1. Comments to Deformation of local systems and Eisestein series [3]

1.0.1. Let *L* be a Lie algebra, $A = \text{Sym}(L^*[-1])$ be a (super)-commutative *k*-algebra, let Y = Spec A, let *M* be a *A*-module. Then we get a natural augmentation $A \to k$. According to introduction, *L* acts on *M*. Why it should also act on $k \bigotimes_A M$?

1.0.2. For a Lie algebra L they call $C_{\bullet}(L) = \text{Sym}(L[1])$ the standard complex of L. In which sense the universal enveloping algebra U(L) is Koszul dual of $C_{\bullet}(L)$? What is U(L) in the case when L is a DG-Lie algebra?

1.0.3. We assume throughout this text that we work with \mathbb{Q}_{ℓ} -sheaves.

Case of $G = \operatorname{GL}_2$. The exact sequence (2.1) in Sect. 2.4 roughly answers the question how the perverse sheaf $(i_0^{d_1,d_2})_!$ IC on $\overline{\operatorname{Bun}}_B^{d_1,d_2}$ decomposes into irreducibles in the abelian category of perverse sheaves on $\overline{\operatorname{Bun}}_B^{d_1,d_2}$. For any $d \ge 0$, the *-restriction is

$$(i_d^{d_1,d_2})^* \operatorname{IC}_{\overline{\operatorname{Bun}}_B} \xrightarrow{\sim} \overline{\mathbb{Q}}_\ell[2m] \boxtimes \operatorname{IC}$$

for $i_d^{d_1,d_2}: X^{(d)} \times \operatorname{Bun}_B^{d_1+d,d_2-d} \hookrightarrow \overline{\operatorname{Bun}}_B^{d_1,d_2}$. Let $\theta \in \Lambda^{pos}$. Write $\overline{\operatorname{Bun}}_{B,\geq \theta}$ for the image of the finite map $X^{\theta} \times \overline{\operatorname{Bun}}_B \to \overline{\operatorname{Bun}}_B$.

Let $\theta \in \Lambda^{pos}$. Write $\operatorname{Bun}_{B,\geq \theta}$ for the image of the finite map $X^{\theta} \times \operatorname{Bun}_{B} \to \operatorname{Bun}_{B}$. Write α for the unique simple coroot of G.

Consider the general situation of a stack Y with a stratification Y_0, Y_1, Y_2, \ldots such that $\bar{Y}_m = \bigcup_{k \ge m} Y_k$. Assume F is a perverse sheaf on Y, let $j_m : Y_m \hookrightarrow Y$ be the inclusion. Assume $j_m^* F$ is placed in perverse degree -m. Assume the inclusion $Y_m \hookrightarrow \bar{Y}_m$ is affine, so $F_m := j_m! j_m^* F[-m]$ is perverse on Y for any $m \ge 0$. The substack

$$Y_{\leq m} = \bigcup_{k \leq m} Y_k \subset Y$$

is assumed open. Now apply the idea from ([7], 1.2.2.3). For $k \leq m$ let $Y_{[k,m]} = \bigcup_{k \leq i \leq m} Y_i$, this is a closed substack in $Y_{\leq m}$. In the stable category of sheaves on Y we get a filtered object, hence a \mathbb{Z} -complex on Y in the sense of ([7], Def. 1.2.2.2). Write $F \mid_{Y_{[m-1,m]}}$ for the *-restriction. We get an exact triangle $(j_{m-1})!j_{m-1}^*F \to F \mid_{Y_{[m-1,m]}} \to (j_m)!j_m^*F$ on $Y_{[m-1,m]}$, and extend it by zero to get an exact triangle on Y. It gives a morphism $F_m \to F_{m-1}$. As Lurie explains in ([7], 1.2.2.3), these morphisms form complex

$$\ldots \to F_2 \to F_1 \to F_0$$

(that is, the square of the differential is zero). The claim is that the complex

$$\ldots \to F_2 \to F_1 \to F_0 \to F$$

is then exact (in the abelian category of perverse sheaves).

1.0.4. About Koszul complex in Th.2.3. they use the following notion of a Koszul complex. Let R be a commutative ring, V an R-module, $\delta : V \to R$ a R-linear map. Then we have the Koszul complex $\ldots \wedge^2 V \xrightarrow{d_2} \wedge^1 V \xrightarrow{d_1} R$, where $d_1 = \delta$, and the map $d_r : \wedge^r V \to \wedge^{r-1} V$ for $r \ge 2$ is the composition

$$\wedge^{r}V \to \wedge^{r-1}V \otimes V \stackrel{\mathrm{id} \otimes \delta}{\to} \wedge^{r-1}V$$

Here to be precise I think $\wedge^r V \to \wedge^{r-1} V \otimes V$ sends $e_1 \wedge \ldots \wedge e_r$ to

$$\sum_{i=1}^r (-1)^{i+1} (e_1 \wedge \ldots \wedge \hat{e}_i \wedge \ldots \wedge e_r) \otimes e_i$$

It is understood here that $\wedge^r V$ is interpreted as $\wedge^{r,!} V \subset V^{\otimes r}$ in the sense of ([4], Section 5.1). This is found in (Stack project, Definition 15.26.1).

They apply this for the symmetric algebra R = Sym W over k and $V = W \otimes_k R$ with the natural map $\delta : V \to R$ given by the product. Now if M is an R-module, this Koszul complex for M becomes $\ldots \to (\wedge^2 W) \otimes_k M \to (\wedge^1 W) \otimes_k M \xrightarrow{\partial_1} M$, where ∂_1 is a part of the action map $R \otimes_k M \to M$. In their case moreover R is \mathbb{Z}_+ -graded, M is graded and the action preserves the gradings. They write in Th. 2.3 only the corresponding complex in the degree (d_1, d_2) .

In Th. 2.3 they use that the $\overline{\mathbb{Q}}_{\ell}$ -algebra $R := \operatorname{Sym} W$ is regular, so the Koszul complex for this algebra gives a resolution of $\overline{\mathbb{Q}}_{\ell}$ by free *R*-modules.

The Koszul resolution of $\operatorname{Eis}_!(E_{\check{T}})$ is $\ldots (\wedge^2 W) \otimes R \otimes_R \operatorname{Eis}_!(E_{\check{T}}) \to (\wedge^1 W) \otimes R \otimes_R \operatorname{Eis}_!(E_{\check{T}}) \xrightarrow{\partial_1} \operatorname{Eis}_!(E_{\check{T}})$.

1.0.5. The diagram at the end of Sect. 2.4 says the following, here $G = \operatorname{GL}_2$. Write for brevity $\overline{\operatorname{Bun}}_{B,\leq d}^{\lambda}$ for the open substack $\cup_{i=0}^{d} X^{(i)} \times \operatorname{Bun}_{B}^{\lambda+i\alpha}$, here α is the simple coroot. Similarly, we have $\overline{\operatorname{Bun}}_{B,[r,d]}^{\lambda}$ for $r \leq d$, this is $\cup_{i=r}^{d} X^{(i)} \times \operatorname{Bun}_{B}^{\lambda+i\alpha}$. The claim is that the transition map in the complex ((2.1), p. 1802) described at the end of ([?], Sect. 2.4) is also the transition map described in my Section 1.0.3. To see this, consider the diagram

$$\begin{array}{cccc} X^{(d-1)} \times X \times \operatorname{Bun}_{B}^{\lambda+d\alpha} & \stackrel{\operatorname{id} \times i_{1}}{\to} & X^{(d-1)} \times \overline{\operatorname{Bun}}_{B,\leq 1}^{\lambda+(d-1)\alpha} \\ & \downarrow \operatorname{sum \times id} & & \downarrow \beta \\ X^{(d)} \times \operatorname{Bun}_{B}^{\lambda+d} & \stackrel{i}{\to} & \overline{\operatorname{Bun}}_{B,[d-1,d]}^{\lambda} \end{array}$$

We get

$$i_! \operatorname{IC} \mapsto i_! (sum \times \operatorname{id})_! \operatorname{IC} \xrightarrow{\sim} \beta_! (\operatorname{id} \times i_1)_! \operatorname{IC}$$

Let $j : \operatorname{Bun}_{B}^{\lambda+(d-1)\alpha} \hookrightarrow \overline{\operatorname{Bun}}_{B,\leq 1}^{\lambda+(d-1)\alpha}$ be the open immersion. Since $(i_1)_! \operatorname{IC} \to j_! \operatorname{IC}$ naturally, composing we get the map

$$i_! \operatorname{IC} \mapsto i_! (\operatorname{sum} \times \operatorname{id})_! \operatorname{IC} \xrightarrow{\sim} \beta_! (\operatorname{id} \times i_1)_! \operatorname{IC} \rightarrow \beta_! (\operatorname{IC} \boxtimes j_! \operatorname{IC})$$

This map (extended by zero to $\overline{\operatorname{Bun}}_B^{\lambda}$) gives the transition map in the complex ((2.1), p. 1802). We get an exact triangle on $X^{(d-1)} \times \overline{\operatorname{Bun}}_{B,\leq 1}^{\lambda+(d-1)\alpha}$

$$\operatorname{IC} \boxtimes i_{1!} \operatorname{IC} \to \operatorname{IC} \boxtimes j_! \operatorname{IC} \to \operatorname{IC}$$

it yields an exact triangle

(1)
$$\beta_!(\operatorname{IC}\boxtimes i_{1!}\operatorname{IC}) \to \beta_!(\operatorname{IC}\boxtimes j_!\operatorname{IC}) \to \beta_!\operatorname{IC}$$

on $\overline{\operatorname{Bun}}_{B,[d-1,d]}^{\lambda}$. Now $\beta_! \operatorname{IC}$ contains $\overline{\mathbb{Q}}_{\ell}[d + \dim \operatorname{Bun}_B^{\lambda+d\alpha}]$ as a direct summand. Let $i_{d-1} : X^{(d-1)} \times \operatorname{Bun}_B^{\lambda+(d-1)\alpha} \hookrightarrow \overline{\operatorname{Bun}}_{B,[d-1,d]}^{\lambda}$ be the open stratum. Then the exact

 $\mathbf{2}$

triangle

$$i_! \bar{\mathbb{Q}}_\ell[-1] \to (i_{d-1})_! \bar{\mathbb{Q}}_\ell \to \bar{\mathbb{Q}}_\ell$$

(appropriately shifted) is now contained in the triangle (1) as a direct summand, I think. Is this correct? This is why the two definitions of the transition maps match.

1.0.6. A possible construction of the sheaf $A_{X^{(n)}}$ from ([3], p. 1805, Sect. 3.1) in a special case. Let A be a $\overline{\mathbb{Q}}_{\ell}$ -local system on X, which is a sheaf of coalgebras on X. Consider the sheaf $A^{(n)}$ on $X^{(n)}$.

