
Assumptions on the sheaf theory for the 2nd joint paper with Dennis1

0.0.1. k is algebraically closed of any characteristic, e is an algebraically closed field
of characteristic zero. The notation DGCat stands for the category denoted DGCatcont
in [7].

We are given a right-lax symmetric monoidal functor

(Schaffft )op → DGCat, S 7→ Shv(S), and (S1
f→ S2) goes to f ! : Shv(S2)→ Shv(S1)

Its right Kan extension under (Schaffft )op ⊂ (PreStklft)
op defines a functor

Shv : (PreStklft)
op → DGCat

It is assumed that the latter functor satisfies the etale descent for etale covers in
PreStklft.

0.0.2. Probably the functor Shv should be defined in a larger category than PreStklft?

For example, there should be Shv(HeckelocG,Ran), though the latter is not locally of finite

type. Indeed, for a closed L+(G)Ran-equivariant subscheme Y ⊂ GrG,Ran we may
define Shv((L+(G)Ran)\Y ) and pass to the colimit (or limit). Similarly, do we need

Shv(HeckelocG,x)?
Also, we need to make sense of invariants under (L(N)x, χN ), and L(N) is not locally

of finite type. At least, give a reference to Appendix C of [10].

0.0.3. For a map f : Y1 → Y2 in PreStklft the left adjoint f! to f ! is only partially
defined in general (everywhere defined in the constructible context). If f is schematic
open embedding, f∗ : Shv(Y1) → Shv(Y2) is defined as the right adjoint to f ! = f∗.
Moreover f∗ satisfies the base change with respect to g! for g : Y ′

2 → Y2.
When we say f is ind-schematic, this means that f is ind-schematic of ind-finite

type, as Shv was only defined for PreStklft. For f ind-schematic we have the functor
f∗ : Shv(Y1) → Shv(Y2). What is its definition? It has a partially defined left adjoint
f∗. Is f∗ always defined in the constructible context? For this f has to be of finite
type, I think. For example, for p : Y → k, where Y is an ind-scheme of ind-finite type
the functor p∗ : Shv(Y ) → Vect does not admit a left adjoint unless Y is a scheme of
finite type (see [25], 1.2.7).

For f ind-schematic, f∗ satisfies the base change formula with respect to g!, where
g : Y ′

2 → Y2. If f is ind-proper then f∗ = f!. My understanding is that this holds more
generally for f pseudo-proper.

If f is etale then f ! = f∗ is the left adjoint of f∗.
The functor f∗ should be defined more generally under the assumption that after a

base change S → Y2 with S ∈ Schaffft , S ×Y2 Y1 is an ind-algebraic stack. In this case

f∗ should also satisfy the base change formula with respect to g!.
For example, the following is crucial: the category Shv(Bet(e

∗,tors)) is monoidal for
the convolution monoidal structure. For Y a prestack this is used to define a twist of
Shv(Y ) by a e∗,tors-gerbe over Y .
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0.0.4. For a scheme of finite type S we have Shv(S)constr ⊂ Shv(S) is the full cate-
gory of bounded complexes with constructible cohomology sheaves, then Shv(S)constr =
Shv(S)c, and it coincides with Db(Perv(S)) in the constructible context. The subcat-
egory Shv(S)constr ⊂ Shv(S) is closed under ⊗,⊗!. For Y an ind-scheme we have an
equivalence D : (Shv(Y )c)op→̃Shv(Y )c. Its definition is given in ([8], 7.1.3) for any
Y ∈ PreStklft such that the diagonal Y → Y × Y is pseudo-proper.

For an Artin stack Y locally of finite type with an affine diagonal we should define
Shv(Y )constr ⊂ Shv(Y ) as the full subcategory of objects that !-pull back to an object

of Shv(S)c for any S → Y , where S ∈ Schaffft . Then by ([1], Appendix C),

(1) D : (Shv(Y )constr)op →̃Shv(Y )constr

is an equivalence. Indeed, we have Shv(Y ) →̃ limS→Y Shv(S) taken over the category

opposite to the one classifying smooth maps S → Y with S ∈ Schaff . For a : S →
Y smooth, we may use a! or a∗ to test compactness, they differ by a shift. Then
Shv(Y )constr →̃ limS→Y Shv(S)c in DGCatnon−cocompl. Recall that DGCatnon−cocompl

admits limits. This gives (Shv(Y )constr)op →̃ limS→Y (Shv(S)
c)op in DGCatnon−cocompl.

So, the Verdier duality for schemes of finity type gives the equivalence (1).
For Fi ∈ Shv(Y ) write HomShv(F1, F2) ∈ Vect for the relative inner hom for the

Vect-action on Shv(Y ). For ind-schemes or Artin stacks D satisfies the formula

HomShv(D(F1), F2) →̃ RΓ(Y, F1 ⊗! F2)

for F1 ∈ Shv(Y )constr. This property charaterizes D(F1) uniquely. For example see
([1], F.2.5, F.1.3, F.4).

0.0.5. For Y ∈ PreStklft and Fi ∈ Shv(Y ) write Hom!(F1, F2) for the relative inner
hom in Shv(Y ) for the !-pointwise monoidal structure. For Y smooth of dimension n

we get RΓHom!(F1, F2)[−2n] →̃HomShv(F1, F2).
In which generality the category Shv(Y ) admits a symmetric monoidal structure

given by (F1, F2) 7→ F1 ⊗ F2 = d∗(F1 ⊠ F2) for the diagonal d : Y → Y × Y ? This
should be always the case in the constructible context, and we reserve the notation ⊗
for this tensor product structure on Shv(Y ).

If the monoidal structure on Shv(Y ) given by ⊗ exists, we reserve the notation
Hom(F1, F2) for the inner hom for Shv(Y ) for this monoidal structure.

Lemma 0.0.6. In the constructible context the Verdier duality for a scheme Y of finite
type (or an Artin stack locally of finite type with an affine diagonal) satisfies a stronger
property: for F1 ∈ Shv(Y )constr, F2 ∈ Shv(Y ),

Hom(D(F1), F2) →̃F1 ⊗! F2

in Shv(Y ).

Proof. For a map f : S → Y with S ∈ Schaff let us construct an isomorphism
f !Hom(D(F1), F2) →̃ f !(F1 ⊗! F2) in a way compatible with compositions S′ → S for
S′ ∈ Schaff . We have

f !Hom(D(F1), F2) →̃Hom(D(f !F1), f
!F2) →̃ (f !F1)⊗! (f !F2) →̃ f !(F1 ⊗! F2)

as desired. □
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For F ∈ Shv(Y )c the functor Shv(Y )→ Shv(Y ), G 7→ Hom(F,G) preserves filtered
colimits.

If we assume that there is an adjoint pair p∗ : Vect ⇆ Shv(Y ) : p∗ for p : Y → Spec k
then given Fi ∈ Shv(Y ) we get

HomShv(F1, F2) →̃ RΓHom(F1, F2)

0.0.7. For which maps f : Y → Spec k the functor f∗ is defined on e? If defined, it
gives the constant sheaf on Y . This happens at least for algebraic stack locally of finite
type (with an affine diagonal).

Let now Y be a scheme of finite type or an algebraic stack locally of finite type (with
an affine diagonal). Assume we are in the constructible context and F ∈ Shv(Y )constr.
Then the functor Shv(Y ) → Shv(Y ),K 7→ K ⊗! F admits a continuous left adjoint
given by K 7→ K ⊗ (DF ). Indeed, for L ∈ Shv(Y ) we get

Hom(L,K ⊗! F ) →̃Hom(L,Hom(DF,K)) →̃Hom(L⊗ (DF ),K)

Recall that here Hom denotes the inner hom in (Shv(Y ),⊗).

Claim Let X,Y ∈ Schft. Note that the exteriour product h : Shv(X)⊗ Shv(Y )→
Shv(X × Y ) is a map of Shv(X)⊗ Shv(Y )-modules, where the action of L ∈ Shv(X)
(resp., of L′ ∈ Shv(Y )) on Shv(X×Y ) sends K to (L⊠ω)⊗!K (resp., to (ω⊠L′)⊗!K).
So, its right adjoint hR is a right-lax morphism of Shv(X)⊗ Shv(Y )-modules. In fact,
this right-lax structure is strict.

Proof. Let K ∈ Shv(X × Y ) and F ∈ Shv(X). We must show that the natural map
(F ⊠ω)⊗hR(K)→ hR((F ⊠ω)⊗!K) is an isomorphism in Shv(X)⊗Shv(Y ). We may
and do assume F ∈ Shv(X)c. It is understood that Shv(Y ), Shv(X) is equipped with
the⊗!-symmetric monoidal structures, so Shv(X)⊗Shv(Y ) is also symmetric monoidal.
By the above, the functor Shv(Y ) ⊗ Shv(Y ) → Shv(Y ) ⊗ Shv(Y ), S 7→ (F ⊠ ω) ⊗ S
admits a continuous left adjoint sending K1⊠K2 to (K1⊗D(F ))⊠K2 for Ki ∈ Shv(Y ).

Now for K1 ∈ Shv(X),K2 ∈ Shv(Y ) we get

MapShv(X)⊗Shv(Y )(K1⊠K2, h
R((F⊠ω)⊗!K) →̃ MapShv(X×Y )(K1⊠K2, (F⊠ω)⊗!K)

→̃ MapShv(X×Y )((K1⊗(DF ))⊠K2,K) →̃ MapShv(X)⊗Shv(Y )((K1⊗(DF ))⊠K2, h
R(K))

→̃ MapShv(X)⊗Shv(Y )(K1 ⊠K2, (F ⊠ ω)⊗ hR(K))

Let us underline that in the above formulas (F ⊠ ω) ⊗ hR(K) denotes the tensor
product in the symmetric monoidal category Shv(X)⊗ Shv(Y ). □

Recall also that hR coincides with h∨ with respect to the Verdier self-dualities, see
([22], Sect. 1.0.1).

