
1. Comments to Deformation of local systems and Eisestein series [3]

1.0.1. Let L be a Lie algebra, A = Sym(L∗[−1]) be a (super)-commutative k-algebra,
let Y = SpecA, let M be a A-module. Then we get a natural augmentation A → k.

According to introduction, L acts on M . Why it should also act on k
L
⊗A M?

1.0.2. For a Lie algebra L they call C•(L) = Sym(L[1]) the standard complex of L. In
which sense the universal enveloping algebra U(L) is Koszul dual of C•(L)? What is
U(L) in the case when L is a DG-Lie algebra?

1.0.3. We assume throughout this text that we work with Q̄`-sheaves.
Case of G = GL2. The exact sequence (2.1) in Sect. 2.4 roughly answers the

question how the perverse sheaf (id1,d2
0 )! IC on Bun

d1,d2

B decomposes into irreducibles in

the abelian category of perverse sheaves on Bun
d1,d2

B . For any d ≥ 0, the ∗-restriction
is

(id1,d2

d )∗ ICBunB
→̃ Q̄`[2m]� IC

for id1,d2

d : X(d) × Bund1+d,d2−d
B ↪→ Bun

d1,d2

B .

Let θ ∈ Λpos. Write BunB,≥θ for the image of the finite map Xθ × BunB → BunB.
Write α for the unique simple coroot of G.

Consider the general situation of a stack Y with a stratification Y0, Y1, Y2, . . . such
that Ȳm = ∪k≥mYk. Assume F is a perverse sheaf on Y , let jm : Ym ↪→ Y be the
inclusion. Assume j∗mF is placed in perverse degree −m. Assume the inclusion Ym ↪→
Ȳm is affine, so Fm := jm!j

∗
mF [−m] is perverse on Y for any m ≥ 0. The substack

Y≤m = ∪
k≤m

Yk ⊂ Y

is assumed open. Now apply the idea from ([7], 1.2.2.3). For k ≤ m let Y[k,m] =
∪k≤i≤m Yi, this is a closed substack in Y≤m. In the stable category of sheaves on Y we
get a filtered object, hence a Z-complex on Y in the sense of ([7], Def. 1.2.2.2). Write
F |Y[m−1,m]

for the ∗-restriction. We get an exact triangle (jm−1)!j
∗
m−1F → F |Y[m−1,m]

→
(jm)!j

∗
mF on Y[m−1,m], and extend it by zero to get an exact triangle on Y . It gives

a morphism Fm → Fm−1. As Lurie explains in ([7], 1.2.2.3), these morphisms form
complex

. . .→ F2 → F1 → F0

(that is, the square of the differential is zero). The claim is that the complex

. . .→ F2 → F1 → F0 → F

is then exact (in the abelian category of perverse sheaves).

1.0.4. About Koszul complex in Th.2.3. they use the following notion of a Koszul
complex. Let R be a commutative ring, V an R-module, δ : V → R a R-linear map.

Then we have the Koszul complex . . . ∧2 V
d2→ ∧1V

d1→ R, where d1 = δ, and the map
dr : ∧rV → ∧r−1V for r ≥ 2 is the composition

∧rV → ∧r−1V ⊗ V id⊗δ→ ∧r−1V
1
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Here to be precise I think ∧rV → ∧r−1V ⊗ V sends e1 ∧ . . . ∧ er to

r∑
i=1

(−1)i+1(e1 ∧ . . . ∧ êi ∧ . . . ∧ er)⊗ ei

It is understood here that ∧rV is interpreted as ∧r,!V ⊂ V ⊗r in the sense of ([4],
Section 5.1). This is found in (Stack project, Definition 15.26.1).

They apply this for the symmetric algebra R = SymW over k and V = W ⊗k R
with the natural map δ : V → R given by the product. Now if M is an R-module,

this Koszul complex for M becomes . . .→ (∧2W )⊗kM → (∧1W )⊗kM
∂1→M , where

∂1 is a part of the action map R ⊗k M → M . In their case moreover R is Z+-graded,
M is graded and the action preserves the gradings. They write in Th. 2.3 only the
corresponding complex in the degree (d1, d2).

In Th. 2.3 they use that the Q̄`-algebra R := SymW is regular, so the Koszul
complex for this algebra gives a resolution of Q̄` by free R-modules.

The Koszul resolution of Eis!(EŤ ) is . . . (∧2W ) ⊗ R ⊗R Eis!(EŤ ) → (∧1W ) ⊗ R ⊗R
Eis!(EŤ )

∂1→ Eis!(EŤ ).

1.0.5. The diagram at the end of Sect. 2.4 says the following, here G = GL2. Write for

brevity Bun
λ
B,≤d for the open substack ∪di=0X

(i)×Bunλ+iα
B , here α is the simple coroot.

Similarly, we have Bun
λ
B,[r,d] for r ≤ d, this is ∪di=rX(i) × Bunλ+iα

B . The claim is that

the transition map in the complex ((2.1), p. 1802) described at the end of ([?], Sect.
2.4) is also the transition map described in my Section 1.0.3. To see this, consider the
diagram

X(d−1) ×X × Bunλ+dα
B

id×i1→ X(d−1) × Bun
λ+(d−1)α
B,≤1

↓ sum×id ↓ β
X(d) × Bunλ+d

B
i→ Bun

λ
B,[d−1,d]

We get

i! IC 7→ i!(sum× id)! IC →̃β!(id×i1)! IC

Let j : Bun
λ+(d−1)α
B ↪→ Bun

λ+(d−1)α
B,≤1 be the open immersion. Since (i1)! IC → j! IC

naturally, composing we get the map

i! IC 7→ i!(sum× id)! IC →̃β!(id×i1)! IC→ β!(IC�j! IC)

This map (extended by zero to Bun
λ
B) gives the transition map in the complex ((2.1),

p. 1802). We get an exact triangle on X(d−1) × Bun
λ+(d−1)α
B,≤1

IC�i1! IC→ IC�j! IC→ IC

it yields an exact triangle

(1) β!(IC�i1! IC)→ β!(IC�j! IC)→ β! IC

on Bun
λ
B,[d−1,d]. Now β! IC contains Q̄`[d + dim Bunλ+dα

B ] as a direct summand. Let

id−1 : X(d−1) × Bun
λ+(d−1)α
B ↪→ Bun

λ
B,[d−1,d] be the open stratum. Then the exact
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triangle
i!Q̄`[−1]→ (id−1)!Q̄` → Q̄`

(appropriately shifted) is now contained in the triangle (1) as a direct summand, I
think. Is this correct? This is why the two definitions of the transition maps match.

1.0.6. A possible construction of the sheaf AX(n) from ([3], p. 1805, Sect. 3.1) in a
special case. Let A be a Q̄`-local system on X, which is a sheaf of coalgebras on X.
Consider the sheaf A(n) on X(n).

Lemma 1.0.7. There is a unique subsheaf Fn ⊂ A(n) such that for D =
∑
dkxk one

gets (Fn)D = ⊗kAxk ⊂ ⊗k Symdk(Axk).

Proof. One may check that all the cospecialization maps preserve the fibres of Fn. �

I wonder if Fn coincides with AX(n) in this case.

1.0.8. The construction of AX(n) from ([3], p. 1805, Sect. 3.1). The standard complex of
a DG-Lie algebra L is Sym(L[1]), they view it as a cocommutative DG-coalgebra. This
is because the costandard complex SymL∗[−1] of a DG-Lie algebra L is a commutative
DG-algebra. Notation: C•(ňX,EŤ ) is the standard complex of the sheaf of Lie algebras
ňX,EŤ on X, this is a sheaf of cocommutative DG-coalgebras on X. Better to say, this
is a cocommutative DG-coalgebra in the category of local systems on X.

In ([8], Section 1.3.53) we associated to a commutative DG-algebra E· in the category
of local systems on X a complex of factorization algebras D(BXI ⊗ηI), I ∈ S, here BXI

is a complex of perverse sheaves on XI . The ∗-fibre of D(BXI ⊗ ηI) at mx ∈ XI is the

complex E·∗x . Take the direct image of D(BXI ⊗ηI) under XI → X(m), where m =| I |,
and take Aut(I)-invariants. The complex that we obtain on X(n) is denoted by AX(n)

in ([3], p. 1805) for the cocommutative DG-coalgebra A = E·∗ = Hom(E·, Q̄`).
Consider the standard complex C•(ňX,EŤ ) as a cocommuative DG-coalgebra in the

category of local systems on X. It is actually a Λ̌pos-graded cocommuative DG-
coalgebra in the category of local systems on X. Indeed, if α̌, β̌ are positive coroots
of G then [ňα̌, ňβ̌] ⊂ ňα̌+β̌. Therefore, the differential on Sym(ň[1]) preserves the Λ̌pos-
grading.

So, C∗• (ňX,EŤ ) = Hom(C•(ňX,EŤ ), Q̄`) is the costandard complex, a −Λ̌pos-graded
commutative DG-algebra in the category of local systems on X. In ([8], Section 1.3.53)
we associated to such an object a complex B in FA(X)−Λ̌pos . Let λ̌ ∈ Λ̌pos − 0, write

λ̌ =
∑

j njα̌j , where α̌j are simple coroots of G. Consider (I, λ̌I) ∈ S−Λ̌pos such that

λ̌I : I → −Λ̌pos takes values only in minus simple coroots, and each −α̌j appear

with multiplicity nj . Recall that BXλ̌ = sum!(BXI ⊗ ηI)Aut(I,λ̌) for the natural map

sum : XI → X λ̌. Then
Υ(ňX,EŤ )λ̌ = DBXλ̌

For λ̌x ∈ X λ̌ the ∗-fibre of Υ(ňX,EŤ )λ̌ at this point is ∧•(ňX,EŤ )λ̌x. Here the su-

perscript λ̌ denotes the corresponding component of Λ̌pos-grading, and ∧iň is placed

in cohomological degree −i. Since Υ(ňX,EŤ )λ̌ factorize, this gives a description of the

∗-fibre at any point of X λ̌.
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For example, if λ̌ = α̌ a simple coroot then X α̌ = X, and Υ(ňX,EŤ )α̌ = ňα̌X,EŤ
[1] is a

smooth perverse sheaf on X.
If ň is a 1-dimensional abelian Lie algebra, and α̌ is the unique simple coroot, for

λ̌ = nα̌ we get Υ(ňX)λ̌ →̃ (∧(n)ňX)[n]. Here for a local system F on X we write ∧(n)F
for the n-th exteriour power of F .

Note that for a rank one local system F on X, ∧(n)F is the extension by zero from the
open subscheme U ↪→ X(n), the complement to all the diagonals, and for D =

∑n
i=1 xi

with xi pairwise distinct the ∗-fibre of ∧(n)F at D is isomorphic to ⊗iFxi .

Remark 1.0.9. If E,E′ are commutative DG-algebras then E ⊗ E′ is a commuta-
tive DG-algebra naturally. If Li is a Lie algebra then for standard complexes we have
an isomorphism of complexes Sym(L1[1])⊗ Sym(L2[1]) →̃ Sym((L1 ⊕ L2)[1]) of vector
spaces. Moreover, this is an isomorphism of cocommutative DG-coalgebras.

In ([8], Section 1.3.55) we described the object of FA(X)−Λpos associated to a tensor
product of two −Λpos-graded commutative DG-algebras in local systems on X.

Note that n = ⊕α̌∈M̌+ ňα̌ is the sum of the coroot subspaces, here M̌+ is the set of all
positive coroots. If ň is a commutative Lie algebra, we get an isomorphism

C∗• (ňX,EŤ ) = ⊗
α̌∈M̌+

C∗• (ňα̌,EŤ )

of DG-algebras. In this case we get

Υ(ňX)λ̌ = ⊕∑
i∈M̌+

niα̌i=λ̌
( ?
i∈M̌+

Υ(ňα̌i)
niα̌i)

The sum is taken over all decompositions of λ̌ as indicated. Since each Υ(ňα̌i)
niα̌i is

perverse, and ? is exact, the above sum is also perverse.

This gives the formula for the associated graded of Υ(ňX)λ̌ on p. 1806.

1.0.10. The map iλ̌ : X λ̌×BunB → BunB is a locally closed immersion, so i!F is placed

in perverse degrees ≥ 0 for a perverse sheaf F on BunB (used in Th. 4.2).

1.0.11. Question. Can we localize the scheme of moduli of local systems in general, in

the same way as for EŤ regular the collection Ω(ňX,EŤ )−λ̌ for λ̌ ∈ Λ̌pos gives ODefB̌(EŤ )?

Do we have a Λ̌pos-factorization algebra for any EŤ ?

1.0.12. If L is a Lie algebra then U(L) is a cocommutative coalgebra. Now U(ňX,EŤ )

is a sheaf of Λ̌pos-graded cocommutative coalgebras on X. Taking the graded dual

⊕λ̌∈Λ̌pos(U(ňX,EŤ )λ̌)∗, we get a sheaf of Λ̌neg-graded commutative algebras on X. We

view it as Λ̌neg-graded commutative algebra in local systems on X. The construction of
([8], 1.3.53) attaches to it an object B of FA(X)Λ̌neg , hence for any λ̌ ∈ Λ̌pos a complex

BXλ̌ on X λ̌. Then U(ňX,EŤ )λ̌ is defined as DBXλ̌ . The ∗-fibre of DBXλ̌ at λ̌x equals

U(ňEŤ ,x)λ̌, it is placed in usual degree zero. So, U(ňX,EŤ )λ̌ is a constructible sheaf. By

construction, we have for λ̌i ∈ Λ̌pos a natural map

U(ň)λ̌1+λ̌2 → U(ň)λ̌1 ? U(ň)λ̌2
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For example, if λ̌ = nα̌, where α̌ is a simple coroot, then U(ňX,EŤ )λ̌ = (Eα̌
Ť

)(n) on

X(n).
The !-restriction of ICBunB

to X λ̌ ×BunB is described in ([1], Cor. 4.7). It is of the

form Mλ̌ � ICBunB . Here

(2) Mλ̌ = ⊕
B(λ̌)

iB(λ̌)∗Q̄`

They claim in Prop. 4.4 that Mλ̌ →̃U(ň)λ̌, I don’t see why this is true.
More precisely, for a partition B(λ̌) given by λ̌ =

∑
j nj λ̌j , where λ̌j are not neces-

sarily simple positive coroots of G, on XB(λ̌) =
∏
j X

(nj) we get �j(ňλ̌j )(nj) instead of

Q̄` in (2). With this correction the isomorphism Mλ̌ →̃U(ň)λ̌ should be canonical.
Note that U(ň) has a filtration 0 = F0 ⊂ F1 ⊂ . . . with Fn/Fn−1 = Symn ň. This

filtration is compatible with the coalgebra structure on U(ň). Namely, M (Fn) ⊂∑
i1+i2=n Fi1 ⊗Fin ⊂ U(ň)⊗U(ň). For any λ̌ ∈ Λ̌ this filtration induces one on U(ň)λ̌.

EXAMPLE: take λ̌ = α̌1 + α̌2, where α̌i are simple coroots of G and assume λ̌ is a

positive coroot. We have U λ̌ = nλ̌+ (nα̌1⊗nα̌2). Let I = {1, 2}, and λ̌I : I → Λ̌pos∗ take

values α̌i. The corresponding complex BXI on XI is as follows. The corresponding

part of the Chevalley complex on X2 is j∗j
∗(n∗α̌1

� n∗α̌2
) →M∗ (U λ̌)∗ placed in degrees

−2,−1. It is canonically isomorphic to a direct sum

(n∗α̌1
� n∗α̌2

[2])⊕ M∗ n∗λ̌[1]

So, BXλ̌ = (n∗α̌1
� n∗α̌2

[2])⊕ M∗ n∗λ̌[1] as a constant complex on X2 = X λ̌, and

DBXλ̌ →̃ (nα̌1 � nα̌2)⊕ M∗ nλ̌
canonically.

1.0.13. For Cor. 4.5. Recall that for F ∈ Db(S) its image in the Grothendieck group
of perverse sheaves on S is given by

∑
i(−1)i[Hi(F )], where Hi(F ) denotes the i-th

perverse cohomology sheaf. In the proof of Cor. 4.5 the first step is to note that

[T ? IC
Bunµ̌+λ̌

B

] =
∑

λ̌′∈Λ̌pos

[T ? DU(ňX)λ̌
′
? j! IC

Bunµ̌+λ̌+λ̌′
B

]

They then use the fact that [DU(ňX)λ̌] = [U(ňX)λ̌] is the Grothendieck group of X λ̌,

this is evident for Mλ̌. This is unfortunate use, as this means that we identify ňα̌ with
ň∗α̌ for each positive coroot α̌, which we tried not to do before! In their Section 6.4,
which they reffer to, a correction formula is proved.

1.0.14. For the proof of Cor. 4.6. For any λ̌ ∈ Λ̌pos, µ̌ ∈ Λ̌ we have Bun
µ̌,≤λ̌
B defined

in their proof of Cor. 4.6. By Cor. 4.5, in the Groth. group of perverse sheaves on

Bun
µ̌,≤λ̌
B we have

[j! ICBunµ̌B
] =

∑
0≤λ̌′≤λ̌

[Ω(ňX)−λ̌
′
? IC

Bun
µ̌+λ̌′
B

]
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In this group the LHS is a sum of irreducible perverse sheaves with some nonnegative
coefficients, and the RHS is also a sum of some irreducible perverse sheaves with some
nonnegative coefficients. So, this equality says that there are filtrations on perverse

sheaves j! ICBunµ̌B
and on ⊕

0≤λ̌′≤λ̌
Ω(ňX)−λ̌

′
? IC

Bun
µ̌+λ̌′
B

such that their gr are isomorphic!

We want to show that

[h0i!
λ̌
j! ICBunµ̌B

] = [Ω(ňX)−λ̌ � IC
Bun

µ̌+λ̌
B

]

in the Grothendieck group of X λ̌ × Bunµ̌B (misprint in their formulation of Cor.4.6).

