Y @4 N

in A — mod3teomPl gee (ch. 1, 4.3.2). So, for D,C €1 — Cat>beoempl o oot

cont cont
D @ Funeg cont(M,C) S D@ MY @4 (AY0C)S MY 4 (A @ C® D),

St,cocmpl

oot P-categories (see ch. 1,

because the tensor product over A is a map of 1 — Cat
4.2.1).

The same idea is used in ([14], ch. 1.1, 9.4.8).

Lemma 6.1.14. Let €, D € 1 — Cat>%™! ¢ c ¢ d € D°. Then cRd € (€ ® D)C.

cont

Proof. Consider the maps f : Sptr — €, g : Sptr — D in 1 — Gatf(f;ﬁocmpl given by

f(1) =¢, f(1) = d. By my Lemma they admit continuous right adjoints f%, ¢’
By Section B gf: C® D — Sptr is right adjoint to f ® g : Sptr — € ® D.
Since f @ g™ is continuous, ¢ K d is compact by (ch. 1, 7.1.5). Recall that Sptr is

compactly generated. O
6.1.15. Let I be a small set, fori € I let C; € 1—(‘3atf(f7ftocmpl. Then Uie;Ci = [, Ci
in 1— Cat>>“™! Indeed, given D € 1 — Cats ™" one has

Funeg cont(] | Ci, D) = Fun® (D, [[ Co)? = [[Fun®(D, €)= [ Funee cont (Ci, D),
el el el el

here Fun® denotes the category of functors, which are right adjoints.

6.1.16. If A,B € Alg(1l — Gatfj’wcmpl are rigid then A ® B is also rigid. Indeed,
1 € A® B is compact by Lemma Let m: A > A®Aand m: B - B®B
be right adjoint tom : A® A — A and m : B® B — B respectively. Since m’, m® are
continuous, m® ® mf is also continuous, and similarly, m® @ m® is A ® B-bilinear.

R
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6.1.17. Given A € Alg(l—@atfj;ﬁocmpl), M e A—modfot;;ocmpl, N e (A—mod”)fo'ﬁocmpl,
St,cocmpl .

their cotensor product is M@4N € 1 —Cat,); is given by the property: functorially

in D € 1— Cat>2>““™! one has

A —
Mapl—@atf;;;wmpl (D, M ® N) — Ma;pA®AT.7n_m0dCSOt’;§ocmpl (A ® D7 M ® N)

It is understood that the A ® A™-module structure on A ® D comes from that on A.
This cotensor product clearly always exists, M @ N = Fun Agarm (A, M @ N).
Besides,
N®4AM=ARsgarm (M @ N),
here A is viewed as a right A ® A"-module. Indeed, write A= [c]olgnp A®"H2 a5 the
n]€A°

usual bar complex in AQ A" —mod. The terms of this colimit are free AQ A"™-modules,
SO

colim A®"2 @ 4o arm (M @ N)= colim A" @ M ® N N @4 M,
[n]e AP [n]e AP

we used that the last colimit is the usual bar complex calculating N ®4 M as in
Section [3.1.8]

6.1.18. The following idea is due to Lin Chen (email 29dec2019), but the proof is
wrong!!! The problem is that the equivalence C ® D = RFun(C, D) is ill-behaved in
functoriality.

Lemma 6.1.19. Let A € Alg(1—Cat3' ™) et C, D € 1—Cat be small. The natural
functor

Fun(C,A) ® 4 Fun(D, A) = Fun(C x D, A)

Stcocmpl

is an equivalence. Here the tensor product is the relative rensor product in 1—Cat_,, ;

(equivalently, in Prr).

Proof. The LHS identifies with colim,c aor Fun(C, A) ® A®" @ Fun(D, A). By (HA,
48.1.17),

Fun(C, A) ® A®" @ Fun(D, A) = RFun((Fun(C, A) ® A®™)°? Fun(D, A)) =
Fun(D, RFun((Fun(C, A) ® A®™)°P, A) = Fun(D, Fun(C, A) ® A®" @ A)

Here RFun(—, —) denotes the full subcategory of Fun spanned by functors which are
right adjoints (equivalently, preserving small limits and accessible).

The colimits diagram colimp,jc aoo» Fun(C, A)® A®" ® A= Fun(C, A) is an augmented
split simplicial object (HA, Def. 4.7.2.2). By (HA, Remark 4.7.2.4), we get

[C}oliAm Fun(D, Fun(C, A) ® A®" ® A) = Fun(D, Fun(C, A))
njec AP
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6.1.20. if A is an algebra in Sp then we have the category A —mod(Sp) of A-modules
in Sp. By Section A — mod(Sp) € 1 — Cat5-™ The t-structure on Sp is
compatible with filtered colimits by Lemma . Recall that Sp=Y @ Sp=* = Sp=0,
where the tensor product is taken in the sense of Pr, see ([33], C.4.1). Assume A €
Sp=C. Then we define the t-structure on A — mod(Sp) so that A — mod(Sp)=Y is the
preimage of Sp=? under oblv : A — mod(Sp) — Sp. This is an accessible t-structure by
([28], 1.4.4.11), and A — mod(Sp) is compactly generated by A ([28], 7.1.2.1). We have
Maps 4_mod(sp) (A, ) = oblv(z) in Sp for x € A—mod(Sp). Here for C' € 1—€atfot;§ocmpl
and ¢, € C we write Mapsq(c,c’) € Sp for the relative inner hom. The t-structure
on A —mod(Sp) is compactly generated, in the sense that A —mod(Sp)=" is generated
under filtered colimits by A —mod(Sp)=° N A —mod(Sp)¢. Now as in Lemma the
t-structure on A — mod(Sp) is compatible with filtered colimits.

As in Lemma one shows that A — mod(Sp)~° = oblv~}(Sp~?), so oblv :
A — mod(Sp) — Sp is t-exact. By my Section A — mod(Sp) is right complete,
because oblv : A — mod(Sp) — Sp preserves colimits. Then (A — mod(Sp))? identifies
with H°(A) — mod(Sp®) by ([33], C.1.4.6). Note also that Sp=C C Sp is stable under
products by Section Since the t-structure on Sp is left complete, my Remark
after Cor. shows now that the t-structure on A — mod(Sp) is left complete.

For example this holds, for A = Q. Let Vectg be the DG-category of vector spaces
over Q, namely the (left and right completion) of the derived category attached to the
abelian category of Q-vector spaces.

Lemma 6.1.21. The category Vectg identifies with Q — mod(Sp), where Sp is the
category of spectra.

Proof. The category Q — mod(Spo) has enough injective objects, so there is a canon-
ical functor D(Q — mod(SpQ?))+ — Q — mod(Sp)™ given by the universal property of
the derived category (HA, 1.3.3.2). We want to apply ([14], ch. 1.3, 2.4.5) with the
correction from my Section The category Q — mod(Spo) is that of Q-vector
spaces, every its object is injective. To apply ([I4], ch. 1.3, 2.4.5) it suffices to check
that for z,y € Q — mod(Sp”) and n > 0 we have Homq_04(sp) (7, y[n]) = 0. Writing
x as a colimit of finite-dimensional vector spaces, we may assume dimg xz < oo and the
in turn, z = Q. In the latter case we have Mapsg_pmod(sp) (Q, y[n]) = y[n] in Sp. So,

HO(MapsQ_mod(Sp) (Q,y[n]) = 0 for n > 0. Thus,
D(Q — mod(Sp”))* = Q — mod(Sp)*

is an equivalence.

It remains to check that Q — mod(Sp) is left complete. The functor oblv : Q —
mod(Sp) — Sp reflects limits. So, for 2 € Q — mod the natural map = — lim,, 72"z is
an isomorphism, because Sp is left complete. Now apply Remark after Corollar
it is applicable, because Sp=" C Sp is stable under products by Remark
shows that Q — mod(Sp) is left complete. O

It is known that Q — mod(Sp) ® Q — mod(Sp) = Q — mod(Sp), where the tensor

product is taken in 1 — Cats:%! and in Pr’. So, Sp — Vectq defined an idempotent
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eatSt,cocmpl

cont ) and

inl-—

Vectg —mod(1 — GatStvcocmpl) C 1 — @atStcocmpl

cont cont

is a full subcategory.

7. TRUNCATIONS AND HOMOTOPY GROUPS

7.1. For n > 0 a space X € Spc is called n-truncated iff m;(X,z) = 0 for all z € X,
i > n. We say that X is —1-truncated if it is empty or contractible, X is —2-truncated
if X is contractible ([27], preface). Recall that m;(X,z) is defined as mo(Q* (X, x)) for
the i-th iterated loop space Q¢(X, ).

Whitehead theorem: if X € Spc and 7;(z, X) =0 for all x € X, > 0 then X = x in
Spc.

In fact, for n > —1 a space X € Spc is n-truncated iff for any =,y € X, Mapx(x,y)
is n — 1-truncated ([27], proof of Cor. 2.3.4.19).

For n > 0, X € Spc is n-connective iff X is nonempty and for any = € X, m;(X, x)
vanish for 7 < n. By definition, any X € Spc is —1-connective ([27], preface). A space
X is O-connective iff X is nonempty.

If f: X — Y is a morphism in Spc then f is a bicartesian fibration in spaces. Let
z € X,y = f(x) and X, = X xy y then there is a long exact sequence of groups (at
the end of pointed sets)

7Tn+1(Yay) — Fn(waT) — Wn(Xa .CU) — 7"'71(1/7 y) — 7"'n—l()(yym) — .
— (Y, y) = mo(Xy) — mo(X) = mo(Y)

The full subcategory 7<, Spc C Spc is stable under filtered colimits. Since Idem is
filtered, 7<, Spc C Spc is stable under retracts.

For € € 1 — Cat let P<,(C) = Funct(C, 1<, Spc). If € is small and equivalent
to n-category then Ind(C) C P<,—1(€), and Ind(C) is also equivalent to n-category
([27], 5.3.5.6). So, if € is ordinary then Ind(C) is also ordinary category. If fSets is
the category of finite (possibly empty) sets and any morphisms then Ind(fSets) is the
category T<o Spc of sets.

The functor ; : Spc, — Sets preserves filtered colimits. Indeed, if X = colim;c; X;
with [ filtered in Spc, then Q(X)= colim;e; Q(X;) by (HTT, 5.3.3.3). Besides, m
preserves all colimits, and m; preserves finite products.

The functor 7y : Spc — Sets preserves all products. This gives that 7; : Spc, — Sets
preserves all products.

Question: let X € 7<,(Spc,), set A = m,(X), let K(A,n) € EM,(Spc) be the
corresponding Eilenberg-MacLane object. Do we have a natural map K(A,n) — X
inducing an isomorphism on m,?7 Motivation: if it was an object of Sptr then yes, this
would be the map 7>, X — X in Lurie’s notations.

7.1.1. By (HTT, 5.5.8.13) any G € Spc can be written as a geometric realization of
sets. In turn, every set is a filtered colimit of finite sets. Thus, Spc is generated by
finite sets under sifted colimits.
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7.2. Let C €1 — Cat, X € C. By definition, if n > —1 then X is n-truncated iff for
any Y € C, Mape(Y, X) is n-truncated. We say that X is —2-truncated iff X is final in
C, X is discrete iff X is O-truncated. Denote by 7<, € C € the full subcategory spanned
by n-truncated objects ([27], 5.5.6.1).

The category 7<oC is canonically equivalent to the nerve of its homotopy category
and denoted Disc(C), the category of discrete objects. So, Disc(C) is a usual category.

Recall that mo(X) is a set, 71 (X, x) is a group, and for n > 2, m;(X, z) are abelian
groups.

The category 7<oSpc C Spc is precisely the category of sets. For X € Spc,
T<0X — mo(X) canonically in Spc. The category 7<iSpc is the category of usual
groupoids. For X € Spc we have 7<_1(X) = 0 for X = ), and 7<_1(X) = * for
X #0.

If X € Spec then X" € 71 Spe. Do we have X" = 7<1 X naturally?

721. A map f: X — Y is Spc is k-truncated iff any fibre X, for any y € Y is
k-truncated. A map f: X — Y in Spc is —2-truncated iff f is an equivalence (iff any
fibre is isomorphic to ).

IfCel—_Cat, f:c— damorphism in €. Then f is k-truncated iff for any e € C
the map Mape(e,c¢) — Mape(e,d) is k-truncated. The latter is equivalent to saying
that f € C/d is k-truncated ([27], 5.5.6.8; 5.5.6.10).

The k-truncated morphisms in € are preserved under passing to pull-backs ([27],
5.5.6.12).

If f:2z— yisamapin € € 1— Cat, it is said to be a monomorphism iff for any
z € €, Mape(z, ) — Mape(z,y) is a full subspace (equivalently, f is —1-truncated).

The claim ([27], 5.5.6.15): let € € 1—Cat admit finite limits and £ > —1. A morphism
f:c— c in € is k-truncated iff the diagonal map ¢ — ¢ X ¢ is (k — 1)-truncated.

For € € 1—Cat, r__,C C Cis the full subcategory of final objects. If C admits a final
object 1 then ,__, € C € is the full subcategory spanned by the subobjects of 1.

722. If K € 1— Cat. Assume 7<,C = € then Funct(K,C) has the same prop-
erty ([27], 2.3.4.20). This implies that the canonical inclusion Fun(C,7<, Spc) —
T<pFun(C,Spc) is an equivalence. Indeed, given Y € 7<,P(C) for ¢ € C we get
Mapy e (¢, Y) =Y (¢). So, Y(c) is n-truncated. The truncation functor

T<pn : Fun(C, Spc) — Fun(C, <, Spc)
is obtained from 7<), : Spc — 7<,, Spc applying Fun(C, ).

7.2.3. Recall that 1 — Cat®™ < 1 — Cat denotes the full subcategory of ordinary
categories. Is it 7<1(1 — Cat)? If A, B € 1 — Cat®™ ™ then Funct(A, B) € 1 — Catr™®
and Map;_ea (A, B) € 7<1 Spe. So, B is 1-truncated in 1 — Cat. We have shown that
1 — Cat"" C 7<1(1 — Cat) is a full subcategory.

Given B € 1 — Cat, we have B € 7<o(1 — Cat) iff B is a usual category such that for
any b € B, Autg(b) is trivial. Indeed, since B¢ is O-truncated and Map; e, ([1], B) is
O-truncated, we see that each Mapg(b,b’) is a set. Conversely, for B as above and any
A €1 — Cat, Map;_eai (A, B) = Funct (A" B)SPC is a set.
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7.2.4. If C is presentable, the inclusion 7<, € C € admits an (accessible) left adjoint
T<p : C = 7<»C ([27], 5.5.6.18), and 7<,,C is also presentable ([27], 5.5.6.21).

If € € 1 — Cat is presentable, a simplicial resolutions in € is an augmented simplicial
object U)” : (A4)? — €, which is a colimit of the underlying simplicial object U, :
A% — C. Let Res(€) C Funct((A4+), C) be the full subcategory spanned by simplicial
resolutions. Then Res(C) — Funct( A, €) is an equivalence ([27], after 6.1.4.3).

For a topos (actually, for a semi-topos) €, Lurie defines a notion of effective epimor-
phism. Namely, let Resgs¢(C) C Funct((A4 ), C) be the full subcategory spanned by
Cech nerves, which are simplicial resolutions. A map f : U — X in C is an effective
epimorphism iff the Cech nerve C'(f) is a simplicial resolution. The restriction functor
Funct((A4)%, €) — Funct([1], €), where [1] = (A1 <o), identifies Resgf¢(C) with the
full subcategory of Funct([1], C) spanned by effective epimorphisms ([27], 6.2.3.5).

For example, a map f : X — Y in Spc is an effective epimorphism iff mo(X) — mo(Y")
is surjective ([27], 7.2.1.15).

More generally, for an oo-topos X a morphism ¢ : v — z in X is an effective epi-
morphism iff 7<g¢ : T<ou — T<px is an effective epimorphism in the ordinary topos
T<oX ([27], 7.2.1.14). So, for C € 1 — Cat a map f — ¢ in Fun(C, Spc) is an effective
epimorphism iff for any ¢ € C, mo(f(c)) — mo(g(c)) is surjective.

If C is an oo-topos then the functor 7<, : € — € preserves finite products (HTT,
6.5.1.2).

7.2.5. If € is k-compactly generated then ¢ € € is n-truncated iff for any d € C~,
Mape(d, ¢) is n-truncated (cf. HTT, proof of 5.5.7.4).

7.2.6. Let x be an object in an oo-topos X and n > —1. We say that x is n-connective
iff 7<,—12 is a final object of X ([27], 6.5.1.12). Every object of X is (—1)-connective.
Equivalently, x is (n + 1)-connective iff the natural map Mapy(1,y) — Mapy(z,y) is
an equivalence for all n-truncated objects y in X (after 6.5.1.13).

For x € X we say that x is connected iff x is 1-connective, that is, 7<oz is a final
object of X. This is equivalent to the property that any map 1 — x is an effective
epimorphism (here 1 is a final object of X), see the proof of ([27], 7.2.2.11).

The homotopy group of X € X are defined in ([27], 6.5.1.1). Namely, if S™ is n-sphere
with a based point, then * — S™ yields a map s : X°" — X in X, so s € X/X. Then
Tn(X) = 7<05 € X/ X.

Now if f: X — Y is a morphism in the oco-topos X then for 0 < n < oo Lurie says
that f is n-connective iff it is an effective epimorphism and 7, (f) = * for 0 < k < n.
Every morphism is —1-connective ([27], 6.5.1.10). In fact, f : X — Y is n-connective
iff f is m-connective in the oco-topos X /Y, this is equivalent to the property that the
n — l-truncation of f is an equivalence X'=Y in X.

Example: let X — Y be a map in an oo-topos X, y € Y, X, the fibre at y. Let
1 € X be a final object. Let n > 0. If 7<¢X — 1 is an effective epimorphism in 7<¢X
and X,,Y are n-connective then X is n-connective.

Remark 7.2.7. Let f : x — y be a map in an oco-topos X. If f is n-connective then
T<n—1% — T<p—1Y 8 an tsomorphism in X.
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Proof. Let z € 7<,1X. It suffices to show that the natural map Mapy(y,z) —
Mapy (7, z) is an isomorphism. The functor X — X, h = hxy is a right adjoint, hence
left exact, so sends r-truncated objects to r-truncated. Now apply (HTT, 6.5.1.14) for
the (n — 1)-truncated object z x y — y of X,,. O

7.2.8. Let X be a topos. The category EM,,(X) of Eilenberg-Maclane objects of degree
nin X is defined in ([27], 7.2.2.1). This is the full subcategory of Funct([1], X) classifying
pointed objects 1 — z,x € X such that 1 is final in X, and z is both n-truncated and
n-connective. This makes sense at least for n > 0.

For example, EMy(Spc) is the category of nonempty pointed sets * — x, where
x € Sets.

For X an oo-topos, EMy(X) = Disc(X), is the category of pointed objects of Disc(X)
(27, 7.2.2.12). If = € Disc(X), 1 is a final object of X, then z — 1 is an effective
epimorphism in X.

For a given oo-topos X starting from EMp(X) one may recover EM,(X) for n > 0
using ([27], 7.2.2.11). Namely, let X° C X be the full subcategory of connected objects,
Ptd(X%) be the pointed category of X°. Then for n > 1 we have a fully faithfull em-
bedding EM,,(X) C Ptd(X°), which identifies under the equivalence Ptd(X?) = Grp(X)
with the full subcategory Grp(EM,,_1(X)) C Grp(X,) = Grp(X).

7.2.9. If S € 1 — Cat then the final object of P(S) = Funct(S°, Spc) is the constant
presheaf with value . An object F' € P(S) is —1-truncated iff it is a subobject of the
constant sheaf *. There could me many of them. For example, if Z is a topological
space and S is the category of open subsets in Z then any u € S gives a —1-truncated
object Mapg(-,u). What is the description of (—1)-truncated objects in P(C), where
C € 1 — Cat is arbitrary?

If C € 1-Cat, I € P(C), c € Cthen F(c) = Mapgpe)(c, I), where we identified ¢ with
the image of its Yoneda embedding ([27], 5.5.2.1). So, if F' € Disc(P(C)) then for any
c€C, F(c)is aset, and F': C — Sets is a functor. So, F' factors canonically through a
functor F': €T — Sets. We constructed a functor Disc(P(€)) — Funct(C9" Sets).
This is an equivalence. The subcategory 7<_1(P(€)) C Funct(C ", Sets) is the full
subcategory spanned by the subobjects of the terminal object(=constant presheaf with
value ).

If now C € 1 — Cat is equipped with a Grothendieck topology, consider the category
Shv(€) of sheaves on € with respect to this topology ([27], 6.2.2.6). Is it true that
Shv(Co 4" Sets) is canonically equivalent to Disc(Shv(€))? For any ¢ € € write ¢ for
the sheafification of c. For F' € Shv(€) we get Mapgpy(e) (¢, F') = Mapgpe)(c, ') = F(c).
If F' € Disc(Shv(C)) then F(c) has to be a set for any ¢ € €. So, F': € — Spc factors
through Sets C Spc, hence also factors through F : €79 — Sets. The resulting F' has
to be a sheaf in this Grothendieck topology (which is really given on @°r4"),

7.2.10. (HTT, 6.2.3.20) is model independent, could be useful. For an oco-topos X
and a small € € 1 — Cat with a Grothendieck topology, it describes the left exact
colimit-preserving functors Shv(€) — X as some full subcategory in Fun(C, X).
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7.2.11. If Cis a usual category admitting finite products, write Grp(C) for the category
of groups in €, Ab(C) for the category of abelian group in C. It is easy to see that
Grp(9rp(C)) = Ab(C) canonically. Besides, Srp(Ab(€C)) = Ab(C) canonically (used in
[27], 7.2.2.12).

7.2.12. If € is an oo-topos, 1 the final object of €. Lurie mentions that Disc(C) is
also a topos. By definition z € € is connected iff 7<pz is a final object in €. Denote
by Ptd(C) the oo-category of pointed objects 1 — z,z € €. Denote by C° C € the
full subcategory spanned by connected objects. Then the inclusion Ptd(C?) — Ptd(C)
admits a right adjoint F, and F sends 1 — = to 1 — . Here 1= 7<0l — 7<oz is the

induced map, and z° = z Xroo(x) 1. For z € Ptd(C€) we have a canonical map in Ptd(C)

x X’Fgo(l) 1l—z

Indeed, for any y € X has has the evident map Map(y,= x,_ ) 1) — Map(y, r)
functorial in y € €. I think it induces an isomorphism Q(z X,_; ;) 1) = Q(z), but I
have not checked this.

Consider the functor © : Ptd(C) — Grp(C). We may now derive the existence of
the left adjoint B to this functor from ([27], 7.2.2.11). Moreover, we see that B is the

composition

T<o(x

Srp(C) = Ptd(C°) — Ptd(@),

it sends G to B(G) = colimp,jc qor G" taken in C. The inclusion Ptd(€%) — Ptd(C)
is stable under finite products. So, the functor B : Grp(€) — Ptd(€) preserves finite
products. By (HTT, 7.2.2.5), B sends Grp(Srp(C)) to Grp(Ptd(C)).

Let H € ComGrp(C) act on some G € Grp(C) via a group homomorphism H — G,
which is "central”. To be precise, we will mean by this that the diagram A% — C,
[n] = H™ x G defining the H-action on G, is actually a diagram A% — Grp(C).
Applying the functor B to this diagram, we get an action of B(H) on B(G). In
particular, the action map H x G — G is a morphism in Grp(€), so we may apply B
to this map.

Question: assume f : G — K is a morphism in Grp(C), which is an effective
epimorphism, and H is the fibre of G. Assume H € ComGrp(C) and H is ”central”
in G. Under these assumptions, we would like to conclude that the quotient of B(G)
by the action of B(H) is B(K). That is, we get a map 3 : B(K) — B?(H) in Ptd(@),
which by adjuntion corresponds to K — B(H). Can we conclude that the fibre of 3 is
B(G)?

7.2.13. If X, Y are oo-topoi, a geometric morphism from X to Y is a functor f, : X — Y
which admits a left exact left adjoint (denoted f*). The left exactness of f* means that
f* preserves finite limits.

7.2.14. Let X be an oco-topos, § € Grp(X) and G = G([1]) € X. Let P € X. An

oo-action of G on P is defined as follows. Write X™°"" for the category of left modules
over a monoid in X defined in [14]. Let X™°" be the category of monoids in X. Let

M e XMon™ he such that the underlying monoid is §, and M([0]T) = P. So, G acts on
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P on the left. Recall that AT = A x [1], let j : A — A" be the map sending [n] to
[n]* and defined naturally on morphisms. In other words,

JiATAx{1} > Ax 1] At

Then Mo j: A — X is a groupoid. The colimit of M o j is called the quotient P/G
of the action of G on P. We have a natural map P/G — B(G). Recall that G — mod

is defined as XM xyar0n {G}. Here is the corresponding diagram

GxGxP 3 GxP — P — P/G

— —

s s } s
GxGx1 3 Gx1 - 1 = B(G)

—

Here 1 € X is a final object. The two maps G x P — P are the action and the
projection. In the above diagram both rows are Cech nerves. Moreover, the top row is
obtained by the base change P/G — B(G) from the low row.

So, a G-action on P is simply a datum of an object @ — B(G) together with an
isomorphism P —1 X g(g) Q-

A principal G-bundle over some Y € X is a G-action on some P and an isomorphism
P/G=Y. In other words, the co-category GBun(Y") of principal G-bundles on Y is
defined as G — mod xx {Y'}, where the map G — mod — X sends a left module (G, P)
to P/G.

We have a natural map Mapy (Y, B(G)) — GBun(Y) sending Y — B(G) to its fibre.
The fact that P indeed is a principal G-bundle over Y follows from the fact that the
colimits are universal. Now ([43], 3.17 ) says that the above map is an equivalence

GBun(Y)— Mapy (Y, B(G))

in 1 — Cat. In particular, GBun(X) is a space. The map in the opposite direction is
given in ([43], 3.13).

COMPARE with the results of ([27], 7.2.2.25 and around)! Related exposition is in
https://ncatlab.org/nlab/show/principal+infinity-bundle

The projection G — mod — X, (G, P) — P preserves small limits. Suppose P; —
P «+ P, is a diagram in G —mod admitting the fibre product P; x p P, in G —mod (this
fibred product always exists). The functor F' : G — mod — X sending (G, Q) to the
quotient ()/G preserves this particular limit. Indeed, G' — mod — X,p(g). Our claim
follows from the fact that the projection X,p(g) — X preserves the fibred products
Py x5 P,. Note that this projection does not preserve all limits!

7.2.15. Forn > 11let Yy C 1 — Cat be the full subcategory spanned by categories C
such that for any x,y € €, Mape(x,y) is n — 1-truncated. In Lurie’s terminology ([27],
2.3.4.18), C is equivalent to an n-category. Then the inclusion Y < 1 — Cat admits a
left adjoint 1 — Cat — Y by ([27], 2.3.4.14). In (28], 5.1.1.7) it appears under the name
the ”homotopy n-category”.

7.2.16. Let G € Grp(Spc), B(G) € Ptd(Spc) be the corresponding classifying space.
Then viewing B(G) as an object of Spc, one has Mapp ) (1,1) = G for its point 1 :
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* — B(G). Indeed, if H C G is a subgroup then B(H) X p(g) * — G/H. Apply this to
the diagonal embedding G C G' x G, we get Mapp((1,1) = B(G) xp@)xB(q) * — G-

7.2.17. Let X be an oco-topos, G € Grp(X). For any map Y7 — Y5 in G — mod(X), the
square is cartesian
Y1 — ng
\ \:
Yl/G — YQ/G

This should be by definition. Namely, G — mod is the category X, p(g), S0 a map in

G —mod is by definition a map Y1 /G — Y2/G over B(G). So, making the base change
by * — B(G), we get the above cartesian square.

7.2.18. Let f: G — H be a map in Grp(Spc) which is an effective epimorphism, that
is, mo(G) — mo(H) is surjective. Let K be the fibre of f in Grp(Spc). We show that
B(K) is the fibre of the natural map B(G) — B(H).

Write Z for this fibre, we have an exact sequence

.= m(Z) -5 m(B(GQ)) = m(B(H)) = mo(Z) = mo(B(G))—=x

here 71 (B(G)) = mo(G), 71 (B(H)) = mo(H), so Z is connected. Let Spc” C Spc be the
full subcategory of connected spaces. Recall that Ptd(Spc®) = Grp(Spc), U + QU is an
equivalence. So, Z is recovered from 2Z. We have an isomorphism K = G x g* — Q(Z)
in Grp(Spc), hence also in Spc, as the projection SGrp(Spc) — Spc preserves limits. On
the other hand, QB(K)— K in Grp(Spc), so Z — B(K) indeed.

We get a left action of K on G by left translation by restricting the diagram

meGngGxajG

to.. KxKxG3KxG =X G. My understanding is that the quotient of G by this
—

action is H, so we get a map H — B(K) whose fibre is G.

My understanding is that for any ¥ € Spc with a G-action, one has canonically
Y/K—=Y/G Xp(e B(K) in Spc. If yes then for any G-morphism ¥ — Y in Spc, the
square is cartesian

Y/G — Y'/G
T T
YK — Y'/K
If now Y € Spc is equipped with a G-action then Y/K is equipped with a H-action
such that (Y/K)/H —Y/G. This follows from the diagram, where both squares are
cartesian
Y/G — B(G) — B(H)
T T T
Y/K — B(K) — pt

Assume in addition that K € ComGrp(Spc). Then B(K) € ComGrp(Spc). By
definition, we say that the extension is central if the map a: H — B(K) is a morphism
in Grp(Spc). In this case applying B it yields a morphism & : B(H) — B%(K). Let
Z be the fibre of a@. The exact sequence m(B%(K)) — mo(Z) — mo(B(H)) shows
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that Z is connected. Further, QZ = H xp(x)*— G, so Z— B(G). This means that
B(G) — B(H) is a B(K)-torsor.

Is it true that H is the cofibre of K’ — G in 9rp(Spc)?

Remark: if K € EJ"'%¢(Spc) then we may still define a central extension of H by
K as a morphism « : H — B(K) in Srp(Spc).

7.2.19. If X is an oco-topos then the filtered colimits in X are left exact (HTT, 7.3.4.7).

7.2.20. Let X be an oco-topos, G, H € Grp(X). Then B(G x H)— B(G) x B(H)
in X. Indeed, B(G)— colimp,caor G([n]) in X, so B(G' x H) = colim,c aer G([n]) x
H([n]) = colimp, jmjeaer G([n]) x H([m])— B(G) x B(H). We used that A is sifted,

and the colimits are universal.

7.2.21. Let f : G — H be a morphism in Grp(PreStk), assume for each S € Sch,
G(S) — H(S) is an effective epimorphism in Spc, that is, mo(G(S)) — mo(H(S)) is
surjective. Let K be the fibre of f in Grp(PreStk). Then B(K) is the fibre of the map
B(G) — B(H) in PreStk.

Indeed, we have to show that for any S € Sch, B(K(S)) is the fibre of B(G(S)) —
B(H(S)) in Spc, where B(G(S)) is the classifying space of G(S) in Spc and same for
B(H(S)). However, K(S) is the fibre of G(S) — H(S) in Grp(Spc), and our claim
follows from Section

7.3. Comment to [26]. Consider the full subcategory of Srp(Spc) spanned by § €
Grp(Spc) such that m;(§) = 0 for ¢ > 1. In other words, this are groups in usual
groupoids. This (0o, 1)-category is described in [26] essentially. More precisely, for G in
that category, G := my(9) is a group, and M := 71(9) is a G-module. Now for a given
group G and a G-module M they describe the category of § € Grp(Spc) with 7;(§) =0
for ¢ > 1 and given isomorphisms m(G) = G, m1(9) = M as G-modules. The answer is
the 2-category denoted 33 in ([26], Section 6), essentially given in terms of H3(G, M).

For example, for any abelian group M, H3(Z, M) = 0 and H*(Z/nZ, M) = M, =
{m e M | nm = 0}.

7.3.1. Assume now in addition that G, M are abelian groups, and M is the trivial
G-module. They they define ”abelian cohomology” group H3,(G,M). It is shown
that H3,(G, M) = Quad(G, M) is the group of M-valued quadratic forms on G. They
define a 2-category ngb, which is a kind of categorification of this sz(G, M). Let
EJ'? _like(Spc)q M be the category of G € EJ'P ~like(Spc) equipped with isomorphisms
of abelian groups m(G) = G, m1(§) = M and such that m;(G) = 0 for ¢ > 1. They define
an equivalence

Hoy — ES " (Spe)am
There is a complete description of J-Cf’Lb in their Proposition 15. The set of isomorphism
classes of Egrp_lee(Spc)qM is given by Quad(G, M).

Similarly, one may define the category HZ2 (G, M), it is equivalent to the usual
groupoid of extensions 0 — M —? — G — 0 (in the category of abelian groups).
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We know by ([28], 5.2.6.15) that ES~"**(Spc) = (Spc, )22, the category of 2-connective
pointed spaces. How the two claims are related? As far as I understand, the functor
0? will give an equivalence

{S € (Spc,)Z? | m(9) = G, m3(5) = M, mi(G) = 0 for i > 3} SEI? "™ (Spe)aar

Recall that, using the cohomological grading conventions, Sptr=" = ComGrp(Spc)
canonically, the RHS is the category of commutative groups in Spc. Given abelian
groups G, M in Sets, let ComGrp(Spc)g,m be the category of § € ComGrp(Spc)
equipped with 7(9) = G, 71(9) = M such that 7;(§) = 0 for 4 > 1. The isomorphism
classes of ComGrp(Spc)g v are Extgptr(G, M).

Question 1. Do we have canonically Extgptr(G, M)—= Hom(G, Ms), where My =
{m € M | 2m = 0}7 What is the reference?

Question 2. Consider the forgetful functor ComGrp(Spe)a.ar — ESP'*¢(Spe)gar.
Is it true that on the level of isomorphism classes it induces the natural inclusion
Hom(G, M) — Quad(G, M)?

Question 3. It seems there should be some intermediate object between the two
corresponding to the subgroup Quad(G, Ms2) C Quad(G, M). The latter subgroup
contains Hom(G, Ma), but is strictly bigger in general! What is it?

7.3.2.  The projection Srp(Spc) — Spc preserves limits. Let G — H be a morphism in
Grp(Spc), let Z be its fibre in Grp(Spc), hence also in Spc. Write G/Z for the quotient
of G by Z say acting by right translations (quotient in the sense of the topos Spc). We
have the induced map f: G/Z — H. We claim that f is a monomorphism of spaces.
Proof: Since colimits in Spc are universal,
-~ : n m
(G/Z2) xg (G]Z)—= [n],[mj:gkgleop(Z X G) xyg (Z™ x Q)

Since A is sifted by (HTT, 5.5.8.4), this rewrites as colimp,jc aer (Z" X G) X g (Z" X G).
Using the isomorphism G x g G — G x Z, the latter rewrites as the quotient of G x Z by
the action of Z x Z, which gives G/Z. So, the diagonal map G/Z — (G/Z) xg (G/Z)
is an isomorphism.

Lemma 7.3.3. Let X® : A°? — Spc be a groupoid. Assume that for any n > 0,
X" € 7<;y Spc. Let X be the geometric realization of X*. Then X € T<;11 Spc.

Proof. Let X* : A% be the augmented simplicial groupoid, which is a colimit diagram.
Recall that it is a Cech nerve, and the square is cartesian

f

xt =5 x0
\ g
X0 4% x

Since X!, X0 are m-truncated, f is m-truncated (because T<, Spc C Spc is closed
under limits). By (HTT, 6.2.3.17), since g is an effective epimorphism, ¢ is also m-
truncated. Consider now for any point * — x the fibre y — o — x over this point,
note that y € 7<,, Spc. The corresponding long exact sequence of homotopy groups
gives for n > m + 2, mp(x9) = m(x) = mh—1(y) is exact. Since m,(xo), Tr—1(y) are
trivial, 7, (z) is trivial.
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7.3.4. Let Sets be the category of sets, I € 1 — Cat be small filtered, f : I — Sets
be a functor. Then X = colim;e; f(7) calculated in Spc or 1 — Cat lies in Sets, and
any its object comes from some element of f(i) for some ¢ € I by Lemma
My understanding is that X is the quotient of Ll;c;f(7) by the equivalence relation:
z; € f(i) and z; € f(j) are equivalent if there is a diagram ¢ — ¢’ < j in I such that
the images of x;, z; in f(i’') coincide.

8. LITTLE CUBE OPERADS

8.0.1. Let € € 1 — Cat admit finite limite, set Eo(C) := Ptd(C) = C,,. For k > 1 set
Ei(C) = Mon(E,_1(€)). Let EYP7" < E.(€) be the full subcategory of group-like
objects, defined as the preimage of Grp(€) C Mon(C) under any of k forgetful functors
Ex(C) — E1(C).

If f : @ — Dis left exact then f induces a functor Ey(€) — Ex(D) and EZP~'*¢(@) —
Ezrp—like (@) )

8.0.2. The oo-operads IEE)@, Assoc® are defined in [28]. For a monoidal category €% —
Assoc® one has Algr, / assoc(C) = €1/ by ([28], 5.2.2.10).

9. DG-CATEGORIES

9.1. The category Vect can be defined as D(A), where A is the abelian category of
k-vector spaces, this is the definition from (HA, 1.3.5.8). The t-structure on Vect
is compatible with filtered colimits, and each H™ : Vect — Vect” preserves filtered
colimits by (HA, 1.3.5.21). So, the functors 7", 72" : Vect — Vect commute with
filtered colimits (see my Section . They also preserve products (as for Sptr, see
my Section .

For 10.1.3. To calculate Vect® use ([28], Prop. 1.4.4.1). If V € Vect® then let
V' =3,z ™(V)[—n]. The natural map V' — m,(V) for each n gives taking their sum
amap V — V'’ (we used remark at the end of this subsection). By ([28], Prop. 1.4.4.1)
the latter should factor through a sum over a finite subset in Z, so m,(V) = 0 for all
but finite number of n € Z. Pick n € Z. Let us show that m, (V) is finite-dimensional.
Pick a base {e;}icr in V. Consider the map V — 7, (V) — @icrke;. Again, by ([28],
Prop. 1.4.4.1) it should factor through @®;c ke; for some finite subset J C I. So,
dim m, (V') < o0.

The opposite inclusion follows from the general observation: let C be a stable pre-
sentable category. Let Ki,K; € C° and K; — K — Kj be a fibre sequence in C.
Then K € C° Indeed, C° is stable under cofibres by [27], 5.3.4.15 and 5.5.1.1), and
Ks[—1] — K; — K is a fibre sequence. Besides, C¢ is stable under translations (a
translation preserves colimits, because it is an equivalence).

Vect is compactly generated (cf. ch. 1, 10.3).

For n € Z the functors H” : Vect — Vect” and H” : Vect=? — Vect™ preserve
products. Indeed, we may assume n < 0. The functor 7=9 : Vect — Vect=C preserves
limits. For V € Vect=? we have H"(V) = 7_,(Dold — Kan(V)), where Dold — Kan :
Vect=Y — Spec,. Since Dold — Kan : Vect=" — Spc, preserves all limits, and m; :
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Spc, — Sets preserves all products, we see that H? : Vect<? — Vect” preserves all
products. We are done.

Remark: given A € Alg(Vect?), M € Vect” a right A-module, N; € Vect? a left
A-module, the natural map M ®4 [[, Ni = [[; M ®4 N; is not always an isomorphism
(but it is, if M is finitely presented A-module). Here we mean products and tensor
products in Vect?.

Remark. Let M € Vect, My = 729M, and M; = H'(M)[i] for i < 0. Then for
N < 0 we have 2N M = @?:_N M;. One has M = limy 7=~V M. The natural map
®i<oM; — limy 727N M = M is an isomorphism. Indeed, for any j, 727 (®;<oM;) = 729 M
is an isomorphism, because 727 : Vect — Vect=/ preserves colimits.

9.1.1. From the explicit description of Vect in (HA, 1.3.5), we see that the functors
72" 75" Vect — Vect commute with direct sums, and H" : Vect — Vect” commutes
with direct sums (recall that Vect" is also presentable).

DGCatcopn: admits all limits and colimits, see my Section [6.0.1

9.2. For 10.1.5. Since Vect!® is a symmetric monoidal oo-category, the dualization
functor (Vect’ 4 )P= Vect/ ¢ is an equivalence of monoidal categories.

For (ch.1, 10.2). Recall that in a stable category € with a t-structure (and cohomo-
logical conventions) for X € €<V Y € €2! we have Mape(X,Y) = *. Let K € Vect
then Mapyeet (k, K) = Mapyee (k, 7<K). Since Dold — Kan : Vect=" — Spc is the

right-adjoint to the composition Spc = Sptr — Vect, we get
Ma’pVect(k7 TSOK) - MapSpc(*7 Dold — Kan(TSOK)) — Dold — Kcm(TSOK)

So, for i > 0, H(7=CK) = m; Mapy. (k, K). We have seen above that H™* : Vect —
Vect and 750 : Vect — Vect preserve filtered colimits, so the functor Vect — Spc,
K — Mapvy,.(k, K) preserves filtered colimits. So, the unit object of Vect is compact.

The functor Dold — KanSP* : Vect — Sptr is t-exact, and for V € Vect"** we have,
according to ([14], 1.1, 10.2.3), Dold — KanSP" (V) = V € Sptr”, here we view V just
as an abelian group. Thus, Dold — KanSP" is obtained from the universal property
(28], 1.3.3.2). Namely, the forgetful functor Vect” — Ab is exact, hence extends
first to a t-exact functor Df(VectQ) — Sptr. Since Sptr is right complete for its t-
structure, passing to the completion, we get a functor Vect — Sptr. It must coincide
with Dold — Kan®P'" : Vect — Sptr, because Dold — KanSP' is continuous. Recall
that for v € V we have v = colim,, 7<"v in Vect, so the above functor Vect™ — Sptr
extends uniquely by continuity to the functor Dold — K anSP™.

The functor Dold— K anSP'" is conservative, because the image of the sphere spectrum
under its left adjoint Sptr — Vect is k, and k generates Vect.

For (ch. 1.1, 10.3.1): if f : C — D is a map in Vect/ —mod(1— Cat), where C, D are
stable then f is exact. Indeed, by ([28], 1.4.2.14), it suffices to show that f(0) =0 and
the natural map f(x)[1] — f(z[1]) is an isomorphism for € C. This is true, because
for 0 € Vect,x € C, 0@ 2 —0.

9.2.1. For (ch. 1,10.3.5). If D,C € DGCatmon—<cmPl then
Functy(D,C) := Hom, ¢, yeerra (D, C) € Vect/? —mod(1 — Cat)
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is defined by the property that functorially for X € 1 — Cat
Funct(X, Functy (D, €))% = Mapy,.ird _oq(X % D,C),

here Vect/? acts on X x D via its right action on D. It exists by my Section
Moreover, this category acquires a Vect/%-module structure by ([14], L1, 3.6.5), roughly
via the action of Vect/? on C. We have a natural map Vect/¢ — Funct,(C,C), and
Funct(C, C) acts on Functy (D, C) on the left.

The action map 1 — Cat x Vect/d —mod(1 — Cat) — Vect/4 —mod(1 — Cat) commutes
with colimits in the first variable. This follows from the fact that the forgetful functor
Vect/? —mod(1 — @at) — 1 — Cat is conservative. So, if I € 1— Cat is small, I — 1 — Cat
is a diagram and X = colim;c; X; in 1 — Cat then

Mapyeetfd —moa(X X D, C) = Mapy,rd _ppq(colimier(X; x D), C) =
ilei%}p MapVectfd 7mod(Xi x D’ C)
Since 1 — Cat is presentable, we conclude that the functor (1 — Cat)®? — Spc, X —
Mapyeetfd —moa(X X D, C) is representable ([27], 5.5.2.2).

If C,D € DGCat™"~ ™l with C' cocomplete then Funy(D,C) is cocomplete by
(HA, Lemma 4.8.4.13).
For 10.3.6. If D,C € DGCatcons then the DG-category Functy cont(D,C) of con-

tinuous exact k-linear functors is defined by the property: functorially on X € 1 —

St,cocmpl
Cat cont

Functeg cont (X, Functy, cont (D, C))5P° = Mapy, . . (X®D,C)

(1—Cat ")
As above, the tensor product functor 1 — Cat5=“ ™ x Vect —mod(1 — Cat’:2™P!y —

Vect —mod(1 — @atfj;;ocmp l) preserves colimits in the first variable, because oblv :

Vect —mod(1 — Cat>oemPly 5 1 — CatShe™Pl is conservative. The category 1 —

cont cont
Cat St,cocmpl

ont is not presentable, but cocomplete. The representability of

(1-— GatSt’Cocmpl)"p — Spe, X ~— Mapy, . X®M,N)

cont (1_@atf;£"cm?l)(

is a particular case of a more general claim from (ch. 1, 8.2.1): for any associative
algebra A € Alg(1 — Cat >3-y and M, N € A — mod>:“"" the relative inner hom

cont cont

Hom, ... st.cocmpi A(M, N) exists. By (ch. 1, 8.2.4), Functy cont(D,C) € DGCateont is
cont ’
the inner hom in DGCatcpys.

9.2.2. For D,C € DGCateopnt the embedding Funy, cont(D, C) — Fung (D, C) is defined
as follows. If X € 1 — Cat>%“™Pl we have the full embedding

cont
MapVect —mod(l—(‘?atfg;&ocmpl) (X ® D, C) C MapVectfd 7mod(X x D, C)?

whose image consists of functors f : X x D — C exact and continuous in each variable.
(The action of Vect/? automatically extends to that of Vect by (ch. 1, Lm 10.3.4)).