0.0.8. If i : Z ′ → Z is a closed immersion and F ∈ Shv(Z) satisfies i!F = 0 then F
is in the essential image of j∗ : Shv(Z − Z ′) → Shv(Z). Here j : Z − Z ′ → Z. For
F ∈ Shv(Z) one as a fibre sequence

i!i
!F → F → j∗j

!F



4

in Shv(Z). In particular, if M ∈ Shv(Z) satisfies j∗M = 0 then M is in the essential
image of i!.

0.0.9. Let S be an ind-scheme of ind-finite type. In the constructible context, the
tensor product ⊗! : Shv(S) ⊗ Shv(S) → Shv(S) admits a continuous right adjoint.
Indeed, for Fi ∈ Shv(S)c it suffices to show that F1 ⊗! F2 is compact. For this, it
suffices to show that D(△∗ (DF1⊠DF2)) is compact, and in turn that △∗ (DF1⊠DF2))
is compact. This is true, because for △: S → S × S, △∗ has a continuous right adjoint
△∗.

This is not the case for D-modules, as far as I understand, because △∗ is not always
defined.

0.0.10. What are the t-structures on Shv(Y ) and under which assumptions and how
they are defined? Perverse one, usual one?

For Y ∈ Schft there is a t-structure on Shv(Y ) that we think of as being perverse.
It is important that this t-structure is accessible. It is also compatible with filtered
colimits (this reduces to the fact that the t-structure on Vect is compatible with filtered
colimits).

The t-structure on Shv(Y ) for Y an ind-scheme is defined as follows. If Y =
colimi∈I Yi with I filtered and Yi ∈ Schft then Shv(Y )≤0 ⊂ Shv(Y ) should be the
smallest full subcategory containing Shv(Yi)

≤0 for any i, closed under extensions and
closed under small colimits. By (HA, 1.4.4.11), Shv(Y )≤0 is then presentable and de-
fines an accessible t-structure on Y . We use here the fact that Shv(Yi) is generated by
a small set of objects.

Note that for an ind-scheme Y of ind-finite type F ∈ Shv(Y ) lies in Shv(Y )≥0 iff
for any closed subscheme i : Y ′ ⊂ Y one has i!F ∈ Shv(Y ′)≥0. This implies that the
t-structure on Shv(Y ) is compatible with filtered colimits.

You should also explain what is assumed about right or left completeness of the
t-structure on Shv(S) for S ∈ Schft. Apparently, you assume it is right complete, as

you want to use maps like D+(Shv(Y )♡)→ Shv(Y )?
For an algebraic stack with an affine diagonal Y we define the perverse t-structure

on Shv(Y ) by

Shv(Y )≤0 →̃ lim
S

α→Y

Shv(S)≤−dim.rel(α),

where the limit is over the category whose objects are smooth maps α : S → Y with
S ∈ Schft, and morphisms from (S, α) to (S′, α′) is a smooth map S → S′ compatible
with α, α′. The transition functors here are the !-pullbacks. This defines an accessi-
ble t-structure by ([16], 1.4.4.11) or better by ([7], ch. I.3, Lemma 1.5.8). We have

Shv(Y )>0 →̃ lim
S

α→Y

Shv(S)>−dim.rel(α) taken over the same category with the transition

functors being !-pullbacks. This t-structure is compatible with filtered colimits and
both left and right complete by loc.cit.

Claim. If Y is an algebraic stack with an affine diagonal then in the constructible
context Shv(Y ) is right complete.

Proof. The t-structure on Shv(Y ) is accessible, so by ([21], 4.0.10) it suffices to show
that for L ∈ Shv(Y ) the natural map colimn τ

≤nL → L is an isomorphism. This
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property is local in Zariski topology, so it suffices to show this is an isomorphism over
any open quasi-compact substack U ⊂ Y .

For each U the category Shv(U) is right complete. Indeed, we have an adjoint pair
renU : Shv(U) ⇆ Shv(U)ren : un − renU in DGCatcont as in ([1], F.5.3) with renU

fully faithful. The t-structure on Shv(U)ren is right complete by ([21], 9.3.18). The
t-structure on Shv(U) is accessible, so by ([21], 4.0.10) it suffices to show that for
K ∈ Shv(U) the natural map colimn τ

≤nK → K is an isomorphism in Shv(U). To see
this, let K ′ = renU (K). Then the natural map colimn τ

≤nK ′ → K ′ is an isomorphism
in Shv(U)ren. Since un− renU is t-exact, K →̃un− renU (K

′) identifies with

colimn un− renU (τ
≤nK ′) →̃ colimn τ

≤n(un− renU (K
′)) →̃ colimn τ

≤n(K)

We are done. □

0.0.11. For S ∈ Schft mention that Shv(S) is assumed compactly generated. So, for
an ind-scheme of ind-finite type Y , Shv(Y ) is also compactly generated. Moreover, the
Verdier duality provides an equivalence Shv(Y )∨ →̃Shv(Y ), which is an isomorphism
of Shv(Y )-modules. The corresponding map Shv(Y )⊗ Shv(Y )→ Vect sends (F1, F2)
to RΓ(Y, F1 ⊗! F2).

If now f : Y1 → Y2 is a morphism of ind-schemes of ind-finite type then the dual to
f ! : Shv(Y2)→ Shv(Y1) identifies with f∗ : Shv(Y1)→ Shv(Y2).

If moreover, we are in the constructible context, since (f!, f
!) is an adjoint pair,

its dual ((f !)∨, (f!)
∨) is also an adjoint pair. So, the dual to f! : Shv(Y1)→ Shv(Y2) is

the right adjoint to f∗ : Shv(Y1)→ Shv(Y2).
Assume f : Y1 → Y2 schematic of finite type. In the conctructible context, f∗ has a

left adjoint f∗, hence (f !, (f∗)∨) is an adjoint pair, so f ! has a continuous right adjoint.
Example: let T be a split torus. Then e on B(T ) is not compact in the constructible

context, that is RΓ : Shv(B(T ))→ Vect is not continuous. So, this functor can not be
the dual of f ! for f : B(T )→ Spec k.

There is a projection formula for maps f : Y → Y ′, where Y is a quasi-compact
classical algebraic stack with affine diagonal and Verdier compatible, it is formulated
in ([2], B). This f∗ satisfies the projection formula (even if not continuous).

0.0.12. Consider the 1-full subcategory PreStkind−sch ⊂ PreStklft, where we restrict
1-morphisms to be ind-schematic. Then we have a well-defined functor

ShvPreStkind−sch
: PreStkind−sch → DGCatcont

sending Y to Shv(Y ) and a morphism f : Y → Y ′ to f∗ : Shv(Y ) → Shv(Y ′).
Moreover, this functor is right-lax symmetric monoidal, so sends algebras to algebras.
So, ifG is an algebra in PreStkind−sch, (Shv(G), ⋆) will become a monoidalDG-category
with the monoidal convolution structure.

So, we may talk about strong actions of Shv(G) on some C ∈ DGCat, this is an
object of (Shv(G), ⋆)−mod(DGCat).

0.0.13. If G is an ind-scheme of ind-finite type, assume m : G × G → G ind-proper.
Then (Shv(G), ⋆) is rigid for any sheaf theory. My understanding is that there is no
hope for it to be rigid without the ind-properness assumption.
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0.0.14. If G is a group ind-scheme of ind-finite type then (Shv(G),m∗) is monoidal
(convolution monoidal structure).

The functor Shv(G) ⊗ Shv(G) → Shv(G × G) sends a compact object F1 ⊗ F2 to
a compact object F1 ⊠ F2.

2 So, this functor admits a continuous right adjoint. In
the contstructible context the functor m∗ : Shv(G × G) → Shv(G) admits a contin-
uous right adjoint. Besides, the dual to m∗ is the functor m!. Thus, passing to the
dual in (Shv(G),m∗), in the constructible context we get a coalgebra (Shv(G),m!) in
DGCatcont. Recall that (Shv(G),m∗)−mod →̃ (Shv(G),m!)− comod (cf. [21]).

For any ind-scheme of ind-finite type Y , Y is a cocommutative coalgebra in PreStklft
via the maps Y → Y×Y and Y → Spec k, hence a commutative algebra in (PreStklft)

op.
Applying the right-lax monoidal functor Shv, we get on Shv(Y ) a commutative algebra

structure in CAlg(DGCatcont). The product is Shv(Y ) ⊗ Shv(Y ) → Shv(Y × Y )
△!

→
Shv(Y ). We denote this algebra (Shv(Y ),△!). It makes sense for any sheaf the-
ory. Applying the duality, we get a coalgebra structure on Shv(Y ), which we denote
(Shv(Y ),△∗) following [3]. Recall that this duality exchanges the functors △∗ and △!.

Sam says (Shv(G),△!,m!) is probably not a Hopf algebra in the constructible con-
text (only for D-modules). Similarly for (Shv(G),m∗,△∗). For D-modules this was
explained in [3]. Though (Shv(G),m∗) − mod is a symmetric monoidal category for
D-modules, this does not seem to be the case in the constructible context.

Sam’s idea: if this was the case, consider the diagonal action of (Shv(G),m∗) on
Shv(G) ⊗ Shv(G). It is given by a map of algebras hR ◦ ∆∗ : Shv(G) → Shv(G) ⊗
Shv(G), which is the coproduct. Here h : Shv(G) ⊗ Shv(G) ↪→ Shv(G × G) is the
exteriour product, and hR is its right adjoint. Besides, ∆∗ : Shv(G)→ Shv(G×G) is
a morphism in Alg(DGCatcont). Is it true that hR or h then becomes a morphism in
Shv(G)−mod? Then we could consider the map between the invariants, hopefully to
get a contradiction. We have in mind that ∆∗ωG is invariant under the diagonal action,
but does not lie in the essential image of h, here ∆ : G→ G×G is the diagonal. Not
clear.

