1. COMMENTS TO DEFORMATION OF LOCAL SYSTEMS AND EISESTEIN SERIES [3]

1.0.1. Let L be a Lie algebra, A = Sym(L*[—1]) be a (super)-commutative k-algebra,
let Y = Spec A, let M be a A-module. Then we get a natural augmentation A — k.

L
According to introduction, L acts on M. Why it should also act on k ® 4 M?

1.0.2. For a Lie algebra L they call Co(L) = Sym(L[1]) the standard complex of L. In
which sense the universal enveloping algebra U(L) is Koszul dual of Ce(L)? What is
U(L) in the case when L is a DG-Lie algebra?

1.0.3. We assume throughout this text that we work with Q-sheaves.
Case of G = GLg. The exact sequence (2.1) in Sect. 2.4 roughly answers the

. .dy,d S —d1,d . . . .
question how the perverse sheaf (ig'**), IC on Bunp™* decomposes into irreducibles in

the abelian category of perverse sheaves on Buncg"b. For any d > 0, the x-restriction
is
(i) 105 = Qu2m] R IC

Bunpg

for ij“dz : X (@ x BundBler’drd — mg’d2.

Let 6 € AP°%. Write mgzg for the image of the finite map X? x Bung — Bung.
Write a for the unique simple coroot of G.

Consider the general situation of a stack Y with a stratification Yy, Y7, Yo, ... such
that Y, = Uk>mYx. Assume F' is a perverse sheaf on Y, let j,, : Y, — Y be the
inclusion. Assume j F is placed in perverse degree —m. Assume the inclusion Y, —

Y., is affine, so F, := jnjh, F[—m] is perverse on Y for any m > 0. The substack

Yo = U Y CY
- k<m

is assumed open. Now apply the idea from ([7], 1.2.2.3). For k& < m let Y}, =
Uk<i<m Yi, this is a closed substack in Y<,,. In the stable category of sheaves on Y we
get a filtered object, hence a Z-complex on Y in the sense of ([7], Def. 1.2.2.2). Write
F ]y[mil’m] for the *-restriction. We get an exact triangle (jp,—1 )15, _F — F ’YV[mfl,m] —
(Jm)1g F on Y(m—1,m], and extend it by zero to get an exact triangle on Y. It gives
a morphism F,, — F,,_1. As Lurie explains in ([7], 1.2.2.3), these morphisms form
complex

o=y = = Fy
(that is, the square of the differential is zero). The claim is that the complex
. > Fy - > Fy— F
is then exact (in the abelian category of perverse sheaves).

1.0.4. About Koszul complex in Th.2.3. they use the following notion of a Koszul
complex. Let R be a commutative ring, V an R-module, § : V' — R a R-linear map.

Then we have the Koszul complex ... A2V & AV dy R, where di = §, and the map
d, : N"V — ATV for r > 2 is the composition
AV = ALY @ v 480 Aty
1
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Here to be precise I think AV — A""1V @ V sends e; A ... Ae, to
T
Z(—l)"“(el A NEGA...Ne) ® e
i=1
It is understood here that A"V is interpreted as A"V C V@ in the sense of ([4],
Section 5.1). This is found in (Stack project, Definition 15.26.1).

They apply this for the symmetric algebra R = Sym W over k and V = W ®; R
with the natural map 0 : V' — R given by the product. Now if M is an R-module,
this Koszul complex for M becomes ... — (A2W) @, M — (AMW) @ M % M, where
01 is a part of the action map R ®; M — M. In their case moreover R is Z,-graded,
M is graded and the action preserves the gradings. They write in Th. 2.3 only the
corresponding complex in the degree (dy, d2).

In Th. 2.3 they use that the Q-algebra R := Sym W is regular, so the Koszul
complex for this algebra gives a resolution of Q, by free R-modules.

The Koszul resolution of Eis|(E7) is ... (A?W) ® R ®g Eis|(Ez) = (A'W) ® R®g

Eis|(E7) 3 Eis(Ej).

1.0.5. The diagram at the end of Sect. 2.4 says the following, here G = GLy. Write for
brevity Bungé g4 for the open substack Uzd:OX (1) x Bungﬂ'a, here « is the simple coroot.
Similarly, we have Bungv[nd] for r < d, this is U?:rX (@) x Bun)]‘;m. The claim is that
the transition map in the complex ((2.1), p. 1802) described at the end of (]?], Sect.

2.4) is also the transition map described in my Section 1.0.3. To see this, consider the
diagram

X1 % X x Bunyfde T x(@=1)  Buny D

4 sumxid \L B8
X@ x Bun)g“d 5 BunB Jd—1.d]
We get
7 1IC — iu(sum X id)! 1C ﬂ—\)/ﬁ!(id Xil)! 1C
Let j : Bungr(d Ve, Bu A;é‘f Y% be the open immersion. Since (i1);IC — 5 IC

naturally, composing we get the map
i IC = iy (sum x id) IC = fi(id xi1 ), IC — B1(IC Ky IC)

This map (extended by zero to Bun)f}) gives the transition map in the complex ((2.1),
——At(d—1)a

p. 1802). We get an exact triangle on X (=1 x Bu unp <
ICXiy IC = ICKy; IC — IC

it yields an exact triangle

(1) p(IC Ky IC) — Bi(ICK IC) — B IC

on Bun%7[d_17d]. Now $IC contains Q[d 4 dim Bun) ] as a direct summand. Let

g1 XD % Bun?(d*l)a — Bung,[d—l,d} be the open stratum. Then the exact



triangle

1Qe[-1] = (ia-1)1Qe — Qo
(appropriately shifted) is now contained in the triangle (1) as a direct summand, I
think. Is this correct? This is why the two definitions of the transition maps match.

1.0.6. A possible construction of the sheaf Ay from ([3], p. 1805, Sect. 3.1) in a
special case. Let A be a Q-local system on X, which is a sheaf of coalgebras on X.
Consider the sheaf A(™ on X,

Lemma 1.0.7. There is a unique subsheaf F,, ¢ A"™ such that for D = > dpzy one
gets (F)p = @Ay, C @ Sym¥*(A,,).

Proof. One may check that all the cospecialization maps preserve the fibres of F,,. [
I wonder if F, coincides with Ay in this case.

1.0.8. The construction of A x(») from ([3], p. 1805, Sect. 3.1). The standard complex of
a DG-Lie algebra L is Sym(L[1]), they view it as a cocommutative DG-coalgebra. This
is because the costandard complex Sym L*[—1] of a DG-Lie algebra L is a commutative
DG-algebra. Notation: Ce(fix ) is the standard complex of the sheaf of Lie algebras
fy g, on X, this is a sheaf of cocommutative DG-coalgebras on X. Better to say, this
is a cocommutative DG-coalgebra in the category of local systems on X.

In ([8], Section 1.3.53) we associated to a commutative DG-algebra E" in the category
of local systems on X a complex of factorization algebras D(Bxr ®ny), I € 8, here By
is a complex of perverse sheaves on X'. The *-fibre of D(Byr ® n7) at ma € X! is the
complex E;*. Take the direct image of D(By: ®n;) under X! — X where m =| I |,
and take Aut([)-invariants. The complex that we obtain on X (") is denoted by A x(n)
in ([3], p. 1805) for the cocommutative DG-coalgebra A = E™* = Hom(E", Q).

Consider the standard complex C,(fx g,) as a cocommuative DG-coalgebra in the
category of local systems on X. It is actually a AP-graded cocommuative DG-
coalgebra in the category of local systems on X. Indeed, if &, 3 are positive coroots
of G then [fis,fig] C 15, 5. Therefore, the differential on Sym(n[1]) preserves the Apos.
grading.

So, Ci(ix,e,.) = Hom(Ce(ix E,), Q) is the costandard complex, a —APos_graded
commutative DG-algebra in the category of local systems on X. In ([8], Section 1.3.53)
we associated to such an object a complex B in FA(X)_jpo.. Let A € APos — (), write
A= >_jnjdy, where &; are simple coroots of G. Consider (/, A1) € 8_jpos such that

Ar : I — —AP° takes values only in minus simple coroots, and each —; appear

AN for the natural map

with multiplicity nj. Recall that Bys = sumi(Byr @ nr)
sum : X1 — X* Then §
Y(iix,p,)" = DBys

For Az € X* the fibre of T(ﬁvaTv)j‘ at this point is /\’(ﬁX7ET.)X

2. Here the su-
perscript A denotes the corresponding component of APos_grading, and A'f is placed
in cohomological degree —i. Since Y (fix, ET)’\ factorize, this gives a description of the

x-fibre at any point of X A



For example, if A = & a simple coroot then X% = X, and T(ixp.)" = ﬁg‘(ET[l] is a
smooth perverse sheaf on X.
If n is a 1-dimensional abelian Lie algebra, and & is the unique simple coroot, for

A =na we get Y(iix)* = (AM™nx)[n]. Here for a local system F on X we write AW F
for the n-th exteriour power of F.

Note that for a rank one local system F on X, A F is the extension by zero from the
open subscheme U < X (™ the complement to all the diagonals, and for D =Y | x;

with z; pairwise distinct the *-fibre of A F at D is isomorphic to ®;Fy,;.

Remark 1.0.9. If E,E’ are commutative DG-algebras then E @ E' is a commuta-
tive DG-algebra naturally. If L; is a Lie algebra then for standard complexes we have
an isomorphism of complexes Sym(L1[1]) ® Sym(Lo[1]) = Sym((L; @ L2)[1]) of vector
spaces. Moreover, this is an isomorphism of cocommutative DG-coalgebras.

In ([8], Section 1.3.55) we described the object of FA(X)_pros associated to a tensor
product of two —AP°*-graded commutative DG-algebras in local systems on X.
Note that n = @, ;+1a is the sum of the coroot subspaces, here AT is the set of all
positive coroots. If 1 is a commutative Lie algebra, we get an isomorphism
Co(ixp,) = ®, Ce(0a,E;)
acA
of DG-algebras. In this case we get

TEx) = @ (o T(Ra)™™)
Z+nidi:>\ 1EA
€A

The sum is taken over all decompositions of A as indicated. Since each Y(iig,)™% is

perverse, and * is exact, the above sum is also perverse. )
This gives the formula for the associated graded of YT (fix)* on p. 1806.

1.0.10. The map 5 : XA x Bung — Bung is a locally closed immersion, so @' F' is placed
in perverse degrees > 0 for a perverse sheaf F' on Bunp (used in Th. 4.2).

1.0.11. Question. Can we localize the scheme of moduli of local systems in general, in
the same way as for Ej regular the collection Q(nx, ET)_A for \ € AP°s gives Op, s ET)?
Do we have a AP°-factorization algebra for any Ez?

1.0.12. If L is a Lie algebra then U(L) is a cocommutative coalgebra. Now U(fx )
is a sheaf of AP?°-graded cocommutative coalgebras on X. Taking the graded dual
D3 ires (U(x, ET)X)*, we get a sheaf of A"9-graded commutative algebras on X. We
view it as A"%-graded commutative algebra in local systems on X. The construction of
([8], 1.3.53) attaches to it an object B of FA(X)jneq, hence for any A € AP?® a complex
By s on X*. Then M(ﬁx,ET,)j‘ is defined as DB x. The *-fibre of DB s at Az equals

A

U(ig,.e)", it is placed in usual degree zero. So, U(fix, g, )" is a constructible sheaf. By

construction, we have for A\; € AP°® a natural map

YRR (@) gl(f) e
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For example, if A = nd, where & is a simple coroot, then $(ix, ET)X = (E%)(”) on
X ™), )

The !-restriction of ICg; = to X* x Bunp is described in ([1], Cor. 4.7). It is of the
form M* K ICBuny- Here

(2) M)\ = @ i‘B(X)*QZ
B(A)
They claim in Prop. 4.4 that M;\’;)/i,[(ﬁ)j‘, I don’t see why this is true.

More precisely, for a partition B(A) given by A = > ;MjAj, where A; are not neces-
sarily simple positive coroots of G, on X BR) = [[; X (") we get X; (1) (™) instead of
Q in (2). With this correction the isomorphism M* =5 ${(it)* should be canonical.

Note that U(n) has a filtration 0 = Fy C Fy C ... with F,,/F,_1 = Sym™n. This
filtration is compatible with the coalgebra structure on U(#t). Namely, A (F,) C
Y iy tin—n Fin @ Fi, CUW) @ U (). For any A € A this filtration induces one on U (i)*.

EXAMPLE: take A = &1 + dig, where &; are simple coroots of G and assume ) is a
positive coroot. We have U* = n5 + (ng, ®na,). Let I = {1,2}, and A; : I — AL take
values ¢;. The corresponding complex Byr on X! is as follows. The corresponding
part of the Chevalley complex on X? is j, J (s, Wnk ) =4 (UM* placed in degrees
—2,—1. It is canonically isomorphic to a direct sum

(ng, W ng, [2])@ Ax ni[1]
So, Byx = (nf, Mg, [2])@ A, n}[1] as a constant complex on X2 =X*, and
DB 5 = (na; M ng,)® As g

canonically.

1.0.13. For Cor. 4.5. Recall that for F' € Db(S) its image in the Grothendieck group
of perverse sheaves on S is given by > .(—1)'[H'(F')], where H'(F') denotes the i-th
perverse cohomology sheaf. In the proof of Cor. 4.5 the first step is to note that

[('T * ICBunﬁéJri\} = Z [‘I * Du(ﬁX)A * j! ICBun%+X+X’]
S\IGAPOS

They then use the fact that [D&(yx)*] = [U(ix)?] is the Grothendieck group of X*,
this is evident for M*. This is unfortunate use, as this means that we identify fig with
n} for each positive coroot &, which we tried not to do before! In their Section 6.4,
which they reffer to, a correction formula is proved.

1.0.14. For the proof of Cor. 4.6. For any A\ € AP, i € A we have Bun%’g)\ defined
in their proof of Cor. 4.6. By Cor. 4.5, in the Groth. group of perverse sheaves on

=1, <X
Buns~" we have

[j! ICBun%] = Z [Q(ﬁx)_A, * Icmiﬂr}\’]
0<N <A b
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In this group the LHS is a sum of irreducible perverse sheaves with some nonnegative
coefficients, and the RHS is also a sum of some irreducible perverse sheaves with some
nonnegative coefficients. So, this equality says that there are filtrations on perverse

sheaves jiIC » andon @ Q(n X)_)" *ICBi;2 +x such that their gr are isomorphic!
B 0<N <A unp
We want to show that

[n% Aj.IcBun] [Q(ﬁX)’AXICmﬂ+;]

B

in the Grothendieck group of X A x Bun’;3 (misprint in their formulation of Cor.4.6).
For any 0 < X < A and any irreducible subquotient T of Q(fix)~* the complex

1
1X(T*1Cmyy)
is placed in perverse degrees > 0. Indeed, T ICBi,l +x is the intermediate extension
unp

from X~ x Bun’gr)‘/. So, because of the factorization property, it suffices to show that

for any 0 < X < X and any irreducible subquotient T of Q(ﬁx)*j‘/, any exact sequence

<A
of perverse sheaves on Bunpy

(3) O%T*Icmﬁr;\/ —>{.T/—>Z'5\!(A1 ICx &ICBunf?S‘) —0

splits. Here A: X — X A is the diagonal. The cartesian square

I Y <A
XN x Bunu+ — Bun“

T id X435 _3/ § T i3 §

XV x XAV Bunfst = XA % Bunds™

gives i!;\(‘f* Icmyx'):(ﬂ'*ﬂ(ﬁx)X_j‘/) X ICiﬂM. To show that (3) is trivial it

suffices to check that A' (T U(# X) —) is placed in perverse degrees > 2. The latter

property is easy to see, because A' U(nx )5‘ N s placed in perverse degrees > 1.

Another proof in the simplest case A = & a simple coroot: we have an exact sequence
of perverse sheaves

0 = DUR)* WIC,, ava[—1] = HICk v — Icm% —0

on Bun“’_ So, h0ikji IC, » = Q *KIC, niiha over XaxBun . Here Q7% = % [1]
B
on X = X%,
Remark: an analog of Cor. 4.6 holds for Zastava spaces.
1.0.15. In the first displayed formula on p. 1813 the parentheses are not correct, this
is a misprint. It should be @ (/\(”i)ﬁf +)[ni] over XA,
Lm.4.8: if C'(')_V is the — component of the costandard complex then for the

diagonal A: X — X* one has ' Qnx) ™= C*(1)"*[2] on X. So, indeed the proof of
Lm.4.8 reduces to the fact that C*(n)~ ~A has no cohomologies in degrees < 1. This is
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true, because the image of [.,.] : {\2ﬁ — 1 is the direct sum ®sfg over all nonsimple
positive coroots & of G. So, (*)™* = 0 for A € AP, which is not a simple coroot.

1.0.16. Recall that we know a filtration on YT*, hence also on Q(ﬁ);\ given in their Sect.
3.3. I wonder if each associated graded perverse sheaf

@ KA ES) ]

for this filtration is irreducible.
For Sect. 4.10. If A is not a positive coroot then each perverse sheaf (4) is the

intermediate extension from the image of (][, )O(nkdk)disj — X*. So, Q(ﬁ)_x has no
irreducible subquotients, which are extensions by zero from the diagonal A: X — X A

Explanation for Case 2. If A = & is a positive coroot then A, (R%)*[1] is a unique
irreducible subquotient (actually, quotient) of Q(ﬁ)*j‘, which is the extension by zero

under A. Moreover, by the induction hypothesis, Q(7)™ — hoilj\jy IC, s is an iso-

- . B
morphism over X* — X. So, if Q(7) X ICBUH?; — T is not surjective then T is given

Bun

by the exact sequence
(5) 0— Qi) K ICBHH%+X — T —>A ICx chunﬁgX

If Y, Z are schemes, F; € D(Y),G; € D(Z) then
I{ijTn(fq,Eﬂ(;l,fb @3(?2):3/119{07n(131,fﬁ) EQI{J{OTH((;l,(;Q)

Since Hom 5 (A ICx, Q1)) = 0, to show that the above sequence splits it suffices to
prove their Lemma 4.11. Since the sequence (5) splits, we see that A; ICx &ICBun‘H—}‘
B

would be a subsheaf of hoz&jg ICBHH%. This contradicts Pp. 4.9.

For the proof of their Lemma 4.11 recall that A' Q(ﬁX)_j"%vC'(ﬁ)_;\[Q] on X. We
must show that H'(X,C*(7)"*1]) = 0. We may assume \ = ¢ is a positive co-
root of G, which is not simple. Then the complex on X that we have to integrate
is h2(C*(n))~*. That is, we must show that HO(X,h?(C*(#))™*) = 0, which means
simply that h2(C*(1))~* = 0. By definition, h?(C*(#)) = H2(n, Q).

1.0.17. For 5.4. If hoigj! ICg,,,» has a subsheaf, which is the extension by zero from
B B
A (X)x Bun’gr)‘ then A is a positive coroot of G, and this subsheaf is Ay IC x X IC, ais-
~ nB
Let A = & be a positive coroot of GG, not a simple coroot. Then there are positive

coroots (3,75 of G such that A = 8+ 4, and 0 # [a:B,arﬁ] € ny for the corresponding
nonzero root vectors. Their perverse sheaf F is indeed a quotient of

H = hoilj\jg ICBun% /(6 ICx ICBun%H)

and not just a subquotient, because over X A _ X the sheaf Q(ﬁ)*X has no perverse
subsheaves supported on the diagonal divisor.

Their ' on p. 1816 is defined as the perverse sheaf on Bunl}g’sd, the quotient of
G IC, & ‘mﬁ,gd by H. Here H = Ker(H — 3). So, ¥ C F is a perverse subsheaf.
B

I
Bun’g



To see which irreducible subquotients &€ of j; IC o sa could admit a nontrivial
np

Bun |
extension 0 — F; -7 = & = 0, let 0 <7 < & We have a cartesian square
X7 x Bunpgrf — Bun“’<a

T T
X7 x X7 x BunfH® 5 X& x Bunly™®
Recall that i§_; IC5— Bt = Dih(rx)* T KIC

perverse sheaf on X 4 appearlng as a subquotient of (i)~7, then this could happen if
Extha (& «DU(Rx)*T,P) # 0,

where P is the direct image of ICx XICx under ¢ : X2 — X%, (z,y) — Bz + 5y. Note
that 8 # 4, so & is a closed immersion.

First, they claim that for ¥ = 0 this is impossible. Indeed, for a partition B(&) w
have the map ig4) : . XB(@) 5 X% and the direct summand ig(a)Qe[2 | B() H
Dl(fix)%. The complex RHom(ig5)Q¢[2 | B(a) [],&1C) is placed in usual degrees
> 2| B(a&) | —2. So, we could p0881ble have Ext! # 0 only for the trivial partition
B () = ¢ In this case we get RHom y2 (A Q[2],1C) = RI(X,Q[—2]), it has no Ext!
either.

Let now 7 > 0. Assume that & comes from the decimpsotion B(7) = >, ngdy,
where ¢y, are positive coroots of G, so | B(7) |= >, ng. Then

RHom(€&' Rig(q—r)Qe(2 | B(a —7) [],P)

+

i+a by Prop. 4.4. If & is an irreducible
B

Bun

is placed in usual degrees > B(& — 7)+ | B(F) | —2. So, Ext! could be nonzero only if
both & — 7,7 are positive coroots of G and B(& —7) = & — 7, B(7) = 7. Moreover, we
must have 7 = ( or 7 = 4. In both cases the corresponding space Ext! is 1-dimensional.

1.0.18. Recall that il(ﬁ) = @%( 3)leB(3) ,Qg, but this isomorphism is not canonicall!!! For
Ai € AP?% two partitions %()\V) for i = 1,2 give rise to their sum B(\1) + B(\2), which
is a partition B(A; + A2) of A1 + A2 and a diagram

XM x x5 xhith

T T

XB) ¢ xB(h2) _y  xBO1)+B(A2)

This gives a map MM « M*2 — M +22 but it is different from the map denoted (5.5)
in their Sect. 5.5! Indeed, the map U(f)M * LU(#)*2 — U(R)MFA2 is not commutative,
as the product in U(1) is not commutative. The map denoted (5.5) in their paper is
constructed as in ([8], Section 1.3.58).

I have given a direct proof of ([3], Theorem 5.6) in ([9], Proposition 1.1.1).

1.‘0.19. If G is a sheaf on a scheme Y with a filtration §! ¢ 2 ¢ G3 = G with §; =
G°/G*1, we get natural maps G2 — G1[1], G3 — Go[1] on X. Their composition is a map
Gs — G1[2], it vanishes (by [7], Remark 1.2.2.3). This is used in their Section 5.7. There
is a sign issue, I think, because the natural isomorphism (C’B (1% C%[1] —>(C7 1 ]*(C/B 1]
contains the sign, which appears when we permute § and 7.
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1.0.20. For 6.2. The differential on LI(#)** is explained, I think, by ([5], Proposition
4.4.1). This is the A-component of the tensor algebra of T in the tensor category
D(Ucipos X*). Namely, the fact that d*> = 0 comes from the associativity of the
product on Q(n).

Namely, let £ = Sym(a*[—1]) be the costandard complex of #. This is a finite-
dimensional algebra, so we get the complex in the category of complexes (double com-
plex)

(6) B AP o SEREQE S ..,

here (E*)®™ is placed in ‘horizontal’ degree m, the horizontal differential d is an odd
derivation of degree 1. Here d : E* — E*®E* is the dual of the product map FQFE — E
(giving the structure of a DGA on F), and it extends uniquely to an odd derivation d
of degree 1. The ‘vertical differential’ is the usual differential on (E*)®™, we have one
because E* is the standard complex of n. For example, d : E* ® F* — E* ® E* ® E*

is given by d(v1 ® v2) = (dv1) ® v2 — v1 ® (dva).
Recall further that E* is AP°*-graded and

((E*)@m))\ = ‘i @25\ ) (E*))\l ®...0 (E*)/\m
Ze OS7 7,:

We first pass to the A-component in the above complex. If we further keep only the
summands with A; # 0, we get a quotient complex. The reason is that in the dual
complex E~* + (E® E)™ ¢ ... we have a subcomplex whose m-th term is

® EMe. . @E
Ni#£0,5" Ni=X
Finally, we got a double complex, let us denote it

>kv d * *V d * * *V d
(7) (E);0—>(E @E);0—>(E ®F @E);0—>...,

The 0-th term of the total complex of this double complex is

(8) & e iMNe..eiw
m>0 )\1’750,2;-";1 Ai=A

Indeed, it is like this

n - 0
) )
AR 5 ARn — 0
T
TRA® N0

(where we further take A-component and pass to the part # 0). Now (8) maps naturally
to U (ﬁ)j‘ surjectively, and this yields a quasi-isomorphism between the total complex
of (7) and U(#)*.

Note that (7) is the dual of some version of a reduced bar complex from ([5], Sec-
tion 4.5).
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We have similar picture for the complex ﬂ(ﬁ)”j‘. I think we may first define for A # 0
the complex

YA (T 5 (YT ..

of perverse sheaves on X* coming as above from the algebra structure on the costandard
complex. Here
(T = @  TMxx Y
Xi€Apos 3o X=X
and further pass to the quotient complex with terms with \; # 0.
Probably, the situation here is as follows. Consider the (double) complex

L. SEQERELYE®ELE

dual to (6). Each map in this complex is a morphism of A"9-graded DGA (in the
category of local systems on X'). So, applying our construction from ([8], Section 1.3.53)
to this complex, we get a complex in FA(X) jneg. This gives the desired complex il(ﬁ)"j‘
on X,

So, the fact that the total complex of (7) is quasi-isomorphic to U (ﬁ)j‘ gives an
isomorphism il(ﬁ)";\gil(ﬁ);\ in D(X ;\) simply by functoriality! Similarly for their
isomorphism (6.3) on p. 1820.

1.0.21. For Sect. 6.4. For A = 0 both T* and ﬂ(ﬁ)"j‘ are Q; on Speck = X9. So, for
any A € AP9S

Kosz*™ = [T* — @ TV T2 @ THxTReTd 5 ]
3 )\1?&0 i ’;\17%0,)\27&1
A1+Ao=A A1 +A2+A3=A

Here \; € APos.

Their first idea is that to find a A™¢9-graded resolution of Qy by free Rp.-modules,
we first find a free graded resolution of the graded Cf(i)-module Q, here C7(#) is
the costandard complex of fi viewed as a A"®9-graded DGA. But the latter question is
standard (at least for usual algebras, as opposed to DGA). Namely, there is the reduced
bar resolution (or a bar resolution), see [6],[10]. (In [6] there is a mistake corrected in
110]).

They actually use the reduced bar resolution of Q, by graded C (ﬁ)jmodules, I

think. Recall that E = Sym(#t*[—1]) is A"“9-graded. Set E; = @&  E~*. Then the
B 0£NeRpos
reduced bar resolution of Q; by right F-modules is

(9) .= EPPQE—-E,®E—E—Q

where we will further take —A-component. This complex should correspond to their
Kosz® ™2,
The differential in (9) is given by

i—1
d(a0®...®ai):a0a1®a2®...®ai+2(fl)jao®...®(ajaj+1)®...®ai
j=1



11

The homotopy s : Ef%i®E — E?E”l@E for (9) is given as follows. The map s : Q; — E
is the natural inclusion, and s : Ef?“‘l ®F — Ef%”” ® FE is given by

s(ap®...0a) =a)®...®aji—1  (a; — €a;)) ®1,

where € is the counit. )
I think we should think of the collection K 052%~* as a right factorization module

over the factorization algebra Q(f) ™.

1.0.22. For 0 # A € AP% the acyclicity of K 0525~ implies the fact used in the proof
of Cor. 4.5 (and referred to in their Sect. 6.4).

If 0 # A € AP% then il(ﬁ)OA = 0. For A = 0 we get L[(ﬁ)O’X = Qy on Speck = X,
This is not precised in the paper. )

In Sect. 6.4 they define the complex K (ET).’_)\- It is placed in cohomological

degrees > 0, and the differential on it is obtained from the diffetential of K osz(ETv)”_;\
by applying RT'(X?*,?) term-wise.

1.0.23. In Kosz®* _, = @ u(ﬁx)'v_;\,v**jg IC_ .5 theinteraction between various
Bun'g M e Apos Bunfy

components of the AP?*-grading comes from the action map given by their formula (4.1)
in Th. 4.2. This is a complex of perverse sheaves [... — Kosz™2 — Kosz™! — Ko0s2"]

on Bun%, and we have a map of perverse sheaves Kosz® — ICmp on Bun%. Theorem
B

6.6 claims that it induces a quasi-isomorphism.

This is the usual formula for the Koszul complex, I think.

Let us analyze this complex in the case G = GLg. Then let & be the unique positive
coroot of G. For \ = d& we have $(i1)* is the constant sheaf on X (9 = X* with fibre
724 We also have T(#)* = (ADa)[d] on X, For d > 0 the complex of £(i)** of
perverse sheaves is

AD)d - @& (ADaxARR)d — .. = (Ax...x0)[d],

d; >0
d1+dg=d
it placed in degrees 1,2, ...,d. We view it also as a double complex on X @ placed in
horizontal degrees 1,2, ...,n, so each term in the above is a " vertical complex”. Its total

complex is quasi-isomorphic to il(ﬁ)j‘. The term of the total complex corresponding to
the usual degree 0 is then fi % ..., it maps naturally to i®? and induces the above

quasi-isomorphism. )
Consider the open substack Bun’é’ga. Over this stack the complex K os,z]'3 . becomes

ung

a direct sum of cohomologically shifted perverse sheaves

(n*[2] * 71 ICBUH%+d) P 5 ICBHH%

placed in perverse degrees —1,0 (in general in perverse degrees < 0). The differential
augments the perverse degrees by 1, so it becomes the complex of perverse sheaves
(n*[1] % 7 ICBun%+&) = 7 ICBun’g placed in horizontal degrees —1,0. In this case the



12

differential is precisely the action map

Q(n) "% * ICBun;]?a — 3 IC

Bun%
We know that by Th. 4.2 the action map induces an isomorphism

Q)% % ICp it = hOit 5 IC

i
Bun'p

. —i<a . . .. .
So, this complex over Bun%_ is indeed quasi-isomorphic to ICmg .
B

1.0.24. The proof of Th. 6.6 inspires the following.

. . . 3 =X .
Question 1. Consider the category € of collections F* & Bung” indexed by
A € APos together with a factorization structure of the collection FA. Here F* =

f)i\"Fj‘[dim. rel f5], where f5 : AN Bung)‘ is the projection. Recall that 7

Bung A XBung Buny- is the open substack, the Zastava space. Is this is a reasonable
category? What is its structure?

For example, the collection ICBi, 1, A € AP admits a natural factorization struc-
unpg

ture in the above sense, so becomes an object of C. Another example, the collection
7 ICBun, 5, A € AP°® admits a natural factorization structure in the above sense.
B

Their Theorem 6.6 gives an example of the collection Kosz® |, A € APos which is
Bung

also naturally an object of C.

1.0.25. Question 2. [ wonder if the Koszul complex that we got for ICmﬁL3 is a
particupar case of a general situation. Assume we have a stack Y with a stratification
indexed by AP%® such that if v < A then the stratum Y? is in the closure of Y”. We
have the open substack Y=* for any \. Let i5 - Y* < Y be the inclusion. Now if we
have a complex K on Y, we can consider the graded object

How to put a differential on this complex such that the corresponding total complex
would be quasi-isomorphic to K7 In a special case considered in my Section 1.0.3 we
answered this question. Of course, ([7], 1.2.2) is useful here.

1.0.26. The following lemma is implicit in the proof of Prop. 10.3, p. 1842.

Lemma 1.0.27. Let Y be a stack with a stratification indezed by APos . Assume for
i<\, the stratum Y? is in the closure of the stratum Y#. For A € AP°S we get the open
substack Y = Uﬂ<5\Y’1. Let i : YA = Y be the inclusion. Let K be a perverse sheaf
on 'Y, write K* = hoilj\K. Let K> = (i;\)!*K;\. Assume K has no perverse quotient
sheaves supported on the complement of YO, Assume that for any open substack’Y C Y
of the form 'Y = ig} Y, where I is a finite set, we have

(10) K] =Y K]

iel
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in the Grothendieck group of 'Y . Then K admits a filtration with grK = D K
XeAvros

Proof. Let Y < 1Y C Y be open substacks consisting of some strata such that
ly — 0y = Y for some A € AP, Let i : Y» — 'Y be the inclusion. Assume by
induction the above filtration is constructed over °Y. We have an exact sequence of
perverse sheaves 0 — i,h°(i'K) — K — ji,j*K — 0 on 'Y. The functor ji, is not
exact in general. So, on 'Y we get a filtration, where some additional summands in
grK may appear. The formula (10) shows that no additional summands appear. We
constructed the desired filtration on K |1y O

The above lemma is applied in Proposition 10.3, p. 1842 for the perverse sheaf
K = 51C The equality in the Grothendieck group needed for the lemma is

proved in their Cor. 4.5. So, jiICy » admits a filtration by perverse subsheaves with
B

Bun’,*

the associated graded pieces

(i —p )1 (QUR)P
This saves the proof of Th. 10.2.

i)

BunB

1.0.28. For 10.9. There is a misprint in the def of Eis!(Ejz).The correct definition is
p*(ICBun% ®q"*8(E;)). They do not calculate CTﬂ(fBﬂ(ET). They only derive Prop.
10.8 from the calculation of CT#(Eist' (Ey)).