Remark The category DGCat™"=™Pl admits limits. Indeed, Vect’? —mod(1 — Cat)
admits limits by ([28], 4.2.3.3) and the projection Vect/? —mod(1 — Cat) — 1 — Cat
preserves limits. Now DGCat™" =™l « Vect/? —mod(1— Cat) is stable under limits.
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In fact, DGCat™" P!l admits filtered colimits, and the projection DGCatmen—cocmpl _,
1 — Cat preserves filtered colimits.

9.2.3. For 10.3.7. Let C € DGCat™=mPl ¢, ¢; € C. The functor (Vect/4)? —
Spc, V = Mapq(V®cp, ¢1) is representable because of the following. It clearly preserves
finite limits. Let F : Vect®” — Spc be its RKE along (Vect/?)? — Vect®. Consider
F°P : Vect — Spc®, it is continuous by (HTT, 5.3.5.8). By (HTT, 5.5.2.2) it suffices
to show that F' preserves small limits. Thus, it remains to show F' preserves finite
limits. The category Spc® is not presentable probably, but in (HTT, Prop. 5.5.1.9)
the condition that D is presentable may be relaxed, one may just require D cocomplete!
(Jacob confirmed by email). Then the desired claim follows from (HTT, 5.5.1.9).
Important addition: for ¢; € C,V € Vect/? one has naturally

Mape(V @ co, ¢1) = Mapg(co, VY @ c1),

where V'V is the dual of V by ([28], 4.6.1.5, a version with right-tensored replaced by
left-tensored).

Assume in addition C' € DGCat. For ¢; € C write Homcg(cg, ¢1) € Vect for the inner
hom with respect to the Vect-action on C. Then for V' € Vect® one has

Home(V @ co, 1) = Home(co, VY @ c1)

Besides, for V' € Vect there is a canonical map V ® Homg(co, c1) — Home(co, V @ ¢1)
in Vect, which is an isomorphism for V' € Vect®. It comes from the canonical map
Home(co, c1) = Home(V ® o, V & 1) = Homyeet (V, Hom(co, V ® ¢1)) in Vect.

Besides, if ¢y € C° then the above map V' ® Homc(co, c1) — Home(cp, V @ ¢1) is
an isomorphism (but not in general). For example, for C' = Vect, ¢ = W,V infinite-
dimensional vector spaces the latter map is not an isomorphism for ¢; = e.

Another addition Assume in addition C' is compactly generated, and f : (C¢)? —
Spc a functor, which preserves finite limits. Then there is x € C' such that for ¢ € C¢
one has f(c) = Mapq(c,x).

Proof: let f : C°? — Spc be the RKE of f along (C¢)°? — C°. Then f preserves
filtered limits by (HTT, 5.3.5.8). Now by (HTT, Prop. 5.5.1.9) we see that f preserves
limits. By (HTT, 5.5.2.2), f is representable. (]

A version for Spc replaced by Vect. We assume C' compacly generated. Let
g : (C°)°P — Vect be a functor which preserves finite limits and satisfies: for V' € Vect®,
g(V®e)=VY®g(e) in a way compatible with tensor structure on Vect®. Then there
is z € C such that one has g(c) = Homc(c, ) functorially in ¢ € C°.

Proof: let g : C°? — Vect be the RKE of g along (C°)°? — C°P. Then g preserves
filtered limits by (HTT, 5.3.5.8). Now by (HTT, Prop. 5.5.1.9) we see that g preserves
limits. So, (§)°P admits a right adjoint A% : Vect®”” — C by (HTT, 5.5.2.9). This means
that h : Vect — C°? is the left adjoint to g. So, for ¢ € C¢,V € Vect we get

(11) MapVect(V7 g(C)) - MapC(C7 h(V))

For W € Vect,V € Vect® we have naturally h(V @ W)=VV @ h(W). Indeed, for
c € C° it suffices to establish an isomorphism

Mapg(c, VY @ h(W)) = Mapg(c, h(V @ W)),
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which follows from the above adjointness.
Now for V' € Vect® gives

Map\/ect(va g(C)) - MapC(V ®c, h(e)) — MapVect(V7 fJ-Comc(c, h(e)))
We are done. [J

9.2.4. For (ch. 1, 10.3.8). If C € DGCatcopns then restricting the Vect-module struc-
ture on C' via the symmetric monoidal functor Sptr — Vect, we get the canonical
Sptr-module structure on C. This immediately gives the fact that for cg,c; € C,
Mapsq(co, c1) = Dold — KanSptr(MapskC(co, c1)) in Sptr.

So, Mapg(co, c1) = Q>*°Dold — KanSp“(Mapskyc(co,cl)) in Spc. For K € Vect we
get

Q> Dold — Kan®P" (K) = Q*Dold — Kan®** (r=K) = Dold — Kan(r="K),
where Dold — Kan is that of ([I4], ch. 1.1, 10.2.3).

9.2.5. For 10.4.2. If M € DGCatcyp: is dualizable then the dual of M identifies with
Funy, cont (M, Vect), because of (ch. 1, Prop. 9.4.4). For B,C € DGCatcopt a map
f: B® C — Vect extends to a duality datum for B, C iff for any D € DGCatcopnt the
functor id®f : D ® B ® C' — D yields an equivalence D ® B — Funy, cont(C, D).

9.2.6. Let F': I — DGCat,y,: be a functor, ¢ — C;, C' = colim; C; in DGCat.ypnt. This
is also a colimits of F: I — 1 — Cator ™ Let F/ : 7 — 1— Cat 54! he obtained
from F by passing to right adjoints. Recall that lim I/ = C, the limit is calculated in
1 — CatStemPl - For each i we get evaluation functors ev; : C — Cj. It is the right
adjoint to C; — C. If ¢ — j is a map in I and Fj; : C; — Cj is the corresponding
transition functor then its right adjoint C; — Cj is a strict functor of Vect-module

GatSt,cocmpl

categories in 1 — ot

9.3.6).

An improvement, let F® : 1°° — DGCat be obtained from F by passing to right
adjoints. Then lim F® = C (see [12], Lm. 1.3.3). Here the limit is calculated in DGCat.

If G : I — DGCatyp is such that for any ¢ — j in I the corresponding functor G; —
G; admits a left adjoint then we may pass to left adjoint and get a functor GL .10 —
DGCateons. Then colim GF = lim G, where both limit and colimit are calculated in
DGCatcont. Indeed, the projection DGCateon: — DGCat preserves limits by ([12], Lm.
1.3.1). In this setting ([16], 0.8.5) claims the following. Let € = lim G in DGCatont,
let ev; : € — G; be the projection, and ins; : G; — € be the functor obtained from
colim;ejop G; = €. Then for any ¢ € C, the natural map colim;ejor ins;(ev;(c)) — ¢ is
an isomorphism in € (this even holds if G : I — DGCat is only obtained by passing to
right adjoints from G¥).

Proof. For any y € C by my Corollary one gets

, that is, a map in DGCat, because Vect is rigid (ch. 1,

Mape(qollirgl insi(evi(c)),y) = hHIl Mape(ins;(evi(c)),y) =

1€1° 1€
lim Mape, (evi(c), evi(y)) = Mape(c, )
1€

O



172 COMMENTS TO: D. GAITSGORY, N. ROZENBLYUM [14]

Assume in addition R : D — € = lim G is a map in DGCatcy,:. Denote by f; the

composition D Koo G; for ¢ € I. Assume each f; has a left adjoint ¢; : G; — D,
so g; is a map in DGCateons. Let L : colimper GY — D be the functor coming from the
compatible system of functors g; : G; — D, i € I. Then L is left adjoint to R.

Proof. For ¢ € €,d € D one has

Mape(c, R(d)) = lllenll Mapg, (evi(c), fi(d)) = lllenll Mapp (gi(evi(c),d)) =
Map p (colim;e ror L(ins;(evi(c))), d)

Since L preserves colimits, and colim;eror ins;(ev;(c)) = ¢, the latter identifies with
Mapp(L(c),d). We also used the fact that D admits colimits. O

A generalization: let A € Alg(DGCateont), I small, F' : I — A — mod(DGCatcont)
a functor such that for any ¢ — j in I the functor F'(i) — F(j) admits a continu-
ous A-linear right adjoint F(j) — F(i) in A — mod(DGCateon). Let FF: 1P — A —
mod(DGCaton¢) be obtained from F by passing to right adjoints. Then colim F = lim F%,
where both are calculated in A—mod(DGCatcont). Indeed, oblv : A—mod(DGCateont) —
DGCateopnt preserves limits and colimits.

Let in addition R : D — lim;e; F'(i) a map in A — mod, where the limit is taken in

A — mod. Assume for each i the composition D LY lim;er F(i) — F(i) admits a left
adjoint g; : F(i) — D in A — mod. Let L : colim;er F'(i) — D be a map in A — mod
obtained from the compatible system of maps g;, here the colimit is understood in
A —mod. Then L is left adjoint to R.

Corollary Let Iy C I be a full subcategory with I small. Let I — DGCatcons
be a functor i — C;. Assume each transition functor C; — C) has a continiuous
right adjoint C; — C;. We have natural functors £ : colim;er, C; — colim;e; C; and
R : lim;erop C; — limielgp C; in DGCatcppns. Then (£,R) is an adjoint pair in DGCatop.
O

9.2.7. For D € DGCatcons one has Funy cont(Vect, D) = D by (ch. 1, 8.2.2). Dennis
says in the conventions of [I5] that for C, D € DGCatcont, Fung cont(C, D) is the inner
hom from C to D in DGCatcpps.

Remark: let I — DGCat.ont be a diagram such that for « : ¢ — j in I the cor-
responding functor f, : C; — C; has a continuous right adjoint. Assume I filtered
and for each « : i — j, f, is fully faithful. Let C' = colim;c; C; in DGCateopnt. Then
ins; : C; — C'is fully faithful. This follows from ([I2], Lm. 1.3.6).

9.2.8. Let A € 1 — Cat be small, F' : A — DGCatcon: be a diagram, a — C,. Let
C = colimgye 4 C, in DGCateont, let F 1 A” — DGCateont be the corresponding colimit
diagram. Assume for any o : ¢ — b in A the corresponding functor f, : C, — Cj
admits a left adjoint hy : Cp, — C, in DGCateopn: (that is, preserves limits). Let
H : A°? — DGCateont be the functor obtained by passing to left adjoints from F. Let
C = limge g0p , Cq be the limit in DGCateopns. Let H : 9(A°%) — DGCateons be the
corresponding limit diagram, let H : A> — DGCat be obtained from H by passing
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to right adjoints. The projection DGCatcont — DGCat does not preserve colimits, is
there any relation between C' and C'?7 When they are isomorphic?

9.2.9. In DGCat,on; coproducts coincide with products (as in Section for 1 —
Gatfﬁ;&ocmpl). We may use ([12], Lm. 1.1.1), which says that for C, D € DGCatcont,
Fung, cont(C, D) = (Funy, cocont (D, C))?P. Here cocont means limit preserving functors.
Then repeat the same proof. Note that if J is a small set, C; € DGCatcopt for j € J

then for any ¢ € [[ Cj let ¢; be its projection on Cj. Then the natural map @ c¢; — ¢
jeJ

is an isomorphism in [] Cj;.
Let in addition D € DGCateont and f; € Fung cone(Cj, D) giving rise to the functor
f :®;C; — D. Then the right adjoint to f is the functor fB:D— Hj C; given as

I1; £

9.2.10. Let A,B € DGCat>Y"™°" let B — B’ be a map in DGCat>Y""°" By
A ® B —mod we understand A ® B —mod(DGCatcont), the tensor product being taken
over Vect. Given C' € A ® B — mod, one has C @ 4o A® B'=C ®p B’ in B’ — mod.
I don’t know a reference, but this is a base change.

I think the following holds. Given A, A;, B, B; € C Alg(DGCatcopn:) and diagrams

Ay + A — Ay, By <+ B — By in CAlg(DGCateopnt), one has canonically.
(A1 & Bl) XA B (AQ & BQ) = (A1 XA AQ) & (Bl KB Bg)

Indeed, the diagonal map A% <« A% x A is cofinal. A variant of this: let C €
A™ @ B™ — mod(DGCateont). Then

C ®agp A1 ® Bi— (C®4 A1) ®p By

9.2.11. If A — B is a map in Alg(DGCateopnt), M € B —mod", N € A — mod then
M®aN=M®p(B®4N) naturally. If the map A — B is a map in C Alg(DGCatcont)
then this is an isomorphism in A — mod.

9.2.12. If A — B is a map in DGCat>¥™™"  that is, map of commutative algebras

cont

then the restriction functor B —mod — A —mod is conservative (by my Section|3.0.53)).

9.2.13. Let C € 1 — Cat,D € DGCatcops. I think then Fun(C, D) is naturally an

object of DGCateons. Indeed, by (HA, 1.1.3.1), it is stable. By (HTT, 5.5.3.6) it is
presentable. We have the natural map Vect — Fun(D, D) in Alg(1 — Cat5:™P!). The
action of Fun(D, D) on Fun(C, D) yields now the Vect-action on Fun(C, D).

If Y; € 1—Cat are small, is it true that the natural map Fun(Y7, Vect)®Fun(Y2, Vect) —
Fun(Y; x Ya, Vect) is an equivalence? My understanding is that DGCatcep: has a final

object given by * = Fun((, Vect).

9.2.14. If C € DGCat™" =™l in the sense of ([T4], ch. 1.1, 10.3.1), C is small then
Ind(C) gets a Vect-action, and becomes an object of DGCatcon.

9.2.15. If C,D € 1 — Cat are small then Fun(C, Vect) ® Fun(D, Vect) — Fun(C x
D, Vect) is an equivalence? (Here the tensor product is taken in DGCateont). My
Lemma [6.1.19] is wrong, so this is not clear.
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9.2.16. Let C' € DGCatent be dualizable, A € CAlg(DGCateopnt). Then C @ A is
dualizable in A — mod(DGCatcont), and its dual in this category is CV ® A. Here
CY = Funy, cont (C, Vect) is the dual of C'in DGCateopne. Indeed, the functor of extension
of scalars is symmetric monoidal.

9.2.17. The following is similar to Lemma in the setting of DG-categories. Let
f A — B be a morphism in DGCatc,: whose right adjoint g : B — A is continuous.
Assume A, B dualizable in DGCatcop;. Then g¥ : AY — BV is left adjoint to fV :
BY — AV. Compare also with (Lm. 2.2.2, [12]).

Lemma 9.2.18. Let C € DGCatcont. Then C admits a compact generator iff there is
an algebra A € Vect and an isomorphism € — A’ — mod(Vect).

Proof. Let first A € Alg(Vect). Then oblv : A°? —mod(Vect) — Vect preserves colimits,
hence A° is compact in A°? —mod(Vect) (use my Section [3.0.62)). Consider the functor
ind : Vect — A’ — mod, M — A°? @ M. Its right adjoint oblv : A’ — mod — Vect is
conservative, so the essential image of ind generates A°? —mod by ([14], ch. 1.1, 5.4.3).
For M € A°? —mod, i > 0 we get

Map pop —mod (A[=i], M) =5 Mapyee (k, M[i]) = Mapyee (k, 7= (M[i]))

Assume for any 7 > 0, Map gop_,,0q4(A[—i], M) = *. Then, as in my Section we
get 7=0(M[i]) =0 in Vect for any i > 0. Since Vect is both left and right complete,
this gives M — 0 in Vect, hence also in A°? — mod. Thus, A is a compact generator of
A°P — mod.

Conversely, assume € € DGCat,opn: has a compact generator ¢ € €. Let f : Vect — C
be the continuous k-linear functor with f(k) = c. Let f : € — Vect be its right adjoint.
Since the essential image of f generates C, f is conservative. We have f(Vect®) C C°.
Indeed, C¢ is stable under finite colimits and given a fibre sequence K1 — K — K in
€ with K; € C° we have K € C°. Now by ([I4], ch. 1.1, 7.1.5), f is continuous, so the
adjoint pair f : Vect < € : fF takes place in DGCateons.

Let B = fE(c) = fEf(k) and B = fF o f € Fung cont(Vect, Vect) = Vect. The
monoidal category structure on Funy, cont(Vect, Vect) comes from the symmetric monoidal
structure on Vect. Thus, B € Alg(Vect), we identify it with B. In fact, B—= Home(c, ¢)
is the inner hom with respect to Vect-action on €. The functor f# canonically extends
to a functor (f%)*"" : @ — B — mod. It is not clear apriopri that (ff)"" is k-linear.
However, ff is conservative and continuous, so by ([14], ch. 1.1, 3.7.7), (f%)**" is an
equivalence. Set A = B°P, we are done. O

9.2.19. If € € DGCateons, f : Vect = C is an element of Fung, cont (Vect, €), let e
€ — Vect be the right adjoint to f, it is Vect-linear, so f% is a map in DGCat.
Then fRo f € Alg(Fung(Vect, Vect)) is a monad. However, ff o f is not necessarily
continuous. Set B = fFf(k). Then fR(B ® c¢)= B ® ff(c)= B ® B, so we get a
morphism B ® B — B is Vect. Clearly, B— Mapsy, ¢(c, c), hence B is an algebra. Is it
true that B — mod(Vect) identifies with A — mod(Vect) for the monad A = fft o f7?
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9.2.20. Since DGCaty,t is cocomplete, it is tensored over Spc. Denote for X €
Spc, D € DGCatcop: the corresponding category by X ®D. Equip Spc with the cartesian
monoidal structure, DGCateon; with the Lurie tensor product (over Vect). Let us show
that the functor f : Spc — DGCatcopn, X — X ® Vect is symmetric monoidal.

For X € Spc the category X ® C is characterized by

MappGcat.,. (X ® €, D) =5 Mapg,e(X, Funy cont (€, D)5P°)
for D € DGCatcon:. For X, Y € Spc, we get functorially in D € DGCatont
Mappacat,,.,, (X ® Vect, D) = Mapg, (X, D) = Fun(X, D)
So,

MappGcat.,,, (X XY )@Vect, D) = Mapg, (X xY, D) = Mapg,,.(X, Fun(Y, D¢))
= Mapgp (X, Funy, cont (Y ®Vect, D)5P¢) =5 Funy, cont (X @ Vect, Funy, cont (Y @ Vect, D))5P¢
— Funy, cont ((X ® Vect) ®@veer (Y @ Vect), D)Spc

This gives an isomorphism (X X Y)® Vect = (X ® Vect) @vect (Y @ Vect) in DGCateop.
Besides, * ® Vect = Vect.

Thus, f sends algebras to algebras. Let us show that f preserves colimits. For
X = colim;er X; in Spc and D € DGCatepp: we get

Mappacat,,,, (colimier (X; @ Vect), D) = _li}np Fun(X;, D5P°)
el@
= Fun(X, D) = Mappgcar,,,, (X ® Vect, D)

So, f preserves colimits. If X is a finite set then X ® Vect = Lzex Vect = [],cx Vect.

9.2.21. Let I € 1— Cat, I x [1] = DGCatcopns be a functor sending i to f; : C; — D;.
Fori — jin I let Fg : Cp — O, Fz? be the corresponding transition functors. Assume

each f;, Fg, Filj) admit left adjoints. Let g; : D; — C; be a left adjoint to f;. Assume
for any ¢ — j in I the natural transformation ngi? — Fz(jjgz is an isomorphism.
Let C = lim;c; C;, D = lim;er D; taken in DGCat,y,: or DGCat or 1 — Cat, this is
the same. (Recall that the functors DGCateny — DGCat and DGCatepne — 1 — Cat
preserve limits). Let f: C — D be f = lim;¢s f;. Recall that by Lemma|2.4.1] f admits
a left adjoint g : D — C and for any i € I the natural transformation g;ev?’ — evicg is
an isomorphism.

By Section C'= colim;cor C;, D= colim;eror D;. We may pass to the left
adjoints in the initial diagram I x [1] = DGCatcepn¢. Denote by g : D — C the functor
obtained by passing to the colimit, that is, § = colim;cjor g;. Then g— g naturally.

Indeed, using again Section [9.2.6] note that for d € D one has d— Qollirglinsievi(d).
el®

Besides, by construction g(ins;(x) = ins;(gi(z)). So,
g(d)= (;211151 g(ins;ev;(d)) = 2211151 insi(gievi(d)) = 221110111;1 insi(evi(g(d)) = g(d)

A strengthened version is given in Section [0.2.39}
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9.2.22. Let A € Alg(DGCateont), M,N € A — mod(DGCatcont). Then there is a
cosimplicial category A — DGCatcont, [n] — Fung cont(A®™ ® M, N') whose totalization
identifies with Fun4 (M, N) € DGCatopns canonically. Here Fung (M, N) € DGCatcont
is the category of A-linear functors as in ([14], .1, 8.2.1).

The two maps Funy, cont(M, N) — Funy cont(A ® M, N) correspond to the two com-
positions

Funy, cont (M, N) @ A @ M 28 Funy, o (M, N) @ M > N
o®id act

Funk,cont(MaN)@)M@A S NQA=N

More generally, for the injective map [n] — [n+1] the corresponding map Funy cont (A%"®
M, N) — Fung, cont (A®" ! @ M, N) appears as follows: it may send f to the map

a1®...®an+1®m—>a1f(a2®...®an+1®m)

or
41 ®...Qa+10m — fla1 ®...R an ® apy1m)
or
B ®..Qap1m— f(a1®...Raia41 Q... R Apy1 @ M)
The order of the sequence a1, ..., ap+1 never changes, as our A is not necessarily sym-
metric.

Idea of the proof. Let €® — AT be the cocartesian fibration corresponding to
DGCateont viewed as a left module over itself. Then M, N are given by right-lax func-
tors f,g: ATP — C¥ over id : ATP — AT°P whose restrictions fo, go to A% corre-
spond to A. Let C%® — A be the restriction of C®. By definition Map 4_,,,,q(M, N)
is the space

{ld} XMapFut\(AJﬁOP,AJr,OP)(idvid) MapFun(A+,0p7e®)) (f’g) xMapFun(AOP,GO’®)(fO7gO) {ld}
Now Mappy,(a+or eoy)(f, g) is described via ([18], Pp. 5.1) as

lim Ma ),
(x—y)ETw(ATP)op pee (f(2),9(y))

This is obtained as a particular case of the claim from Section [9.2.36] of this file.

9.2.23. For 10.5.3. If C' € DGCat™"~m! D ¢ 1 — Cat™ then Fun.,(C, D) gets a
structure of a Vect!?-module. The map Fung,(C, D) x Vect/® — Fun,(C, D) corre-
sponds to the map Fun,(C, D) x Vect/? xC' — D sending (f,V,c) to f(V & c¢). The
induced map Fune,(C, D) x Vect/? — Fun(C, D) takes values in Fun,,(C, D).

9.2.24. Let A € CAlg(Vect="). Then A —mod = A — mod(Vect) is dual to A — mod"
in DGCateont. This follows from ([14], ch. I.1, 8.6.3 and 4.3.3). The counit map
(A—mod") ® (A —mod) — Vect is (M, N) — M ®4 N. In addition, by ([14], ch. 1.1,
8.6.4), for M € DGCateons we get Funy cont(A — mod”, M) = A — mod(M).
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9.2.25. Gluing of categories. Let C € DGCateont, (Ji)x : Ci — C be fully faithful
functors in DGCatcopns for @ = 1,2 admitting left adjoints j; : C — C;. We view C, Co
as full subcategories of C, let C1o = C7 N Cy. Define D as colimit in DGCaty,: of

the diagram C Lo C5. Passing to the right adjoints, we get D = Cia. Let
(j12)s : C12 — C be the embedding, ji, : C — Ci2 its left adjoint.

The functor jjy(ji)« is left adjoint to the embedding (ji2,)« : C12 = C;. We get the
functor f: C' = Cy x¢,, Ca sending F' to
It has a right adjoint g : C1 x¢,, Co — C sending (Fi, Fy, Fi2) to K, where K is the
fibre of (]1)*Fl D (jg)*FQ — (jlg)*Flg in C.

The the natural map fg — id is an isomorphism of functors? In general ¢ is not
fully faithful. Here is an example, where jj,j; are two localization functors, which
do not commute. Take C = Shv(A') in the constructible context, C; = Shv({0}),
Cy = Shv(G,,) with the inclusions (ja)* : Shv(G,,) — Sho(Al) and (j1)« : Shv({0}) —
Shu(A).

In general, consider the following cosimplicial category. For n > 0 set K" =
Hmln Cio,....in» here 1 < i; < 2. We have denoted Cj,.. ;, = Cijy N ...NC;,. We
have a natural map Tot(E®) — C} X¢,, Ca in DGCateopns. The latter map an equiva-
lence (see my Section .

9.2.26. Let f:C < D : ff be an ajoint pair in DGCateyns. Then for d € D, f£(d)
is a direct summand in fEf(f%(d)). Indeed, fF(d) — fEf(fE(d) — fF(d) is the
identity (general pattern of duality, ch. 1.1, 4.4.1), so f#(d) is a retract of fEf(f%(d)).

9.2.27. Let C € DGCatcops then (C°)° is idempotent complete. Indeed, by (HTT,
4.4.5.15), this follows from the fact that any diagram Idem — C¢ admits a colimit, and
Idem® — Idem. Besides, C¢ C C is stable under retracts by (HTT, 5.3.4.16).

9.2.28. Let C; € DGCat.y,+ be compactly generated for ¢ € I, I is a set. Then
E = [[;c; Ci is compactly generated.

Proof: If x € Cf for some 7 then z € E°. Indeed, for ¢ € E let ¢; € C; be its image
in C;. Then Map(z, ¢) = []; Map(z;, ¢;) = Mapg, (, ¢;), because ev;(z) = 0 for j # 4.
The projection ev; : E — C; preserves colimits, so x € E°.

The collection U;Cf generates E. Indeed, if ¢ € E and Mapg(x,c) = * for any « € Cf
then ev;(c) = 0. So, z— 0.

Consider the smallest stable subcategory € C E containing C{ for all ¢ and idem-
potent complete. We claim that & = E°. Indeed, & C E€, because E° is stable (and
idempotent complete by HTT, 5.3.4.16). By ([14], ch. 1.1, 7.2.4(3)), Ind(€) = E. Now
by (HTT, 5.4.2.4), E¢ = &, because € is idempotent complete.

In particular, if ¢ = (¢;) € E€ then ¢; = 0 for all but finite number of i € I.

9.2.29. The map DGCatqyn: — 1 — Cat does not preserve filtered colimits, and 1 —

CatoleocmPl 1 _ @at* does not preserve filtered colimits. Indeed, for an ind-

scheme Y, the dualizing sheaf is not supported on some closed subscheme, though
Shv(Y) = colim; Shv(Y;) for Y = colimY;.
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9.2.30. Let A € Alg(DGCateont), M € A—mod(DGCatcopnt). Assume given a monoidal
functor A — Vect, so making Vect a right A-module. Consider Vect ® 4 M, where we use
the right A-module structure on Vect. Then Fung cont(Vect ® 4 M, Vect) becomes the
totalization of Funy cont(A®* @M, Vect). The latter calculates Fun4 (M, Vect), where we
view M and Vect as left A-modules. So, Fun (M, Vect) = Funy, cont(Vect ® 4 M, Vect).

More generally, for a morphism A — B in Alg(DGCateont), M € A —mod, N €
B — mod we get Fung (M, N) = Funpg(B ®4 M, N) by adjointness.

Remark 9.2.31. Let D C C be a full subcategory, a morphism in DGCateons. Let
d; € D, write Homp(dy,ds) € Vect for the inner hom with respect to the Vect-action.
Then Homp(dy,ds) = Home(dy,de) naturally.

9.2.32. Leti: B = A: Rbean adjoint pair in DGCatepnt, where A, B € Alg(DGCateont),
and R is monoidal. Assume i fully faithful, so B is a colocalization of A. Assume in
addition that B is stable under left and right actions by A. Then B becomes a A-
bimodule, and the above adjointness takes places in A — mod — A, the category of
A-bimodules.

Now B is a retract of A in A — mod(DGCatcont). So, B € A — mod is dualizable
and its dual is B € A — mod" via the right translations by A (in the sense of [14],
ch. 1.1, 8.6.1). So, at least in the case when A € CAlg(DGCatcopn:) the restriction
functor R : ¢ B —mod — A —mod along R : A — B admits a right adjoint given by

A—mod B B~ mod, M — B ®4 M, see my Section Thus, the right and left
adjoint to R are both isomorphic to L in this case.

Claim. For C' € A — mod the category B ® 4 C is a colocalization of C', the biggest
full subcategory on which the A-action factors through R : A — B.

Proof. Tensor the adjoint pair i : B2 A: Rin A—mod" by C € A —mod. We get an
adjoint pair i : B®4 C = C : R in DGCateopns. Since Ri = id, we get Ri— id. O

The above also shows that the functor R : B — mod — A — mod is fully-faithful.
Indeed, B ®4 B— B. For this reason for M € B — mod, N € B — mod" one has
N4 M=SNxgM.

Assume in addition that A, B € CAlg(DGCatcon) and i : B = A : R be an adjoint
pair in CAlg(DGCatcopn:). Then the functor R is non-unital symmetric monoidal, and
L is symmetric monoidal. In addition, if M € B — mod is dualizable in B — mod then
R(M) is dualizable in A —mod. Namely, if u: B = M ®g MY, c: M®g M"Y — Bis a

duality datum for M then the maps A EBY% Mag MY, M&s MY S5 B4 Aform
a duality datum for R(M).

Version for localizations. Let L : A = B : R be an adjoint pair in DGCatcon: with
A, B € Alg(DGCatcont), where L is monoidal. So, R is right-lax non-unital monoidal.
Assume that R is a map of A-bimodules naturally. Then this adjoint pair takes place
in A — bimod(DGCatcont). Again, B is a retract of A in A — mod(DGCateont), so B is
dualizable in A — mod.

Let L : B—mod — A—mod be the restriction of scalars along L, let R : A—mod —
B — mod be the functor C +— B ®4 C. Then R is left adjoint to L.
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For C' € A — mod one gets by applying - ® 4 C' the adjoint pair | : C S B®4C :r,
in which the right adjoint is fully faithful. In particular, the map r : B®4 B — B is
fully faithful. It is clearly essentially surjective, as r(1®b) =b. So, r: B®4 B — B is
an equivalence. This implies that L is fully faithful.

This implies that for M € B — mod", N € B — mod one has M g N M ®4 N
canonically. Indeed,

M®4N=(M@pB)®4 (B N)=>M®p (B®4B)®p N.

9.2.33. The category DGCatco,s is not stable: a retract of C' € DGCaty,: is not
always given by a direct summand. For example, for a sheaf theory Shv and a scheme
of finite type Z with a closed immersion i : Y — Z we have 4 : Shvo(Y) — Shv(Z)
is left adjoint to ' and 4, is fully faithful. However, usually Shu(Y) is not a direct
summand.

9.2.34. Let A € Alg(DGCateont). Let h : C° — C be a fully faithful morphism
in A — mod, write C/C? for the cofibre of h in A — mod and p : C — C/C° for
the projection. The canonical map C° — Kerp in A — mod is an equivalence. Since
A—mod — DGCateypn preserves limits and colimits, this follows from ([34], Lm. 0.2.8).

Let A € Alg(DGCateont). Then A generates A —mod = A — mod(DGCat o) under
colimits? Sam says no!

9.2.35. Consider a diagram C' ﬁ> & i) Cs in DGCateont, set fo = hf1. Assume f; has
a fully faithful left adjoint L; : C; — C. Then Ly : C5 — C factors through the full
subcategory Ly : C; < C. The resulting functor L : Cy — (' is left adjoint to h.

Proof. we have to show that the natural map L;fi Lo — Lo is an isomorphism. Write

1R for the (maybe discontinuous) right adjoint to fi. By passing to right adjoints, it
is enough to show that the map fo ungt f2fff1 is an isomorphism. Write fo = hf; and
consider the diagram h f; it fifEf coupit f1, the composition is an isomorphism.
However, f1fff — id is also an isomorphism, because the corresponding map of left
adjoints id — f1 L1 is an isomorphism. Thus, Lo : Cy — C factors through ¢y — C. 0O

A more general claim in ([47], Lemma 2.15.1): we don’t need in the above that Lo
be fully faithful, only existence of Ly suffices. Then L : Cy — (' is given as fiLs.

9.2.36. Let B — A be a map in Alg(DGCatcont), M, N € A — mod(DGCatcont). In
addition to the isomorphism Fun (M, N) = Tot(Fun(A®* @ M, N), one has a similarly
defined isomorphism Fun (M, N) = Tot(Fung(A®p A®p...@p A®p M, N)), where
all the tensor products inside are taken over B.

This is due to Sam: let M € A —mod. Since A € Alg(B ® B"" — mod(DGCatcont),
we may write M = A ®4 M and rewrite the latter relative tensor product as

M= colim (A%M) ®p M,
[n]e A%P

here A% = A®p A®p ... ®p A, the product taken n times. Now

Funy(M,N)—= [l}mAFunA((A%Jrl) ®@p M,N)—= [l}mAFunB((A%) ®p M,N)
nje nje
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We used the fact that the functor B — mod — A — mod, D — D ®p A is left adjoint
to the forgetful functor A — mod — B — mod.

Remark: the above totalization can be rewritten as the limit over Ag, which is the
subcategory of A, where we keep all objects and only injective morphisms. Indeed, by
(HTT, 6.5.3.7), A% — A is cofinal. In this sense the category Fun4 (M, N) depends
only on the non-unital A-module structures on M, N.

9.2.37. A comment on ([14], ch. 1.1, 6.3.4). Let I € 1 — Cat be a small category,
Cr : I — DGCateopn: be a functor such that for any i € I, C; is dualizable, and for
any ¢+ — j in I the right adjoint to the transition functor C; — Cj is continuous.
Let Cﬁ;p : 1P — DGCateont be obtained from Cj by passing to right adjoints, C},, :
I°° — DGCatcon: be obtained by passing to the duals. Let (C’}Q)v : I — DGCateont
be obtained from Cﬁp by passing to duals. Let C' := colim C; in DGCat,op. Recall
that by ([14], ch. 1.1, 6.3.4), CV= lim CY,, naturally, the limit in DGCatcons. We also
have colim C7r = lim C%, and colim(CE)V = lim CY,, by ([14], ch. 1.1, 5.3.4). Here if
i € I and ins; : C; — C' is the natural functor coming from C7 then its right adjoint
is ev; : C' — C}, the projection functor coming from the projective system Cﬁ,p. If we
pass to the duals in the adjoint pair ins; : C; < C : ev;, we get the corresponding
functors for the projective and injective systems O}, and (CF)V respectively.

9.2.38. The natural map DGCat™"—ccmpl _y 1 — Cat> preserves filtered colimits.
Since 1 — Cat™! — 1 — Cat preserves filtered colimits by ([28], 1.1.4.6), the same holds
for DGCat™on—cocompl _, 1 _ QRat.

Proof: Let I be small filtered, f : I — DGCat™"~ Pl he g functor i — C;. Let
C = colim;er C; taken in 1 — Cat (or 1 — GatSt). We equip C' with the Vect/%action
obtained by passing to the colimit in the action maps Vect/? xC; — C;. The resulting
functor Vect/? xC' — C' is exact in each variable (this uses Cor. of this file).

9.2.39. Let I € 1—Cat, I x [1] — DGCateons be the functor i > (C; 2 D;). For i — j
in I let Fg : G — O, FZ.? : D; = Dj be the transition functors. Assume we may pass
to continuous right adjoints in the diagram I x [1] — DGCatons, SO we get fl-R :D; — C;
and (F{)*: C; — Ci, (F)® : Dj — D; in DGCateons. Let f: C — D in DGCateons
be obtained by passing to the colimit over I in DGCatyn:. Recall that C' = lim;ejor Cj,
D = lim;crop D; in DGCateop,t with respect to (Fi?)R, (Fi]]?)R respectively. Let g : D —
C be obtained by passing to the limit in DGCat.y,¢ over ¢ € I°P in the diagram
fE:D; — C;. Then g is right adjoint to f.

Proof: let c € C,d € D. We have c = CQH]IH ins;evi(c). So, f(c)= colijm ins;fi(evi(c)).
1€ 1€
So,

Mapp(f(c),d) = Zlelglp Map(ins; fi(evi(c)), d)
Now, ins; : D; — D is left adjoint to ev; : D — D;, so
Map(ins; fi(evi(c)), d) = Map(f;(evi(c)), evi(d)) = Map(ev;(c), fevi(d))
— Map(evi(c), evig(d)) = Map(ins;ev;(c), g(d))
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This gives in turn

Mapp(f(c),d) = lim Map(insievi(c), g(d)) = Map(c, 9(d))
We are done. In fact, we did not need here the continuity of (Fg)R, (FZIJ) VB, R so
no assumptions on right adjoints are needed (in that case we should understand the
corresponding limits as those in DGCat).

A generalization of this in the case of [ filtered is ([50], Lm. 6.5.2). It suffices to
require that each f; admits a continuous right adjoint, no need to require these right
adjoints to be compatible with the transition functors Fg, Fi? . Then f has a continuous
right adjont given by the formula of Sam.

One more point: in the situation of my Section [9.2.39] assume in addition that for
any map ¢ — j in I we have FZ(JJ fiR:? ijﬂ? naturally, and each fZ-R is continuous. Let
g : D — C be the functor in DGCate,: obtained by passing to the colimit over i € I
in fZ-R : D; = C;. Then g = g.

Proof: let d € D, we have g(d) = C(i)éilm ins;ev;g(d) in C. Now ffev;(d)= ev;ig(d)

in C;. Besides, ins; o f#= §oins; as functors D; — C. So,
g(d)= CQliIm g(ins;ev;(d)) 3?](0011[111 ins;evi(d)) = g(d)
1€ (S
We are done.

9.2.40. Let J € 1 — Cat be small, §J° C J a full subcategory, F : J — DGCateons a
functor sending i — j to F(i) — F(j), and F° : J° — DGCatep its restriction. We
have a natural map R : im F — lim F? in DGCateons. Assume that for any i — j
in J° the transition functor F(i) — F(j) admits a left adjoint, let (F)* : (3°)P —
DGCateon: be obtained from F' by passing to left adjoints. Recall that this gives
lim FO = colim(F%)%, where the colimit is calculated in DGCatcong.

For i € J° the composition lim F' — lim F© — F(i) is canoncal projection ev; : D :=
lim F — F(i). Assume that for i € J° the functor ev; : D — F(i) admits a left adjoint
ins; : F(i) = D. Let L : colim;cgo F'(i) = D be the functor coming from a compatible
system of functors ins; : F; — D. By Section [0.2.6] of this file, L is left adjoint to R.

For example, it suffices to require that for any ¢ — j in J the transition functor
F(i) — F(j) admits a left adjoint. Then each ev; : D — F(i) admits a left adjoint,
and the above claim holds. Moreover, L is a natural functor colim(F°)F — colim F'Z,
where F'L : J°7 — DGCateon; is obtained from F' by passing to left adjoints.

9.2.41. Let I € CAlg(1 — Cat) be small, C € CAlg(DGCatcopnt). Then Fun(l,C) €
DGCateont is equipped with the symmetric monoidal structure given by the Day con-
volution ([28], 2.2.6.17). One checks that Fun(/,C) € CAlg(DGCateont), that is, the
tensor product is Vect-linear and preserves colimits separately in each variable.

A version: let C' € Alg(DGCatcont). Then Fun(l,C) € Alg(DGCateont)-

9.2.42. For (ch. 1.1, 10.5.4). Let Cy € DGCat™" <Pl For the map Cy — Ind(Cp) =
Fun.,(Cy?, Sptr) to be a morphism of Vect!?-categories, one has to define the action
of V € Vect/? on f € Fun,,(Cy?, Sptr) so that the resulting object of Fun,,(Cg?, Sptr)
sends ¢ to f(VY ® ¢p). Indeed, for ¢ € Cy let h. € Ind(Cp) be the functor ¢y
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Maps(co, ). Then hyge. =V @ he for V € Vect/? by my Section The indeed the

equivalence

Funeg cont(Ind(Cp), C) = Fun,(Co, C)

is a morphism of Vect/%-bimodule categories. We then extend the action of Vect/? to
that of Vect by continuity.
By Section [3.0.50, we may apply the functor Fun

the above equivalence and get the equivalence

Funy, cont(Ind(Cy), C') = Fung (Cy, C)

(Vect, ) to

Vect —bimod(1 —C’atfjﬁocmﬁl )

Moreover, since Vect is rigid, Vect is self-dual in the category Vect —bimod(l—@atf;’fcmp l).
Therefore, for £, E' € DGCat,

Funy, cont(E, E') = Vect ® (Vect @ Vect) Filez cont (E, E)
in addition (this is as in ch. 1.1, 9.4.4-9.4.8). This follows from my Section [9.2.45

9.2.43. Let A € CAlg(DGCatcon) be rigid, M, N € A — mod(DGCatcont). Assume
M is dualizable in 1 — Cat55%“™! hence also in A — mod(DGCateont) by ([14], ch. L1,

cont

9.4.4). By my Section [6.1.13] Funs (M, N) = M"Y ®4 N, where
MY = Fung (M, A) = Funeg cont (M, Sptr)

9.2.44. Let M,L € DGCateont, N €1 — Cat b°™Pl Then one has naturally M Qvect

cont
(L ® N)= (M ®vect L) ® N, where ® is the tensor product in 1 — Gatif;ﬁocmpl, and
Rvect 18 the tensor product in DGCatcop:.
For this reason we have the following. Let A € Alg(DGCateont), M,N € A —
mod(DGCatcont), L € DGCateons. Then one has naturally

Fung, cont (L, Funa (M, N)) = Funs (M ® L, N),

where the tensor product M ® L is taken in DGCatcons. So we may think of Fun (M, N)
as the relative inner hom Hompgcat,,,,.4(M, N), where we view A —mod(DGCatcont)
as a right DGCatens-module category.

Proof: for § € 1 — Cat5-“™ we have

Map, .. st.cocmpi (S, Funy, cont (L, Funs (M, N))), = Mappgcat.,,, (L®S, Funa (M, N))

cont
— Map 4 _pod(DGCateons) (M Ovect (L®S), N) = B e (M ®vect L)® S, N)
: Mapl_eatst,ctocmpl (S, FUHA(M ®Vect L, N)

We used the fact that A — mod>o P = A — mod(DGCat o) naturally.

cont
(n+1)

We could also write M — colimp,jc aor A® ® M as usually, so

Funs (M, N)= [l}mA Fung cont (A" @ M, N)
n|e

and plug it in the desired formula, this would lead to a proof.
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9.2.45. Let A € CAlg(DGCatcont) and M, N € A—mod(DGCatopnt). One has canon-
ically Funaga (A, Fung cont(M, N)) = Funa (M, N).

Proof: consider the bar complex that calculates A ® 4 A. By Section [3.1.8] it gives
A= A®a A= colim,cpor A®"2 iy A® A —mod, the tensor product being taken over
Vect. So,

Funaga (A, Fung cont (M, N)) = [l}mA FunA®A(A®"+2, Fung, cont (M, N)) =
n|e

lim Fung cont (A®™, Fung cone (M, N)) = lim Fung coni(A®" @ M, N) = Funa (M, N)
[n]jeA [n]eA
Here A®? = Vect. The last limit we got is that of Section [9.2.22

9.2.46. Consider the adjoint pair [ : Spc = DGCateopnt : 7, where r(E) = ESP¢, and
I(Y) =Y ® Vect. Here we use the fact that DGCateo,; is tensored over spaces. By
Section [ is symmetric monoidal, where Spc is equipped with the cartesian
symmetric monoidal structure. We see that r is right-lax symmetric monoidal. By
([35], 1.2.9), we get an adjoint pair L : C'Alg(Spc) = CAlg(DGCateont) : R given by
composing with [, r. Similarly for Alg instead of C'Alg.

9.2.47. Let I € 1 — Cat be small filtered, I x [1] = DGCatco,; be a functor i — (C; f#
D;). For i — j in I write qﬁg : Gy — Cj, 5- : D; — D; for the transition functors.
Assume each C;, D; compactly generated and the functors ¢%,¢5 admit continuous
right adjoints. Assume each f; fully faithful. Let f : C' — D in DGCat,,,: be obtained
by passing to the colimit over I. Recall that each compact object of C is of the form
ins;(c) for some ¢ € Cf by ([7], 1.9.5). Then f is fully faithful.

Proof: It suffices to show that for ¢, ¢ € C¢, the map Mapq(c, ) — Mapp(f(c), f(<))
is an isomorphism. By the above, ¢ = ins;(z), ¢ = ins;y(2') for some z € Cf, 2" € CF.
By ([7], 1.9.5) we get

Mapg (ins; (), insy (') = X Col;m Map¢, (qblcj(a:), qb%(:c'))

i—7,0'—j,j€l

and

Mapc, (65;(x), ¢47;(2')) = Mapp, (¢ (fi(2)), &7; (fir(z')))
Besides,
Mapp, (insi(fi(x)), insq (fi(¢'))) = colim  Mapp (¢ (fi(x)), ¢7;(fr(2)))

g5 ger

Passing to the colimit in the above isomoprhisms we get the desired isomorphism

Mape (ins;(x), insy (")) = Mapp (ins;(fi(z)),insy (fi (2')))

9.2.48. Let C' € DGCat,yy,; with an accessible t-structure, which is compatible with
filtered colimits. Then C¥ is a Grothendieck abelian category by ([27], 1.3.5.23). Let
now A be a Grothendieck abelian category and K € A be written as K — colim;c; K;
in A, where I is small filtered. Let for i € I, K; be the image of K; in K, we get the
natural maps colim;e; K; — colim;es K; —b> K, whose composition is id. Since K; — K
is injective, b is also injective, so b is an isomorphism.
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9.2.49. Let I — DGCatent, ¢ — C; be a diagram and C' = lim;c; C; taken in
DGCateont. Let z,y € C, and for ¢ € I let x;,y; € C their images. Then

Home(z,y) = l.in;l Home, (wi, yi)
1€

in Vect, where Hom¢c(z,y) € Vect denotes the inner hom with respect to the Vect-
action. Same for DGCat oy replaced by DGCat.

9.2.50. Let C' € DGCatcont be compactly generated, I be a finite category, J a small
filtered category, let I x J — C, (i,j) + ¢;; be a diagram. Then one has natu-
rally colimje s lim; ¢; ; = lim; colimjey ¢; 5. Indeed, it suffices to show that applying
Mapq(z,-) to both sides, one gets an isomorphism for any = € C¢, which reduces to
the same claim in Spc proved in HTT.

9.2.51. Let L : C = D : R be an adjoint pair in DGCat""~™Pl Then Ind(L) :
Ind(C) = Ind(D) : Ind(R) is a dual pair in DGCatcont-

9.2.52. The functor Ind : DGCat"" ™2l _y DGCat.opn; admits a right adjoint oblv :
DGCateons — DGCatmon—cocmpl  Moreover, for C' € DGCat™" =Pl D) ¢ DGCateont,
Fung, cont(Ind(C'), D) = Funy, .., (C, D) via restriction (passing to Spc on both sides, we
get the adjointness). Now if I is small filtered and I — DGCat™" P! is a diagram
i — C; then let C' = colim; C; in DGCat™"~™Pl Then Ind(C) = colim; Ind(C;) in
DGCatcom.

9.2.53. Let f: A — Bisamap in Alg(DGCatcnt), C € A—mod. Then Funy (B, C) is
naturally a left B-module. Indeed, we have a map B™™ — Funy (B, B) in Alg(DGCatcont),
a— (b— b®a), and Funy (B, B) acts naturally on the right on Funyu (B, C).

9.2.54. Let s: B — A be a map in Alg(DGCatcnt), where B € C Alg(DGCateont)-
Then given M,C € A — mod, Funa(M,C) € B — mod naturally. Besides, for N €
B — mod we get functorially Funs (M ®p N,C) = Funpg(N,Funy (M, C)).

So, the functor A — mod — B — mod, C — Funs(M,C) has a left adjoint N
M ®p N.

Assume in addition given amap f : A — B in Alg(DGCatcont) with fs— id. Taking
M = N we conclude from the above that the restrictioin functor res : B — mod —
A — mod along f has a right adjoint A — mod — B — mod, C — Funy(B,C).

A generalization is given in Section [9.2.56

9.2.55. Let I € 1 — Cat be small sifted, A= colim;e; A; in Alg(DGCatcont). Then for
M, N in A — mod(DGCatcep:) one has

Funy(M,N)= li§n Fungy, (M, N),
ielop

where we view M, N as A;—modules via restriction through A; — A. This follows from
the fact that I is sifted. Indeed,

Funs(M,N)= lim Fun(A®" ® M,N)= lim Fun(colim;c; AY" @ M, N)
[nleA [nleA

lim  Fun(AY" ® M,N)= lim Funy, (M, N)
[njeA icIop ielop
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In particular,
Map 4 moa(M, N) = Funy (M, N)5P¢ = J%anknb%(Al,PJ)SpC:$
iel°
lim MapAifmod(M7 N) — Mapéi}rolp Aifmod(M? N)

ielop
Here the limit of Fun4, (M, N)5P is taken in Spc.

This shows that the natural functor A —mod — lli}n A; —mod is fully faithful. It is
1elor
actually an equivalence. Indeed, given M € 'li}np A; — mod restricting to Vect — A we
1el°
get the underlying object of DGCat..,: denoted also by M by abuse of notations. Our
datum is then a compatible family of maps A; — Fun(M, M) in Alg(DGCateont). Pass-

ing to the colimit, it gives the desired morphism A — Fun(M, M) in Alg(DGCatcont)-

9.2.56. Let A, B € Alg(DGCatcont), M € AQB"™ —mod, C € A—mod, D € B—mod.
Then one has canonically in DGCat oy

Funs (M ®p D,C) = Funpg(D,Funs (M, C))
Here rm means reversed multiplication.

Proof. (sketch). We have M ®p D — [C?hjnp M @ B®™ @ D. So,
m]eA°

Enm4A1®BLLCj:;ﬁnsznA®"®A4®BLLC)
n|e

= lim  Fun(A®*"® M @ B®" ® D, D)
[n],[m]e Ax A

Similarly,

Fung(D,Funs(M,C)) = [li}mA Fun(B®™ ® D, Funs(M,C)) =
mje

lim Fun(B®"®D, lim Fun(A®"®M,C))= lim  Fun(A*"@M®B®™"®D, D)
[mleA [njleA [n],[mleAx A

One should verify that the corresponding transition maps are the same in both inverse
systems. 0

We obtained an adjoint pair L : B — mod < A —mod : R, where L(D) = M ®p D,
and R(C) = Funu (M, C).

Addition: if A € C Alg(DGCatcont) then the above gives the following. For M, D, C €
A — mod(DGCateont),

Funs(M ®4 D,C) = Funa (D, Funa (M, C))

So, Funs (M, C) € A — mod is the relative inner hom in A — mod.

Claim Let A, B € Alg(DGCateont), M € AQB"™™ —mod, N € BQA™ —mod. Assume
amap B — N ®4 M of (B, B)-bimodules in DGCatco,: equibits M as a right dual
of N in the sense of (A, B)-bimodules as in ([4], A.2.1) or equivalently ([28], 4.6.2.3).
Then for any C € A — mod we have Funy(M,C)= N ®4 C in B — mod. Besides, for
X € A" — mod one has Fungrm (N, X) = X ®4 M in B — mod.
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Proof. This is ([4], A.2.6). We can derive it from the above result as follows: for any
D € B — mod we get

FunB(D,N®A C)/—\;FUDA(M XB D,C)

by ([28], 4.6.2.1), which also identifies with Fung (D, Fun4 (M, C)) by the above. Since
this equivalence in functorial in D, the first claim follows. The second one in given in
(M], A.2.6). O

Claim 2 ([4], A.3.8). Let A — B is a map in Alg(DGCatcont), M € B —mod. Assume
M is left-dualizable as a B-module, let MY'"® € B™ — mod be its dual. Suppose B
is dualizable as a (A, B)-bimodule DG-category, write BV for its dual, it is (B, A)-
bimodule DG-category. Then M is left-dualizable as a A-module category and its dual
is the right A-module MV-Z @5 BV-4. O

9.2.57. Let us rewrite ([37], Section 1.0.8) for DG-categories. Consider the forgetful
functor ® : DGCatcoppr — 1 — Cat, it is right-lax symmetric monoidal. The right-
lax structure is given by the maps C x D — C ® D, (¢,d) — c¢Xd and * = Vect.
Let X — DGCatcon: be the cocartesian fibration attached to ®. By ([48], 5.15), X
is a symmetric monoidal category, and the projection X — DGCat,ppn; is symmetric
monoidal. By definition, for (C,¢), (D, d) € X we have (C,c) ® (D,d) = (C® D,cXd).

Let X' € X be the 1-full subcategory, where we keep all objects and only those
arrows, which are cocartesian over DGCateoni. S0, X' — DGCateons is a cocartesian
fibration in spaces, and X’ inherits a symmetric monoidal structure.

Now consider the functor F : X’ — Alg(Vect) sending (C,c) to Home(c,¢). The
latter is the inner hom in Vect. We view Alg(Vect) as symmetric monoidal with the
pointwise tensor product monoidal structure. Then JF is right-lax symmetric monoidal.
Indeed, given (C,¢), (D,d) € X’ one has the natural map

Home (e, ¢) @ Homp(d,d) — Homegp(c ® d, c @ d)

functorial in (C,c¢),(D,d) € X'. Besides, the natural map e — Homyeet(e,€) is an
isomorphism. Thus, F induces a functor Alg(X') — Algg, (Vect), where Algp, (Vect)
denotes the category of Es-algebras in Vect.

Now if C' € Alg(DGCateont) then (C,1) € Alg(X') with the product (C @ C,1¢ K

1¢) = (C,1¢) given by the multiplication m : C ® C' — C. Here Vect 1S ¢ is the map
V=V ®lc. Applying F, we see that Homc(1c, 1) € Algg, (Vect).

Example: take E € DGCateops and C = Fung cont(E, E). Then Home(id,id) €
Algp, (Vect).

9.2.58. Let A, B € Alg(DGCatcont). The functor A x B -+ A® B, (a,b) — aX b is
monoidal, that is, a map in Alg(1—Cat). So, passing to the opposite categories, we get a
monoidal functor A? x B? — (A® B)°P, hence a functor Alg(A%? x B?) — Alg((A®
B)°P). Passing to the opposite categories once again, we get a functor coAlg(A) x
coAlg(B) — coAlg(A ® B) sending (a,b) to a X b.

Note also that the map A - A® A, a — aXa is a map in Alg(1 — Cat), so yields a
map coAlg(A) — coAlg(A® A).
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9.2.59. Let C € DGCatcont and A € Funy, cont(C, C) be a comonad. Question. Under
which additional assumptions one has A — comod(C) € DGCateop?

By ([28], 4.2.3.3), A — mod(C°?) admits limits, and oblv?? : A — mod(C°P) — C°P
reflects limits. Besides, oblv®’ is conservative (cf. Section . So, oblv : A —
comod(C) — C is conservative, A — comod(C') admits colimits, and oblv reflects col-
imits. Let coind : C'— A — comod(C') be the right adjoint to oblv. We see that coind
preserves colimits. Informally, coind(c) = A(c).

Is A — mod(CP) stable? Apply ([28], 4.2.3.5) with Funy, cont(C, C)? acting on CP.
Since each b € Funy, cont(C, C) is exact, b(0) = 0, so 0 € A—mod(CP) is initial, hence a
zero object of A—mod(CP). If o : & — y is a morphism in A—mod(CP), let z % y — 2
be the cofibre of o in C°. Then for any B € Funy cont(C, C), B(x) = B(y) — B(z)
is a cofibre sequence in C°P, as B is exact. By ([28], 4.2.3.5), now « admits a cofibre in
A — mod(C°), and oblv : A — mod(C°?) — C°P preserves this cofibre.

Let % y — 2z be a triangle in A — mod(CP). If it is a fibre sequence then it is also
a fibre sequence in C°P, hence also a cofibre sequence in C°P. We know already that «
admits a cofibre in A — mod(C°P) preserved by oblv. Since oblv is conservative, we see
that z % y — z is a cofibre sequence in A — mod(CP).

Let 2 % y — 2 be a cofibre sequence in A — mod(C), then it is also a cofibre
sequence on CP; as we have seen, hence a fibre sequence in C°P. Since A—mod(CP) —
CP reflects limits, © = y — z is a fibre sequence in A — mod(C°P). By definition ([28],
1.1.1.9), A — mod(C*P) is stable.

Sam claims A — comod(C) is presentable, so an object of DGCatcopns. Idea: for a
regular uncountable cardinal, K € A —comod(C') should be x-compact iff oblv(K) € C
is k-compact. Thus, the adjoint pair oblv : A — comod(C) = C' : coind takes place in
DGCatcont-

Important phenomenon here: for any ¢ € A—comod(C), one has ¢ = limp, e o A" (c)
in A — comod(C). Namely, in A —mod(C) one has ¢ = colimp,jc aor A" (c) by ([28],
4.7.2.7), as this is actually a split simplicial object in A — mod(C°P), the bar con-
struction. The tensor product in C'°P here does not preserve the geometric realizations
separately in each variable, so we really need the splitness of this simplicial object!

A version: assume C € CAlg(DGCateont), and A € coAlg(C), this means unital
coalgebra. The functor of tensoring by A is a comonad in Fung cont(C,C), so A —
comod(C) € DGCateont. Then moreover A — comod(C) € C — mod, and the adjoint
pair oblv : A — comod(C') = C': coind is in C' — mod.

9.2.60. Let A, A" € Alg(DGCateont), M, N € A — mod(DGCateont), M',N' € A’ —
mod(DGCatcont). Then there is a natural continuous functor
Funa (M, N) ® Fungy (M', N') — Funga (M @ M’ N @ N)

Indeed, we have the natural A-linear functor M ® Funs(M,N) — N and a natural
A’-linear functor M’ ® Fun 4/ (M’ N") — N’. Their tensor, product

M @ M' @ Funa(M,N) ® Funa/ (M',N') - N @ N’

is A® A’-linear, so by the universal property of the RHS given in Section [9.2.44) yields
the desired functor.
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Remark: the functor ev? : Funa (M, N) — Fung cont(M, N) of evaluations in the
corresponding cosimplicial diagram is comonadic by ([28], 4.7.5.1).

9.2.61. Let C,D € DGCatcons. Recall the isomorphism Funy, cont(C, D) :>/FunR(D, c)er
sending f to f%, where Fun® denotes the category of functors, which are right adjoints
(of continuous k-linear functors). The induced isomorphism

Fung, cont(C, C) = Fun®(C, C)°P

preserves the monoidal structures. In particular, if a is a continuous comonad on C
then a” is a monad on C. If af is a comonad on C then a is a continuous monad on
C.

Let now a® € coAlg(Fun®(C, C)) be a comonad on C. Then we get an equivalence
aft—comod(C) = a—mod(C) commuting with oblivion functors to C. Indeed, if ¢ — a’lc
is the coaction map then it corresponds under the adjointness to ac — ¢, which is the

action map. In particular, this shows that a® — comod(C) € DGCateont.

9.2.62. Let A € Alg(DGCateont), D, E € DGCateont, and N € A — mod(DGCateont).
Assume N is dualizable in DGCatcons. Recall that NV = Fung, cont (N, Vect) is naturally
a right A-module category. We claim the equivalence

Fung, cont (D, E @ N) = Fung, cont (D @ NV E)
in DGCatecope lifts to one in A — mod(DGCateont), that is, respects the A-actions.

9.2.63. Let A € Alg(DGCateont), M € A — mod(DGCateopnt) dualizable with its dual
L € A — mod" (DGCatcop) in the sense of ([14], 1.1, 4.3.1). From Section one
derives an equivalence functorial in D € DGCateont, Z € A — mod(DGCateont)

Funa(M @ D, Z) = Fung, cont (D, L ®4 Z)

From Section [9.2.56( we see also L ® 4 Z — Funy (M, Z) canonically.
Assume in addition N € A — mod"(DGCatcopnt) is such that N is dualizable in
DGCateont- Then for D, E € DGCateont we get combining the above with Section[9.2.50]

Fung cont(N®AM®D, E) = Funa (M®D, Fung cont (N, E)) = Fung cont(D, Lo 4(NYQF))

This shows that N ® 4 M is dualizable in DGCatcont, and its dual identifies canonically
with L ®4 (NV).

9.2.64. Let A € Alg(DGCatcont), M,C; € A — mod(DGCateopnt). Let f: C1 — Cy in
A —mod be fully faithful. Then Fung (M, Cy) — Funy (M, Cs) is also fully faithful (use

Lemma [2.2.16)).

9.2.65. Let O® be an essentially small oo-operad, let O® — DGCateon be an O-
monoid, so the corresponding cocartesian fibration €% — 0% is a O-monoidal category.
Then, in particular, € is presentably O-monoidal, so CoAlgo(C) is also presentably
O-monoidal by ([44], Prop. 2.8).

Example: take O® to be Surj. We get that given C € CAlg"(DGCatcon), the
category ComCoAlg™ (C') is presentable.
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9.2.66. Let f; : C; — D; be maps in DGCat,.y,¢ with f; conservative. If Dy, Co
are dualizable then f1 ® fo : C1 ® Co — D1 ® Do is conservative. Indeed, it is the
composition C; ® Co — D1 ® Cy — D1 ® Dy of conserative functors, as the first
rewrites as Fung cont(Cy , C1) = Funy cont(Cy', D1), and similarly for the second.

9.2.67. A generalization of Day convolution. Let A, D € Alg(DGCatcont). Assume that

the product map m : A® A — A admits a continuous right adjoint m®f, Vect 44
admits a continuous right adjoint Hom(14,-). Assume A dualizable. Then (A4, m%)
is naturally a coalgebra in DGCatcont, and AY € Alg(DGCateont) with the product
(mB)V 1 AV @ AY — AV, Since Alg(DGCateon) is symmetric monoidal,

AY @ D =SFune cont(A, D) € Alg(DGCateont)-
This structure looks like the Day convolution. Namely, given f; € Fune cont(A, D)

their product f; * fo is obtained from A ® A hef p 2D ¥ by applying the functor
Fune cont(A ® A, D) — Fune cont(A, D) left adjoint to the functor Fune cont(A, D) —
Fune cont(A ® A, D) given by composing with m.

The unit of Fune cont(A, D) is obtained from 1p : Vect — D by applying the func-
tor Fune cont(Vect, D) — Fune cont(A, D) left adjoint to the functor Fune cont(A, D) —
Fune cont(Vect, D) given by the composition with 14 : Vect — A.

The key thing here is that

Fun'le® (A, D)= Alg(Fune cont (A4, D)),

e,cont

where Fung cont (A4, D) is equipped with the above monoidal structure.
As for the Day convolution, we may replace here associative algebras operad by other
ones.

9.2.68. Let (C,*) € CAlg(DGCatcont). Since C' is presentable, for ¢,d € C' there is
the inner hom Hom(c,d) € C, (HTT, 5.5.2.2). Equip C° with the induced symmet-
ric monoidal structure. Then the functor Hom(-,1) : C? — C' is right-lax nonuni-
tal symmetric monoidal. Namely, if z; € C for ¢+ € I a finite nonepty set then
iglm(xi, 1) — Hoim(i zlxi, 1) corresponds to the morphism

( * x;) = ( *x Hom(x;,1)) — 1

i€l icl
which is the product in C of the morphisms z; * Hom(z;,1) — 1. The morphism
1 — Hom(1,1) is attached toid : 1 1 — 1.

Let now ¢ € coAlg(C') then Hom(c, 1) € Alg(C).

9.2.69. The following example is due to Sam. Let C' € CAlg(DGCateont). Let I
be a small category assumed contractible. Let I — coAlg(C) be a functor i — A;.
Let A = colim;e; A; calculated in coAlg(C) or equivalently in C. We get a map
I - C —mod/C, i— A; — comod(C), where the transition functors are extensions of
scalars via A; — Aj for i — j. Let D = colim;e; A; — comod(C) calculated in C' — mod
or equivalently in DGCatcn. Then the natural functor D — A — comod(C') is not an
equivalence.

Example: C = Vect. For n € N take A, = e[G}], the space of functions on
the group G7. Our field of cooefficients e is of characteristic zero and algtebraically
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closed. Consider the homomoprhism of groups G**1 — G? forgetting the last fac-
tor, it gives a map of coalgebras A, — A,y1. We take I = N with the usual or-
der, the map N — coAlg(Vect) sends n to A, with the above transition maps. So,
A = colimuey A, — k[G]. Here G = [],cy Ga, the product being calculated in the
category of affine schemes. So, A = e[z, x9,...].
He claims COEIINH Ay, —comod(Vect) — A—comod(Vect) is not an equivalence. Namely,
n

the natural t-structure on A — comod(Vect) is left separated, while he claims this is not
the case for the LHS.

9.2.70. Let I be a small category, Cj : I — DGCatcopnt, ¢ — C; be a diagram, assume
each C; dualizable. Let C’}/Op : I1°P — DGCatont be the functor obtained by passing
to the duals. When colim;c; C; and lim;cjor C} are mutually dual? More precisely,
there is a canonical Vect-valued pairing between them, and we ask when it realizes the
two categories as mutually dual. For this one needs that for any D € DGCatcope, the
natural map D ® lim;ejor C) — lim;egor (D ® C)Y) is an isomorphism.

A nice example of this is ([49], Lemma A.2.1).

A point related to his ([49], Lemma A.6.1). Here is a simplified version:

Lemma 9.2.71. Let C, F € DGCatcont. Then the natural map
(12) Funy, cont (Fun([1], C), E) — Fun([1], Fung cont(C, E))
s an equivalence.

Proof. Write an object of Fun([1], C) as (cg, 1, ), where ¢; € C and a: ¢g — ¢ in C.
For ¢ € C' we have a fibre sequence in Fun([1],C)

(0,¢,0) = (e, c,id) = (¢,0,0) = (0,¢[1], 0),
here 0 is the boundary morphism, it depends on . Let O : Fun([1],C) — E be a map
in DGCateont. It gives the functors & : C' — E for i = 0,1 given by &y(c) = 6(c,0,0),
&1(c) = 09(0,¢[1],0) and a map 1 : §g — &1 in Fung cont(C, E) given by applying © to 6.
The inverse map to is as follows. For any object (¢, c1, @) € Fun([1],C) we have
a commutative diagram, where the arrows are fibre sequences in Fun([1],C)

(oY

(0,¢1,0) — (co,c1,00) —  (c0,0,0) — (0,¢1[1],0)
Jid J axid o Jid
(0,1,0) > (er,enid) = (¢1,0,0) 5 (0,e1[1],0)
Now « yields maps
go(a) n(c1)
€o(co) "= &olc1) =" &iler),
and ©(cy, c1,a) € E is recovered as the fibre in E of n(c1)éo(a) : &o(co) — &1(c1). O

Corollary 9.2.72. For any D,C € DGCateon: the natural map Fun([1],C) @ D —
Fun([1],C ® D) is an equivalence.

Proof. For E € DGCato,; we check that the composition
Funk,cont (Fun([l]v C & D)a E) — Funk,cont(Fun([1]7 C) ® D7 E)
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is an equivalence. By the previous lemma, the LHS is
Fun([1], Fung cont(C ® D, E))
and the RHS is
Fung cont ((Fun([1], €), Fung, cont (D, E)) = Fuan([1], Funy cont(C, Fung cont (D, E))

Both sides are the same. O

For I, J small categories and C, D € DGCatcopt, one has a canonical map Fun(Z,C)®
Fun(J, D) — Fun(f x J,C ® D). Sam says that for I, J finite categories this should be
an equivalence, but probably not in general.

9.2.73. Let A € CAlg(DGCatcont), let A € CAlg(A) be an idempotent commutative
algebra in the sense of ([28], 4.8.2.8). Then ind : A = A — mod(A) : oblv is an
adjoint pair in A —mod. By (28], 4.8.2.10), ind is a localization functor, and oblv is
fully faithful. Moreover, for any M € A — mod tensoring the above adjoint pair by
M, one gets an adjoint pair ind : M = A — mod(M) : oblv in A — mod. Here we
used the equivalence A — mod(A) ®4 M = A — mod(M) from ([I4], I.1, 8.5.7). So,
oblv : A — mod(M) — M is fully faithful, and its image is the image of A : M — M.

9.2.74. Let A € CAlg(DGCatcont), assume A dualizable in DGCatopnt, recall that AY
is naturally an A-module. We claim that for M € A—mod(DGCatcont), N € DGCateont
one has canonically

Funa (M, AY @ N) = Fung cont (M, N)

Proof: the functor oblv : A — mod — DGCatcon: has a right adjoint given by N —
AV ® N. So, for E € DGCatyns one has

Mappaca.,., (B, Funa(M, AY @ N)) SFung cont (E, Funa (M, AY @ N))SP¢ =
Funs(M @ E,AY ® N))SP° = Mapy_,,.0(M ® E,AY @ N)=
Mappacat,,, (M @ E,N) = Mappacat,,,., (£, Fung cont (M, N))

O

If in addition AY = A is given such that the counit map ¢ : A ® A — Vect is A-
bilinear in the sense that c(a1bXag) = c(a; K bag) as functors A® A ® A — Vect then
the isomorphism A= A" is an isomorphism in A —mod. In this case for M € A —mod
we get Funy (M, A) = Funa(M, AY) = Fung cont (M, Vect), this is an isomorphism in
A — mod(DGCateont).

9.2.75. Let A — B be a map in Alg(DGCatcont), C € A—mod. Consider the functor
v : Funy(C,C) — Fung(B ®4 C,B®4 C) sending f : C — C to id®f : By C —
B®4C. It is monoidal. In particular, if A € Alg(Fun(C, C)) is an A-linear continuous
monad on C then id ®A € Alg(Fung(B®4C, B®4C)) is a B-linear continuous monad,
and the same for comonads.

Recall that C' € Funy(C,C')—mod and B4 C € Fung(B®4C, B&4C)—mod. The
natural functor a: C =5 A®4 C — B®4 C coming from A — B is Funy(C, C)-linear,
where on the RHS it acts through ~.
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Let now A € Alg(Funys(C,C)). Then « induces a functor A — mod(C) — A —

mod(B ®4 C). Here
A —mod(B®y C)= (id®A) — mod(B ®4 C)
naturally with v(A) = id ®A.

Note that C' € Funu(C,C) ® A — mod, because these two actions commute. For this
reason, A—mod(C) € A—mod naturally. Similarly, (id ®A) —mod(B®4C) € B—mod.
The above functor

A —mod(C) = (Id®A) — mod(B ®4 C)
is A-linear, where on the RHS it acts through A — B. By adjunction, this gives a
continuous B-linear functor
B®a (A—mod(C)) = (id®A) — mod(B®4 C)

Let now £ € CoAlg(Funa(C,C)). As above we get L — comod(C') € A—mod. Since

id®L :=~v(L) € CoAlg(Fung(B®4 C,B®4 C)), we get
L —comod(B®4 C)= (L) — comod(B ®4 C) € B— mod.

The functor « induces an A-linear functor £ —comod(C) — £ —comod(B® 4 C), where
on the RHS A acts through A — B. By adjointness, this gives a continuous B-linear
functor

B ®4 (L — comod(C)) = (L) — comod(B ®4 C).
The adjoint pair oblv : £ — comod(C') = C': coind takes place in A — mod.

9.2.76. Lurie’s result ([28], 4.7.4.19) provides the following corollary:

Claim 1 Let S,T € 1 — Cat. Let x : S x T' — DGCatcypn: be a functor, (s,t) — x(s,1t).
Fora:s—sin S, 8:t—t in T consider the diagram

Fa,
X(s,t) 5 x(s,1)
(13) \J,F575 \l/FS’yB
F,
X(s,t) 5 x(s,t)
Assume it is right adjointable. This means that there are right adjoints Folft,F ft,,
and the induced map FsﬁF(ft — Fo{:fth/7 g is an isomorphism for any choices of a, 8 as
above. Then the canonical map

lim li t) = 1i li t
colim limx (s, £) — lim colimx(s, t)

is an equivalence in DGCatcops.
Proof. Apply Claim from Section [10.1.1{ and ([28], 4.7.4.19) O

Claim 2(version for ”left adjointable diagrams”). If we replace in the above formula-
tion right adjoints ngt by left adjoints Fit and "right adjointable” by ”left adjointable”
then the conclusion is that the canonical map

lim li t) = li li t
(0 = Jgeqx(s )

is an equivalence in DGCatcops.
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Proof. Assume. FoﬁtaFa{Jt'
tomatically, though they are maybe not continuous. Since the diagram ((13)) is assumed
left adjointable, it follows that the transposed diagram

exists for any data as above. Note that F fﬂ, F j 5 exists au-

F
X(s,t) = x(s.t)
\l/ Fa7t \L Fa,t/
/ For 8 14l
x(s,t) = x(s,t)

is right adjointable. The result follows now from Claim 1. g

9.2.77. Let C;, D; € DGCat,y,: for i € I, where I is a small set. Let «; : C; — D; be

a map in DGCateypy such that [, o : [[, Ci = [[; Di is an equivalence. Then each oy

is an equivalence. Indeed, let aZR be the right adjoint to c;. Then [], aZR is the right
R

adjoint to [[, ;. The canonical map id — ([, ;') o (I]; ;) is an equivalence, and

similarly for (T], ;) o ([]; @) — id. The claim follows.

9.2.78. The following is actually proved in ([50], 6.5.2). Let I € 1 — Cat small such
that for any diagram A of the form iy < j — ia, I4, is contractible. This is precisely
the condition saying that for any map 5 : k — 4 in [ the functor I;, — I}, given by

(%) = (%))

is contractible.

Let now I x [1] — DGCatcont be a functor sending i to F; : C; — D;. For a map
a i — jin I write ¢ : D; — D; and v, : C; — C}; for the transition functors. Let
C = colim; C;, D = colim; D; in DGCatcopne. Write ¢; : D; — D, v; : C; — C for the
natural functors. Assume each right adjoint G; : D; — C; of F; is continuous. Let
F = colim; F; : C' — D be the induced functor.

Then F' has a contiuous right adjoint G. Moreover, for any i € I the composition
G¢; identifies with

colim ;G pq
(i35)€l;,

taken in Fune cont(D;, C).

9.3. About t-structures.

9.3.1. Let C € DGCatpyt with a t-structure. The t-structure is called right separated
if NpezCZ™ = 0. It is left separated if N,ezC<"™ = 0. It is sometimes called non-
degenerate if it is both left and right separated. Recall that

C>% = {ce C|forall ¢y € C=°, Mapy(co,c) = %}

Note that for ¢g € C=0,V € Vect=" one has V ® ¢y € C=V. Indeed, it suffices to check
this for V € Vect=" N Vect®, where it is clear.

Lemma 9.3.2. 1) One has C>% = {c € C | for all co € C=°, Maps,, ¢:(co, c) € Vect”"}.
2) One has C=* = {cy € C'| for allc € C>°, Mapsy, ¢(co,¢) € Vect™0}.
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Proof. 1) Let ¢ € C>9, ¢y € C=Y. Then for V € Vect=" one has
Mapyeet (Vs Mapsy, o (co, €)) = Mapo(V ® co, ¢) = *

in Spc, because V ® ¢y € C=Y. So, Mapsy, (o, ¢) € Vect™Y.
Conversely, let ¢ € C and for any ¢y € C=0, Mapsy, ¢(co, c) € Vect™ . Then for
co € C=0 we get Mapc (co, ¢) = Mapye (k, Mapsy, ¢(co, ¢1)) = * in Spe. So, ¢ € C~0.

2) is similar. O

Remark: let C € DGCat with a t-structure compatible with filtered colimits. Then
750 C — C=Y preserves filtered colimits. Indeed, let ¢ = colim ¢; with I small filtered,
the colimit in C. For each i we have a fibre sequence 7<%¢; — ¢; — 7. Passing
to the colimit, we get a fibre sequence colim 7=%; — ¢ — colim 7>%¢;, which identifies

with 7=0% — ¢ — 7>0¢.

9.3.3. By ([14], ch. I.1, 7.1.1), ¢ € C is compact iff the functor Mapsq(c,-) : C — Sptr
preserves filtered colimits. Since Dold — KanSP* : Vect — Sptr is continuous and
conservative, this is also equivalent to the property that Mapsy «(c,:) : € — Vect
preserves filtered colimits.

9.3.4. Let C' € DGCat.yn: be compactly generated, assume given a t-structure on C.
This t-structure on C is called compactly generated if C=0 is generated under filtered
colimits by C=9N C¢. In this case Ind(C=" N C¢) — C=Y is an equivalence by ([27],
5.3.5.11). Note that C<" N C¢ admits finite colimits, so C=Y is presentable by ([27],
5.5.1.1), that is, the t-structure is accessible.

Lemma 9.3.5. Let C € DGCat.ont be compactly generated with a compactly generated
t-structure. Then one has the following.

i) The t-structure on C' is compatible with filtered colimits.

it) We have C>° = {c € C'| for allz € C°N C=°, Maps, o(x,¢) € Vect™"}.

Proof. i) Let I be small filtered, I — C~° be a functor i — ¢;, set ¢ = colim; ¢; taken in
C. By Lemma it suffices to show that if d € C<C then Mapsy, (d, c) € Vect™?.
Pick J small filtered and a presentation d — colimje s d; with d; € C°N C=Y. We get
Mapsy, ¢(d, ¢) = limje jor Mapsy, (d;, c). For each j € J,

Mapsy, ¢(dj, c) = colim; Mapsy, -(dj, ¢;)

in Vect. Since Mapsy, o(dj, ¢;) € Vect™?, and the t-structure on Vect is compatible with
filtered colimits, we get Mapsy, o(d;, c) € Vect™?. Since Vect”™® C Vect is closed under
limits, we get Mapsy, (d, ) € Vect™".

ii) We check that the RHS is contained in C~?. Let c lie in the RHS, y € C=0. Write

y = colim;er y; with I filtered, y; € C°NC=". Then Maps,, o (y, ¢) = limie ror Mapsy, ¢ (yi, ¢)
in Vect. Since Vect™® C Vect is stable under limits, we get Mapsy, o(y,c) € Vect™?.
So, ¢ € C>Y by Lemmam O
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9.3.6. Let C,D € DGCatc,,: be compactly generated equipped with t-structures.
Assume the t-structures compactly generated for C, D.

We equip C ® D with the t-structure declaring (C' ® D)<" to be the smallest full
subcategory containing cXd for ¢ € C°NC=Y,d € D°ND=Y, closed under extensions and
small colimits. This is indeed an accessible t-structure by ([28], 1.4.4.11). Moreover,
C ® D is compactly generated by objects of the form ¢Xd with ¢ € C¢,d € D¢ by ([14],
ch. 1.1, 7.4.2).

Lemma 9.3.7. Let C, D € DGCatcopn: be compactly generated equipped with compactly
generated t-structures. Then the t-structure on C ® D is compactly generated.

Proof. We have an equivalence h : C ® D = Funp;_e, 1, ((C°)? x (D), Vect), where
the RHS is the category of functors, which are exact and Vect/%linear in each variable.

Here k stands for the field of coefficients of our DG-categories. The equivalence is
obtained using ([14], ch. 1.1, 10.5.6) as

C ® D=5 Fungcont(C"Y, D) = Funeg ,((C%)%, Funy cont (D, Vect)) =
Funeg s ((C€)°, Fungg 4 (D)%, Vect)) = Funp;_ez 1 ((C)% x (D), Vect)

For ¢ € C,d € D the functor h(cX d) € Fung;_e, 1 ((C)P x (D), Vect) is the functor
(co, do) = Mapsy, (co, c) @ Mapsy, p(do, d),

see ([14], ch. L1, 10.5.8). Note also that for this functor to be Vect/?-linear in each
variable, the action of V' € Vect/? on ¢y € (C€)% is defined as VY ® g, and similarly
on the second variable. For f € Funy_c 1 ((C€)% x (D), Vect) and ¢ € C°,d € D¢
we get

Mapsy, cop(h(c®d), f) = f(c x d)

So, f € Funp;_eq 1, ((C€)P x (D)°P, Vect)>? iff for any ¢ € CNC=" d € D°N D=Y one
has f(c x d) € Vect”?. This means that (C ® D)=" is generated by objects of the form
cXd with c € C°NC=Y and d € D°N D=0, To finish, apply the lemma below taking
E' € (C ® D)=V the smallest full subcategory containing ¢ X d for c € C°N C=<0,d ¢
D¢N D= and closed under finite colimits. Note that £’ C (C'® D) by ([27], 5.3.4.15).
If z € (C® D)<Y satisfies Mapgg p (v, 2) = * for any v € E’ then z = 0 by the definition
of (C ® D)=". We are done.
If f— colimjcs f; in C ® D, where J is small filtered then

f(exd)= colimjey fi(c x d),

where the colimit is calculated in Vect. Since the t-structure on Vect is compatible with
filtered colimits, we see that the t-structure on C'® D is also compatible with filtered
colimits. 0

Lemma 9.3.8. Let E be w-compactly generated in the sense of (27|, 5.5.7.1) and
E' C E€ is a full subcategory. Assume that if z € E and Mapg(€’, 2) = * for any e’ € E’
then z is isomorphic to the final object of E. Then the natural map Ind(E’) — E is an
equivalence.
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Proof. Sam claims this is true. Proof under an additional assumption that E' C E°¢
is stable under finite colimits, which is sufficient for Lemma Since ' C E°,
we conclude that h : Ind(E') — FE is fully faithful by ([27], 5.3.5.11), and Ind(E")
is presentable. By adjoint functor theorem, h admits a right adjoint Ah. By our
assumption, the map E — P(E’) is fully faithful (find a reference!), and Ind(E’) C
P(E’) is fully faithful.

Let z € E then the natural map hh'(z) — z indices an isomorphism of their images
in P(E’) by assumption. O

Remark 9.3.9. Let C' € DGCat.ynt be compactly generated and equipped with a t-
structure compatible with filtered colimits. Then C>° is compactly generated in the
sense of (127, 5.5.7.1) by (21, 5.5.7.3). Moreover, any compact object of C>° is a
retract of 7>%¢ for some c € C°.

9.3.10. Let f: C7 — C5 be a map in DGCatcp,t. Let D € DGCateon: be equipped
with a compactly generated t-structure. Assume C; equipped with t-structures and f
is t-exact. We equip C; ® D with t-structures as in Section

Then f®id : C1 ® D — Cy ® D is t-exact. Indeed, the left t-exactness is ([47],
Lemma B.2.4). The right t-exactness follows by definition of t-structures.

Lemma 9.3.11. Let C € DGCatcons be equipped with a t-structure, A € Alg(Funy cont(C, C))
be a monad on C, so the underlying functor f : C — C is a map in DGCateopnt-

Assume f is t-exact. Then A — mod(C) admits a unique t-structure such that both
oblv : A —mod(C) — C and ind : C — A — mod(C) are t-ezact.

Proof. We have A — mod(C) € 1 — Cat®t°™Pl by Section |4.0.32, Note that oblv :
A —mod(C) — C reflects limits. Set

A —mod(C)=° = oblv™(C=%), A —mod(C)”° = oblv™(C>?)

We check that this defines a t-structure on A —mod(C). Given z € A —mod(C)=0,y €
A —mod(C)>?, the bar construction ([28], 4.7.2.7) gives 2 = colimp,jc aer A" (), the
colimit calculated in A — mod(C) (we may also refer to [28], 4.7.3.14). So,

MapA—mod(C) (.T, y) - ['rHIEnA MapA—mod(C’) (An+1 (:I:)a y) - [VHIGHA MapC’ (‘An(‘r)7 Oblv(y)) - *,

because Mapq(A™(z), oblv(y)) = * for each n.

Consider now the full subcategory Funy cont(C,C)' C Fung cont(C,C) spanned by
t-exact functors. It is stable under composition and inherits a monoidal structure from
Fung, cont(C, C). Moreover, A € Alg(Fun cont(C,C)"). Now C=Y,C>Y are naturally
module categories over Funy, con:(C, C)t. Moreover, the functors 7=0: C' — C=0, >0 .
C — C>Y are naturally Fung, cont (C, C)!-linear functors in the sense of Section
of this file and ([28], 4.6.2.7). So, as in Section they upgrade to functors

79 A — mod(C) = A — mod(C=°), 77°: A —mod(C) = A — mod(C~°)

Moreover, the inclusions C~% — C « C=0 are Funy, cont(C, C)!-linear functors. Now
given z € A — mod(C),we get the triangle 752 — 2z — 7702 in A — mod(C). To see
that this is a fibre sequence it suffices to check this after applying oblv, as oblv reflects

limits. The t-structure is constructed.
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To see uniqueness, let DY € A — mod(C) be a full subcategory defining another
t-structure with the required properties. Then D<= C oblv=}(C=) = A — mod(C)=?,
because oblv is t-exact. On the other hand, for any z € A — mod(C)=" the colimit
2= colimy,)e aor A" (2) taken in A — mod(C) must be in D=0, because ind is t-exact
and D=0 is closed under colimits. Thus, D=0 = A — mod(C)=". O

Remark 9.3.12. i) Assume C' € DGCateont with a t-structure, A € Alg(Funy, cont(C, C))
such that the underlying functor f : C'— C is right t-exact. Then there is a t-structure
on A—mod(C) such that oblv : A—mod(C) — C is t-exact, and ind : C — A—mod(C)
is right t-exact. E|

Any other t-structure on A — mod(C), for which oblv : A — mod(C) — C and
ind : C' — A — mod are both right t-exact coincides with the above one.
ii) Assume in addition A € Alg(Vect=) giving a monad in C, assume the t-structure
on C accessible. Then under the equivalence A — mod(C) = (A — mod) ® C the above
t-structure corresponds to the tensor product t-structure on the right hand side.

Proof. By Section [4.0.32) A — mod(C) € 1 — Qattcoempl,
i) Write Funj%,.,(C,C) C Fung cont(C, C) for the full subcategory of right t-exact
functors. It is stable under compositions, so inherits the monoidal structure from

Fung, cont(C, C). View C and C=Y% as modules over Fun}*® (C,C). Then the functor

k,cont

=0 C — C=0 is a right lax functor of Fun}®*  (C,C)-module categories, because

its left adjoint is Fun;®®  (C,C)-linear. Namely, for f € Fun}®* (C,C) applying f

k,cont k,cont
to the natural map 7<%c — ¢, one gets a morphism f(7=) — f(c), which factors as
f(7=%) — 7=9(f(c)). Further, A € Alg(Funi .. (C, C)), so 7= induces a morphism
A —mod(C) — A —mod(C="). Given ¢ € A —mod(C), the action of A on 7=Cc is the
composition
<0 <0 7=0act) <o
A(T=¢) = 70 (Ae) = T 1c

The inclusion i : C=0 — C' is a morphism of Fun}®% . (C, C)-module categories. We get
an adjoint pair i : A — mod(C=<") = A — mod(C) : 7=° by Section

Define A — mod(C)<° A — mod(C)>? as in the proof of Lemma As in loc. cit,
we have for z € A — mod(C)=,y € A — mod(C)~°, Mapg_,,oq(c)(®,y) = *. Let
c € A—mod(C), so 7= is an object of A—mod(C<") C A—mod(C) as above. Consider
the exact triangle 7<%c — ¢ — z in A —mod(C). Since oblv : A—mod(C) — C'is exact,
this is an exact triangle in C, so z if the cofibre of the canonical map 7<% — ¢, hence
z=77% and z € A — mod(C)>°. By definition, this is a t-structure on A — mod(C),
and oblv : A — mod(C) — C is t-exact.

To see uniqueness, let D= C A — mod(C) be another full subcategory defining a
t-structure with required properties. Then D=0 c oblv~! (C=Y), because oblyv is right t-
exact. For a € A—mod(C)=" the colimit z = colim,c ao» A" () taken in A—mod(C)
must be in D=0 because ind is right t-exact.

ii) The functor (A—mod)RC — A—mod(C), VXc — V&c is right t-exact by definition.
It is an equivalence by ([I4], ch. 1.1, 8.5.7). Since ind : Vect ®C' — (A — mod) ® C' is
right t-exact, our claim follows from the uniqueness in i). O

IDennis claims the existence of t-structure on A — mod(C') for A left t-exact, but I don’t see that.
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Lemma 9.3.13. Let C' € DGCateont be compactly generated with a compactly generated
t-structure. Let A € Alg(Funy cont(C, C)) be such that the underlying functor C' — C'is
t-exact. Then A —mod(C) is compactly generated, and the t-structure on A —mod(C)
defined in Lemma 1s compactly generated.

Proof. Let ind : C' — A —mod(C') be the left adjoint to oblv : A —mod(C) — C. Then
ind preserves compact objects, so A —mod(C) is compactly generated by objects of the
form ind(c) for ¢ € C“.

If ¢ € C°NC=0 then ind(c) € A — mod(C)* N A — mod(C)=". Let z € A —
mod(C)=0. Assume that for any ¢ € C°N C=%, Map_q(c)(ind(c), z) = *, that is,
Mapq(c,oblv(z)) = *. Since the t-structure on C' is compactly generated, this gives
oblv(z) =0 in C=Y hence z = 0, because oblv is conservative. O

9.3.14. Let C' € DGCatont with a t-structure, ¢; € C be infinitely connective objects
for i € I, here I is a small set. Let C' C C be the smallest cocomplete stable subcategory
containing all ¢; (and stable under Vect-action also). Then any object of C’ is infinitely
connective. Indeed, for any n € Z, C=" is stable under all colimits.

9.3.15.  Recall that we have the involution C' — C° on DG Cat™o"—c«mpl by ([14], ch.
L1, 10.3.2). For C' € DGCat™"~ ™l one defines Pro(C) = (Ind(C°P))°P. By ([14],
ch. 1.1, 10.5.5) we have Pro(C)= Funy(C, Vect)?. Here Funy(C, Vect) is defined in
(4], ch. 1.1, 10.3.5).

The following was used in ([6], Appendix A), and it follows from ([27], 5.3.5.13). Let
G : C' = C" be an exact functor, a map in DGCat™" Pl gq it is Vect!%linear. It
gives a functor G : Pro(C’) — Pro(C"), namely the corresponding functor Ind(C"?) —
Ind(C"°P) is the left Kan extension of the composition C'? — C"°P — Ind(C"°P) along
C'P — Ind(C"P). Then G admits a left adjoint G* : Pro(C") — Pro(C') sending a

functor f : C” — Vect to the composition C’ 4 o L Vect, So, in some sense the
left adjoint to G always exists as a functor C” — Pro(C’), namely the composition

C" — Pro(C") Gy Pro(C").

9.3.16. Let f : C — Vect be a map in CAlg(DGCateont), so a symmetric monoidal
functor. Assume C equipped with a t-structure, f conservative and t-exact. Then the
t-structure on C' is accessible, compatible with filtered colimits, and C' is right complete.

Proof: We have C=0 = {c € C'| f(c) € Vect="} and CZ° = {c € C'| f(c) € Vect="}.
Since Prl” — 1—Cat preserves limits, C=Y is presentable, so the t-structure is accessible.
For z € C the natural map colim, 7<"z — z is an isomorphism in C, because it becomes
an isomorphism after applying f. So, by Section C is right complete.

9.3.17. If C, D € DGCatop: with accessible t-structures then C' ® D also acquires an
accessible t-structure defined as follows. It is known that any presentable co-category
E admits a small set of objects S that generates E under small colimits. Pick small
sets of objects €’ C C=" that generate C=" under small colimits, and similarly for
D' € D=V, Then the collection & = {c® d | c € C',d € D'} is a small set of objects
in C® D. Let (C® D)<? C C ® D be the smallest full subcategory containing € and
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closed under extensions and small colimits. Then (C ® D)=C is presentable by ([28],
1.4.4.11), and defines an accessible t-structure on C ® D.

Assume in addition that the t-structures on C, D are compatible with filtered col-
imits. Then the t-structure on C ® D € DGCat .y, is compatible with filtered colimits
also.

Idea of proof: (cf. [33], C.4.2.2 for details). Write C' ®vect D for the tensor prod-

uct over Vect, and simply C' ® D for the tensor product in 1 — Cat>0“™P! By [[51],

cont

Remark C.4.2.2], C ® D is equipped with a t-structure compatible with filtered col-

imits. Consider the adjoint pair m : Vect ® Vect & Vect : m®? in 1 — Cat>heoemp l,

cont
L st, ! o . .
where the tensor product is in 1 — Cat. Y™, T imagine, m is monadic. Now

tensoring by C ® D over Vect ® Vect, we also get an adjoint pair m : C ® D S
(C®D) @Vect & Vet Vect — C @veer D : Mt with m monadic and monad A. The monad
A should be right t-exact Sam says. Namely, I have to check that Vect = k—mod(Sptr),
so Vect ® Vect = (k ® k) — mod(Sptr), and the monad should be the tensoring with
the k ® k-module k. So, the monad A is right t-exact. As in Remark now,
A —mod(C ® D) acquires a t-structure such that oblv : A — mod(C @ D) - C ® D is
t-exact and conservative. This implies that the t-structure on C ®veet D is compatible
with filtered colimits.

9.3.18. Let Cy € DGCat™"~“mPl with a t-structure. Let C' = Ind(Cp). Recall that
by ([14], 11.1, 1.2.4), C' is equipped with a t-structure compatible with filtered colimits
and accessible such that Cy — C is t-exact. Assume that the t-structure on Cj is
bounded. Then the t-structure on C' is right complete.

Proof: C is stable by (HA, 1.1.3.6), it is also presentable, because Cy admits finite
colimits. The t-structure on C is accessible by ([14], II.1, Lemma 1.2.4). So, by
my Section it suffices to show that for any K € C, the natural map K —
colim,ez 7" K is an isomorphism, where the colimit is understood in C.

Pick a presentation K — colim;c; K; in C, where K; € Cy and I is small filtered.
The functors 7" : C' — C preserve filtered colimits, so

colimyez 7™ K = colimy,ez, colime; 7" K; = colimie[(coligl Tgm(KZ‘))
me
= COlimZ‘E[ Kl =K

We used the fact that K; is bounded, so coliIZn 7S (K;) = K; in C, because I is con-
me

tractible. Thus, C is right complete.

9.3.19. Let I € 1 — Cat be small filtered and we are given I — DGCateont, © — C;.
Assume each C; is equipped with an accessible t-structure, and for o : ¢ — 7 in I the
map h;j = he : C; = () is t-exact. Note that the right adjoint hE . C; — Cj is left
t-exact. Set C' = colim;e; C; in DGCateon:. We have C' = lim;ejor C; with respect to
the functors A%, where the limit is calculated in DGCat. Assume for simplicity that
hE are continuous. Set C>0 = lim;¢fop C’,L~>0 in Pr’, so C>0 is presentable, and this is
a full subcategory in C' = lim;ejor C;, where the limit is calculated in DGCatepn:. We
also have C=0 = lim;¢yop C’i>0 in 1 — Cat.
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Assume each hZ fully faithful. Let ig € I be an initial object. Then by my Sec-
tion we have C = NC; as full subcategories of Cj,. The inclusion C' — Cj,
has a left adjoint L given by the formula from ([36], Lm. 1.2.15). Namely, for
c € Cyy, L(c) = colimjer hyyj(c), where the colimit is calculated in Cj,. We also have
C>% =n;C7Y as full subcategory of Cj,.

Let us also define C=Y as the image of C’Z%D under L (equivalently, for any i as the
image of Cfo under the restriction L : C; — C of L). Assume that the t-structure on
each C; is compatible with filtered colimits. Then we claim that (C<?,C>?) define a
t-structure on C. Indeed, let x € C. Let 7‘;0 : Cp — C’Z-SO, 770 Ci — C70 be the
truncation functors. We have the fibre sequence L(T%Ox) = — L(Tl-io(x)) in C' and
L(T%O.r) € 0= We claim that L(T;O(ZL‘)) c >V,

Indeed, recall that L(T;O(.T))/;)J colimjer hioj(rio(az)), the colimit being calculated
in Cj,. It suffices to show that this is an object of C’j> O for any j € J. For this we may

replace I in the colimit by I;,. Then for each j — j" in I, hioj/(Tgo(x)) € Cj>0, because

hf'j, is left t-exact. Since Cj> Y is stable under filtered colimits, the colimit remains in
cy 0. Thus, we constructed a fibre sequence for z, which is 75°z — z — 75%(z). The
rest is easy. So, this is indeed a t-structure. Note that C>° is presentable, so this
t-structure is accessible. It is also compatible with filtered colimits: if J is filtered and
x — colimjeyx; with x; € C>Y, where the colimit is calculated in C' then this is also
the colimit in Cj,, but for any 1, Ci> U is stable under filtered colimits, so this colimit is
in C7Y. Since i is arbitrary, € C°.

9.3.20. Let C € DGCateon: with an accessible t-structure. Let C denote the left
completion of C, it is equipped with the induced t-structure. The t-structure on C
is accessible, because C=0 =5 ()20 is presentable (see [28], 1.4.4.13). Note that C="
is presentable for each n. For each n the functor 727" : CZ~"~1 — CZ~™ preserves
colimits, as it is a left adjoint. So, lim,ezor C=~™ can be understood in the category
PL of presentable co-categories and colimit preserving functors, so C is presentable.

Assume in addition the t-structure on C' is compatible with filtered colimits. Then
for V € Vect=", ¢ € CZ7" we have V ® ¢ € CZ~™". Indeed, it suffices to check this for
V € Vect® N Vect=". In this case for y € C<~" we have

Mapa(y, V @ ¢) = Map(V"Y @y, c) = *,

soV®ece O So, for V e Vect” the functor C — C,c — V ® ¢ is t-exact. We
define the Vect”-action on C' by the formula: for z := (¢,,) € C, where ¢, € CZ~" and
T2 i1 —cp welet V@x e C be given by the collection (V' ® ¢,). This extends
to an action of Vect® first, and then by continuity, to an action of Vect, because Cis
presentable. The natural functor C' — C preserves filtered colimits. It is also exact by
([28], 1.2.1.17), so is a map in DGCatcont.

Let f: C'— D be a map in DGCateone, D is equipped with an accessible t-structure
compatible with filtered colimits also. Assume f is t-exact. Let f : C' = D ne obtained
by passing to left completions. Then is exact by Sectionm Besides, f is continuous,
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because for each n, f : CZ~" — DZ~" preserves filtered colimits (as CZ~" C C is closed
under filtered colimits). Our f is Vect-linear, so is a map in DGCatcop-

9.3.21. Let C € DGCateoy; with an accessible t-structure. Let C denote the right
completion of C, it is equipped with the induced t-structure. For each n, C=" is
presentable. Assume the t-structure on C' is compatible with filtered colimits. Then
the functor 7<" : C<"*! — C=" preserves filtered colimits (so is accessible) and all
limits. By ([27], 5.5.3.18) we may understand lim,ezor C=" in Prf, the category of
presentable categories, where the morphisms are limit-preserving accessible functors.
So, C'is presentable. Now C<0 =5 (C)=0, so the t-structure on C' is accessible. The Vect-
action on C is obtained as in the previous section, so C € DGCateons. The natural
functor C — C preserves filtered colimits by construction (Lemma and is exact
by ([28], 1.2.1.17), so is a map in DGCatcnt.

Let f: C — D be a map in DGCateopnt, where D is equipped with an accessible
t-structure compatible with filtered colimits. Assume f is t-exact. Let f :C = D
be obtained by passing to right completions. Then f"p . CP — D is exact by
Section SO f is also exact. Since each f : CS™ — D=" preserves filtered colimits,
we conclude that f is continuous, so f is a map in DGCateppns.

9.3.22. On comodule categories. Let C € DGCateont, A € Fung cont(C,C) be a k-
linear continious comonad on C. Recall the adjoint pair oblv : A — comod(C) = C :
coind in DGCateopt. Assume C is equipped with an accessible t-structure. We equip
A — comod(C) with the t-structure characterized by A — comod(C)= = oblv ™1 (C=Y).
By ([28], 1.4.4.11), this is an accessible t-structure on A — comod(C).

Lemma 9.3.23. Assume in the situation of the previous subsection that A : C — C is
t-exact. Then

i) both functors in the adjoint pair oblv : A — comod(C) = C': coind are t-ezxact.

ii) If the t-structure on C' is right complete then the t-structure on A — comod(C) is
also right complete.

Proof. 1) By Section [9.2.59, each ¢ € A — comod(C) writes as ¢— [lilmA A"FL(c), the
nje

limit calculated in A — comod(C).
We claim that the pair of subcategories (oblv™!(C=0),oblv~1(CZ0)) define a t-
structure on A — comod(C). First, for z € oblv™H(C=0), y € oblv~}(C>?) one has

MapA—comod(C) (.@, y) - [71L}H€nA Mapﬂ—comod(C) (1’, A (y)) -

lim Mapg (oblv(z), A" (y)) = *
[nleA
as Mapq (oblv(z), A™(y)) = * for each n.

Let Funy, cont(C, C)" C Fung cont(C, C) be the full subcategory of t-exact functors. It
inherits a monoidal structure from Funy, o, (C, C). The adjoint pairs 0. 0500
and i : C=0 5 O : 750 take place in Funy, cont(C, C)-modules. So, they induces the
corresponding functors 7= : A —comod(C) — A—comod(C="), 79 : A —comod(C) —
A — comod(C=Y) and so on.
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For ¢ € A — comod(C) we get a triangle 7°(c) — ¢ — 72%c) in A — comod(C).
To see that this is a cofibre sequence, recall that oblv : A — comod(C) — C' reflects
colimits. It becomes a cofibre sequence in C, hence also in A — comod(C). Since
oblv : A — comod(C) — C preserves the shift [1], and the latter is an equivalence, it
also preserves its inverse [—1]. So, this is indeed a t-structure, which coincides with
that of Section So, oblv is t-exact.

Now coind : C' — A — comod(C) is informally given by ¢ — A(c), it is t-exact.

ii) Let z € A — comod(C). By Section [4.0.10, it suffices to show that the natural
map colim, 75"z — z in A — comod(C) is an isomorphism. Since oblv is t-exact an
conservative, our claim follows again by Section ]

Remark 9.3.24. In the situation of Section if the t-structure on C is left sep-
arated then the t-structure on A — comod(C) is also left separated.

9.3.25. Let py : C' — D be a map in DGCatcnt. Assume D is equipped with an
accessible t-structure. Let C=0 = p!_l(DSO). Clearly, C=<" is closed under colimits and
extensions, it is presentable. By ([28], 1.4.4.11), this defines an accessible t-structure
on C. Assume p has a right adjoint p' : D — C, which is fully faithful. Then p' is
t-exact.

Lemma 9.3.26. In the situation of Section assume that A : C — C 1is left
t-ezact. Then oblv™1(C>%) = A — comod(C)>°, and oblv : A — comod(C) — C' is
t-exact. Besides, coind : C' — A — comod(C) is left t-exact.

Any other t-structure on A — comod(C), for which both oblv,coind are left t-exact,
coincides with the above one.

Proof. By Section [9.2.59, each ¢ € A — comod(C') writes as ¢ — [1}imA A"+ (e), the limit
nje

calculated in A — comod(C).

We claim that the pair of subcategories (oblv™1(C<9),oblv™1(CZ%)) define a t-
structure on A — comod(C). If x € oblv 1(C=0),y € oblv™1(C>?) as in the proof
of Lemma one shows that Map4_comoa(c) (2, y) = *.

Let Funke,ﬁont(C, C) C Funy, cont(C, C) be the full subcategory of left t-exact functors.
It inherits a monoidal structure from Funy cont(C, C). Since the inclusion i : cz0 - C
is Funt®® (C,C)-linear, 720 : C' — CZ0 is a left-lax functor of Fun'®®  (C,C)-module

k,cont k,cont
lex
k,cont

729 A — comod(C) — A — comod(C=Y)

We get an adjoint pair 720 : A — comod(C) = A — comod(C=0) : .

For a € Funﬁiont(c, C),c € C we get a natural map 7=%ac) — ar=%c). Given
>0

c € A — comod(C), the coaction of A on 7="(c) is the composition

categories. Now A is a comonoid in Fun (C,C), so 729 induces a functor

>0 TZO(CO(ICt) >0 >0
="(c) = 7 7(Ac) = A(T="¢).

Given ¢ € A — comod(C), we have 72%(c) € A — comod(C). Consider the exact
triangle z — ¢ — 72% in A — mod(C). Since oblv is exact, this is an exact triangle
in C also, so z—7<%(c) in C. Thus, z € A — comod(C)<". By definition, this is a
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t-structure on A — comod(C'), and it coincides with that of Section First claim
follows.

Let now DZ° ¢ A — comod(C) determine a t-structure such that both coind, oblv
are left t-exact. Then DZ° C oblv™}(CZ%). Let now z € oblv !(CZ%). We have
2= limpea A" (¢) in A — comod(C). For any n > 0, A"1(c) € D=, hence z € D="
also. Thus, DZ° = oblv~}(C29). O

9.4. Symmetric sequences.

9.4.1. They are discussed in ([I4], vol. 2, ch. 5, 1.1), there is also a nlab page
”symmetric sequence”. The collection {Sy, },>1, where Sy = * form a graded semigroup
in the category of groups. That is, for n,m > 1 we have a homomorphism S,, X S;, —
Sp+m given by the usual order {1,...,n}U{n+1,...,n+m}. They are associative.

9.4.2. If G is a finite group then QCoh(B(G))— Fun(B(G), Vect) naturally. Indeed,
B(G) = colimp,jc gor G™ in PreStk, and
Fun(B(G), Vect) = [l}glA Fun(G", Vect) = [l}irenA QCoh(G™) = QCoh(B(G))

If a : G — H is a homomorphism of finite groups, we have an adjoint pait Indg :
Fun(B(G), Vect) < Fun(B(H), Vect) : Res, where Res is the composition with a :
B(G) — B(H), and IndZ is the LKE along a. The functor Res is a*. By Sec-
tion QCoh(B(G)) = B — comod(Vect), where B = H°(G,0) is a coalgebra
in Vect. The natural map H°(H,0) — H%(G,0) is a map of coalgebras in Vect, it
gives a morphism Res : H(H,0) — comod(Vect) — H°(G, O) — comod(Vect). If M €
HO(H, ) — comod(Vect) then the composition M — HY(H,0)® M — H°(G,0) ® M
is the coaction for Res(M). The functor oblv : H(G, ©) — comod(Vect) — Vect is the
«-restriction along Speck — B(G).

Recall that H(G, ) — comod(Vect) = H°(G, 0)Y — mod(Vect) canonically by Sec-
tion in a way commuting with oblivion functors to Vect. So, in the adjoint pair
IndZ : HY(G, 0)Y —mod(Vect) = H(H, )Y —mod(Vect) : Res the functor Res is given
by restriction along the morphism of algebras H°(G, )Y — H°(H, )V, hence its left
adjoint sends M € H(G, )Y — mod(Vect) to

(14) H(H, 0)" @yo(g 0y M
The coproduct in HY(G,0) sends g to S z®y. So, H(G,0)V is precisely the
z,yelG ay=g

group algebra of G. So, is the classical formula for the induced representation.

Recall that QCoh(B(G)) has a t-structure (as for any Artin stack): M € H(G,0) —
comod(Vect) is connective (resp. coconnective) iff oblv(M) € Vect has the same prop-
erty. We see that Res, IndZ are t-exact for these t-structures.

The trivial action of G on pt defines the augmentation H°(G, ©)Y — e, a homomor-
phism of algebras. Given V € H(G,0)Y — mod(Vect), Vg = e ooy V are the
coinvariants.

For G, H finite groups the above map a : B(G) — B(H) is pseudo-proper in the
sense of ([16], 1.5.3), so a is defined in any context, even for D-modules. Do we
have @ = a.? Note that H(H,0)V is dualizable in H*(G,0)Y — mod, because it is
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given by a constructible object in Shv(B(G)). So, by my Section the restric-
tion functor HY(H, )" — mod — H°(G,0)Y — mod admits a right adjoint given by
M — H°(H,0) ®no(G,0)v M. Here we identified the dual of H°(H,0)Y in the category
HO(G,0)Y with H°(H,O). Actually, this module is self-dual, so we get that this right
adjoint coincides with , and a; = Q.

If H is reductive then Rep(H)—= []y¢ppepcrry Vect. This is obtained from ([14],
ch. 1.3, 2.4.2) by taking left completions on both sides. Indeed, QCoh(H) is left-
complete by ([14], ch. 1.3, 1.5.7). In particular, this holds for a finite group G, namely

Rep(G) - HVEITrep(G) Vect.

9.4.3. Let X be the groupoid of finite nonempty sets and bijections. So, ¥ = LI B(S,).

n>1
Define Vect” as [],, Rep(S,) = Fun(X, Vect).

Now ¥ € Spc is nonunital symmetric monoidal with the operation given by the
disjoint union. By ([28], 2.2.6.17), Fun(X, Vect) is equipped with the Day convolution
nonunital symmetric monoidal structure.

Given f € Fun(X, Vect), it gives as a collection of functors f(I) : B(S(I)) — Vect
for any finite set I € ¥. We have denoted by S(I) the group of automorphisms of a
finite set I. Given I € ¥, the category (X x X)) Xy ¥ is a set of decompositions of [
as I = I; U I of two non empty subsets. By definition of the Day convolution, we get
for f, g € Fun(X, Vect)

(feg)=_ o f(I1)®g(l2)

ILUl=1

the sum is taken over all decompostions of I into an ordered pair of disjoint non empty
subsets. The action of S(I) is seen in the following formula
Given {V,,},{U,} € Vect® with V}, € Rep(S,) we get

VeU),= e oo q>OInngqu(Vp X U,) € Rep(Sy),

here we use the inclusion S, x S; = S, via {1,...,p}U{p+1,....p+q¢} ={1,...,n}.

An approach to oo-operads via symmetric sequences is also discussed in [25].

9.4.4. If C € CAlg"™(DGCateons), then we define the functor S(-,-) : Vect™ xC — C
sending {V,,} € Vect™, ¢ € C to

S(V,e)= & (Va®®)s,,

n>1
where the subscript S, stands for the coinvariants. Here
(Vn & C®n)Sn = COhmB(Sn)(Vn ® C®n)

taken in C. For V € Vect®, S(V,-) : C — C is continuous, but not exact, I think. It is
important that S(V,-) preserves sifted colimits.

For ¢ € C' the obtained functor S(-, ¢) : Vect™ — C is nonunital symmetric monoidal
and continuous, where Vect™ is equipped with the Day convolution symmetric monoidal
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structure, see ([10], 2.1.5). This, I think, comes from the isomorphism for n,m > 1,
V,W € Vect™, ce C

(Vo ® )5, @ (Wi @ ™) g, 5 (Ind" 175 Ve ® Win) @ F™)g,

It may help that Ind?Zigm(Vn ® Wy,) should be the LKE along B(S,,) x B(Sy) —

B(Sp+m) of the functor B(S,) x B(Sn) YnEm Vect. Write &, C X for the groipoid

of finite sets of order n.

Proof. Given f, g € Vect™, ¢ € C we have

= li )@ c®!
S(f®g,c) neglg%g(f@bg)()@c —

) ) colim  f(I) ® ® @ g(I) ® ®2 =
n>1 ni+ng=n [1€3n,,[2€Xn,

@ (colim f(I1) ® ¢®) @ (colim g(I2) ® ¢®2) = S(f,c) ® S(g,¢)
ni,n2>1 Ileznl Ire no

as desired. O

Let U € Vect” be the object given by U(x) = e and U(I) = 0 for | I |[> 1. Then
S(U,-): C — C is the identity functor. So, for r > 1 we get

S(U%" ¢) = c®"
In the next subsection we use this action of Vect™ on C' = (Vect®, Day convolution).
9.4.5. There is another nonsymmetric monoidal structure on Vect™ called composition
monoidal structure, where for X = {X,,},Y = {Y,,} € Vect® the product is given by

(15) XoY =8(X,Y)= & (X; @ Y®Pak)g € Fun(X, Vect)
E>1

Here by Y®pav* we mean the k-th tensor power of Y in Fun(X, Vect) with respect to
the Day convolution. The subscript S, means Si-coinvariants. We used the fact that
Fun(X, Vect) € DGCatcons, so Vect acts on it. We may also rewrite

X oY = colim X(I) ® Y®pay!|
Iex

the colimit taken in Vect™. Explicitly, for I € X,
(Y®pask)(1) = L8 Y(L)®...0Y(I})

(U Ul=1

the sum over the discrete category (XX¥) x5 ¥ /1, that is, over all possible decompositions
of I into a disjoint union of nonempty subsets I; indexed by {1,...,k}.
Let k= {1,...,k}. Thus finally

(X OY)n = & (Xk & ( D Y(Il) X ... ®Y(lk))) € Vect

k>1 LU, .Ulg=n Si.

Here the subscript Si denotes the coinvariants.
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9.4.6. If V,, € Rep(Sy,) then for the coinvariants we get naturally in Vect

(Indg:5,, (Vo B V)5, = (Va)s, © (Vs
Write e[Sy, for the regular representation of S,,. If V' € Rep(S,,) then (V®e[S,])s, =V
naturally in Rep(S,,), here we used both left and right actions of S,, on e[S,,].
This shows that for V € Vect™ we have an isomorphism in Vect™

S(V,0)= & (V,@U*)g, SV
r>1

Here we have taken € := Vect™ equipped with the Day convolution as an object of
CAlg™(DGCateont)-

9.4.7. My understanding is that can be rewritten as follows. For a finite nonempty
set I let Q(I) denote the set of equivalence relations on I. We write J € Q([) meaning
a surjection ¢ : I — J. Then for I € ¥ we get

(XoY)I)= & X))o (® Y(I;)
JeQ(I) jeJ
Here we do not have to take the coinvariants with respect to the symmetric group
anymore. This formula appears in ([5], Def. 2.2.5).

The composition monoidal structure is unital: the unit is the symmetric sequence U
given by U(I) = e for | I |= 1 and U(I) = 0 otherwise.

Proposition 9.4.8 ([10], Pp. 2.2.1). Let € € CAlg(DGCatcont), write Fungen:(C, C)
for the category of all continuous functors (not necessarily exact nor e-linear). Then
the functor S : (Vect®, o) — (Funeens(C,€),0), X + S(X,-) is naturally monoidal.
Here Funge,:(C, C) is equipped with the composition monoidal structure. In fact, for
X € Vect™, S(X,-): € — C preserves sifted colimits. Besides, S preserves colimits.

Note that for X,Y € Vect” in the above proposition we get
S(XoY)= @ (X, ®S5(Y)*)s, = S(X)oS(Y)
1

r>

9.4.9. The distribution relation in Vect™ relating the Day tensor product @ and the
composition: for M,V,W € Vect” one has

(MRV)oW=S(MoW)® (VoW)
by Section [9.4.4

9.4.10. Now (Vect-enriched) operad is a unital associative algebra in Vect™ with re-
spect to the composition monoidal structure. An augmented operad is a map X — U
in Alg(Vect®, o), that is, a map of operads. An operad is by definition equipped with
a map U — X of operads, we call it reduced iff the natural map U(pt) — X (pt) is an
isomorphism.
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9.4.11. Let € € CAlg(DGCatcont). By Proposition there is a left action of
(Vect™, o) on €. Namely, C is a Fungy,:(C, €)-module category, hence also a (Vect™, o)-
module category.

As in ([14], ch. 5, 1.1.2), we should consider only reduced operads. Now for such
P € Alg(Vect™, o) we get the category P — mod(C) of left P-modules in €.

By ([28], 4.2.4.8), oblv : P — mod(C) — C admits a left adjoint freep sending M to
S(P,M)=PoM.

Lemma 9.4.12. P — mod(C) is presentable.

Proof. We can not apply ([28], 4.2.3.7). The problem is that given X € Vect™, the
functor € — €, M — X o M preserves sifted colimits, but maybe not all colimits.

Nick: for any M € P — mod(C), M = [c]oliAmp Pl o M by (28], 4.7.2.7). Now for
njeA°

I small and I — P — mod(C), i — M;, we get colim;c; M; = [c]oliAmp(coli}n P o M),
n]e A° S

where the colimit inside is the functor freep applied to (colim;e; P™o M;) € C. Indeed,
since freep is a left adjoint, it preserves colimits. To check that this is a colimit
diagram, for N € P — mod(C) we get

MapP,mod(e)([g]oeliArgp(C?éi}n P Lo M), N)= [rljlenA Mape(c%ilm P"o M;,N)=

Jim lim Mapg(P" o M;, N) = lim, lim, Map p_oqqey (P o My, N) =

. . +1 . —~ 1. )
Jm, Maprmod(C)([g]OehAHDlp P"" o M;, N) = Jm, Mapp_oa(e)(Mi, N)
So, P — mod(€) admits small colimits. Since oblvp : P — mod(C) — € preserves k-
filtered colimits, freep : € — P — mod(C) preserves k-compact objects for any infinite
regular cardinal k. Pick k such that k-compact objects generate €. We may assume
that AP is k-filtered. Then for ¢ € C”, the objects of the form freep(c) generate

P —mod(C) under the geometric relaizations, hence under small x-filtered colimits. By
(HTT, 5.4.2.2), P — mod(C) is accessible. O

By ([28], 4.2.3.5), P — mod(C) admits sifted colimits and oblv : P — mod(C) — C
reflects sifted colimits, we used here that S(V,-) preserves sifted colimits. By ([2§],
4.2.3.3), P —mod(C) admits all small limits and oblv : P —mod(C) — C reflects limits.
This is used in the proof of ([I4], vol. 2, ch. 5, 1.2.6).

They write P rather for an operad. The adjoint pair freep : O = P — Alg(O)
shows that P — Alg(O) is pointed: we have freep(0) = 0, and 0 is the final object of
P — Alg(0).

The paper [9] claims in addition that trivp : € — P—mod(C) preserves colimits. This
is not true. For example, take P to be the operad of augmented commutative algebras.
Then trivp : € — CAlg"™*(C) does not preserve finite coproducts. If B; € C'Alg"™(C)
then B; U By in CAlg™(C) is B1 ® B2 @ By ® Ba, see [35].

Remark 9.4.13. The notion of operad from our Section gives only unital op-
erads in the sense of Lurie ([28], 2.5.1.1), as ¥ does not contain the empty set.
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9.4.14. Let O,0" € CAlg"(DGCateont) and f : O — O’ be a right-lax non-unital
symmetric monoidal with f € Fune cont(O,0’). Then f: O — O’ is a right-lax functor
of (Vectz, o)-module categories. Indeed, for z € O, P € Vect™ we have the natural map

Pxf(x) = c?éiéni]’([) ® f(x)®! — c?éiénf}’(f) ® f(x®1):>/f(c?éién?(f) @z®l) = f(Pxx)

functorial in P and z, and compatible with the constraints.
Now for P € Vect® a reduced operad we get the map f : P — alg(Q) — P — alg(O’)
such that the diagram commutes

P —alg(O) EA P —alg(0)
1 1
o L o

Remark: if L : O < O : R is an adjoint pair in DGCatyps, where L is non-unital
symmetric monoidal, so R is right-lax non-unital symmetric monoidal then we get an

adjoint pair L : P — alg(0) = P — alg(O’) : R.

9.4.15. For ([14], vol. 2, ch. 5, 1.2.4). Let O € CAlg(DGCatcont) and A € CAlg(O).
Then ind : O — A — mod(O) is symmetric monoidal functor, its right adjoint is
oblv : A —mod(O) — O.

Let A € CAlg(O) and P be a reduced operad as above. The functor P — mod(O) —
P—mod(0O), v — A®x defined in ([14], vol. 2, ch. 5, 1.2.5) is explicitly as follows. Let P
be given by the symmetric sequence {V,,}. For a finite nonempty set I, x € P —mod(O)
we get a map (A ® 2)®! — A® (2®!), which is S(I)-equivariant. So, for each n > 1 a
map (V, @ (A®z)®)s, — (V, @ A® (2®"))s, — A® x, where the second map comes
from the P-module structure on x just by tensoring with A.

9.4.16. The denote by Com® € Alg(Vect™) the operad given by Com®9(I) = k
for any I € 3. Since only nonempty finite sets appear in X, Com®9 — Alg(O) is the
category of nounital commutative algebras in O, equivalently, augmented commutative
algebras.

9.5. Filtered and graded objects.

9.5.1. For ([14], vol.2, ch. 5, 1.3). If C € DGCatepns then CFilt, CFilt:20 CFilt, <0 cgr
lie in DGCateon: by Section [9.2.13] Recall that Fun(Zso, C') = Fun(A°,C) by ([28],
1.2.4.1).

9.5.2. For ([I4], vol.2, ch. 5, 1.3.5). Let O € CAlg(DGCatcopn;). Recall that OFlt =
Fun(Z,0), where Z is viewed as an ordered set, hence a category. The symmetric
monoidal structure on OF* is given by the Day convolution. Namely, Z is symmetric
monoidal with respect to the operation sum + : Z x Z — Z. So, for f; € OFilt,
f1 ® fo € OF™ is given on n € Z by

(1@ f)() = colim _fi(m) @ faln)

ni+na<n, n;€
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The latter colimit is not a direct sum over pairs (ni,n2) € 72 such that ny + ny = n.
Indeed, given nj +ng = n = my +my there are pairs (s1, s2) € 72 with s; % N, S5 £ my
for all 7. So, this is a complicated colimit.

The category ZSP° is a set, it is also symmetric monoidal with respect to the sum, and
the functor Z%P¢ — 7Z is symmetric monoidal. We similarly equip O9" = Fun(Z5¢, O)
with the symmetric monoidal structure given by the Day convolution product, so for
V={V,},U={U,} € 09,

U+V), = e Up ®@Vy,
n1+n2=n
Thus, OF#, 09" € C Alg(DGCateont) by Section

We get the adjoint pait (gr — Filt) : 09" <= O™ . Rees in DGCateont, where
(gr — Filt) is symmetric monoidal by ([35], 1.2.8), and Rees is the restriction along
75°¢ — 7. So, Rees is right-lax symmetric monoidal.

The unit of 09" is the collection {V,,} with Vj = 1p and V,, = 0 for n # 0. The unit
of O is the collection {U,} with U, = 1o for n > 0 and U,, = 0 for n < 0. We see
that Rees is not symmetric monoidal, as the map V' — Rees(U) is not an isomorphism
(assuming 1o # 0).

The functor oblvgy : OF# — O sends f to colimg f. It is symmetric monoidal.
Indeed, given f,g € OF we have

colim colim f(n1) ® g(ng)— colim  f(n1) ® f(n2) = (colim f) ® (colim g)
n€Z nit+nz2<n (n1,n2)€ELXZ
by Section of this file.

For m € Z,a € O the step-sequence (m,a) is the object of sending n to 0 for
n < m, and constant with value a for n > m. By ([24], 2.24), step-sequences form a
system of generators of OF#. For m € Z the functor O — OF sending a to (m,a) is
the LKE of * = O along * — Z. So, for f € OFit,

Mapgrie({m, a), f) = Mapg(a, f(m))

Besides, (m,a) ® (m/,a’) = (m +m/,a ® a’) in OF,

The above is used to show that ass — gr : OF# — 09" is symmetric monoidal,
see ([24], 2.26). The reason is that step-sequences generate O under colimits in the
sense of ([27], 5.1.5.7). Another argument is to use ([14], IV.5, Proposition-Construction
1.3.3), and the fact that the restriction functor QCoh(A')®" — QCoh({0})®™ is sym-
metric monoidal.

Note that OF":20 ¢ OFilt is closed under the tensor product, so inherits a symmetric
monoidal structure from O,

OFilt

9.5.3. Example: let O = Vect € CAlg(DGCatcont) with its usual t-structure. Let
f € Vect™ be such that for any n < 0, f(n) = 0, and for n > 0 we have f(n) € OY
such that f(n—1) — f(n) is injective in OY. Let g € Vect" " satisfy the same property.
Then I think f ® g satisfies the same property, and for any n > 0,

(Fogm= 3 fm)egn),

ni+nz2=n
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the usual sum of vector spaces taken inside the vector space f(n)®g(n). Is this correct?
Looks plausible.

9.5.4. Adding a filtration. ([14], vol.2, ch. 5, 1.4.1). Recall that OFi:20 < OFilt jg
closed under the tensor product (given by the Day convolution), so OF#:20 is symmetric
monoidal, and we may consider P — Alg(OF#=0) for a reduced operad P.

The following holds actually. Let A € CAlg(Vect?#:29) It gives a functor O —
OFilt.20 B sy A® B, where the filtration on A ® B is induced by the one on A. So,
(A® B), = A, ® B for n > 0. This functor is right-lax symmetric monoidal: given
B; € O, the map (A® By) ® (A® By) - A® (B1 ® Bs) is as follows (here the tensor
product (A® B;) ® (A® Bs) is taken in OF#:20) For n > 0 we have to specify a map

colim (A® By)n, ® (A® Ba)p, = A, ® (B1 ® Bs)

ni+na<n

It comes from a compatible system of maps (product ®id) : (4,, ® A,,,) ® (B; ® Bg) —
A, ®(B1®Bs). So, our functor O — OF%20 is a right-lax functor of (Vect™, o)-module
categories, hence induces a functor

P — Alg(0) — P — Alg(OF1:20)

The functor oblvp; : oFit.z0 O is symmetric monoidal, so induces a functor
P — Alg(OFilt20) P — Alg(O). For A as above and B € P — Alg(O) we get

oblv (A & B) = (OblV(A)) ® B

in P — Alg(O), where we used the fact that oblv(A) € C'Alg(Vect). Indeed, the projec-
tion P — Alg(O) — O preserves filtered colimits.
The following diagram commutes

P — Alg(0) “8° P — Alg(OFilt:>0)
T trive T trive

0 Ag- OFilt,>0

Let now A = k@ k viewed as commutative algebra in Vect (functions on union of two
points). They let Ag = k included diagonally, A,, = A for n > 1. View A as augmented
via the projection on the first copy.

View k as filtered namely as the object (gr — Filt)(k%9=9). Recall that the functor
(gr — Filt) o (deg = 0) : Vect — Vect?™ is symmetric monoidal, so sends algebras
to algebras. So, the augmentation on A is a map A — k in CAlg(Vect!:20), By
functoriality, it induces a natural transformation A ® B — B ® k = B of functors
P — Alg(O) — P — Alg(OF29), Then they define AddFil : P — Alg(O) — P —
Alg(OFilt,ZO) by

AddFil(B) = Fib(A® B — B) = (A® B) x50

Recall that since OF:20 ¢ C Alg(DGCateont), P — Alg(OF:20) admits all small limits
by my Section The above is also a product in OF#20, Recall that the limits
in OF:20 a5 in the category of functors are calculated pointwise, so for n > 0 we have
AddFil(B), = (A, ® B) xp 0, the product taken in O. So, AddFil(B)y = 0 and for
n > 1 we get AddFil(B), — B as mere objects of O. For 1 < n < m the transition
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map AddFil(B), — AddFil(B),, in the filtration is id : B — B. This implies that
oblv gy AddFilt(B) = B in O.

Since the functor oblv gy : OF#:20 — O is symmetric monoidal, it induces a functor
oblvpy : P — Alg(OF:20) — P — Alg(O) commuting with oblvy : P — Alg(O) — O
and oblvy : P — Alg(OF:20) — OFilt,20,

By the above we know that oblv(A ® B) = (oblv(A)) ® B—= B x B in P — Alg(0O).

9.5.5. For ([I4], vol.2, ch. 5, 1.4.6). The functor ass — gr : OFit:20 — Q920 g
symmetric monoidal, so yields a functor P — Alg(OF:20) — P — Alg(OI™=9).

The functor ass — gr : OF#:20 5 0920 preserves finite limits? The following is just
the transitivity of left Kan extension: let 2 — y be a map in OF  let z = Cofib(x — ¥)
in OF. Then ass — gr(z) = Cofib(ass — gr(x) — ass — gr(y)) naturally. This was
used in the proof of 1.4.6: ass — gr(BF"[1]) = Cofib(ass — gr(A ® B) — B), and also
ass — gr(A® B) = ass — gr(A) ® B. For this reason

ass — gr(BF") = Fib(ass — gr(A) ® B — B)

9.5.6. For ([14], vol.2, ch. 5, 1.5.2). The functor oblvp; : OF#:20 — O is symmetric
monoidal, so for their natural transformation ® the diagram commutes

P _ Alg(OFilt’ZO) N @(OFz‘lLZO)
J/ OblVFilt \l/ OblvFilt
P—Alg(O) —  C(O)

The get (1.11) from the fact that ass — gr : OF#20 — 09720 is symmetric monoidal,
so the diagram commutes

P_ Alg(OFilt,ZO) N G(OFilt,ZO)
\L ass—gr \L ass—gr

P Alg(0920) 5 @(O9"20)

The fact that gr — Fil : 09" — O is symmetric monoidal gives the commutativity
of the diagram
P_ Alg(OFilt) N G(OFilt)
T gr—Fil 1 gr—Fil
P — Alg(OI") — C(OI)

The diagram also commutes

09720 gr—fil OFil,>0
\L trivp ' J, trivp
P — Alg(0om20) TN p_ Alg(OFiL20)

This together with their Section 1.4.4 gives the commutatitivy of the last diagram in
their Section 1.5.2.
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9.5.7. For ([I4], vol.2, ch. 5, 1.6.2).

1) Let C' € 1 — Cat be pointed admitting finite products. Assume that for a map
c1 — cg in C'if ¢; X, * — % is an isomorphism then ¢; — ¢y is an isomorphism. Then
Grp(C) — Mon(C) is an equivalence, use Remark of this file.

2) The category P — Alg(O) is pointed by my Section [9.4.11| and satisfies 1) above.
Indeed, oblvy : P — Alg(O) — O preserves limits, and O is stable.

9.5.8. For ([14], vol.2, ch. 5, 1.6.3). By my Lemma the left adjoint to Qg :
P — Alg(O) — Grp(P — Alg(O)) exists.

I think ([14], vol.2, ch. 5, 1.8.4) means that applying Sp to the functor coPryms :
P — Alg(O) — O, one gets an equivalence Sp(P — Alg(0)) — Sp(O) = O.

In fact, let C be a stable category. The composition with CMon(P—Alg(0)) oblvepron
P — Alg(O) induces an equivalence

Fun,, (C,CMon(P — Alg(0))) — Fun'®(C, P — Alg(0)),

where Fun'®® stands for the category of left exact functors. Indeed, oblvoason preserves

limits, so this functor is well-defined. By ([14], ch. I.1, 5.1.10), any left exact functor

f:C = P~ Alg(O) factors canonically as C' 25 CMon(P — Alg(0)) *™VGMor p —
Alg(0O). Moreover, f preserves finite limits, because of ([28], 3.2.2.5 applied to the
commutative operad O® = Fin,). This defines a functor Fun'®*(C,P — Alg(0)) —
Fune,(C,CMon(P — Alg(0O))). My understanding is that they are inverse to each
other, is this correct?

9.6. On Koszul duality.

9.6.1. For ([14], vol.2, ch. 5, 2.1.2). I think Vect?d should be the full subcategory
of those P € Vect™ such that for any I € X, P(I) € Vect®, so also bounded. Then
(Vect?d, 0) C (Vect™, o) is a full monoidal subcategory, and the term-wise dualization
is a monoidal equivalence (Vect?d)gp — Vect?d. In the version of this chapter of 9 Dec.
2021 they precised the definition of Vect?d, where it means that for any I € 3, n € Z,
H™(f(I)) is finite-dimensional.

Just to underline, cooperads are objects of CoAlg(Vect™, o) = (Alg((Vect®)oP))ep,
They consider only reduced cooperads Q, that is, those for which the counit map gives
an isomorphism Q(1)— k.

By definition, Assoc® € Vect™ is the operad sending I € X to kD) where ord(I)

is the set of linear orders on I, the composition is given by the lexicographical order as
in [2§].

9.6.2. Let Q be a co-operad. If we have a cosimplicial object in @ — Coalg™—™(0),
which is oblvgldfmlp -split then it admits a totalization in Q — Coalg™*™'P(0), and
oblvgd_mlp preserves this totalization (by [28§], 4.7.3.5).

Recall that U is the unit of (Vect®, o). The augmentation on Q is a map U — Q of

coalgebras in (Vect®, o).
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9.6.3. For ([I4], vol.2, ch. 5, 2.3.1). By Operads they mean the category of unital
associative algebras in Vect™, which are reduced, that is, k — P(1) is an isomorphism (in
particular, augmented). By coOperads they mean the category of counital coassociative
coalgebras in Vect™, which are reduced.

9.6.4. For ([14], vol.2, ch. 5, 2.3.3). For P € AssocAlg(Vect™, o) they mean by P[—1]
the following, as Nick explains. Call Operads the category of those P € AssocAlg(Vect™, o),
which are reduced, that is, & — P(1) is an isomorphism. Then Operads is pointed.
Indeed, we may view it as the category of associative algebras in (Vectz)l //1 as in my
Section m There is a functor Operads — Operads, P +— P[n] such that for x € O,
P[n]-algebra structure on x is the same as P-algebra structure on x[n].

It is given by X[n](I) = X(I) ® (e[n])®! ® e[-n], where S; acts diagonally. The
multiplication on X|[n] is given by the natural map for a finite nonempty set I

(X[n] o X[n])(I) = & Xl e (8 Xn|(1;) - X[n]()
€eQI) jeJ
I I

®I;
o X(J)® (e[n])®” ®(® X(I;)® (e[n]) 3) S X(De e[n]®!
JeQ(I) eln] jeJ e[n]

Now for y € O a map X|[n] oy — y is the same as a map X o y[n] — y[n] in O.

9.6.5. For ([14], vol.2, ch. 5, 2.4.1). The category P — Alg(O) is presentable by
Lemma [9.4.12| of this file. This is why trivp : O — P — Alg(O) has a left adjoint (apply
[28], 4.6.2.17). This left adjoint coPrims is given as a particular case of ([28], 4.4.2.12).

Namely, it sends x € P — Alg(O) to U Ry z = [C]oliAmpU o P" o x taken in O.
nle A°

The comonad on O given by x — PV oz is x — (U ®p U) o z. The fact that
coPrimgp : P — Alg(O) — O lifts to a functor

coPrim;”h’md_"“p SPp_ Alg(O) N Q _ Coalgind—nilp(O)

with Q = PV follows from my Section [3.0.74
For their formula (2.3): given x € O, we have coPrimsy freep(z) = U®qp (Poz) =z,
however the structure of a Q-comodule on it comes from the augmentation U — Q.

9.6.6. the map coPrymg : P— Alg(O) — O can be seen as a natural transformation of
functors DGCat Y™™ _y 1 — @at indeed. If F: O — O’ is a map in C Alg(DGCateont)

cont
then the diagram commutes

P — Alg(0) ™ o
I 17
P Alg(0') T o

Similarly, coPrym;nh’mdfm'lp . P — Alg(O) — PU¢ — Coalg™?—"(0) is a natural
transformation of functors DGCat5¥7" — 1 — Cat.

Their isomorphism (2.4) in ([14], vol.2, ch. 5, 2.5.2) comes from their Section 1.5.
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9.6.7. For ([14], vol.2, ch. 5, 2.6.1). If @ is a co-operad,
oblviQnd_nilp : Q — Coalg™ =" (0) - O

preserves colimits (this happens for any comonad acting on a category). So, trivgbdfmlp

indeed has a right adjoint Primg‘dfm'lp . We don’t know if Q — Coalg™—™(0) is
presentable, and we do not need this by ([27], 5.5.2.10), because Q — Coalg"4—"(Q)
is locally small.

9.6.8. For ([14], vol.2, ch. 5, 2.6.2). For a co-operad Q and x € Q — Coalg?—"P(Q)

they get Prym?;d_mlp(:v) = U ®q « taken in O, that is, this is a totalization of the

cobar complex [z X Qox 3 Q*ox...]in O.

They further use the fact that if M — M’ is a morphism of monads on C' € 1 — Cat
then we get the oblivion functor M — mod(C) — M — mod(C). This gives rise to the
functor Prymanh’md_mlp : Q — Coalg™@="iP(0) — P — Alg(O), where P = QV.

Recall that Q¥ = limp,c 4 Q" in Vect”. The monad Prymgdfmlp trivg”dfm'lp 10—
O sends z to limp,jc o Q" oz taken in O. The morphism of monads

(QY oe) — Prymgd_mlp trivgd_"ﬂp

comes from the natural morphism ( lim Q™)ox — lim Q" ox. It is not necessarily an
[nleA [nleA

isomorphism: already for V € Vect I think for x € O the functor V— O,V —» V ® x
does not maybe preserve totalizations, and does not commute with needed colmits in

0.
The key point is their adjoint pair (2.6):

coPrym;nh,ind—nilp SPp Alg(O) = Q - Coalgindfnilp(o) . Prymglh,ind—nilp
with Q = PV.

9.6.9. For ([I4], vol.2, ch. 5, 2.7.1). For the x-action, as opposed to x-action, they
replace Sy-coinvariants by Sy,-invariants.

Definition 9.6.10. If C' € 1 — Cat, G is a finite group and f : B(G) — C is a functor
viewed as ¢ € C equipped with G-action then ¢ is defined as lim f.

Let O € CAlg(DGCateont) and f,h : B(G) — O functors. Then we have f ® h :
B(G) — O, which is the composition B(G) — B(G) x B(G) 0% 0% 0. There is
a natural map (lim f) ® (lim ) — lim(f ® h).

If H C G is a subgroup, we have an adjoint pair Ind% : Fun(B(H),0) < Fun(B(G),O) :
Res in DGCatons, where Ind% is the LKE along B(H) — B(G). If ¢ is the unique
object of B(G) then the category B(H) x () B(G) . identifies with the set G/H. In
fact, B(G) /. — *.

Let k[G] € Vect be the group algebra of G. For H = {1} the functor Res :
Fun(B(G),0) — O is monadic, and the corresponding monad is O — O,z — k[G] ®
z. Indeed, Res is continuous and conservative, and its left adjoint is Inle, So,
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Fun(B(G), O) = k[G]—mod(O). By ([14], 8.5.7) we have k[G]—mod(Vect)20 = k|G| —
mod(O) canonically, and k[G] — mod(Vect) = QCoh(B(G)) by my Section So,
Fun(B(G), Vect) ® O = Fun(B(G), 0),
where the tensor product is in DGCatcont. Recall that QCoh(B(G)) = [}, Vect by

my Section [9.4.2] So,
Fun(B(G),0)= [] O

Irr(G)
naturally. That is, each x € O with a G-action writes canonically as
(16) D V®axy €O,

Velrr(G)

where zy € O, and the G-action comes from that on V on each summand.

Lemma 9.6.11. The functor Fun(B(G),0) — O,x = zg = colimp)z sends
to xypiv, where triv = e is the trivial G-module. The functor Fun(B(G),0) — O,z —

zC = limp(g) z is canonically identifies with the previous one.

Proof. ii) For q : B(G) — * we have an adjoint pair ¢* = Res : Vect = Fun(B(G), Vect) :
lim = ¢, where ¢, is the projection on the triv-component. Tensoring by O, one gets
the desired claim.

i) We have the adjoint pair colim : Fun(B(G), Vect) < Vect : Res, where colim :
IIve Irr(G) Vect — Vect is the projection on the triv-component The same with Vect
replaced by O. O

9.6.12. By right-lax action of Vect® on O in ([I4], vol.2, ch. 5, 2.7.1) they mean a
right-lax monoidal functor Vect® — Fun(O, O). Note that for € O, U* = x. The
right-lax structure means that for V,U € Vect® we have to define a natural map
(17) Vo(Uxz)— (VoU)xx
Key case: assume that U is supported on B(S,) and V on B(S,,) for some n,m > 1.
Then V o U is supported on B(Spm,), and we need to define the morphism
(V(m) ® (U(n) @2®")%)2™) 5 = ((V o U)(nim) @ )5

In thiscase Uxz =Uox,and Vo (Uox)—= (VoU)ox. So,Vo(Uxzx)=(VolU)*x
is the desired map.

Let mm = {1,...,nm}. Let Q,(7m) be the set of equivalence relations on 77, whose
each equivalence class has n elements. Then
(VolU)(nm)= @& V() (@ Umm;))
JEQn (M) jeJ

By Lemma in their definition of x-action as compared with the x-action the
only difference is that @,>1 is replaced by [, ;-

Definition in general: given U,V € Vect™, z € O, let V=" & Vect™ denote the
extension on V' |x_ by zero to ¥. Here ¥<,, C ¥ is the subgroupoid of sets of order
< m. So,

US"sxx=US"og = H(V(n)®x®”)5n

n=1
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Note that (V=" o US™)S™ 5 (V o U)S™, so we have the projection € : V™o US™ —

(VoU)=™. Besides, U xx = lim US™ x .
meN°oP

Define now the map 6, : V o (U xz) — (V o U)S™ % x as the composition
Vo(Uxz) = Vo(Us"ox) = V"0 (U ox) 5 (VolU)~" xux

The maps §,, are compatible with the transition mapsin lim (VoU)S"xx = (VoU)xx,

meNop
so define the desired map .
We used the fact that in any € € 1 — Cat containing all limits, given x,, € C one has

[L>1 22— li&np [1;- zi, which follows from [45]. Indeed, N= colim,en N<,,, where
= neNe, -

N<, = {1,...,n} is a set, and the latter colimit is taken in the category of small
categories.

For ([14], IV.2, 2.7.2) they use the notion of a comodule which is given in my Sec-
tion

9.6.13. For m > 1 the functor (Vect™ o) — (Vect®,0), V — V=" is right-lax
monoidal: for V,U € Vect™ the map e from the previous subsection defines this struc-
ture. So, we get a functor Alg(Vect®) — Alg(Vect™), V +— V=" So, for a reduced
operad P, PS™ is also a reduced operad. Moreover, the natural map P — P<" is a
morphism of reduced operads.

We may equip Vect®<m = Fun(X<,,, Vect) with a monodal structure sending (P, Q)
(viewed as object of Vect” extended by zero from Y<,,) to (P o Q)<™. The restriction
functor Res : Vect® — Vect™<m, V +— V=" is monoidal. Its left adjoint LKE :
Vect¥<m — Vect™ is given by the extension by zero along Y<m —+ X, so LKE is left-
lax monoidal. The functor RKE : Vect®<m — Vect™ coincides with the LK F, so it
also has another right-lax monoidal structure.

The above map P — P=™ of algebras comes from the adjoint pair Res : Alg(Vect™, o) =
Alg(Vect®sm) : RKE.

Now given O € C Alg™(DGCateont), we consider the action of (Vect™, o) on it given
by o. Let P € Operad be a reduced operad. The restriction j,, : P<™ — Alg(O) —
P — Alg(O) along P — P="™ is a fully faithful functor, it is the full subcategory of those
x € P — Alg(O) such that for the action map P oz — z the maps P(n) ox — x are
zero for n > m. The functor j,, has a left adjoint L,, given by x +— P<™ @4 2 by ([2§],
4.6.2.17).

In ([9], 3.4.3) they introduce the subcategory P — Alg"(O) C P — Alg(O) as the
smallest full subcategory of P— Alg(O) containing each P<™ — Alg(O) and closed under
limits. Why this P — Alg"(O) is a localization of P — Alg(O)? Francis says this is
wrong.

A possible idea here: let S, be the set of L,,-equivalences. It is strongly saturated
in the sense of ([27], 5.5.4.5). Then S := N, Sy, is also strongly saturated by ([27],
5.5.4.7). Question: is P — Alg™(O) just the subcategory of S-local objects? Probably
no.
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John Francis says there is a mistake in the definition of P — Alg™*(0), it is not a
localization of P — Alg(O) in general. Consider O as equipped with the right-lax x-
action of Vect™. Then P — Alg"*(O) should be defined as the category of P-algebras
with respect to the %-action of Vect™ on O.

Then for Q a reduced cooperad, @ — coalg(O)°P is defined as @ — alg(OP) in the
sense of my Section . Namely, we have the left-lax action of (Vect™)?P on O, so
that construction applies for Q € Alg((Vect™)?, o).

Maybe P — Alg"!(O) could also be define it as lim P<™ — Alg(O), where the

meNoP

transition maps are Ly, : P<™+ — Alg(O) — P=™ — Alg(0)?

Remark 9.6.14. If A € Alg(1 — Cat), C € 1 — Cat, assume given a right-laz monoidal
functor A — Fun(C,C). Then C is weakly enriched over A in the sense of (28],
4.2.1.12). So, for an algebra A € Alg(A) we have the category A —mod(C). However,
for a coalgebra B € coAlg(A), B — comod(C) is also defined via my Section . If
A — Fun(C, C) is left-lax monoidal then C' does not get a structure of a weakly enriched
category over A as Jacob confirms, however.

If f: A— Fun(C,C) and g : A — Fun(C, C) are right-lax monoidal functors, and
h: f — g is a right-lax monoidal natural transformation then given A € coAlg(A), we
should get a functor A —modI(C) — A — mod/ (C), which sends ¢ € A —mod?(C) to

¢ with the new action given by f(A,c) — g(A,c) ..

9.6.15. Definition ([9], 4.1.1) is nice. We especially want to use it for X = Vect, in this
case C; € CAlg™(DGCateont), and lim;ener C; is taken in C'Alg™(DGCateont). Their
definition garantees that for any ¢« > 1, the product C?Hl — C; is zero.

For ([9], 4.1.4). If C € CAlg™(DGCatcont) is written as

C= lim C,
acA

in CAlg™ (DGCatcont) then for any O € Alg(Vect™) teh natural map O — Alg(C) —
limyea O — Alg(C,) is an equivalence. Indeed, apply Corollary from my Section
It is applicable because the composition o : Vect™ x Vect™ — Vect™ preserves geometric
realization separately in each variable, and the same for the action map Vect™ xD — D
for any D € DGCatcont. Besides, oblv : C Alg™ (DGCateont) — 1 —Cat preserves limits.

Their second isomorphism O — coalg™d="P(C) = lim, OV — coalg™d—"ir(C,,) fol-
lows from Claim in my Section Namely, for any diagram A — DGCatcop,
a — C,, where the transition functors preserve totalizations, this holds.

9.6.16. Let Vect? be the category classifying V € Vect™ and a map U — V such
that U(1) — V(1) is an isomorphism. This is naturally a monoidal category. Let
VectZ C Vect™ be the full subcategory of V' such that V(1) = 0. This is a monoidal
subcategory, and Vectg is pronilpotent.

View U also as a unit in the monoidal category Vect™<m. Let Vect? =™ be the category
classifying V' € Vect™<m with a map U — V such that U(1) — V(1) is an isomorphism.
This is naturally a monoidal category.
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Consider the Koszul duality for the monoidal category Vect? =™ namely the adjoint
pair

Bar®™ AssAlgaug(VectrZSm) S Coasscoalgaug(vecfgm) : coBar®™"

These functors equivalences.

This is a particular case of the following more general claim. Let C' € DGCatcont,
whose image in 1 — Cat is equipped with a structure of an object of Alg(1 — Cat). My
understanding is that then Vect™ acts on C' as above by the x-action. Let now €’ C C be
a full subcategory, which is closed under the multiplication and is pronilpotent. Let Cy
be the essential image of C' — C,x — 1+z. So, Cy C C'is a full subcategory, which is a
monoidal subcategory of C. Then AssAlg®9(Cy) identifies with AssAlg®9 — mod(C")
in the notations of ([14], ch. IV.2, 1.1.5). Bisedes, coAsscpAlg®9(Cp) identifies with
coAsscpAlg™d — mod(C"), and ([9], 4.1.2) gives an equivalence

AssAlg™I(Cy) = coAsscpAlg™ 9 (Cy)

This is how ([14], ch. IV.2, 2.3.1) establishes the equivalence

Bar®™ : Operads = coOperads : coBar®™

Here Operads = AssAlg™9(Vect>) identifies with AssAlg?9 — mod(VectZ), and
coOperads = coAsscoAlg®™ (Vect)
identifies with coAsscoAlg®9 — mod(VectZ), so we may apply ([9], 4.1.2).

9.6.17. Let @ be a reduced cooperad and P = Q¥ be the corresponding operad, so we

have the natural map P — lim< Q" := Tot=™(Q*). Then its restriction to =™ is
[n]leAS™

an isomorphism, right? This was used for the proof of ([9], 4.1.6(b)) I think.
9.6.18. For ([9], 4.1.10). Their map (4.5), that is, for a cooperad P and B € P —

coalgg]’;l(C), the map Cobary(B) = limj,jca P" o B — oblvp(B) is the projection from
[l%mA P™ o B to the 0-th term of this cosimplicial diagram.

nje

9.6.19. For ([14], ch. IV.2, 2.7.7). We do not need the presentability of ) — Coalg(O)
to conclude that trivg : O — Q — Coalg(O) has a right adjoint by ([27], Remark

5.5.2.10).

9.6.20. For ([I4], ch. IV.2, 3.2.1). For any O € Alg(l — Cat) admitting limits and
colimits they consider Bar® : AssocAlg®™9(0) — OA”, it sends A to the functor
[n] = A®", and the same formula for Bar}, ;.

For ([14], ch. IV.2, 3.2.2). Assume O is symmetric monoidal. Then they equip O4”
with the pointwise symmetric monoidal structure: for functors f,g : A” — O the
tensor product is f ® g given by [n] = f(n) ® g(n). The functors Bar,,;; and Bar
inherit the symmetric monoidal structure, because A is sifted.

Indeed, the functor colim : O™ — O, f — colim f is symmetric monoidal.

For ([I4], ch. IV.2, 3.2.3). They assume there that O is stable, more precisely
O € Alg(DGCateont), SO trivassocaus : Oy — AssAlg®™9(0) makes sense. Here we
may identify Oy,/; = O via the map sending 1 — 2z — 1 to Fib(z — 1).
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9.6.21. For ([14], ch. IV.2, 3.2.3). Let O € Alg(DGCatcont). They claim that Bary ) :
AssocAlg®9(0) — Oy is left adjoint to the composition

O1/n £ O1/n i Assoc AssocAlg*™9(0O)

Formal proof is not clear, here is the idea:
Let Free. : Oy//1 — AssocAlg*9(O) be the left adjoint to oblv : AssocAlg*I(O) —

O1/51- By (28], 5.2.2.13), we see that the composition

r Bar
O/ Free. AssocAlg*™9(0O) o O1//1

is left adjoint to the composition

O1/n 3 O/ 1 [0 Asgpetus AssocAlg*™9(0O) obly O1/n
The functor Bary,/; preserves sifted colimits, and each B € AssocAlg®*9(0) can
be written by ([28], 4.7.3.14) as colimy,)c ac» Free.(zy) for some z, € Oy//1. Then
Bary /1 (B) = colimj,jc aor(1 Uy, 1), and for 2 € Oy//; we get

Mapo, . (Bari/;(B), z) = lim Mapo, ,, (1 U, 1,2) = lim Mapo, , (2, 4(2)) =

lim Map ggsocaigans(0) (Freex(2n), triv(Q(2))) = Mabgssocaigens (0) (B, triv(€2(2)))

Recall that trivgsseeevs sends 1 b= B € 01//1 to 1 @ b, where the product on it is
such that b x b 5 b vanishes.

9.6.22. For ([14], ch. IV.2, 4.1.1). Let O € CAlg(DGCatcons). They refer to ([28],
3.2.4.7) in the 2nd paragraph claiming that the maps (3.1) are isomorphisms (in those
maps the coporducts are understood in the symmetric monoidal category C'Alg(O)).

The category CocomCoalg(O) is not known to be presentable, as far as I under-
stand, though admits colimits, and oblv : CocomCoalg(O) — O detects colimits. The
existence of its right adjoint in general is not clear, I think, this is why they use instead
the functor Sym : O — CocomCoalg(O) from ([14], ch. IV.2, 4.2.1).

9.6.23. For ([14], ch. IV.2, 4.1.2). There is the Lie operad Lie descibed in my file ([38],
1.1.1). They take Lie equal to the augmentation of Lie, that is Lie ®U = Lie in Vect®.
In ([14], ch. IV.2, 2.3.3) they have Lie¥ = Cocom®9[1] and Lie[—1] = (Cocom®9)V,
there Lie is augmented!

The cooperads Cocom™9 is defined in ([14], IV.2, 2.1.3) as (Com®9)*. In other
words, for any I € X, Cocom®9(I) = e, here e is the field of coefficients. Recall also
that Coassoc®™9 € Vect” is also defined there as the functor I — (k°"()*, here ord(I)
is the set of linear orders on I. As a mere functor of I € 3., it identifies with Assoc®"9.

Note that the functor freepi, : O — LieAlg(O) sends = to x @ A%z @ ..., where

A2z =5 colim Liey @22,
B(S2)
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10. For [14], cH. 2, BASICS OF DERIVED ALGEBRAIC GEOMETRY

10.0.1.  The full subcategory Vect/? € Vect defined in (ch. 1, 10.1.3) is stable under fi-
nite colimits by (HTT, 5.3.4.15). Using the dualization equivalence (Vect/*)? = Vect/?
we see that for any small K € 1 — Cat a diagram K< — Vect/? is a limit diagram iff
(K°P)> — Vect/? is a colimit diagram. Note that Vect/? ¢ Vect is a stable subcategory.

10.0.2. The t-structure on Vect is accessible in the sense of (HA, 1.4.4.12), that is,
Vect=" is presentable (by HA, 1.3.5.21). For any n € Z, Vect="" is accessible by (HA,
1.4.4.13). Applying (HTT, 5.4.6.6), we see that for a < b, Vect[®? is accessible. It is
also cocomplete, hence presentable.

10.0.3. The category Vect=" admits all finite limits, see my Section m The full
subcategory Vect=" C Vect is stable under small colimits and preserved under the
tensor product in Vect. The tensor product Vect x Vect — Vect is exact in each
variable (the t-structure is compatible with the symmetric monoidal structure in the
sense of HA, 2.2.1.3). So, by (HA, 2.2.1.3), Vect=" inherits a symmetric monoidal
structure, and the inclusion Vect=? — Vect is symmetric monoidal. Its right adjoint is
750 Vect — Vect=C has a right-lax nonunital monoidal structure by (HA, 2.2.1.3).

For 1.2.1. Let 727" : Vect=" — VectZ= ™= be the left adjoint to the inclusion
Vect= =Y < Vect=". Then according to (HA, 2.2.1.7), 72" is compatible with
the symmetric monoidal structure on Vect= in the sense of (HA, 2.2.1.6), this is also
proved in (HA, 2.2.1.8). So, by (HA, 2.2.1.9), we get a symmetric monoidal structure
on VectZ =0 such that 727" : Vect=0 — Vect=~™= is symmetric monoidal, and the
inclusion Vect=~™=0 < Vect=Y is right-lax nonunital monoidal functor (see also HA,
Example 2.2.1.10). This means, in particular, that for K, M € Vect=""=Y there is a
natural map K @ M — 72""(K @ M).

The fact that

7271 C Alg(Vect=Y) — C Alg(Vect="™=0)

is left adjoint to the full embedding C'Alg(Vect=~™=0) — CAlg(Vect=") follows from
my Section [3.0.20]

In 1.2.5 the functor S + ="S is not fully faithful (this is a misprint in the published
version).

For 1.3.2: the functor LKE : <" PreStk — PreStk is fully faithful because of the
following general remark. Let € € 1 — Cat, €Y C € be a full subcategory, D admits
colimits. Then the left Kan extension L : Fun(C% D) — Fun(€, D) is fully faithful.
Indeed, if R is its right adjoint then RL = id.

For 1.3.7: The right adjoint to the restriction functor PreStk — <" PreStk exists
because of (HTT, 5.2.6.6).

Since 727" : Vect=? — VectZ= ™=C is symmetric monoidal, it preserves relative
tensor products: if B < A — C is a diagram in C' Alg(Vect=") then

72 MB @4 C)F (12" B) @50, 72 "C,

where in the RHS the tensor product is taken in the symmetric monoidal category
Vect= =0,
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The category Sch® admits colimits, and ="Sch®/  Sch®/7 is stable under colimits.
Since the tensor product in Vect=? preserves colimits separately in each variable, and
Vect=" is presentable, the tensor product in Vect=" is compatible with colimits in the
sense of (HA, 3.1.1.18). So, by (HA, 3.2.3.3), CAlg(Vect=") admits small colimits,
Sch®f admits small limits.

10.0.4. (For 1.3.3). Let L : A — B be a left adjoint functor to R : B — A, here
A, B € 1 — Cat are small. Let R : P(B) — P(A) be the functor of composing with
L : A% — B°. Then R has a left adjoint L : P(A) — P(B) given by the LKE along
L : A°? — B°P. For the Yoneda embeddings j : A — P(A),7 : B — P(B) and a € A

one has canonically L(j(a)) = j(L(a)). Indeed, for F € P(B) one has
Mapg g (j(L(a)), F') = F(L(a)) = (RF)(a) = Mapgs)(j(a), RF) = Mapgs)(L(j(a)), F)

This was used in 1.3.3 for L : A = <"Sch*// < B = Sch®// the natural inclusion.
This gives that if S € Sch®7 then 7<"5 as a scheme represents the prestack 7="9.

In the above general setting given b € B the natural map LRj(b) — j(b) is an isomor-
phism in P(B) iff LR(b) — b is an isomorphism in B. Indeed, LRj(b) = Lj(Rb) — jLR(b).

10.0.5. For 1.4.1. For S € Sch®7 we have canonical maps 7="(S) — 7="*1(S) — S
for any n > 0. This gives the definition of convergence. We have Vect=<" = lim,, Vect=~"=0,
Using Lemma [2.2.68] this implies

CAlg(Vect=") = lig[l) C Alg(Vect="=0)

So, for A, B € C Alg(Vect=") we then get
Mape gyg(veet <0y (A, B) = }g% Map o gy (veerz—m<0) (T2 (A), 727"(B))
Since MapCAlg(VectSO)(A’ 27 "(B)) = MapCAlg(Vectzfn,go)(TZ_”(A), 727"(B)), we get
MapoAzg(vectSO) (A, B)—= }g% MapCAlg(VeCtSO)(A, 727"(B))

This means precisely that Spec A represents a convergent prestack.

10.0.6. For the proof of ([14], ch. 2, Prop. 1.4.7). Given a map S’ — S in Sch®//
with S € <*°Sch®/ consider the category classifying n > 0 and a map S’ — T=n(S)
in Schaff/S. If S € =mSch®/ then for any n > m this category has exactly one
object corresponding to n. It follows that this category is filtered, hence also con-
tractible by (HTT, 5.3.1.20). Now, according to their definition, this means that
720 — (<°°Sch“ff)/5 is cofinal.

Remark: if € € 1 — Cat admits an initial object and push-out squares then it admits
finite colimits, hence is filtered (HTT, 4.4.2.4).
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10.0.7. For 1.4.8: Let F € PreStk, FO : (<°°Sch®/)? — Spc be its restriction under
(<°Sch®/ /)P — (Sch®/ /)P, Write RK E(F°) : (Sch®//)*? — Spc for the RKE of F°
under (<°Sch® /)P — (Sch®//)oP. There is a natural map F — RKE(F°) functorial
in F. The functor PreStk — ™ PreStk, F' — RK E(F?) is the left adjoint to the fully
faithful embedding “°™¥ PreStk — PreStk.

For 1.4.9. For Y € PreStk we have a natural map colim, 7<"Y — Y. If § €
<o08ch®/f then evaluating this map on S we get an isomorphism

Map(S, colim,, 7="Y) S Y (S)

Now if Y7 € ™ PreStk then Map(Y,Y1) = MapFun((<OOSChaff)op7SpC)(YO,}/10), where
Y9 YQ are the restrictions of Y,Yi. So, Map(colim, 7<"Y,Y;) — Map(Y,Y]) is an
isomorphism.

10.0.8. For 1.5.7: S"Sch;{f is clearly closed under retracts, so (HTT, 5.4.2.4) applies
and gives (S"SCh?{f)OP’_‘; ((Snschaff)op)c.

10.0.9. For 1.6.8. We want to check that the full embedding LKE : <" PreStk; sy —
<" PreStk commutes with finite limits. The category (S”Schzﬁljtr Fyor admits finite col-

imits. Applying (HTT, 5.3.4.7), we see that the inclusion =" PreStk;s; C =" PreStk is
stable under finite limits. We are done.

10.0.10. For 1.7.3. Let 0 <n < m. IfY € =" PreStk; s, consider its LKE Y’ under
the full embedding (S"Sch® /)P C (SmSch® /)P, Then Y’ € < PreStk; ;.

10.0.11.  For the proof of Prop. 1.7.6. For n > 0 the diagram commutes

Fun((<>Schff/), Spe) 5" Fun((<*Sch®//)7, Spe)
! {
Fun((S"Sch;{f)Op, Spe) "5 Fun((S"Sch®/ 1), Spe),

where the vertical arrows are the natural restrictions. Indeed, let S € <"Sch*// and
Y e Fun((<°°Sch?{f)"p,Spc). The value of LKE(Y) on S is cSoliénY(S’), where S’ €
— !

<OOSCh;{f and the map S % &' is in <°°Sch®//. However,
MapSChaff (S’ S/) = MapSnSchaff (57 SnS/)

by adjointness. So, a factors as S — =S’ — §’. So, this is also the colimit over the
full subcategory given by the condition that S’ € S”Sch‘}{ o hus, the above square
commutes.

10.0.12. For 1.8.2. The embedding Spc.;, C Spc admits an accessible left adjoint by
(HTT, 5.5.6.18). If S € Spc then S — lirﬁnzo P, (S) is an equvalence in Spc, because
in Spc the Postnikov towers are convergent by (HTT, 7.2.1.10, 7.2.1.9) and (HTT,
5.5.6.25).

The category Vect= =0 is equivalent to a n+ 1-category in the terminology of Lurie
(see Sect. By the way, CAlg(Vect=""=0) = Algg, (Vect=""=9) for k > n + 1
by (HA, 5.1.1.7).
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10.0.13. For 1.8.9. The embedding =" PreStk<j, C <" PreStk admits a left adjoint by
my Lemma [2.2.56

10.0.14. Lm 2.1.3 is immediate from the first of the three equvalent properties in ([14],
ch. 2, 2.1.1).

Ifa: S — S in Sch®// is flat then 7¢(S) x 5 ' = 7¢(S") by property iii) in 2.1.1). If
n >0 then 758 x g S’ = 7575, Indeed, the tensor product is exact in each variable.
Let A — A’ in CAlg(Vect=C) correspond to a. The fibre sequence (7<""A) @4 A’ —
A" — (127" A) ®4 A’ shows that (757"A) ®4 A’ is in degrees < —n, (727 "A) @4 A’
is in degrees > —n. If M € Vect is an A-module then (7<7"M) ® A lives in degrees
< —n. Applying 7<7" to the composition (7<"M)® A — M ® A — M, one gets the
multiplication (7<7"M) ® A — 7<7"M, which equips it with a A-module structure.

Note also that for any A € CAlg(Vect=") the map A — 727 "A is a map in
C Alg(Vect=Y), so can also be seen as a map in A-mod.

If A — A in CAlg(Vect=?) is not flat then the base change 72""A @4 A’ is not
necessarily in Vect!™%. For example, A could be classical, and A’ placed in many
degrees below zero. For example, consider a diagram of algebras B < A — A’ in
CAlg(Vect®) then B®4 A’ could be placed in many degrees < 0.

So, the inclusion ="Sch®/ < Sch®/ does not preserve finite limits.

10.0.15. For 2.1.4. For the definition of Zariski map. To be precise, a map S’ — S in
Sch®// is Zariski if f is flat, and there is a disjoint union ¢S’ = L;T} in the category
Sch®f such that each map T; — S in %Sch®/ is an open immersion. (The above
coproduct can not be understood in classical prestacks, as to would not be an affine
scheme). In this situation let 7% — S be an affine open embedding corresponding to
T, — S in the sense of (ch. 1.2, Lm. 2.1.5). Then a : ;7" — T is an isomorphism
in Sch®/, where the coproduct is understood in Sch®7. Indeed, L;T% — S is etale,
so to check that « is an isomorphism it suffices to check that %o : ¢ U; TP — T is
an isomorphism. This is true because 720 : C'Alg(Vect=%) — C'Alg(Vect”) preserves
limits by my Section [9.1

To summarize, a map S" — S in Sch®// is affine Zariski iff there is an isomorphism
S 1; S) in Sch®/ | here S/ € Sch®/ and the coporduct is understood in Sch®/, such
that each map S; — S is an open embedding.

If Spec B — Spec A is a flat map in Sch®7, and Spec A’ — Spec A is any map then
B ®y A is flat over A’. This follows from (ch. 1.2, property (3) in 2.1.1).

10.0.16. In (ch. 2, 2.2.1) there is a non usual definition of the Cech nerve. Let Fin be
the category of finite sets. We have a functor A— Fin, [n] ~— [n]%P¢, where each [n] is
viewed as a category 0 — 1 — ... — n. Their functor Fin®? — € is given by I — c’.
For o : J — I a map in Fin the induced map ¢/ — ¢’ is such that the composition

el ¢, where j is j-th projection, equals i-th projection, where a(j) = . This is

the usual exponent, that is, we use the fact that € is cotensored over Fin.

Remark 10.0.17. Given Y 2 X & S in PreStk with S € Sch?/! the fibre of Y(S) —
X (S) over a is Mappyegi /x(5,Y). Besides, (3 lies in 7<_1(PreStk,x) iff for any
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S e Sch™/ the induced map Y (S) — X(S) is a full subspace. Since each S € Sch®/

is a stack (in etale topology), we get an analog for stacks: let Y %X &8 in Stk
with S € Sch™/. The fibre of Y(S) — X(S) over a is Mapgy ) x (5,Y). We have

B € T<-1(Stk,x) iff for any S € Sch®7f, B:Y(S) = X(S) is a full subspace.

Proof. If Z € PreStk then Z = colimg_,7 .S, the colimit taken over Sch®™ T X presix
PreStk/z in PreStk. Let §:Y — X be a map in PreStk such that for any S € Sch/7,
Y (S) — X(S) is a full subspace. Then Map(Z,Y)= limg_,3(S,Y), so passing to the
limit we get a full subspace Y (Z) — X (Z). Similar argument works also for stack. [

10.0.18. For 2.3.1. The notion of an etale covering is given in 2.1.6. Now one should
proceed as in (SGA4, Exp.7, Sect.1) to define the etale Grothendieck topology on
Sch®/. Namely, given X € Sch®//, we should call a collection (Y; — X);c; of maps
in Sch®7 a covering family if each Y; — X is etale, and the union of the images of
y; — <X equals “X. A sieve on X is a covering sieve iff it contains a covering family
of X (by SGA4, Exp. 2, Prop. 1.4).

Now the functor L : PreStk — Stk left adjoint to the inclusion has no simple descrip-
tion in general. The construction F' +— FT in (HTT, 6.2.2.9) even applied any finite
number of times does not make from F' a sheaf (see HT'T, 6.5.3 for this)!

10.0.19. If f: Z — X is an etale surjection in PreStk then let g : Z/ — X be the
object 7<_1(f) in PreStk,x. Then g is an etale surjection.

10.0.20. Remark. Let f : Y — Y’ be a morphism in Stk, Z' — Y’ an etale surjection, let
Z = 7' xy'Y. Assume the map Z — Z’ is an isomorphism. Then f is an isomorphism.
Indeed, Y’ = L(| Z"*/Y’ |prestk) and Y = L(| Z°/Y |prestk). For any n, the natural
map Z"/Y — Z"™/Y’ is an isomorphism, our claim follows.

10.0.21. Let Z — S be a map in Stk with S € Sch®/. Consider the functor Z :
((Schaff)/S)OP — Spe, T'+— Z(T) X g(7) *, where the map T — S is the structure one.

Then Z satisfies the descent for an etale cover S; — Sy in (Sch®//) /s- Indeed, limits
commute with limits.

Remark 10.0.22. Let f : Z — X be a map in Stk, which is an etale surjection. Assume
for any S € Sch™/f | 2(8) — X(S) is a full subspace. In other words, f € T<1(Stk/y).
Then f is an isomorphism.

Proof. Let a : S — X in PreStk, where S € Sch®//. Let Z, € Spc be the fibre of
Z(S) — X(S) over a. We have to show it is nonempty. There is an etale cover S’ — S
in Sch®/ such that the composition S” — S — X factors through S" — Z. This implies
that Z, is nonempty as follows.

Consider the functor Z, : (Sch®7/S)? — Spc sending T % S to Z(T) Xx(r) {ab}.
This is a subfunctor of the functor * : (Sch®7/8)% — Spc given by T+ %. Then Z,
is a stack in etale topology on Sch“ff/S. Indeed, for any S € Sch*//, § € Stk. So,

Z xS € Stk, and our claim follows from Section [10.0.21} Now Z,(S’) is nonempty, so
Z4(8"™/8) =« for any n > 0, and Tot(Z,(S"/S)) = *. So, Z,(S) = . O
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For 2.3.9. Let X € PreStk then X — L(X) is an etale surjection. The proof is
probably complicated using a transfinite induction, because L(X) can not be obtained
via a finite number of operations X +— Xt of (HTT, 6.2.2.12). If it is obtained via
a finite number of such steps then we can proceed as follows. Given y : S — L(X)

with S € Sch®/, from (HTT, 6.2.2.12) we know that there is a covering sieve C’%) -
Sch®7 /S on S such that y comes from lim © X(S). Assume that S" — S is

(5—8)ee

an etale covering lying in @5?52. Let ¢y € X(S’) be the image of y under the projection

hm(T—>S)e@<O) X(T) — X(S’). Then the image of y in L(X)(S’) identifies with the image
/S

y' under X(S") — L(X)(S’). We are done.

For 2.3.8. Let f : Y1 — Y5 be an etale surjection in PreStk. Then the map L(f) :
L(Y1) — L(Y3) satisfies 7<_1(L(f)) = id : L(Y2) — L(Y2). Indeed, let Z C L(Y>) be
a map in Stk lying in 7<_1(Stk,/r(y;)) such that L(f) factors through Z C L(Y2). We
must show Z = L(Y2). By (ch 2, 2.3.9), Y2 — L(Y3) is an etale surjection. This gives
immediately that Z — L(Y3) is an etale surjection. Our claim follows now from my
Remark To finish the proof, use (HTT, 6.2.3.5).

10.0.23. For Corollary 2.4.4. It may be strenthened as follows: if f : Y] — Y5 is an
open embedding in PreStk then LY; — LY3 is also an open embedding (same proof).

10.0.24. 1In 2.5.2 there is a misprint in the definition of the functor (2.1), Y ~ Y*.
Namely, this should be the construction (HTT, 6.2.2.12).

For 2.5.9: Let Y’ : (<*°Sch® /)P — Spc, let Y/ : (S7Sch® /)P — Spc be its re-
striction for any n. Assume for each n > 0, Y, € <"Stk. Then Y := RKE(Y) :
Sch®/ — Spc lies in Stk. Indeed, for S € Sch®// we have Y (S) = lim,>o Y/ (5"S) =
lim,>0 RKE(Y,))(S). So, Y = lim,>o RKE(Y,}) in PreStk. However, each RKE(Y,) €
Stk by (ch. 2, 2.5.6). Besides, Stk C PreStk is stable under all limits by my Re-
mark £.0.45

10.0.25. For 2.6.1. To see that LLKESnSChaff(_)SChaff is fully faithful use (ch. 2, 2.5.7):
if Y € =" Stk then let LK E(Y) be its LKE under (£Sch®//)? «— (Sch®//)P. Then

SML(LKEY))) = (S"L)(S"(LKE(Y))) = (S"L)(Y) =Y

We are done.
Formula in 2.6.2 is correct, because 7" : PreStk — PreStk is the composition

<n
PreStk ¥ 5 Y < PreStk “AF PreStk. Once again, “7=" : Stk — Stk is the functor

<n
Stk 75" <n Stk < <" PreStk “5” PreStk 5 Stk,

where the second arrow is a full subcategory.

10.0.26. For 2.7.1. For n > 0 realize =" PreStk;s; as F\m((S”Sch‘}{f)Op, Spc). Then

sn NearStk; s, C Fun((S"Sch‘;;{f)Op, Spe)
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is the full subcategory of objects satisfying the descent condition for etale coverings.
The corresponding localization functor S"Lft : Sn PreStk;s; — sn PreStk;s; is left
exact, so sends k-truncated objects to k-truncated objects.

10.0.27. For (ch. 2, Lm. 2.7.4). Let S € <"Sch®/ and S’ — S be an etale cover in
<nSch®/ | let Y € <" PreStk;s; viewed as a functor (S”Sch;ﬁ{f)"p — Spe. Let Y be the

RKE of Y under (S”Sch?{f)w C (£"Sch®7)oP. The notation S /S they use means
S" xg...xg S, where S" appear n times, and their S§ is not a power of Sy, but an
element of S"Sch;{ 7. We get a diagram in Spc indexed by A sending n — 1 to

lim Y (Sy)
Sp—(8"m/8),Spe<nSch}l!

We have to show that the limit of this diagram is lim Y (So).
So—8,80€<nSch{]
There is another misprint in the proof: the functor (S”Sch‘}{ 7 /s — (S”Sch;ﬁ{ f )(s™m /)
So — S§ == Sy xg (5™/S) is cofinal (not the opposite one). They actually need the
following:

Lemma 10.0.28. Given any map Z — S in <"Sch®7 the map (S”Sch;{f)/g —
(SnSch?{f)/Z given by (8" — S) — (8" xg Z — Z) is cofinal. (The fact that Z — S is
etale is not needed).

Proof. Given (2 — Z) € (S”Sch?{f)/z let h be the composition Z' — Z — S. The
category

XY= (SnSChSLC{f)/S X(SWSch;{f)/Z ((SnSCh;{f)/Z)Z//

identifies with the category, whose objects are diagrams Z’ % S’ % in <7Sch®ff such
that ba = h and S’ € S"Schaf{f. A morphism in this category is a map S’ — S” such
that the diagram commutes

7l - 5§ = S

N+ S
S//

This category is clearly nonempty. It does not admit fibred coproducts in general.
Namely, <"Sch®/ has coproducts, this is easy. However, the inclusion S”Sch% Fc

=n8ch®// is not stable under coproducts! This happens already for n = 0.

The problem for n = 0 reduces to the following one: given a diagram A) & A’ %% A}
of finitely generated k-algebras, is it true that A} x 4 A} is a finitely generated k-algebra?
The answer is no. A more precise claim holds: if ay,ay are injections then A} N A
is not always finitely generated. An example is found in [3] and also at mathoverflow
discussion [40)].

However, the category X is contractible by my Lemma as it has an initial
object. O
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10.0.29. For (ch. 2, 2.7.5)(b) follows from (a). Indeed, for Y € =" PreStk the map
Y — (S"L)(Y) is an etale equivalence in <" PreStk, so its restriction to S”Sch;ﬁ{f is

also an etale equivalence. Besides, ((S"L)(Y)) | <ngepars lies in =" NearStk ;.
<nSch?]

10.0.30. For 2.7.7: for Yy € =" PreStk;s; the notion of ‘being k-truncated’ is unambigu-
ous. We may think this this means that the functor Y : <*Sch®f — Spc takes values
in 7<j Spc, or equivalently, that its restriction Y’ : S”Schjﬁ{ RN Spc factors through
T<k Spc.

For 2.7.8: the intersection <" Stk N <" PreStk; s, is taken inside Fun((<"Sch®//)?P, Spc).

10.0.31. For 2.8.1. For S € ="Sch®/ the category ((S"Sch‘}{f)s/)‘)p is filtered. Indeed,
the category (S”Sch;ﬁ{f)s/ has fibred products: if S; — S « Sy is a diagram in
<nSch® /)¢, then the fibred product S7 X g So in <nSch®/ will lie in <”Sch®//. Then
ft s/ s It
S1 x5 Sz will be their fibred product in (S"Sch//)g, also.

Recall that <"Sch®/ has all limits and colimits. By (HTT, 5.3.4.15), the inclusion
(S"Sch;{ Fyor < (5nSch®F)oP is stable under all finite colimits. In particular, S”Sch;{ f
admits all finite limits. See 1.5.3-1.5.4 also.

For ([14], ch. 2, Lm. 2.8.2). In the definition of fz no condition is imposed on

morphisms between diagrams. I think one has to impose the condition that a map in
fft is a morphism from f’: S| — S5 to f”: S| — S, such that the square is cartesian

st =S
1 iﬂf“
Sho—= S,

Then indeed the category fy; has fibred products, hence (f7) is filtered.
For the first part of the lemma: given an object (S} LN S1) in S"Sch?c{f)sl/ there is

indeed always an object given by (S; — Sg ) of fs such that b factors as S1 — Slll — 5]
For n = 0 this follows from the next claim: given an etale morphism A — B of

commutative k-algebras, there is an isomorphism B — Alx1,...,x4]/(f1,..., f4) such
that det(gj:"_) is invertible in B. Indeed, given a finitely generated k-subalgebra in
J

B, it is generated by some finite collection p; € Alz1,...,z4]/(f1,..., fa). Consider
then the k-subalgebra A’ of A generated by all the coefficients of polynomials f; and
of coefficients of polynomials p;. Then we may form A’[xy,...,z4)/(f1,..., f4), and
B’ — B factors through it.

At the end of the proof a general claim is used, which I documented as Lemma

10.0.32. For 2.7.10: If Y € = PreStk;s; is k-truncated for some k, the map ¥ —
SnLp(Y) is an etale equivalence in =" PreStk; . By 2.7.3, LKE(Y) — LKE(S"L#(Y))
is an etale equivalence in <" PreStk, where LK E is taken with respect to (S”Schaf{ f )P —
(="Sch® /)P, Now LK E(S"L(Y)) € <" Stk by 2.7.7, and 2.7.10 follows.
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10.0.33. Since Vect=" admits limits, C'Alg(Vect=C) also admits limits by (HA, 3.2.2.5),
and the forgetful functor C'Alg(Vect=") — Vect=" commutes with limits. Given a
diagram A, A A ﬁ Ay in Vect=", its limit in Vect is the fibre Fib — A; & As flgh A,
it lies in Vect=!. In turn, 7=C(Fib) is the limit of this diagram in Vect=C.

The category Vect[=™% admits limits. If fK— Vect!=% is a diagram, take first
its limit in Vect=~" and the apply the limit-preserving functor 7<0. This gives lim f.
This implies by (HA, 3.2.2.5) that CAlg(Vect!=™%) admits limits, and the forgetful
functor C' Alg(Vect!™™%) — Vect!=™% preserves limits. So, ="Sch® admits colimits.

Recall that (S”Schaf{f)‘)p = ((£"Sch®/)°P)¢ 5o the inclusion S’"‘Sch[}{f C =nSche//
is stable under all finite limits, which exist in =*Sch®// by (HTT, 5.3.4.15). All finite
limits indeed exist, because (5"Sch®//)° is presentable, see below.

Is the full subcategory S”Sch?ﬁ{ 7 stable under finite colimits in <"Sch®//? No, this
is not true already for n = 0. The example is given in [3], [40]. Namely, if A is a
finitely generated k-algebra, A; C A are f.gen. k-subalgebras then A; x 4 A may be
not finitely generated.

The category Vectl™™% is presentable, see Section If f: K — Veetl™0 ig
a small diagram, let f : K* — Vect=" be the colimit of f in Vect=" then T>_nf is a
colimit diagram in Vect!=0.

Lemma 10.0.34. The tensor product in the symmetric monoidal co-category Vect[=0
preserves small colimits separately in each variable. So, the tensor product in Vect! =0
is compatible with small colimits in the sense of (HA, 3.1.1.18).

Proof. Given z; € Vect[_”’o}, write for clarity z1®z» for the tensor product in Vect[=0,
Let I € 1 — Cat be small, f : I — Vectl™™% be a diagram, i — ;, and y € Vect!=%.
Let  be the colimit of f in Vect=", so Z := 72"z is the colimit of f. In Vect the
tensor product preserves colimits separately in each variable, so x ® y = colim;(z; ® y),
here on the right the colimit is taken in Vect=C. Applying 72—, we get

27"z ® y) = 72" (colim, (z; ® y)) = colim g,

where g : I — Vect!™% ¢(i) = 2;@y. The fibre sequence (t<"2)® - 2 Qy — T Ry

in Vect yields an isomorphism 72" (z ® ) = 72 "(Z ®@ y) — 2Qy. O

From this we derive using (HA, 3.2.3.5) that both CAlg(Vectl=™%), C Alg(Vect=0)
are presentable, so <"Sch®/, Sch®// admit all limits and colimits.

10.0.35. For 2.9.4: to prove 2.9.4, one proves first the following.

Lemma 10.0.36. The functor PreStk;,ss — PreStk of RKE along (<°°5’ch;f{f)°p —
(Sch“ff)gp sends NearStkq s to Stk.

Proof. Let S € Sch™7, Y+ (<*°Sch{{7)? — Spe be a functor, Y : (Sch®/ /)% — Spe be
its RKE. One has Y(S)= limg, 5 Y (Sp), where the limit is taken over (Sy — S) €
((<°°Sch;{f)/5)"p. Let now S’ — S be an etale cover in Sch®/. We must show that
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Y (S) — Tot(Y(S"/S)) is an isomorphism. Write
Y (S™/S)= lim Y (Sy)
(Spr—8m/S)e((<>°Schf!”) ) (gm 5))°P
By Lemma [10.0.37], the above identifies with

lim Y (Sy),
(So—S)e((<*Sch{”),s)°r

where S = Sy xg (S™/S) = (S))™/So. Permuting the two limits, we get

Tot(Y(S"/S)) = lim Tot(Y ((Sp)"/S0)) = Y (S)
(So—>S)e((<**Schf{”),5)°r

O

Lemma 10.0.37. Let S’ — S be a map in Sch®’. Assume that S’ is ”of finite type”
over S. The map (<°°Schjc{f)/s — (<°°Sch‘;{f)/5/, So — So xg S is cofinal.

Proof. (analogous to Lemma [10.0.28)). The assumption S’ is ”of finite type” over S is
needed to conclude that Sy — Sg xg S’ lies in <°°Sch‘}{f. I don’t see a good choice of

such definition, but if S” — S is etale then S’ should be of finite type over S. If S’ — S
is flat then S’ is of finite type over S simply means that ¢S’ is of finite type over °S.
Given (Z' — 9') € (<OOSCh;tf)/S/, the category

X := ((<OOSCh(;{f)/S) X(<°°Sch;{f) <

/ !/

((*°Sch${’))51) 27

is the category whose objects are diagrams Z' — Sy — S, whose composition is h :
7' — S" — S. The category X has an initial object, hence it is contractible. O

10.0.38.  For 2.9.5: let Y € NearStk;,s; viewed as prestack via
NearStky, s C PreStk;, s C PreStk

For any n > 0, the restriction to Y to S”Sch‘}{f lies in S”NearStklft. Assume
Y |(§nschaff)op is kp-truncated for some k, € Z. Then by (ch. 1.2, 2.7.7), =Y lies
in <" Stk. So, by (ch. 1.2, 2.5.9), Y € Stk.

10.0.39. For 3.1. Let f : X — Y be a flat morphism of prestacks, assume Y €
<n PreStk for some n > 0. Then X € ="PreStk also. Indeed, viewing Y as an
object of Fun((="Sch®//)° Spc), we have Y =5 colimg_;y 5(S), the colimit taken in
Fun((£"Sch® /)P Spc) over the category (S”Schaff)/y. The functor say L of LKE

along (£"Sch® /)P — (Sch® /)P preserves colimits. So, in PreStk we get

LY = colimg_,y j(L(S)),

where L : <"Sch®/ — Sch®/ is the inclusion. We used here the fact that L(j(S)) = j(L(S))
from my Section [10.0.4. To simplify, we write LY = colimg_,y S for the colimit in
PreStk. Since the colimits in PreStk are universal, we get

X Xy (COlimS%y S) = COlimS%y(X Xy S)
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However, X xy S € =<"Sch®/, so lies in =" PreStk viewed as a full subcategory of
PreStk. Since =" PreStk C PreStk is closed under colimits, our claim follows.

Remark 10.0.40. Let f:Y — Z be a flat morphism in PreStk. Then for n > 0 one
has Y Xz 7S"Z S 7S(Y).

Proof. By the above section, Y xz 7="Z € =" PreStk. So, it suffices to show that
restricting both side to the category (S"Sch“f ! )°P we get the same functor. This is true
because this restriction preserves limits. O

10.0.41. Question: let Y € PreStk. Is it true that the functor X — %X induces an
equivalence of the full subcategory of PreStk,y spanned by f : X — Y with [ etale

and the full subcategory of ¢ PreStk/czY spanned by f : X — 9V with f etale? A
similar claim for affine schemes is Lemma 2.1.5.

10.0.42. For 3.1.4. If Z € Sch then “Z is a classical scheme. Indeed, let f; : S; — Z
be a Zariski atlas. Then ¢S; — % Z is open immersion, and the union of ¢S; is ¢ Z.
Besides, “Z is separated.

10.0.43. For 3.1.8. Here T € Sch*f. 1If Z, — T are etale morphisms of classical
schemes and h : Z; — Z, is a map over T then h is etale. So, if T — S’ is a lift
of T — S then the induced map 4T — <5’ xug “T is etale, hence comes from the
desired etale map T' — S’ xg T

Case (b) is similar: since Z — Z’ is an affine Zariski map, Z’ xz T — T is also an
affine Zariski map, and Z’ xz T' € Sch®//.

10.0.44. For 3.2.4. A general remark: let 7% € Sch*//, S € Sch®/. Consider a map
S — L;T" in PreStk, where the coproduct is understood in PreStk. Then it factors
through S — T" for some i by (HTT, 5.3.4.17), as T € (PreStk)°. The category Sch®/f
has an initial object, the empty affine scheme. It corresponds to the object zero vector
space {0} € C'Alg(Vect="). Now for any j the natural map 77 — L;T" is an affine open
embedding of prestacks. Indeed, for any S — U;T® with S € Sch®/, its base change
by S is either ) — S orid: S — S.

By | S*® | they mean the geometric realization in PreStk. The coproducts L;S?, U; S !
are understood in PreStk. The use the following:

Remark 10.0.45. Let E° be a simplicial object in Spc, E =| E | in Spc, e € E. Then
there is eg € E° whose image in E is isomorphic to e.

Proof. o : Spc — Sets preserves colimits. Any element of colimj,jc aor mo(E"™) is rep-
resented by some element of 7o (E°). O

In their proof T' € Sch®/ is any. Then any element of Map(T,| S" |) comes from a
map T — SY. Further they use the fact that any groupoid in PreStk is effective, as
it is an oo-topos. So, the precise assumption in this proposition says that for any i,
pry : St X pr,,50 S? — S% is an open embedding, where prg, pry : S' — Sy are the two
maps in our groupoid.

In version May 4, 2020 of their ch. 1.2 there is a mistake in the formulation of Pp.
3.2.4, the assumption has to be corrected as above.
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10.0.46. Let Z € PreStk. We have the functor sending U — Z to “U — < Z from the
full subcategory of PreStk,; spanned by the open immersions to the full subcategory
of < PreStk /et z spanned by open immersions. Is it an equivalence? Not sure, as we can
not really glue open pieces of Z. But maybe this is true if Z € Stk. For scheme the
answer is given in their Cor. 3.2.6.

10.0.47. For 3.2.6. The functor 720 : C Alg(Vect=") — CAlg(Vect”) preserves limits
by my Section So, for Y; € Sch® T we get Cl(l_lz-Y;) = U, Y;, where we understand
L as coproduct in Sch®/ and in “Sch®7 respectively.

The property of a morphism Z' — Z in Sch®/f to be affine Zariski is local in Zariski
topology of the target. This is mentioned in their (ch. 1.2, Section 2.1.7).

If f:Y — Z is an affine Zariski morphism in Sch then “Y — “Z is also affine
Zariski morphism. Conversely, assume h : Y — <Z is an affine Zariski morphism of
classical schemes. Pick Zariski atlas Z; — Z of Z, i € I. Let Y; = Y Xeiy 4 Z;, the
preimage in usual classical schemes. Then Y; — ©Z; is an affine Zarizki map. So, by
their Lemma 2.1.5, it lifts to an affine Zariski map Y; — Z; in Schaff, and }72 = dy;.
How to create the corresponding groupoid object S° to produce Y via Prop. 3.2.47
One has to take S = 11;Y;. ”On the classical level”, we should take the Cech nerve of
U;%Y; — Y. Tt indeed lifts to a groupoid object with values in affine scheme, because
of Lemma 2.1.5: at each step we lift an open embedding. For example, if I = {1, 2},
we have SO = Y] U Y5, and we need to define open embeddings Yis < Y; for i = 1,2
in particular. They come from the open embeddings on the level of classical affine
schemes @Y} Xy 4Yy < 4Y;. Then Y = L(| S" |). Do we have ¢Y = Y?

By their Cor. 2.5.7, S0L(=9(] S |)) = =Y, and the functor

PreStk — Fun((¢Sch®/ /)P Spc), U — <0U

preserves colimits, so <9(| S" |) is the geometric realization of the Cech nerve of LI;Y; —
<y . So, SOL(<0(| S°|)) identifies with Y by their Lemma 3.1.6. So, the assumptions
of Prop. 3.2.4 are verified.

10.0.48. By definition, ="Sch is the following full subcategory of <" Stk. First, for
F,F' € ="PreStk and a map o : F — F’ say that « is affine schematic if for any
S € =nSch®™f and S — F, F xS is represented by some object of <"Sch®/. Similarly,
for an affine schematic map F© — F’ as above, one defines a notion of being flat,
etale, ppf, open immersion, Zariski. Viewing =" Stk C Fun((£"Sch®//)?_ Spc) as a full
subcategory, say that Z € =" Stk lies in <"Sch if the diagonal map Z — Z x Z is affine
schematic, and for any T € S"Sch‘lff/ZXz the induces map (T xzxz Z) — “T is a
closed immersion.

Besides, it is required that there is a collection of S; € ="Sch®/ and maps f; : S; — Z
such that

e cach f; (which is affine schematic by the above) is an open embeddings;

e for any T € S”Sch%f, the images of (T x 7 S;) — “T cover “T.

So, this definition ”does not know” about the existence of bigger categories than
<nSch as Sch®//.
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Remark. if Y — Y’ is an affine schematic morphism in PreStk (resp., ppf, smooth,
etale, open embedding, Zariski) then <"Y — ="Y” is affine schematic in =" PreStk
(resp., ppf, smooth, etale, open embedding, Zariski).

Moreover, the functor Sch — <" PreStk, Y — ="Y sends Sch to <"Sch. If S; — Z is
a Zariski cover of Z then <"S; — <7 is a Zarizki cover of <"Z.

10.0.49. Definition. Let f : Y — Y’ be a morphism in <" PreStk. Say that it is
schematic (resp., schematic flat, schematic ppf, schematic smooth, schematic etale,
schematic Zariski) if for any S € ="Sch®// and a map S — Y” the base change Sxy/Y €
<7 PreStk lies in <"Sch (resp., and for any Zarizki cover T; — S xy+ Y the map T; — S
has the corresponding property).

Remark. If f : Y — Y’ is a schematic morphism in PreStk (resp., schematic
flat, schematic ppf, schematic smooth, schematic etale, schematic Zariski) then <" f :
Sy — <Y’ is a schematic morphism in <" PreStk (resp., schematic flat, schematic
ppf, schematic smooth, schematic etale, schematic Zariski).

10.0.50. For 3.3.3. If Z € “Sch and T € “'Sch®/ then Z(T) = Mapp,esu (T, Z) is a
set, so is O-truncated in Spc. Now if Z € <"Sch they claim that Z is n-truncated as an
object of =" PreStk actually (a misprint in the formulation).

It suffices to show that for T' € <"Sch®//f, Map(T, Z) is n-truncated in Spc. We
have a map « : Map(T, Z) — Map(“T, Z), and Map(“T, Z) = Mapei presir (T, ¢ Z) is
O-truncated. so, it suffices to show that each fibre of « is n-truncated indeed.

10.0.51. For 3.3.5. Let Z € <"Sch. Write for brevity F(Z) = VLK FE(Z), where the
LKE is along (£"Sch®/)P < (Sch®/)P. We have to show that F(Z) € Sch.

Let Z' = 1;S; — Z be a Zariski atlas with S; € ="Sch. Consider the Cech nerve
Z'*)Z. For each n >0, Z™/Z € =*Sch®/. An analog of (ch. 1.2, Lemma 3.1.6) holds
for the category <"Sch and gives Z = (S"L)(| Z'*/Z |<n prestx) in =" Stk. The functor
F : <" PreStk — PreStk sends etale equivalences to isomorphisms. We get F(Z) = L(]
F(Z'*)Z) |prestk). Since Z™/Z € <"Sch, F(Z™/Z)= Z'™/Z for each n. From Cor.
2.5.7 we get <"(F(Z))= Z naturally, in particular, ®F(Z) = Z is a classical scheme.
The assumptions of (ch. 1.2, Prop. 3.2.4) are verified, so F(Z) € Sch, and Z' — F(Z)
is a Zariski atlas of Z.

10.0.52. For 3.3.6. We get a full embedding <"Sch C Sch. In (ch. 1.2, 2.6.2) they
defined a full embedding =" Stk C Stk. Prop. 3.3.5 allows to see <"Sch as a full
subcategory of Sch, namely the image of the composition <"Sch C <" Stk C Stk.

10.0.53. For 3.3.8. In the proof the following should be added. The colimit colimge 4 S,
is understood in =" PreStk first, that is, in Fun((£"Sch®/)P,Spc). This is actually
V' /S"Z, where V = LUS;, and S; — Z is a Zariski atlas with S; € <nSch?//. So, each
V™ e =n8ch®7 . Since Z € Stk, ="Z € <" Stk. Further, we need an analog of (ch. 1.2,
Lm. 2.3.8) for <"Sch®/. Namely, the natural map

|V /=" Z |<n prese— ="' Z
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becomes an isomorphism after applying "L, that is, is an etale equivalence. Apply
(ch. 1.2, 2.5.5(b)) to see that

(18) LEE(| V' /="Z |<n presuc) — LEE(="Z)

is an etale equivalence, here LK F is with respect to (5"Sch®//)P — (Sch®//)°P. The
left hand side in identifies with

| V' /=" Z |prestx
Thus, applying L to we get
ZSL( V' /=" Z |presix) = (LK E("Z)),
the first isomorphism being given by (ch. 1.2, 2.3.8), as Z € Stk. So, Z € =" Stk indeed.

10.0.54. For (ch. 1.2, 3.4.4). Given S € Sch®//, colim,>o7<"S = S in Sch®//, how-
ever not in PreStk, precisely because there are non-convergent prestacks. The Yoneda
Sch®// < PreStk does not preserve colimits.

The maps S;,, — Sn7Z are obtained from (ch. 1.2, Corollary 3.2.6). Besides, Sim €
<nSch®// by Prop. 3.3.8. Why S; — Z is an affine open embedding? This follows from
Lemma [10.0.56] below.

Remark 10.0.55. Let Y € ©™ PreStk, assume for anyn > 0, <"Y € <"Sch*f. Then
Y € Sch*//.

Proof. The compatible system 7Y — 7Y — .. of affine schemes has a colimit in
Sch®/ | let S € Sch®// be this colimit. Then S is convergent. For T € Sch®f we get

Map(7="T, S) = Map(7="T, 7="S) = Map<n pregex (ST, ="Y) = Map(t="T,Y")
Passing to the limit over n, we get Map(7,S) = Map(T,Y). O

Lemma 10.0.56. Let f : Z' — Z be a map in ©°™ PreStk. Assume that for any n the
induced map <"Z' — <"Z in Fun((S"Sch® /)P Spc) is affine schematic (resp., flat,
etale, smooth, open embedding). Then f is affine schematic (resp., flat, etale, smooth,
open embedding).

Proof. Let T € Sch™/, T = T x, Z' in PreStk. Then T’ is convergent, since
conv PreStk C PreStk is closed under small limits (being a localization). By Re-
mark it suffices to show that <"T" = <"T x,, <"Z’ lies in <"Sch®”. This
follows from the assumption on f.

Assume in addition that each map "2’ — ="7 is flat. Then "T" — <"T is flat for
any n. So, T" is flat over T by (ch. 1.2, 2.1.3).

The arguments for etale, smooth, open embedding are clear now by definition. [J

10.0.57. For 3.5.1. Their definition of S”Schlft is badly given. Recall that <n Stk C
Fun(("Sch®7)°P Spc) was defined in (ch. 1.2, 2.7.8) as =" StkN=" PreStk;s;. They
first view =" Stk; st as a full subcategory of Stk vie the inclusions <n Stk 1t C sn Stk C
Stk, where the second inclusion is that of (ch. 1.2, 2.6.2). So, the intersection SnSChlft =
Sch N <" Stk; ¢ is taken inside Stk.
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If we view <"Sch as a full subcategory in Fun((S"Sch®7)? Spc) then its full sub-
category ="Sch; s, C S"Sch consists of Z € <"Sch such that Z : (£7Sch® )P — Spe, Z
is a LKE under (S”Schl}{f)"p C (£"Sch®7)oP of its own resriction.

The category Stkj,p; was defined in (ch. 1.2, 2.9.6), the intersection Schyqp; = Sch N
Stky.s¢ takes place in Stk.

10.0.58. For the proof of 3.5.3. Let Z : (5"Sch®7/)? — Spc lie in <"Sch. Assume
it has a Zariski atlas consisting of elements S; € S”Sch;ﬁ{f . Then in their formula
Z = (S"L)(colimge 4 S,) it is understood that

Z=(E"0)(| (WiSi) /Z | <n presiic)

Since all S, € =" PreStk; s, colimgena S, € sn PreStk; s, because sn PreStk;s; admits
all small colimits. Si, indeed by their Cor. 2.7.10 we see that Z is the LKE from
(gnschflff>op
ft :
The next part of the prove uses the following.

Lemma 10.0.59. Let A € 1 — Cat be filtered, A x [1] — Spc be the functor sending
a € A to a monomorphism X, C Y, in Spc. Then X = colim, X, — colim, Y, =Y is
a monomorphism, that is, (-1)-truncated.

Proof. By assumption, X, — X, xy, X, is an isomorphism for any a (cf. HTT,
5.5.6.15). By (HTT, 5.3.3.3), colim, (X, Xy, X4) = X xy X, so the map X — X xy X
is an isomorphism, so X — Y is a monomorphism. 0

Lemma 10.0.60. Let A — B be a map in CAlg(Vect[_”’O}) with Spec A € ="Sch®/ of
finite type such that Spec B — Spec A is an open embedding. Then B is of finite type.

Proof. For n = 0 we know this. Now for any i < 0, H~*(B) = H°(B) OHO(4) H™Y(A).
Since H™(A) is a finite type H(A)-module, the same holds for B. O

10.0.61. For the proof of 3.6.2. They use the following general observation.

Lemma 10.0.62. If Z' — Z is a map in PreStk such that for any S € Sch*7’ and
S — 7,8 xyzZ"is a stack, then Z' itself is a stack.

Proof. Let T — S be an étale cover with S,T € Sch®/. We must show that the
map B : Z'(S) — Tot(Z'(T"/S)) is an isomorphism. This is a map over Z(S). Pick a
morphism « € Z(S). It suffices to show that the fibre of 5 over « is an isomorphism.
Let 8" = Z' xz S, this is a stack. The fibre of Z'(S) over a is S'(S) xg(gy {id}. The
fibre of Tot(Z'(T"/S)) over « is
Tot(Z'(T"/S) x z(r-y5) {a}) = Tot(S'(T"/S) X 5(1/8) *)

Since Tot(S"(T"/S)) = S'(S) and Tot(S(T"/S)) = S(S), the latter space identifies with
S/<S) XS(S) {ld} O

One more thing: for a morphism of classical schemes Z' — Z the property of Z’
being separeted is local in Zariski topology of Z: if there is a Zariski atlas S; — Z such

that Z’ x 7 S; is separated then Z’ is separated. This is used in the proof of Prop. 3.6.2:
namely we apply Prop. 3.2.2 to get it.
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10.0.63. For 3.6.4. Let for example f : Y7 — Y5 in €™ PreStk be such that for any
S € <°Sch®/f and S — Vs, S Xy, Y1 is a scheme. Then f is schematic. Indeed, for
any S — Y with S €€ Sch®/ we get S Xy, Y7 is convergent, as “"” PreStk is closed
under limits in PreStk. Besides, for n > 0, =" (S xy, Y1)= sn(sng Xy, Y1). Since
<"S xy, Y1 € Sch by assumption, we are done by my Section m

10.0.64. For 4.1.1. The category CAlg(Vect=") admits all small limits, and the pro-
jection C'Alg(Vect=") — Vect=" preserves limits by (HA, 3.2.2.4). We used the fact
that Vect=C is presentable. So, Sch®/ admits all small colimits. So, given S; € Sch®//
with S; = Spec A;, one may consider the coproduct U;S; = Spec(]] 4;) in Sch* /. In
their formula L(L;S;) one can not remove L, because the coproduct U;S; is understood
in PreStk, and the inclusion Sch®/ < PreStk does not preserve colimits.

It is understood that § — T is flat (an open embedding) for any T € Sch*/f. So,
0 € CAlg(Vect?) is a flat A-module for any A € CAlg(Vect?). For S; € Sch®//,
S; — U;S; is an affine schematic, open embedding, so S; — L(L;S;) is also affine
schematic open embedding by (ch. 1.2, 2.4.6).

To check that L(1J;S;) € Sch let us show that for T € Sch®7 with T % L(1J;S;) the
images of “(T}) cover ClT Here T; = S; x (u,s,) T Using (ch. 1.2, 2.3.10), pick an etale

cover T' 5 T with T € Sch®7 such that af factors as T — S; — L(U;S;) for some
j. This shows that we may assume T' = S; and « is the canonical map S; — L(U;S5;).
In this case S; Xr,;5,) 5j — S; for i = j and empty otherwise.

10.0.65. The notion of 0-representable morphism in PreStk from (ch. 1.2, 4.1.2) is
as follows. A map f : X — Y of prestacks is O-representable iff for any S — Y with
S € Sch™’, §xy X isin Stk that is, of the form L(U;erS;). Here S; € Sch®/7 the
coproduct is taken in PreStk, and L is the sheafification. Moreover, the 0-representable
morphism f is flat (resp., ppf, smooth, etale, surjective) if the morphism S xy X — S
of schemes is flat (resp., ppf, smooth, etale, surjective). Surjectivity of a morphism
Z — Z' in Sch means, I think, that ¢Z — <27’ is surjective.

10.0.66. Let Y7,Y; € Stk, Z € Sch®//. Assume given a map a : Z — L(Y; UY3).
Then there is an etale cover Z' — Z with Z’ € Sch®7 such that the restriction to
Z' factors through Y; — L(Y; UY53) for some 7. Is it true that a factors through
Z =Y — L(Y1UY9)?

To set up induction in the definition of Arthin stacks in (ch. 1.2, 4.1), let us show that
the composition of 0-representable morphisms is O-representable. Let Y % L(L;S;) —
S be diagram, where S; € Sch®//, and « is O-representable (in particular, Y € Sch).
By assumption, for each i there is an isomorphism Y x ;) Si — L(U;S;;) for some
Sij € Sch®/f. Recall that L(;S;5) € Sch, and the collection S;; — L(L;S;;) is itz
Zarizki cover. Then the collection S;; — Y is an affine open embedding, this is a
Zariski cover. Besides, for two different pairs (4,7), (¢',7’) one has S xy Sy = 0.
This should imply Y’;L(I—lz,]sz])

More generally, if Z € Sch, S; — Z, i € I is a Zariski cover, assume that for i # j,
S; Xz Sj = (). Then I think Z,—V>L(|_|i5i).
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10.0.67. For (ch. 1.2, 4.2.2 a)). My understanding here is as follows. Let f:Y; — Y3
in PreStk be k-representable. Let S — Yj Xy, Y7 be a map with S € Sch®//. We get
the map S — Y5, and may base change f by this map, so we may assume Yo = S.
Then the datum of S — Y] xXg Y7 yields in particular a map a : S — Y1 x Y7. Let
Z = S Xy,xy; Y1. My understanding is that Z— S X¥ixy, Vi Y;. Since now Y] is a
k-Artin stack, Y1 — Y1 x Y7 is (k — 1)-representable, so Z is a (k — 1)-Artin stack.

10.0.68. Proof of (ch. 1.2, 4.2.4) contains in particular the following claim: if Y; are
k-Artin stacks for £ > 0 then L(L;Y;) is also a k-Artin stack. Proof not clear.

(ch. 1.2, Lm. 4.3.2) gives in particular: if S’ — § is a morphism in Sch®//, which
is smooth and surjective then there is an etale cover T' — S such that T" — S factors
through S’.

(ch. 1.2, 4.3.3) follows from 4.3.2 and 2.3.8.

Lemma 10.0.69. Let Y € Stk, S; € Sch®/f. Assume given a map Y — L(U;S;), where
the coproduct is in PreStk. Let Y; =Y x,g,) Si- Then the natural map L(U;Y;) — Y
s an isomorphism.

Proof. Let Y/ =Y X 1(,s;) UiSi. Then Y’ x,5, Si =Y, hence Y= U; Y;. Since L
preserves fibres products, applying L to the cartesian square L;Y; =Y xp,s,) UiSi,
we get that Y = L(L;Y;). O

10.0.70. For (ch. 1.2, 4.3.4). It uses without a reference a result that I documented as

my Lemma [7.3.3]

10.0.71. Structure of comodule categories. Recall that coAlg(Vect) = (Alg(VectP))°P.
By ([28], 3.2.2.4), coAlg(Vect) admits colimits, and the projection coAlg(Vect) — Vect
reflects colimits.
Assume A; € coAlg(Vect), let A = @;erA; in coAlg(Vect) or Vect. We have the
natural functor
'69[ A; — comod(Vect) — A — comod(Vect)
1€
coming from the system of functors A; — comod — A — comod, M — M. Dima claims
it is an equivalence (in which generality, for A; classical?). Recall also that coproducts
in DGCatcop: coincide avec products, so this is also the product. )
For example, if 7' is a torus over k then k[T] as a coalgebra is @3, ikt*. Here A

is the weight lattice of T', and kt* is the 1-dimensional unital coalgebra (dual of the
1-dimensional k-algebra k). The coproduct is t* — t* ® t*, and the counit is t* — 1.

10.1. Quasi-coherent sheaves. For (ch. 3,1.1.3). The functor QCohp, g : PreStk?” —
DGCatcopnt preserves small limits.

For (ch. 3, Lm 1.2.2). If Y € =" PreStk then Y = colimg_,y S in PreStk, where
the colimit is over the category (5"Sch®/) /v see my Section This implies the
lemma.

For Lm. 1.2.4 same argument: let Yj : (S”Sch;ﬁ{f)"p — Spc be a functor, Y :

(Sch® Ty — Spc its LKE along (S”Sch;{f)of’ — (Sch® /)P 50 Y is n-coconnective
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locally of finite type. Then Y = colimg_,y S in PreStk, the colimit is taken over the

aff)

category (S"Sch /v~ This implies the lemma.

10.1.1. For (ch. 3, 1.3.4): they claimed that DGCat.ym — 1 — Cat preserves limits.
The projection DGCateons — 1 — Cat> ™' preserves limits and colimits. The in-

clusion 1 — Cat>>™P! < Prl s stable under all limits (see my Section . The
functor Prl’ — 1 — Cat preserves all small limits (HTT, 5.5.3.13). Our claim follows.
Cor. 1.3.5 uses the fact that DGCat.,,+ — 1 — Cat is conservative. To explain this
property, note that DGCateont — DGCat™" Pl ig conservative, since it is 1-replete.
Further, the inclusion DGCat" ¢l « Vect/% —mod(1 — Cat) is conservative. The

projection Vect”% —mod(1 — Cat) — 1 — Cat is conservative by my Section [3.0.53

Claim: The forgetful functor DGCat.nr — Prl preserves all limits and colimits.

Proof. We have seen above that DGCaten: — 1 — Cat>2™! preserves limits and

cont
colimits. By Sect. A m the forgetful functor 1 — € tf(fnctocmp ' — Prl preserves all
limits and colimits. O

10.1.2. By (ch. 1, 8.5.10), the functor Alg(Vect)?? — Vect modf(fniocmpl DGCatcont,
A+ A—mod is symmetric monoidal. By (HA, 2.2.1.1) the inclusion Vect=0 — Vect is a
symmetric monoidal functor, so Alg(Vect=?) — Alg(Vect) is also symmetric monoidal.
Passing to opposite, Alg(Vect=?)? — Alg(Vect)® is also symmetric monoidal. The
composition becomes the functor Sch®’ — DGCateons, S QCoh(S5), it is the
functor defined also in (ch. 3, 1.1.1, formula (1.1)). In (ch. 3, 1.1.1) it is not
mentioned that it is symmetric monoidal. My understanding is that the functor
QCohg sy - . (Sch™f)P — DGCateons, S — QCoh(S) (obtained by passing to left
adjoints) is also symmetric monoidal.

We have C'Alg((Sch®/)P) = (Sch® /)P, So, the symmetric monoidal structure on

the above functor QCohy ., yields a functor (Schaf Fyor 5 € Alg(DGCateony). That

is, for S € Sch®’ QCoh(S) is symmetric monoidal stable category, and for a: S — S’
the functor a* : QCoh(S") — QCoh(S) is symmetric monoidal, see [11].

10.1.3. For Corollary 1.3.7, proof: Let € € 1 — Cat. We can consider the category
PreStke = Fun((Sch®7/)?,@). Then for the flat (resp, etale etc.) topology we can
consider the full subcategory Stke C PreStke of functors satisfying the corresponding
descent. Let now f : Y7 — Y5 be a map in PreStk, which is a flat equivalence. Assume
Z : PreStk®” — € is the RKE if its restriction under (Sch®/)% < PreStk, assume
this restriction of Z lies in Stke. Let us show that the natural map f*: Z(Y2) — Z (Y1)
is an equivalence in C. Let ¢ € C. It suffices to show that the map Mape(c, Z(Y2)) —
Mape(c, Z(Y7)) is an isomorphism in Spc. Write Z : PreStk” — Spc for the functor
Y — Mape(c, Z(Y)). Let Z': (Sch® /)P — Spc be the restriction of Z. Then Z is the
RKE of Z’, and Z' is a stack for the flat topology. So, the map Mapprestk(YQ, Z" —
Mapp,esik (Y1, Z') is an isomorphism in Spec. Since Yo = colim 4 S in PreStk, the
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colimit over the category (Sch®/) /vy, we get

Mapp, s (Y2, Z') = lim Mapp,esi (S, Z2') =
(S;y)e((Sch®/F) y)or
lim 2(8) = Z(Ya)
(Sw)E((Sch*fT) y)or

So, Z(Y2) — Z(Y1) is an isomorphism.

10.1.4. For (ch. 3, 1.5). Recall that if A € Alg(Vect) then A —mod = A — mod(Vect)
is stable presentable (see my Section . Consider the forgetful functor oblv :
A—mod — Vect, it is a right adjoint (and preserves both limits and colimits). Applying
(HTT, 5.5.4.17) we see that {M € A — mod | oblu(M) € Vect=1} is strongly reflective
subcategory. Consider on the other hand € = {M € A — mod | obluv(M) € Vect="}.
It is closed under extensions, because Vect=C is closed under extensions. It is also
closed under small colimits, because Vect=" C Vect is closed under colimits. We have
C= A — mod Xvect Vect=". Since the forgetful functor Prl — 1 — Cat preserves limits,
we see that C is presentable (this is also [14], ch. 1, 2.5.2). Applying (HA, 1.4.4.11)
we see that there is a t-structure on A — mod such that A — mod= = €. This t-
structure is accessible in the sense of (HA, 1.4.4.12). This is the t-structure defined in
Remark [0.3.12]

In particular, if A € CAlg(Vect="), on A — mod we get a t-structure. If A — B is a
map in CAlg(Vect=C) then the functor A — mod — B — mod, M — B ®4 M is right
t-exact in the sense of (HA, 1.3.3.1).

If Y € PreStk they define QCoh(Y)=" = limg_y QCoh(S)=0, the limit in Prr.
So, QCoh(Y)=Y is presentable by construction. It is also closed under colimits and
extensions, because the functors f* : QCoh(Y) — QCoh(S) preserve colimits and are
exact. So, (HA, 1.4.4.11) shows that this defines a t-structure on QCoh(Y).

If S € Sch®7 then for f : S — Speck the map f, : QCoh(S) — Vect is t-exact.

10.1.5. For (ch. 1.3, 1.5.8). Let I — DGCatcont be a diagram, i — Cj, for i — j in
I let F;; : C; — Cj be the transition functor. Let C' = colim C; in DGCat,opt. Recall
that also C'= lim;cop C; in DGCat. Let ev; : C' — C; be the projection functor. Let
C2% = {ce C |foreachic I, evi(c) € C’?O}. For a map i — j in [ let FZ]]% 10— G
be the right adjoint to Fj;. Then Fi? is left t-exact.

Indeed, given x € C].ZO let y € C~". Then mo Mapg, (, Fg(x)) — mo Map¢, (Fij(y),z) =0,
because Fj;(y) € Cj<0. So, Fg(x) € C’?O.

Thus, we obtain lim;erop CZ-ZO C C a full subcategory by my Lemma In fact
CZ0 = lim;eop CZ-ZO. For each i we have an adjoint pair 720 : C; & CZZ : G; with G;
being the inclusion.

It is not clear why C=0 is a localization of C.

Assume for a moment that the t-structure on each C; is accessible. Then C’?O is
presentable, and we may rewrite C=9 as colim;cs CiZO in Prf. Passing to the colimit
in DGCateopn¢ in the system of maps 720 : C; — C’izo indexed by I, we get a functor
g:C — C29 Is g left adjoint to the inclusion i : CZ9 < C7
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Passing to the colimit in the system CZ-ZO — C; Tio CiZO’ we see that the composition
C=% — C — C=2Y is isomorphic to the identity. In Fun(C;, C;) we have a morphism
id — i; 0 720, where i; : C’?O — (; is the inclusion. I think we can pass to the colimit
here over i € I and get a morphism id — i o g, where i : CZ9 < (' is the inclusion. I
think that ¢ is right adjoint to g indeed.

For a map i — j in I, F}; : C’?O — C]-SO preserves colimits, hence admits a right
adjoint Gjj : C'jSO — C’;O. In fact, Gj; = TSOFi?. The map 7=0: C; — C’;O becomes a
morphism of projective systems indexed by I°?, where we use functors FZ? 105 — G
and Gjj : C]-SO — C’;O as transition functors. Passing to the limit, we get a func-
tor a : C — limgejop CZ-SO, where the limit can be seen as a limit in Prft. We get
lim;e rop CFO’—T colim;ey CZ-SO. The compatible system of functors C’?O — (}; yields by
passing to the colimit over I a functor colim;c; CZSO — (. Is it left adjoint to a?

Note that C;*0= C; x o0 0, the fibred product taken in Prl. (Here the functor

0— C’Z-ZO sends the unique object of 0 to the zero object of CiZO). This is an inductive
system in Pr¥ indexed by I, and

. ~ 1 <0
colim;e 7 (C; X oo 0) = colim;er C;

in Pr’ rewrites as lim;e 100 (C X >0 0) in Prf with respect to the right adjoint system

C
of transition functors.

The claim is wrong as stated. For example, assume I = [1], and the diagram I —
DGCateop is F' : Cy — C1 then colim C; —C1, and the t-structure we get is the old one
on C;. However, F : C; — O is not t-exact in general.

Remark 10.1.6. Let f : C' — C be a map in DGCateons and 2 : C' — C its right
adjoint. Assume C,C" are equipped with t-structures. Then f is right t-ezact iff fT is
left t-exact.

Proof. Argument as in my Section [10.1.5 g

This was a misprint in their (ch. 1.3, 1.5.8), one should consider C' = lim; C; for
I — DGCateon:. Assume for simplicity all the t-structures on C; accessible. Then
{c € C | evi(c) € C?O for all i} is presentable (as a limit of presentable categories
lim; CZ.SO in Prl ), stable under colimits and extensions in C, hence defines a t-structure
on C (HA, 1.4.4.11) with C=0 = {¢ € C | ev;(c) € C= for all i}. Moreover, C>0 =
{c € C | for any i, ev;(c) € C7°}.

If for each i the t-structure on C; is compatible with filtered colimits then C>° c C
is stable under filtered colimits, so the t-structure on C' is also compatible with filtered
colimits.

If S € Sch®// then the t-structure on QCoh(S) is compatible with filtered colimits.

The characterization of right completeness of the t-structures given in (ch. 1.3, 1.5.7)
use the fact that the t-structures on C; are accessible and are given in my Section [£.0.10}

For (d): assume each C; is left complete. Let us show that C is also left complete. For
cach i € I, C; = lim,ezer CZ ", Besides, CZ0 = lime; C2°, so CZ7" =5 limye; CZ 7"
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for any n € Z. Thus,

. e~ 1. . >_n o~ . —
lim C=7" S lim lim C7 "= limC; = C
nezep i€l nezZop icl

as required.

10.2. The following definitions are from ([I4], vol 2, ch. 1, 8.1): for a classical prestack
Y one has "¢?Y, its restriction to the category (TedSchaf f )°P, one has the notion of a
closed embedding of classical prestacks.

10.2.1. For (ch. 1.3, 2.1.3). If S; € Sch®//| I is small then then S := L;c;S; in Sch®/
is not the same as U;c;.S5; in PreStk. The latter is not an affine scheme in general. We
have a natural map U;csS; — S in PreStk, which is not an isomorphism in general.
Indeed, Sch®'/ — PreStk does not preserve colimits. For example, if I = N and S; = *.

Already if 51,5 € Sch*f are nonempty then the coproduct S; LI Sy in PreStk is
never the coproduct of S; and Sy in Sch®f. Let S be the coproduct of S7 and Sy in
Sch®/. Then L(S; U Sy) = S. This follows from (ch. 1.2, 3.1.6). Indeed, the simplicial
object (S7 U S2)®/S is constant with value S; LI Sy, where the coproduct is in PreStk.
However, if T is infinite, let S; € Sch®/ and S be the coproduct of S; in Sch®//. Then
L;.S; — S is usually not a Zarizki cover, here LI;5S; is calculated in PreStk.

The coproducts in Sch*7 do not commute with finite products. Indeed, let S be
the coproduct of * in Sch®/ indexed by I = N. The natural map k[t] ®j (ILien k) —
[Licx k[ti] is not an isomorphism, because it is not surjective. If we take a point
(pi) € [;en k[ti] such that the degp; are not bounded for i € N then this point is not
in the image.

Example of a noncontinuous functor, which is a map in DGCat but not in DGCat .yt
is as follows. Consider the projection 7 : X = L;en* — *, here the coproduct is taken
in PreStk. We get QCoh(X) = [[,cy Vect, and m, : [[;cy Vect — Vect sends (K,) to
[1,,en Kn» where the latter product is taken in Vect. This functor is exact, but not
continuous. Indeed, if {e;,i € N} is a base of the vector space M and M,, is vector
space with the base {e1,...,e,} then colim,en M,, = M in Vect. However, the natural
map colimien(] [, ey Mi) — [[,en M is not an isomorphism of vector spaces, here the
colimit and product are calculated in Vect. The above map is not surjective.

10.2.2. Remark. Let Z € Sch and U; — Z is a Zariski cover for i = 1,2. Let Ujp =
Ui Xz Us. We claim that the natural map f : L(U; Uy, Us) — Z is an isomorphism,
where the coproduct U := U; Uy,, Us is calculated in PreStk. Indeed, U x z U; = Uj;, so
the base change of f by a: U; U Uy — Z becomes an isomorphism. Since a is an etale
surjection, our claim follows from my Section [10.0.20

In particular, this gives an eqiuvalence QCoh(Z) — QCoh(U1) X qcon(t,,) QCoh(Us)
in DGCatcopnt, because QCoh* preserves limits (we use ch. 1.3, 1.3.4).

10.2.3. For (ch. 1.3, 2.2.2). A schematic morphism f : X — Y in PreStk is quasi-
compact if for S — Y with S € Sch*//, § xy X is a quasi-compact derived scheme.
In the proof it is the functor Schy./Y2 — Schy./Y1, which is cofinal, not its opposite.
We want to show that for the diagram W' = Z' xz W we have the base change
for f : W — Z, where W, Z, Z' are quasi-compact schemes. It suffices to assume Z



COMMENTS TO: D. GAITSGORY, N. ROZENBLYUM [14] 241

affine. Indeed, if we know this for Z affine, we may pass to the limit I think over
(S —2) € (Sch%f )°P in the system of the corresponding base change isomorphisms

for
Wé — Wsg
{ {
Zy — S

Here the subscript S denote the base change under S — Z. The next step is to do the
same for maps S — Z' and reduce to the case when Z’ is also affine.

Remark: let W € Sch, U; — W for i = 1,2 a Zariski atlas. Then for K € QCoh(W)
let K; = K |Ui7 K=K |U12 with Uyjg = Uy Xy Us. Let j; : U; > W and ji3 : Uio —
W be the open immersions. Then K — (j1)«F1 © (J2)«Fo — (j12)«Fi2 is a fibre
sequence in QCoh(W). Indeed, let U = U; Ll Us, the coproduct in PreStk. Recall that
QCoh(W) = Tot(QCoh(U®/W)), where U®/W is the Cech nerve of U — W. So, it
suffices to show that for any n > 0, the image of our triangle in QCoh(U™ /W) is a fibre
sequence. This follows from the fact that this is true for QCoh(U;) and QCoh(Ui2), as
U™ /W is a coproduct of such.

10.24. If j : U — X is a schematic quasi-compact morphism in PreStk, which is a
monomorphism then id = j*j, by (ch. 1.3, 2.2.2).

10.2.5. If f : X — Y is a schematic quasi-compact morphism in PreStk then from
(ch. 1.3, 3.2.3) one derives the following. Let H € QCoh(X),F € QCoh(Y) then
(idxf)«(FXKH)—=FX (f.H). This combines the base change isomorphism of f by
pr; : Y xY — Y and the projection formula.

10.2.6. For 2.2.4. Recall the 1-subcategory PreStkgcs, 4c, Where one restricts 1-morphisms
to be schematic and quasi-compact. My understanding is that the functor denoted
QCOhpesik, . yo_ye © PTStKschge = DGCateont in (ch. 3, 2.2.4) is right-lax symmetric
monoidal. This functor sends X to QCoh(X), and a schematic quasi-compact mor-
phism f: X — Y to f. : QCoh(X) — QCoh(Y).

Now if G € PreStk has a structure of an algebra in PreStkgc 4. then QCoh(G)
gets a structure of an algebra in DGCateon: given by convolution. Namely, for the
product map m : G x G — G the product on QCoh(G) is given as the composition
QCoh(G) ® QCoh(G) — QCoh(G x G) ™ QCoh(q).

This is offen applied for G' € Schy., which is an algebra in Schye.

If i : Speck — G is the unit then i,O is the unit of QCoh(G) for the convolution
monoidal structure.

10.2.7. For (ch. 1.3, 2.3.2). Let S; € Sch®/ and Y = L(LU;S;), recall that Y € Sch.
Then Y is quasi-compact iff I is finite (that is, S; is empty for ¢ not in this finite subset).
Indeed, assume T € Sch®/ and T — Y a smooth atlas. For each i, S; — Y is an affine
open embedding, hence S; xy T' — T is an affine open embedding, and S; — Y for
i € I form a Zariski atlas of Y, so S; xy T form a Zariski atlas of T. However, SpecT is
quasi-compact, so already for a finite subset I’ C I, S; xy T cover T, so L(U;cpS;) =Y.

Let Y7 be an Artin stack, and Z — Y7 be a smooth atlas with Z € Sch. For i > 0 let
Z'/Y1 be the corresponding element of the Cech nerve of Z — Y7. Let f: Z¢/Y; — Y1
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be the projection. Consider the category QCoh(Y;)—= Tot(QCoh(Z*/Y7)). Applying
my Section for F € QCoh(Y7) we get
5 Tot((f*).(f*)°5)

This was used in the proof.

10.2.8. For 2.4.3. If A € CAlg(Vect=") then (A — mod)® = (H'(A) — mod)" is a
Grothendieck abelian category by (HA, 1.3.5.23). Indeed, A — mod is presentable
stable, and the t-structure is compatible with filtered colimits.

For the proof of 2.4.3 by Homqcon(y)(£1, F1) they mean mo Mapqcon(y) (F1, F2). If
f S — Y isflat, Y is a 1-Artin stack quasi-compact and quasi-separated, then for
F € QCoh(Y)?,Fg € QCoh(S)Y if a : f*F — Fg is injective then F — f,Fg is also
injective. Indeed, if the latter factors as § — F/Fy — f.Fg for some subsheaf Fy then
a factors as f*F — f*(F/Fy) — Fs.

For Lm. 2.4.5: I think this lemma is probably wrong as stated. It should be essen-
tially a reformulation of (HA, 1.3.3.7). There is an assumption missing: ¢y is injective.
With this assumption added lemma becomes true, and follows from (HA, 1.3.3.7).
Namely, given ¢,¢ € C¥ with ¢ injective we claim that Ext’(¢/,¢) = 0 for i > 0. In-
deed, pick an injection ¢ = cg in CV such that ¢ is injective, and Ext?(¢/, ¢y) = 0 for
i > 0. Then there is 8 : cg — ¢ such that fa = id. So, id : Ext'(c/,c) — Ext’(c/,¢)
factors as Ext’(c/, ¢) — Ext'(c/, cg) — Ext’(¢, c), and Ext’(c,c) = 0.

By D(C") then mean the version of the derived category defined as in (HA, 1.3.2)
but for an abelian category C'¥ having enough injective objects. The condition that
the t-structure is compatible with filtered colimits is only needed to assure that C
has enough injective objects. Then we have indeed a functor D(CY)T — C, and we
want to check it is fully faithful using (HA, 1.3.3.7). However, their condition does not
seem to garantee the assumptions of (HA, 1.3.3.7). With the above correction their
Lemma 2.4.5 becomes true.

Note that if in addition the t-structure on C' is accessible then C is a Grothendieck
abelian category by (HA, 1.3.5.23).

10.2.9. In 3.2.6 for an abelian variety A he means by I'(A,04) the complex 7,04
for m : A — %. In classical terms this is RI'. He means that 7,04 is known to be
isomorphic to Sym(H! (X, 0)[-1]).

Asin (ch. 1.3, 3.2.5), .04 is an algebra in Vect. Since A is a group, w04 also gets
a structure of a coalgebra in Vect. Namely, the product m : A x A — A yields 7,04 —
(m+04) ® (7+04) in Vect, hence the dual (7.,04)"Y is naturally an algebra in Vect. Let
q : * = B(A) be the natural map. The idea is to check that ¢* : QCoh(B(A)) — Vect
is comonadic.

First, A acts trivially on *. This yields an action of QCoh(A) with the convolution
monoidal structure (defined in the previous subsection) on Vect. The action map is
7y : QCoh(A) = QCoh(A) ® Vect — Vect. Here by tensor product we mean the tensor
product in DGCatcont, that is, over Vect. Now 04 € QCoh(A) is naturally a coalgebra
in QCoh(A) with the convolution monoidal structure. Let i : Speck — A be the unit
then 7,0 is the unit of the convolution monoidal structure on QCoh(A). The counit
map for O4 is the natural map 04 — ¢,.0. We also have the natural map O — m,0.
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What is the corresponding comonad on Vect? For any S € Sch®7 one gets * x B(A)
S=S x A. So, q: * - B(A) is schematic quasi-compact, so the right adjoint g, :
Vect — QCoh(B(A)) is continuous, and we get the comonad A = g*g. : Vect — Vect.
It is given by M — M @ m,04 by (ch. 1.3, 2.2.2), as ¢ is schematic quasi-compact. We
get the functor (¢*)¢"" : QCoh(A) — A — comod(Vect). The functor ¢* is conservative,
it remains to show it preserves totalizations. This is not evident, and it is better to
apply here ([I5], Lemma C.1.9).

Namely, consider the cosimplicial category [Vect X QCoh(A) 3 QCoh(A4?%).. ],

where the functors are the pull-backs (coming from the group object A’ — PreStk
given by A). It suffices to check that this cosimplicial category satisfies the comonadic
Beck-Chevalley condition ([I5], Def. C.1.3). Namely, for any map « : [j] — [i] in A we
get the cartesian square of schemes

At By
ba 1
AL E AT

where p; is the projection on first 4+ — 1 factors. The base change for this diagram
q (pj)*’—T(pZ-)*q; garantees the condition ([15], Def. C.1.2). So, ¢* is comonadic.

My understanding is that for A = 7,0 4 the product map ARA — A is a morphism of
coalgebras in Vect, so the dual map 7 : AY — AV ®.AY is a morphism of algebras. This
provides a symmetric monoidal structure on A" — mod(Vect) such that the forgetful
functor AY — mod — Vect is symmetric monoidal. I think this symmetric monoidal
structure on AY — mod corresponds to the pointwise symmetric monoidal structure on
QCoh(B(A)) (the one existing on QCoh(Y") for any prestack Y).

Since A is a commutative group, A is a cocommutative coalgebra, so A" is a com-
mutative algebra in Vect=C, so we get S := Spec.AY € Sch®//. The morphism 7 gives a
map h: S xS — S. Since A is a commutative algebra in Vect, AV is a cocommutative
coalgebra in Vect=", so § is a commutative monoid in Sch®/7.

Let f : S — Speck be the natural map. Consider the tensor product Vect ® g4v _,,0q4 Vect,
here both functors AY — mod — Vect are f., and the symmetric monoidal struc-
ture on AY — mod is given by the above morphism of algebras 7 : AY — AY ®
AY. Are the monadic Beck-Chevalley conditions satisfied for the simplicial category
Bar®(Vect, QCoh(S), Vect), namely those of ([15], Def. C.1.2)? Note that h, : QCoh(S)®
QCoh(S) — QCoh(S) and f. : QCoh(S) — Vect have left adjoints h*, f*.

In fact AV = Sym(V[1]) = k ®@sym v k, where V = H'(A, 0)*. So, S= * xy*, where
* — V is given by zero. This is a group in Sch®7 naturally. This implies the Beck-
Chevalley conditions for the simplicial category Bar®(Vect, QCoh(S), Vect) by ([15],
C.2.2), because the square is cartesian
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So, by ([15], Cor. C.2.3) the right adjoint to the natural functor Vect — Vect ®qcon(s) Vect
is monadic, and the corresponding monad is given by A € Alg(Vect). So, A —
mod: Vect ®QCOh(S) Vect.

However, ([14], ch. 1.3, 3.2.6) claims another answer for Vect ®qcon(s) Vect.

10.2.10. Question: given a coalgebra A in Vect, consider oblv : A — comod — Vect.
Assume A compact, hence dualizable. We have A — comod = AV — mod (see my Sec-
tion . Do we get the structure of a A — comod-module on Vect? How to calculate
Vect ® 4—comod Vect?

10.2.11. For (ch. 1.3, 3.4.2). In the proof when one shows (ii) implies (iii) we use the
following diagram

Y 4 Y xY

Ia $ axid
Y xY U vy vy xy,
with A being the diagonal map. Since the maps are schematic quasi-compact, base
change holds for this diagram: for M,F € QCoh(Y) we get (idx A)*((Ax M) X
F)= Ay (M®F), which means that A,: QCoh(Y) — QCoh(Y)®QCoh(Y) is compati-
ble with the right action of QCoh(Y). Similarly, (A xid)*(MX (A F)) = As (MQF),
so A is also compatible with the left action of QCoh(Y).

10.2.12. Let G be a finite group. Let B = H°(G, ), this is an algebra and a coal-
gebra in Vect (placed in degree zero). The category QCoh(B(G)) is described as
in Section namely, QCoh(B(G))— B — comod(Vect). By my Section
B — comod(Vect) = BY — mod(Vect). What is the structure of the algebra BY? (It is
non commutative for G' nonabelian).

If G is abelian, write GV for the group of characters of G. Then we have a canonical
isomorphism BY = H°(GV,0) of commutative algebras in Vect (we assume char(k) =
0). Namely, for a character x : G — k* write f, € H°(GY,0) for the chacateristic
function of x. The set {x},cqv forms a base in B, write {€, },cqv for the dual base in
BY. The above isomorphism sends €, to f,. For G abelian we obtain an equivalence
QCoh(B(G)) = QCoh(G). The latter identifies with the symmetric monoidal category
erGV Vect, the product taken in DGCatcop.

I think that for n > 1, writing U ;* for the coproduct in PreStk, L(U?_,*) is the
corresponding coproduct in Sch®/. Then this would follow from the fact that the
functor QCoh™ : PreStk°? — DGCateon: preserves limits.

10.2.13. Since PreStk admits small colimits, its tensored over Spc. Namely, for Y €
PreStk, X € Spe, Y ® X is the prestack sending S € Sch®/ to Y(S) x X. We can
also write Y x X instead of Y ® X, the product with the constant prestack. We have
QCoh(Y x X) = limgex QCoh(Y), the limit taken in DGCatcopt or in 1 — Cat. So,
QCoh(Y x X) = Fun(X, QCoh(Y)).
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10.2.14. Let Y € Fun(Sch®/, Sets), let Y’ : Sch®/ — Spc be the corresponding
prestack. The inclusion Sets C Spc preserves limits. So, to check that Y’ € Stk in the
etale topology, we have to calculate a totalization in Sets. Namely, Y’ € Stk if for any
etale covering f : S — T in Sch®// the natural map Y (T') — Tot(Y (S*/T)) should be
an isomorphism, where the totalization is calculated in Sets. By Lemma2.5.24] of this
file, Tot(Y'(S*/T)) = lim,. o<1 Y (S®/T). So, this condition is a finite limit.

Let now I € 1 — Cat be filtered, Z : I — Fun(Sch®//, Sets) be a functor taking
values in Stk. Then Y := colim; Z (taken in PreStk) also takes values in Sets, because
T<m Spc C Spc is stable under filtered colimits for any m. We claim that ¥ € Stk.
Indeed, let f : S — T be an etale cover in Sch®//. We have

lim Y ((S*/T)—= lim colim;es Z;(S®/T)— colim;e; lim Z;(S*/T)
ecAS? ecAS! ec ASL

by (HTT, 5.3.3.3). Since Z; € Stk for any i € I, we get Y (1) = lim,_ o<1 Y ((S°*/T).
This is especially used for ind-schemes, see ([17], Sect. 2.1).

10.2.15. For (ch. 1.3, 3.6.10). Let S = Spec A € Sch®//, 4, : =S — § the natural
map. First, the functor QCoh(S) — lim, QCoh(S"S), M s (if M),>o has a right
adjoint sending a compatible family (F,) to limy,(iy,)«F,. In particular, the same holds
with QCoh(S) replaced by QCoh(S)~. We still have to explain that lim,, (iy,).«F, taken
in QCoh(S) is upper-bounded.

Let now M € QCoh(S)~. Then the natural map M — lim,>o M ®4 7= "A in
QCoh(S) is an isomorphism? If M is in degrees < N then M ®4 7<7"A is in degrees
< N — n. It suffices to show that lim, (M ®4 77" A) = 0 in Vect. This is a particular
case of the following.

Lemma 10.2.16. Let Z.q — Vect be a diagram ... — M, 1 f75>1 M, ﬁ? ... Assume

a(n) € Z, M, € Vect=*" and lim a(n) = —oo as n goes to —co. Then lim, M, = 0
in Vect.

Proof. Let M = lim M,, in Vect. We have the fibre sequence M — [[,, M, LA [L, M,
where b is the product of maps by, : [[,, M, = M,,. Here b, is the composition [ [, M, >

n—1—id i .
M,_1 x M, f L M,,. Recall that H* : Vect — Vect” commutes with products. For
1 € Z we get a part of the long exact sequence

() — (s, " T () — B (M)

Note that the products in the above are actually finite. The kernel of H'(b) in the
category of abelian groups is lim,, H'(M,,) = 0. So, H'T'(M) is the cokernel of H*(b) in
Vect”. We claim that H'(b) is surjective in Vect”. Indeed, it suffices to show that for
any N < 0 the map Hg:Nfl H!(M,) — ngN H!(M,,) is surjective. This is easy. [

By this lemma, QCoh(S)~ — lim, QCoh(S"S)~ is fully faithful. It remain to
show it is essentially surjective. This follows from Corollary below. Namely,
given (F,) € lim, QCoh(="S), for any N, the sequence 72~ (i,),J, stabilizes, so
727N (lim,, (3, )« F,, identifies with 727N (4,,).F,, for m large enough.
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In turn, if L € A —mod~ then to calculate 72V (L ® 4 727" A) we may replace L by
72¢L for ¢ small enough. Yuchen Fu also suggests here a reference to ([19], Prop. 4.6).

10.2.17. The following is due to Dima. Let S = Spec A € Sch®//, ... EN M_4 EN My

is a sequence in A — mod indexed by Z.g. Let M = lim M;. Let N € Z and M' =

lim,, 72N M,, taken in Vect. Then M — M’ induces an isomorphism 7>~ M = >N M.
Indeed, we have a fibre sequence in Vect

M—>HMn—>HMn
n n

—id
Here each projection [[,, M,, — M,, is the composition [[, M, — Mp,—1 x Mp, f—;
M,,. Now apply Section [4.0.15|to the latter fibre sequence.

Corollary 10.2.18. Let S = Spec A € Sch* ', Let ...M,_1 — M, — ... — My be a
diagram in (A —mod) indexed by Z<y. Let M = lim,, M,, in A—mod. Assume that for
any N > 0 the diagram ... = 72" NM,_1 — 72"NM,, — ... = 727N M, stabilizes.
Let My be the limit in Vect of the latter diagram, that is, My = 7=~ M, for n small
enough. We have a natural map

TZ_N_IM. — TZ_NM.

Passing to the limit overn € Zqg, we get a map MN+1 — Mpy. Then TE*NMNH = My
canonically. So, M, is an object of limy Vect==" = Vect. We denote the correspond-
ing object of Vect by M = limy My. The natural maps M — My are compatible with
transition maps My, — My, hence a map M — M in Vect. The latter map is an
isomorphism.

10.2.19. For (ch. 1.3,3.7). If Y € Stk is perfect then Oy is compact in Ind(QCoh(Y)P¢"/),
because Oy € QCoh(Y)?P*"/ and (HTT, 5.3.5.5), the compact generation of QCoh(Y")
also follows from (HTT, 5.3.5.5).

10.2.20. Let f : X — Y be a morphism in Sch with X,Y quasi-compact. Then for
F € QCoh™, f.F € QCoh™. Indeed, we may assume Y affine. Then make induction
on the number of affine open subschemes U; which cover X. If X is affine then f, :
QCoh(X) — QCoh(Y) is exact, so this is true. Induction step: assume X = Uy UUs be
open covering with Uy affine. Assume one may cover U; by n open affine subschemes,
then one may cover Uy = Uy NUs also by n open affine subschemes. For F' € QCoh(X)
we get an exact triangle F' — (j1)«F1 @ (j2)«F2 — (Ji2)«Fi2 as in my Section
We know that fi(ji)«Fi, f«(j12)«F12 € QCoh(Y)™, so the same holds for f,F, and
we actually get an estimation of the cohomological amplitude of f,. In particular,
f« : QCoh(X) — QCoh(Y) is right t-exact up to a finite shift.

10.2.21. Let M be a connected reductive group, recall that QCoh(B(M)) is rigid. For
q : Speck — B(M) consider the dual pair ¢* : QCoh(B(M)) = Vect : g, in DGCateont-
Being rigid, Vect and QCoh(B(M)) are equipped with canonical self-dualities. Under
this duality the dual of ¢* : QCoh(B(M)) — Vect is g..

Proof This is the projection formula for ¢,. Namely, for V' € Vect, F' € QCoh(B(M))
one has Homqcoons(an) (€ F ® ¢ V) = Homyecs (e, V @ ¢*F).
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10.3. Ind-coherent sheaves. For (ch. II.1, 1.1). Recall that Sch,; is the category of
quasi-compact schemes such that for n > 0, S*Z is locally if finite type as a prestack
(so, S"Z admits a Zariski atlas consisting of affine schemes in S”Schslc{f by [14], 1.2,
3.5.3).

If X € Schyy then for F' € QCoh(X )™ the property of being coherent means that
for any open affine subscheme S = Spec A C X, F |5 is a H’(A4)-module of finite type.
If X € Schy s then Coh(X) admits finite colimits, so Ind Coh(X) is presentable.

In Lm. 1.1.3 an assumption is missing: X is quasi-compact.

10.3.1. In (HA, 7.2.2.10) there is the following definition useful for derived algebraic
geometry. Let S = Spec A € Sch®/, M € A —mod. Then M is a flat A-module iff
HO(M) is a flat H°(A)-module in the usual sense, and for any n € Z the natural map
H"(A) @po(a) HO(M) — H™(M) is an isomorphism. (In particular, M € A —mod=?).
Let S = Spec A € Sch*/, M € A—mod=C. In (HA, 7.2.2.4) Lurie defines the notion
for M to be projective. It has several equivalent reformulations in (HA, 7.2.2.6). A free
A-module is an A-module of the form @;cr A, where I is a set. Then by (HA, 7.2.2.7),
M is projective iff M is a direct summand of a free A-module in A — mod=C. Since

H" : Vect — Vect” commutes with direct sums, we see that a projective A-module is
flat (HA, 7.2.2.14).

10.3.2. In (HA, 7.2.4.1) Lurie introduces a notion of a perfect A-module different from
the one in [14]. Namely, let S = Spec A € Sch®/. He defines (A — mod)P*"/ as the
smallest stable subcategory of A — mod containing A and closed under retracts. Then
(HA, 7.2.4.2) shows that (A —mod)¢ = (A —mod)P*"/ | so this definition coincides with
that of ([14], ch. 1.2, 3.6.1). In addition, Ind((A — mod)®) = A —mod by (HA, 7.2.4.2).

(HA, 7.2.4.5) says in partocular: let S = Spec A € Sch®/, M € (A—mod)P"/. Then
M is upper-bounded, and for any n € Z, H"(M) is finitely-presented as HO(A)—module.

This implies that if S € S"Sch(}{f for some n then (A —mod)P"/ C Coh(S). Indeed,
by Lurie’s definition, a perfect A-module M is a retract of some M € A — mod, where
M is a finite extension of objects of the form A[i], i € Z. Since A is bounded, M is also
bounded. By the above, H'(M) is a finitely generated H°(A)-module.

This implies the fact used in ([14], ch. II.1, 1.1.7): let X € Schys; be eventually
coconnective then QCoh(X)?P"f € Coh(X) (recall that X is quasi-compact).

in Lm. 1.1.7 the categories QCoh(X)Pe"f Coh(X) admit finite colimits, and the
inclusion QCoh(X )" C Coh(X) preserves finite colimits, so is right exact. Thus, by
(HTT, 5.3.5.13), the induced functor Ind(QCoh(X)P¢"f) — Ind(Coh(X)) admits a right
adjoint given by sending f : Coh(X)? — Spc to the composition (QCoh(X)rer/)or —
Coh(X)°P ER Spc. The latter functor coincides with the ind-extension of the inclusion
Coh(X) C Ind(QCoh(X)Perf).

Remark: let C' be small admitting finite colimits, C C C’ & Ind(C) be a full
subcategories. Then the inclusion C' C C” preserves finite colimits by (HTT, 5.3.5.14),
and the ind-extension Ind(C') — Ind(C") of the inclusion C' C C” admits a right adjoint
g : Ind(C") — Ind(C). Moreover, the composition ¢’ — Ind(C”) % Ind(C) identifies
with o by (HT'T, 5.3.5.13).
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Remark: for any Y € PreStk, QCoh(Y)Pe"/ admits finite colimits, to see this use
(ch. 1.3, 3.6.4) and the fact that for Y € Sch®’f, QCoh(Y)?*"f = QCoh(Y)°.

10.3.3.  Proof of (ch. IL1, Lm. 1.2.4), here Cy € DGCat™°n=m?l Let C' = Ind(Cp).
Recall that C is stable by (HA, 1.1.3.6), presentable, because Cj admits finite colimits.
It also get a Vect action by passing to colimits, so C' € DGCateon:. The continuous
extension Ind(C5?) — C of the inclusion C5° — C is fully faithful by (HTT, 5.3.5.11).
Since C’OSO C Cp is closed under finite colimits, Ind(C’OSO) is presentable by (HTT,
5.5.1.1). To see that there is a unique t-structure on C with C<0 = Ind(COSO) it remains
to show, by (HA, 1.4.4.11), that C=? C C is closed under extensions and colimits. The
inclusions C’OSO C Cp C Ind(Cp) preserve finite colimits (by HTT, 5.3.5.14). So, by
(HTT, 5.5.1.9), C=? C C preserves colimits. However, it is not evident that C=° c C
is stable under extensions.

We argue instead as follows. Set C>? = Ind(C5"). Note that C5° admits finite
colimits, because Cy does and 70 : C — C>? preserves colimits. So, C>? is presentable.
We have C=°[1] ¢ C=0. Indeed, if z € C=C is written as colim;e; x; with I filtered,
T; € CDSO then colim; z;[1] = x[1] € C=Y also. If y € C>° write y = colim;e; y; in P(Co)
with y; € C5%. The natural map colim;(y;[—1]) — Qy in P(Cp) is an isomorphism by
(HTT, 5.3.3.3). Note that Ind(C5°) C Ind(Cy) C P(Cp) are full subcategories. So,
(C>N[—1] c C>° For x € C write = colim;es z; in C with x; € Cy and I filtered.
For each i, we have the fibre sequence 7<%; — z; — 7>%; in Cy. Passing to the
colimit over i € I, we get a fibre sequence y — & — z with y € C=0, z € C>0.

Let now y € C=0 2 € C>0. Let us show that Mapq(y, 2z) = *. Write y — colim;c; y;
with y; € C=Y we see that we may and do assume y € COSO. Write z = colimjcy 2; in
C with z; € C5° and J filtered. Since y € C¢ by (HTT, 5.3.5.5), we get

Map(y, z) = colim; Map, (y,25) = *,

because Mape, (v, ;) — *. By (HA, 1.2.1.1), this is a t-structure on C. The inclusion
Ind(C3%) — Ind(Cp) preserves filtered colimits by construction. Lm. 1.2.4 is proved.

10.3.4. Proof of (ch. II.1, Lm. 1.2.5) is given in ([13], Pp. 1.2.4).

10.3.5. For (ch. IL1, 1.2.10). Let X € Schyys. First, X is a perfect prestack, so
Ind(QCoh(X)P"f) = QCoh(X) by (ch. 1.3, 3.7.4).

The QCoh(X )P/ -action on QCoh(X) preserves the full subcategory Coh(X). Since
X is quasi-compact, the question is local so we may assume X = Spec A, in which
case QCoh(X)Pef is given by (HA, 7.2.4.1). First, for any n € Z, the action of Ox[n]
preserves it. If now F € QCoh(X)?*"/ is a finite extension of objects of the form O x[n]
then the same by induction. Finally, if F” is a direct summand of F' then it remains to
prove the following. Let F € Coh(X) be written as F1 & Fo = F in QCoh(X). Then
F1 € Coh(X). Indeed, if M € (A—mod)? is a finite type module over A = H(X) then
a direct summand of M is also a finite A-module, because A is a finite type k-algebra.

10.3.6. For (ch. II.1, 2.1.2), they use (ch. 1.3, 2.3.2) in the proof.
For 2.3.1: If f : X — Y is a map in Schgys then f, : QCoh(X) — QCoh(Y) is a
morphism of QCoh(Y')-modules by (ch. 1.1, 9.3.6).



COMMENTS TO: D. GAITSGORY, N. ROZENBLYUM [14] 249

10.3.7. For 2.2.4. For the definition of DGCat’,,,. For an object C € DGCatl,,,
when they say that C is ”compactly generated by objects from CT”, it is meant that
there is a full subcategory Co C C°N C™T such that Cy generates C in the sense of (ch.

L1, 5.4.1).

10.3.8. For 3.1.2: if f: X — Y is a map in Sch,p; let M € QCoh(Y)™ with coherent
cohomologies. Then f*M € QCoh(X)™ also has coherent cohomologies. Indeed, since
f* sends QCoh(Y)=" to QCoh(X)=", we may assume M bounded from below. Hence,
it suffices to treat the case when M € Coh(Y)Y. The problem is local, assume X,Y
affine, let A — B be the corresponding map in CAlg(Vect="). Then M is a finite
type H°(A)-module. As in mentionned in (HA, after 7.2.4.7), there is a resolution

.=~ P 1 = Py — M — 0, where each P, is a free A-module of finite rank. So,
M ®4 B will be represented by a complex ... P_1 ®4 B — Py ®4 B consisting of free
B-modules of finite type. Thus, each cohomology of M ®4 B will be a finite type
H°(B)-module.

10.3.9. For 3.1.4: the class of eventually coconnective morphsms in Schgy; is stable
under base change. In [I3] this is 3.6.3, 3.6.8.

10.3.10. For 3.3.1. Let f : X — Y be eventually coconnective map in Schy ;. By (3.5)
they mean the functor sending G € QCoh(X), F' € IndCoh(Y) to G ® fndCob+ o,

10.3.11. For 3.3.2, it appears as ([13], 4.4.2). First, QCoh(X) ® IndCoh(Y") is com-
pactly generated by objects of the form F X G with F € QCoh(X)?*"f, G € Coh(Y') by
(ch. 1.1, 7.4.2). We used the fact that QCoh(X) is perfect (ch. 1.3, 3.7.4). Further, the
right adjoint to QCoh(X)®IndCoh(Y") — QCoh(X)®qcon(y)y ndCoh(Y') is continuous
by (ch. I.1, 8.7.2), because QCoh(Y) is rigid. So, for F € QCoh(X)Pe"f,G € Coh(Y),
F ® G is compact in QCoh(X) ®qcon(yy IndCoh(Y). by (ch. I.1, 8.7.2). Such compact
objects generate the latter category by (ch. 1.1, 8.2.6 and 8.7.4). Then continue as in
([13], 4.4.2).

10.3.12. For 3.3.4. They apply their general remark about D; and F; to the diagram

QCoh(X) ®qcon(y) IndCoh(Y) % IndCoh(X)
’\ f*®id /]\ fIndCoh,*
IndCoh(Y)

with T being (3.5). Clearly, f* ® id here has a right adjoint f, ® id, where f, :
QCoh(X) — QCoh(Y) is the direct image for QCoh.

10.3.13.  For 3.3.9. The fact that f.(Ex) € QCoh(Y) is upper-bounded follows from
my Section Their f,.(€x) € QCoh(Y)? is of bounded tor dimension in the sense
that there is N such that for any M € QCoh(Y)"Y, M ® f.(€x) € QCoh(Y) is placed
in degrees > N. This follows from M ® f.(Ex) = f«(M ®Ex), as we may assume € x is
bounded, finite extension of objects of the form O x [i] (maybe after Zariski localization).
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10.3.14. For 4.1.1. If X € Sch,ys, and X% C X is an open embedding then X° €
Schgfi. To see that X 0'is quasi-compact, we may assume X classical, and moreover
affine. If the complement to XY is given by the ideal (f1,..., f,) C A with Spec A = X
then U; Spec Ay, = X 0 is a finite covering by affine open subschemes.

10.3.15. For 4.2.2. If X € Sch, U; C X open affine subschemes with U; UU,; = X, for
F € QCoh(X) one has the fibre sequence described in Remark of my Section (10.2.3
they used this at the end of the proof.

10.3.16. For 4.2.4: IndCoh(X)2% C IndCoh(X) is closed under limits, and fIndceh jg
left t-exact.

10.3.17. For 5.1.2. If f : X — Y is a closed immersion in Sch,s; and Y € Sch®f then
X is also affine, because “ X is affine (by ch. 1.2, 3.2.7).

10.3.18. For 5.1.8. If f : X — Y is a morphism in Schy; then f4h : IndCoh(X) —
IndCoh(Y) is right t-exact up to a finite shift. Indeed, this is true for f, : QCoh(X) —
QCoh(Y), see my Section Recall that IndCoh(X)=" = {F € IndCoh(X) |
Ux(F) € QCoh(X)<"}. Using (ch. II.1, 2.1.2), we are done.

If fIndCoh gends IndCoh(X )<Y to IndCoh(Y)<" for any m then f* sends IndCoh(Y")=°
to IndCoh(X)="".

10.3.19. For 5.1.10. Let Y = Speck[t]/(t?). Then Y is not smooth, but is eventually
coconnective. So, Uy : IndCoh(Y) — QCoh(Y') is not an equivalence, andQCoh(Y")
is a colocalization of IndCoh(Y"). So, there is F' € IndCoh(Y') with Wy (F') = 0. Note
that Oy does not lie in QCoh(Y)Pe"7.

10.3.20. If X € Schyy; then IndCoh(X)¥ = Ind(Coh(X)Y) by (HTT, 5.3.5.6), we may
also see it as a localization of IndCoh(X)<0.

For the proof of 6.1.3. The formula IndCoh(X)g = Coh(X)g that they wrote is
wrong. I think they meant IndCoh(X)QZ9 = Ind(Coh(X)g). Indeed, if F' € IndCoh(X)QZQ,
write F' = colim;e; F; in IndCoh(X) with F; € Coh(X)Y. We want to show that we
may assume that jCN*F — 0 for all i. Let K = Ker(Ox — j+Op). Then we get
F= colim; (X ® F;) = colim; 72%(X ® F}) in IndCoh(X). Moreover, each X @ F; €
Coh(X)=0, hence 72%(X ® F;) € Coh(X)Y. Since jMICh*(K @ F;) = 0, we are done.

10.3.21.  For 6.1.5. I think that for X € Sch,; and the closed immersion 4 : dx X

the composition IndCoh(%X) %% IndCoh(X) - IndCoh(¢X) is not the identity.

Consider the example X = Spec A, where A = k[n] with degn = —2. Then “X =
Spec k, what is i'k? We have a fibre sequence A[2] - A — k in QCoh(X). For n < 0
it yields a fibre sequence

MapA—mod(kv k[n]) - MapVect(k’ k[n]) - MapVect(k[2]7 k[”])

in Spc. For n = 0,1 this gives Map 4_,,,4(k, k[n]) = Dold — Kan(k[n]). For n > 2 we
get a fibre sequence Map 4_,,,4(k, k[n]) — Dold — Kan(k[n]) — Dold — Kan(k[n — 2])
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in Spc. In particular, for n > 2 the natural map

MaplndCoh(ClX)(ka kin]) = Mapcoh(ch)(k, kn]) — Mapcoh(X) (isk,ixk[n]) =
Mapryacon(etx) (K, 199" (k[n]))

is not an isomorphism in general. It also shows that the assumption n > k in (ch. IL.1,
Lm. 6.4.4) is necessary.

10.3.22. For 6.2.2. One is tempted to consider a general situation here. Let C; N

c L Cy be full embeddings in DGCateon:. Assume we have adjoint pairs of functors
j*:C S Cy:jeand i : Cp S C i in DGCateont, and C; = {c € C | j*¢ = 0}.
Assume moreover that i'j, = 0. Then for any F € C' we get a fibre sequence

Wi'F = F = j,j*F

in C. Indeed, let K be the fibre of F — j,j*F. Then K € C; and #'K — 'F is an
isomorphism, so K = i)i'F.

This is what happens for C' = IndCoh(X), with a closed embedding ¢ : Z — X and
C1 = IndCoh(X)z, Cp = IndCoh(U) for the complement j: U — X of Z in X.

For 6.2.4. Let f : X — Y be a proper surjective morphism of classical (quasi-compact
separated) schemes, where Y is smooth. To see that the essential image f. of QCoh(X)
generates QCoh(Y) Dima suggests to show that f, QCoh(X)P*"/ generates QCoh(Y")
under direct summands and cones.

10.3.23. For 6.3.4. In the proof the isomorphism in the first displayed diagram is that
of (ch. I.1, 7.4.2).

For 6.4.3. Let F1,F5 € Coh(“X)”. Let i, : “X — ="X be the natural closed
immersion. By colim, Mapgop(<n x)(F1, F2[k]) then mean

colimy, Mapgon < x) (i)« F1, (i)« F2[F])

taken in Spc. This sequence stabilizes by their Lemma 6.4.4 with value

Mapcon(x)((i0)+F1, (i0)+ F2[k])

They implicitly use (HA, 1.1.4.6) saying that 1 — Cat! admits filtered colimits, and
the inclusion 1 — Cat™* — 1 — Cat preserves filtered colimits. The description of the
mapping spaces in filtered colimits in 1 — Cat given in [46] is also used. They also
implicitly use (ch. 1.1, 7.2.7), which is written with a mistake, see my comments about
this in Section [4.2.8]

For 6.4.4. For F; € QCoh(5"X)=C, (4,).J; is a direct summand in (4, )«i% (i, ). F1 in
QCoh(X) by my Section

10.3.24. Assume we work with the classical prestacks (no derived algebraic geometry).
Let Y; € PreStk for ¢ = 1,2. Recall that the inner hom Hom(Y7, Y2) in PreStk is given
by Map(S, Hom(Y7,Y2) = Map(S x Y1,Ys) for S € Sch®/. If Yy € PreStk;; and
Yy € Sch®/ then Hom(Y7,Ys) € PreStk; s also.
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Indeed, let S € Sch®f be written as S = lim;ejor S; with S; € Sch® T and I filtered.
Then S x Y; = limjezor S; X Y7 in Sch®™/| so

Map(S, Hom(Y1,Y2)) = colim;e; Map(S; x Y1,Y2) = colim;e; Map(S;, Hom(Y71, Y2)).

11. CORRESPONDENCES

I am using the version on Dennis’ homepage with old numbering of sections.

11.1. For ([I4], ch. V.1, 1.1.2). We explain the second claim. After the base change
by ¢3 — ¢, we get the diagram

v
c — ¢ —

du du” )
no vl —/

c — ¢ —
1 I 1

a
Cg — Cyp — C3
with ¢ = ¢1 X, 2, and it suffices to show that v is in adm. Here all the four small
squares are cartesian, and a,b € adm. So, u,v” € adm, hence v"u € adm as required.

11.1.1. For 1.1.1. The assumptions imply that all the isomorphisms are in adm,
because for a: =y in C, a~! : y — x is the base change of id by a.

12. APPENDICES TO LURIE, HTT

12.0.1.  About model categories. Explanation of the proof of ([27], A.2.3.1). Recall
that cofibration (resp., trivial cofibrations) are preserved by push-outs. So, Bl B —
C(A)Uaua (BUB) is a cofibration. The object C'(A) L4 B that he considers is defined

by the diagram C(A) «+ AU A Loagd B, here [ means the left map. First, pick

a morphism A’ : C(4A) — X such that the composition 4 U A — C(A) mX s
(¢'i, f). This gives the unique map hy : C(A) Uy B — X given as (h/,¢'). The map
k:C(A)Ua B — C(B) that he uses is defined as the composition

C(A)Us B C(A) Uaua (BUB) — C(B),

where a comes from the left map [ : B — B LU B. The map a is a cofibration, it is
obtained as a push-out of the cofibration C'(A) — C(A) U4 B. So, k is a cofibration.

Let us show that « is a w.eq. It suffices to show that x composed with C(B) — B is
a week equivalence. For this in turn it suffices to show that the map B — C(A) U4 B
is a w.eq. But the latter map is the push-out of the trivial cofibration A — C'(A) (the
left one) via the map i : A — B. The map A — C(A) is a cofibration, as it is the
composition of cofibrations A — AU A — C(A); it is also a weak equivalence, because
the composition A — C(A) — A is the identity.

Now we get h : C(B) — X extending hg, because the trivial cofibration x has the
left lifting property with respect to the fibration X — .

12.0.2. In a model category a composition of cofibrations (resp., of fibrations) is a
cofibration (resp., fibration).
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13. APPENDICE: (00,2)-CATEGORIES

13.1. By ([28], 4.2.1.35), one may define an (0o, 2)-category as a (0o, 1)-category en-
riched over 1 — Cat. Here 1 — Cat is viewed as monoidal (oo, 1)-category with its
cartesian symmetric monoidal structure. Here the notion of being enriched is that of
(28], 4.2.1.28).

A different approach via complete Segal spaces is taken in ([14], A.1).

For example, if E; is a group object in Spc then this is a Segal space, and 7y(E1) is
a group in Sets. Then FEj is a complete Segal space iff £ = *.

13.1.1. There is a notion of a strict 2-category. Namely, look at the usual category Cat,
whose objects are categories, and whose morphisms are functors. This is a monoidal
category with respect to the cartesian product. Now a strict 2-category is a Cat-enriched
category in the sense of (HTT, A.1.4). Each strict 2-category should give rise to an
object of 2 — Cat. The axioms of a strict 2-category given nlab are also clear.

The basic example of a strict 2-category is say Cat. Its objects are usual cate-
gories. For A, B € Cat, Mape, (A, B) is the usual category of functors Fun(A4, B),
and the composition is the composition of functors. So, the 2-morphisms are natural
transformations of functors. We keep as in [I4] the symbol Map to denote for any
(00, 2)-category € the (oo, 1)-category Mape(c1, c2) defined in (ch. 10, 2.2.7).

Another example, if A is an abelian group, B?(A) € Spc can be seen as a strict
2-category: one object *; one 1-morphism id : * — %, and 2-morphisms id — id are A.
Both vertical and horizontal compositions are given by the product in A.

If X € 7<2Spc then for any z,2’ € X, Mapy (z,2") € 7<1 Spc is a usual groupoid.
However, we can not think of this X as a strict 2-category, because for x,2’,2"” € X
the composition Map y (z/,2”) x Mapx (z,2") — Mapy (x, ") is associative only up to
coherent homotopy!

13.1.2. There is a mistake in (Ch. 10, Sect. 1.2.2), it is already corrected in the
version of May 4, 2020. Namely, let £ : A°’? — Spc be a functor such that for any
n,m, En+m:>/En X Eo Em The map a : 7T0(E1 X Eo El) — 7'(’0(E1) XWO(EO) 7T0(E1) is
a surjection. But in general the product map m : mo(Ey X g, E1) — m(E1) does not
factor through a.

For example, suppose E comes from the Cech nerve corresponding to a map B(H) —
B(G), where H — G is a homomorphism of descrete groups. Then mo(E7) is the
set of diagonal G-orbits on G/H x G/H, my(E2) is the set of diagonal G-orbits on
G/H x G/H x G/H. Say the product map E; X g, E1 — Ej is given by the projection
on (1, 3)-factors. In this case we don’t have in general a map m as above.

For example, take G = S, and H = S,,_;. Then G/H = {1,...,n}. If n > 3 then m
does not exist.

Let comp : E3 — Ej be the map corresponding to [1] 03 [2]. The good definition:
an object B € Ej lies in the full subspace E{"° if there is (3,7) € E1 xg, F1 — E»
such that comp(8, ) lies in the essential image of § : Ey — F1, and there is (7', 3) €
Ey x g, Ey such that comp(v/, ) lies in the essential image of ¢ : Ey — Ej. The latter
maps corresponds to [1] — [0]. This is essentially the definition from ([32], 1.1.6).
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13.1.3. The functor Seq, : 1 — Cat — Funct(A°,Spc) from ([14], A.1, 1.3.1) is rigo-
tously defined as follows. It is easier to define a functor 1 — Cat x A°? — Spc, it sends
(€, [n]) to Funct([n], C)SP¢ = Map,_e,([n], €). It makes sense because there is a functor
1 — Cat x1 — Cat®? — 1 — Cat, (€, D) — Funct(D, C).

The existence of the left adjoint to Sege follows from my Lemma [2.2.40

13.1.4. For (A.1, Sect. 1.4.5): let f : C — D be a map in 1 — Cat such that
Seq; (C) — Seq, (D) is fully faithful. Then Seqy(C) — Seqq(D) is also fully faithful, as
these are retracts of Seq; (cf. my Section [2.2.17). So, inside Seq; (D) we get the full
subcategories Seq; (C) and Seq (D) Xseq, (D) xSeqq(D) S€do(C) X Seqy(C). Thus, C — D
is 1-fully faithful by (A.1, 1.4.3) and CSP¢ — DSP¢ is fully faithful. So, f is 1-replete.

13.1.5. For ([14], ch. 12, Sect. 2.1). If E, € Funct(A, 1 — Cat) satisfies Conditions 0,1
then (E,)SP¢ € Funct(A, Spe) is the functor sending [n] to B} x g, . .. x E;P¢. Indeed,
1 — Cat — Spe, (X — X5P°) preserves limits.

13.1.6. For ([14], ch. 12, Sect. 2.2.5). The functor 1 — Cat — 1 — Cat”" " sending €
to its homotopy category %" does not commutes with fibred products. For example,
if A is an abelian group in Sets then the diagram is cartesian

B2%(A) — BZ%*(A) x B%(A)
T T
B(4A) — *
Indeed, for any A € 1 — Cat with finite limits and final object * € A, for x € A we
get T Xuxq * X % — * X% in A. Besides, QB%(A) = B(A). Applying ordn to the above
square, we get B(A)°"™ = B(A), it is different from

2 d
* = (B7(A)" ™" X(B2(A)xB2(A))oran  *

For any spaces .S;, the natural map 7o (51 X s,.93) — 70(51) X0 (52) M0 (93) is surjective.
For any diagram A — B « € in 1 — Cat the functor (A xg €)™ — AT x 14, COTIN
is essentially surjective.

The construction of left adjoint functor to 2— Cat?~°"" — 2—Qat. Given E € 2—Cat
the corresponding object E2~2"4" should be an element of Funct( A%, 1 —Cat ") given
by

[n] = E}ordn X gi-ordn - .. X El-ordn

Let E € 2—Cat. They claim that the natural functor E"" — E§rn x Egrdn - - - X Egrdn
is an equivalence. It is clearly essentially surjective. For n = 2 let us try to check this
is fully faithful. Let r,l : Fy — FEy be the end and the source of the map. Any
object of Fj is isomorphic to an object of the form (z1,z2,r(z1) q [(x2)). Indeed, if
(x1,x9, : 7(x1) = l(x2)) € Ej then replace z9 by d(«) o x9, where d : Ey — Fj is the
corresponding map. Let x,y € E5, whose images under the two maps r,l : £ — Ej
are the same, z, yo respectively. So, x = (z1,x2,1id : 7(x1) = [(x2) = z¢) and similarly
for y. Recall that Mapg, (z,y) = Mapg, (x1,%1) X Map 5, (z0,y0) MADPE, (x2,y2). We want
to show that the induces map

(19) 7o Mapp, (,y) — mo Mapg, (%1, Y1) Xy Map g, (w0,50) 70 MaDg, (22, 2)
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is bijective, only the injectivity is nontrivial. For any diagram of spaces S1 — Sa + 53
and a point (s1,s3) € S; x S3 whose image in So x So is (s2, s2), one has a cartesian
square

Q(SQ, 82) /;; {81, 53}

\ l

Sl X Sy S3 — Sl X Sg
and triviality of the fibre of mo(S1 X, S3) — m(S1) X mo(S3) over (s1, s3) is equivalent
to the surjectivity of the map 71(S1,$1) X m1(S3,s3) — m1(S2, s2).

Since Ejy is a space, arguing as above we may assume in addition that xg = yg, and we

are analyzing the fibre of over (a1, az), where the images of o; in o Map g, (20, 7o)
are the identities. Then we have to show that

(20) mi(Mapg, (z1,1), a1) X 11 (Mapg, (22, y2), a2) = 71 (Mapg, (o, yo), id)

is surjective. Why this is so?

Remark 13.1.7. 1) Let X 5 Y <« Z be a diagram in Spc, assume for any x €
X, Mapy(z,x) — Mapy(a(x),a(x)) is essentially surjective, that is, m(z,X) —
mi(a(x),Y) is surjective. Then mo(X Xy Z) — 7o(X) X0 (v) T0(Z) is an isomorphism.
2) Let X 5 Y < Z be a diagram in 1 — Cat. Assume for any map B : x1 — xo in X
the natural map 7 (8, Map x (z1, 2)) — 71 (a(B), Mapy (%1, T2)) is surjective. Then the
natural functor o : (X xy Z)°TI — XOrdn x40 27 s an equivalence.

Proof. 1) is easy. 2) Our « is always essentially surjective. Let us check that it is fully
faithful. Let (z1,21),(z2,22) € X Xy Z, write Z1,Z2 for the images of z1,z9 in Y.
Recall that

Mapy ., z((21,21), (22, 22)) = Mapx (71, 72) X\Mapy (31,70) Mapz(21, 22)

We have to show that the natural map

mo(Mapx (21, 22) X Mapy (z1,22) Mapz (21, 22)) — o Mapx (21, £2) Xy Mapy (21,72) T Mapz (21, 22)

is a bijection. To this end, it suffices to show that for any f € Mapy(x1,x2) the
natural map Q(8, Mapy (x1,x2)) = Q(a(8), Mapy (Z1, Z2)) is essentially surjective, that
is, m (8, Mapx (21, %2)) = m1(a(B), Mapy (71, T2)) is surjective. O

13.1.8. For ch. 10. Let S € 2 — Cat and F = Seq,(S). Recall their notation for
¢, € Eyg, Mapg(c,d) = E1 Xgyxpg, {¢,¢}. If we think of S as enriched over 1 — Cat
then this is the corresponding mapping category. For c,c,c” € Ey the composition
Mapg(c, ¢”) x Mapg(c, ') — Mapg(c, ') is defined as

(21) Mapg(cl, C”) X Maps(c, Cl) = (E1 X Ey El) X EoxEgxEg {C, C,, CH} ﬁ)
Ei X gox {.¢"} 5 Mapg(c, )

where m is the product map.

Let now a,b € Eg,f : a — b be a map in F;. For strict 2-categories there is a
notion of left whiskering, see (nlab, strict 2-categories). Its analog in this setting is
as follows. Let d : Ey — E; be the map corresponding to [1] — [0], we think of it
as sending b to the identity map id : b — b in S. The map d yields the natural map



256 COMMENTS TO: D. GAITSGORY, N. ROZENBLYUM [14]

Map g, (b,b) = Q(b, Ep) — * X g, * = Mapygap, 5,5 (d(b), d(D))), where the maps * — E;
are both given by d(b). Now yields a morphism

MapMapS(b,b) (d(b)v d(b))) X MapMapS(a,b)(fv f) - MapMapS(a,b)(fa f)’

because the composition d(f) o f = f. Now ristrict the above diagram to get a map
Map g, (b,b) x {ids} — MapPniapg(a,p) (f; f)- Similarly, one gets a right whiskering.
More generally, we define the horizontal composition of 2-morphisms as follows.

Given a,b,c € Ey and maps f,g € F1, which we visualize as maps a i> b2 cin S, the
diagram yields by passing to the mapping spaces at the pair (g, f)

MapMapS(b,c) (ga g) X MapMapS(a,b) (fa f) — MapMapS(a,c) (gf7 gf)

13.1.9. For (ch. 10, 2.2.5). Let E, € 2—Cat. If E; is ordinary then Ej is also ordinary,
because Ej is a retract of Ey (and 7<; Spc C Spc is stable under retracts).

Let E, € 2—Cat. Consider (E,)°"", that is, the object of Fun( A%, 1—Cat,.q,) send-
ing [n] to E279". They claim that it is a category object, that is, lies in Cat(1 — Catyran ).
We check that the natural functor E§™dn — E¢rin x Egrdn E¢rdn is an equivalence. For
n > 2 the argument should be similar.

By Remark it suffices to show that for any map 8 : x — ' in E; the natural
map Q(8,Mapg, (x,2")) — Q(r(8), Mapg, (r(x),r(z))) is essentially surjective. Here
r . 1 — Ey is the projection on the target of a 1-morphism. Not clear, though I
proposed some approach in an email to Sam (19/09/2018).

I would expect the following proof: define a functor 2 — Cat — 2 — Ca sending
E, to the simplicial category [n] — FE, := E{™" X pgrdn « oo X perdn E§rdn . One
checks that the biggest simplicial subgroupoid is constant, so this is indeed an object
of 2 — Cat2~°""  Then given a map E, — G, in 2 — Cat with G, € 2 — GatQ_Ord", it
factors naturally through a morphism E, — G, in 2 — Cat?>~°"¥"_ There remains to
check the induced map

MapZ—@atQ*m'd" (E? G) — Mapi(fat(Ev G)

is an isomorphism. It is clearly essentially surjective. Why is it fully faithful?

t2—ordn

13.1.10. Given C € 1 — Cat, let ¢ be the composition A x;_ey (1 — Cat)/C — A LS

1 — Cat, where h is the natural map. Is it true that colim qg— €7
AXI*(‘?at(lfea‘t)/e

Jacob says this is true, and is equivalent to the fact that 1 — Cat fully embeds into
complete Segal spaces ([14], ch. A.1, 1.3.4). More precisely, consider the full embedding
a:A— 1—Cat. Thenid: 1—Cat — 1 — Cat is the left Kan extension of a along itself.

Let X be the usual category, whose objects are pair [n] € A,m € [n]. A map from
([n1],m1) to ([n2],m2) is a map f : [na] — [n1] in A such that m; < f(mg). Then
X — A ([n],m) — [n] is a cartesian fibration corresponding to the natural functor
A — 1 — Cat.

13.1.11. Definition of an (00, 2)-category from [32]. In ([32], 1.1.7) he means: for K €
1—Cat, A/g = A Xj_eay 1 — Cat/g. Let now € €1—Cat, X : A — Cin 1 — Cat.
For K € 1 — Cat his notation X (K) means the value of the RKE of X along A%? —
(1 — Cat)??. He defines Cat(C) C Fun(A,C) as the full subcategory of ‘category
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objects’. It is important that Grpd(Spc) C Cat(Spc) admits a right adjoint that he
denotes X, — X in ([32], 1.1.9). In Dennis notations we get X7" = Xi"¢r*. Lurie
proves that for any € € 1 — Cat admitting finite limits the inclusion Grpd(€) < Cat(C)
admits a right adjoint denoted Xo — XJ” ([32], 1.1.14). This right adjoint in general
remains misterious for me.