Lemma 1.0.7. There is a unique subsheaf $F_n \subset A^{(n)}$ such that for $D = \sum d_k x_k$ one gets $(F_n)_D = \bigotimes_k A_{x_k} \subset \bigotimes_k \operatorname{Sym}^{d_k}(A_{x_k})$.

Proof. One may check that all the cospecialization maps preserve the fibres of F_n . \Box

I wonder if F_n coincides with $A_{X^{(n)}}$ in this case.

1.0.8. The construction of $A_{X^{(n)}}$ from ([3], p. 1805, Sect. 3.1). The standard complex of a DG-Lie algebra L is Sym(L[1]), they view it as a cocommutative DG-coalgebra. This is because the costandard complex Sym $L^*[-1]$ of a DG-Lie algebra L is a commutative DG-algebra. Notation: $C_{\bullet}(\check{\mathfrak{n}}_{X,E_{\tilde{T}}})$ is the standard complex of the sheaf of Lie algebras $\check{\mathfrak{n}}_{X,E_{\tilde{T}}}$ on X, this is a sheaf of cocommutative DG-coalgebras on X. Better to say, this is a cocommutative DG-coalgebra in the category of local systems on X.

In ([8], Section 1.3.53) we associated to a commutative DG-algebra E^{\cdot} in the category of local systems on X a complex of factorization algebras $\mathbb{D}(B_{X^I} \otimes \eta_I)$, $I \in S$, here B_{X^I} is a complex of perverse sheaves on X^I . The *-fibre of $\mathbb{D}(B_{X^I} \otimes \eta_I)$ at $mx \in X^I$ is the complex $E_x^{\cdot*}$. Take the direct image of $\mathbb{D}(B_{X^I} \otimes \eta_I)$ under $X^I \to X^{(m)}$, where m = |I|, and take Aut(I)-invariants. The complex that we obtain on $X^{(n)}$ is denoted by $A_{X^{(n)}}$ in ([3], p. 1805) for the cocommutative DG-coalgebra $A = E^{\cdot*} = \mathcal{H}om(E^{\cdot}, \mathbb{Q}_{\ell})$.

Consider the standard complex $C_{\bullet}(\check{\mathfrak{n}}_{X,E_{\tilde{T}}})$ as a cocommutive DG-coalgebra in the category of local systems on X. It is actually a $\check{\Lambda}^{pos}$ -graded cocommutive DG-coalgebra in the category of local systems on X. Indeed, if $\check{\alpha}, \check{\beta}$ are positive coroots of G then $[\check{\mathfrak{n}}_{\check{\alpha}}, \check{\mathfrak{n}}_{\check{\beta}}] \subset \check{\mathfrak{n}}_{\check{\alpha}+\check{\beta}}$. Therefore, the differential on $\operatorname{Sym}(\check{\mathfrak{n}}[1])$ preserves the $\check{\Lambda}^{pos}$ -grading.

So, $C^*_{\bullet}(\check{\mathfrak{n}}_{X,E_{\tilde{T}}}) = \mathcal{H}om(C_{\bullet}(\check{\mathfrak{n}}_{X,E_{\tilde{T}}}), \bar{\mathbb{Q}}_{\ell})$ is the costandard complex, a $-\Lambda^{pos}$ -graded commutative DG-algebra in the category of local systems on X. In ([8], Section 1.3.53) we associated to such an object a complex B in $\mathcal{F}A(X)_{-\Lambda^{pos}}$. Let $\check{\lambda} \in \Lambda^{pos} - 0$, write $\check{\lambda} = \sum_j n_j \check{\alpha}_j$, where $\check{\alpha}_j$ are simple coroots of G. Consider $(I, \check{\lambda}_I) \in S_{-\Lambda^{pos}}$ such that $\check{\lambda}_I : I \to -\Lambda^{pos}$ takes values only in minus simple coroots, and each $-\check{\alpha}_j$ appear with multiplicity n_j . Recall that $B_{X\check{\lambda}} = sum_! (B_{X^I} \otimes \eta_I)^{\operatorname{Aut}(I,\check{\lambda})}$ for the natural map $sum: X^I \to X^{\check{\lambda}}$. Then

$$\Upsilon(\check{\mathfrak{n}}_{X,E_{\check{T}}})^{\lambda} = \mathbb{D}B_{X^{\check{\lambda}}}$$

For $\check{\lambda}x \in X^{\check{\lambda}}$ the *-fibre of $\Upsilon(\check{\mathfrak{n}}_{X,E_{\check{T}}})^{\check{\lambda}}$ at this point is $\wedge^{\bullet}(\check{\mathfrak{n}}_{X,E_{\check{T}}})^{\check{\lambda}}_x$. Here the superscript $\check{\lambda}$ denotes the corresponding component of $\check{\Lambda}^{pos}$ -grading, and $\wedge^i \check{\mathfrak{n}}$ is placed in cohomological degree -i. Since $\Upsilon(\check{\mathfrak{n}}_{X,E_{\check{T}}})^{\check{\lambda}}$ factorize, this gives a description of the *-fibre at any point of $X^{\check{\lambda}}$.

For example, if $\check{\lambda} = \check{\alpha}$ a simple coroot then $X^{\check{\alpha}} = X$, and $\Upsilon(\check{\mathfrak{n}}_{X,E_{\check{T}}})^{\check{\alpha}} = \check{\mathfrak{n}}^{\check{\alpha}}_{X,E_{\check{T}}}[1]$ is a smooth perverse sheaf on X.

If $\check{\mathfrak{n}}$ is a 1-dimensional abelian Lie algebra, and $\check{\alpha}$ is the unique simple coroot, for $\check{\lambda} = n\check{\alpha}$ we get $\Upsilon(\check{\mathfrak{n}}_X)^{\check{\lambda}} \cong (\wedge^{(n)}\check{\mathfrak{n}}_X)[n]$. Here for a local system F on X we write $\wedge^{(n)}F$ for the *n*-th exteriour power of F.

Note that for a rank one local system F on X, $\wedge^{(n)}F$ is the extension by zero from the open subscheme $U \hookrightarrow X^{(n)}$, the complement to all the diagonals, and for $D = \sum_{i=1}^{n} x_i$ with x_i pairwise distinct the *-fibre of $\wedge^{(n)}F$ at D is isomorphic to $\otimes_i F_{x_i}$.

Remark 1.0.9. If E, E' are commutative DG-algebras then $E \otimes E'$ is a commutative DG-algebra naturally. If L_i is a Lie algebra then for standard complexes we have an isomorphism of complexes $\operatorname{Sym}(L_1[1]) \otimes \operatorname{Sym}(L_2[1]) \xrightarrow{\sim} \operatorname{Sym}((L_1 \oplus L_2)[1])$ of vector spaces. Moreover, this is an isomorphism of cocommutative DG-coalgebras.

In ([8], Section 1.3.55) we described the object of $\mathcal{FA}(X)_{-\Lambda^{pos}}$ associated to a tensor product of two $-\Lambda^{pos}$ -graded commutative DG-algebras in local systems on X.

Note that $\mathfrak{n} = \bigoplus_{\check{\alpha} \in \check{\Delta}^+} \check{\mathfrak{n}}_{\check{\alpha}}$ is the sum of the coroot subspaces, here $\check{\Delta}^+$ is the set of all positive coroots. If $\check{\mathfrak{n}}$ is a commutative Lie algebra, we get an isomorphism

$$C^*_{\bullet}(\check{\mathfrak{n}}_{X,E_{\check{T}}}) = \bigotimes_{\check{\alpha}\in\check{\Delta}^+} C^*_{\bullet}(\check{\mathfrak{n}}_{\check{\alpha},E_{\check{T}}})$$

of DG-algebras. In this case we get

$$\Upsilon(\check{\mathfrak{n}}_X)^{\lambda} = \bigoplus_{\substack{\sum \\ i \in \check{\Delta}^+}} \bigoplus_{n_i \check{\alpha}_i = \check{\lambda}} \left(\underbrace{\star}_{i \in \check{\Delta}^+} \Upsilon(\check{\mathfrak{n}}_{\check{\alpha}_i})^{n_i \check{\alpha}_i} \right)$$

The sum is taken over all decompositions of $\check{\lambda}$ as indicated. Since each $\Upsilon(\check{\mathfrak{n}}_{\check{\alpha}_i})^{n_i\check{\alpha}_i}$ is perverse, and \star is exact, the above sum is also perverse.

This gives the formula for the associated graded of $\Upsilon(\check{\mathfrak{n}}_X)^{\lambda}$ on p. 1806.

1.0.10. The map $i_{\tilde{\lambda}} : X^{\tilde{\lambda}} \times \operatorname{Bun}_B \to \overline{\operatorname{Bun}}_B$ is a locally closed immersion, so $i^! F$ is placed in perverse degrees ≥ 0 for a perverse sheaf F on $\overline{\operatorname{Bun}}_B$ (used in Th. 4.2).

1.0.11. Question. Can we localize the scheme of moduli of local systems in general, in the same way as for $E_{\tilde{T}}$ regular the collection $\Omega(\check{\mathfrak{n}}_{X,E_{\tilde{T}}})^{-\check{\lambda}}$ for $\check{\lambda} \in \check{\Lambda}^{pos}$ gives $\mathcal{O}_{Def_{\tilde{B}}(E_{\tilde{T}})}$? Do we have a $\check{\Lambda}^{pos}$ -factorization algebra for any $E_{\tilde{T}}$?

1.0.12. If L is a Lie algebra then U(L) is a cocommutative coalgebra. Now $U(\check{\mathfrak{n}}_{X,E_{\tilde{T}}})$ is a sheaf of $\check{\Lambda}^{pos}$ -graded cocommutative coalgebras on X. Taking the graded dual $\oplus_{\check{\lambda}\in\check{\Lambda}^{pos}}(U(\check{\mathfrak{n}}_{X,E_{\tilde{T}}})^{\check{\lambda}})^*$, we get a sheaf of $\check{\Lambda}^{neg}$ -graded commutative algebras on X. We view it as $\check{\Lambda}^{neg}$ -graded commutative algebra in local systems on X. The construction of ([8], 1.3.53) attaches to it an object B of $\mathcal{FA}(X)_{\check{\Lambda}^{neg}}$, hence for any $\check{\lambda}\in\check{\Lambda}^{pos}$ a complex $B_{X\check{\lambda}}$ on $X^{\check{\lambda}}$. Then $\mathfrak{U}(\check{\mathfrak{n}}_{X,E_{\tilde{T}}})^{\check{\lambda}}$ is defined as $\mathbb{D}B_{X\check{\lambda}}$. The *-fibre of $\mathbb{D}B_{X\check{\lambda}}$ at $\check{\lambda}x$ equals $U(\check{\mathfrak{n}}_{E_{\tilde{T}},x})^{\check{\lambda}}$, it is placed in usual degree zero. So, $\mathfrak{U}(\check{\mathfrak{n}}_{X,E_{\tilde{T}}})^{\check{\lambda}}$ is a constructible sheaf. By construction, we have for $\check{\lambda}_i \in \check{\Lambda}^{pos}$ a natural map

$$\mathfrak{U}(\mathfrak{\check{n}})^{\lambda_1+\lambda_2} \to \mathfrak{U}(\mathfrak{\check{n}})^{\lambda_1} \star \mathfrak{U}(\mathfrak{\check{n}})^{\lambda_2}$$

For example, if $\check{\lambda} = n\check{\alpha}$, where $\check{\alpha}$ is a simple coroot, then $\mathfrak{U}(\check{\mathfrak{n}}_{X,E_{\tilde{T}}})^{\check{\lambda}} = (E_{\tilde{T}}^{\check{\alpha}})^{(n)}$ on $X^{(n)}$.