0.0.15. If Y ∈ PreStklft is equipped with a G-action then the action map a : G×Y →
Y is ind-schematic (isomorphic to the projection Y ×G→ Y ). So, (Shv(G), ⋆) acts on
Shv(Y ) on the left via F ∈ Shv(G),K ∈ Shv(Y ) 7→ a∗(F ⊠K). If f : Y1 → Y2 is an
ind-schematic morphism in PreStklft commuting with G-actions then f∗ : Shv(Y1) →
Shv(Y2) is a map of (Shv(G), ⋆)-modules. Besides, f ! is a map of (Shv(G), ⋆)-modules.
Consider the prestack quotient Y/G ∈ PreStklft. The map f : Y → Y/G commutes

with G-actions, where G acts trivially on Y/G. So, f ! : Shv(Y/G)→ Shv(Y ) is a map
of (Shv(G), ⋆)-modules. Thus, by ([25], 1.10.10) it induces a functor

(2) Shv(Y/G)→ Fun(Shv(G),⋆)(Vect, Shv(Y ))

Is it an equivalence?

2Is it true for any sheaf theory? In ([10], 1.2.5(b)) you mentioned this only for two sheaf theories,
but not for constructible sheaves in the classical topology. I imagine this is a misprint there! You
actually claim this for any placid ind-schemes Y1, Y2 in ([10], C.2.8), so I assume this is true for any
sheaf theory.
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0.0.16. In general the answer is not clear. Assume G smooth of finite type. Then this
is an equivalence, as Lin Chen shows (there is a different proof in ([10], 1.4.5)). Here
is his argument.

One shows that Shv(Y/G) →̃ e− comod(Shv(Y )) by verifying the comonadic Beck-
Chevalley conditions. Here e is the constant sheaf on G, it is a coalgebra in (Shv(G), ⋆),
and we consider the corresponding category of comodules with the convolution action
of Shv(G) on Shv(Y ). The forgetful functor e − comod(Shv(Y )) → Shv(Y ) is f ! for
f : Y → Y/G. The self-functor underlying the comonad is p∗a

∗ : Shv(Y ) → Shv(Y ).
It also identifies with a∗p

∗, here a : G × Y → Y is the action map, p : G × Y → Y is
the projection.

Since Shv(G) is self-dual, Shv(Y )G identifies with the limit of

Shv(Y ) −→−→ Shv(G)⊗ Shv(Y )
−→−→−→ Shv(G)⊗2 ⊗ Shv(Y ) . . .

(For D-modules, since Shv(G)⊗n ⊗ Shv(Y ) →̃Shv(Gn × Y ), this finishes the proof).
Assume now we are in the constructible context.

The above cosimplicial diagram is also

Shv(Y ) −→−→ Fun(Shv(G), Shv(Y ))
−→−→−→ Fun(Shv(G)⊗2, Shv(Y )) . . .

The functors Shv(Y ) −→−→ Fun(Shv(G), Shv(Y )) are: F goes to (K 7→ K ∗ F ), and F

goes to (K 7→ RΓ(G,K) ⊗ F ). The second functor identifies via the Verdier duality
with Shv(Y ) → Shv(G) ⊗ Shv(Y ), F 7→ ωG ⊗ F . Its right adjoint is p∗[−2n] ⊗ id :
Shv(G)⊗ Shv(Y )→ Shv(Y ) for p : G→ Spec k, where n = dimG.

The comonadic Beck-Chevalley condition for the above cosimplicial diagram holds,
it is mentioned in [10], 1.4.6 without a proof. We also check this in bigger generality
in Section 0.0.23 of this file.

The corresponding comonad on Shv(Y ) is Shv(Y ) → Fun(Shv(G), Shv(Y ))
T 0

→
Shv(Y ), where the first functor sends F to (K 7→ K ∗ F ). Thus, this comonad sends
F to e ∗ F . We see that both comonads are the same.

0.0.17. Let G be a smooth group scheme of finite type, Y ∈ PreStklft. The equiv-
alence Shv(B(G)) →̃Fun(Shv(G),⋆)(Vect,Vect) given by (2) transforms the symmetric

monoidal structure on Shv(B(G)) given by ⊗! to the composition monoidal structure
on Fun(Shv(G),⋆)(Vect,Vect).

The projection q : Y/G→ B(G) yields an action of (Shv(B(G)),⊗!) on Shv(Y/G).
Namely,K ∈ Shv(B(G)) acts onM ∈ Shv(Y/G) as (q!K)⊗!M . Similarly, the monoidal
category Fun(Shv(G),⋆)(Vect,Vect) acts on Fun(Shv(G),⋆)(Vect, Shv(Y )) by composition
on the left. The equivalence (2) is compatible with these actions via the above monoidal
equivalence

Shv(B(G)) →̃Fun(Shv(G),⋆)(Vect,Vect)

0.0.18. We need the following claim: for Y ∈ Schft, its cohomology C(Y ) is bounded,

and the dimension of each Hi is finite. It was used in ([10], B.3.1) to show that for
a smooth group scheme of finite type H and C ∈ Shv(H) − mod, CH → CH is an
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equivalence. In the constructible context this is automatic, because p∗ : Shv(Y )→ Vect
for p : Y → Spec k admits a continuous right adjoint, and the constant sheaf eY is
compact, so p∗(eY ) is also compact.

So, a suitable finiteness assumption on the functor p∗ should be formulated which
holds for any sheaf theory. How it is formulated?

0.0.19. Consider a cartesian square

(3)
X

fX→ X ′

↓ g ↓ g′

Y
fY→ Y ′,

in PreStk, where all objects are placid ind-schemes. For which morphisms g′ we have
the functors (g′)!, (g′)∗? When do we have the base change with respect to (fY )∗?

Lemma 0.0.20. let Y ′ ∈ Schft and Y,X ′ be placid schemes over Y ′, recall then X
is also a placid scheme. Assume Y →̃ limi∈Iop Yi, where I is filtered, fY,i : Yi → Y ′ is
smooth, Yi ∈ Schft, and for i→ j in I, Yj → Yi is smooth affine surjective morphism
in Schft. Then one has f∗

Y g
′
∗ →̃ g∗f

∗
X .

Proof. 1) Assume first g′ : X ′ → Y ′ a morphism in Schft. Set Xi = Yi×Y ′ X ′ for i ∈ I,
so X →̃ limi∈Iop Xi. For each i we get a cartesian square

Xi
fX,i→ X ′

↓ gi ↓ g′

Yi
fY,i→ Y ′,

So, f∗
Y,ig

′
∗ →̃ (gi)∗f

∗
X,i naturally. So, (gi)∗ form a morphism of the corresponding colmit

systems giving g∗ : Shv(X) →̃ colimi∈I Shv(Xi) → colimi∈I Shv(Yi) →̃Shv(Y ). The
claim follows.

2) Let now g′ : X ′ → Y ′ be any placid scheme over Y ′. Write X ′ →̃ limj∈J X
′
j with

X ′
j ∈ Schft, J filtered, and for j → j′ in J the map X ′

j′ → X ′
j is smooth affine and

surjective. Set Xj = Y ×Y ′ X ′
j for j ∈ J . Then Xj is a placid scheme, and we get the

diagram

Xj
fX,j→ X ′

j

↓ gj ↓ g′j

Y
fY→ Y ′,

for j ∈ J . Note that Shv(X) →̃ limj∈Jop Shv(Xj) with respect to the ∗-direct image
transition functors. By 1), for each j ∈ J ,

(4) f∗
Y (g

′
j)∗ →̃ (gj)∗f

∗
X,j

naturally. The functors f∗
X,j are compatible with the corresponding inverse systems and

give in the limit over Jop the functor f∗
X . Pick any j ∈ J . Then g′ is the composition

X ′ ev
′
j→ X ′

j

g′j→ Y ′. Since (f∗
X,j)(ev

′
j)∗ →̃ (ev j)∗f

∗
X our claim follows from (4). □
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If S ∈ Schft and Z → S is a placid S-scheme, let i : S′ → S be a map in Schft
and h : Z ′ → Z be obtained by base change. Then h! : Shv(Z) → Shv(Z ′) is defined:
write Z →̃ limi∈Iop Zi, where I is small filtered, Zi ∈ Schft/S, and for i → j in I
the map Zj → Zi in Schft/S is smooth affine surjective. Then let Z ′

i = Zi ×S S′,

let hi : Z
′
i → Zi be the corresponding map. The functors h!i are compatible with ∗-

pushforwards in the diagrams Shv(Z) →̃ limi∈Iop Shv(Zi), Shv(Z
′) →̃ limi∈Iop Shv(Z

′
i).

In the limit they yield the functor h!. For the projections pi : Z → Zi, p
′
i : Z

′ → Z ′
i we

get h!i(pi)∗ →̃ (p′i)∗h
! and h!p∗i →̃ (p′i)

∗h!i canonically.

Lemma 0.0.21. Let S ∈ Schft, assume given a cartesian square in PreStk/S

Y
g← Y ′

↓ f ↓ f ′

Z
h← Z ′

Assume I is a filtered category, and we are given a morphism fi : Yi → Zi in (Schft)/S
functorial in i ∈ Iop, where fi is smooth. We assume for i→ j in I the transition maps
Yj → Yi, Zj → Zi are smooth affine surjective. We assume that f : Y → Z is obtained
from fi by passing to the limit over Iop. We assume i : S′ → S is a map in Schft, and

f ′ : Y ′ → Z ′ is obtained from f by the base change i : S′ → S. Then g!f∗ →̃ (f ′)∗h!

naturally. We do not assume here that the squares

Yj → Yi
↓ fj ↓ fi

Zj → Zi

are cartesian.

Proof. By definition, f∗ : Shv(Z)→ Shv(Y ) is obtained by passing to the colimit over
I in f∗

i : Shv(Zi)→ Shv(Yi). Note that Y, Y
′, Z, Z ′ are placid S-schemes. Note that h!

is obtained by passing to the colimit over I in h!i : Shv(Zi) → Shv(Z ′
i), and similarly

for g!. Recall that Shv(Z) →̃ colimi∈I Shv(Zi).
For i ∈ I and K ∈ Shv(Zi) we have g!if

∗
i K →̃ (f ′

i)
∗h!iK canonically. Passing to the

colimit over I, one gets the desired claim. □

0.0.22. Let Z be a placid scheme written as Z = limi∈Iop Zi. For i → j in I let fij :
Zj → Zi be the corresponding morphism, it is smooth of relative dimension dij , affine,
surjective. Since Shv(Z) →̃ colimi Shv(Zi) via the maps f∗

ij , Shv(Z) is compactly

generated, hence dualizable. By ([7], ch. I.1, 6.3.4), by applying the dualization functor
to the functor

I → DGCatcont, i 7→ Shv(Zi), (i→ j) 7→ f∗
ij ,

we get a functor Iop → DGCatcont, i 7→ Shv(Zi), (i→ j) 7→ (fij)∗[−2dij ]. Moreover,

Shv(Z)∨ →̃ lim
i∈Iop

Shv(Zi)
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with respect to the transition maps (fij)∗[−2dij ]. Consider for i ∈ I the isomorphism

Shv(Zi)
⊗e[2di]→ Shv(Zi) with di = dimZi. So, dij = dj − di. The diagram commutes

Shv(Zj)
⊗e[2dj ]→ Shv(Zj)

↓ (fij)∗ ↓ (fij)∗[−2dij ]

Shv(Zi)
⊗e[2di]→ Shv(Zi)

Passing to the limit over Iop, we obtain an equivalence Shv(Z) →̃Shv(Z)∨. So, a
possibility is to mention that for each placid scheme Z, Shv(Z) is canonically self-dual.
However, this self-duality is not compatible with the one for finite type schemes, so
maybe it is not needed.

Example: assume 0 ∈ I is an initial object, let K0 ∈ Shv(Z0). For the projection
f0 : Z → Z0 the image of f∗

0K0 in Shv(Z)∨ under this duality is the composition

Shv(Z)
(f0)∗→ Shv(Z0)→ Vect, where the second functor is M 7→ RΓ(Z0,K0⊗!M)[2d0].

0.0.23. Let G be a group scheme, which is a placid scheme, C ∈ G −mod. Consider
the cosimplicial category defining CG:

Fun(Vect, C) −→−→ Fun(Shv(G), C)
−→−→−→ Fun(Shv(G)⊗2, C) . . .

Let us show that it satisfies the comonadic Beck-Chevalley conditions.
The functor corresponding to the last face map ∂n : [n] → [n + 1] (its image avoids

n + 1) is the following functor Fn. We consider Shv(G)⊗n+1 → Shv(G)⊗n, id⊗RΓ,
and compose it with Fun(·, C). For p : G→ Spec k the functor p∗ has a left adjoint p∗.
Let Tn be the functor obtained from id⊗p∗ : Shv(G)⊗n → Shv(G)⊗n+1 by composing
with Fun(·, C). Then Tn is the right adjoint to Fn. Let now α : [m]→ [n] be a map in
∆. Consider the corresponding diagram

Fun(Shv(G)⊗n, C)
Tn← Fun(Shv(G)⊗n+1, C)

↑ Fα ↑ Fα+1

Fun(Shv(G)⊗m, C)
Tm← Fun(Shv(G)⊗m+1, C)

We show that it commutes. It suffices to prove this for α injective, becase of the
following. Let ∆s ⊂∆ be the full subcategory with the same class of object, where we
keep only injective maps. Then ∆op

s →∆op is cofinal by ([15], 6.5.3.7). If α : [m]→ [n]
is injective, and 0, n are in the image then the desired commutativity follows from the
commutativity of

Shv(G)⊗n id⊗p∗→ Shv(G)⊗n+1

↓ (mα)∗ ↓ (mα+1)∗

Shv(G)⊗m id⊗p∗→ Shv(G)⊗m+1,

where (mα)∗ is the product along α in the monoidal category Shv(G).
If α : [n − 1] → [n] is the last face map then α + 1 : [n] → [n + 1] avoids n. The

functor Fα+1 is the composition with Shv(G)⊗n+1 → Shv(G)⊗n, K1 ⊗ . . . ⊗Kn+1 7→
K1 ⊗ . . . ⊗ Kn−1 ⊗ Kn ∗ Kn+1. In this case the desired commutativity follows from
K ∗ eG →̃ RΓ(G,K)⊗ eG.
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If α : [n− 1]→ [n] is injective and avoids 0 then Fα sends f to the functor

K1 ⊗ . . .⊗Kn 7→ K1 ∗ f(K2 ⊗ . . .⊗Kn)

and the commutativity is tautological. So, it always hold.
By ([9], Lemma C.1.9), the functor oblvG : CG → C is comonadic, and the corre-

sponding comonad on C is C → C, c 7→ eG ∗ c.

0.0.24. Consider a placid scheme Y = limi∈Iop Yi, where I is filtered, if i→ j in I then
fij : Yj → Yi is smooth, affine and surjective, and Yi is a scheme of finite type. In this
case Shv(Y ) is defined in [10] as limi∈Iop Shv(Yi) via the maps (fij)∗.

In the paper there are situations, where we have morphisms h : Y → S, where S
is an ind-scheme, and we want functors between Shv(Y ) and Shv(S) attached to h.
So, the above definition of Shv(Y ) for placid schemes should be ”unified” with the
definition of Shv(Z) for prestacks Z locally of finite type. Namely, do we have certain
full subcategory of PreStk, on which Shv is defined as a functor, and which contains
both PreStklft, placid schemes, and is closed under colimits? Compare with [28].

0.0.25. Let now Z,Z ′ be placid schemes and i : Z ′ → Z a placid closed immersion.
What is the dual of the adjoint pair i∗ : Shv(Z

′)→ Shv(Z) : i!?
We explain the dual of i∗. If Z = limi∈Iop Zi and, assume for simplicity I has an

initial object i0 such that Z ′ = Z ′
i0
×Zi0

Z. So, Z ′ = limi∈Iop Z
′
i with Z ′

i = Zi ×Zi0
Z ′
i0
.

For i → j in I let fij : Zj → Zi be the corresponding transition map. For the closed
embeddings ii : Z ′

i → Zi writing Shv(Z) = limi∈Iop Shv(Zi) for (fij)∗ : Shv(Zj) →
Shv(Zi) and similarly for Shv(Z ′), the dual functor is given by the collection of functors
i!i[2di − 2d′i] : Shv(Zi) → Shv(Z ′

i), here di = dimZi, d
′
i = dimZ ′

i as locally constant
functions, they form a morphism of the corresponding inverse systems. The number
di − d′i does depend on i, and can be denoted codimZ(Z

′) = di − d′i. So, the dual of
i∗ : Shv(Z

′)→ Shv(Z) is i![2 codimZ(Z
′)].

0.0.26. Let Z be a placid ind-scheme. Is Shv(Z) canonically self-dual? Here is some
answer.

Write Z = colimi∈I Zi with Zi a placid scheme, I small filtered, and for i → j the
map fij : Zi → Zj is a placid closed immersion. We have Shv(Z) = colimi∈I Shv(Zi)
with respect to the transition functors (fij)∗.

Consider the functor I → DGCatcont, i 7→ Shv(Zi), (i → j) 7→ (fij)∗. By ([7], ch.
I.1, 6.3.4), the colimit of this functor colimi∈I Shv(Zi) = Shv(Z) is dualizable, and
Shv(Z)∨ →̃ limi∈Iop Shv(Zi)

∨, the limit of the dual functor.
Recall for each i the canonical self-duality on Shv(Zi) introduced in Sect. 0.0.22 of

this file. It allows to rewrite Shv(Z)∨ →̃ limi∈Iop Shv(Zi), where the transition functors
for i→ j in I is (fij)

![2 codimZj (Zi)] in the notations of Section 0.0.25.
Pick an element i0 ∈ I. Consider for i→ j in I a commutative diagram

Shv(Zj)
⊗e[−2 codimZj

(Zi0
)]

→ Shv(Zj)
↓ f !

ij ↓ f !
ij [2 codimZj

(Zi)]

Shv(Zi)
⊗e[−2 codimZi

(Zi0
)]

→ Shv(Zi)
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Indeed, we have codimZj (Zi)+ codimZi(Zi0) = codimZj (Zi0). Passing to the limit over
Iop, this provides an equivalence Shv(Z)∨ →̃Shv(Z).

This duality maybe depend on a choice of an element i0 ∈ I.

0.0.27. In Section 7.3.5 the perverse t-structure on ShvGG((Bun
ωρ

N )∞x) is mentioned
without any definition. In the convention section a definition of the perverse t-structure
for an ind-algebraic stack should be given. My understanding is as follows: if Y =
colimi∈I Yi with Yi an algebraic stack locally of finite type, I filtered then Shv(Y )≤0

should be the smallest full subcategory of Shv(Y ) containing Shv(Yi)
≤0 for any i,

closed under extensions and small colimits. Then by (HA, 1.4.4.11), Shv(Y )≤0 is then
presentable and defines an accessible t-structure on Shv(Y ). For K ∈ Shv(Y ) we have
K ∈ Shv(Y )≥0 iff for any i, the !-restriction of K to Yi lies in Shv(Yi)

≥0. As in the case
of ind-schemes of ind-finite type, this t-structure is compatible with filtered colimits.

0.0.28. For a scheme of finite type S, the perverse t-structure on Shv(S) is left com-
plete (by [1], 1.1.4). This implies that for an Artin stack locally of finite type S the
t-structure on Shv(S) is left complete as in ([7], ch. I.3, 1.5.7), because for a smooth
atlas f : S′ → S with S a scheme locally of finite type, f∗[dim f ] is t-exact.

It should be clarified for which topologies on Schft the functor Shv : (Schft)
op →

DGCatcont satisfies the descent, and a precise reference should be given. In particular,
in ([12], proof of 4.2.7) you claim it satisfies the descent for the topology of finite
surjective maps on Schft. Give also a reference for the fact that it satisfies the étale
descent. (For the proper descent this is Section 0.0.33 of this file). Sam claim we get
this way h-descent, give accurate references. Add also it satisfies the smooth descent:

if Y is a quasi-compact algebraic stack with a smooth cover S → Y , where S ∈ Schaffft ,

if S• is the Cech nerve of this map then Shv(Y ) → Tot(Shv(S•)) is an equivalence.
Does etale descent automatically implies the smooth descent here?

Add also the following. For a map f : Y → Z in PreStklft, which is surjective on

geometric points, f ! is conservative.
Cite the following. If Y ∈ PreStklft is an algebraic stack then Shv(Y ) = limS→Y Shv(S),

where the limit is taken over the opposite to the category of affine schemes smooth over
Y , and morphisms are smooth maps between those ([1], C.1.1).

0.0.29. Say that for any Y ∈ PreStklft, Shv(Y ) is compactly generated in the con-
structible context by ([1], C.1.1). What happens for D-modules?

In Section 4.3.3 you claimed the existence of the equivalence D : (Shv(Y )c)op →̃Shv(Y )c

for an algebraic stack of finite type. Explain that this is known only under the assump-
tion that Y is locally a quotient of a scheme S of finite type by an affine algebraic
group, give a reference!

0.0.30. For example, it should be said somewhere that if Z = limi∈Iop Zi is a placid
scheme, where I is filtered, Zi is a scheme of finite type, with the transition maps affine
smooth and surjective, then for i ∈ I and the projection ev i : Z → Zi the functor
ev∗i : Shv(Zi) → Shv(Z) is defined, this is the natural functor insi : Shv(Zi) →
colimj∈I Shv(Zj). For the moment this is hidden in ([10], C.2.9).
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0.0.31. On exteriour product. If Si ∈ Schft, Fi ∈ Shv(Si)
constr then F1⊠F2 ∈ Shv(S1×

S2)
constr by definition, as constr means being bounded with ocnstructible cohomology.
Let S ∈ Schft, Y ∈ PreStklft. The functor Shv(S) ⊗ Shv(Y ) → Shv(S × Y ),

(F,K) 7→ F ⊠K is fully faithful and preserves compactness. We have to verify this in
the constructible context, as for D-modules this is an equivalence. Fully-faithfulness
property is preserved by passing to the limit, and tensoring by Shv(S) is the functor
DGCatcont → DGCatcont preserving limits, as Shv(S) is dualizable. This is why our
functor is fully faithful.

To see that it admits a continuous right adjoint we use ([7], ch. I.1, 2.6.4). Write

Shv(Y ) →̃ limT→Y Shv(T ) over (Schaffft )op/Y . For each T the inclusion iT : Shv(S) ⊗
Shv(T ) → Shv(S × T ) admits a continuous right adjoint iRT . Let α : T → T ′ be

a map in (Schaffft )/Y . In the constructible context, α! : Shv(T ′) → Shv(T ) admits

a left adjoint α!, and we have iT ′(id⊗α!) →̃ (id×α!)iT . This gives an isomorphism
id⊗α!iRT ′ →̃ iRT (id×α!). By ([7], ch. I.1, 2.6.4), i : Shv(S)⊗Shv(Y )→ Shv(S×Y ) has

a right adjoint iR, and for any (T
b→ Y ) ∈ Schaffft )/Y we have (id⊗b!)iR →̃ iRT (id×b)!.

We check that iR is continuous. Let K →̃ colimj∈J Kj in Shv(S × Y ). By ([21],

2.2.68), it suffices to show that for any (T
b→ Y ) ∈ Schaffft )/Y , id⊗b! sends our diagram

to a colimit diagram. This is true, because iRT and (id×b)! are continuous.

Claim Let X,Y, Z ∈ Schft with X proper. In the constructible context, the diagram
commutes

Shv(X × Y × Z)
⊠← Shv(X)⊗ Shv(Y × Z)

↓ ⊠R ↓ ⊠R

Shv(X × Y )⊗ Shv(Z)
⊠← Shv(X)⊗ Shv(Y )⊗ Shv(Z)

Proof. The left vertical arrow is Shv(X × Y )⊗ Shv(Z)-linear by Section 0.0.7. There-
fore, it suffices to calculate for F ∈ Shv(Y ×Z) and the projection q : X×Y ×Z → Y ×Z
the object ⊠R(q!F ) ∈ Shv(X × Y ) ⊗ Shv(Z). The functior ⊠R ◦ q! is right adjoint to
the functor Shv(X × Y ) ⊗ Shv(Z)

⊠→ Shv(X × Y × Z)
q!→ Shv(Y × Z). The latter

functor identifies with the composition Shv(X×Y )⊗Shv(Z)
q̄!⊗id→ Shv(Y )⊗Shv(Z)

⊠→
Shv(Y × Z), because X is proper. Here q̄ : X × Y → Y is the projection. So, ⊠R ◦ q!

identifies with the functor Shv(Y ×Z)
⊠R

→ Shv(Y )×Shv(Z)
q̄!⊗id→ Shv(X×Y )⊗Shv(Z).

Our clailm follows. □

0.0.32. Question. Let f : Y → Spec k be a scheme of finite type. In the constructible
context does the functor p! : Shv(Y )→ Vect preserve limits? Consider the dual functor
(p!)

∨ : Vect→ Shv(Y ). Is the object (p!)
∨(e) compact? If it was compact, the functor

p! would preserve limits.

0.0.33. Let Y, Z ∈ PreStklft and π : Y → Z be proper, in particular, of finite type.

Consider the Cech nerve [. . . Y 3
Z

−→−→−→ Y 2
Z
−→−→ Y ] of π. Applying Shv, we get a cosimplicial

category ∆op → DGCatcont, [n] 7→ Shv(Y n+1
Z ), here Y n

Z = Y ×Z Y ×Z . . . ×Z Y , the
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product of n copies. For i ≥ 0 let ∂i : [i] → [i + 1] be the last face map, it avoids
i + 1. The corresponding map p∂i : Y i+1

Z → Y i
Z is the projection, so (p∂i)! has a left

adjoint (p∂i)! = (p∂i)∗. By base change, this cosimplicial category satisfies the monadic
Beck-Chevalley conditions, so

Tot
[n]∈∆

Shv(Y n+1
Z ) →̃A−mod(Shv(Y )),

where A = (p2)∗p
!
1 for the projections p1, p2 : Y

2
Z → Y .

Now π! : Shv(Z) → Shv(Y ) has a left adjoint π!, and the monad π!π! acting
on Shv(Y ) identifies with A. We always have a natural functor Shv(Z) → A −
mod(Shv(Y )). Assume in addition that π : Y → Z is surjective on k-points (and
more generally, on field-valued points, we have to take into account generic points in
particular). Then π! is conservative, so that π! satisfies the Beck-Chevalley theorem ([7],
ch. I.1, 3.7.7), and the induced functor Shv(Z)→ A−mod(Shv(Y )) is an equivalence.
Thus, Shv satisfies the proper descent.

0.0.34. It seems the following is also needed. Consider the cartesian square (3),
where all the maps are schematic quasi-compact say. Let F ∈ Shv(X ′) such that
g′! : Shv(X

′) → Shv(Y ′) is defined on F and f∗
Y g

′
!F is defined. Then f∗

XF and g!f
∗
XF

are both defined and we have a natural isomorphism g!f
∗
XF →̃ f∗

Y g
′
!F . Is this true?

I think this was used in ([11], proof of Prop. 2.8.2).

0.0.35. Question. Let Y be an ind-scheme of ind-finite type (or a classical algebraic
stack locally of finite type). Let Ui ⊂ Y be an open immersion for i ∈ N such that for
i < j we have Ui ⊂ Uj and ∪iUi = Y . Is it true that colimi∈N Ui in PreStk identifies
with Y ?

Example: we may form a sequence of opens Ui ⊂ GrG, where each Ui is of the form
GrG− ∪ni=1 S̄

λi and

Ui ⊂ Ui+1 ⊂ . . .

with ∪iUi = GrG. We have Shv(GrG) →̃ limi Shv(Ui) anyway, as for any closed sub-
scheme of finite type S ⊂ GrG, S ⊂ Ui for some i.

0.0.36. Torsors under placid group-schemes. Let Yα be an ind-scheme of ind-finite type
functorial in α ∈ Aop, where A is filtered, α0 ∈ A is initial in A. Let G = limα∈Aop Gα

be a placid group scheme, where Gα is a smooth group scheme of finite type, and
for α → β in A, Gβ → Gα is smooth, affine and surjective homomoprhism of group
schemes. Assume Yα → Yα0 is a Gα-torsor. For α→ β in A, Yβ → Yα is Gβ-equivariant.

Then we are in the setting of ([10], C.1.6), so we get a placid ind-scheme Y as follows.
Write Yα0 = colimi∈I Yi, where Yi is a scheme of finite type, I is filtered, and for i→ j,
Yi → Yj is a closed immersion. Let Zi = limα∈Aop Yi ×Yα0

Yα, so Zi is a placid scheme,
and Zi → Zj is a placid closed immersion. So, Y := colimZi is a placid ind-scheme, and
Shv(Y) →̃ limα∈Aop Shv(Yα) with respect to the functors (fα,β)∗ : Shv(Yβ)→ Shv(Yα)
for α → β in A and fα,β : Yβ → Yα. The group G acts on Yα for each α via the
quotient G → Gα, this gives an action of Shv(G) on Shv(Yα). The functors (fα,β)∗
are morphisms of Shv(G)-modules, so Shv(Y) can be seen as limα∈Aop Shv(Yα) taken
in Shv(G)−mod.



15

Let us show that Y →̃ limα∈Aop Yα as prestacks. We have a natural map Y→ limα Yα.
Let S ∈ Schaff . Recall that for any n, τ≤n Spc ⊂ Spc is stable under filtered colimits,
so Y(S) ∈ Sets and an element of Y(S) comes from an element of Zi(S) for some i (by
[21], Cor. 13.1.14). So, an element of Zi(S) is the same as an element of Y(S) whose
image in Yα0(S) lies in the subset Yi(S). The makes the claim manifest (and it holds
more generally in the situation of ([10], C.1.6)).

Since Ker(G→ Gα) is prounipotent for α ̸= α0, we get Shv(Yα)
G →̃Shv(Yα)

Gα for
α ̸= α0 by ([25], 1.3.21). Now by Section 0.0.16 of this file, Shv(Yα)

Gα →̃Shv(Yα0) via
the functor f∗

α0,α : Shv(Yα0)→ Shv(Yα). So,

Shv(Y)G →̃ lim
α∈Aop

Shv(Yα)
G →̃Shv(Yα0)

We could take the functors f !
α0,α instead, but the two limits would be isomorphic.

We may strengthen the above as follows. Assume H is a placid group scheme, G ⊂ H
is a placid closed immersion, and a normal group subscheme with the cokernel K, here
K is a smooth affine group scheme of finite type. Assume the G-action on Y is extended
to a H-action. Then as above we get Shv(Y)H →̃Shv(Yα0/K).

0.0.37. Let H ∈ Grp(PreStk) be a placid ind-scheme written as H →̃ colimj∈J Hj ,
where Hj is a placid group scheme, and for j → j′ in J the map Hj → Hj′ is a
placid closed immersion and a homomorphism of group schemes. Assume j = 0 is
initial in J and let G = H0. Then for any j, Hj/G is a scheme of finite type, so
H/G →̃ colimj∈J Hj/G, because colimits commute with colimits, so H/G is an ind-
scheme of ind-finite type. Assume G prosmooth.

Write as in the previous section G →̃ limα∈Aop Gα, where Gα is a smooth group
scheme of finite type, and for α → β in A, Gβ → Gα is smooth, affine and surjective.
Set Kα = Ker(G → Gα). For α → β in A let 1 → Kα,β → Gβ → Gα → 1 be an
exact sequence. Assume Kα,β is a unipotent group scheme. Then Kα →̃ limβ Kα,β is
prounipotent.

Set Yα = H/Kα, we usually mean by this the etale sheafification of the prestack
quotient. This is an ind-scheme of ind-finite type by the above, and for α→ β in A the
map Yβ → Yα is a Kα/Kβ-torsor. So, we are in the situation of the previous section,
α0 is initial in A. We write H/Kα0 = →̃ colimj Hj/Kα0 . So, Y →̃ limαH/Kα. Note
that limβ(Kα/Kβ) →̃Kα. We get Y →̃ colimj Hj →̃H, because limαHj/Kα →̃Hj for
any j.

From H →̃ limα∈Aop H/Kα we get Shv(H) →̃ limα Shv(H/Kα). From the previous
section we now get an equivalence Shv(H/Kα0) →̃Shv(H)Kα0 . Similarly, we may get
Shv(H/Kα) →̃Shv(H)Kα for any α.

We have an action of Gα by right translations on H/Kα, and (H/Kα)/Gα →̃H/G.
Now Section 0.0.16 gives Shv(H/Kα)

Gα →̃Shv(H/G).
As in the previous subsection, we get Shv(H/G) →̃Shv(H/Kα)

Gα →̃Shv(H)G for
any of the 4 sheaf theories (for D-modules this is ([4], Lemma B.5.1).

Corollary 0.0.38. Let H ∈ Grp(PreStk) be a placid ind-scheme, G ⊂ H be a closed
placid prosmooth group subscheme. For any of the 4 sheaf theories Shv(H/G) →̃Shv(H)G,
where G acts on H by right translations.
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0.0.39. Let G ∈ Grp(PreStk) be a placid ind-scheme, Y be a placid ind-scheme
with a G-action. Then Shv(Y ) is equipped with a Shv(G)-action. Namely, for K ∈
Shv(G), F ∈ Shv(Y ) one has K ∗ F →̃ a∗(K ⊠ F ) for the action map a : G× Y → Y .

0.0.40. Let Y → S be a map in Schft, G be a placid group scheme over S acting on
Y over S though its quotient G → G0 group scheme (smooth and of finite type over
S) with a prounipotent kernel. We have canonically Shv(Y )G →̃Shv(Y )G0 by ([25],
1.3.21). Consider the stack quotient Y/G (by which we mean etale sheafification of
the prestack quotient). We define Shv(Y/G) as Shv(Y/G0) in such a way that for
q : Y → Y/G the functor q∗ : Shv(Y/G) → Shv(Y ) is defined as q∗0 : Shv(Y/G0) →
Shv(Y ) for q0 : Y → Y/G0. So, if G → G1 → G0 are given, where G1 is another
finite-dimensional quotient group scheme over S with Ker(G→ G1) prounipotent then
we identify Shv(Y/G1) →̃Shv(Y/G0) via a∗ for the natural map a : Y/G1 → Y/G0.
No shifts appear. Note that Shv(Y/G0) is compactly generated both for D-modules
and in the constructible context (for D-modules this is true, as Y/G0 is perfect [5]).

If f : Y → Y ′ is a G-equivariant map in (Schft)/S (we assume the G-action on
both schemes factor through a finite dimensional quotient group scheme) then we have
f ! : Shv(Y ′/G)→ Shv(Y/G).

We extend this definition to the case of an ind-scheme of ind-finite type Y over
S equipped with a G-action over S as follows. Assume Y admits a presentation
Y →̃ colimi∈I Yi, where Yi is a G-invariant closed subscheme of finite type, I is fil-
tered, and for i→ j in I the map Yi → Yj is a closed immersion. Assume the G-action
on Yi factors through a quotient group scheme G → Gi, where Gi → S is smooth, of
finite type with Ker(G→ Gi) prounipotent. Then we have Shv(Yi/G) defined as above
and set Shv(Y/G) →̃ limi∈Iop Shv(Yi/G) with respect to the !-restrictions. With this
definition for q : Y → Y/G we get the functor q∗ : Shv(Y/G) → Shv(Y ), which is
the limit over i ∈ Iop of the functors q∗i : Shv(Yi/G) → Shv(Yi) for qi : Yi → Yi/G.
It also identifies with oblv : Shv(Y )G → Shv(Y ). Note that for i → j in I the func-
tor of !-restriction Shv(Yj/G) → Shv(Yi/G) admits a fully faithful left adjoint. So,
Shv(Y )G →̃ colimi∈I Shv(Yi/G) with respect to the !-direct images. We see that for
D-modules or in the constructible context Shv(Y )G is compactly generated.

Let now H be a placid group ind-scheme over S, G ⊂ H a closed placid group
subscheme over S, so H/G is an ind-scheme of ind-finite type over S. Then the above
assumption is satisfied for the G-action on H/G over S. So, Shv(H/G)G identifies with
Shv(G\H/G). For q : H/G → G\H/G the functor q∗ : Shv(G\H/G) → Shv(H/G)
identifies with oblv : Shv(H/G)G → Shv(H/G).

Let again Y → S be a map in Schft and G a placid group scheme over S. As-
sume that the action of G on Y factors though the finite-dimensional group scheme
G0 → S smooth over S, and let G → G1 → G0 be as above. Another way to re-
alize Shv(Y/G) is as the category Shv(Y/G0) via the identifications a∗[dim. rel(a)] :
Shv(Y/G0) →̃Shv(Y/G1) for every G1 as above. Indeed, the equivalence

Shv(Y/G0) →̃Shv(Y/G0), K 7→ K[− dim(G0/S)]

from the first model to the second one allows to identify them. The advantage of the
second model is that the transition functors are t-exact for the perverse t-structure, so
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allow to equip Shv(Y/G) with the perverse t-structure: this is the perverse t-structure
on Shv(Y/G0).

For the second model for q0 : Y → Y/G0 consider the functor Shv(Y/G) = Shv(Y/G0)→
Shv(Y ) given by q∗0[dim(G0/S)], it is t-exact and compatible with the transition func-
tors for the second model, so defines a functor Shv(Y/G) → Shv(Y ) that we denote
by q∗[dim. rel(q)], this is just one symbol.

Let now Y be an ind-scheme of ind-finite type over S with a G-action and a pre-
sentation Y →̃ colimi∈I Yi, where I is small filtered, Yi → S is a G-invariant closed
subscheme of finite type in Y , and for i → j the map hij : Yi → Yj is a closed im-
mersion. Assume G-action on Yi factors through a quotient group scheme Gi → S
smooth and of finite type over S, where Ker(G→ Gi) is a prounipotent group scheme
over S. Equip each Shv(Yi/G) with the perverse t-structure. Then the !-pullbacks
under Yi/G0 → Yj/G0 are compatible with the transition functors for the second

model, so define a functor h!ij : Shv(Yj/G) → Shv(Yi/G), which is left t-exact. It

also commutes with the functors q∗i [dim. rel(qi)] for qi : Yi → Yi/G. Recall that
Shv(Y/G) →̃ limi∈Iop Shv(Yi/G) with respect to the functors h!ij . The limit over i ∈ Iop

of the functors q∗i [dim. rel(qi)] : Shv(Yi/G) → Shv(Yi) in the second model is denoted
oblv[dim. rel] : Shv(Y )G → Shv(Y ).

Each h!ij : Shv(Yj/G) → Shv(Yi/G) admits a left adjoint (hij)! : Shv(Yi/G) →
Shv(Yj/G), and we may also write Shv(Y/G) →̃ colimi∈I Shv(Yi/G) with the transition
functors (hij)!. Now we may define the perverse t-structure on Shv(Y/G) as in the case
of an ind-scheme of ind-finite type. Namely, K ∈ Shv(Y/G) lies in Shv(Y/G)≥0 iff for
any i, its !-restriction to Yi/G lies in Shv(Yi/G)≥0. So, Shv(Y/G)≥0 →̃ limi∈Iop Shv(Yi/G)≥0,
which shows that Shv(Y/G)≥0 is presentable, so the t-structure is accessible. This t-
structure is also compatible with filtered colimits.

In fact, if we identify the first and the second model of Shv(Y )G as above then
the functors oblv for the first model becomes the functor oblv[dim. rel] : Shv(Y )G →
Shv(Y ) for the second one. So, this is just a matter of notations.

For the natural map q : Y → Y/G the functor q! : Shv(Y/G) → Shv(Y ) is also
defined similarly, though q is not locally of finite type.

Namely, if Y ∈ Schft we first consider a third model for Shv(Y/G): for a quotient
G→ G0 as above such thatG-action on Y factors throughG0, we identify the 3rd model
with the second via the equivalences: Shv(Y/G0 →̃Shv(Y/G0),K 7→ K[2 dimG0]. For
G → G1toG0 let a : Y/G1 → Y/G0 be the natural map. Under such equivalences
the transition functor a∗ for the first model becomes the transition functor a! for the
3rd model. Now for the third model we define q! : Shv(Y/G) → Shv(Y ) as q!0 for
q0 : Y → Y/G0.

This definition is similarly extended to ind-schemes of ind-finite type.

0.0.41. Let Y →̃ colimi∈I Yi in PreStk, where I is filtered, Yi is a scheme of finite type,
and for i → j in I, Yi → Yj is a closed immersion, so Y is an ind-scheme of ind-finite
type. Let H → G be a homomorphism of placid group schemes over Spec k. Assume
G acts on Y and the assumption of the previous subsection holds, that is, each Yi is
G-invariant, and on Yi the group scheme G acts via a finite-dimensional quotient group
scheme G → Gi with Ker(G → Gi) prounipotent. We have a natural map of stack
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quotients h : Y/H → Y/G. We have defined the categories Shv(Y/G), Shv(Y/H) in
the previous subsection. Then the functor h∗ : Shv(Y/G) → Shv(Y/H) is defined,
namely this is oblv : Shv(Y )G → Shv(Y )H .

0.0.42. If Y is a stack locally of finite type, a placid group scheme over Y should be
defined as a group object (G → Y ) ∈ Grp(PreStk/Y ) such that for any S → Y with

S ∈ Schaffft , S ×Y G is a placid group scheme over S.

Let Z → Y be a map in Stklft and G be a placid group scheme over Y acting on Z
over Y . Write Z/G for the stack quotient of Z by G (etale sheafification of the prestack
quotient), so Z/G→ Y . How do we define Shv(Z)G?

First, for any S → Y with S ∈ Schaffft we have a monoidal category Shv(S ×Y G)

defined in ([25], 1.3.7), it is an object of Alg(Shv(Y )−mod). For a map S′ α→ S → Y

in (Schaffft )/Y let β : S′ ×Y G → S ×Y G be obtained by base change. As in ([25],

1.3.12), β! : Shv(S ×Y G) → Shv(S′ ×Y G) is monoidal, it is actually a morphism in
Alg(Shv(Y )−mod). To see this we used Lemma 0.0.43 below. So, we may understand

Shv(G) →̃ lim
(S→Y )∈((Schaffft )/Y )op

Shv(S ×Y G)

as limit taken in Alg(Shv(Y )−mod). We get a monoidal structure on Shv(G) via the
latter limit.

This is one more extension of our sheaf theory needed. In general, we can not write
G as limi∈Iop Gi, where Gi → Y is an affine group scheme ”of finite type” over Y , I is
filtered, and for i→ j in I the map Gj → Gi is affine smooth surjective. This does not
hold already for L+(G)→ Ran, I think, where G is a reductive group.

We will see that the monoidal category Shv(G) acts on Shv(Z).

For each S → Y in (Schaffft )/Y , S×Y G acts on S×Y Z over S, so Shv(S×Y G) acts on

Shv(S×Y Z) naturally. For a map S′ α→ S → Y in (Schaffft )/Y let ᾱ : S′×Y Z → S×Y Z

be obtained from α by base change.
Let Shv(S ×Y G) act on Shv(S′ ×Y Z) via the map Shv(S ×Y G)→ Shv(S′ ×Y G).

Then ᾱ! commutes with Shv(S ×Y G)-actions.
Recall that the sheafification is a left exact functor, so for the stack quotients we get

((S ×Y Z)/(S ×Y G))×S S′ →̃ (S′ ×Y Z)/(S′ ×Y G) canonically.
Consider the ∞-category AssAlg +Mod(DGCatcont) defined in ([7], ch. I.1, 3.5.4).

By ([16], 3.2.2.5), it admits limits and the projection AssAlg + Mod(DGCatcont) →
DGCatcont preserves limits. We obtained a functor

((Schaffft )/Y )
op → AssAlg +Mod(DGCatcont)

sending S → Y to the pair Shv(S×Y G), Shv(S×Y Z). So, the limit of the latter functor
is an object of AssAlg +Mod(DGCatcont)→ DGCatcont. In other words, Shv(G) act
on Shv(Z) naturally, and we may consider the invariants

Shv(Z)Shv(G) = FunShv(G)(Shv(Y ), Shv(Z)) ∈ Shv(Y )−mod

Question. Can we rewrite the above as limit of Shv(S ×Y Z)Shv(S×Y G) over S? More

precisely, for (S → Y ) ∈ (Schaffft )/Y , let qS : S ×Y G→ S be the projection. By ([25],
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1.3.16), we have canonically

Shv(S ×Y Z)Shv(S×Y G) →̃ q∗Sω − comod(Shv(S ×Y Z))

If α : S′ → S is a morphism in (Schaffft )/Y then β!q∗Sω →̃ q∗S′ω as coalgebras in Shv(S′×Y

G). This is by definition of the functors q∗S , q
∗
S′ . So, ᾱ! : Shv(S×Y Z)→ Shv(S′×Y Z)

induces a functor between the comodule categories

q∗Sω−comod(Shv(S×Y Z))→ q∗Sω−comod(Shv(S′×Y Z)) = q∗S′ω−comod(Shv(S′×Y Z))

Now we may consider
lim
S→Y

q∗Sω − comod(Shv(S ×Y Z))

taken in DGCatcont over the category ((Schaffft )/Y )
op. Is it equivalent to Shv(Z)Shv(G)?

Lemma 0.0.43. Let S′ → S be a map in Schft. Let f : Y → Z be a morphism of placid
schemes over S, let f ′ : Y ′ → Z ′ be obtained from f by the base change α : S′ → S.
Write αY : Y ′ → Y and αZ : Z ′ → Z for the obtained maps. Then for K ∈ Shv(Y )
one has canonically α!

Zf∗K →̃ f ′
∗α

!
Y K.

Proof. Write Y →̃ limi∈Iop Yi, where I is filtered, Yi is a scheme of finite type over S,
and for i→ i′ in I the map Yi′ → Yi is affine smooth surjective (over S), and similarly
for Z →̃ limj∈Jop Zj . These are presentations from a definition of a placid scheme.
Let Y ′

i , Z
′
j be obtained from Yi, Zj by base change S′ → S, so Y ′ →̃ limi∈Iop Y

′
i and

Z ′ →̃ limj∈Jop Z ′
j .

It suffices to establish the desired isomorphism after applying (ev ′j)∗ : Shv(Z ′) →
Shv(Z ′

j) for each j ∈ J , here ev ′j : Z
′ → Z ′

j is the projection. Pick i ∈ I such that the

composition Y → Z → Zj factors through f̄ : Yi → Zj . By base change under S′ → S
we get a cartesian square

Yi
f̄→ Zj

↑ αYi
↑ αZj

Y ′
i

f̄ ′
→ Z ′

j

Let (ev i)∗ : Shv(Y )→ Shv(Yi) be the direct image under ev i : Y → Yi. The key point
is the base change isomorphism α!

Zj
f̄∗ →̃ f̄ ′

∗α
!
Yi
. We get

(ev ′j)∗α
!
Zf∗K →̃α!

Zj
(ev j)∗f∗K →̃α!

Zj
f̄∗(ev i)∗K →̃ f̄ ′

∗α
!
Yi
(ev i)∗K

→̃ f̄ ′
∗(ev i)∗α

!
Y K →̃ (ev ′j)∗f

′
∗α

!
Y K

We are done. □

Corollary: let α : S′ → S be a map in Schft, Y → S be a placid ind-scheme over S
and Y ′ → S′ be obtained by base change. Let ᾱ : Y ′ → Y be the natural map. Then
ᾱ! : Shv(Y )→ Shv(Y ′) is well-defined.

Proof. Write Y →̃ colim
i∈I

Yi, where I is small filtered category, Yi is a placid S-scheme,

and for i → j in I the map Yi → Yj is a placid closed immersion over S. Write
Y ′
i = Yi ×S S′. For each i ∈ I let ᾱi : Y

′
i → Yi be the correspnding map. The functors
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ᾱ!
i are compatible with ∗-pushforwards in the corresponding inductive systems, passing

to the colimit in ᾱ!
i : Shv(Yi) → Shv(Y ′

i ), we get the desired ᾱ!. These functors are
also compatible with the !-pullbacks, so we can also pass to the limit. □

0.0.44. Let us be in the situation of Section 0.0.42. Probably the only case we need sat-

isfies the following additional assumption that we make. For any S → Y in (Schaffft )/Y ,

S ×Y Z may be written as S ×Y Z →̃ colimi∈I ZS,i, where I is filtered, and ZS,i → S is
a scheme of finite type such that for any i → j in I, the map ZS,i → ZS,j is a closed
immersion. Moreover, for each i ∈ J , ZS,i is stable under the action of S ×Y G, and
the latter acts through a finite-dimensional quotient scheme GS,i over S. In particular,
S ×Y Z is a ind-scheme of ind-finite type over S.

In this setting one may define the category Shv(Z/G) in one more way. Namely, for
S → Y as above, in Section 0.0.40 we have defined the category Shv((S×Y Z)/(S×Y G))
together with the functor q∗S : Shv((S ×Y Z)/(S ×Y G)) → Shv(S ×Y Z) for the
projection qS : S ×Y Z → (S ×Y Z)/(S ×Y G). Recall that q∗S identifies with oblv :
Shv(S ×Y Z)S×Y G → Shv(S ×Y Z).

Let now α : S′ → S be a map in (Schaffft )/Y . Let ᾱ : S′ ×Y Z → S ×Y Z and

β : S′ ×Y G → S ×Y G be obtained by base change from α. Pick a finite-dimensional
quotient group scheme S ×Y G → GS such that S ×Y G-action on S ×Y Z factors
through GS . Let GS′ = GS ×S S′. We have the cartesian square

S′ ×Y Z
ᾱ→ S ×Y Z

↓ h′ ↓ h

(S′ ×Y Z)/GS′
α̃→ (S ×Y Z)/GS

The functors α̃! : Shv((S ×Y Z)/GS)→ Shv((S′ ×Y Z)/GS′) can be seen by definition
as the functors that fit into a commuttaive diagram

Shv(S ×Y Z)
ᾱ!

→ Shv(S′ ×Y Z)
↑ oblv ↑ oblv

Shv(S ×Y Z)S×Y G α̃!

→ Shv(S′ ×Y Z)S
′×Y G

This way we get a functor ((Schaffft )/Y )
op → Shv(Y )−mod, S 7→ Shv(S ×Y Z)S×Y G.

Finally, we may consider
lim
S→Y

Shv(S ×Y Z)S×Y G

in Shv(Y )−mod taken over ((Schaffft )/Y )
op. This should be our definition of Shv(Z/G)

I think.

0.0.45. For S a scheme of finite type consider the perverse t-structure on S. The
functor Hi : Shv(S) → Shv(S)♡ preserves products, is this correct? This was used to
conclude that your QLisse(S) for S smooth is left complete.

For a scheme of finite type S any object of Shv(S)constr is bounded.

0.0.46. Let Y be a classical algebraic stack locally of finite type with an affine diag-
onal. Then the truncation functors for the perverse t-structure τ≤n, τ≥n preserve the
subcategory Shv(Y )constr ⊂ Shv(Y ), so we get a t-structure on Shv(Y )constr.
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0.0.47. Let Y be a classical quasi-compact algebraic stack with an affine diagonal.
Let F ∈ Shv(Y )constr then F is bounded. Indeed, pick a smooth covering f : S → Y ,

where S ∈ Schaffft . Since f∗[dim. rel(f)] is t-exact and conservative, it suffices to show

that f∗F is bounded. However, any compact object in Shv(S) is bounded.

0.0.48. Let S ∈ Schft, Ki ∈ Shv(S) and E ∈ Lisse(E), that is, E is dualizable with
respect to the ⊗-monoidal structure on Shv(S). Recall that Hom(K1,K2) ∈ Shv(S)
denotes the inner hom with respect to the ⊗-monoidal structure on Shv(S). Then by
([16], 4.6.2.1) we get Hom(K1 ⊗ E,K2) →̃Hom(K1, E

∨ ⊗K2) with E∨ = Hom(E, e).

0.0.49. Recall the following from ([13], A.1.7). Let Corr(PreStklft)ind−sch,all be the
category of correspondences, whose objects are prestacks locally of finite type Y, and

a morphism from Y1 to Y2 is a diagram Y1
g← Y12

f→ Y2 with g any and f ind-
schematic of ind-finite type. Then in the constructible context we get a functor
ShvCorr : Corr(PreStklft)ind−sch,all → DGCatcont sending Y to Shv(Y), and send-

ing the above morphism to the functor f∗g
! : Shv(Y1) → Shv(Y2). Then the functor

ShvCorr possesses a natural right-lax symmetric monoidal structure, see ([7], Vol. 2,
Chapter 3, Sect. 6.1), where Corr(PreStklft)ind−sch,all is a symmetric monoidal cate-
gory with respect to the level-wise product.

In particular, this means that given fi : Yi → Zi ind-schematic of ind-finite type in
PreStklft and Ki ∈ Shv(Yi), we have

(f1 × f2)∗(K1 ⊠K2) →̃ ((f1)∗K1)⊠ ((f2)∗K2)

Let H be a groupoid acting on Y in PreStklft given by a functor ∆op → PreStklft
such that the action map m : H ×t,Y,s H → H is ind-schematic of ind-finite type, here
s, t : H → Y are source and targets maps. We get a monoidal structure on Shv(H)
with the product given by (K1,K2) 7→ m∗q

!(K1 ⊠ K2) for q : H ×Y H → H × H.
Let α : Y → H be the map corresponding to [1] → [0] in ∆. Then α∗ωY is the unit
of Shv(H). Moreover, the functor α∗ : (Shv(Y),⊗!) → Shv(H) is monoidal. Indeed,
H ∈ Alg(Corr(PreStklft)ind−sch,all), so we just apply a right-lax monoidal functior
ShvCorr. Moreover,

(H,Y) ∈ Alg +module(Corr(PreStklft)ind−sch,all)

Namely, write pr, act : H → Y for the two maps from H to Y given by 0, 1 : [0] → [1].

Then the action map from H×Y to Y is given by the correspondence H×Y id,pr← H
act→ Y.

Applying ShvCorr, we see that Shv(Y) ∈ Shv(H)−mod(DGCatcont).
The whole Section A.1 of [13] can be advised as a reference on the generalities about

the sheaf theories.
More generally, we may define the category of relative groupoids Grpd /PreStk /Sch

and the corresponding functor

Grpd /PreStk /Sch→ Alg(Corr(PreStklft))

as in ([26], 1.4.48).
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0.0.50. Let H = limi∈Iop Hi be a placid group scheme, here I ∈ 1 − Cat is filtered,
if i ∈ I then Hi is a group scheme of finite type, and for i → j in I, Hj → Hi is a
smooth affine surjective morphism, a homomorphism of group schemes. Let i ∈ I and
Ki ↪→ Hi be a closed group subscheme, set K = H ×Hi Ki. So, K ↪→ H is a placid
closed immersion. Let L = Ker(H → Hi). Then the natural map H/K → Hi/Ki is
an isomorphism. Indeed, L = Ker(K → Ki), and L acts trivially on H/K. So, the
H-action on H/K by left translations factors through a transitive Hi-action, and the
stabilizer of K/K ∈ H/K is K/L →̃Ki.

0.0.51. Application. LetH be a smooth affine group scheme of finite type, F = k((t)), O =
k[[t]]. Then H(F ) is a placid ind-scheme. It could be defined in two equivalent ways.
Let for n ≥ 1, Kn = Ker(H(O) → H(O/tn)). Set K0 = H(O), so . . .K2 ⊂ K1 ⊂ K0.
Then H(F )/Kn is an ind-scheme of ind-finite type. For n < m we have the map
H(F )/Km → H(F )/Kn, which is schematic, smooth affine and surjective. It is actu-
ally a torsor under Kn/Km. So, we are in the situation of Section 0.0.36 for A = Z≥0.
For α ∈ A, Yα = H(F )/Kα, Gα = H(O/tα). This gives G = limαGα = H(O). Then we
may define H(F ) as limα∈Aop Yα, where the limit is taken in PreStk. By Section 0.0.36,
for n ≤ m we have the projection fn,m : H(F )/Km → H(F )/Kn and the adjoint
pair f∗

n,m : Shv(H(F )/Kn) ⇆ Shv(H(F )/Km) : (fn,m)∗. We may view Shv(H(F ) as
limn∈Aop Shv(H(F )/Kn) in DGCatcont with respect to (fn,m)∗. For n > 0 the group
scheme Kn is prounipotent.

For the H(O)-action by right translations on H(F ) by Section 0.0.36 one gets

Shv(H(F ))H(O) →̃Shv(GrH)

0.0.52. Let Y be placid scheme written as Y →̃ limi∈Iop Yi, where I is small filtered
category, for i→ j in I the map Yj → Yi is smooth affine surjective morphism in Schft.
Let S ∈ Schft. For the projection fi : Y → Yi the diagram commutes

Shv(Y )⊗ Shv(S) → Shv(Y × S)
↓ (fi)∗⊗id ↓ (fi×id)∗

Shv(Yi)⊗ Shv(S) → Shv(Yi × S),

where the horizontal arrows are exteriour products. Indeed, Shv(S) is dualizable, so
limi∈Iop Shv(Yi) ⊗ Shv(S) →̃Shv(Y ) ⊗ Shv(S), where the limit is taken with respect
to (fi)∗ ⊗ id.

Let now f : Y → Z be a morphism of placid schemes. The above shows that the
diagram commutes

Shv(Y )⊗ Shv(S) → Shv(Y × S)
↓ f∗⊗id ↓ (f×id)∗

Shv(Z)⊗ Shv(S) → Shv(Z × S),

In turn, this show that the above diagram still commutes if we only assume that S
is a placid scheme also. Finally, if f : Y → Z, f ′ : Y ′ → Z ′ are morphisms of placid
schemes, the diagram commutes

Shv(Y )⊗ Shv(Y ′) → Shv(Y × Y ′)
↓ f∗⊗(f ′)∗ ↓ (f×f ′)∗

Shv(Z)⊗ Shv(Z ′) → Shv(Z × Z ′),
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0.0.53. Let S ∈ Schft, let Y be a placid S-scheme. We claim that in the constructible
context, the symmetric monoidal structure ⊗ : Shv(Y ) ⊗ Shv(Y ) → Shv(Y ) is well
defined.

Indeed, write Y →̃ limi∈Iop Yi, where I is small filtered, Yi is a S-scheme of finite
type, for i→ j in I the map Yj → Yi is smooth affine surjective.

Let pij : Yj → Yi be the transition map for α : i → j in I. Then p∗ij : Shv(Yi) →
Shv(Yj) is a map in CAlg(DGCatcont), and CAlg(DGCatcont) → DGCatcont pre-
serves filtered colimits, so Shv(Y ) →̃ colimi∈I Shv(Yi) could be veiwed as colimit in
CAlg(DGCatcont). Note that eY is the unit.

0.0.54. Let i : Z → Y be a placid closed immersion of placid S-schemes, where
S ∈ Schft. Then i∗ : Shv(Z) → Shv(Y ) is defined naturally in the constructible
context. Namely, write Y →̃ limi∈Iop Yi, where I is small filtered, Yi is a S-scheme of
finite type, for i→ j in I the map Yj → Yi is smooth affine surjective. We may assume
that i0 ∈ I is initial, i0 : Z0 ⊂ Y0 is a closed subscheme, and Z = Y ×Y0 Z0. Then
for any i we have a closed immersion ii : Zi ↪→ Yi obtained from i0 by base change.
Then the functors i∗i : Shv(Yi) → Shv(Zi) are compatible with the ∗-pullbacks in the
transition systems, so in the colimit yield i∗ : Shv(Y )→ Shv(Z).

Lemma 0.0.55. In the coinstructible context for K ∈ Shv(Z), L ∈ Shv(Y ) one has
the projection formula (i!K)⊗ L →̃ i!(K ⊗ i∗L) in Shv(Y ) canonically.

Proof. This is a particular case of base change established in Lemma 0.0.58. □

0.0.56. Let now Y be a placid ind-scheme over S written as Y →̃ colimi∈I Yi, where I
is small filtered, Yi is a placid S-scheme, and for i→ j in I, Yi → Yj is a placid closed
immersion. Then we get the category limi∈Iop Shv(Yi) with respect to the ∗-pullbacks.

0.0.57. