Assumptions on the sheaf theory for the 2nd joint paper with Dennid]|

0.0.1. £ is algebraically closed of any characteristic, e is an algebraically closed field
of characteristic zero. The notation DGCat stands for the category denoted DGCatont
in [7].

We are given a right-lax symmetric monoidal functor

(Sch${/)? — DGCat, S — Shu(S), and (S Iy Sy) goes to ' 1 Sho(Ss) — Shu(S)
Its right Kan extension under (Sch?{ Tyor  (PreStk, #¢)°P defines a functor

Shuv : (PreStk;f)” — DGCat

It is assumed that the latter functor satisfies the etale descent for etale covers in
PreStk; ¢;.

0.0.2.  Probably the functor Shv should be defined in a larger category than PreStk;¢;?
For example, there should be S hv(Heckelé;’fRan), though the latter is not locally of finite
type. Indeed, for a closed £1(G)ran-equivariant subscheme Y C Grgran we may
define Shv((£7(G)ran)\Y) and pass to the colimit (or limit). Similarly, do we need
Shu(Hecke(s5,)?

Also, we need to make sense of invariants under (£(N)z, xn), and £(NV) is not locally
of finite type. At least, give a reference to Appendix C of [10].

0.0.3. For a map f : Y7 — Y3 in PreStk;s; the left adjoint fi to f' is only partially
defined in general (everywhere defined in the constructible context). If f is schematic
open embedding, f, : Shv(Y;) — Shu(Ys) is defined as the right adjoint to f' = f*.
Moreover f, satisfies the base change with respect to g' for g : Yy — Ya.

When we say f is ind-schematic, this means that f is ind-schematic of ind-finite
type, as Shv was only defined for PreStk;s;. For f ind-schematic we have the functor
f« 1 Shv(Y1) — Shv(Y2). What is its definition? It has a partially defined left adjoint
f*. Is f* always defined in the constructible context? For this f has to be of finite
type, I think. For example, for p : Y — k, where Y is an ind-scheme of ind-finite type
the functor p, : Shv(Y) — Vect does not admit a left adjoint unless Y is a scheme of
finite type (see [25], 1.2.7).

For f ind-schematic, f, satisfies the base change formula with respect to ¢', where
g:Y] = Y, If fis ind-proper then f. = fi. My understanding is that this holds more
generally for f pseudo-proper.

If f is etale then f' = f* is the left adjoint of fi.

The functor f, should be defined more generally under the assumption that after a
base change S — Ys with S € Sch®// s Xy, Y1 is an ind-algebraic stack. In this case

ft o
f. should also satisfy the base change formula with respect to ¢'.
For example, the following is crucial: the category Shv(Be(e*°"*)) is monoidal for

the convolution monoidal structure. For Y a prestack this is used to define a twist of
Shu(Y) by a e*°"S_gerbe over Y.
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0.0.4. For a scheme of finite type S we have Shv(S)"s'" C Shv(S) is the full cate-
gory of bounded complexes with constructible cohomology sheaves, then Shv ()"t =
Shv(9)¢, and it coincides with D?(Perv(S)) in the constructible context. The subcat-
egory Shv(S)®°™s"  Shu(S) is closed under ®, ®'. For Y an ind-scheme we have an
equivalence D : (Shu(Y)¢)P—= Sho(Y)¢. Its definition is given in ([§], 7.1.3) for any
Y € PreStk;s; such that the diagonal Y — Y x Y is pseudo-proper.

For an Artin stack Y locally of finite type with an affine diagonal we should define
Sho(Y)eonst™  Shu(Y') as the full subcategory of objects that !-pull back to an object

of Shv(S)¢ for any S — Y, where § € Sch//. Then by ([I], Appendix C),
(1) D: (Shv(y)constr)op:Shv(y)constr

is an equivalence. Indeed, we have Sho(Y) = limg_,y Shv(S) taken over the category
opposite to the one classifying smooth maps S — Y with S € Sch*/. Fora: S —

Y smooth, we may use a' or a* to test compactness, they differ by a shift. Then
Shu(Y)mst 5 limg_,y Sho(S)¢ in DGCat™on—mPl Recall that DGCatmon—cocomp!
admits limits. This gives (Shv(Y )" = limg_,y (Shv(S)¢)°P in DGCatnen—cocompl,
So, the Verdier duality for schemes of finity type gives the equivalence .

For F; € Shu(Y) write Homgp,(F1, F2) € Vect for the relative inner hom for the
Vect-action on Shv(Y). For ind-schemes or Artin stacks D satisfies the formula

Homgny(D(FL), F>) = RI(Y, Fy @' Fy)

for Fi € Sho(Y)®nst" This property charaterizes D(F}) uniquely. For example see
([, F.2.5, F.1.3, F.4).

0.0.5. For Y € PreStk;s; and F; € Shu(Y') write fHom!(Fl,Fg) for the relative inner
hom in Shv(Y') for the !-pointwise monoidal structure. For ¥ smooth of dimension n
we get RT Hom' (F1, Fa)[—2n] = Homgp, (Fi, Fy).

In which generality the category Shv(Y') admits a symmetric monoidal structure
given by (F1, Fy) — Fy ® Fy = d*(F1 X F3) for the diagonal d : Y — Y x Y7 This
should be always the case in the constructible context, and we reserve the notation ®
for this tensor product structure on Shu(Y').

If the monoidal structure on Shv(Y') given by ® exists, we reserve the notation
Hom(F1, F») for the inner hom for Shv(Y') for this monoidal structure.

Lemma 0.0.6. In the constructible context the Verdier duality for a scheme Y of finite
type (or an Artin stack locally of finite type with an affine diagonal) satisfies a stronger
property: for Fy € Sho(Y)«™st" Fy € Sho(Y),

g‘fO’l?’L(]D)(Fl), Fg) f—\;Fl ®! Fy
in Shv(Y).
Proof. For a map f : S — Y with S € Sch®/ let us construct an isomorphism

f'Hom(D(Fy), F>) = f'(Fy ® F,) in a way compatible with compositions S’ — S for
S' € Sch*f. We have

F'Hom(D(FY), F) = Hom(D(f'FY), f'F) = (f'F) @ (f'R)S f{(FR & R)
as desired. (]
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For F' € Shv(Y)¢ the functor Sho(Y) — Shu(Y), G — Hom(F, G) preserves filtered
colimits.

If we assume that there is an adjoint pair p* : Vect = Sho(Y) : p. for p: Y — Speck
then given F; € Shu(Y) we get

g{omShv<F1; FQ) = RT fHom(Fl, Fg)

0.0.7. For which maps f : Y — Speck the functor f* is defined on e? If defined, it
gives the constant sheaf on Y. This happens at least for algebraic stack locally of finite
type (with an affine diagonal).

Let now Y be a scheme of finite type or an algebraic stack locally of finite type (with
an affine diagonal). Assume we are in the constructible context and F € Sho(Y')constr.
Then the functor Shv(Y) — Shv(Y), K +— K ®' F admits a continuous left adjoint
given by K — K ® (DF). Indeed, for L € Shv(Y) we get

Hom(L, K @' F)= Hom(L, Hom(DF, K)) = Hom(L @ (DF), K)
Recall that here Hom denotes the inner hom in (Shv(Y), ®).

Claim Let X,Y € Schy;. Note that the exteriour product h : Shv(X) ® Shv(Y') —
Shv(X xY) is a map of Shv(X) ® Shv(Y)-modules, where the action of L € Shv(X)
(resp., of L' € Shv(Y)) on Shv(X xY) sends K to (LMw)®' K (resp., to (WKL) ®'K).
So, its right adjoint At is a right-lax morphism of Shv(X) ® Shv(Y)-modules. In fact,
this right-lax structure is strict.

Proof. Let K € Sho(X xY) and F € Shv(X). We must show that the natural map

(FRw)@h(K) = b (FRw)®'K) is an isomorphism in Shv(X)® Shv(Y). We may

and do assume F' € Sho(X)¢. It is understood that Shv(Y'), Shv(X) is equipped with

the ®'-symmetric monoidal structures, so Shv(X)®Shv(Y) is also symmetric monoidal.

By the above, the functor Shv(Y) ® Sho(Y) — Sho(Y) @ Sho(Y), S — (FRw)® S

admits a continuous left adjoint sending K1 X K5 to (K1 @D(F))XK» for K; € Shu(Y).
Now for K; € Shv(X), K2 € Shu(Y') we get

Map g (x)@sho(y) (K1 KK, W (FRw)®' K) = Map g x xyv) (K1 KK, (FRw)®'K)
= Mapgp,(xxv) (K1®(DF) XKy, K) = Mapgy,(x)ashey) (K10 (DF))R Ky, h(K))
= Mabgp,(x)0sho(v) (K1 K Ky, (F Rw) @ h(K))

Let us underline that in the above formulas (F X w) ® h®(K) denotes the tensor
product in the symmetric monoidal category Shv(X) ® Shv(Y). O

Recall also that hf coincides with A" with respect to the Verdier self-dualities, see
([22], Sect. 1.0.1).

0.0.8. Ifi:Z — Zis a closed immersion and F € Shv(Z) satisfies i'F = 0 then F
is in the essential image of j. : Shv(Z — Z') — Shv(Z). Here j : Z — Z' — Z. For
F € Shv(Z) one as a fibre sequence

Wi'F = F = j,j'F
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in Shv(Z). In particular, if M € Shv(Z) satisfies j*M = 0 then M is in the essential
image of 4.

0.0.9. Let S be an ind-scheme of ind-finite type. In the constructible context, the
tensor product ®' : Shv(S) ® Shv(S) — Shv(S) admits a continuous right adjoint.
Indeed, for F; € Shv(S)¢ it suffices to show that Fj ®' Fy is compact. For this, it
suffices to show that D(A* (DF; XDF,)) is compact, and in turn that A* (DF; XDF,))
is compact. This is true, because for A: S — S x S, A* has a continuous right adjoint
ANy

This is not the case for D-modules, as far as I understand, because A* is not always
defined.

0.0.10. What are the t-structures on Shv(Y') and under which assumptions and how
they are defined? Perverse one, usual one?

For Y € Schy, there is a t-structure on Shv(Y') that we think of as being perverse.
It is important that this t-structure is accessible. It is also compatible with filtered
colimits (this reduces to the fact that the t-structure on Vect is compatible with filtered
colimits).

The t-structure on Shv(Y) for Y an ind-scheme is defined as follows. If Y =
colim;e; Y; with [ filtered and Y; € Schy, then Shv(Y)=0 c Shu(Y) should be the
smallest full subcategory containing Shv(Y;)<? for any i, closed under extensions and
closed under small colimits. By (HA, 1.4.4.11), Shv(Y)=Y is then presentable and de-
fines an accessible t-structure on Y. We use here the fact that Sho(Y;) is generated by
a small set of objects.

Note that for an ind-scheme Y of ind-finite type F' € Shv(Y) lies in Sho(Y)=0 iff
for any closed subscheme i : Y/ C Y one has i'F € Shv(Y’")Z0. This implies that the
t-structure on Shv(Y') is compatible with filtered colimits.

You should also explain what is assumed about right or left completeness of the
t-structure on Shv(S) for S € Schy;. Apparently, you assume it is right complete, as
you want to use maps like D*(Sho(Y)Y) — Shv(Y)?

For an algebraic stack with an affine diagonal ¥ we define the perverse t-structure
on Shv(Y) by

Sho(Y)<0ZS lim Sho(S)=~ dimrella)
S3Y
where the limit is over the category whose objects are smooth maps o : S — Y with
S € Schy;, and morphisms from (S, ) to (57, ¢/) is a smooth map S — S’ compatible
with a,’. The transition functors here are the !-pullbacks. This defines an accessi-
ble t-structure by ([I6], 1.4.4.11) or better by ([7], ch. 1.3, Lemma 1.5.8). We have
Sho(Y)>0= lim Sho(S)>~dimrel(@) taken over the same category with the transition
53y

functors being !-pullbacks. This t-structure is compatible with filtered colimits and
both left and right complete by loc.cit.

Claim. If Y is an algebraic stack with an affine diagonal then in the constructible
context Shv(Y) is right complete.

Proof. The t-structure on Shv(Y') is accessible, so by ([21], 4.0.10) it suffices to show
that for L € Shv(Y) the natural map colim, 7S"L — L is an isomorphism. This
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property is local in Zariski topology, so it suffices to show this is an isomorphism over
any open quasi-compact substack U C Y.

For each U the category Shv(U) is right complete. Indeed, we have an adjoint pair
reny @ Sho(U) S Sho(U)™" : un — reny in DGCateont as in ([I], F.5.3) with reny
fully faithful. The t-structure on Shu(U)™" is right complete by ([21], 9.3.18). The
t-structure on Shv(U) is accessible, so by ([21], 4.0.10) it suffices to show that for
K € Shv(U) the natural map colim,, 7<"K — K is an isomorphism in Shv(U). To see
this, let K’ = reny(K). Then the natural map colim,, 7<" K’ — K’ is an isomorphism
in Sho(U)™". Since un — reny is t-exact, K = un — reny (K') identifies with

colim,, un — reny (T="K') = colim,, 7="(un — reny(K')) = colim,, 7="(K)

We are done. O

0.0.11. For S € Schy; mention that Shv(S) is assumed compactly generated. So, for
an ind-scheme of ind-finite type Y, Shv(Y') is also compactly generated. Moreover, the
Verdier duality provides an equivalence Shv(Y)Y = Shv(Y'), which is an isomorphism
of Shu(Y')-modules. The corresponding map Shv(Y) ® Shv(Y) — Vect sends (Fi, F)
to RT(Y, F; @' Fy).

If now f : Y7 — Y5 is a morphism of ind-schemes of ind-finite type then the dual to
f': Sho(Yz) — Shu(Yy) identifies with f. : Sho(Y1) — Sho(Yz).

If moreover, we are in the constructible context, since (fi, f !) is an adjoint pair,
its dual ((f")Y, (f1)V) is also an adjoint pair. So, the dual to fi : Shv(Y1) — Sho(Ys) is
the right adjoint to fi : Shv(Y1) — Sho(Ya).

Assume f : Y7 — Y5 schematic of finite type. In the conctructible context, f, has a
left adjoint f*, hence (f', (f*)V) is an adjoint pair, so f' has a continuous right adjoint.

Example: let T be a split torus. Then e on B(T') is not compact in the constructible
context, that is RI" : Shu(B(T")) — Vect is not continuous. So, this functor can not be
the dual of f' for f: B(T) — Speck.

There is a projection formula for maps f : Y — Y’, where Y is a quasi-compact
classical algebraic stack with affine diagonal and Verdier compatible, it is formulated
in ([2], B). This f, satisfies the projection formula (even if not continuous).

0.0.12. Consider the 1-full subcategory PreStk;,q—scn C PreStk;s:, where we restrict
1-morphisms to be ind-schematic. Then we have a well-defined functor

ind—sch - PreStkind—sch — DGC&tcont

sending Y to Shu(Y) and a morphism f : Y — Y’ to f. : Sho(Y) — Sho(Y’).
Moreover, this functor is right-lax symmetric monoidal, so sends algebras to algebras.
So, if G is an algebra in PreStk;pq—sch, (Shv(G), ) will become a monoidal DG-category
with the monoidal convolution structure.

So, we may talk about strong actions of Shv(G) on some C € DGCat, this is an
object of (Shv(G),*) — mod(DGCat).

Shvprestk

0.0.13. If G is an ind-scheme of ind-finite type, assume m : G x G — G ind-proper.
Then (Shv(G),*) is rigid for any sheaf theory. My understanding is that there is no
hope for it to be rigid without the ind-properness assumption.
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0.0.14. If G is a group ind-scheme of ind-finite type then (Shv(G),m,) is monoidal
(convolution monoidal structure).

The functor Shv(G) ® Shv(G) — Shv(G x G) sends a compact object F} ® F» to
a compact object Fy X F5. E] So, this functor admits a continuous right adjoint. In
the contstructible context the functor m, : Shv(G x G) — Shv(G) admits a contin-
uous right adjoint. Besides, the dual to m, is the functor m'. Thus, passing to the
dual in (Shv(G),my), in the constructible context we get a coalgebra (Shv(G),m') in
DGCateons. Recall that (Sho(G), my) —mod = (Shv(G), m') — comod (cf. [21]).

For any ind-scheme of ind-finite type Y, Y is a cocommutative coalgebra in PreStk; s
viathemaps Y — Y xY and Y — Speck, hence a commutative algebra in (PreStk; ;).
Applying the right-lax monoidal functor Shv, we get on Shv(Y') a commutative algebra

structure in C'Alg(DGCateon). The product is Sho(Y) ® Shv(Y) — Sho(Y x Y) 5
Shv(Y). We denote this algebra (Shu(Y),A'). It makes sense for any sheaf the-
ory. Applying the duality, we get a coalgebra structure on Shv(Y’), which we denote
(Shv(Y), A,) following [3]. Recall that this duality exchanges the functors A, and A'.

Sam says (Shv(G), A',m') is probably not a Hopf algebra in the constructible con-
text (only for D-modules). Similarly for (Shv(G), my, Ay). For D-modules this was
explained in [3]. Though (Shv(G),m.) — mod is a symmetric monoidal category for
D-modules, this does not seem to be the case in the constructible context.

Sam’s idea: if this was the case, consider the diagonal action of (Shv(G), m.) on
Shv(G) @ Shu(G). Tt is given by a map of algebras hft o A, : Shv(G) — Shv(G) ®
Shv(G), which is the coproduct. Here h : Shu(G) ® Shv(G) — Shv(G x G) is the
exteriour product, and hf? is its right adjoint. Besides, A, : Shv(G) — Shv(G x G) is
a morphism in Alg(DGCateon). Is it true that h® or h then becomes a morphism in
Shv(G) — mod? Then we could consider the map between the invariants, hopefully to
get a contradiction. We have in mind that A,wg is invariant under the diagonal action,
but does not lie in the essential image of h, here A : G — G x G is the diagonal. Not
clear.

0.0.15. IfY € PreStk;; is equipped with a G-action then the action map a: G xY —
Y is ind-schematic (isomorphic to the projection Y x G — Y). So, (Shv(G), ) acts on
Shu(Y') on the left via F' € Shv(G),K € Sho(Y) — a (FRK). If f: Y] — Y5 is an
ind-schematic morphism in PreStk;s; commuting with G-actions then f, : Shv(Y1) —
Shv(Yz) is a map of (Shv(G),*)-modules. Besides, f' is a map of (Shv(G), *)-modules.
Consider the prestack quotient Y/G € PreStk;s;. The map f : Y — Y/G commutes
with G-actions, where G acts trivially on Y/G. So, f': Shv(Y/G) — Shv(Y) is a map
of (Shv(G),*)-modules. Thus, by ([25], 1.10.10) it induces a functor

(2) Shv(Y/G) — Fun gpy )« (Vect, Shu(Y))

Is it an equivalence?

2Is it true for any sheaf theory? In ([10], 1.2.5(b)) you mentioned this only for two sheaf theories,
but not for constructible sheaves in the classical topology. I imagine this is a misprint there! You
actually claim this for any placid ind-schemes Y1,Y> in ([10], C.2.8), so I assume this is true for any
sheaf theory.
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0.0.16. In general the answer is not clear. Assume G smooth of finite type. Then this
is an equivalence, as Lin Chen shows (there is a different proof in ([I0], 1.4.5)). Here
is his argument.

One shows that Shv(Y/G)— e — comod(Shv(Y')) by verifying the comonadic Beck-
Chevalley conditions. Here e is the constant sheaf on G, it is a coalgebra in (Shv(G), %),
and we consider the corresponding category of comodules with the convolution action
of Shv(G) on Shu(Y). The forgetful functor e — comod(Shv(Y)) — Shu(Y) is f' for
f:Y = Y/G. The self-functor underlying the comonad is p.a* : Sho(Y) — Shu(Y).
It also identifies with a.p*, here a : G X Y — Y is the action map, p: G XY — Y is
the projection.

Since Shv(G) is self-dual, Shv(Y)% identifies with the limit of

Sho(Y) 23 Sho(G) ® Sho(Y) = Sho(G)2 © Shu(Y) ...

(For D-modules, since Shv(G)®" @ Shv(Y)= Shv(G™ x Y'), this finishes the proof).
Assume now we are in the constructible context.
The above cosimplicial diagram is also

Shy(Y) =X Fun(Shv(G), Shv(Y)) 3 Fun(Shv(G)®?, Sho(Y)) . ..

The functors Shv(Y) X Fun(Shv(G), Shu(Y)) are: F goes to (K + K x F), and F

goes to (K — RI'(G,K) ® F). The second functor identifies via the Verdier duality
with Shv(Y) — Shv(G) ® Sh(Y), F — wg ® F. Its right adjoint is p.[—2n] ® id :
Shv(G) @ Shv(Y) — Shu(Y) for p : G — Speck, where n = dim G.

The comonadic Beck-Chevalley condition for the above cosimplicial diagram holds,
it is mentioned in [10], 1.4.6 without a proof. We also check this in bigger generality
in Section [0.0.23] of this file. )

The corresponding comonad on Shv(Y) is Shv(Y) — Fun(Shv(G), Shu(Y)) U
Shv(Y), where the first functor sends F to (K — K x F'). Thus, this comonad sends
F to ex F'. We see that both comonads are the same.

0.0.17. Let G be a smooth group scheme of finite type, ¥ € PreStk;s;. The equiv-
alence Shv(B(G)) = Fun(spy(a),«) (Vect, Vect) given by transforms the symmetric
monoidal structure on Shv(B(G)) given by ®' to the composition monoidal structure
on Fungp,(a),«) (Vect, Vect).

The projection ¢ : Y/G — B(G) yields an action of (Shv(B(G)),®") on Shv(Y/G).
Namely, K € Shv(B(G)) actson M € Shv(Y/G) as (¢' K)®' M. Similarly, the monoidal
category Fun gp, (g« (Vect, Vect) acts on Fun gp, (@)« (Vect, Sho(Y')) by composition
on the left. The equivalence is compatible with these actions via the above monoidal
equivalence

Shv(B(G)) = Fun(gpy(a),«) (Vect, Vect)

0.0.18.  We need the following claim: for Y € Schy;, its cohomology C(Y") is bounded,
and the dimension of each H' is finite. It was used in ([10], B.3.1) to show that for
a smooth group scheme of finite type H and C' € Shv(H) — mod, Cy — CH is an
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equivalence. In the constructible context this is automatic, because p, : Shv(Y) — Vect
for p : Y — Speck admits a continuous right adjoint, and the constant sheaf ey is
compact, so ps«(ey) is also compact.

So, a suitable finiteness assumption on the functor p, should be formulated which
holds for any sheaf theory. How it is formulated?

0.0.19. Consider a cartesian square

x X x
(3) lg lg
y Xy

in PreStk, where all objects are placid ind-schemes. For which morphisms ¢’ we have
the functors (¢')", (¢')*? When do we have the base change with respect to (fy).?

Lemma 0.0.20. let Y’ € Schy and Y, X' be placid schemes over Y', recall then X
is also a placid scheme. Assume Y = lim;cror Y;, where I is filtered, fy,; : Y; = Y’ is
smooth, Y; € Schy, and for i — j in I, Y; — Y; is smooth affine surjective morphism
in Schyy. Then one has fyg. = g« fx-

Proof. 1) Assume first ¢’ : X’ — Y’ a morphism in Schy;. Set X; =Y; xy+» X' fori € I,
so X = lim;cjor X;. For each i we get a cartesian square

fxi

xX; X x
4 gi lq
i oy

So, f{/’ig; = (9i)« f%; naturally. So, (g;). form a morphism of the corresponding colmit
systems giving g, : Shv(X)— colim;er Shv(X;) — colim;e; Sho(Y;) = Shu(Y). The
claim follows.

2) Let now ¢’ : X" — Y’ be any placid scheme over Y’. Write X' = limje; X with
X € Schy, J filtered, and for j — j" in J the map X]’-, — X is smooth affine and
surjective. Set X; =Y Xy XJ’» for j € J. Then Xj is a placid scheme, and we get the
diagram

Ix,j

X; X/
b g; 7
y % vy,

for j € J. Note that Shv(X)—= limjcjor Shv(X;) with respect to the s-direct image
transition functors. By 1), for each j € J,

(4) F(g5)« = (95)«fx
naturally. The functors f% ; are compatible with the corresponding inverse systems and
give in the limit over J° the functor f%. Pick any j € J. Then ¢’ is the composition

X/ eﬁ; X; ﬁ) Y’. Since (f;j)(ev;)*:? (evj)«fx our claim follows from l) O
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If S € Schy; and Z — S is a placid S-scheme, let 7 : S — S be a map in Schy,
and h : Z' — Z be obtained by base change. Then &' : Shv(Z) — Shv(Z') is defined:
write Z — lim;cjor Z;, where I is small filtered, Z; € Schy¢/S, and for i — j in I
the map Z; — Z; in Schy/S is smooth affine surjective. Then let Z] = Z; x5 5,
let h; : Z] — Z; be the corresponding map. The functors hé are compatible with *-
pushforwards in the diagrams Shv(Z) = lim;eor Shv(Z;), Shv(Z') = lim;eror Shv(Z)).
In the limit they yield the functor h'. For the projections p; : Z — Z;, pl: Z' — Z! we
get hi(pi)« — (p})«h' and h'pf = (p})*h} canonically.

Lemma 0.0.21. Let S € Schy, assume given a cartesian square in PreStk g

y & v’
17 L
z &Lz

Assume I is a filtered category, and we are given a morphism f; : Y; — Z; in (Schy) /g
functorial in i € I°P, where f; is smooth. We assume for i — j in I the transition maps
Y; = Y;, Z; — Z; are smooth affine surjective. We assume that f:Y — Z is obtained
from f; by passing to the limit over I°P?. We assume i:S" — S is a map in Schy,, and
f' YY" = Z' is obtained from f by the base change i : S' — S. Then g'f* = (f')*h'
naturally. We do not assume here that the squares

Y -,
15 1 fi
Zj — Zi

are cartesian.

Proof. By definition, f* : Shv(Z) — Shv(Y') is obtained by passing to the colimit over
Iin f;: Shv(Z;) — Shu(Y;). Note that Y,Y’, Z, Z' are placid S-schemes. Note that h'
is obtained by passing to the colimit over I in A} : Shv(Z;) — Shv(Z!), and similarly
for g'. Recall that Shv(Z) = colim;e; Shu(Z;).

For i € I and K € Shv(Z;) we have g, fK = (f/)*hiK canonically. Passing to the
colimit over I, one gets the desired claim. O

0.0.22. Let Z be a placid scheme written as Z = lim;cor Z;. For ¢ — j in I let f;; :
Zj — Z; be the corresponding morphism, it is smooth of relative dimension d;;, affine,
surjective. Since Shv(Z)— colim; Shv(Z;) via the maps ff, Shv(Z) is compactly
generated, hence dualizable. By ([7], ch. 1.1, 6.3.4), by applying the dualization functor
to the functor

I — DGCateont, i = Shv(Z;), (i — j) — [,

we get a functor I? — DGCatcont, @ — Shv(Z;), (i = j) — (fij)«[—2d;;]. Moreover,

Shv(Z)¥ = lim Shv(Z;)

ielop
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with respect to the transition maps (f;j)«[—2d;;]. Consider for i € I the isomorphism

Shv(Z;) ®6E>di] Shv(Z;) with d; = dim Z;. So, d;; = d; — d;. The diagram commutes

®€E>dj]

Sh’U(Zj) ShU(Zj)
4 (fij) 1 (fij)«[—2ds;]
sho(z) "B shuz,)

Passing to the limit over I°’, we obtain an equivalence Shv(Z)= Shv(Z)V. So, a

possibility is to mention that for each placid scheme Z, Shv(Z) is canonically self-dual.
However, this self-duality is not compatible with the one for finite type schemes, so
maybe it is not needed.

Example: assume 0 € I is an initial object, let Ky € Shv(Zp). For the projection
fo 1 Z — Zy the image of fiKo in Shu(Z)Y under this duality is the composition

Shv(Z) (1o} Shv(Zy) — Vect, where the second functor is M — RT(Zy, Ko®" M)[2dp).

0.0.23. Let G be a group scheme, which is a placid scheme, C' € G — mod. Consider
the cosimplicial category defining C¢:

Fun(Vect, C) X Fun(Shv(G), O) 3 Fun(Shv(G)®?,0)...

Let us show that it satisfies the comonadic Beck-Chevalley conditions.

The functor corresponding to the last face map 9y, : [n] — [n + 1] (its image avoids
n + 1) is the following functor F,. We consider Shv(G)®"*!1 — Sho(G)*", id®@RT,
and compose it with Fun(-, C'). For p : G — Spec k the functor p, has a left adjoint p*.
Let T}, be the functor obtained from id ®p* : Shv(G)®" — Shv(G)®" ! by composing
with Fun(-,C'). Then T, is the right adjoint to F;,. Let now « : [m] — [n] be a map in
A. Consider the corresponding diagram

Fun(Sho(G)®",C) & Fun(Shu(G)®"+1,C)
TFO& TFoHrl
Fun(Sho(G)®™,C) ¥ Fun(Sho(G)®™+L,C)

We show that it commutes. It suffices to prove this for « injective, becase of the
following. Let A; C A be the full subcategory with the same class of object, where we
keep only injective maps. Then A% — A is cofinal by ([15], 6.5.3.7). If a: [m] — [n]
is injective, and 0,n are in the image then the desired commutativity follows from the
commutativity of

id ®p*

Sho(G)®" T Shy(@)Ent!
1 (ma)- . 4 (may1)«
Sho(G)@m T Shy(G)EmH,

where (mg )+ is the product along « in the monoidal category Shv(G).

If a: [n— 1] — [n] is the last face map then o+ 1 : [n] — [n + 1] avoids n. The
functor Fi,1 is the composition with Shv(G)®" ! — Shv(G)®*", K1 ® ... ® Kpyq
Ki®...0 K1 ® Ky * Kpy1. In this case the desired commutativity follows from
K+ec™ RI(G,K)® eq.
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If a: [n— 1] — [n] is injective and avoids O then F, sends f to the functor
K1®...®Kn'—)Kl*f(KQ(X)...@Kn)

and the commutativity is tautological. So, it always hold.
By ([9], Lemma C.1.9), the functor oblvg : C¢ — C is comonadic, and the corre-
sponding comonad on C'is C — C,c — eg * c.

0.0.24. Consider a placid scheme Y = lim;cjop Y;, where I is filtered, if i — j in I then
fij  Y; — Y, is smooth, affine and surjective, and Y; is a scheme of finite type. In this
case Shv(Y') is defined in [10] as lim;eror Sho(Y;) via the maps (fij)«.

In the paper there are situations, where we have morphisms A : Y — S, where S
is an ind-scheme, and we want functors between Shv(Y) and Shv(S) attached to h.
So, the above definition of Shv(Y') for placid schemes should be ”unified” with the
definition of Shv(Z) for prestacks Z locally of finite type. Namely, do we have certain
full subcategory of PreStk, on which Shv is defined as a functor, and which contains
both PreStk; s, placid schemes, and is closed under colimits? Compare with [28§].

0.0.25. Let now Z,Z' be placid schemes and i : Z/ — Z a placid closed immersion.
What is the dual of the adjoint pair i, : Shv(Z') — Shv(Z) :i'?

We explain the dual of i,. If Z = lim;cjop Z; and, assume for simplicity I has an
initial object 7¢ such that Z’' = ZZ(O Xz, Z. So, Z' = lim;eop Z] with Z] = Z; X 7, ZZ(O.
For i — j in I let f;; : Z; — Z; be the corresponding transition map. For the closed
embeddings i; : Z] — Z; writing Shv(Z) = lim;eror Shv(Z;) for (fij)« : Shv(Z;) —
Shv(Z;) and similarly for Shv(Z'), the dual functor is given by the collection of functors
it[2d; — 2d] : Shv(Z;) — Shv(Z!), here d; = dim Z;,d; = dim Z! as locally constant
functions, they form a morphism of the corresponding inverse systems. The number
d; — d} does depend on i, and can be denoted codimy(Z’) = d; — d;,. So, the dual of
ix : Shu(Z') — Shv(Z) is i'[2 codimyz(Z")].

0.0.26. Let Z be a placid ind-scheme. Is Shv(Z) canonically self-dual? Here is some
answer.

Write Z = colim;er Z; with Z; a placid scheme, I small filtered, and for i — j the
map fi; : Z; — Zj is a placid closed immersion. We have Shv(Z) = colim;c; Shv(Z;)
with respect to the transition functors (f;;)s.

Consider the functor I — DGCatcont, @ — Shv(Z;), (i — j) — (fij)«. By ([7], ch.
I.1, 6.3.4), the colimit of this functor colim;c; Shv(Z;) = Shv(Z) is dualizable, and
Shv(Z)Y = lim;eror Shv(Z;)Y, the limit of the dual functor.

Recall for each i the canonical self-duality on Shv(Z;) introduced in Sect. of
this file. It allows to rewrite Shv(Z)Y = lim;e o Shv(Z;), where the transition functors
for i — j in I is (f;;)'[2 codimyz, (Z;)] in the notations of Section

Pick an element ig € I. Consider for ¢ — j in I a commutative diagram

®e[—2 codiij (Zig)]
N

ShU(Zj) Sh’U(Zj)
11 L fij[2codimz; (Z;)]
e[—2codimy. (Z;
Sho(zy) “POmEE g2
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Indeed, we have codimy; (Z;) + codimz, (Z;,) = codimg, (Z;,). Passing to the limit over
I°P, this provides an equivalence Shv(Z)Y = Shv(Z).
This duality maybe depend on a choice of an element iy € I.

0.0.27. In Section 7.3.5 the perverse t-structure on Shvgc((BimTVp)ow) is mentioned
without any definition. In the convention section a definition of the perverse t-structure
for an ind-algebraic stack should be given. My understanding is as follows: if ¥ =
colim;ec7 Y; with Y; an algebraic stack locally of finite type, I filtered then Shv(Y)<°
should be the smallest full subcategory of Shv(Y) containing Shv(Y;)<C for any i,
closed under extensions and small colimits. Then by (HA, 1.4.4.11), Shv(Y)=0 is then
presentable and defines an accessible t-structure on Shv(Y'). For K € Shv(Y') we have
K € Shy(Y)=Y iff for any 4, the !-restriction of K to Y; lies in Shv(Y;)Z°. As in the case
of ind-schemes of ind-finite type, this t-structure is compatible with filtered colimits.

0.0.28. For a scheme of finite type S, the perverse t-structure on Shv(S) is left com-
plete (by [I], 1.1.4). This implies that for an Artin stack locally of finite type S the
t-structure on Shv(S) is left complete as in ([7], ch. 1.3, 1.5.7), because for a smooth
atlas f : 8" — S with S a scheme locally of finite type, f*[dim f] is t-exact.

It should be clarified for which topologies on Schy; the functor Shv : (Schyp)? —
DGCateont satisfies the descent, and a precise reference should be given. In particular,
in ([I2], proof of 4.2.7) you claim it satisfies the descent for the topology of finite
surjective maps on Schy;. Give also a reference for the fact that it satisfies the étale
descent. (For the proper descent this is Section of this file). Sam claim we get
this way h-descent, give accurate references. Add also it satisfies the smooth descent:
if Y is a quasi-compact algebraic stack with a smooth cover S — Y, where S € Sch‘;{ ! ,
if S* is the Cech nerve of this map then Shv(Y) — Tot(Shv(S*®)) is an equivalence.
Does etale descent automatically implies the smooth descent here?

Add also the following. For a map f :Y — Z in PreStk;s;, which is surjective on
geometric points, f' is conservative.

Cite the following. If Y € PreStk; s, is an algebraic stack then Shv(Y') = limg_,y Shv(S),
where the limit is taken over the opposite to the category of affine schemes smooth over
Y, and morphisms are smooth maps between those ([1], C.1.1).

0.0.29. Say that for any Y € PreStk;s;, Shv(Y') is compactly generated in the con-
structible context by ([I], C.1.1). What happens for D-modules?

In Section 4.3.3 you claimed the existence of the equivalence D : (Shv(Y)¢)? = Shv(Y)¢
for an algebraic stack of finite type. Explain that this is known only under the assump-
tion that Y is locally a quotient of a scheme S of finite type by an affine algebraic
group, give a reference!

0.0.30. For example, it should be said somewhere that if Z = lim;cjor Z; is a placid
scheme, where [ is filtered, Z; is a scheme of finite type, with the transition maps affine
smooth and surjective, then for ¢ € I and the projection ev; : Z — Z; the functor
evy : Shu(Z;) — Shv(Z) is defined, this is the natural functor ins; : Shv(Z;) —
colimje; Shv(Zj). For the moment this is hidden in ([10], C.2.9).
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0.0.31. On exteriour product. If S; € Schyy, F; € Shv(S9;)®™s'" then F1KF, € Shv(S; x
So)const by definition, as constr means being bounded with ocnstructible cohomology.

Let S € Schy, Y € PreStkjp. The functor Shu(S) @ Shv(Y) — Shv(S x Y),
(F,K) — FX K is fully faithful and preserves compactness. We have to verify this in
the constructible context, as for D-modules this is an equivalence. Fully-faithfulness
property is preserved by passing to the limit, and tensoring by Shv(S) is the functor
DGCateon: — DGCateons preserving limits, as Sho(S) is dualizable. This is why our
functor is fully faithful.

To see that it admits a continuous right adjoint we use ([7], ch. 1.1, 2.6.4). Write
Shv(Y)= limp_,y Sho(T) over (Sch?{f)‘/”;,. For each T the inclusion it : Shv(S) ®
Sho(T) — Shv(S x T) admits a continuous right adjoint i%. Let a : T — T be
a map in (Sch‘}{f)/y. In the constructible context, o' : Shv(T") — Shv(T) admits
a left adjoint «;, and we have ips(id ®y) = (id Xa)ip. This gives an isomorphism
id ®a'ilt, = if(id xa'). By ([1], ch. L1, 2.6.4), i : Shv(S) ® Shv(Y) — Shv(S x Y) has
a right adjoint i, and for any (T LN Y) e Sch‘;c{f)/y we have (id ®b')i® = ift(id xb)".

We check that i is continuous. Let K = colimjes K; in Sho(S x Y). By ([21],

2.2.68), it suffices to show that for any (T LN Y) e Sch(}{f)/y, id ®b' sends our diagram
to a colimit diagram. This is true, because % and (id xb)' are continuous.

Claim Let X, Y, Z € Schy; with X proper. In the constructible context, the diagram
commutes

S(X xY xZ) &  Sho(X)® Sho(Y x 2)
1 =" 1 =R
Sh(X xY)® Sho(Z) & Shu(X) ® Sho(Y) ® Shv(Z)
Proof. The left vertical arrow is Shv(X x Y') ® Shv(Z)-linear by Section There-
fore, it suffices to calculate for F' € Shu(Y x Z) and the projection ¢ : X XY xZ — Y xZ
the object XF(¢'F) € Shv(X x Y) ® Shv(Z). The functior X o ¢' is right adjoint to
the functor Sho(X x V) @ Shv(Z) 2 Sho(X x Y x Z) & Shu(Y x Z). The latter
functor identifies with the composition Shv(X xY)® Shv(Z) agd Shv(Y)®Shv(Z) 5
Shu(Y x Z), because X is proper. Here ¢: X x Y — Y is the projection. So, X% o ¢'

identifies with the functor Shu(Y x Z2) =N Shv(Y)x Shv(Z) 78 Shv(X xXY)®Shv(Z).
Our clailm follows. O

0.0.32. Question. Let f : Y — Speck be a scheme of finite type. In the constructible
context does the functor py : Shu(Y') — Vect preserve limits? Consider the dual functor
(p)Y : Vect — Sho(Y). Is the object (p)¥(e) compact? If it was compact, the functor
pr would preserve limits.

0.0.33. Let Y,Z € PreStk;s; and m : Y — Z be proper, in particular, of finite type.
5~
Consider the Cech nerve .. .Yg = YZ2 X Y] of 7. Applying Shv, we get a cosimplicial

category A? — DGCateont, [n] — Shv(YgH), here Y} =Y xzY xz...xzY, the
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product of n copies. For ¢ > 0 let 0; : [i] — [i + 1] be the last face map, it avoids
i+ 1. The corresponding map p% : YZi+1 — Y} is the projection, so (p%)" has a left
adjoint (p%); = (p%).. By base change, this cosimplicial category satisfies the monadic
Beck-Chevalley conditions, so

Tot Shu(YZ ™) = A —mod(Shv(Y)),

[nleA
where A = (pg)«p} for the projections py,ps : YZ-Y.

Now 7' : Shv(Z) — Shv(Y) has a left adjoint 7, and the monad w'm acting
on Shv(Y) identifies with A. We always have a natural functor Shv(Z) — A —
mod(Shv(Y')). Assume in addition that 7 : Y — Z is surjective on k-points (and
more generally, on field-valued points, we have to take into account generic points in
particular). Then 7' is conservative, so that 7' satisfies the Beck-Chevalley theorem ([7],
ch. 1.1, 3.7.7), and the induced functor Shv(Z) — A —mod(Shv(Y')) is an equivalence.
Thus, Shv satisfies the proper descent.

0.0.34. It seems the following is also needed. Consider the cartesian square (3)),
where all the maps are schematic quasi-compact say. Let F' € Shv(X’) such that
g1 : Shv(X') — Shu(Y”) is defined on F and f;g/F is defined. Then f%F and g1 f%F
are both defined and we have a natural isomorphism ¢\ f%x F = fy-gF. Is this true?

I think this was used in ([II], proof of Prop. 2.8.2).

0.0.35. Question. Let Y be an ind-scheme of ind-finite type (or a classical algebraic
stack locally of finite type). Let U; C Y be an open immersion for ¢ € N such that for
t < j we have U; C Uj and U;U; =Y. Is it true that colim;ey U; in PreStk identifies
with Y7
Example: we may form a sequence of opens U; C Grg, where each U; is of the form
Grg — U, S* and
Ui CUjy C...

with U;U; = Grg. We have Shv(Grg) — lim; Sho(U;) anyway, as for any closed sub-
scheme of finite type S C Grg, S C U; for some i.

0.0.36. Torsors under placid group-schemes. Let Y, be an ind-scheme of ind-finite type
functorial in a € AP, where A is filtered, ag € A is initial in A. Let G = limge g00 G
be a placid group scheme, where G, is a smooth group scheme of finite type, and
for a« = 8 in A, Gg — G, is smooth, affine and surjective homomoprhism of group
schemes. Assume Y, — Yo, is a G-torsor. For o = Bin A, Yz — Y, is G-equivariant.

Then we are in the setting of (JL0], C.1.6), so we get a placid ind-scheme Y as follows.
Write Yo, = colim;er Y;, where Y; is a scheme of finite type, I is filtered, and for i — j,
Y; — Y} is a closed immersion. Let Z; = limaeg0r Y XY, Yea, 80 Z; is a placid scheme,
and Z; — Z; is a placid closed immersion. So, Y := colim Z; is a placid ind-scheme, and
Shv(Y) = limaeaor Shv(Ya) with respect to the functors (fq )« : Shv(Yg) = Shv(Ya)
for « — Bin A and fog : Yg — Ya. The group G acts on Y, for each a via the
quotient G — Gy, this gives an action of Shv(G) on Shv(Ya). The functors (fo )«
are morphisms of Shv(G)-modules, so Shu(Y) can be seen as lim,eg00 Shv(Y,) taken
in Shv(G) — mod.
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Let us show that Y = lim,eca0r Yo as prestacks. We have a natural map Y — lim, Y.
Let S € Sch®//. Recall that for any n, T<n Spc C Spc is stable under filtered colimits,
so Y(S) € Sets and an element of Y(S) comes from an element of Z;(S) for some i (by
[21], Cor. 13.1.14). So, an element of Z;(S) is the same as an element of Y(S) whose
image in Ya,(5) lies in the subset Y;(S). The makes the claim manifest (and it holds
more generally in the situation of ([I0], C.1.6)).

Since Ker(G — G4, is prounipotent for a # ag, we get Shv(Ya)? = Shv(Y,)Ce for
a # ap by ([25], 1.3.21). Now by Sectionof this file, Shv(Ya)% = Shv(Ye,) via
the functor fZ* . :Shv(Ya,) = Shv(Ya). So,

aQ,x
Shu(Y)¢ = lim Shv(Ya)® = Shv(Yay,)
acA°

We could take the functors ft!lo,a instead, but the two limits would be isomorphic.

We may strengthen the above as follows. Assume H is a placid group scheme, G C H
is a placid closed immersion, and a normal group subscheme with the cokernel K, here
K is a smooth affine group scheme of finite type. Assume the G-action on Y is extended
to a H-action. Then as above we get Shv(Y)? = Shv(Ya,/K).

0.0.37. Let H € Grp(PreStk) be a placid ind-scheme written as H — colimjc; Hj,
where H; is a placid group scheme, and for j — j’ in J the map H; — Hj is a
placid closed immersion and a homomorphism of group schemes. Assume j = 0 is
initial in J and let G = Hy. Then for any j, H;/G is a scheme of finite type, so
H/G = colimjey Hj/G, because colimits commute with colimits, so H/G is an ind-
scheme of ind-finite type. Assume G prosmooth.

Write as in the previous section G = limgea0r G, Where G, is a smooth group
scheme of finite type, and for o — § in A, Gg — G, is smooth, affine and surjective.
Set Ko = Ker(G — Gq). Fora — fin Alet 1 - Ko,3 - Gg = G, — 1 be an
exact sequence. Assume K, g is a unipotent group scheme. Then K, — limg K, g is
prounipotent.

Set Yo = H/K,, we usually mean by this the etale sheafification of the prestack
quotient. This is an ind-scheme of ind-finite type by the above, and for & — ( in A the
map Yg — Yo is a K,/Kg-torsor. So, we are in the situation of the previous section,
ag is initial in A. We write H/K,, = — colimj H;/K,. So, Y= lim, H/K,. Note
that limg(Ko/Kg) = K. We get Y — colimj H; — H, because lim, H;/K, — H; for
any j.

From H — limye 00 H/ K, we get Shv(H) — lim, Shv(H/K,). From the previous
section we now get an equivalence Shv(H/K,,) = Shv(H)¥eo. Similarly, we may get
Shv(H/K,) = Shv(H)Xe for any a.

We have an action of G, by right translations on H/K,, and (H/K,)/Go,— H/G.
Now Section gives Shv(H/Ky)% = Shv(H/G).

As in the previous subsection, we get Shv(H/G) = Shv(H/Ky)% = Shv(H)% for
any of the 4 sheaf theories (for D-modules this is ([4], Lemma B.5.1).

Corollary 0.0.38. Let H € Grp(PreStk) be a placid ind-scheme, G C H be a closed
placid prosmooth group subscheme. For any of the 4 sheaf theories Shv(H/G) = Shv(H)%,
where G acts on H by right translations.
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0.0.39. Let G € Grp(PreStk) be a placid ind-scheme, Y be a placid ind-scheme
with a G-action. Then Shv(Y) is equipped with a Shv(G)-action. Namely, for K €
Shv(G), F € Shv(Y) one has K * F = a,(K X F) for the action map a: G xY — Y.

0.0.40. Let Y — S be a map in Schy;, G be a placid group scheme over S acting on
Y over S though its quotient G — G¢ group scheme (smooth and of finite type over
S) with a prounipotent kernel. We have canonically Shv(Y)% = Sho(Y) by ([25],
1.3.21). Consider the stack quotient Y/G (by which we mean etale sheafification of
the prestack quotient). We define Shv(Y/G) as Shv(Y/Gp) in such a way that for
q:Y — Y/G the functor ¢* : Shv(Y/G) — Shv(Y) is defined as ¢ : Shv(Y/Go) —
Shv(Y) for qo : Y — Y/Gy. So, if G — G1 — Gq are given, where G is another
finite-dimensional quotient group scheme over S with Ker(G — G1) prounipotent then
we identify Sho(Y/G1) = Shv(Y/Gp) via a* for the natural map a : Y/G1 — Y/G).
No shifts appear. Note that Shv(Y/Gg) is compactly generated both for D-modules
and in the constructible context (for D-modules this is true, as Y/Gq is perfect [5]).

If f:Y — Y'is a G-equivariant map in (Schy;) g (we assume the G-action on
both schemes factor through a finite dimensional quotient group scheme) then we have
f e Shu(Y')G) — Shu(Y/G).

We extend this definition to the case of an ind-scheme of ind-finite type Y over
S equipped with a G-action over S as follows. Assume Y admits a presentation
Y = colim;c; Y;, where Y; is a G-invariant closed subscheme of finite type, I is fil-
tered, and for ¢ — j in I the map Y; — Y} is a closed immersion. Assume the G-action
on Y; factors through a quotient group scheme G — G;, where G; — S is smooth, of
finite type with Ker(G — G;) prounipotent. Then we have Shv(Y;/G) defined as above
and set Sho(Y/G) = lim;cror Shu(Y;/G) with respect to the !-restrictions. With this
definition for ¢ : Y — Y/G we get the functor ¢* : Shv(Y/G) — Shv(Y'), which is
the limit over i € I? of the functors ¢ : Shv(Y;/G) — Shv(Y;) for ¢; : Vi — Y;/G.
It also identifies with oblv : Shv(Y)Y — Shu(Y). Note that for i — j in I the func-
tor of l-restriction Shv(Y;/G) — Shv(Y;/G) admits a fully faithful left adjoint. So,
Shv(Y)% =5 colim;er Shu(Y;/G) with respect to the !-direct images. We see that for
D-modules or in the constructible context Shv(Y )Y is compactly generated.

Let now H be a placid group ind-scheme over S, G C H a closed placid group
subscheme over S, so H/G is an ind-scheme of ind-finite type over S. Then the above
assumption is satisfied for the G-action on H/G over S. So, Shv(H/G)% identifies with
Shv(G\H/G). For q : H/G — G\H/G the functor ¢* : Sho(G\H/G) — Shv(H/G)
identifies with oblv : Shv(H/G)¢ — Shv(H/G).

Let again Y — S be a map in Schy; and G a placid group scheme over S. As-
sume that the action of G on Y factors though the finite-dimensional group scheme
Gy — S smooth over S, and let G — G1 — Gy be as above. Another way to re-
alize Shu(Y/G) is as the category Shv(Y/Go) via the identifications a*[dim.rel(a)] :
Shv(Y/Go) = Shv(Y/Gy) for every G; as above. Indeed, the equivalence

Sho(Y/Go) =5 Sho(Y/Go), K — K[— dim(Go/S)]

from the first model to the second one allows to identify them. The advantage of the
second model is that the transition functors are t-exact for the perverse t-structure, so
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allow to equip Shv(Y/G) with the perverse t-structure: this is the perverse t-structure
on Shv(Y/Gy).

For the second model for gy : Y — Y/G consider the functor Shv(Y/G) = Shv(Y/Gy) —
Shvu(Y') given by ¢§[dim(Go/S)], it is t-exact and compatible with the transition func-
tors for the second model, so defines a functor Shv(Y/G) — Shv(Y') that we denote
by ¢*[dim.rel(q)], this is just one symbol.

Let now Y be an ind-scheme of ind-finite type over S with a G-action and a pre-
sentation Y = colim;c; Y;, where I is small filtered, Y; — S is a G-invariant closed
subscheme of finite type in Y, and for ¢ — j the map h;; : ¥; — Yj is a closed im-
mersion. Assume G-action on Y; factors through a quotient group scheme G, — S
smooth and of finite type over S, where Ker(G — G;) is a prounipotent group scheme
over S. Equip each Shv(Y;/G) with the perverse t-structure. Then the !-pullbacks
under Y;/Gy — Y;/Go are compatible with the transition functors for the second
model, so define a functor hij : Sho(Y;/G) — Shou(Y;/G), which is left t-exact. It
also commutes with the functors ¢f[dim.rel(g;)] for ¢; : ¥Y; — Y;/G. Recall that
Sho(Y/G) = lim;eror Sho(Y;/G) with respect to the functors héj. The limit over i € I°P
of the functors ¢ [dim. rel(g;)] : Shv(Y;/G) — Shv(Y;) in the second model is denoted
oblv[dim. rel] : Shv(Y)¢ — Shv(Y).

Each héj : Shu(Y;/G) — Shu(Y;/G) admits a left adjoint (hsj) : Shu(Y;/G) —
Shv(Y;/G), and we may also write Shv(Y/G) = colim;er Shv(Y;/G) with the transition
functors (h;;);. Now we may define the perverse t-structure on Shv(Y/G) as in the case
of an ind-scheme of ind-finite type. Namely, K € Shv(Y/G) lies in Shv(Y/G)=Y iff for
any i, its -restriction to Y;/G lies in Shv(Y;/G)Z°. So, Shv(Y/G)Z° = lim;cror Sho(Y;/G)=0,
which shows that Shv(Y/G)Z0 is presentable, so the t-structure is accessible. This t-
structure is also compatible with filtered colimits.

In fact, if we identify the first and the second model of Shu(Y)Y as above then
the functors oblv for the first model becomes the functor oblv[dim. rel] : Shv(Y)¢ —
Shu(Y') for the second one. So, this is just a matter of notations.

For the natural map ¢ : Y — Y/G the functor ¢' : Shv(Y/G) — Shu(Y) is also
defined similarly, though ¢ is not locally of finite type.

Namely, if Y € Schy, we first consider a third model for Shv(Y/G): for a quotient
G — Gy as above such that G-action on Y factors through Gy, we identify the 3rd model
with the second via the equivalences: Shv(Y/Go— Shv(Y/Gy), K — K[2dim Gp]. For
G — GitoGy let a : Y/G1 — Y/Gp be the natural map. Under such equivalences
the transition functor a* for the first model becomes the transition functor a' for the
3rd model. Now for the third model we define ¢' : Shv(Y/G) — Shu(Y) as gj for
qo : Y — Y/ G().

This definition is similarly extended to ind-schemes of ind-finite type.

0.0.41. Let Y = colim;c;Y; in PreStk, where [ is filtered, Y; is a scheme of finite type,
and for i — j in I, Y; — Y; is a closed immersion, so Y is an ind-scheme of ind-finite
type. Let H — G be a homomorphism of placid group schemes over Spec k. Assume
G acts on Y and the assumption of the previous subsection holds, that is, each Y; is
G-invariant, and on Y; the group scheme G acts via a finite-dimensional quotient group
scheme G — G; with Ker(G — G;) prounipotent. We have a natural map of stack



18

quotients h : Y/H — Y/G. We have defined the categories Sho(Y/G), Shv(Y/H) in
the previous subsection. Then the functor h* : Shv(Y/G) — Shv(Y/H) is defined,
namely this is oblv : Shv(Y)¥ — Sho(Y)H.

0.0.42. IfY is a stack locally of finite type, a placid group scheme over Y should be
defined as a group object (G — Y) € Grp(PreStk,y) such that for any S — Y with
S e Sch;{ ! , S Xy G is a placid group scheme over S.

Let Z — Y be a map in Stk;y; and G be a placid group scheme over Y acting on Z
over Y. Write Z/G for the stack quotient of Z by G (etale sheafification of the prestack
quotient), so Z/G — Y. How do we define Shv(Z)%?

First, for any S — Y with S € Sch‘}{f we have a monoidal category Shv(S xy G)

defined in ([25], 1.3.7), it is an object of Alg(Shv(Y') —mod). For a map S’ 3 S =Y
in (SCh;{f)/y let 5 : 5 xy G — S Xy G be obtained by base change. As in ([25],
1.3.12), 8" : Sho(S xy G) — Shv(S' xy G) is monoidal, it is actually a morphism in
Alg(Shv(Y') —mod). To see this we used Lemma below. So, we may understand
Shu(G)= lim Shu(S xy G)
(S—=Y)e((Sch$l )y )er
as limit taken in Alg(Shv(Y) —mod). We get a monoidal structure on Shv(G) via the
latter limit.

This is one more extension of our sheaf theory needed. In general, we can not write
G as lim;cjor G, where G; — Y is an affine group scheme ”of finite type” over Y, [ is
filtered, and for ¢« — j in I the map G; — G; is affine smooth surjective. This does not
hold already for £ (G) — Ran, I think, where G is a reductive group.

We will see that the monoidal category Shv(G) acts on Shv(Z).

For each S — Y in (Sch‘}{f)/y, Sxy G actson Sxy Z over S, so Shv(S xy G) acts on
Shv(S xy Z) naturally. Foramap ' % S — Y in (Sch{{’) jy let a: §'xy Z — Sxy Z
be obtained from « by base change.

Let Shv(S xy G) act on Shu(S’ xy Z) via the map Shv(S xy G) — Shv(S' xy G).
Then &' commutes with Shv(S xy G)-actions.

Recall that the sheafification is a left exact functor, so for the stack quotients we get
(S xy Z)/(S xy G)) xg S"= (5" xy Z)/(S" xy G) canonically.