The !-restriction of $\mathrm{IC}_{\overline{\mathrm{Bun}}_B}$ to $X^{\check{\lambda}} \times \mathrm{Bun}_B$ is described in ([1], Cor. 4.7). It is of the form $\mathcal{M}^{\check{\lambda}} \boxtimes \mathrm{IC}_{\mathrm{Bun}_B}$. Here

(2)
$$\mathcal{M}^{\check{\lambda}} = \bigoplus_{\mathfrak{B}(\check{\lambda})} i_{\mathfrak{B}(\check{\lambda})*} \bar{\mathbb{Q}}_{\ell}$$

They claim in Prop. 4.4 that $\mathcal{M}^{\check{\lambda}} \xrightarrow{\sim} \mathfrak{U}(\check{\mathfrak{n}})^{\check{\lambda}}$, I don't see why this is true.

More precisely, for a partition $\mathfrak{B}(\check{\lambda})$ given by $\check{\lambda} = \sum_j n_j \check{\lambda}_j$, where $\check{\lambda}_j$ are not necessarily simple positive coroots of G, on $X^{\mathfrak{B}(\check{\lambda})} = \prod_j X^{(n_j)}$ we get $\boxtimes_j (\check{\mathfrak{n}}^{\check{\lambda}_j})^{(n_j)}$ instead of $\overline{\mathbb{Q}}_\ell$ in (2). With this correction the isomorphism $\mathfrak{M}^{\check{\lambda}} \cong \mathfrak{U}(\check{\mathfrak{n}})^{\check{\lambda}}$ should be canonical.

Note that $U(\check{\mathfrak{n}})$ has a filtration $0 = F_0 \subset F_1 \subset \ldots$ with $F_n/F_{n-1} = \operatorname{Sym}^n \check{\mathfrak{n}}$. This filtration is compatible with the coalgebra structure on $U(\check{\mathfrak{n}})$. Namely, Δ $(F_n) \subset \sum_{i_1+i_2=n} F_{i_1} \otimes F_{i_n} \subset U(\check{\mathfrak{n}}) \otimes U(\check{\mathfrak{n}})$. For any $\check{\lambda} \in \check{\Lambda}$ this filtration induces one on $U(\check{\mathfrak{n}})^{\check{\lambda}}$.

EXAMPLE: take $\check{\lambda} = \check{\alpha}_1 + \check{\alpha}_2$, where $\check{\alpha}_i$ are simple coroots of G and assume $\check{\lambda}$ is a positive coroot. We have $U^{\check{\lambda}} = \mathfrak{n}_{\check{\lambda}} + (\mathfrak{n}_{\check{\alpha}_1} \otimes \mathfrak{n}_{\check{\alpha}_2})$. Let $I = \{1, 2\}$, and $\check{\lambda}_I : I \to \check{\Lambda}_*^{pos}$ take values $\check{\alpha}_i$. The corresponding complex B_{XI} on X^I is as follows. The corresponding part of the Chevalley complex on X^2 is $j_*j^*(\mathfrak{n}_{\check{\alpha}_1}^* \boxtimes \mathfrak{n}_{\check{\alpha}_2}^*) \to \Delta_* (U^{\check{\lambda}})^*$ placed in degrees -2, -1. It is canonically isomorphic to a direct sum

$$(\mathfrak{n}^*_{\check{lpha}_1} \boxtimes \mathfrak{n}^*_{\check{lpha}_2}[2]) \oplus \bigtriangleup_* \mathfrak{n}^*_{\check{\lambda}}[1]$$

So, $B_{X^{\tilde{\lambda}}} = (\mathfrak{n}_{\check{\alpha}_1}^* \boxtimes \mathfrak{n}_{\check{\alpha}_2}^*[2]) \oplus \bigtriangleup_* \mathfrak{n}_{\check{\lambda}}^*[1]$ as a constant complex on $X^2 = X^{\check{\lambda}}$, and

$$\mathbb{D}B_{X^{\check{\lambda}}} \widetilde{\to} (\mathfrak{n}_{\check{\alpha}_1} \boxtimes \mathfrak{n}_{\check{\alpha}_2}) \oplus \bigtriangleup_* \mathfrak{n}_{\check{\lambda}}$$

canonically.

1.0.13. For Cor. 4.5. Recall that for $F \in D^b(S)$ its image in the Grothendieck group of perverse sheaves on S is given by $\sum_i (-1)^i [\mathrm{H}^i(F)]$, where $\mathrm{H}^i(F)$ denotes the *i*-th perverse cohomology sheaf. In the proof of Cor. 4.5 the first step is to note that

$$[\mathfrak{T} \star \mathrm{IC}_{\mathrm{Bun}_{B}^{\tilde{\mu}+\tilde{\lambda}}}] = \sum_{\check{\lambda}' \in \check{\Lambda}^{pos}} [\mathfrak{T} \star \mathbb{D}\mathfrak{U}(\check{\mathfrak{n}}_{X})^{\check{\lambda}'} \star j_{!} \mathrm{IC}_{\mathrm{Bun}_{B}^{\tilde{\mu}+\check{\lambda}+\check{\lambda}'}}]$$

They then use the fact that $[\mathbb{D}\mathfrak{U}(\check{\mathfrak{n}}_X)^{\check{\lambda}}] = [\mathfrak{U}(\check{\mathfrak{n}}_X)^{\check{\lambda}}]$ is the Grothendieck group of $X^{\check{\lambda}}$, this is evident for $\mathcal{M}^{\check{\lambda}}$. This is unfortunate use, as this means that we identify $\check{\mathfrak{n}}_{\check{\alpha}}$ with $\check{\mathfrak{n}}_{\check{\alpha}}^*$ for each positive coroot $\check{\alpha}$, which we tried not to do before! In their Section 6.4, which they refer to, a correction formula is proved.

1.0.14. For the proof of Cor. 4.6. For any $\check{\lambda} \in \check{\Lambda}^{pos}$, $\check{\mu} \in \check{\Lambda}$ we have $\overline{\operatorname{Bun}}_B^{\check{\mu},\leq\check{\lambda}}$ defined in their proof of Cor. 4.6. By Cor. 4.5, in the Groth. group of perverse sheaves on $\overline{\operatorname{Bun}}_B^{\check{\mu},\leq\check{\lambda}}$ we have

$$[j_! \operatorname{IC}_{\operatorname{Bun}_B^{\check{\mu}}}] = \sum_{0 \le \check{\lambda}' \le \check{\lambda}} [\Omega(\check{\mathfrak{n}}_X)^{-\check{\lambda}'} \star \operatorname{IC}_{\overline{\operatorname{Bun}}_B^{\check{\mu}+\check{\lambda}'}}]$$

In this group the LHS is a sum of irreducible perverse sheaves with some nonnegative coefficients, and the RHS is also a sum of some irreducible perverse sheaves with some nonnegative coefficients. So, this equality says that there are filtrations on perverse sheaves $j_! \operatorname{IC}_{\operatorname{Bun}_B^{\tilde{\mu}}}$ and on $\bigoplus_{0 \leq \tilde{\lambda}' \leq \tilde{\lambda}} \Omega(\check{\mathfrak{n}}_X)^{-\tilde{\lambda}'} * \operatorname{IC}_{\operatorname{Bun}_B^{\tilde{\mu}+\tilde{\lambda}'}}$ such that their gr are isomorphic! We want to show that

e want to show that

$$[h^{0}i^{!}_{\check{\lambda}}j_{!}\operatorname{IC}_{\operatorname{Bun}_{B}^{\check{\mu}}}] = [\Omega(\check{\mathfrak{n}}_{X})^{-\lambda} \boxtimes \operatorname{IC}_{\overline{\operatorname{Bun}}_{B}^{\check{\mu}+\check{\lambda}}}]$$

in the Grothendieck group of $X^{\check{\lambda}} \times \operatorname{Bun}_B^{\check{\mu}}$ (misprint in their formulation of Cor.4.6).

For any $0 \leq \check{\lambda}' < \check{\lambda}$ and any irreducible subquotient \mathfrak{T} of $\Omega(\check{\mathfrak{n}}_X)^{-\check{\lambda}'}$ the complex

$$i^!_{\check{\lambda}}(\mathfrak{T}\star\mathrm{IC}_{\overline{\operatorname{Bun}}^{\check{\mu}+\check{\lambda}'}_B})$$

is placed in perverse degrees > 0. Indeed, $\mathfrak{T} \star \mathrm{IC}_{\overline{\mathrm{Bun}}_B^{\tilde{\mu}+\tilde{\lambda}'}}$ is the intermediate extension from $X^{\check{\lambda}'} \times \mathrm{Bun}_B^{\check{\mu}+\check{\lambda}'}$. So, because of the factorization property, it suffices to show that for any $0 \leq \check{\lambda}' < \check{\lambda}$ and any irreducible subquotient \mathfrak{T} of $\Omega(\check{\mathfrak{n}}_X)^{-\check{\lambda}'}$, any exact sequence of perverse sheaves on $\overline{\mathrm{Bun}}_B^{\check{\mu},\leq\check{\lambda}}$

(3)
$$0 \to \mathfrak{T} \star \operatorname{IC}_{\overline{\operatorname{Bun}}_B^{\check{\mu}+\check{\lambda}'}} \to \mathfrak{T}' \to i_{\check{\lambda}!}(\Delta_! \operatorname{IC}_X \boxtimes \operatorname{IC}_{\operatorname{Bun}_B^{\check{\mu}+\check{\lambda}}}) \to 0$$

splits. Here $\triangle: X \to X^{\check{\lambda}}$ is the diagonal. The cartesian square

$$\begin{array}{cccc} X^{\check{\lambda}'} \times \overline{\operatorname{Bun}}_B^{\check{\mu}+\check{\lambda}'} & \to & \overline{\operatorname{Bun}}_B^{\check{\mu},\leq\check{\lambda}} \\ & \uparrow^{\operatorname{id}} \times i_{\check{\lambda}-\check{\lambda}'} & & \uparrow^{i_{\check{\lambda}}} \\ X^{\check{\lambda}'} \times X^{\check{\lambda}-\check{\lambda}'} \times \operatorname{Bun}_B^{\check{\mu}+\check{\lambda}} & \to & X^{\check{\lambda}} \times \operatorname{Bun}_B^{\check{\mu}+\check{\lambda}} \end{array}$$

gives $i_{\tilde{\lambda}}^{!}(\mathfrak{T} \star \mathrm{IC}_{\overline{\mathrm{Bun}}_{B}^{\tilde{\mu}+\tilde{\lambda}'}}) \xrightarrow{\sim} (\mathfrak{T} \star \mathfrak{U}(\check{\mathfrak{n}}_{X})^{\tilde{\lambda}-\tilde{\lambda}'}) \boxtimes \mathrm{IC}_{\overline{\mathrm{Bun}}_{B}^{\tilde{\mu}+\tilde{\lambda}}}$. To show that (3) is trivial it suffices to check that $\Delta^{!}(\mathfrak{T} \star \mathfrak{U}(\check{\mathfrak{n}}_{X})^{\tilde{\lambda}-\tilde{\lambda}'})$ is placed in perverse degrees ≥ 2 . The latter property is easy to see, because $\Delta^{!} \mathfrak{U}(\check{\mathfrak{n}}_{X})^{\tilde{\lambda}-\tilde{\lambda}'}$ is placed in perverse degrees ≥ 1 .