For any 0 ≤ λ̌′ < λ̌ and any irreducible subquotient T of Ω(ňX)−λ̌
′

the complex

i!
λ̌
(T ? IC

Bun
µ̌+λ̌′
B

)

is placed in perverse degrees > 0. Indeed, T ? IC
Bun

µ̌+λ̌′
B

is the intermediate extension

from X λ̌′ ×Bunµ̌+λ̌′

B . So, because of the factorization property, it suffices to show that

for any 0 ≤ λ̌′ < λ̌ and any irreducible subquotient T of Ω(ňX)−λ̌
′
, any exact sequence

of perverse sheaves on Bun
µ̌,≤λ̌
B

(3) 0→ T ? IC
Bun

µ̌+λ̌′
B

→ T′ → iλ̌!(M! ICX � IC
Bunµ̌+λ̌

B

)→ 0

splits. Here M: X → X λ̌ is the diagonal. The cartesian square

X λ̌′ × Bun
µ̌+λ̌′

B → Bun
µ̌,≤λ̌
B

↑ id×iλ̌−λ̌′ ↑ iλ̌
X λ̌′ ×X λ̌−λ̌′ × Bunµ̌+λ̌

B → X λ̌ × Bunµ̌+λ̌
B

gives i!
λ̌
(T ? IC

Bun
µ̌+λ̌′
B

) →̃ (T ? U(ňX)λ̌−λ̌
′
) � IC

Bun
µ̌+λ̌
B

. To show that (3) is trivial it

suffices to check that M! (T ? U(ňX)λ̌−λ̌
′
) is placed in perverse degrees ≥ 2. The latter

property is easy to see, because M! U(ňX)λ̌−λ̌
′

is placed in perverse degrees ≥ 1.
Another proof in the simplest case λ̌ = α̌ a simple coroot: we have an exact sequence

of perverse sheaves

0→ DU(ň)α̌ � ICBunµ̌+α̌
B

[−1]→ j! ICBunµ̌B
→ IC

Bun
µ̌
B
→ 0

on Bun
µ̌,≤α̌
B . So, h0i!α̌j! ICBunµ̌B

→̃Ω−α̌�ICBunµ̌+α̌
B

over X α̌×Bunµ̌+α̌
B . Here Ω−α̌ = ň∗α̌[1]

on X = X α̌.
Remark: an analog of Cor. 4.6 holds for Zastava spaces.

1.0.15. In the first displayed formula on p. 1813 the parentheses are not correct, this

is a misprint. It should be �
i∈I

(∧(ni)ň∗α̌i,X)[ni] over
◦
X λ̌.

Lm.4.8: if C•(ň)−λ̌ is the −λ̌-component of the costandard complex then for the

diagonal M: X → X λ̌ one has M! Ω(ňX)−λ̌ →̃C•(ň)−λ̌[2] on X. So, indeed the proof of

Lm.4.8 reduces to the fact that C•(ň)−λ̌ has no cohomologies in degrees ≤ 1. This is
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true, because the image of [., .] : ∧2ň → ň is the direct sum ⊕α̌ňα̌ over all nonsimple

positive coroots α̌ of G. So, (ň∗)−λ̌ = 0 for λ̌ ∈ Λ̌pos, which is not a simple coroot.

1.0.16. Recall that we know a filtration on Υλ̌, hence also on Ω(ň)λ̌ given in their Sect.
3.3. I wonder if each associated graded perverse sheaf

(4) ?
k
(∧(nk)Eα̌

Ť
)[j]

for this filtration is irreducible.
For Sect. 4.10. If λ̌ is not a positive coroot then each perverse sheaf (4) is the

intermediate extension from the image of (
∏
k

◦
Xnkα̌k)disj → X λ̌. So, Ω(ň)−λ̌ has no

irreducible subquotients, which are extensions by zero from the diagonal M: X ↪→ X λ̌.
Explanation for Case 2. If λ̌ = α̌ is a positive coroot then M! (ňα̌)∗[1] is a unique

irreducible subquotient (actually, quotient) of Ω(ň)−λ̌, which is the extension by zero

under M. Moreover, by the induction hypothesis, Ω(ň)−λ̌ → h0i!
λ̌
j! ICBunµ̌B

is an iso-

morphism over X λ̌−X. So, if Ω(ň)−λ̌� IC
Bunµ̌+λ̌

B

→ T is not surjective then T is given

by the exact sequence

(5) 0→ Ω(ň)−λ̌ � IC
Bunµ̌+λ̌

B

→ T →M! ICX � IC
Bunµ̌+λ̌

B

If Y, Z are schemes, Fi ∈ D(Y ), Gi ∈ D(Z) then

RHom(F1 �G1, F2 �G2) →̃ RHom(F1, F2)� RHom(G1, G2)

Since HomXλ̌(M! ICX ,Ω(ň)−λ̌) = 0, to show that the above sequence splits it suffices to
prove their Lemma 4.11. Since the sequence (5) splits, we see that M! ICX � IC

Bunµ̌+λ̌
B

would be a subsheaf of h0i!
λ̌
j! ICBunµ̌B

. This contradicts Pp. 4.9.

For the proof of their Lemma 4.11 recall that M! Ω(ňX)−λ̌ →̃C•(ň)−λ̌[2] on X. We

must show that H1(X,C•(ň)−λ̌[1]) = 0. We may assume λ̌ = α̌ is a positive co-
root of G, which is not simple. Then the complex on X that we have to integrate

is h2(C•(ň))−λ̌. That is, we must show that H0(X,h2(C•(ň))−λ̌) = 0, which means

simply that h2(C•(ň))−λ̌ = 0. By definition, h2(C•(ň)) = H2(ň, Q̄`).

1.0.17. For 5.4. If h0i!
λ̌
j! ICBunµ̌B

has a subsheaf, which is the extension by zero from

M (X)×Bunµ̌+λ̌
B then λ̌ is a positive coroot of G, and this subsheaf is M! ICX � IC

Bunµ̌+λ̌
B

.

Let λ̌ = α̌ be a positive coroot of G, not a simple coroot. Then there are positive
coroots β̌, γ̌ of G such that λ̌ = β̌ + γ̌, and 0 6= [xβ̌, xγ̌ ] ∈ ňγ̌ for the corresponding

nonzero root vectors. Their perverse sheaf F′1 is indeed a quotient of

H̄ := h0i!
λ̌
j! ICBunµ̌B

/(M! ICX � IC
Bunµ̌+λ̌

B

)

and not just a subquotient, because over X λ̌ − X the sheaf Ω(ň)−λ̌ has no perverse
subsheaves supported on the diagonal divisor.