Let X C Y be a distributor ([32], 1.2.1). Then X is an accessible localization of Y (so,
X is a strongly reflective subcategory of Y). Consider the cartesian square in 1 — Cat

SSny — eat(%)

1 {
X — Y

Since Cat(Y) C Fun(A Y) is stable under limits, the above functor Cat(Y) — Y
preserves limits and admits a left adjoint, say f : Y — Cat(Y). Now (HTT, 5.5.4.17)
shows that SSycy is a strongly reflective subcategory of Cat(Y).

The adjoint pair i : X <= Y : R’, where ¢ is the natural inclusion, yields an adjoint
pair Fun(A° X) = Fun(A°,Y) given by composing with ¢ and R. These functors
restrict to functors, say L : Cat(X) — Cat(Y) and R : Cat(Y) — Cat(X) which form an
adjoint pair L : Cat(X) = Cat(Y) : R.

13.1.12. In Lurie ([32], Def. 1.2.1, (4)) there is a misprint: his functor x should
preserve colimits, not limits!!!

About the definition of a complete Segal space from ([32], 1.2.10). For € € 1 — Cat
let Grd(€) be the category of groupoids in €. If X C Y is a distributor then, in
the notations of loc.cit., the right adjoint Gp to full embedding Grd(X) C SSxcy
sends E € Cat(Y) with Yo € X to Gp(F) = R(E)~. Namely, we have the diagram
Grd(X) C Cat(X) C SSxcy. Here R : Cat(Y) — Cat(X) is the right adjoint to the
inclusion Cat(X) — Cat(Y). Here Cat(X) — Grd(X), E — E~ is the right adjoint to
Grd(X) — Cat(X) defined in ([32], 1.1.14).

Finally, main definition is ([32], 1.2.10): let X C Y be a distributor. A Segal space
object Yo € SSxcy is complete if Gp(Y,) € Grd(X) is constant. Let C'SSxycy C SSxcy
for the full subcategory of complete Segal space objects.

Recall the adjoint pair Grpd(X) = X, Fe —| Fe |, * € X goes to the constant
groupoid with value z ([32], 1.1.4). Here X is an accessible localization of Grpd(X).
Again from (HTT, 5.5.4.17) we see that C'SSyy is an accessible localization of SSycy.
All of the inclusions

CSSng C SSny C eat(H) C Fun(AOp,y)

preserve limits. So, C'SSxcy is presentable by ([32], 1.2.11).
In ([14], ch. 10, Sect. 2.1.1) the Condition 2 is badly explained. It should be by
definition replaced by Condition 2’.

13.1.13. The inclusions Cat(Spc) — Fun(A°, Spc) and Grd(Spc) — Fun(A°, Spc)
preserve filtered colimits (by HTT, 5.3.3.3). The diagonal map Spc — Fun(A°, Spc)
preserves all colimits, so the inclusion Spc — Grd(Spc) preserves filtered colimits. By
[46], the inclusion C'S'S — Fun(A°, Spc) commutes with filtered colimits. Evaluating
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at [0], we derive that 1 —Cat — Spc, € = C5P¢ = Map; _e, (%, C) commutes with filtered
colimits. In other words, * is a compact object of 1 — Cat.

By ([32], Remark 1.2.11), C'SSS is an accessible localization of Fun(A°, Spc). The
localization functor Fun(A° Spc) — C'SS preserves compact objects.

Corollary 13.1.14. 1) if I € 1 — Cat is filtered (small), I — 1 — Cat,i — C;, C =
colimer C; in 1 — Cat then any object of C comes from some object of C;.

2) The inclusion Spc — 1 — Cat preserves compact objects, because its right adjoint is
continuous (HTT, 5.5.7.2).

13.1.15. 1In ([14], ch. 10, 2.1.6) there is a mistake. The involution S — S?>~°7 on
2 — Cat is interwined under Seg, with the involution of Fun(A°, 1 — Cat) coming from
1—Cat — 1 — Cat,C' — C°P,

For ([14], ch. 10, 2.2.5). The inclusion 1 — Cat®" ¥ C 1 — @at preserves limits. For
this reason the inclusion 1 — Cat?>~°™" <5 2 — @at preserves limits. I don’t know why
this functor is accessible, but it should be, so it has a left adjoint.

13.1.16. In any C € 1—Cat assume given a map Y — Z in C, one gets an isomorphism
(Y XY) Xzxz Z=Y xzY. If for example, we are given in addition amap a: Y’ =Y
then this gives a cartesian square

axa

Y'xY'" = Y xY

T T
Y’XZY, — Y xzY

13.1.17. an application of universality of colimits. Let C be a presentable category,
in which colimits are universal. Let E : A’ — € be a simplicial object, z =| E |€ C
be its colimit. We may consider the augmented simplicial object E : Aﬂ’rp — €, which
is the corresponding colimit diagram. It may be seen as a map E : A — @/x.
Given a morphism f : y — x in €, we get the simplicial object E’ obtained as the
composition A”” — C/z — C/y, where the second functor is the pull-back along f.
Then colim E' = y, that is, the identity map y — y. This kind of ideas is used in ([32],
1.2.22).

13.1.18. Consider the subcategory A; C A with all objects and morphisms which are
injective maps [n] — [m] ([27], 6.5.3.6). Let X C Ag be the subcategory with all the
objects, and where maps from [n]| to [m] are injective maps h : [n] — [m] such that
h(0) = 0. Let Y C A be the subcategory with all objects, and maps in Y are surjective
maps f : [n] — [m]. For f : [n] — [m] surjective in A define the map h : [m] — [n]
by the property that h(i) is the smallest element of f~1(i). Then h is injective, and
h(0) = 0. The above construction defines an equivalence ¥ — XP.

Remark: by (HTT, 6.5.3.7), A% — A is cofinal. So, any totalization can be
rewritten as the limit over Aj.

13.1.19. If € — X is a map in 1 — Cat, X € Spc, let X’ — X be an effective
epimorphism in Spe. If X’ xx € € Spc then € € Spe. This is explained in ([32], 1.3.1
and 1.2.22).
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If X C Y is a distributor, and F € Grpd(Y/X) with X € X. Let X’ — X be
an effective epimorphism in X. To check that the groupoid object F is constant, it
suffices to check that for any [n] — [m] the induced map E,,, xx X' — E, xx X’ is an
equivalence. This is used in ([32], 1.3.1).

13.1.20. The oco-category 1 — Cat is presentable. This follows for example from ([32],
1.3.2) and the fact that 1 — Cat can be realized as complete Segal spaces in Spc.

13.1.21.  1In ([32], proof of 1.2.4) there are several misprints: (a) is equivalent to e c
Cl, and (c) is equivalent to €° = C!.

13.1.22. The colimits in 1 — Cat are not universal. The example of Toen: consider

X = [1] with the map f : X — [2], 0 — 0,1 — 2. The colimit of [1] & [0] 4 1]

in 1 — Cat is [2] according to our axioms. If the colimits were universal, the induced
diagram
X X[Q] [1] — X
T T
X X[g] [O] - X X[Q] [1]

would be cocartesian. This is not the case, as X Xy [1] = [0] and X X9 [0] = 0. We

use that the inclusion 1 — Cat " < 1 — Cat preserves limits. If € is the usual category
with two objects {0, 1} and no nontrivial morphisms then this is the coproduct [0] LI [0]
in 1 — Cat, which is different from [1].

13.1.23. For ([14], Appendix A.1, 2.3.1). For S € 2—Cat the map Seq; (S) — Seqy(S) x
Seq(S) keeping the source and the target of an arrow is a cartesian and cocartesian
fibration, as the base is a space. So, given a map S — T in 2 — Cat the map

Seq; (S) — Seq; (T) X Seqq(T)xSeqq(T) Seqy(S) x Seqq(S)

is a morphism of cartesian fibrations over Seqy(S) x Seqy(S). By Lemma [2.2.100
this map is an isomorphism iff it becomes an isomorphism after passing to any fibre
* — Seqq(S) x Seqy(S).

13.1.24. Let f: X — [n] x [1] be a cartesian fibration, let Xy, X; be its fibres over
0,1 € [1]. The base changed maps fo : Xo — [n], f1 : X1 — [n] are cartesian fibrations,
and X — [1] is cartesian. We used that the composition of cartesian fibrations is a
cartesian fibration. The diagram commutes

X, Mox,
I 7
[n],

where h is the functor obtained from the cartesian fibration X — [1] via strengthening.
Indeed, let 21 € X1 be over (j,1) € [n] x [1]. Then (j,0) — (j,1) in [n] x [1] is cartesian
over 0 — 1 in [1]. Let 9 — x; in X be cartesian arrow over (7,0) — (j,1). Then
xo — x1 is cartesian over 0 — 1 by ([27], 2.4.1.3). So, h(z1) = xo. Note also that
Xo — [n] factors through X" — [n].
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We claim that h sends a cartesian arrow over any map i — j in [n] to a cartesian
arrow. Indeed, this follows from ([27], 2.4.1.7). Another way to see this is to apply
(32], 1.4.14).

The map f can be seen as a morphism in (Cart/[1])sirict, namely, f sends an arrow
of X cartesian over 0 — 1 in [1] to an arrow in [n] X [1] cartesian over 0 — 1. So, f
defines a map in Funct([1]°?,1 — Cat) from h to id : [n] — [n].

13.1.25.  For the swapping procedure ([14], Ch. 12, 2.1.1). Let I,J € 1—Cat, f: C —
I x J lie in Cart — coCartr j. For any i@ € I let f; : C; — J be the fibre of f. Then
fi is a cocartesian fibration. Indeed, given any arrow a : j; — jo in J and ¢; € C over
(7,71), let & : ¢1 — ¢2 be a cocartesian arrow in C' over a. Then f(«) is a cocartesian
arrow in I x J over a, so f(a) is isomorphic to (i,51) — (i,j2). Thus, a can be seen
as an arrow in C;. By ([27], 2.4.1.3), a is f-cocartesian. So, by (HTT, 2.4.1.3(2)),
f is cocartesian for the morphism C; — J. This shows that Cart — coCartr ; is a
subcategory of Funct(I°, coCart/J). ([14], Ch. 12, Pp. 2.1.3) seems very useful!

Comment for the proof of ([I4], Ch. 12, Pp. 2.1.3): let C,I,J € 1 — Cat, assume
given a map I°? — coCart/J. Let f : € — I x J be the corresponding morphism in
(Cart/I)siricc.- How to prove that € — J is a cocartesian fibration? We know that
C; — J is a cocartesian fibration for any ¢ € I. Let o : j1 — j2 be amap in J, ¢; € C
over ji. Write ¢ for the image of ¢; in I. Let & : ¢; — co be a cocartesian arrow in C;
over . We want to show that & is a cocartesian arrow in € over . Let cg € € over
(i',j3) € I x J. We want to check that

(22) Mape(c2, c3) — Mape(c1, €3) XMap, (j1.j3) Map (2, 73)

is an isomorphism. Since f(@) is cocartesian over .J, by ([27], 2.4.1.3), our claim is
equivalent to the fact that & if f-cocartesian. We have a projection Mape(ci,c3) —

Mapy(i,i'), and (22)) is a map over Map;(i,4’). Pickamap f:i — i in I, let 3:¢ — c3
be a cartesian arrow in € over 5. Passing to the fibres over g in , we get a map

Mape(ca, c3)p — Mape(c1, €3) 5 XMap, (j1,53) Maps(j2, js)

It suffices to show that the latter map is an isomorphism. We have canonically
Mapeg(c2, c3)g — Mape, (c2,¢) and Mapg(ci,c3)g — Mapg, (c1,¢). The corresponding
map

Mape, (c2,¢) = Mape, (c1,€) XnMap, (j1,j5) Map,; (2, j3)
is an isomorphism, because & is cocartesian for €¢; — J. We are done.

Corollary 13.1.26 (Nick, 14mars2018). Let J € 1 —Cat, G: C — D 4 J be a map
in coCart/J, so C,D € coCart/J. Assume for each j € J the functor G : C; — D;
admits a left adjoint. Write DV — J° for the cartesian fibration corresponding to
q:J — 1— Cat. Then there is a map F : DV — CV in Cart/J° such that for any
jeJ, Fj:D;— Cj is left adjoint to Gj.

Proof. Let [1]°? — coCart/J be given by G. It is given by some X — [1] x J in Cart —
coCart(yx s, 50 X1 = C,Xo = D. Let F: J — Cart/[1] be the map obtained from G

by the swapping procedure. Since each G; admits a left adjoint, F : J — biCart/[1].
Composing F with biCart/[1] — coCart/[1], we get a morphism J — coCart/[1]. The
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swapping procedure applied to the latter one gives a functor [1] — Cart/JP, which is
a diagram DV Eov— gor, O
Proposition 13.1.27. For C,D € 1—Cat one has canonically Cart/[1]°P X1_cat x1—eat
{€, D} = Funct(C, D).

Proof. (Nick in his email of Sept. 14, 2016). Set M = Cart/[1]°P X1_cat x1—cat {C, D}.
By strengthening, M5P° =5 Funct(€, D)SP¢. Now it suffices to establish an equivalence
Funct([n], M)SP¢ = Funct([n], Funct(C, D))P° natural in n. By ([I4], ch. 12, 2.1.3)
we have Map; e, ([n], Cart/[1]%) =5 (Cart — coCartjjjorxn))*P¢. So, Funct([n], M)5P°
identifies with the space of diagrams

c b

‘e
[1]”

in (Cart — coCart[l]opX[n])Spc together with identifications of the fibres of the latter

diagram over 0 with

(1) [n]

C x [n] Ly [n]

{ v
{0}
and over 1 with
Dx[n] B [n
N

!
{1}
Since f sends [1]°P-cartesian arrows of C to [1]°P-cartesian arrows, this is the space
(Funct, (€ x [n], D x [n]))%P¢ = Funct(C x [n], D)5P¢ = Funct([n], Funct(C, D))%¢. O
Lemma 13.1.28. For n,m > 0 the diagram is cartesian
Cart/[n] + Cart/[n+m]
(23) ! !
Cart/[0] <«  Cart/[m]
Here the maps are given by the pull-back functors.

Proof. Since the coproduct [n] <= [0] RN [m] is [n+m] in 1—Cat, the diagram is cartesian
in 1 — Cat
Funct([n],1 — Cat) <« Funct([n + m],1 — Cat)
| .
Funct([0],1 — Cat) <  Funct([m],1 — Cat)

So, the diagram obtained from by applying e — e5P¢ is cartesian. It suffices to show
now that the diagram of spaces obtained from by applying e — Funct([1], ®)5P¢ is
also cartesian. By ([I4], ch. 12, 2.1.3) we have to show that the diagram is cartesian
Map;_eq;([n], coCart/[1]) < Map;_eq([n +m], coCart/[1])
\ |
Map; e, ([0, coCart/[1]) < Map;_eq([m], coCart/[1])

This is clear. O
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13.1.29. For the definition of 1-Cat from ([14], ch. A.1,2.4.1). Recall that Seq,(1-Cat)
denotes the 1-full subcategory of Cart/[n|°?, where we keep all objects and restrict 1-
morphisms to functors that induce an equivalence over any i € [n|. In particular,
Seqo(1-Cat) = (1 — Cat)Spe.

Lemma 13.1.30. For n,m > 0 the Segal condition for Seq holds, that is, the natural
map
Seqnim(1-Cat) = Seq, (1-Cat) X geq0(1-Cat) Seqm (1-Cat)

s an equivalence.

Proof. We have seen already that is cartesian. If C; = Cs 2 Cs is a diagram in
1 — Cat, and C] C C; is a 1-full subcategory, where we keep all objects, assume that
a(C]) C C3,b(C5) C €. Then we get the 1-full subcategory of C7 x¢y C3 C C1 x¢, Cs
by Remark O

13.1.31. IfS € 2— Cat given by E, € Fun(A%, 1 — Cat) then (E5P)P =5 ESPC for any
n, and as far as [ understand, this identification can be made functorial in [n] € A. So,
(S?—op)l-Cat = g1-Cat " Gee (ch. 10, Remark 2.4.5).

Note that for z,y € S, Mapg2-op(z,y) = (Mapg(z,y))°. So, we should have

coCart /1) X1_eat x1—eat 1€, D} = Fun(C, D)

Does this explain the normalization of strengthening?

13.1.32. For (ch. 10, 2.5.4). If S € 2 — Cat, S5°¢ denotes Seqy(S) € Spc. This is
(Slfeat)Spc'

For @ € 1—Cat, S € 2—Cat we get Mapy_ e, (C,S) = Map;_ e (€, S7%) = Fun(C, St—%at)Spe,
Now for S, T € 2 — Cat we get * x S— S in 2 — Cat, so

Map2f(3at (S’ T) — Maplfeat(*’ FUD(S, T)l—@&t) ’—\;Fun(S, T)Spc

13.1.33. Question If S € 2 — Cat and E, = Seq,(S) € Fun(A°?,Spc) then it should
be true that for 2,y € S, Mapgoran (,y) = Maps(z,y)°"%", why this is so? In other
words, why the natural functor (Ey X g, g, {z,y})"%" — B¢ X ggrdn  grdn {z,y} is
an equivalence?

13.1.34. Let X — [1]°? be a Cartesian fibration such that Xy, X; are ordinary cat-
egories. Then X is ordinary. Indeed, for zg € Xo,21 € X1, Mapy(xg,z1) = 0. Let
Z1 — xo be a cartesian arrow in X over 1 — 0. Then Mapy (x1,%1) = Mapx (x1, xo).
So, X is ordinary.

Recall that 1 — Catyrqn, C 1— Cat is the full subcategory of ordinary categories. From
Proposition we see that if €,D € 1 — Catypg, then Fun(C, D) € 1 — Catyrgn.
Note also that 1 — Caty.q, C 1 — Cat preserves limits. Now we may define the functor
Ee: A? — 1—Cat by requiring that E, is the 1-full subcategory of Cart o spanned
by those maps X — [n]°? such that X is ordinary, and those morphisms which induce
equivalences over each i € [n]. This is a category object in 1—Cat, Ey = (1—Catpqy ) P°
is a space, and E5P° S Fun([n], 1—Catorgn ) PC. So, (E4)'~ %" identifies with 1— Catoygp.
Thus, we have lifted 1 — Catyq, to an (00, 2)-category such that for €, D € 1 — Catyran,
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Map;(C, D)= Fun(C, D). We have the natural map E, — 1-Cat in 2—Cat. According
to (ch. 10, 2.3.1), it is fully faithful functor of (oo, 2)-categories.

13.1.35. The (0, 2)-category of modules. Let A be a monoidal (oo, 1)-category. Con-
sider A — mod € 1 — Cat defined in (ch. 1, 3.4.4). Its objects are A-module categories
M. We want to lift A — mod to an (c0,2)-category in a way analogous to (ch. 1,
Sect. 8.3.1). So, we define a simplicial object Fo : A”? — 1 — Cat by E,, be the full
subcategory of A — mod x1_eat Seq,,(1-Cat) given by the following condition. First,
the map Seq,,(1-Cat) — 1 — Cat here sends (X — [n]°?) to X, and A —mod — 1 — Cat
is the forgetfull functor. An object ((A,M) € A —mod, M — [n|P) lies in E, if the
diagram commutes
AxM 8 M
N
[n]°P,
and act : A x M — M is a map in (Cartpop )strict- Note that A x M — [n]? is a
cartesian fibration.

Question. It is not clear even that E, is indeed a functor. If [m] — [n] is a map in
A, given (A, M — [n]?) € E, why the natural map A X M,)op[m]° extends naturally
to a structure of a A-module on M, jop[m]?? Why E, is a category object?

We get Eo = (A—mod)SP¢. Hopefully we have B3P =5 Map, e, ([n], A—mod), I can
not check this. It is also not clear what is Ey X g, g, {Mo, M1}, I expect it is naturally
equivalent to LinFun 4 (My, M;) defined in my Section

13.1.36. For (ch. 10, 2.3). If F : S — T be a functor between (o0, 2)-categories and
Eo = Seq,(S) € Fun(A,1 — Cat) then E; — Ey x Ej is a bicartesian fibration. So,

Se(h (S) - Seql (T) X Seqq(T) xSeqq (T) (SGQO(S) X Ser(S))

is a map of bicartesian fibrations over Seqy(S) x Seqy(S). Now by my Lemma [2.2.100
the above map is an isomorphism iff for any s,s’ € S

Mapg(s, s') — Mapr(F(s), F(s))

is an equivalence.

13.1.37. Given S, T € 2 — Cat, what is Fun(S, T)'~®#? This is not clear in general. If
S € 1 — Cat then we get Fun(S, T)! =% = Fun(S, T!~%at).

Remark 13.1.38. If I — 2 — Cat is a morphism in 1 — Cat, i — Ty, let T = lim;e; T
and t,t" € T. Then Mapr(t,t') = lim;e; Mapr, (t;,t;) in 1 — Cat, where t;,t; € T; are
the images of t,t'. Indeed, limits commute with limits.

13.1.39. For ([14], A.1, 2.6.2). Let i : Fun(A°, 1 — Cat) — 1 — Cat be the evaluation
at [0]. Let g: 1 — Cat = Fun(x,1 — Cat) — Fun(A°,1 — Cat) be the composition with
AP — x. Define X as the preimage of Spc C 1—Cat under 7. So, X C Fun(A°,1—Cat)
is a full subcategory. The adjoint pair § : 1 — Cat = Fun(A®, 1 — Cat) : i restricts to an
adjoint pair ¢ : Spc = X : 7. So, the functor i is corepresentable by g(x). Here g(x) is
the constant functor A°? — 1 — Cat with value *. Now 2—Cat C X is a full subcategory
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and g(x) € 2 — Cat. So, the composition 2 — Cat — X BN Spc is also corepresentable by
g(x). This establishes the isomorphism [m, 0]~ = * from their Sect. 2.6.2.
By definition, for F € 2 — Cat C Fun(A,1 — Cat),

Map27€at([m7 n}N, E) — Maplfeat([m]a En)

Note that g(x) is a final object of 2 — Cat.

The inclusion 1 — Cat — 2 — Cat admits a left adjoint also. Indeed, the inclusion
Fun(A°,Spc) — Fun(A,1 — Cat) is a right adjoint, hence preserves limits. The full
embeddings 1 — Cat C Fun(A°,Spc) and 2 — Cat C Fun(A, 1 — Cat) are stable under
limits, so the full subcategory 1 — Cat C 2 — Cat is stable under limits.

Let us show that [0,n]~ = [n] in 2 — Cat. For E € 2 — Cat one has

Mapy_eai([n], E) = Map; e, ([1], El_eat) - Eyszpcv
we are done.

13.1.40. For A.1, 2.6.3. Their explicit description of [m,n]™ produces a strict 2-
category, I think (see my Section [13.1.1)). Do I understand correctly that each strict

2-category yields an object of 2 — Cat?~°rdn?

13.1.41. For ([14], A.1, 3.1.3). If S, T : A°? — 1 — Cat are objects of 2 — Cat then a
non-unital left-lax functor from S to T can be seen as also as a morphism Xg — X1 over
A sending a cartesian arrow over an inert map to a cartesian arrow. Here X7 — A
is the cartesian fibration attached to T. The definition is compatible with a similar
notion for monoidal co-categories.

For 3.1.6. If S, T : A°’? — 1 — Cat are objects of 2 — Cat, let F' : S --» T be a non-
unital right-lax functor. Let Xg — A be the corresponding cocartesian fibration,
same for T, so F' : Xg — Xp. Write Xg,, for the fibre of Xg over [n]. We get
Xs1—Si. By the assumption, if b : a9 — a1 is a map in S, that is, b € S; with
target a; € Sg and source ag € Sy then F(b) : F(ag) — F(ay) is an element of Ty

with target F'(a;) and source F'(ag). Given a diagram ag L A S, let (b,¢)
be the corresponding element of Sy —=S; xs, S1. Let a : [1] — [2] be the unique
active map in A. Let a : (b,c) — cob be a cocartesian arrow in Xg over a. Then
F(a): (F(b),F(c)) — F(cob) is not necessarily cocartesian over A. However, there is a
cocartesian arrow o’ : ((F(b), F(c)) = F(c)o F(b) in Xt over . So, we get a morphism
F(c)o F(b) — F(cob) in Ty. It is actually a morphism in Mapy(F'(agp), F'(a2)).

If F' is moreover a right-lax functor (not just right-lax non-unital) then for any s € S,
F sends id : s — s to F'(id) = id : F(s) — F(s). Besides, if as above ag 9 a5 ay are
maps in S then the above 2-morphism F(c¢)o F(id) — F(coid) in T is an isomorphism,
because F(id) = id. In the above I think if ay Yar Sayisa diagram in S such that
b or ¢ is an isomorphism then the above 2-morphism F(c) o F(b) — F(cob) in T is an
isomorphism.

What a right-lax functor F' does to 2-morphisms in S? Assume given as above a
diagram ag LA a1 5 ag, b :ag — a1 in S, and a morphism 8 : 8 — bin S;. So, B is a
2-morphism in S. Denote by 5 : cob’ — cob the 2-morphism in S given by composing
with ¢. First, F' produces a 2-moprhism F(8) : F(b') — F(b) in T. That is, F(j) is a
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1-morphism in T;. Denote by F(f) : F(c) o F(V') = F(c) o F(b) the 2-morphism in T
obtained from F'(f) by composing with F'(¢). Then the diagram commutes in T
Fe)o F(V) — Flcob)
L F@) A
Fe)oF(b) — Flcab)
This is a diagram of 2-morphisms in T. (The situation here is similar to the case
of right-lax functors between monoidal categories). This is the functoriality of the

canonical 2-morphisms, which are the horizontal arrows in the above diagram.
Similarly for composing on the right of F(b) instead of on the left.

13.1.42. For ([14], A.1, 3.2.1). There
Map,_eq (S1 ®S2...® Sy, T) C Map, e, az(S1 X ... x Sy, T)

is a full subspace. Here 2— Cat!®® means right-lax of course. The fact that their functor
2 — Cat — Spc, T — Mapy_e,:(S1®S2...® S, T) commutes with limits follows from
my Remark

If T, X,S € 2—Cat, there is a canonical map (T x X)®S — T'x (X ®S) in 2— Cat. It
comes from the canonical functor (T'x X)® S — T x X x S, which yields a projection
(T x X)® S — T. The second projection (T'x X)® S — X ® S comes from the
morphism 7' x X — X by applying the functor e ® S. I think for V' € 2 — Cat the
corresponding map

Map?—@at(T X (X ® S)v V) — Map?—@at((T X X) ® S7 V)
is a full subspace, I have not checked that.

13.1.43. For 3.2.4. Given S; € 2 — Cat, they claim an isomorphism (S, ® ... ®
81)2_"”38%_017 ®...®S> P This is equivalent to a different definition of the Gray
product.

Namely, the strengthening for cartesian fibrations gives an embedding Fun(A, 1 —
Cat) < Cart, 5. Denote by 2 — Cat!ler Cart; 4 the 1-full subcategory, whose objects
are the same as those of 2 — Cat, and we restrict 1-morphisms to those which send
cartesian arrows over idle maps to cartesian edges. We have a diagram

2 — Catygs — 2 — Catyjaq
(24) T T
2—o0;
2 — Cat SHS_) ' 2— eat?

where horizontal arrows are equivalences, and vertical arrows are canonical inclusions.
Then Mapy_e,(S1 ®...®S,, T) can be equivalently defined as the full subspace of
Map,_ o, ttax (S1 x ... xS, T) consisting of those F' --+: S1 x ... x S,, = T such that

e for each i and §; € [];,;S;, the composite lax functor S; 5 [[;S; --» T is
strict;
e for any morphism f = (f;) : (s1,...,82) = (81,...,8,) in [[;S; and 1 <k <

r n
n — 1 the 2-morphism in T corresponding to splitting f as a composition

(id,,..,id,f_k>+1,...,fn) ( ,) (f1,...,fﬂ>id,...,id) (S,

/
(814 -y SkySkt1s---»Sn) 815+ s 8k Shy1s---15n

1r---) S

/
n

)
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is an isomorphism.

I think this is correct.

13.1.44. For 3.2.7. I think in the definition of Funct(S, T);ight—ias there is a misprint,
in the RHS one should replace 2 — Cat,;gpi—1qz by 2 — Cat.
If Se2—Cat then *®S—S—=S® % in 2 — Cat. So, for S, T € 2 — Cat one gets

(Fun(S, T) 1a2)>P¢ = Mapy_ea (S, T) = Fun(S, T)5P¢

If a is a 1-morphism in Fun(S, T),;,,; written symbolically o : Fy --» Fb, this is a
right-lax functor [1] x S — T with some additional properties. For s € S it gives an
element a(s) : F1(s) — Fy(s) in Mapy(Fi(s), Fa(s)) as the image under « of the arrow
(0,s) — (1,s). Now given a 1-morphism ¢ : sp — s; in S, one gets the decompositions
(0, 50) — (1,50) 5% (1, 51) and (0, 50) 37 (0, s1) — (1, 1) in [1] x S. The 2-morphism
in T corresponding to the first decomposition is an isomoprhism. Therefore, the 2-
morphism in T corresponding to the second decomposition becomes a 2-morphism

a(s1) o Fi(¢) — Fa(e) o a(so)

Definition of S; ® Ss is not symmetric under permuting S;. Probably, the monoidal
structure on 2 — Cat given by the Gray product is not symmetric.

Given S, T € 2 — Cat, the object Fun(S, T)e 1102 € 2 — Cat is defined by the isomor-
phism in Spc

Map2—€at (X> FllIl(S, T)left—lam) — M&pg_eat (S ® X, T)

functorial in X € 2 — Cat. For this definition if « is a 1-morphism in Fun(S, T)eft—1qa
written symbolically as a : F} --» Fy, for s € S we get a(s) : Fi(s) — Fa(s) in
Mapy(Fi(s), Fa(s)) as the image under the right-lax functor S x [1] — T of the arrow
(s,0) — (s,1). Further, if ¢ : sg — s1 is as above, we get instead a 2-morphism

Fy(¢) o a(sg) — afs1) o F1(9)
in T. This is a correct definition.

Lemma 13.1.45. 1) If S= colim;c; S; in 2 — Cat for a diagram I — 2 — Cat, i — S;
and T € 2 — Cat then

Fun(S, T)jjge — lim Fun(S;, T) ez
iclop

2) If S= colimey S; in 1 — Cat for a diagram I — 1 — Cat, i — S;, T € 2 — Cat then
the same holds.

Proof. 1) Follows for the fact that e ® e preserves colimits in each variable ([I4], ch.
A1, Pp. 3.2.6).
2) 1 — Cat — 2 — Cat preserves colimits. O
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13.1.46. For ([I4], A.1, 3.2.8). The inclusion 2 — Cat < 2 — Cat, 4, preserves limits.
This is why for S; € 2 — Cat, right-lax functors S; x ... X S,;, = S ® ... ® Sy,
Sni+1 X oo X Spid4ne = Syl ® ... ® Spy4n, vield a functor S; x ... X Sy 4p, —
(S1®...®Sp,) X (Sn41® ... ® Sy, 4ny)-

The dispalyed formula in just before Remark 3.4.2 is probably correct. Here Sqy, ,,(E) =
Map; _ea([m], En) for E € 2 — Cat. It says that

~ aS S
Mapy_eq ([1,1], ) = S57¢ x §P¢ X (s5pe ¢ s5pe) Map; _eat([1],S1),

however, it is not really justified! From the above formula one gets a cocartesian square
in 2 — Cat
0,2]70[0,2]Y —  [1,1]

T T
[0,1]7ujo,1~” — [1,1]7,

where the left vertical arrow come from the active map [1] — [2], and the low horizontal
arrow is taking the source and a target of an arrow in £y for ¥ € 2 — Cat.

On the picture at the end of their Sect. 2.6.2 they mean n horizontal arrows and m
vertical arrows (for each pair of consecutive points).

13.1.47. For ([14], A.1, 3.4.8), S € 2 — Cat. The isomorphism
[, 1] Upmjupm) (% U %) = [m, 1]
gives an isomorphism of spaces
Map; _eqt ([m], S1) = Maps_gaq([m, 1],S) X gSpe sSpe (So x So)

Here Mapy_e,:([m, 1],S) = Mapy_e,: ([m], Fun([1],S)42). Fix so,s1 € S and make
the base change in the above displayed formula by the map {sg, s1} — Sp X Sp using

Mapg(so, s1) = S1 XsyxS, {50, 51}

One gets

Map; e, ([m], Mapg(so, s1)) = Mapy_ea([m], Fun([1], S)riaz) Xgspe, gsoe {s0, 511 =
Mapy_ e, ([m], Fun([1], S)riaz Xsxs {50, 51}),

because Fun(x, S),jq; — S in 2 — Cat. Since this isomorphism is functorial in [m] € AP,
this gives
Mapg(so, 51) = (Fun([1],S)riaz Xsxs {50, s1})"' 7%

in 1 — Cat.
We check below that Fun([1],S),az Xsxs {0, s1} actually lies in 1 — Cat.

Remark 13.1.48. Given E € 2—Cat, one has E € 1—Cat iff the map Mapy_eq ([1,1]™, F) —
Mapy_eat ([0, 1]™, E) given by [0] A [1] (or by [0] N [1]) is an isomorphism in Spc.

Essentially, we are trying to check if for S € 2 — Cat the map Mapy_e,:([1,1,1],S) —
Mapy_ea: ([0, 1,1],S) is an equivalence, I think.



268 COMMENTS TO: D. GAITSGORY, N. ROZENBLYUM [14]

13.1.49. Let E € 2—Cat. We want to understand the space Mapy_e,.([1, 1]~ ®[1], E).
The category [1,1]™ has two objects 0, 1, 1-morphisms 1, f2 : 0 — 1 and a 2-morphism
u : B1 — B2. Denote the unique morhism 0 — 1 in [1] by . So, the category [1, 1]~ x [1]
has objects (i,7) with 0 <4, j <1, 1-morphisms given by squares

id,«

(0,00 % (0,1) (0,00 ¥ (0,1)
A Brid 4 B1,id d B2.id 4 B2,id
(1,0) ' (1,1) (1,0) % (1,1

and a 2-morphisms

(u,ido) : (,Bl,ido) — (52,id0) and (u, idl) : (,31,1(11) — (Bg,idl)
A map f € Mapy_e,:([1,1]™ ® [1], E) gives the corresponding diagrams

(e} «

€0 —  €ol €0 = el

(25) \Lbl \Lcl \ng \LCQ
o «

€10 att €11 €10 = €11

which are not commutative, but equipped with 2-morphisms vy : ciag — a1b; and
v9 1 carg — aby. In fact, vy is the natural 2-morphism f(f1,1d) o f(id, ) — f(S1, @),
and vy is the natural 2-morphism f(52,id) o f(id,a) — f(S2, ). Besides, we get 2-
morphisms f(u,idy) : f(B1,id1) — f(Be,id1) and f(u,ids) : f(B1,) — f(B2,«). The

diagram of 2-morphisms commutes
acg = f(Brid)o f(id,a) — f(fr,a) = aibs
N \l/ f(u,id1) \l/ f(u,ida’)\/ \l/ aiof(u,ido)
coyg  — f(ﬁQ,id) o f(id, Oé) — f(BQ, Oé) = a1bs
See my Section [T3.1.41]

To summarize, the space
Mapy_eq;([1,1]™ ® [1], E) = Mapy_eqq([1, 1], Fun([1}, E)riaz)

classifies pairs of noncommutative diagrams (25)) in E together with 2-morphisms vy, vz
in F as above and 2-morphisms b : by — ba, ¢ : ¢; — co such that the diagram commutes

oy B agb
(26) le 1o

[
Co(x —2> quz

Lemma 13.1.50. If E € 2 — Cat and ep,e; € E then Fun([1], E)jax XExE {€0,€1}
actually lies in 1 — Cat.

Proof. We check that any 2-morphism in Fun([1], E),ia. X Ex£{€0, €1} is actually an iso-
morphism. Let ag, a1 : g — €1 be 1-morphisms in F, so o, a1 € Fun([1], E)yiex XExE
{eo, e1}. Suppose we are given vy, vy : by — be, which are 2-morphisms in E. So, v; are
1-morphisms in Fun([1], E) 4z X ExE {€0, €1}. My Section gives a description of
2-morphisms in Fun([1], E),i4z, and hence also in Fun([1], E) 14z X pxg{€0, €1}. It shows
that a 2-morphism v; — vy in Fun([1], E)4e XExE {€0,€1} is given by the diagram
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, in_which epo = €10 = €g, o1 = €11 = €1, the maps b;, ¢; are the identities. More-
over, ¢, b must be the identities, because we made the base change by {eg,e1} — E X E.
The diagram implies our claim. O

13.1.51. For (A.1, 4.1.5). The involution 2 — Cat — 2 — Cat, T + T2~ preserves
1 — Cat, and induces on it a functor isomorphic to the identity functor.

For 4.1.6. The functor A% x A% "2 A% x A°P [m]’[n]—?[m’n] 2 — Cat is isomorphic

to the functor AP x A°P [m}’[n}'—_;[m’n] 2 — Cat 1&2_;017 2 — Cat.

13.1.52. For 4.2.1. For [n] € A the functor 2 — Cat — 1 — Cat, S + Seq®™(S) is

the functor S — (Fun([n], S),1az)'~%*. According to my Section [13.1.49) Fun([1],S) 10z
does not lie in 1 — Cat in general.

13.1.53. For (A.1, 4.2.4). The natural transformation Seq, — Seq¢*’ they mean comes
from the transformation Sqg’y — Sqee. It is given for E € 2 — Cat by a morphism

E, — (Fun([n], E)riae) =% in 1 — Cat functorial in E.

13.1.54. For (A.1, 4.3.7). It seems their definition of Seq)®" simply sends (S, C) to
the functor A% — 1 — Cat, [n] — (Fun([n], C)jaz)*~%". Is this true?

My understanding is that Seq?®" (S, C) is the object of 1 — Cat given by the com-
plete Segal space [m] — Sqh%"(S,C). So, Seqr’@" (S, C') should be a subcategory of
(Fun([n], S)yiae) '~ %, where we keep all objects, and impose some conditions on mor-
phisms. The natural transformation mentioned in (A.1, 4.4.2) are maps in 1 — Cat

S, + Seqt¥™(S,C) — (Fun([n], S)pee)

n

13.1.55. For (A.1,4.4.1). The functor 2—Cat — 2—Cat, T — Fun([n], T')iqx preserves
limits.

By definition, Seq®** : 2 — Cat — Fun(A°,1 — Cat) sends E to the functor [n] —
(Fun([n], B)riae) %", So, it preserves limits.

13.1.56. For (A.1, 4.4.1). Consider the adjoint pair £ : Fun(A° 1 — Cat) = 2 — Cat :
Seq,. I usually denote Sege, as the canonical inclusion F +— E. Let E € Fun(A°’, Spc)
then for any T' € 2 — Cat we get

MapQ—@at (S(E)v T) = Ma‘pFun(A(’p,l—Gat) (E’ T) = MapFun(A(’p,Spc) (E7 TSpC)

Here T~ TSP¢ is the right adjoint to the inclusion Fun( A, Spc) C Fun(A%,1— Cat).
In particular, the identity map £(E) — £(E) factors through £(E)%°, so £(F) €
1 — Cat. So, the restriction of £ gives a functor Fun(A, Spc) — 1 — Cat left adjoint
to the inclusion Seg, : 1 — Cat < Fun(A°, Spc).

The composition

2A0p gext
Fun(A% x A% Spc) "— Fun(A%,1— Cat) — 2 — Cat

is £59. Here £4” sends a functor fs e to the functor [n] — £(fen).
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13.1.57. For (A.1, 5.1.2). If E € Fun(A°,Spc) is a complete Segal space then the
degeneracy map Fy — FEj is a full subspace.
Given a double category, for 0 < 4,5 < 1 consider the map Fi1 — Epg given by

[0] x [0] 4 [1] x [1], this gives (i,7)-vertex of a diagram a € Ej;. Similarly, we get
arrows app — aoi, @po — aio and so on.

13.1.58. For (A.1, proof of Prop. 5.3.3). For [m], [n] € A one has a functorial isomor-
phism

ext

Seqm Seqn (1_Cat) = Mapl—(‘?at([m]7 Cart/[n]"p) - Mapl—@at([n]v COCCLTt/[m])

given by the swapping procedure (ch. 12, 2.1.3). This is why the bisimplicial space
Seq, Seqt™(1-Cat) is a complete Segal space along each row and column.
In their proof Sqq ,(1-Cat) is a double category. Indeed,

Map; et ([m], (Cart jjpjon ) strict) — Mapy _gqt(m] X [n], 1 — Cat)

is symmetric with respect to permuting m and n.
For any T' € 1 — Cat viewed as a 2-category one has

Map?—@at([ma n]? T) - Mapl—@at([m] X [TL], T)
This implies Sq, ,(1-Cat) = Sqe o(1 — Cat).

13.1.59. For (A.1, 6.1.1). We have Fun(A%, 1-Cat)>*° = Fun(A%, 1 — Cat)5P° canon-
ically. So, a full subcategory of Fun(A° 1 — Cat) gives rise to a full subcategory of
Fun(A°, 1-Cat).

One has Fun(A®,1-Cat)'~%"* = Fun(A°, 1 — Cat) canonically. Indeed, calculate
Maps_eat ([n], Fun(A, 1-Cat)) as a functor of [n] € AP.

Remark 13.1.60. IfS € 2 — Cat and T C S is a full subcategory let T C S be the
corresponding full subcategory. Then T ST naturally.

This is why 2-Cat!~®* =1 — Qat.

13.1.61. Given T, S,V € 2 — Cat, let us construct a canonical map in 2 — Cat
Fun(S, Fun(7,V))yiax — Fun(T, Fun(S, V),iaz)

Let X € 2 — Cat. In Section [13.1.42] we introduced a canonical map (T'x X)® S —
T x (X ®S) in 2 — Cat. It yields a morphism functorial in V' € 2 — Cat

(27) MaprCat (Xv FUD(S, Fun(T’ V))?"laa:) — MaprCat (T X (X ® S)a V) -
Map2f€at((T X X) ® Sv V) — MapZ*Gat(Xa FUH(T, FUD(S, V)’I‘lax))
It is also functorial in X, hence the desired map. It seems is a full subspace.
This is used in ([14], A.1, 6.1.3) I think. The other thing they use there is as follows.

If S €1—Cat,T € 2— Cat then Fun(S, T)'~* = Fun(S, T'=%), where in the RHS
the symbol Fun denotes the (oo, 1)-category of functors between objects of 1 — Cat.
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13.1.62. Sam says: a (00, 1)-category enriched over 1 — Cat is the same as a (o0, 2)-
category. This a rigorous statement in the sense of ([32], Th. 0.0.3).

Example of an application: if A is a symmetric monoidal (oo, 1)-category admitting
inner homs, and A — 1 — Cat is right-lax symmetric monoidal functor then A becomes
an object of 2 — Cat.

13.1.63. Nick says: let C € 1 — Cat, I — C'=%*% § — ¢; be a map in 1 — Cat with
¢ = colim; ¢; in C1~%%, Tt is not true in general that for d € C' the natural map

Map(c,d) — lim Mapg(c¢;, d)
ielop

is an isomorphism. For example, let A € Eo(Spc) be a Eg-algebra in Spc. There is the
corresponding object of 2 — Cat, say C' with one object ¢ € C, only one 1-morphism
id : ¢ — ¢, and with Map(id,id) = A, the mapping space in Mapg(c,c). We may
assume for example that the only invertible element in A is the identity. (For example,
take A to be a commutative monoid in Spc with this property). Then C'~%* = x, and
c is the initial object of C'~%, However, Map(c, c) is not the final object of 1 — Cat.

Note that if for a diagram I” — C1~%* given by i — ¢; with the image of the final
object of I” in C given by ¢ we have Mapq (¢, d) — lim;ec oo Mapg(ci, d) for any d € C
then I® — C1~% is a colimit diagram in C'1~%2¢,

Nick: a way to guarantee the above property is to ask that for each object x € C,
there exists an object [1] ® = such that

Mapci-eat ([1] @ ,y) = Map; _e,([1], Map¢(z,y))

in Spc and that the corresponding functor =%t — C1=Cat given by 2 — [1] ®
preserves colimits. This happens for example when C' is tensored and cotensored over
1 — Cat (cf. Def. 6.5 and 8.2 in [18§]).

14. CONVENTIONS

14.1. For (), € € 1 — Cat, we should have Funct((), €) = *. For X € Spc we should have
Mapg,. (0, X) = *.

If X € Spc is not empty then Mapg,.(X,0) = 0. This is used to show that a 0-
connective space X is the same as a non empty space. Indeed, a 0-connective space is
space X such that X — 1 induces an isomorphism Mapg,.(,y) — Mapg,.(X,y) for
any y € 7<—1 Spc. Such y is empty or *.

14.1.1. In the book [14], the conventions about the t-structures on a stable category
are different from those of [28]. Namely, [28] uses the homological indexing conventions,
and Dennis uses the cohomological ones. So, if (C=" C €) defines a t-structure on a
stable category € in the sense of [I4] then for example 7<q : € — =0 is the right adjoint
to the inclusion C=0 — €, and each = € € admits a fiber sequence 2/ — = — 2 with
2’ € C=Y 2" € €21, The conventions of Lurie ([2§], 1.2.1.1) are different.

For example, in ([I4], ch. 1.1, 6.2.8), Dennis defines the full subcategory Sptr=>? C
Sptr as the one spanned by objects K with Q°°(K)— . In Lurie’s notation this would
be Sptr<Y.
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Terminology for Dennis’ conventions: C=0 = connective objects, @29 = coconnective
objects. Eventually coconnective objects are €+ = U,,€2". Now €~ = U,,C=",
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