Consider the co-category AssAlg + Mod(DGCateont) defined in ([7], ch. 1.1, 3.5.4).
By ([16], 3.2.2.5), it admits limits and the projection AssAlg + Mod(DGCateont) —
DGCatgon: preserves limits. We obtained a functor

((Sch?{f)/y)ofg — AssAlg + Mod(DGCateont)

sending S — Y to the pair Shv(Sxy G), Shv(Sxy Z). So, the limit of the latter functor
is an object of AssAlg + Mod(DGCatcont) — DGCateont. In other words, Shv(G) act
on Shv(Z) naturally, and we may consider the invariants

Shv(Z)5"(%) = Fungy, gy (Shv(Y), Shv(Z)) € Shu(Y) — mod
Question. Can we rewrite the above as limit of Shv(S xy Z)5M(5*vE) over §? More
precisely, for (S —Y) € (Sch‘;{f)/y, let g5 : S Xy G — S be the projection. By ([25],
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1.3.16), we have canonically
Sho(S xy Z)3hEy @) = vty — comod(Shu(S xy Z))

If o : 8" — S is a morphism in (SCh(;{f)/y then ﬁ!qgwgqg,w as coalgebras in Shv(S’xy
G). This is by definition of the functors ¢%, ¢%,. So, a': Sho(S xy Z) — Shv(S' xy Z)
induces a functor between the comodule categories

qsw—comod(Shv(Sxy Z)) = qgsw—comod(Shv(S' xy Z)) = q&w—comod(Shv(S' xy Z))

Now we may consider
lim ggw — comod(Shv(S xy Z))
S—=Y

taken in DGCatcop,: over the category ((Sch?{f)/y)oz’. Is it equivalent to Shv(Z)SM(@)?

Lemma 0.0.43. Let S’ — S be a map in Schy,. Let f : Y — Z be a morphism of placid
schemes over S, let f' :Y' — Z' be obtained from f by the base change o : S — S.
Write ay : Y =Y and az : Z' — Z for the obtained maps. Then for K € Shv(Y)
one has canonically oz!Zf*KZfia!YK.

Proof. Write Y = lim;¢jor Y, where I is filtered, Y; is a scheme of finite type over .S,
and for ¢ — i’ in I the map Y — Yj is affine smooth surjective (over S), and similarly
for Z—= limjcjor Z;. These are presentations from a definition of a placid scheme.
Let Y/, Z} be obtained from Y;, Z; by base change S" — 5, so Y’ = lim;esor ¥ and
7= limjejop ZJ/

It suffices to establish the desired isomorphism after applying (ev}). : Shvu(Z') —
Shv(Z;) for each j € J, here ev’; : Z' — Z is the projection. Pick i € I such that the
composition Y — Z — Z; factors through f : Y; — Z;. By base change under S’ — S
we get a cartesian square

v, 4 z

TO‘YZ' TO‘Z]'
fT/

Y! = Z}

Let (ev;). : Shv(Y) — Shv(Y;) be the direct image under ev; : Y — Y;. The key point
is the base change isomorphism oz!Zj fi— f;a!yi . We get
(evg»)*alzf*K’—Ta!Zj(evj)*f*K:;a!ij*(evi)*Kf—Tf’;agfi(evi)*K
= (evy)way K= (ev;-)*fia!YK

We are done. O

Corollary: let a: S” — S be a map in Schy, ¥ — S be a placid ind-scheme over S
and Y’ — S’ be obtained by base change. Let & : Y/ — Y be the natural map. Then
a': Shu(Y) — Sho(Y") is well-defined.

Proof. Write Y’%/cqlilrnY}, where [ is small filtered category, Y; is a placid S-scheme,
1€

and for ¢ — j in I the map Y; — Y} is a placid closed immersion over S. Write
Y/ =Y; xg 5. For each i € I let &; : Y/ — Y; be the correspnding map. The functors
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di are compatible with x-pushforwards in the corresponding inductive systems, passing
to the colimit in & : Shv(Y;) — Shv(Y/), we get the desired &'. These functors are
also compatible with the !-pullbacks, so we can also pass to the limit. O

0.0.44. Let us be in the situation of Section|0.0.42] Probably the only case we need sat-
isfies the following additional assumption that we make. For any S — Y in (Sch(}{ ! ) /Y5
S Xy Z may be written as S Xy Z = colim;ecr Zg;, where I is filtered, and Zg; — S is
a scheme of finite type such that for any ¢ — j in I, the map Zg; — Zg; is a closed
immersion. Moreover, for each ¢ € J, Zg; is stable under the action of S xy G, and
the latter acts through a finite-dimensional quotient scheme Gg; over S. In particular,
S Xy Z is a ind-scheme of ind-finite type over S.

In this setting one may define the category Shv(Z/G) in one more way. Namely, for
S — 'Y as above, in Section[0.0.40] we have defined the category Shv((Sxy Z)/(Sxy G))
together with the functor ¢§ : Shv((S xy Z)/(S xy G)) = Shv(S xy Z) for the
projection gg : S xy Z — (S xy Z)/(S Xy G). Recall that ¢¢ identifies with oblv :
Shu(S xy Z)$*v¢ — Shu(S xy Z).

Let now a : S — S be a map in (SCh;{f)/y. Let @ : 8" xy Z — S xy Z and
B:8 xy G — S xy G be obtained by base change from «. Pick a finite-dimensional
quotient group scheme S Xy G — (g such that S xy G-action on S Xy Z factors
through Gg. Let Gg» = Gg x5 S’. We have the cartesian square

Q

S,XyZ — SXyZ
3w In
(8" xy Z)/Gsg > (S xy Z)/Gs

The functors &' : Shv((S xy Z)/Gs) — Shv((S' xy Z)/Gg') can be seen by definition
as the functors that fit into a commuttaive diagram

Sho(Sxy Z) & Sho(S' xy Z)
1 oblv 1 oblvy

~1

Shu(S xy Z)3*vG & Shy(S' xy Z)5'*vG
This way we get a functor ((Sch),y)” — Shu(Y) —mod, S = Shu(S xy Z)5* €.

Finally, we may consider
lim Shv(S xy Z)5*v¢
S—Y

in Shu(Y) —mod taken over ((Sch?{f)/y)‘)p. This should be our definition of Shv(Z/G)
I think.

0.0.45. For S a scheme of finite type consider the perverse t-structure on S. The
functor H' : Shv(S) — Shv(S)Y preserves products, is this correct? This was used to
conclude that your QLisse(S) for S smooth is left complete.

For a scheme of finite type S any object of Shv(S)<"! is bounded.

0.0.46. Let Y be a classical algebraic stack locally of finite type with an affine diag-
onal. Then the truncation functors for the perverse t-structure 7=", 72" preserve the
subcategory Shv(Y )"t C Shu(Y), so we get a t-structure on Shuv(Y)®nstr,
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0.0.47. Let Y be a classical quasi-compact algebraic stack with an affine diagonal.
Let F € Shv(Y)™! then F is bounded. Indeed, pick a smooth covering f : S — Y,
where S € Sch?{ ! Since f* [dim. rel(f)] is t-exact and conservative, it suffices to show
that f*F is bounded. However, any compact object in Shv(S) is bounded.

0.0.48. Let S € Schy, K; € Shv(S) and E € Lisse(F), that is, E is dualizable with
respect to the ®-monoidal structure on Shv(S). Recall that Hom (K, K2) € Shv(S)
denotes the inner hom with respect to the ®-monoidal structure on Shv(S). Then by
(J16], 4.6.2.1) we get Hom(K; @ E, K2) = Hom(K1, EV @ K») with EY = Hom(E, e).

0.0.49. Recall the following from ([13], A.1.7). Let Corr(PreStk;:)ind—sch,au be the
category of correspondences, whose objects are prestacks locally of finite type Y, and
a morphism from Y; to Yo is a diagram Y, L Yo i> Y9 with g any and f ind-
schematic of ind-finite type. Then in the constructible context we get a functor
Shvcorr : Corr(PreStk st )ind—sch,at — DGCateont sending Y to Shv(Y), and send-
ing the above morphism to the functor f.g': Shv(Y;) — Shv(Ys). Then the functor
Shvcerr possesses a natural right-lax symmetric monoidal structure, see ([7], Vol. 2,
Chapter 3, Sect. 6.1), where Corr(PreStk;t;)ind—sch,qnr is a symmetric monoidal cate-
gory with respect to the level-wise product.

In particular, this means that given f; : Y; — Z; ind-schematic of ind-finite type in
PreStk; s and K; € Shv(Y;), we have

(f1 X f2)« (K1 B K2) = ((f1)«51) B ((f2)«K2)

Let J be a groupoid acting on Y in PreStk;s; given by a functor A°” — PreStk;
such that the action map m : H x;y  H — H is ind-schematic of ind-finite type, here
s,t : H — Y are source and targets maps. We get a monoidal structure on Shv(H)
with the product given by (K, K3) + ma.q (K1 B K3) for q : H xy H — H x 3.
Let a : Y — H be the map corresponding to [1] — [0] in A. Then a,wy is the unit
of Shv(J). Moreover, the functor ay : (Shv(Y),®') — Shv(H) is monoidal. Indeed,
H € Alg(Corr(PreStkft)ind—sch,all), S0 we just apply a right-lax monoidal functior
Shvcerr. Moreover,

(H,Y) € Alg + module(Corr(PreStk; ft)ind—sch,all)

Namely, write pr,act : H — Y for the two maps from H to Y given by 0,1 : [0] — [1].

Then the action map from H xY to Y is given by the correspondence H xY I(Qr F 2 Y.
Applying Shvcerr, we see that Shv(Y) € Shu(H) — mod(DGCateont)-

The whole Section A.1 of [I3] can be advised as a reference on the generalities about
the sheaf theories.

More generally, we may define the category of relative groupoids Grpd / PreStk /Sch
and the corresponding functor

Grpd / PreStk /Sch — Alg(Corr(PreStk;;))
as in ([26], 1.4.48).
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0.0.50. Let H = lim;cor H; be a placid group scheme, here I € 1 — Cat is filtered,
if © € I then H; is a group scheme of finite type, and for ¢ — j in I, H; — H; is a
smooth affine surjective morphism, a homomorphism of group schemes. Let ¢ € I and
K; — H; be a closed group subscheme, set K = H xp, K;. So, K — H is a placid
closed immersion. Let L = Ker(H — H;). Then the natural map H/K — H;/K; is
an isomorphism. Indeed, L = Ker(K — K;), and L acts trivially on H/K. So, the
H-action on H/K by left translations factors through a transitive H;-action, and the
stabilizer of K/K € H/K is K/L— K.

0.0.51. Application. Let H be a smooth affine group scheme of finite type, F' = k((t)), O
E[[t]]. Then H(F) is a placid ind-scheme. It could be defined in two equivalent ways.
Let for n > 1, K,, = Ker(H(O) — H(O/t")). Set Ko = H(O), so ... Ky C K1 C K.
Then H(F)/K, is an ind-scheme of ind-finite type. For n < m we have the map
H(F)/K,, — H(F)/K,, which is schematic, smooth affine and surjective. It is actu-
ally a torsor under K,,/K,,. So, we are in the situation of Section for A =Z>y.
Fora€ A, Yo = H(F)/Kq, Go = H(O/tY). This gives G = lim, G, = H(O). Then we
may define H(F') as limye 400 Yo, where the limit is taken in PreStk. By Section
for n < m we have the projection f,,, : H(F)/K, — H(F)/K, and the adjoint
pair f .+ Sho(H(F)/Ky) S Sho(H(F)/Ky) @ (fam)«. We may view Shv(H(F) as
limpe 400 Sho(H(F')/K,,) in DGCateopt with respect to (frm)«. For n > 0 the group
scheme K, is prounipotent.
For the H(0O)-action by right translations on H(F') by Section one gets

Sho(H(F))7O) = Shy(Gry)

0.0.52. Let Y be placid scheme written as Y — lim;cjor Y;, where I is small filtered
category, for ¢ — j in I the map Y; — Y; is smooth affine surjective morphism in Sch ;.
Let S € Schy;. For the projection f; : Y — Y the diagram commutes

Shv(Y) ® Shv(S) —  Shv(Y x S)
1 (fi)-®id L (fixid).
Sho(Y;) ® Shv(S) — Sho(Y; x 5),

where the horizontal arrows are exteriour products. Indeed, Shv(S) is dualizable, so
lim;eror Sho(Y;) ® Shv(S) = Shu(Y) @ Shv(S), where the limit is taken with respect
to (fi)« ®id.
Let now f : Y — Z be a morphism of placid schemes. The above shows that the
diagram commutes
Shv(Y) ® Shv(S) — Shv(Y x S)
| fe®id b (fxid).
Shv(Z) @ Shv(S) — Shv(Z x S),
In turn, this show that the above diagram still commutes if we only assume that S
is a placid scheme also. Finally, if f : Y — Z, f' : Y’ — Z’ are morphisms of placid
schemes, the diagram commutes

Sho(Y)® Sho(Y') —  Sho(Y xY')

L e L(fxfs
Shv(Z) ® Shv(Z') — Shv(Z x Z'),
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0.0.53. Let S € Schy, let Y be a placid S-scheme. We claim that in the constructible
context, the symmetric monoidal structure ® : Sho(Y) ® Sho(Y) — Sho(Y) is well
defined.

Indeed, write Y = lim;cor Y;, where I is small filtered, Y; is a S-scheme of finite
type, for ¢ — j in I the map Y; — Y; is smooth affine surjective.

Let p;j : Y; — Y; be the transition map for a : i — j in I. Then pj; : Shv(Y;) —
Shu(Y;) is a map in CAlg(DGCatcont), and CAlg(DGCateont) — DGCateont pre-
serves filtered colimits, so Shv(Y)= colim;er Shu(Y;) could be veiwed as colimit in
CAlg(DGCatcont). Note that ey is the unit.

0.0.54. Let ¢ : Z — Y be a placid closed immersion of placid S-schemes, where
S € Schy. Then i* : Shv(Z) — Shv(Y) is defined naturally in the constructible
context. Namely, write Y — lim;cjop Y;, where I is small filtered, Y; is a S-scheme of
finite type, for ¢ — j in I the map Y; — Y; is smooth affine surjective. We may assume
that i9 € [ is initial, 79 : Zy C Yp is a closed subscheme, and Z =Y Xy, Zy. Then
for any 7 we have a closed immersion i; : Z; < Y; obtained from iy by base change.
Then the functors i} : Shv(Y;) — Shv(Z;) are compatible with the %-pullbacks in the
transition systems, so in the colimit yield i* : Sho(Y) — Shv(Z).

Lemma 0.0.55. In the coinstructible context for K € Shv(Z),L € Shv(Y') one has
the projection formula (4 K) ® L—=4(K ® i*L) in Shv(Y') canonically.

Proof. This is a particular case of base change established in Lemma [0.0.58 U

0.0.56. Let now Y be a placid ind-scheme over S written as Y = colim;c; Y;, where I
is small filtered, Y; is a placid S-scheme, and for ¢ — j in I, Y; — Y; is a placid closed
immersion. Then we get the category lim;eor Shu(Y;) with respect to the #-pullbacks.

0.0.57. Let I be a small filtered category. Assume given a functor I°? x [1] — Schy,

i— (Z; f# Y;). Assume that for ¢ — j in I the transition maps Y; — Y; and Z; — Z;
are smooth affine surjective. Set Z = lim;cjor Z;, Y = limjcop Y;. Let f: Z — Y be
obtained from f; by passing to the limit over I°?. Then the functor f* : Shv(Y) —
Shu(Z) is well-defined in the constructible context. In the case of D-modules, we
assume in addition that each f; is smooth. Then f* is defined.

Indeed, for each i we have f : Shv(Y;) — Shv(Z;) compatible with the transition
x-pullbacks, and f* is obtained by passing to the colimit.

For example, if Y is a placid scheme then for the diagonal f : Y — Y x Y the functor
[*:Sho(Y xY) — Shu(Y) is defined in the constructible context.

Lemma 0.0.58. Assume given the cartesian square of placid schemes

7z 5y
igz i/QY
z 4y,

where the vertical arrows are placid closed immersions, and f is obtained as in Sec-

tion|0.0.57. Then the same holds for f’, and one has canonically f*(gy )1 = (9z)1(f")*
as functors Shv(Y') — Shv(Z).
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Proof. Pick a functor I°? x [1] — Schyy, i — (Z; 2t Y;) as in Section [0.0.57 so f is

obtained by passing to the limit from Z; f# Y; over I°’. We may assume that 0 € 1
is initial, and we have a closed immersion Y] < Y such that Y/ = Y xy, Y. By
Lemma [0.0.43 gé, fs— f1 g!Z. Our claim is obtained by passing to left adjoints. O

0.1. Verdier compatible algebraic stacks.

0.1.1. For ([2], A.2.2). Let Y be quasi-compact classical algebraic stack with an affine
diagonal, which is Verdier compatible. They claim there that for f : S — Y a scheme
of finite type over Y, the objects f.K with K € Shv(S)¢ are compact and generate
Shu(Y'). Indeed, Shu(Y)¢ is the Karoubi closure (that is, idempotent closure) of the
smallest stable subcategory generated by objects of the form fi(K) with K € Shv(95)°.
This implies the claim, see ([21], 9.2.27).

0.1.2. For ([2], A.2.3). Let Y,Y’ be a quasi-compact classical algebraic stacks with
affine diagonals, which are Verdier compatible. Let f : Y — Y’ be a morphism. Recall
that fa : Sho(Y) — Shu(Y’) is defined as the continuous extension of the functor
f«: Sho(Y)¢ — Shv(Y')¢ € Shu(Y").

Let Z be another algebraic stack locally of finite type with an affine diagonal, which
is Verdier compatible. Then we have the following.

Lemma 0.1.3. For K € Shv(Y), F € Shv(Z) we have canonically
(fAK)XRF=(f xid)a(KKF)
Besides, for L € Sho(Y") we get (faK) ®' L= fa(K &' f'L).

Proof. 1) Both sides for any F' fixed preserve colimits as a functor of K. Therefore, it
suffices to prove this for K of the form K = g,K’, where g : S — Y is a morphism,
S € Schy and K' € Shv(S)¢, as such objects generate Shv(Y'). Moreover, we may
assume F € Shv(Z)°. Then faK= f,K= (fg).K', and (f x id)a(K X F)=(f x
id),(K X F), and K X F= (g x id)«(K' X F), because g x id is schematic. Now
(fg xid)(K'RF)= ((fg)«K') X F, because fg is schematic. The first claim follows.

2) For the second, note that both sides preserve colimits separately in each variable, so
we may assume K of the form K = g,K’, where g : S — Y is a morphism, S € Schy; and
K’ € Shv(S)¢. Then fa K= f.K = (fg)«K'. We may also assume L € Shv(Y"')constr,
We have the cartesian squares

S = SxY’
lg 1 gxid
vy X oyxy
I 1 fxid

Y 5 vy xy!
Now f, satisfies the base change againts !-pullbacks, so
(faK) @ L™ o' (fg x id).(K'B L) (fg).(K' ' (f9)L) T fu(K &' f'L),
because fag. — (fg)«. Indeed, g and fg are schematic. O
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Recall the self-duality
(5) Sho(Y) @ Sho(Y) — Vect, (K1, Ko) — Cy (Y, K @' Ky)

from ([2], A.4.1). Under this self-duality, for f : Y — Y’ as above the dual of the
functor f' : Shv(Y’) — Shv(Y) is the functor f, : Shv(Y) — Shv(Y’), this follows
from the above projection formula.

For K € Shv(Y), K’ € Shv(Y')¢ we have D(K X K') = (DK) X (DK’) naturally.
Now as in ([22], Sect. 1.0.1) one shows that the dual h¥ of the exteriour product functor
h: Sho(Y) ® Sho(Y') — Shu(Y x Y') with respect to the above dualities identifies
with the right adjoint hf* : Sho(Y x Y') — Shv(Y) @ Shv(Y”).

So, the unit of the self-duality is the object hf'(A, wy), where A:Y =Y x Y is
the diagonal.

0.1.4. For algebraic stacks locally of finite type (with affine diagonal) we always have
a (1,*)-base change in the constructible context, this is mentioned in ([2], A.1.8) in
particular.

0.1.5. Let f:Y — Y’ be a morphism of algebraic stacks as in Section For
F e Shu(Y), K € Shu(Y') we have a natural transformation functorial in K, F’

(aF) @ K = fu(F @ ['K)

This comes from ([2], Section A.3.3-A.3.4).
The following is also useful. For K, Ky € Shu(Y’) there is a natural transformation

(K ® Ka) = (f'Ky) @' (f*K>)

Indeed, it comes from the natural map K3 'Ky — K1 @ (f«[*K2) and the projection
formula for f,.
Similarly, we have a natural map f*K; ® f'Ky — f' (K1 ® K>).

0.1.6. Let Z,Y,Y’ be algebraic stacks as in Section and f :' Y — Y/ be a
morphism. For K € Shv(Z), F € Shv(Y) we have canonically
(dxf)(KRF) S KR f,F
Indeed, this is a particular case of the projection formula for f xid: Z xY — Z x Y,
as KMF = ((id x f) (K Rwy)) @' phF, so (id x )« (KR F) = (K Rwy) @' (id x f)«p, F.
0.1.7. Let f :Y — Y’ be a morphism of algebraic stacks as in Section For
F e Shu(Y), K € Shu(Y') we have a natural transformation functorial in K, F’
(fF) @K = f(F® [TK)

Indeed, it comes from f*((f,F)®@ K) = F ® f*K.
There is a Verdier dual version of this map. Namely, a natural transformation

HF & f'K) = (F)®' K
It comes from the evident map F @' f'K — f'((AF) @' K).
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0.1.8. For a cartesian square of any algebraic stacks locally of finite type

v Loy
\J/gl \1/92
i Loy

we have the natural transformation

g0 fs = fiogi
arising by adjointness from f.(g1)« — (g2)«f.. Besides, the base change isomorphism
g3 o fi— f| o g} gives by adjointness a natural transformation

giof = (f)og
Similarly, we have a natural transformation f] g, — ghh.
0.1.9. Let f:Y — Y’ be a morphism of algebraic stacks as in Section Let us
construct a natural morphism functiorial in L € Shu(Y), K, M € Shu(Y’)
(f'K)@' L))o f*M — f{ Ko M)®'L

We have a natural map f'K ® f*M — f'(K ® M) by Section So, it suffices to
construct a natural map (f'K ® L)® f*M — (f'K ® f*M) ®" L. Tt comles from the
next observation.

Lemma 0.1.10. Let Y be an algebraic stack as in Section [0.1.4 For Ki,Ka, L €
Shu(Y) there is a natural map (K, ® Ko) @ L — (K1 ® L) @' Ko.

Proof. 1) First, assume Ky € Shv(Y)“"s!" Then
(K1 @ K3) @ L= Hom(DKy, K1) @ L

and (K1 ® L) ®' Ko = Hom(DK>, K1 ® L), here Hom is the inner hom in (Shv(Y), ®).
The desired morphism comes from the natural map (DKj) @ Hom(DKq, K1) ® L —
K; ® L. The so obtained morphisms are functorial in K. Now if Ko € Sho(Y) is
written as Ko — colim;e; K3 with I small filtered and K4 € Sho(Y)®" ! then the
desired morphism of obtained by passing to the colimit over ¢ € I in the diagram
(K1 ®' Ky) @ L — (K, ® L) ® Ki.

2) Simplier argument. Consider the cartesian square

Y A Y xY
A A xid
id x A

YxY S YxYxY
and apply the natural transformation A* (id x A)' —a' (A xid)*. O

The map in the above lemma is not an isomorphism in general. For example, let
1:Y' < Y be a closed immersion. Taking Ko = i,wy-, the above map reduces to a
morphism 'K} ® i*L — i'(K; ® L) on Y’, which is usually not an isomorphism. For
example, if ¢ : Speck — Y is a closed point on a smooth curve Y and K; = ex this is
amap i*L[—2] —4'L.
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0.2. Let f1:Y, = Z1, fo : Yo — Z5 be morphisms of algebraic stacks locally of finite
type (with an affine diagonal). Assume we are in the constructible context. Then for
any F; € Shu(Y;) we have

(fr x fo)(FL R F2) = ((fu)iF1) B ((f2)r Fo)
in Shv(21 X ZQ)

Proof. 1) For morphisms between schemes of finite type this is just the (1,* )-projection
formula, because (f1 X fo)y = (f1 x id)(id x f2);.

2) Now we prove this under the additional assumption that Y; € Schy. It suffices to
establish this after any base change by hy X ho : S1 X So — Z1 X Z5, where S; € Sch;{f
and h; are smooth. This follows from the (!, x)-base change.

3) For any prestack Y] we get

S colim(gi)!(gi)Fl’
58y,

where the colimit is over Sch'}{ ! /Y. So,

ARFB= colim  ((g1)1(91)F)®((g2)i(g5)F2) = colim  (g1xg2)1(g1xg2) (FIRF),
S1 81,5, 8By, 518y 5,83y,

where the second isomorphism uses 2). So,

(fi x foW(FiRFy) = colim  (figr X fago)i(gh F1 K gy Fo) =
$1 v, 5,83y,

colim  ((f1g1)191F1) B ((f292)195F%),
51 8v7,5, %3y,

where the last isomorphism used 2). The latter expression identifies with

colim  f11(g191F1) ® far(g2195F2) = colim fiy(gugy F1) B for(colim goigy Fo)
51SY1,SQQ3Y2 Slgyl SQ%YQ

The latter identifies with ((f1)1F1) X ((f2)1F2). O

0.2.1. As a corollary, let Y be an algebraic stack locally of finite type (with an
affine diagonal). Then RI. : (Shv(Y),®') — Vect is left-lax symmetric monoidal,
so sends cocommutative coalgebras to cocommutative coalgebras. So, RI'.(Y,w) is
a cocommutative coalgebra in Vect. Moreover, w becomes an object of RI':(Y,w) —
comod(Shv(Y), ®") via the natural adjunction map act : wy — RI.(Y,w) ®@wy. So, for
any F € Shv(Y), F gets a coaction of RT'.(Y,w) just by applying e®' F' to the previous
action map. The functor RI'; extends to a functor Shv(Y) — RI'.(Y,w) — comod(Vect)
naturally, so the composition with oblv : RI'.(Y,w) — comod(Vect) — Vect is RT'.(Y, ).
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0.2.2. Assume we are in the constructible context. Let Z,Y be algebraic stacks lo-
cally of finite type (with affine diagonals), and p : Z — Y any morphism, maybe not
representable. Then for K € Shv(Y), L € Shu(Z) one has canonically

pxHom(p*K, L) = Hom(K, p.L)
in Shv(Y). We underline that here p, is maybe discontinuous if p is not representable.
Proof. Let us first assume K € Shv(Y)®"'". Then
psHom(p*K, L) = p.(p'(DK) @ L) SD(K) @' p. L= Hom(K,p.L)

by the projection formula.
Let now K be any, pick a presentation K — colim;e; K; with K; € Shuv(Y)enstr,
Then p, preserves limits, so we get
pxHom(p*K, L) — ‘li}n p«Hom(p*K;, L) = li;n Hom(K;,piL)
1elop relop
—= Hom(colim;er K, p«L)

O
I wonder if one may replace here p, by pa.

0.2.3. Let I be small filtered, I — Stk, i — Y; be the functor such that Y; is an
algebraic stack locally of finite type, for i — j in I, ¥; — Y} is a closed immersion,
Y = colim,; Y; in Stk. Then the functor RI' : Shv(Y) — Vect is defined by passing
to the colimit in the functors RI' : Shu(Y;) — Vect with respect to the maps (f;;)« :
Shv(Y;) — Shu(Yj). Usually, RI" : Shu(Y) — Vect does not have a left adjoint.

A corollary of this: let K € Shu(Y), write K — colim;es(i;)«is K, where i; : Y; —
Y is the natural map. Assume that for each i the functor Shv(Y) — Vect, F
RI'(Y, ((i;)+i:K) ®" F) is continuous. Then Shv(Y') — Vect, F' + RT(Y, F ®' K) is also
continuous.

0.2.4. Let S € Schys, let f:Y — S be a placid scheme over S. Then we have an action
of (Shv(S),®") on Shu(Y) such that K € Shu(S) sends F € Shv(Y) to b'(F K K) for
b:Y —-Y xS.

The same structure is obtained as follows. Write Y = lim;cjop Y; with Y; a scheme
of finite type, for ¢« — j in I the map f;; : Y; — Y; is smooth affine surjective.
Then for ¢ — j in I, (fij)« @ Shov(Y;) — Shvu(Y;) is a map in Shv(S) — mod, so
Shv(Y) = lim;erop Sho(Y;) may be understood in Shv(S) — mod.

If h :' Y — Z is any morphism of placid schemes over S then h, : Shv(Y) —

Shv(Z) is a map in Shv(S) — mod. Indeed, write Z = 'lei‘rjanj, where J is small
J (2]

filtered, Z; € (Schy),g, and for any j — j’ in J the map Zy — Z; in (Schy),g
is smooth affine surjective. It suffices to show that for g; : Z — Z; the functor
(gjh)« : Shv(Y') = Shv(Z;) is Shv(S)-linear. However, there is ¢ € I such that h factors

through Y — Y; A Zj. Our claim follows from the fact that h. : Shv(Y;) — Shv(Z;)
is Shv(S)-linear.
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Remark: let S € Schyt, I a small filtered category, I — (PreStky)/s, i = Y; a
functor such that for i — j in I the map f;; : Y; — Y; is smooth of some relative dimen-

sion d, affine, surjective. Let Y = ‘li}n Y; in PreStk. Define Shv(Y) = CQliImShv(Yi)
ielop i€

in Shv(S) — mod with respect to the functors f7; : Shv(Y;) — Shv(Y;). Let 0 € I be
initial. Then we get the structure functor fj : Shv(Yy) — Shv(Y) for fo: Y — Y. It
is clear that fj is Shv(S)-linear.

0.2.5. A property of the constructible context. Let S, X be schemes of finite type. Let
K1, Ky € Shu(S). Then for the projection ¢ : S x X — S we have

¢:Hom(q* K1, ¢* K2) = Hom (K7, K2) @ R['(X, e)
in Shv(S), where Hom denotes the local Hom over the corresponding scheme. This
isomorphism is compatible with compositions: given K; € Shv(S) for i = 1,2,3 the
composition

Hom (K1, K2) @ Hom(Ka, K3) — Hom(K1, K3)
via the above isomorphism corresponds to the composition

Hom(q" K1, q"K2) @ Hom(q" K2, ¢"K3) — Hom(q" K1, ¢ K3)
In particular, we get an isomorphism of algebras in Shv(S)

¢Hom(¢"K,q* K) = Hom (K, K) ® RI['(X, e)

0.2.6. For S € Schy; for our sheaf theories, Shv(S) is never rigid. For example, in
the constructible context if S is smooth then for a k-point s € S, 65 € Shv(S) is not
dualizable, though compact.

In the constructible context the following is not known: given a map of schemes of
finite type f: S — T, is it true that Shv(9S) is. dualizable as a Shv(T')-module? Here
Shv(T) acts via the monoidal functor f'.

The functor Shv : (Sch’}{ s )P — DGCateont satisfies both Zarizki descent and proper
descent, hence h-descent.

A useful thing: if f : Y7 — Y5 in PreStk;; is an isomorphism in the h-topology then
f': Shu(Ys) — Sho(Y:) is an isomorphism.

0.2.7. Let Y be a placid scheme written as Y — lim;cjor Y;, where I is small filtered,
Y; € Schy, for i — jin I, f;; : Y; — Y; is smooth affine surjective. Assume 0 € I is
initial, and for any ¢ — j in I, f;; : Y; — Y; is a generalized affine fibration of rank
dimY; — dimY; (locally constant function on Y;). Let p : Y — Yj be the natural map.
Assume we are in the constructible context. Then p* : Shv(Yy) — Sho(Y) admits
a left adjoint (p*)*. The natural map (p*)*p* — id is an isomorphism. The dual
((p*)%)Y identifies with the right adjoint to p. via the self-dualities of Shv(Y'), Shv(Yp)
appearing in ([22], 1.2.11).

Proof. For i € I let f; : Y; — Yy be the map fo;. For i € I with ¢ # 0 the
functors ((fi)1[2dimY; — 2dim Yp], f¥) form an adjojnt pair. The system of functors
(fin[2dim Y; —2dim Yp] : Sho(Y;) — Shv(Yp) is compatible with the transition functors
in Shv(Y') = colimjc; Shv(Y;) with *-pullbacks, so in the colimit over j € I we get a
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functor colim;cr Shv(Y;) — Shv(YO) By ([21], 9.2.6), this is the left adjoint to p*. We
used that for 7 € I, (flj) fi — f# naturally.

By ([22], 1.2.11), the dual of p* : Shu(Yy) — Shv(Y) identifies naturally with p, :
Shv(Y) = Shv(Yp). So, the dual of the adjoint pair ((p*)*¥,p*) is (p«, ((p*)*)V). O

This situation happens offen. For example, if G is an affine smooth algebraic group
of finite type and O = k[[t]] then G(O) is a placid scheme satisfying the above. So, for
p: G(O) — G in the constructible context we have an adjoint pair (p*)* : Shv(G(0)) S
Shv(G) : p* with p* fully faithful. In particular, for ¢ : G(O) — Speck the functor ¢*
has a left adjoint (¢*)%.

0.2.8. Assume for this subsection we are in the constructible context. Let G be a group
scheme of finite type. Then Shv(G) is equipped with the monoidal structure given by
K1+ Ky = mi(K1 X K>), where m : G x G — G is the product map, K; € Shv(G). Now
for Y € PreStk;s; with a G-action, (Shv(G),*') acts on Sho(Y) so that K € Shv(G)
acts on F' € Sho(Y') as a)(K X F), where a : G x Y — Y is the action map.

Consider the projections

prg:GXY = G,pry :GxY =Y.

Assume G smooth. Let L be a character local system on G in the usual sense, that
is, for m : G x G — G we are given m*L— L X L, and a map L — ise for the unit
i : Speck — G with the usual properties. Let a? : Shv(Y) — Shv(Y) be the comonad
given by K — L % K, where we use the usual action (not the !-one). Then the functor
aft admits a left adjoint a : Shv(Y) — Shv(Y), which is automatically a monad in
Fune cont (Sho(Y'), Shu(Y')). One has an equivalence

(6) a — mod(Shv(Y)) = af* — comod(Shv(Y))

commuting with the oblivion functors to Shv(Y). In particular, oblv : Shu(Y)&L —
Shu(Y) admits a left adjoint ind : Shv(Y') — a — mod(Shv(Y)).

Proof. For K, M € Shv(Y’) one has

Hom((pry )i(prey L' @ a*K)[2dim G], M) = Hom(prg L' @ ' K,e X M) =
Hom(a*K, LR M)= Hom(K,a.(L K M))= Hom(K, L * M)
So, the functor a : Shv(Y) — Shv(Y') given by a(K) = (pry )i(pry L' ® a*K)[2 dim G]

is left adjoint to a’®. The fact that a is monad and the equivalence @ follow from ([21],
9.2.62). 0

0.2.9. Let S € Schy, f:Y — S be an ind-scheme of ind-finite type over S. Assume
Y = colim;c; Y;, where I is small filtered, Y; C Y is a closed subscheme, Y; € Schy,
fori — jin I, Y; — Y;. Assume also each map f; : ¥; — S is smooth.
Let F € Shv(S)¢, K € Shv(Y'). Then one has canonically
Hom(f'F, K) = Hom(f'(es), f/(DF) &' K)

Here Hom € Vect is the relative inner hom for the Vect-action.



31

Proof. Step 1. First, assume f : Y — S is a map in Schy; with f smooth of relative
dimension d. Then f' = f*[2d], so the LHS is

Hom(f*F, K[—2d])) = Hom(F, f.K[-2d]) =5 RI(S, (DF) @' f,K[—2d))
= RI(Y, K[-2d] @' f/(DF))
The RHS identifies with
Hom(f*(es), f/(DF) @' K[—2d]) =5 RL(Y, f'(DF) @ K[-2d])

We are done.
Step 2. Let i; : Y; — Y be the inclusion. Write f'F = colim;e(i;)«f! F, so the LHS
becomes

lim Hom(fIF, (i;)'K) =S lim Hom(f!(es), f{(DF) &' (1) K)

ielop ielop
by Step 1. Write f'(es) = colim;es(i;)1f/(es) then the RHS of the latter expression
becomes
lim Hom(f;(es), (is) (£ (DF) ®' K))= lim Fom((i)ifi(es), f'(DF) &' K)
el el®
= om(f!(es), ['(DF) @' K)
as desired. g

In the sense of ULA property in its form given by Dennis in ([12], 1.6.3) this says
that wy is ULA with respect to the Shv(S)-action on Shv(Y).

0.2.10. A generality: let S € Schy,, U — S be a smooth unipotent group scheme over
S. Then for f: B(S) — S the functor f*: Shv(S)—= Shv(B(S)) is an equivalence.

Let U; — Us be a homomorphism of smooth unipotent group schemes over S. Take
Y = Uy /Uy, the stack quotient over S. Let a : Y — S be the natural map. Then a*a.
is left t-exact.

0.3. Addition for any sheaf theory. Work in any of our 4 sheaf theory for this
subsection.

0.3.1. Let
v &g
b e
y <& Z

be a cartesian square in PreStk;s; such that 7 is a closed immersion in Schy;. Then the
natural functor Shv(Z') ®gpe(zy Shv(Y) — Sho(Y') is an equivalence. Here we view

Shv(Z) with the ®'-monoidal structure.

Proof. First, for D-modules this is true without the assumption that 7 is a closed
immersion by ([14], Section 1.6.4). Assume now we are in the constructible context.

Consider the comonad A := 4’ (i)' on Shv(Z'), it is Shv(Z')-linear, hence given by
the coalgebra #,w. The functor @, : Shv(Y) — Shv(Z) is comonadic. Indeed, i, has a
left adjoint, hence preserves limits, and 4, is fully faithful.
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In fact, since 7/, is fully faithful, we obtain that Shv(Y') C Shv(Z’) is the full subcat-
egory of those K € Shv(Z') for which the counit map A(K) — K is an isomorphism.

We claim that the composition Shv(Z') @gpy(z) Shv(Y) — Shv(Y') — Shv(Z')
is described similarly with the same comonad. Indeed, consider the adjoint pair 7 :
Shv(Y) = Shv(Z) : i* in Shv(Z) — mod. We have the comonad ijw on Shv(Z) with
Shv(Y') = (iyw) —comod(Shv(Z)). After the base change - ®gp,(z) Shv(Z’), our adjoint
pair becomes

L: Shv(Y) @gho(z) Shv(Z') = Shv(Z') - R

in Shv(Z') — mod with LR= alyi.w. As a coalgebra in Shv(Z’) it coincides with i w.
Note that L is fully faithful, because id — RL is an isomorphism, so L is conservative.
Finally, Sho(Y") @gpu(z) Shv(Z") C Shv(Z') is the full subcategory of K € Shv(Z') for
which the natural map LR(K) — K is an isomorphism. We are done.

Note also that Shv(Y) is self-dual in Shv(Z) — mod, so by (|21], 9.2.57), the map L
rewrites as

(7) Fungy,y(z)(Sho(Y'), Shv(Z')) — Fungp,z)(Shv(Z), Shu(Z'))

given by the composition with i' : Shv(Z) — Shv(Y). Indeed, the dual of i, is i* for
the standard self-dualities. It is not clear here if preserves limits, as the limits are
not ”computed pointwise”! O

0.3.2. For X € Schy; let j : U < X an open subscheme. Equip Shv(X) with the
®'-symmetric monoidal structure. The adjoint pair j* : Shv(X) S Shv(U) : j.
is in Shv(X) — mod, and j, is right-lax nonunital symmetric monoidal. So j.w €
CAlg(Shv(X)). The functor j. : Sho(U) — Shv(X) factors naturally through Sho(U) —
(jew) — mod(Shv(X)). Now Shv(U) = (jww) — mod(Shv(X)), this is the image of the
action of the idempotent (j.w) on Shv(X), cf. ([21], 9.2.74). Here j.w is an idempotent
commutative algebra in Shv(X) in the sense of ([16], 4.8.2.8).

If M € Shv(X) —mod then we get an adjoint pair j* : M = M ®gpy(x) Sho(U) : js
in DGCatcont, and the right adjoint is monadic. So,

M @gpy(x) Sho(U) = (jaw) — mod(M)

Recall that oblv : (j.w) — mod(M) — M is fully faithful, and its image is the image of
the action of j,w on M.

Let now A € coAlg(Shv(X)). By ([21], 9.2.60), let M = A — comod(Shv(X)) €
Shv(X) — mod, and we have an adjoint pair in Shv(X) — mod

(8) oblv : A — comod(Shv(X)) = Shv(X) : coind.

Applying @gp,(x)Shv(U), one gets the adjoint pair [ : M ®@gp,(x)Shv(U) = Sho(U) : r
in Shv(U)—mod. The comonad lr : Shv(U) — Shv(U) is given by Ay € coAlg(Shv(U)),
the restriction of A to U.

Lemma 0.3.3. [ is comonadic, so

(A — comod(Shv(X))) ®gpy(x) Sho(U) = Ay — comod(Shv(U))



33
Proof. Consider the diagram, where the horizontal functors are fully faithful

M Qgpox) Sho(U) & M

$1 4 oblv

Sho(U) & Shu(X)
It shows that [ is conservative. Let now V' be a simplicial object of (M ®gp,(x)Shv(U))?
such that [(V) is split in Shv(U)°P. Then j. (V)= oblv(j.V) is split in Shv(X)°. By
([16], 4.7.3.5), 7,V admits a colimit in M°P, and oblv : M°P? — Shv(X ) preserves this
colimit. Since M ®gpy(x) Shv(U) has all limits and colimits, V' admits a colimit in
(M @gho(x) Shv(U))P, and j. preserves this colimit in M°P. Now [(V') — I(colim V) is
a diagram in Shv(U)°, which becomes a colimit diagram in Shv(X)°P after applying
j«. Hence, it is also a colimit diagram in Shv(U)°. That is, | preserves the colimit of
V. By ([16], 4.7.3.5), [ is comonadic. O

0.3.4. For X € Schys let ¢+ : Z — X be a closed subscheme. The dual pair i :
Shv(Z) < Shv(X) : i* takes place in Shv(X) — mod, the coresponding comonad is
isw € coAlg(Shv(X)). The functor 4y : Shv(Z) — Shv(X) is comonadic, this is easy
using the full ([I6], 4.7.3.5). So, Shv(Z) = (i.w) — comod(Shv(X)).

In turn, (ixw) — mod(Shv(X)°) is the image of the localization functor i,w ®' - :
Shv(X)®? — Shu(X) by ([21], 9.2.74). So, Shu(Z) is the full subcategory of those
K € Shv(X), for which the map i,w — w tensored by K becomes an isomorphism.

Let M € Shv(X) — mod. We get an adjoint pair 4, : M ®gpy(x) Shv(Z2) S M -
' in DGCateont, and 4 is fully faithful. For the same reasons, ¢ is comonadic, so
M Rgho(xy Shv(Z) = (ixw) — comod(M). The image of 4, is the full subcategory of
those K € M for which the map i,w — w tensored by K becomes an an isomorphism
(where now ® stand for the Shv(X)-action on M). Again, i,w € ComCoAlg(Shv(X))
is an idempotent coalgebra ([16], 4.2.4.10).

Let now A € coAlg(Shv(X),®"). Consider the adjoint pair in Shv(X) — mod.
Let M = A — comod(Shv(X)). Applying ®gp(x)Shv(Z), one gets the adjoint pair

l: M®Shv(X) Shv(Z) s Sho(Z) = r

in Shv(Z) — mod. The comonad Ir : Shv(Z) — Shv(Z) is given by tensoring with
Az :=1i'A € coAlg(Shv(2)).