Their F′ on p. 1816 is defined as the perverse sheaf on Bun
µ̌,≤α̌
B , the quotient of

j! ICBunµ̌B
|
Bun

µ̌,≤α̌
B

by H. Here H = Ker(H̄ → F′1). So, F′1 ⊂ F′ is a perverse subsheaf.
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To see which irreducible subquotients E of j! ICBunµ̌B
|
Bun

µ̌,≤α̌
B

could admit a nontrivial

extension 0→ F′1 →?→ E→ 0, let 0 ≤ τ̌ < α̌. We have a cartesian square

X τ̌ × Bun
µ̌+τ̌
B → Bun

µ̌,≤α̌
B

↑ ↑
X τ̌ ×X α̌−τ̌ × Bunµ̌+α̌

B → X α̌ × Bun
µ̌+α̌
B

Recall that i∗α̌−τ̌ IC
Bun

µ̌+τ̌
B
→̃DU(ňX)α̌−τ̌�ICBunµ̌+α̌

B
by Prop. 4.4. If E′ is an irreducible

perverse sheaf on X τ̌ appearing as a subquotient of Ω(ň)−τ̌ , then this could happen if

Ext1
Xα̌(E′ ? DU(ňX)α̌−τ̌ ,P) 6= 0,

where P is the direct image of ICX � ICX under ξ : X2 → X α̌, (x, y) 7→ β̌x+ γ̌y. Note
that β̌ 6= γ̌, so ξ is a closed immersion.

First, they claim that for τ̌ = 0 this is impossible. Indeed, for a partition B(α̌) we

have the map iB(α̌) : XB(α̌) → X α̌ and the direct summand iB(α̌)!Q̄`[2 | B(α̌) |] in

DU(ňX)α̌. The complex RHom(iB(α̌)!Q̄`[2 | B(α̌) |], ξ! IC) is placed in usual degrees

≥ 2 | B(α̌) | −2. So, we could possible have Ext1 6= 0 only for the trivial partition
B(α̌) = α̌. In this case we get RHomX2(M! Q̄`[2], IC) →̃ RΓ(X, Q̄`[−2]), it has no Ext1

either.
Let now τ̌ > 0. Assume that E′ comes from the decimpsotion B(τ̌) =

∑
k nkα̌k,

where α̌k are positive coroots of G, so | B(τ̌) |=
∑

k nk. Then

RHom(E′ � iB(α̌−τ̌)!Q̄`[2 | B(α̌− τ̌) |],P)

is placed in usual degrees ≥ B(α̌− τ̌)+ | B(τ̌) | −2. So, Ext1 could be nonzero only if
both α̌− τ̌ , τ̌ are positive coroots of G and B(α̌− τ̌) = α̌− τ̌ , B(τ̌) = τ̌ . Moreover, we
must have τ̌ = β̌ or τ̌ = γ̌. In both cases the corresponding space Ext1 is 1-dimensional.

1.0.18. Recall that U(ň)λ̌ = ⊕B(λ̌)iB(λ̌)!Q̄`, but this isomorphism is not canonical!!! For

λ̌i ∈ Λ̌pos two partitions B(λ̌i) for i = 1, 2 give rise to their sum B(λ̌1) +B(λ̌2), which
is a partition B(λ̌1 + λ̌2) of λ̌1 + λ̌2 and a diagram

X λ̌1 ×X λ̌2 → X λ̌1+λ̌2

↑ ↑
XB(λ̌1) ×XB(λ̌2) → XB(λ̌1)+B(λ̌2)

This gives a map Mλ̌1 ?Mλ̌2 →Mλ̌1+λ̌2 , but it is different from the map denoted (5.5)

in their Sect. 5.5! Indeed, the map U(ň)λ̌1 ? U(ň)λ̌2 → U(ň)λ̌1+λ̌2 is not commutative,
as the product in U(ň) is not commutative. The map denoted (5.5) in their paper is
constructed as in ([8], Section 1.3.58).

I have given a direct proof of ([3], Theorem 5.6) in ([9], Proposition 1.1.1).

1.0.19. If G is a sheaf on a scheme Y with a filtration G1 ⊂ G2 ⊂ G3 = G with Gi =
Gi/Gi−1, we get natural maps G2 → G1[1], G3 → G2[1] on X. Their composition is a map
G3 → G1[2], it vanishes (by [7], Remark 1.2.2.3). This is used in their Section 5.7. There

is a sign issue, I think, because the natural isomorphism Cβ̌X [1] ?Cγ̌X [1] →̃Cγ̌X [1] ?Cβ̌X [1]

contains the sign, which appears when we permute β̌ and γ̌.
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1.0.20. For 6.2. The differential on U(ň)•,λ̌ is explained, I think, by ([5], Proposition
4.4.1). This is the λ̌-component of the tensor algebra of Υ in the tensor category

D(tλ̌∈Λ̌posX
λ̌). Namely, the fact that d2 = 0 comes from the associativity of the

product on Ω(ň).
Namely, let E = Sym(ň∗[−1]) be the costandard complex of ň. This is a finite-

dimensional algebra, so we get the complex in the category of complexes (double com-
plex)

(6) E∗
d→ E∗ ⊗ E∗ d→ E∗ ⊗ E∗ ⊗ E∗ d→ . . . ,

here (E∗)⊗m is placed in ‘horizontal’ degree m, the horizontal differential d is an odd
derivation of degree 1. Here d : E∗ → E∗⊗E∗ is the dual of the product map E⊗E → E
(giving the structure of a DGA on E), and it extends uniquely to an odd derivation d
of degree 1. The ‘vertical differential’ is the usual differential on (E∗)⊗m, we have one
because E∗ is the standard complex of ň. For example, d : E∗ ⊗ E∗ → E∗ ⊗ E∗ ⊗ E∗
is given by d(v1 ⊗ v2) = (dv1)⊗ v2 − v1 ⊗ (dv2).

Recall further that E∗ is Λ̌pos-graded and

((E∗)⊗m)λ̌ = ⊕
λ̌i∈Λ̌pos,

∑
λ̌i=λ̌

(E∗)λ̌1 ⊗ . . .⊗ (E∗)λ̌m

We first pass to the λ̌-component in the above complex. If we further keep only the
summands with λ̌i 6= 0, we get a quotient complex. The reason is that in the dual

complex E−λ̌ ← (E ⊗ E)−λ̌ ← . . . we have a subcomplex whose m-th term is

⊕
λ̌i 6=0,

∑
λ̌i=λ̌

E
ˇ−λ1 ⊗ . . .⊗ E−λ̌m

Finally, we got a double complex, let us denote it

(7) (E∗)λ̌6=0
d→ (E∗ ⊗ E∗)λ̌6=0

d→ (E∗ ⊗ E∗ ⊗ E∗)λ̌6=0
d→ . . . ,

The 0-th term of the total complex of this double complex is

(8) ⊕
m≥0

⊕
λ̌i 6=0,

∑m
i=1 λ̌i=λ̌

ňλ̌1 ⊗ . . .⊗ ňλ̌m

Indeed, it is like this

ň → 0
↑ ↑
∧2ň → ň⊗ ň → 0

↑
ň⊗ ň⊗ ň

(where we further take λ̌-component and pass to the part 6= 0). Now (8) maps naturally

to U(ň)λ̌ surjectively, and this yields a quasi-isomorphism between the total complex

of (7) and U(ň)λ̌.
Note that (7) is the dual of some version of a reduced bar complex from ([5], Sec-

tion 4.5).
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We have similar picture for the complex U(ň)•,λ̌. I think we may first define for λ̌ 6= 0
the complex