Another proof in the simplest case $\lambda = \check{\alpha}$ a simple coroot: we have an exact sequence of perverse sheaves

$$0 \to \mathbb{D}\mathfrak{U}(\check{\mathfrak{n}})^{\check{\alpha}} \boxtimes \mathrm{IC}_{\mathrm{Bun}_{B}^{\check{\mu}+\check{\alpha}}}[-1] \to j_! \mathrm{IC}_{\mathrm{Bun}_{B}^{\check{\mu}}} \to \mathrm{IC}_{\overline{\mathrm{Bun}}_{B}^{\check{\mu}}} \to 0$$

on $\overline{\operatorname{Bun}}_B^{\check{\mu},\leq\check{\alpha}}$. So, $h^0 i^!_{\check{\alpha}} j_! \operatorname{IC}_{\operatorname{Bun}_B^{\check{\mu}}} \xrightarrow{\sim} \Omega^{-\check{\alpha}} \boxtimes \operatorname{IC}_{\operatorname{Bun}_B^{\check{\mu}+\check{\alpha}}}$ over $X^{\check{\alpha}} \times \operatorname{Bun}_B^{\check{\mu}+\check{\alpha}}$. Here $\Omega^{-\check{\alpha}} = \check{\mathfrak{n}}_{\check{\alpha}}^*[1]$ on $X = X^{\check{\alpha}}$.

Remark: an analog of Cor. 4.6 holds for Zastava spaces.

1.0.15. In the first displayed formula on p. 1813 the parentheses are not correct, this is a misprint. It should be $\bigotimes_{i \in I} (\wedge^{(n_i)} \check{\mathfrak{n}}^*_{\check{\alpha}_i, X})[n_i]$ over $\mathring{X}^{\check{\lambda}}$.

Lm.4.8: if $C^{\bullet}(\check{\mathfrak{n}})^{-\check{\lambda}}$ is the $-\check{\lambda}$ -component of the costandard complex then for the diagonal $\Delta: X \to X^{\check{\lambda}}$ one has $\Delta^! \Omega(\check{\mathfrak{n}}_X)^{-\check{\lambda}} \cong C^{\bullet}(\check{\mathfrak{n}})^{-\check{\lambda}}[2]$ on X. So, indeed the proof of Lm.4.8 reduces to the fact that $C^{\bullet}(\check{\mathfrak{n}})^{-\check{\lambda}}$ has no cohomologies in degrees ≤ 1 . This is

true, because the image of $[.,.]: \wedge^{2} \check{\mathbf{n}} \to \check{\mathbf{n}}$ is the direct sum $\bigoplus_{\check{\alpha}} \check{\mathbf{n}}_{\check{\alpha}}$ over all nonsimple positive coroots $\check{\alpha}$ of G. So, $(\check{\mathbf{n}}^*)^{-\check{\lambda}} = 0$ for $\check{\lambda} \in \check{\Lambda}^{pos}$, which is not a simple coroot.

1.0.16. Recall that we know a filtration on $\Upsilon^{\check{\lambda}}$, hence also on $\Omega(\check{\mathfrak{n}})^{\check{\lambda}}$ given in their Sect. 3.3. I wonder if each associated graded perverse sheaf

(4)
$$\star (\wedge^{(n_k)} E^{\dot{\alpha}}_{\check{T}})[j]$$

for this filtration is irreducible.

For Sect. 4.10. If λ is not a positive coroot then each perverse sheaf (4) is the intermediate extension from the image of $(\prod_k X^{n_k \check{\alpha}_k})_{disj} \to X^{\check{\lambda}}$. So, $\Omega(\check{\mathfrak{n}})^{-\check{\lambda}}$ has no irreducible subquotients, which are extensions by zero from the diagonal $\Delta: X \hookrightarrow X^{\check{\lambda}}$.

Explanation for *Case 2.* If $\check{\lambda} = \check{\alpha}$ is a positive coroot then $\triangle_! (\check{\mathfrak{n}}^{\check{\alpha}})^*[1]$ is a unique irreducible subquotient (actually, quotient) of $\Omega(\check{\mathfrak{n}})^{-\check{\lambda}}$, which is the extension by zero under \triangle . Moreover, by the induction hypothesis, $\Omega(\check{\mathfrak{n}})^{-\check{\lambda}} \to h^0 i_{\check{\lambda}}^! j_! \operatorname{IC}_{\operatorname{Bun}_B^{\check{\mu}}}$ is an isomorphism over $X^{\check{\lambda}} - X$. So, if $\Omega(\check{\mathfrak{n}})^{-\check{\lambda}} \boxtimes \operatorname{IC}_{\operatorname{Bun}_B^{\check{\mu}+\check{\lambda}}} \to \mathcal{T}$ is not surjective then \mathcal{T} is given by the exact sequence

(5)
$$0 \to \Omega(\check{\mathfrak{n}})^{-\check{\lambda}} \boxtimes \mathrm{IC}_{\mathrm{Bun}_{B}^{\check{\mu}+\check{\lambda}}} \to \mathfrak{T} \to \Delta_{!} \mathrm{IC}_{X} \boxtimes \mathrm{IC}_{\mathrm{Bun}_{B}^{\check{\mu}+\check{\lambda}}}$$

If Y, Z are schemes, $F_i \in D(Y), G_i \in D(Z)$ then

 $\operatorname{R}\!\mathcal{H}\!\mathit{om}(F_1\boxtimes G_1,F_2\boxtimes G_2) \,\widetilde{\to}\, \operatorname{R}\!\mathcal{H}\!\mathit{om}(F_1,F_2)\boxtimes\operatorname{R}\!\mathcal{H}\!\mathit{om}(G_1,G_2)$

Since $\operatorname{Hom}_{X^{\tilde{\lambda}}}(\Delta_{!} \operatorname{IC}_{X}, \Omega(\check{\mathfrak{n}})^{-\check{\lambda}}) = 0$, to show that the above sequence splits it suffices to prove their Lemma 4.11. Since the sequence (5) splits, we see that $\Delta_{!} \operatorname{IC}_{X} \boxtimes \operatorname{IC}_{\operatorname{Bun}_{B}^{\check{\mu}+\check{\lambda}}}$ would be a subsheaf of $h^{0}i_{\check{\lambda}}^{!}j_{!}\operatorname{IC}_{\operatorname{Bun}_{B}^{\check{\mu}}}$. This contradicts Pp. 4.9.

For the proof of their Lemma 4.11 recall that $\Delta^! \Omega(\check{\mathfrak{n}}_X)^{-\check{\lambda}} \cong C^{\bullet}(\check{\mathfrak{n}})^{-\check{\lambda}}[2]$ on X. We must show that $\mathrm{H}^1(X, C^{\bullet}(\check{\mathfrak{n}})^{-\check{\lambda}}[1]) = 0$. We may assume $\check{\lambda} = \check{\alpha}$ is a positive coroot of G, which is not simple. Then the complex on X that we have to integrate is $h^2(C^{\bullet}(\check{\mathfrak{n}}))^{-\check{\lambda}}$. That is, we must show that $\mathrm{H}^0(X, h^2(C^{\bullet}(\check{\mathfrak{n}}))^{-\check{\lambda}}) = 0$, which means simply that $h^2(C^{\bullet}(\check{\mathfrak{n}}))^{-\check{\lambda}} = 0$. By definition, $h^2(C^{\bullet}(\check{\mathfrak{n}})) = \mathrm{H}^2(\check{\mathfrak{n}}, \overline{\mathbb{Q}}_{\ell})$.

1.0.17. For 5.4. If $h^0 i^!_{\check{\lambda}} j_! \operatorname{IC}_{\operatorname{Bun}_B^{\check{\mu}}}$ has a subsheaf, which is the extension by zero from $\triangle(X) \times \operatorname{Bun}_B^{\check{\mu}+\check{\lambda}}$ then $\check{\lambda}$ is a positive coroot of G, and this subsheaf is $\triangle_! \operatorname{IC}_X \boxtimes \operatorname{IC}_{\operatorname{Bun}_B^{\check{\mu}+\check{\lambda}}}$.

Let $\check{\lambda} = \check{\alpha}$ be a positive coroot of G, not a simple coroot. Then there are positive coroots $\check{\beta}, \check{\gamma}$ of G such that $\check{\lambda} = \check{\beta} + \check{\gamma}$, and $0 \neq [x_{\check{\beta}}, x_{\check{\gamma}}] \in \check{\mathfrak{n}}_{\check{\gamma}}$ for the corresponding nonzero root vectors. Their perverse sheaf \mathscr{F}'_1 is indeed a quotient of

$$\bar{H} := h^0 i^!_{\tilde{\lambda}} j_! \operatorname{IC}_{\operatorname{Bun}_B^{\tilde{\mu}}} / (\Delta_! \operatorname{IC}_X \boxtimes \operatorname{IC}_{\operatorname{Bun}_B^{\tilde{\mu} + \tilde{\lambda}}})$$

and not just a subquotient, because over $X^{\check{\lambda}} - X$ the sheaf $\Omega(\check{\mathfrak{n}})^{-\check{\lambda}}$ has no perverse subsheaves supported on the diagonal divisor.

Their \mathcal{F}' on p. 1816 is defined as the perverse sheaf on $\overline{\operatorname{Bun}}_B^{\check{\mu},\leq\check{\alpha}}$, the quotient of $j_!\operatorname{IC}_{\operatorname{Bun}_B^{\check{\mu}}}|_{\overline{\operatorname{Bun}}_B^{\check{\mu},\leq\check{\alpha}}}$ by H. Here $H = \operatorname{Ker}(\bar{H} \to \mathcal{F}'_1)$. So, $\mathcal{F}'_1 \subset \mathcal{F}'$ is a perverse subsheaf.