So, in Sect. 10.9 the definition of pénia " is as follows. This is the stack classifying
Fp € Bung and a section o : X — Fp xB Fl,, such that over the generic point of X,
o hits g xP Fl,,. Moreover, the second B-structure on Fg x g G is required to be of
degree [i.

Write YV for the Weyl module of G, V}Z% be the sum of all subspaces of T-weights
> w(\). A point of 2" "is rewritten as Fpz € Bun’g and a collection of line subbundles
LA C \7)‘ 2 for A € AT with deg £* = (), i) satisfying the Plucker relations such that
for any )\ € AT the composmon

_> V)\ >w (VA,Zw/V)\,>w)?B

is injective. So, for Fpr = Fp xp T we get D € Xw(#)=h and a B-torsor fr"’B with
97’B XB G:STB XB G and 37’B XB T:?T(—D).

1.0.29. For the proof of their Prop. 10.10. Recall that B(B) x (g B(B) = B\G/B
canonically, the orbit corresponding to w € W is BwB. Let Ny C N be the subgroup
whose Lie algebra is the sum of n, such that o €A™, wa €A™T. So, Ny is the stabilizor
of wB/B € Fl in N. Let N' C N be the subgroup whose Lie algebra is the sum of
n, such that a €A™, wa ¢A". Then N’ acts simply transitively on BwB/B = Fl,.
The stack classifying Fg € Bun’g and a global section X — Fp xp Fl,, becomes the

component Bun;N N,- Indeed, B\Fl, is the classifying stack B(T x Np). This gives
the proof of Prop. 10.10 in the case w(i') = fi.
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Consider the special case: for any a €A™ with wa €A™ assume («a, i) > 2g — 2.
This assumption garantees that f : Buny, — Bun/; is smooth (a generalized affine

fibration). In this case to prove Pp. 10.10, we my replace Zﬁ’ﬂl by Zﬁ’ﬂ/ X gun?’ Bung,,
B

Bu
and it suffices to describe the direct image with compact supports for the composition

ooy ~1 ooy ~ N
2t X Bun;, — Z&" — Bunf, x X WH)=h
B

The proof in general is reduced to this case, roughly, by some twist, I think.

1.0.30. Consider the situation as in the proof of Proposition 10.10, so we have N’ and
Ny as above.

There is a great factorization principle in ([2], Section 2.16). It applies to the stack
N'\Fl,. That is, the complement of Fl,, in Fl, is indeed given by a finite union of
Cartier divisors. Recall that [G,G] is assumed simply-connected. So, we may choose
fundamental weights w;, ¢ runs through the set of vertices of the Dynkin diagram
J. Then a point of Fl, is completely defined by the lines £« C V¥ 2% for i € J.
So, we get Cartier divisors J; in Fl, given by the property that the composition
LWi — V@WihZW _ YWiZW [/Wi>W yanishes.

So, we are led to study the following ”w-version of Zastava” for w € W. Let 1 € APos.
Consider the scheme WY, classifying (Fy, D, o), where D € X#, Fy/ is a N'-torsor on
X, and 0 : X — Ty xV' Fl,, is a global section such that over X — D it hits to Fl,,
and for any A € AT the divisor of zeros of the composition

A, >w w w
(11) L = Vp=t o (VA2 PA0)g =0

is (D, A\). So, on Fyr x yv G we get a B-structure with the corresponding T-torsor being
O(—D). According to the above factorization principle, W# factorizes over X# as usual
Zastava spaces. Let 7% : W# — X/ be the projection.

For w the longuest element of W the scheme WY, is the same as the open part Z,,q.
of the usual Zastava space.

Question. What can we say about 7#Q,? Can we describe ICyys in a way analogous
to the usual Zastava space from [1]?

We may realize WI in local terms as follows. Now W is the scheme classifying
D € X*, a N'-torsor over the formal neighbourhood D of D, its trivlization over the
punched formal neighbourhood D of D such that for any A € AT the map (11) yields
LA O(—(D, )\)), and moreover £L* — V;\;]\%w is a subbundle over D.

Let Ty denote the group scheme over X# classifying D € X# and a section of T' over
D. The group scheme Ty acts on WE over X7 via its action on the trivial T-torsor
T |p. Let Bunp yi be the stack classifying 7 € Buny, D € X# and a trivialization of
Fr over D. ) )

Let B' =T x N'. We may consider a version W, 5~ of Wi, with F9. replaced by
a ‘background’ T-torsor Fr € Bunp. It classifies Fgr € Bung,, D € X* o : X —
Fp x B’ Fl, such that over X — D it hits Fl,, and the maps

A,> > , . A
L)\ N V?B/w N (v)\ >w/v)\ >w)33/ — L;i )
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identify £ with £2(—(D, ).

Ir

I think then W is obtained from W& by a twist with the Buny xT'xz-torsor

w,Bunp

Bung xz — Bunp x X" and the above action of Tz on WE.
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