Υλ̌ → (Υ ?Υ)λ̌ → (Υ ?Υ ?Υ)λ̌ → . . .

of perverse sheaves on X λ̌ coming as above from the algebra structure on the costandard
complex. Here

(Υ?m)λ̌ = ⊕
λ̌i∈Λ̌pos,

∑
λ̌i=λ̌

Υλ̌1 ? . . . ?Υλ̌m

and further pass to the quotient complex with terms with λ̌i 6= 0.
Probably, the situation here is as follows. Consider the (double) complex

. . .→ E ⊗ E ⊗ E d∗→ E ⊗ E d∗→ E

dual to (6). Each map in this complex is a morphism of Λ̌neg-graded DGA (in the
category of local systems on X). So, applying our construction from ([8], Section 1.3.53)

to this complex, we get a complex in FA(X)Λ̌neg . This gives the desired complex U(ň)•,λ̌

on X λ̌.
So, the fact that the total complex of (7) is quasi-isomorphic to U(ň)λ̌ gives an

isomorphism U(ň)•,λ̌ →̃U(ň)λ̌ in D(X λ̌) simply by functoriality! Similarly for their
isomorphism (6.3) on p. 1820.

1.0.21. For Sect. 6.4. For λ̌ = 0 both Υλ̌ and U(ň)•,λ̌ are Q̄` on Spec k = X0. So, for
any λ̌ ∈ Λ̌pos

Kosz•,λ̌,∗ = [Υλ̌ → ⊕
λ̌1 6=0

λ̌1+λ̌2=λ̌

Υλ̌1 ? Υλ̌2 → ⊕
λ̌1 6=0,λ̌2 6=0
λ̌1+λ̌2+λ̌3=λ̌

Υλ̌1 ? Υλ̌2 ? Υλ̌3 → . . .]

Here λ̌i ∈ Λ̌pos.
Their first idea is that to find a Λ̌neg-graded resolution of Q̄` by free REŤ -modules,

we first find a free graded resolution of the graded C∗• (ň)-module Q̄`, here C∗• (ň) is
the costandard complex of ň viewed as a Λ̌neg-graded DGA. But the latter question is
standard (at least for usual algebras, as opposed to DGA). Namely, there is the reduced
bar resolution (or a bar resolution), see [6],[10]. (In [6] there is a mistake corrected in
[10]).

They actually use the reduced bar resolution of Q̄` by graded C∗• (ň)-modules, I

think. Recall that E = Sym(ň∗[−1]) is Λ̌neg-graded. Set E+ = ⊕
0 6=λ̌∈Λ̌pos

E−λ̌. Then the

reduced bar resolution of Q̄` by right E-modules is

(9) . . .→ E⊗2
+ ⊗ E → E+ ⊗ E → E → Q̄`

where we will further take −λ̌-component. This complex should correspond to their

Kosz•,−λ̌.
The differential in (9) is given by

d(a0 ⊗ . . .⊗ ai) = a0a1 ⊗ a2 ⊗ . . .⊗ ai +
i−1∑
j=1

(−1)ja0 ⊗ . . .⊗ (ajaj+1)⊗ . . .⊗ ai
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The homotopy s : E⊗i+ ⊗E → E⊗i+1
+ ⊗E for (9) is given as follows. The map s : Q̄` → E

is the natural inclusion, and s : E⊗i+1
+ ⊗ E → E⊗i+2

+ ⊗ E is given by

s(a0 ⊗ . . .⊗ ai) = a0 ⊗ . . .⊗ ai−1 ⊗ (ai − ε(ai))⊗ 1,

where ε is the counit.
I think we should think of the collection Kosz•,−λ̌ as a right factorization module

over the factorization algebra Ω(ň)−λ̌.

1.0.22. For 0 6= λ̌ ∈ Λ̌pos the acyclicity of Kosz•,−λ̌ implies the fact used in the proof
of Cor. 4.5 (and referred to in their Sect. 6.4).

If 0 6= λ̌ ∈ Λ̌pos then U(ň)0,λ̌ = 0. For λ̌ = 0 we get U(ň)0,λ̌ = Q̄` on Spec k = X λ̌.
This is not precised in the paper.

In Sect. 6.4 they define the complex K(EŤ )•,−λ̌. It is placed in cohomological

degrees ≥ 0, and the differential on it is obtained from the diffetential of Kosz(EŤ )•,−λ̌

by applying RΓ(X λ̌, ?) term-wise.

1.0.23. In Kosz•
Bun

µ̌
B

= ⊕
λ̌′∈Λ̌pos

U(ňX)•,−λ̌
′,∗?j! IC

Bunµ̌+λ̌′
B

the interaction between various

components of the Λ̌pos-grading comes from the action map given by their formula (4.1)
in Th. 4.2. This is a complex of perverse sheaves [. . .→ Kosz−2 → Kosz−1 → Kosz0]

on Bun
µ̌
B, and we have a map of perverse sheaves Kosz0 → IC

Bun
µ̌
B

on Bun
µ̌
B. Theorem

6.6 claims that it induces a quasi-isomorphism.
This is the usual formula for the Koszul complex, I think.
Let us analyze this complex in the case G = GL2. Then let α̌ be the unique positive

coroot of G. For λ̌ = dα̌ we have U(ň)λ̌ is the constant sheaf on X(d) = X λ̌ with fibre

ň⊗d. We also have Υ(ň)λ̌ = (∧(d)ň)[d] on X(d). For d > 0 the complex of U(ň)•,λ̌ of
perverse sheaves is

(∧(d)ň)[d]→ ⊕
di>0

d1+d2=d

(∧(d1)ň ? ∧(d2)ň)[d]→ . . .→ (ň ? . . . ? ň)[d],

it placed in degrees 1, 2, . . . , d. We view it also as a double complex on X(d), placed in
horizontal degrees 1, 2, . . . , n, so each term in the above is a ”vertical complex”. Its total

complex is quasi-isomorphic to U(ň)λ̌. The term of the total complex corresponding to
the usual degree 0 is then ň ? . . . ? ň, it maps naturally to ň⊗d and induces the above
quasi-isomorphism.

Consider the open substack Bun
µ̌,≤α
B . Over this stack the complexKosz•

Bun
µ̌
B

becomes

a direct sum of cohomologically shifted perverse sheaves

(ň∗[2] ? j! ICBunµ̌+α̌
B

)⊕ j! ICBunµ̌B

placed in perverse degrees −1, 0 (in general in perverse degrees ≤ 0). The differential
augments the perverse degrees by 1, so it becomes the complex of perverse sheaves
(ň∗[1] ? j! ICBunµ̌+α̌

B
) → j! ICBunµ̌B

placed in horizontal degrees −1, 0. In this case the
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differential is precisely the action map

Ω(ň)−α̌ ? ICBunµ̌+α̌
B
→ j! ICBunµ̌B

We know that by Th. 4.2 the action map induces an isomorphism

Ω(ň)−α̌ ? ICBunµ̌+α̌
B
→̃h0i!α̌j! ICBunµ̌B

So, this complex over Bun
µ̌,≤α
B is indeed quasi-isomorphic to IC

Bun
µ̌
B

.

1.0.24. The proof of Th. 6.6 inspires the following.

Question 1. Consider the category C of collections F λ̌ ∈ Bun
−λ̌
B indexed by

λ̌ ∈ Λ̌pos together with a factorization structure of the collection F̃ λ̌. Here F̃ λ̌ =

f∗
λ̌
F λ̌[dim. rel fλ̌], where fλ̌ : Z

λ̌ → Bun
−λ̌
B is the projection. Recall that Z

λ̌ ⊂

Bun
−λ̌
B ×BunG BunN− is the open substack, the Zastava space. Is this is a reasonable

category? What is its structure?
For example, the collection IC

Bun
−λ̌
B

, λ̌ ∈ Λ̌pos admits a natural factorization struc-

ture in the above sense, so becomes an object of C. Another example, the collection
j! IC

Bun−λ̌B
, λ̌ ∈ Λ̌pos admits a natural factorization structure in the above sense.

Their Theorem 6.6 gives an example of the collection Kosz•
Bun

−λ̌
B

, λ̌ ∈ Λ̌pos, which is

also naturally an object of C.

1.0.25. Question 2. I wonder if the Koszul complex that we got for IC
Bun

µ̌
B

is a

particupar case of a general situation. Assume we have a stack Y with a stratification

indexed by Λ̌pos such that if ν̌ ≤ λ̌ then the stratum Y λ̌ is in the closure of Y ν̌ . We

have the open substack Y ≤λ̌ for any λ̌. Let iλ̌ : Y λ̌ ↪→ Y be the inclusion. Now if we
have a complex K on Y , we can consider the graded object

⊕
λ̌∈Λ̌pos

iλ̌!i
∗
λ̌
K

How to put a differential on this complex such that the corresponding total complex
would be quasi-isomorphic to K? In a special case considered in my Section 1.0.3 we
answered this question. Of course, ([7], 1.2.2) is useful here.

1.0.26. The following lemma is implicit in the proof of Prop. 10.3, p. 1842.

Lemma 1.0.27. Let Y be a stack with a stratification indexed by Λ̌pos. Assume for

µ̌ ≤ λ̌, the stratum Y λ̌ is in the closure of the stratum Y µ̌. For λ̌ ∈ Λ̌pos we get the open

substack Y ≤λ̌ = ∪µ̌≤λ̌Y µ̌. Let iλ̌ : Y λ̌ → Y be the inclusion. Let K be a perverse sheaf

on Y , write K λ̌ = h0i!
λ̌
K. Let K̄ λ̌ = (iλ̌)!∗K

λ̌. Assume K has no perverse quotient

sheaves supported on the complement of Y 0. Assume that for any open substack 0Y ⊂ Y
of the form 1Y = ∪

i∈I
Y λ̌i, where I is a finite set, we have

(10) [K] =
∑
i∈I

[K̄ λ̌i ]
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in the Grothendieck group of 1Y . Then K admits a filtration with grK →̃ ⊕
λ̌∈Λ̌pos

K̄ λ̌.

Proof. Let 0Y
j
↪→ 1Y ⊂ Y be open substacks consisting of some strata such that

1Y − 0Y = Y λ̌ for some λ̌ ∈ Λ̌pos. Let i : Y λ̌ → 1Y be the inclusion. Assume by
induction the above filtration is constructed over 0Y . We have an exact sequence of
perverse sheaves 0 → i∗h

0(i!K) → K → j!∗j
∗K → 0 on 1Y . The functor j!∗ is not

exact in general. So, on 1Y we get a filtration, where some additional summands in
grK may appear. The formula (10) shows that no additional summands appear. We
constructed the desired filtration on K |1Y . �

The above lemma is applied in Proposition 10.3, p. 1842 for the perverse sheaf
K = j! ICBunµ̌B

. The equality in the Grothendieck group needed for the lemma is

proved in their Cor. 4.5. So, j! ICBunµ̌B
admits a filtration by perverse subsheaves with

the associated graded pieces

(̄iµ̌′−µ̌)!(Ω(ň)µ̌−µ̌
′
� IC

Bun
µ̌′
B

)

This saves the proof of Th. 10.2.

1.0.28. For 10.9. There is a misprint in the def of Eisµ̌∗ (EŤ ).The correct definition is

p∗(ICBunµ̌B
⊗qµ̌∗S(EŤ )). They do not calculate CT µ̌(Eis

µ̌
(EŤ ). They only derive Prop.

10.8 from the calculation of CT µ̌(Eisµ̌∗ (EŤ )).

So, in Sect. 10.9 the definition of Z
µ̌,µ̌′
w is as follows. This is the stack classifying

FB ∈ Bunµ̌
′

B and a section σ : X → FB ×B Flw such that over the generic point of X,

σ hits FB ×B Flw. Moreover, the second B-structure on FB ×B G is required to be of
degree µ̌.

Write Vλ for the Weyl module of G, Vλ,≥w be the sum of all subspaces of T -weights

≥ w(λ). A point of Zµ̌,µ̌
′

w is rewritten as FB ∈ Bunµ̌
′

B and a collection of line subbundles

Lλ ⊂ V
λ,≥w
FB

for λ ∈ Λ+ with degLλ = 〈λ, µ̌〉 satisfying the Plucker relations such that

for any λ ∈ Λ+ the composition

Lλ → V
λ,≥w
FB

→ (Vλ,≥w/Vλ,>w)FB

is injective. So, for FT = FB ×B T we get D ∈ Xw(µ̌′)−µ̌ and a B-torsor F′B with
F′B ×B G →̃FB ×B G and F′B ×B T →̃FT (−D).

1.0.29. For the proof of their Prop. 10.10. Recall that B(B) ×B(G) B(B) →̃B\G/B
canonically, the orbit corresponding to w ∈ W is BwB. Let N0 ⊂ N be the subgroup
whose Lie algebra is the sum of nα such that α ∈M+, wα ∈M+. So, N0 is the stabilizor
of wB/B ∈ Fl in N . Let N ′ ⊂ N be the subgroup whose Lie algebra is the sum of
nα such that α ∈M+, wα /∈M+. Then N ′ acts simply transitively on BwB/B = Flw.

The stack classifying FB ∈ Bunµ̌
′

B and a global section X → FB ×B Flw becomes the

component Bunµ̌
′

ToN0
. Indeed, B\Flw is the classifying stack B(T o N0). This gives

the proof of Prop. 10.10 in the case w(µ̌′) = µ̌.
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Consider the special case: for any α ∈M+ with wα ∈M+ assume 〈α, µ̌′〉 > 2g − 2.

This assumption garantees that f : Bunµ̌
′

B′ → Bunµ̌
′

B is smooth (a generalized affine

fibration). In this case to prove Pp. 10.10, we my replace Z
µ̌,µ̌′
w by Z

µ̌,µ̌′
w ×

Bunµ̌
′
B

Bunµ̌
′

B′ ,

and it suffices to describe the direct image with compact supports for the composition

Zµ̌,µ̌
′

w ×
Bunµ̌

′
B

Bunµ̌
′

B′ → Zµ̌,µ̌
′

w → Bunµ̌T ×X
w(µ̌′)−µ̌

The proof in general is reduced to this case, roughly, by some twist, I think.

1.0.30. Consider the situation as in the proof of Proposition 10.10, so we have N ′ and
N0 as above.

There is a great factorization principle in ([2], Section 2.16). It applies to the stack
N ′\Flw. That is, the complement of Flw in Flw is indeed given by a finite union of
Cartier divisors. Recall that [G,G] is assumed simply-connected. So, we may choose
fundamental weights ωi, i runs through the set of vertices of the Dynkin diagram
I. Then a point of Flw is completely defined by the lines Lωi ⊂ V ωi,≥w for i ∈ I.
So, we get Cartier divisors Ti in Flw given by the property that the composition
Lωi → V ωi,≥w → V ωi,≥w/V ωi,>w vanishes.

So, we are led to study the following ”w-version of Zastava” for w ∈W . Let µ̌ ∈ Λ̌pos.
Consider the scheme W

µ̌
w classifying (FN ′ , D, σ), where D ∈ X µ̌, FN ′ is a N ′-torsor on

X, and σ : X → FN ′ ×N
′
Flw is a global section such that over X −D it hits to Flw,

and for any λ ∈ Λ+ the divisor of zeros of the composition

(11) Lλ → V
λ,≥w
FN′

→ (Vλ,≥w/Vλ,>w)FN′ = O

is 〈D,λ〉. So, on FN ′×N ′G we get a B-structure with the corresponding T -torsor being
O(−D). According to the above factorization principle, Wµ̌ factorizes over X µ̌ as usual
Zastava spaces. Let πµ̌ : Wµ̌ → X µ̌ be the projection.

For w the longuest element of W the scheme W
µ̌
w is the same as the open part Zmax

of the usual Zastava space.
Question. What can we say about πµ̌Q̄`? Can we describe ICWµ̌ in a way analogous

to the usual Zastava space from [1]?

We may realize W
µ̌
w in local terms as follows. Now W

µ̌
w is the scheme classifying

D ∈ X µ̌, a N ′-torsor over the formal neighbourhood D̄ of D, its trivlization over the
punched formal neighbourhood D̄0 of D such that for any λ ∈ Λ+ the map (11) yields

Lλ →̃O(−〈D,λ〉), and moreover Lλ → V
λ,≥w
FN′

is a subbundle over D̄.

Let TXµ̌ denote the group scheme over X µ̌ classifying D ∈ X µ̌ and a section of T over
D̄. The group scheme TXµ̌ acts on W

µ̌
w over X µ̌ via its action on the trivial T -torsor

T |D̄. Let BunT,Xµ̌ be the stack classifying FT ∈ BunT , D ∈ X µ̌ and a trivialization of

FT over D̄.
Let B′ = T oN ′. We may consider a version W

µ̌
w,BunT

of Wµ̌
w with F0

T replaced by

a ‘background’ T -torsor FT ∈ BunT . It classifies FB′ ∈ BunB′ , D ∈ X µ̌, σ : X →
FB′ ×B

′
Flw such that over X −D it hits Flw, and the maps

Lλ → V
λ,≥w
FB′

→ (Vλ,≥w/Vλ,>w)FB′ = L
w(λ)
FT
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identify Lλ with L
w(λ)
FT

(−〈D,λ〉).
I think then W

µ̌
w,BunT

is obtained from W
µ̌
w by a twist with the BunT ×TXµ̌-torsor

BunT,Xµ̌ → BunT ×X µ̌ and the above action of TXµ̌ on W
µ̌
w.

References

[1] Braverman, Finkelberg, Gaitsgory, Mirkovic, Intersection cohomology of Drinfeld’s compactifica-
tions

[2] Braverman, Finkelberg, Gaitsgory, Uhlenbeck spaces via affine Lie algebras, arXiv:math/0301176
(version 4 with erratum)

[3] Braverman, Gaitsgory, Deformations of local systems and Eisenstien series, GAFA vol. 17 (2008),
1788-1850

[4] Gaitsgory, On the de Jong conjecture, arxiv
[5] V. Ginzburg, Lectures on noncommutative geometry, arxiv
[6] Krähmer, Notes on Koszul algebras, https://www.maths.gla.ac.uk/ ukraehmer/connected.pdf

[7] J. Lurie, Higher algebra
[8] S. Lysenko, Comments to chiral algebras
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