To see which irreducible subquotients \mathcal{E} of $j_! \operatorname{IC}_{\operatorname{Bun}_B^{\check{\mu}}} |_{\overline{\operatorname{Bun}}_B^{\check{\mu}, \leq \check{\alpha}}}$ could admit a nontrivial extension $0 \to \mathcal{F}'_1 \to ? \to \mathcal{E} \to 0$, let $0 \leq \check{\tau} < \check{\alpha}$. We have a cartesian square

$$\begin{array}{cccc} X^{\check{\tau}} \times \overline{\operatorname{Bun}}_{B}^{\check{\mu}+\check{\tau}} & \to & \overline{\operatorname{Bun}}_{B}^{\check{\mu},\leq\check{\alpha}} \\ \uparrow & & \uparrow \\ X^{\check{\tau}} \times X^{\check{\alpha}-\check{\tau}} \times \operatorname{Bun}_{B}^{\check{\mu}+\check{\alpha}} & \to & X^{\check{\alpha}} \times \overline{\operatorname{Bun}}_{B}^{\check{\mu}+\check{\alpha}} \end{array}$$

Recall that $i^*_{\check{\alpha}-\check{\tau}} \operatorname{IC}_{\overline{\operatorname{Bun}}_B^{\check{\mu}+\check{\tau}}} \xrightarrow{\sim} \mathbb{D}\mathfrak{U}(\check{\mathfrak{n}}_X)^{\check{\alpha}-\check{\tau}} \boxtimes \operatorname{IC}_{\operatorname{Bun}_B^{\check{\mu}+\check{\alpha}}}$ by Prop. 4.4. If \mathcal{E}' is an irreducible perverse sheaf on $X^{\check{\tau}}$ appearing as a subquotient of $\Omega(\check{\mathfrak{n}})^{-\check{\tau}}$, then this could happen if

$$\operatorname{Ext}^{1}_{X^{\check{\alpha}}}(\mathcal{E}' \star \mathbb{D}\mathfrak{U}(\check{\mathfrak{n}}_{X})^{\check{\alpha}-\check{\tau}}, \mathcal{P}) \neq 0,$$

where \mathcal{P} is the direct image of $\mathrm{IC}_X \boxtimes \mathrm{IC}_X$ under $\xi : X^2 \to X^{\check{\alpha}}, (x, y) \mapsto \check{\beta}x + \check{\gamma}y$. Note that $\check{\beta} \neq \check{\gamma}$, so ξ is a closed immersion.

First, they claim that for $\check{\tau} = 0$ this is impossible. Indeed, for a partition $\mathfrak{B}(\check{\alpha})$ we have the map $i_{\mathfrak{B}(\check{\alpha})} : X^{\mathfrak{B}(\check{\alpha})} \to X^{\check{\alpha}}$ and the direct summand $i_{\mathfrak{B}(\check{\alpha})!} \overline{\mathbb{Q}}_{\ell}[2 \mid \mathfrak{B}(\check{\alpha}) \mid]$ in $\mathbb{D}\mathfrak{U}(\check{\mathfrak{n}}_X)^{\check{\alpha}}$. The complex $\mathbb{R}\mathcal{H}om(i_{\mathfrak{B}(\check{\alpha})!}\overline{\mathbb{Q}}_{\ell}[2 \mid \mathfrak{B}(\check{\alpha}) \mid], \xi_! \operatorname{IC})$ is placed in usual degrees $\geq 2 \mid \mathfrak{B}(\check{\alpha}) \mid -2$. So, we could possible have $\operatorname{Ext}^1 \neq 0$ only for the trivial partition $\mathfrak{B}(\check{\alpha}) = \check{\alpha}$. In this case we get $\operatorname{RHom}_{X^2}(\bigtriangleup_! \overline{\mathbb{Q}}_{\ell}[2], \operatorname{IC}) \xrightarrow{\sim} \operatorname{R}\Gamma(X, \overline{\mathbb{Q}}_{\ell}[-2])$, it has no Ext^1 either.

Let now $\check{\tau} > 0$. Assume that \mathcal{E}' comes from the decimpsotion $\mathfrak{B}(\check{\tau}) = \sum_k n_k \check{\alpha}_k$, where $\check{\alpha}_k$ are positive coroots of G, so $|\mathfrak{B}(\check{\tau})| = \sum_k n_k$. Then

 $\mathcal{RH}om(\mathcal{E}' \boxtimes i_{\mathfrak{B}(\check{\alpha}-\check{\tau})!} \bar{\mathbb{Q}}_{\ell}[2 \mid \mathfrak{B}(\check{\alpha}-\check{\tau}) \mid], \mathcal{P})$

is placed in usual degrees $\geq \mathfrak{B}(\check{\alpha} - \check{\tau}) + |\mathfrak{B}(\check{\tau})| - 2$. So, Ext¹ could be nonzero only if both $\check{\alpha} - \check{\tau}, \check{\tau}$ are positive coroots of G and $\mathfrak{B}(\check{\alpha} - \check{\tau}) = \check{\alpha} - \check{\tau}, \mathfrak{B}(\check{\tau}) = \check{\tau}$. Moreover, we must have $\check{\tau} = \check{\beta}$ or $\check{\tau} = \check{\gamma}$. In both cases the corresponding space Ext¹ is 1-dimensional.

1.0.18. Recall that $\mathfrak{U}(\check{\mathfrak{n}})^{\check{\lambda}} = \bigoplus_{\mathfrak{B}(\check{\lambda})} i_{\mathfrak{B}(\check{\lambda})!} \overline{\mathbb{Q}}_{\ell}$, but this isomorphism is not canonical!!! For $\check{\lambda}_i \in \check{\Lambda}^{pos}$ two partitions $\mathfrak{B}(\check{\lambda}_i)$ for i = 1, 2 give rise to their sum $\mathfrak{B}(\check{\lambda}_1) + \mathfrak{B}(\check{\lambda}_2)$, which is a partition $\mathfrak{B}(\check{\lambda}_1 + \check{\lambda}_2)$ of $\check{\lambda}_1 + \check{\lambda}_2$ and a diagram

$$\begin{array}{cccc} X^{\check{\lambda}_1} \times X^{\check{\lambda}_2} & \to & X^{\check{\lambda}_1 + \check{\lambda}_2} \\ \uparrow & & \uparrow \\ X^{\mathfrak{B}(\check{\lambda}_1)} \times X^{\mathfrak{B}(\check{\lambda}_2)} & \to & X^{\mathfrak{B}(\check{\lambda}_1) + \mathfrak{B}(\check{\lambda}_2)} \end{array}$$

This gives a map $\mathcal{M}^{\check{\lambda}_1} \star \mathcal{M}^{\check{\lambda}_2} \to \mathcal{M}^{\check{\lambda}_1 + \check{\lambda}_2}$, but it is different from the map denoted (5.5) in their Sect. 5.5! Indeed, the map $\mathfrak{U}(\check{\mathfrak{n}})^{\check{\lambda}_1} \star \mathfrak{U}(\check{\mathfrak{n}})^{\check{\lambda}_2} \to \mathfrak{U}(\check{\mathfrak{n}})^{\check{\lambda}_1 + \check{\lambda}_2}$ is not commutative, as the product in $U(\check{\mathfrak{n}})$ is not commutative. The map denoted (5.5) in their paper is constructed as in ([8], Section 1.3.58).

I have given a direct proof of ([3], Theorem 5.6) in ([9], Proposition 1.1.1).

1.0.19. If \mathcal{G} is a sheaf on a scheme Y with a filtration $\mathcal{G}^1 \subset \mathcal{G}^2 \subset \mathcal{G}^3 = \mathcal{G}$ with $\mathcal{G}_i = \mathcal{G}^i/\mathcal{G}^{i-1}$, we get natural maps $\mathcal{G}_2 \to \mathcal{G}_1[1], \mathcal{G}_3 \to \mathcal{G}_2[1]$ on X. Their composition is a map $\mathcal{G}_3 \to \mathcal{G}_1[2]$, it vanishes (by [7], Remark 1.2.2.3). This is used in their Section 5.7. There is a sign issue, I think, because the natural isomorphism $\mathbb{C}_X^{\check{\beta}}[1] \star \mathbb{C}_X^{\check{\gamma}}[1] \to \mathbb{C}_X^{\check{\gamma}}[1] \star \mathbb{C}_X^{\check{\beta}}[1]$ contains the sign, which appears when we permute $\check{\beta}$ and $\check{\gamma}$.

1.0.20. For 6.2. The differential on $\mathfrak{U}(\check{\mathfrak{n}})^{\bullet,\check{\lambda}}$ is explained, I think, by ([5], Proposition 4.4.1). This is the $\check{\lambda}$ -component of the tensor algebra of Υ in the tensor category $D(\sqcup_{\check{\lambda}\in\check{\Lambda}^{pos}}X^{\check{\lambda}})$. Namely, the fact that $d^2 = 0$ comes from the associativity of the product on $\Omega(\check{\mathfrak{n}})$.

Namely, let $E = \text{Sym}(\check{\mathfrak{n}}^*[-1])$ be the costandard complex of $\check{\mathfrak{n}}$. This is a finitedimensional algebra, so we get the complex in the category of complexes (double complex)

(6)
$$E^* \xrightarrow{d} E^* \otimes E^* \xrightarrow{d} E^* \otimes E^* \otimes E^* \xrightarrow{d} \dots,$$

here $(E^*)^{\otimes m}$ is placed in 'horizontal' degree m, the horizontal differential d is an odd derivation of degree 1. Here $d: E^* \to E^* \otimes E^*$ is the dual of the product map $E \otimes E \to E$ (giving the structure of a DGA on E), and it extends uniquely to an odd derivation dof degree 1. The 'vertical differential' is the usual differential on $(E^*)^{\otimes m}$, we have one because E^* is the standard complex of \check{n} . For example, $d: E^* \otimes E^* \to E^* \otimes E^* \otimes E^*$ is given by $d(v_1 \otimes v_2) = (dv_1) \otimes v_2 - v_1 \otimes (dv_2)$.

Recall further that E^* is Λ^{pos} -graded and

$$((E^*)^{\otimes m})^{\check{\lambda}} = \bigoplus_{\check{\lambda}_i \in \check{\Lambda}^{pos}, \sum \check{\lambda}_i = \check{\lambda}} (E^*)^{\check{\lambda}_1} \otimes \ldots \otimes (E^*)^{\check{\lambda}_m}$$

We first pass to the λ -component in the above complex. If we further keep only the summands with $\lambda_i \neq 0$, we get a quotient complex. The reason is that in the dual complex $E^{-\lambda} \leftarrow (E \otimes E)^{-\lambda} \leftarrow \ldots$ we have a subcomplex whose *m*-th term is

$$\bigoplus_{\check{\lambda}_i\neq 0, \sum \check{\lambda}_i=\check{\lambda}} E^{-\check{\lambda}_1} \otimes \ldots \otimes E^{-\check{\lambda}_n}$$

Finally, we got a double complex, let us denote it

(7)
$$(E^*)^{\check{\lambda}}_{\neq 0} \xrightarrow{d} (E^* \otimes E^*)^{\check{\lambda}}_{\neq 0} \xrightarrow{d} (E^* \otimes E^* \otimes E^*)^{\check{\lambda}}_{\neq 0} \xrightarrow{d} \dots,$$

The 0-th term of the total complex of this double complex is

(8)
$$\bigoplus_{\substack{m\geq 0\\ \lambda_i\neq 0, \sum_{i=1}^m \check{\lambda}_i=\check{\lambda}}} \check{\mathfrak{n}}^{\check{\lambda}_1} \otimes \ldots \otimes \check{\mathfrak{n}}^{\check{\lambda}_m}$$

Indeed, it is like this

$$\begin{array}{ccccccccc} \check{\mathfrak{n}} & \to & 0 \\ \uparrow & & \uparrow \\ \wedge^2 \check{\mathfrak{n}} & \to & \check{\mathfrak{n}} \otimes \check{\mathfrak{n}} & \to & 0 \\ & & & \uparrow \\ & & & \check{\mathfrak{n}} \otimes \check{\mathfrak{n}} \otimes \check{\mathfrak{n}} \end{array}$$

(where we further take λ -component and pass to the part $\neq 0$). Now (8) maps naturally to $U(\check{\mathbf{n}})^{\check{\lambda}}$ surjectively, and this yields a quasi-isomorphism between the total complex of (7) and $U(\check{\mathbf{n}})^{\check{\lambda}}$.

Note that (7) is the dual of some version of a reduced bar complex from ([5], Section 4.5).

We have similar picture for the complex $\mathfrak{U}(\check{\mathfrak{n}})^{\bullet,\check{\lambda}}$. I think we may first define for $\check{\lambda} \neq 0$ the complex

$$\overset{ ~}{\Upsilon}{}^{\check{\lambda}} \to (\Upsilon\star\Upsilon)^{\check{\lambda}} \to (\Upsilon\star\Upsilon\star\Upsilon)^{\check{\lambda}} \to \dots$$

of perverse sheaves on X^{λ} coming as above from the algebra structure on the costandard complex. Here

$$(\Upsilon^{\star m})^{\check{\lambda}} = \bigoplus_{\check{\lambda}_i \in \check{\Lambda}^{pos}, \sum \check{\lambda}_i = \check{\lambda}} \Upsilon^{\check{\lambda}_1} \star \ldots \star \Upsilon^{\check{\lambda}_m}$$

and further pass to the quotient complex with terms with $\lambda_i \neq 0$.

Probably, the situation here is as follows. Consider the (double) complex

$$\dots \to E \otimes E \otimes E \xrightarrow{d^*} E \otimes E \xrightarrow{d^*} E$$

dual to (6). Each map in this complex is a morphism of $\check{\Lambda}^{neg}$ -graded DGA (in the category of local systems on X). So, applying our construction from ([8], Section 1.3.53) to this complex, we get a complex in $\mathcal{F}A(X)_{\check{\Lambda}^{neg}}$. This gives the desired complex $\mathfrak{U}(\check{\mathfrak{n}})^{\bullet,\check{\lambda}}$ on $X^{\check{\lambda}}$.

So, the fact that the total complex of (7) is quasi-isomorphic to $U(\check{\mathfrak{n}})^{\check{\lambda}}$ gives an isomorphism $\mathfrak{U}(\check{\mathfrak{n}})^{\bullet,\check{\lambda}} \xrightarrow{\sim} \mathfrak{U}(\check{\mathfrak{n}})^{\check{\lambda}}$ in $D(X^{\check{\lambda}})$ simply by functoriality! Similarly for their isomorphism (6.3) on p. 1820.

1.0.21. For Sect. 6.4. For $\check{\lambda} = 0$ both $\Upsilon^{\check{\lambda}}$ and $\mathfrak{U}(\check{\mathfrak{n}})^{\bullet,\check{\lambda}}$ are $\overline{\mathbb{Q}}_{\ell}$ on Spec $k = X^0$. So, for any $\check{\lambda} \in \check{\Lambda}^{pos}$

$$Kosz^{\bullet,\check{\lambda},*} = [\Upsilon^{\check{\lambda}} \to \bigoplus_{\substack{\check{\lambda}_1 \neq 0 \\ \check{\lambda}_1 + \check{\lambda}_2 = \check{\lambda}}} \Upsilon^{\check{\lambda}_1} \star \Upsilon^{\check{\lambda}_2} \to \bigoplus_{\substack{\check{\lambda}_1 \neq 0, \check{\lambda}_2 \neq 0 \\ \check{\lambda}_1 + \check{\lambda}_2 + \check{\lambda}_3 = \check{\lambda}}} \Upsilon^{\check{\lambda}_1} \star \Upsilon^{\check{\lambda}_2} \star \Upsilon^{\check{\lambda}_3} \to \ldots]$$

Here $\check{\lambda}_i \in \check{\Lambda}^{pos}$.

Their first idea is that to find a $\check{\Lambda}^{neg}$ -graded resolution of $\bar{\mathbb{Q}}_{\ell}$ by free $R_{E_{\tilde{T}}}$ -modules, we first find a free graded resolution of the graded $C^*_{\bullet}(\check{\mathfrak{n}})$ -module $\bar{\mathbb{Q}}_{\ell}$, here $C^*_{\bullet}(\check{\mathfrak{n}})$ is the costandard complex of $\check{\mathfrak{n}}$ viewed as a $\check{\Lambda}^{neg}$ -graded DGA. But the latter question is standard (at least for usual algebras, as opposed to DGA). Namely, there is the reduced bar resolution (or a bar resolution), see [6],[10]. (In [6] there is a mistake corrected in [10]).

They actually use the reduced bar resolution of $\overline{\mathbb{Q}}_{\ell}$ by graded $C^*_{\bullet}(\check{\mathfrak{n}})$ -modules, I think. Recall that $E = \operatorname{Sym}(\check{\mathfrak{n}}^*[-1])$ is $\check{\Lambda}^{neg}$ -graded. Set $E_+ = \bigoplus_{0 \neq \check{\lambda} \in \check{\Lambda}^{pos}} E^{-\check{\lambda}}$. Then the reduced bar resolution of $\overline{\mathbb{Q}}_{\ell}$ by right *E*-modules is

reduced bar resolution of Q_ℓ by right *D*-modules is

(9)
$$\dots \to E_+^{\otimes 2} \otimes E \to E_+ \otimes E \to E \to \mathbb{Q}_\ell$$

where we will further take $-\lambda$ -component. This complex should correspond to their $Kosz^{\bullet,-\lambda}$.

The differential in (9) is given by

$$d(a_0 \otimes \ldots \otimes a_i) = a_0 a_1 \otimes a_2 \otimes \ldots \otimes a_i + \sum_{j=1}^{i-1} (-1)^j a_0 \otimes \ldots \otimes (a_j a_{j+1}) \otimes \ldots \otimes a_i$$

The homotopy $s: E_+^{\otimes i} \otimes E \to E_+^{\otimes i+1} \otimes E$ for (9) is given as follows. The map $s: \overline{\mathbb{Q}}_{\ell} \to E$ is the natural inclusion, and $s: E_+^{\otimes i+1} \otimes E \to E_+^{\otimes i+2} \otimes E$ is given by

$$s(a_0 \otimes \ldots \otimes a_i) = a_0 \otimes \ldots \otimes a_{i-1} \otimes (a_i - \epsilon(a_i)) \otimes 1,$$

where ϵ is the counit.

I think we should think of the collection $Kosz^{\bullet,-\check{\lambda}}$ as a right factorization module over the factorization algebra $\Omega(\check{\mathfrak{n}})^{-\check{\lambda}}$.

1.0.22. For $0 \neq \check{\lambda} \in \check{\Lambda}^{pos}$ the acyclicity of $Kosz^{\bullet,-\check{\lambda}}$ implies the fact used in the proof of Cor. 4.5 (and referred to in their Sect. 6.4).

If $0 \neq \check{\lambda} \in \check{\Lambda}^{pos}$ then $\mathfrak{U}(\check{\mathfrak{n}})^{0,\check{\lambda}} = 0$. For $\check{\lambda} = 0$ we get $\mathfrak{U}(\check{\mathfrak{n}})^{0,\check{\lambda}} = \overline{\mathbb{Q}}_{\ell}$ on Spec $k = X^{\check{\lambda}}$. This is not precised in the paper.

In Sect. 6.4 they define the complex $K(E_{\check{T}})^{\bullet,-\check{\lambda}}$. It is placed in cohomological degrees ≥ 0 , and the differential on it is obtained from the differential of $Kosz(E_{\check{T}})^{\bullet,-\check{\lambda}}$ by applying $\mathrm{R}\Gamma(X^{\check{\lambda}},?)$ term-wise.

1.0.23. In $Kosz_{\overline{\operatorname{Bun}}_B^{\check{\mu}}}^{\bullet} = \bigoplus_{\check{\lambda}' \in \check{\Lambda}^{pos}} \mathfrak{U}(\check{\mathfrak{n}}_X)^{\bullet,-\check{\lambda}',*} \star j_! \operatorname{IC}_{\operatorname{Bun}_B^{\check{\mu}+\check{\lambda}'}}$ the interaction between various components of the $\check{\Lambda}^{pos}$ -grading comes from the action map given by their formula (4.1) in Th. 4.2. This is a complex of perverse sheaves $[\ldots \to Kosz^{-2} \to Kosz^{-1} \to Kosz^{0}]$ on $\overline{\operatorname{Bun}}_B^{\check{\mu}}$, and we have a map of perverse sheaves $Kosz^0 \to \operatorname{IC}_{\overline{\operatorname{Bun}}_B^{\check{\mu}}}$ on $\overline{\operatorname{Bun}}_B^{\check{\mu}}$. Theorem 6.6 claims that it induces a quasi-isomorphism.

This is the usual formula for the Koszul complex, I think.

Let us analyze this complex in the case $G = \operatorname{GL}_2$. Then let $\check{\alpha}$ be the unique positive coroot of G. For $\check{\lambda} = d\check{\alpha}$ we have $\mathfrak{U}(\check{\mathfrak{n}})^{\check{\lambda}}$ is the constant sheaf on $X^{(d)} = X^{\check{\lambda}}$ with fibre $\check{\mathfrak{n}}^{\otimes d}$. We also have $\Upsilon(\check{\mathfrak{n}})^{\check{\lambda}} = (\wedge^{(d)}\check{\mathfrak{n}})[d]$ on $X^{(d)}$. For d > 0 the complex of $\mathfrak{U}(\check{\mathfrak{n}})^{\bullet,\check{\lambda}}$ of perverse sheaves is

$$(\wedge^{(d)}\check{\mathfrak{n}})[d] \to \bigoplus_{\substack{d_i > 0\\ d_1 + d_2 = d}} (\wedge^{(d_1)}\check{\mathfrak{n}} \star \wedge^{(d_2)}\check{\mathfrak{n}})[d] \to \ldots \to (\check{\mathfrak{n}} \star \ldots \star \check{\mathfrak{n}})[d],$$

it placed in degrees $1, 2, \ldots, d$. We view it also as a double complex on $X^{(d)}$, placed in horizontal degrees $1, 2, \ldots, n$, so each term in the above is a "vertical complex". Its total complex is quasi-isomorphic to $\mathfrak{U}(\check{\mathfrak{n}})^{\check{\lambda}}$. The term of the total complex corresponding to the usual degree 0 is then $\check{\mathfrak{n}} \star \ldots \star \check{\mathfrak{n}}$, it maps naturally to $\check{\mathfrak{n}}^{\otimes d}$ and induces the above quasi-isomorphism.

Consider the open substack $\overline{\operatorname{Bun}}_B^{\check{\mu},\leq\alpha}$. Over this stack the complex $\operatorname{Kosz}_{\overline{\operatorname{Bun}}_B^{\check{\mu}}}^{\bullet}$ becomes a direct sum of cohomologically shifted perverse sheaves

$$(\check{\mathfrak{n}}^*[2] \star j_! \operatorname{IC}_{\operatorname{Bun}_B^{\check{\mu}+\check{\alpha}}}) \oplus j_! \operatorname{IC}_{\operatorname{Bun}_B^{\check{\mu}}}$$

placed in perverse degrees -1, 0 (in general in perverse degrees ≤ 0). The differential augments the perverse degrees by 1, so it becomes the complex of perverse sheaves $(\tilde{\mathfrak{n}}^*[1] \star j_! \operatorname{IC}_{\operatorname{Bun}_{R}^{\tilde{\mu}+\tilde{\alpha}}}) \to j_! \operatorname{IC}_{\operatorname{Bun}_{R}^{\tilde{\mu}}}$ placed in horizontal degrees -1, 0. In this case the

differential is precisely the action map

$$\Omega(\check{\mathfrak{n}})^{-\check{\alpha}} \star \mathrm{IC}_{\mathrm{Bun}_{B}^{\check{\mu}+\check{\alpha}}} \to j_{!} \mathrm{IC}_{\mathrm{Bun}_{E}^{\check{\mu}}}$$

We know that by Th. 4.2 the action map induces an isomorphism

$$\Omega(\check{\mathfrak{n}})^{-\check{\alpha}} \star \mathrm{IC}_{\mathrm{Bun}_{B}^{\check{\mu}+\check{\alpha}}} \xrightarrow{\sim} h^{0} i^{!}_{\check{\alpha}} j_{!} \mathrm{IC}_{\mathrm{Bun}_{B}^{\check{\mu}}}$$

So, this complex over $\overline{\operatorname{Bun}}_B^{\check{\mu},\leq\alpha}$ is indeed quasi-isomorphic to $\operatorname{IC}_{\overline{\operatorname{Bun}}_B^{\check{\mu}}}$.

1.0.24. The proof of Th. 6.6 inspires the following.

Question 1. Consider the category \mathcal{C} of collections $F^{\check{\lambda}} \in \overline{\operatorname{Bun}}_B^{-\check{\lambda}}$ indexed by $\check{\lambda} \in \check{\Lambda}^{pos}$ together with a factorization structure of the collection $\tilde{F}^{\check{\lambda}}$. Here $\tilde{F}^{\check{\lambda}} = f_{\check{\lambda}}^* F^{\check{\lambda}}[\dim, \operatorname{rel} f_{\check{\lambda}}]$, where $f_{\check{\lambda}} : \overline{Z}^{\check{\lambda}} \to \overline{\operatorname{Bun}}_B^{-\check{\lambda}}$ is the projection. Recall that $\overline{Z}^{\check{\lambda}} \subset \overline{\operatorname{Bun}}_B^{-\check{\lambda}} \times_{\operatorname{Bun}_G} \operatorname{Bun}_{N^-}$ is the open substack, the Zastava space. Is this is a reasonable category? What is its structure?

For example, the collection $\operatorname{IC}_{\overline{\operatorname{Bun}}_B^{-\check{\lambda}}}, \check{\lambda} \in \check{\Lambda}^{pos}$ admits a natural factorization structure in the above sense, so becomes an object of \mathcal{C} . Another example, the collection $j_! \operatorname{IC}_{\operatorname{Bun}_B^{-\check{\lambda}}}, \check{\lambda} \in \check{\Lambda}^{pos}$ admits a natural factorization structure in the above sense.

Their Theorem 6.6 gives an example of the collection $Kosz_{\overline{\operatorname{Bun}}_B^{-\check{\lambda}}}^{\bullet}, \check{\lambda} \in \check{\Lambda}^{pos}$, which is also naturally an object of \mathcal{C} .

1.0.25. Question 2. I wonder if the Koszul complex that we got for $\operatorname{IC}_{\overline{\operatorname{Bun}}_B^{\tilde{\mu}}}$ is a particupar case of a general situation. Assume we have a stack Y with a stratification indexed by $\check{\Lambda}^{pos}$ such that if $\check{\nu} \leq \check{\lambda}$ then the stratum $Y^{\check{\lambda}}$ is in the closure of $Y^{\check{\nu}}$. We have the open substack $Y^{\leq \check{\lambda}}$ for any $\check{\lambda}$. Let $i_{\check{\lambda}} : Y^{\check{\lambda}} \hookrightarrow Y$ be the inclusion. Now if we have a complex K on Y, we can consider the graded object

$$\bigoplus_{\check{\lambda}\in\check{\Lambda}^{pos}}i_{\check{\lambda}!}i_{\check{\lambda}}^{*}K$$

How to put a differential on this complex such that the corresponding total complex would be quasi-isomorphic to K? In a special case considered in my Section 1.0.3 we answered this question. Of course, ([7], 1.2.2) is useful here.

1.0.26. The following lemma is implicit in the proof of Prop. 10.3, p. 1842.

Lemma 1.0.27. Let Y be a stack with a stratification indexed by $\check{\Lambda}^{pos}$. Assume for $\check{\mu} \leq \check{\lambda}$, the stratum $Y^{\check{\lambda}}$ is in the closure of the stratum $Y^{\check{\mu}}$. For $\check{\lambda} \in \check{\Lambda}^{pos}$ we get the open substack $Y^{\leq \check{\lambda}} = \bigcup_{\check{\mu} \leq \check{\lambda}} Y^{\check{\mu}}$. Let $i_{\check{\lambda}} : Y^{\check{\lambda}} \to Y$ be the inclusion. Let K be a perverse sheaf on Y, write $K^{\check{\lambda}} = h^0 i_{\check{\lambda}}^! K$. Let $\bar{K}^{\check{\lambda}} = (i_{\check{\lambda}})_{!*} K^{\check{\lambda}}$. Assume K has no perverse quotient sheaves supported on the complement of Y^0 . Assume that for any open substack ${}^0Y \subset Y$ of the form ${}^1Y = \bigcup_{i \in I} Y^{\check{\lambda}_i}$, where I is a finite set, we have

(10)
$$[K] = \sum_{i \in I} [\bar{K}^{\check{\lambda}_i}]$$

in the Grothendieck group of ¹Y. Then K admits a filtration with $grK \xrightarrow{\sim} \bigoplus_{\check{\lambda} \in \check{\Lambda}^{pos}} \bar{K}^{\check{\lambda}}$.

Proof. Let ${}^{0}Y \xrightarrow{j} {}^{1}Y \subset Y$ be open substacks consisting of some strata such that ${}^{1}Y - {}^{0}Y = Y^{\check{\lambda}}$ for some $\check{\lambda} \in \check{\Lambda}^{pos}$. Let $i: Y^{\check{\lambda}} \to {}^{1}Y$ be the inclusion. Assume by induction the above filtration is constructed over ${}^{0}Y$. We have an exact sequence of perverse sheaves $0 \to i_{*}h^{0}(i^{!}K) \to K \to j_{!*}j^{*}K \to 0$ on ${}^{1}Y$. The functor $j_{!*}$ is not exact in general. So, on ${}^{1}Y$ we get a filtration, where some additional summands in grK may appear. The formula (10) shows that no additional summands appear. We constructed the desired filtration on $K \mid_{1Y}$.

The above lemma is applied in Proposition 10.3, p. 1842 for the perverse sheaf $K = j_! \operatorname{IC}_{\operatorname{Bun}_B^{\check{\mu}}}$. The equality in the Grothendieck group needed for the lemma is proved in their Cor. 4.5. So, $j_! \operatorname{IC}_{\operatorname{Bun}_B^{\check{\mu}}}$ admits a filtration by perverse subsheaves with the associated graded pieces

$$(\bar{i}_{\check{\mu}'-\check{\mu}})_!(\Omega(\check{\mathfrak{n}})^{\check{\mu}-\check{\mu}'}\boxtimes \mathrm{IC}_{\overline{\mathrm{Bun}}_B^{\check{\mu}'}})$$

This saves the proof of Th. 10.2.

1.0.28. For 10.9. There is a misprint in the def of $\operatorname{Eis}_{*}^{\check{\mu}}(E_{\check{T}})$. The correct definition is $\mathfrak{p}_{*}(\operatorname{IC}_{\operatorname{Bun}_{B}^{\check{\mu}}} \otimes \mathfrak{q}^{\check{\mu}*} \mathcal{S}(E_{\check{T}}))$. They do not calculate $CT^{\check{\mu}}(\operatorname{\overline{Eis}}^{\check{\mu}}(E_{\check{T}}))$. They only derive Prop. 10.8 from the calculation of $CT^{\check{\mu}}(\operatorname{Eis}_{*}^{\check{\mu}}(E_{\check{T}}))$.

So, in Sect. 10.9 the definition of $\mathcal{Z}_{w}^{\check{\mu},\check{\mu}'}$ is as follows. This is the stack classifying $\mathcal{F}_{B} \in \operatorname{Bun}_{B}^{\check{\mu}'}$ and a section $\sigma: X \to \mathcal{F}_{B} \times^{B} \overline{Fl}_{w}$ such that over the generic point of X, σ hits $\mathcal{F}_{B} \times^{B} Fl_{w}$. Moreover, the second *B*-structure on $\mathcal{F}_{B} \times_{B} G$ is required to be of degree $\check{\mu}$.

Write \mathcal{V}^{λ} for the Weyl module of G, $\mathcal{V}^{\lambda,\geq w}$ be the sum of all subspaces of T-weights $\geq w(\lambda)$. A point of $\mathcal{Z}_{w}^{\check{\mu},\check{\mu}'}$ is rewritten as $\mathcal{F}_{B} \in \operatorname{Bun}_{B}^{\check{\mu}'}$ and a collection of line subbundles $\mathcal{L}^{\lambda} \subset \mathcal{V}_{\mathcal{F}_{B}}^{\lambda,\geq w}$ for $\lambda \in \Lambda^{+}$ with deg $\mathcal{L}^{\lambda} = \langle \lambda, \check{\mu} \rangle$ satisfying the Plucker relations such that for any $\lambda \in \Lambda^{+}$ the composition

$$\mathcal{L}^{\lambda} \to \mathcal{V}_{\mathcal{F}_B}^{\lambda, \geq w} \to (\mathcal{V}^{\lambda, \geq w}/\mathcal{V}^{\lambda, > w})_{\mathcal{F}_B}$$

is injective. So, for $\mathcal{F}_T = \mathcal{F}_B \times_B T$ we get $D \in X^{w(\check{\mu}')-\check{\mu}}$ and a *B*-torsor \mathcal{F}'_B with $\mathcal{F}'_B \times_B G \xrightarrow{\sim} \mathcal{F}_B \times_B G$ and $\mathcal{F}'_B \times_B T \xrightarrow{\sim} \mathcal{F}_T(-D)$.

1.0.29. For the proof of their Prop. 10.10. Recall that $B(B) \times_{B(G)} B(B) \xrightarrow{\sim} B \setminus G/B$ canonically, the orbit corresponding to $w \in W$ is BwB. Let $N_0 \subset N$ be the subgroup whose Lie algebra is the sum of \mathfrak{n}_{α} such that $\alpha \in \Delta^+$, $w\alpha \in \Delta^+$. So, N_0 is the stabilizor of $wB/B \in Fl$ in N. Let $N' \subset N$ be the subgroup whose Lie algebra is the sum of \mathfrak{n}_{α} such that $\alpha \in \Delta^+$, $w\alpha \notin \Delta^+$. Then N' acts simply transitively on $BwB/B = Fl_w$. The stack classifying $\mathcal{F}_B \in \operatorname{Bun}_B^{\check{\mu}'}$ and a global section $X \to \mathcal{F}_B \times_B Fl_w$ becomes the component $\operatorname{Bun}_{T \rtimes N_0}^{\check{\mu}'}$. Indeed, $B \setminus Fl_w$ is the classifying stack $B(T \rtimes N_0)$. This gives the proof of Prop. 10.10 in the case $w(\check{\mu}') = \check{\mu}$. Consider the special case: for any $\alpha \in \Delta^+$ with $w\alpha \in \Delta^+$ assume $\langle \alpha, \check{\mu}' \rangle > 2g - 2$. This assumption garantees that $f : \operatorname{Bun}_{B'}^{\check{\mu}'} \to \operatorname{Bun}_{B}^{\check{\mu}'}$ is smooth (a generalized affine fibration). In this case to prove Pp. 10.10, we my replace $\mathcal{Z}_{w}^{\check{\mu},\check{\mu}'}$ by $\mathcal{Z}_{w}^{\check{\mu},\check{\mu}'} \times_{\operatorname{Bun}_{B'}^{\check{\mu}'}} \operatorname{Bun}_{B'}^{\check{\mu}'}$, and it suffices to describe the direct image with compact supports for the composition

$$\mathcal{Z}^{\check{\mu},\check{\mu}'}_w \times_{\operatorname{Bun}^{\check{\mu}'}_B} \operatorname{Bun}^{\check{\mu}'}_{B'} \to \mathcal{Z}^{\check{\mu},\check{\mu}'}_w \to \operatorname{Bun}^{\check{\mu}}_T \times X^{w(\check{\mu}')-\check{\mu}}$$

The proof in general is reduced to this case, roughly, by some twist, I think.

1.0.30. Consider the situation as in the proof of Proposition 10.10, so we have N' and N_0 as above.

There is a great factorization principle in ([2], Section 2.16). It applies to the stack $N' \setminus \overline{Fl}_w$. That is, the complement of Fl_w in \overline{Fl}_w is indeed given by a finite union of Cartier divisors. Recall that [G, G] is assumed simply-connected. So, we may choose fundamental weights ω_i , *i* runs through the set of vertices of the Dynkin diagram \mathfrak{I} . Then a point of \overline{Fl}_w is completely defined by the lines $\mathcal{L}^{\omega_i} \subset V^{\omega_i,\geq w}$ for $i \in \mathfrak{I}$. So, we get Cartier divisors \mathfrak{T}_i in \overline{Fl}_w given by the property that the composition $\mathcal{L}^{\omega_i} \to V^{\omega_i,\geq w} \to V^{\omega_i,\geq w}/V^{\omega_i,\geq w}$ vanishes.

So, we are led to study the following "w-version of Zastava" for $w \in W$. Let $\check{\mu} \in \check{\Lambda}^{pos}$. Consider the scheme $\mathcal{W}_{w}^{\check{\mu}}$ classifying $(\mathcal{F}_{N'}, D, \sigma)$, where $D \in X^{\check{\mu}}, \mathcal{F}_{N'}$ is a N'-torsor on X, and $\sigma : X \to \mathcal{F}_{N'} \times^{N'} \overline{Fl}_w$ is a global section such that over X - D it hits to Fl_w , and for any $\lambda \in \Lambda^+$ the divisor of zeros of the composition

(11)
$$\mathcal{L}^{\lambda} \to \mathcal{V}^{\lambda, \geq w}_{\mathcal{F}_{N'}} \to (\mathcal{V}^{\lambda, \geq w}/\mathcal{V}^{\lambda, > w})_{\mathcal{F}_{N'}} = 0$$

is $\langle D, \lambda \rangle$. So, on $\mathcal{F}_{N'} \times_{N'} G$ we get a *B*-structure with the corresponding *T*-torsor being $\mathcal{O}(-D)$. According to the above factorization principle, $\mathcal{W}^{\check{\mu}}$ factorizes over $X^{\check{\mu}}$ as usual Zastava spaces. Let $\pi^{\check{\mu}} : \mathcal{W}^{\check{\mu}} \to X^{\check{\mu}}$ be the projection.

For w the longuest element of W the scheme $W_w^{\hat{\mu}}$ is the same as the open part Z_{max} of the usual Zastava space.

Question. What can we say about $\pi^{\check{\mu}} \bar{\mathbb{Q}}_{\ell}$? Can we describe $\mathrm{IC}_{W^{\check{\mu}}}$ in a way analogous to the usual Zastava space from [1]?

We may realize $\mathcal{W}_{w}^{\check{\mu}}$ in local terms as follows. Now $\mathcal{W}_{w}^{\check{\mu}}$ is the scheme classifying $D \in X^{\check{\mu}}$, a N'-torsor over the formal neighbourhood \bar{D} of D, its trivlization over the punched formal neighbourhood \bar{D}^{0} of D such that for any $\lambda \in \Lambda^{+}$ the map (11) yields $\mathcal{L}^{\lambda} \xrightarrow{\sim} \mathcal{O}(-\langle D, \lambda \rangle)$, and moreover $\mathcal{L}^{\lambda} \to \mathcal{V}_{\mathcal{F}_{N'}}^{\lambda, \geq w}$ is a subbundle over \bar{D} .

Let $T_{X^{\check{\mu}}}$ denote the group scheme over $X^{\check{\mu}}$ classifying $D \in X^{\check{\mu}}$ and a section of T over \bar{D} . The group scheme $T_{X^{\check{\mu}}}$ acts on $\mathcal{W}^{\check{\mu}}_{w}$ over $X^{\check{\mu}}$ via its action on the trivial T-torsor $T|_{\bar{D}}$. Let $\operatorname{Bun}_{T,X^{\check{\mu}}}$ be the stack classifying $\mathcal{F}_T \in \operatorname{Bun}_T, D \in X^{\check{\mu}}$ and a trivialization of \mathcal{F}_T over \bar{D} .

Let $B' = T \rtimes N'$. We may consider a version $\mathcal{W}_{w,\operatorname{Bun}_T}^{\check{\mu}}$ of $\mathcal{W}_w^{\check{\mu}}$ with \mathcal{F}_T^0 replaced by a 'background' *T*-torsor $\mathcal{F}_T \in \operatorname{Bun}_T$. It classifies $\mathcal{F}_{B'} \in \operatorname{Bun}_{B'}$, $D \in X^{\check{\mu}}$, $\sigma : X \to \mathcal{F}_{B'} \times^{B'} \overline{Fl}_w$ such that over X - D it hits Fl_w , and the maps

$$\mathcal{L}^{\lambda} \to \mathcal{V}_{\mathcal{F}_{B'}}^{\lambda, \geq w} \to (\mathcal{V}^{\lambda, \geq w}/\mathcal{V}^{\lambda, > w})_{\mathcal{F}_{B'}} = \mathcal{L}_{\mathcal{F}_{T}}^{w(\lambda)}$$

identify \mathcal{L}^{λ} with $\mathcal{L}^{w(\lambda)}_{\mathcal{F}_{T}}(-\langle D, \lambda \rangle)$. I think then $\mathcal{W}^{\check{\mu}}_{w,\operatorname{Bun}_{T}}$ is obtained from $\mathcal{W}^{\check{\mu}}_{w}$ by a twist with the $\operatorname{Bun}_{T} \times T_{X^{\check{\mu}}}$ -torsor $\operatorname{Bun}_{T,X^{\check{\mu}}} \to \operatorname{Bun}_T \times X^{\check{\mu}}$ and the above action of $T_{X^{\check{\mu}}}$ on $\mathcal{W}_w^{\check{\mu}}$.

References

- [1] Braverman, Finkelberg, Gaitsgory, Mirkovic, Intersection cohomology of Drinfeld's compactifications
- [2] Braverman, Finkelberg, Gaitsgory, Uhlenbeck spaces via affine Lie algebras, arXiv:math/0301176 (version 4 with erratum)
- [3] Braverman, Gaitsgory, Deformations of local systems and Eisenstien series, GAFA vol. 17 (2008), 1788 - 1850
- [4] Gaitsgory, On the de Jong conjecture, arxiv
- [5] V. Ginzburg, Lectures on noncommutative geometry, arxiv
- [6] Krähmer, Notes on Koszul algebras, https://www.maths.gla.ac.uk/ ukraehmer/connected.pdf
- [7] J. Lurie, Higher algebra
- [8] S. Lysenko, Comments to chiral algebras
- [9] S. Lysenko, Action of $\check{\mathfrak{g}} \otimes \mathrm{R}\Gamma(X)$ on Eisenstein series, elementary definition.
- [10] S. Lysenko, Comments to Krähmer, Notes on Koszul algebras