Lemma 0.3.5. [ is comonadic, so
(A — comod(Shv(X)) ®gne(x) Shv(Z) = Az — comod(Shv(Z))

Proof. Consider the diagram, where the horizontal functors are fully faithful

M®Shv(X) Shv(Z) ‘l—*> M
$1 J oblv

Tx

Shv(Z) <  Shv(X)

It shows that [ is conservative.
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Let now V' be a simplicial object of (M ®gp,(x) Shv(Z))? such that [(V) is split
in Shv(Z)°?. Then (V)= oblvi.(V) is split in Shv(X)?. So, iV admits a col-
imit in M, and oblv : M — Shv(X)° preserves this colimit. Write W for
the colimit of i,V in M, so i,V — W is a colimits diagram in M. Since i' :
MP — (M ®gpy(x) Shv(Z))P preserves colimits, i'i, V. — i'W is a colimit diagram
in (M ®gpy(x) Shv(Z))°P. Note that Ii' =4  oblv. Further, oblv(i,V) — oblv(W) is a
colimit diagram in Shv(X)°, hence 4' oblv(i,V) — i' oblv(W) is a colimit diagram in
Shv(Z)°. The latter diagram is nothing but the desired diagram 1(i'i, V) — 1(i'W).
Thus, the colimit of V' in (M ®gpy(x) Shv(Z)) is preserved by I. By ([16], 4.7.3.5),
is comonadic. g

We propose the following generalization.

Lemma 0.3.6. Let i : Z — X be a closed immersion in Schy;, let Y — X be a map
in PreStk; s, set Y =Y xx Z. Let

A € Fungpy(x)(Shv(Y'), Shu(Y))
be a Shv(X)-linear continuous comonad, set
AZ =A®id: Sh'l}(Y) ®Shv(X) Sh'I}(Z) — ShU(Y) ®Shv(X) Sh’l)(Z)

Then Az € Fungp,z)(Sho(Y'),Shv(Y")) is a Shv(Z)-linear continuous comonad.
Moreover, one has canonically

(9) (A — comod(Shv(Y))) @ghy(x) Shv(Z) = Az — comod(Shv(Y")).

Proof. The natural functor @ is constructed in ([21], 9.2.75) in bigger generality. Set
M = A — comod(Shv(Y)). Consider the commutative diagram, where the horizontal
functors are fully faithful
M @gpox) Sho(Z) & M
b1 J obly
Sho(Y) @gpo(x) Sho(Z) = Shu(Y)

Here [ is obtained by base change from oblv. This diagram shows that [ s conservatve.
Recall the low arrow identifies with 4, : Shv(Y’) — Sho(Y') by Section [0.3.1]

Let us verify that [ is comonadic by ([16], 4.7.3.5). Exactly the same argument as in
the previous lemma applies. O

0.3.7. Let Z < X < U be a diagram in Schy, where 7 is a closed immersion and j
is the complement open. Let C' € Shv(X) — mod. Then for any ¢ € C' we get a fibre
sequence iji'c — ¢ — j.j*c in C, where the functors iy,4', j,, j* are are in the previous
subsections. It is obtained by tensoring the fibre sequence i,wyz — wx — j«wy by c.

Applying Fun gy, x)(C, -) to the adjoint pair j* : Shv(X) = Shv(U) : ji in Shv(X)—
mod, one gets an adjoint pair

Fungy,(x)(C, Sho(X)) S Fungp,x)(C, Sho(U))
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in Shv(X) — mod, where the right adjoint is fully faithful (hence monadic). The corre-
sponding monad is given by the action of the algebra j,w. So,

Fungy,(x)(C, Sho(U)) = jsw — mod(Fungy,x)(C, Shv(X)))

By ([21], 9.2.74), Fungp,x)(C, Shv(U)) is just the image of the action of the idempotent
Jxw on Fungp,x)(C, Shv(X)). From Section we conclude that

FunShv(U) (C ®Shv(X) ShU(U), ShU(U)) :;FunShv(X) (C7 ShU(U)) =

Fungp,(x)(C, Sho(X)) ®spu(x) Sho(U)

Applying Fungy,x)(C, ) to the adjoint pair iy : Shv(Z) = Sho(X) : i' in Shu(X) —

mod, we get an adjoint pair in Shv(X) — mod
Fungp,(x)(C, Shv(Z)) S Fangp,x)(C, Shv(X)),

where the left adjoint is fully faithful. Using this fully faithfulness, we show as above
that the left adjoint is comonadic, so

Fungpy(2)(C @ghe(x) Shv(Z), Shv(Z)) = Fungp,x)(C, Shv(Z)) =
(iiw) — comod(Fungy,(x)(C, Shv(X)))

As in Section
(irw) — comod(Fungp,(x)(C, Shv(X))) = Fungp,x)(C, Sho(X)) @spe(x) Sho(Z)
We conclude that
Fung,(z)(C @shu(x) Shv(Z), Sho(Z)) = Fungp,x)(C, Sho(X)) ®gne(x) Shv(Z)

0.3.8. Let j; : U; — S are open subsets in S € Schy; for i = 1,2 with U = U1 N Us
and Uy U Uy = S. Then the square is cocartesian in Shv(S) — mod

ShoUy) Y Sho(s)

T T (2)«
Shvo(U) —  Sho(Uy),

where all the functors are given by *-direct images. Indeed, this follows from Zariski
descent for sheaves of categories on S. Namely, this diagram after restriction to each
U, becomes cocartesian.

0.4. More about the constructible context. For this subsection we work in the
constructible context.

0.4.1. Let S € Schy;. The functor I : Shv(S)¢—= Shv(S)“P is an equivalence of sym-
metric monoidal categories, where the LHS is equipped with the ®'-monoidal structure,
and the RHS is eqiupped with the ®-monoidal structure.

Proof: we have an isomorphism K; ®' K’ = D(D(K) @ D(K')) in Shv(S)¢ functorial
in K, K" € Shv(S). O
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0.4.2. Consider a diagram S; — Y < Sy in Schy;. Equip Shv(Y) with the ®'-
symmetric monoidal structure. Then Shv(S1)®gpy(yv)Shv(S2) is dualizable in DGCateont

by ([7, I.1, 6.3.4). Indeed, the product functor Shv(Y) ® Shv(Y) = Shu(Y) and ac-
tion maps Sho(Y) ® Shv(S;) — Shv(S;) admits continuous right adjoints, and for any
n >0, Shv(S1) @ Shv(Y)®" ® Shv(Ss) is compactly generated.

It is easy to see that Shv(S1) ®gpy(y) Shv(Sz2) is compactly generated by objects of
the form K; X Ko with K; € Shv(S;)°.

Let Cpop : A°? — DGCateopn: be the diagram

[n] = Shv(S1) ® Shv(Y)®" @ Shv(Ss)

such that colim Cpor — Shv(S1) ®gpy(yv) Shv(S2) in DGCateont by definition. Then we
may pass to continuous right adjoints in Cor and get the functor CF : A — DGCateon,
so that lim Cf = Shv(S1) ®@gh(y) Shv(S2) in DGCateont. The projection

6% .= evg : lim CF — Shv(S1) ® Shu(Ss)

has a left adjoint § := insg : Shv(S1) ® Shv(S2) — Shv(S1) @ghe(y) Shv(S2). So, by
([16], 4.7.5.1), the functor 6% is monadic and

Shv(S1) ®shu(y) Shv(S2) = (676) — mod(Shv(S1) ® Shu(Sz)).
Lemma 0.4.3. The dual (Shv(S1) @gpe(yy Shv(S2))Y identifies with
Shu(S1) @(shu(y),e) Shv(S2),

where now Shv(Y) is equipped with the @-symmetric monoidal structure, and the action
maps are given as compositions

Shu(Y) @ Sho(S:) = Sho(Y x ;) = Shu(S;).

Here I'; © S; — S; XY is the graph of the map S; — Y. We used the canonical
self-dualities on Shv(S;), Shv(Y').

Proof. The right adjoint to the composition
Sho(S) @ Sho(Y) 5 Sho(S x Y) 53 Sho(S)

is the composition hf o (T})®, and K = hY, (T})7 = (T})Y canonically. Similarly for
the product map

Shu(Y) ® Sho(Y) 2 Sho(Y x Y) 2 Sho(Y)

its right adjoint is A% o (AT, and K1Y, (A")E= (A*)V. The claim follows as in
([, L1, 6.3.4). O

0.4.4. Tt is easy to see that Shv(S1) ®(shu(v),) Shv(S2) is compactly generated by
objects of the form K; X K, with K; € Shv(S;)¢.
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0.4.5. Let
F : Shv(Sy) @ Sho(Y) ShU(SQ) — ShU(Sl Xy S2)

be the natural map coming from K; X Ky — ¢'(Ky X K>) for ¢ : S1 Xy Sy — Y1 x Y.
For K; € Shv(S;)¢ the object F(K; K K3) € Shu(S1 xy S2)¢, so F has a continuous
right adjoint.
We also have a natural functor
F . Sh’U(Sl) ®(Shv(Y),®) ShU(SQ) — Shv(Sl Xy 52)

coming from K; X Ky — ¢*(K; X K»3). For K; € Shv(S;)¢ the object F' (K K K3) €
Shu(S1 xy S2)¢ so F' has a continuous right adjoint.
The dual of JF is the functor

A Shv(Sy xy S2) — Shv(St) X (Sho(Y),®) Shv(Ss)
The dual of F’ is the functor
35/\/ : ShU(Sl Xy Sg) — ShU(S1) ®Shv(Y) ShU(SQ)

0.4.6. Write 0 : Shv(S1) ® Shv(S2) — Shv(S1) ®@gpy(yy Shv(S2) and

dg : Shv(S1) ® Shu(S2) — Shv(Sh) X (Sho(Y),®) Shv(Ss)
for the natural functors. Let 6% be the right adjoint to 6. By construction, we get
(7)Y = 6.
Lemma 0.4.7. In the situation of Section one has canonically ¥ = (F)E and
FNV S TR where R stands for the right adjoint.
Proof. Let Cpor : A’ — DGCateopn be the functor giving rise to

Shv(Sy) @ Sho(Y) Shv(Ss2)

in its colimit by definition. It sends [n] to Shv(S1) @ Shv(Y)®" @ Shv(Sy). For a
map « : [i] — [j] in A we have the transition functor a;; : Caor(j) — Cacr(i) in this
diagram.

Write

fn 2 Sho(S1) ® Sho(Y)®™ @ Shu(Sy) — Shu(Sy xy S2)

for the composition of ins, with F. We have the adjoint pairs (f,, fF) and (F,F®) in
DG Cateont. We get the adjoint pairs ((£F)V, (f,)Y) and ((F7)V,FV) in DGCateon-

Denote by

CE: A = DGCateons

the functor obtained from Cer by passing to the right adjoints. Denote by Cy : A —
DGCateont the functor obtained from Caer by passing to the duals. Denote by

(CE)Y : A — DGCateont
the functor obtained from Cﬁ by passing to the duals. Recall that
colim(C'3)* = lim C3 = Shv(S1) @ (shu(y).) Shv(S2)
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canonically, where (C})L : A% — DGCatcont is obtained from C by passing to the
left adjoints. Recall that
(CA)F = (CR)Y.
The functor T : Shv(S; xy S3) — lim Cﬁ is obtained from the compatible system

of functors fF for [n] € A.
The functor

FV : Sho(Sy xy S2) — Shv(Sy) ®(Sho(v),@) Shv(S2) = lim Ch
is obtained from the compatible system of functors fY, [n] € A. So, the functor
(F)L 2 colim(CR)E — Sho(S; xy So)
is obtained from the compatible system of functors (f,Y)~.
Consider the functor Dpor : A’ — DGCatoy such that
colim D por = Shv(S1) ®(sho(v),2) Shv(S2)

by definition. It sends [n] to Shv(S1) ® Shv(Y)®" ® Shv(Sz2). It suffices to show that
the composition

Sho(S1) ® Sho(Y)®" © Shu(Sa) — Shu(Sh) @ (she(y).e) Sho(S2) 2 Sho(S) xy S2)

for any n identifies with the functor (fY)* = (fF)V. This is easy as in Lemma m
Namely, we have a natural map 7, : S1 Xy So — S1 X Y™ x Sy coming from (S7 xy
S2) = (S1 X Y™ x S3) Xynt2 Y =51 Xy So. Then f,, is the composition

Sho(S1) @ Sho(Y)®" @ Shu(Ss) = Shu(Sy x Y™ x S5) 2% Shu(S) Xy S2)
So, fF = (aY) o (1})ve as desired. O

0.4.8. In the situation of Section [0.4.2] note that Y is naturally a cocommutative

coalgebra in Schy;, the coproduct being the diagonal map ¥ — Y x Y. Besides, 5

(resp., S2) is a Y-comodule, the coaction map is I'; : S; — S; x Y, the graph of the

map 5; — Y. We get the morphism 57 Xy S — [I}IenASl X Y™ x S, the corresponding
n

version of the bar complex. It yields after applying Shv the morphisms
Shv(St) @gne(yy Shv(Se) B3 € = coliz Sho(S1 % Y™ x 52) % Shu(S) xy Ss),
n]e A°

so F=Fy0F1. Let 61 : Shu(S; x S2) — C be the natural map. Note that C is
compactly generated by the images of K € Shv(S; x S3)¢ under ¢;.

Let Cpor : A%? — DGCateont be the functor sending [n] to Shv(S; x Y™ x S3) so
that C' = colim Cpop. We may pass to continuous right adjoints in Crop and get the
functor CN'E : A — DGCateopnt, so lim C'f’—TC. In particular, the right adjoint 6f of &;
is continuous.

For each [n] € A the exterious product g, : Shv(S;) ® Shv(Y)®" @ Shv(Sy) —
Shu(S; x Y™ x Sp) is fully faithful and has a continuous right adjoint g®. So, the
right adjoint FF of F; is obtained by passing to the limit over [n] € A in the functors
gB : Sho(S1 x Y™ x S9) — Shv(S1) ® Shv(Y)®" @ Shv(Ss) in DGCatent. So, FF is
continuous (cf. [21], 9.2.39).
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Clearly, if K € Shv(S; x S2)¢ then Fo(01(K)) € Shv(Sy xy S2)¢ so Fo has a
continuous right adjoint FL. Besides F£ is conservative.
Since A is sifted, from ([16], 3.2.3.1) we see that C' € C Alg(DGCateont), and &

is a map in CAlg(DGCatcont) naturally. Besides, F1,Fy are naturally morphisms in
CAlg(DGCateont)-
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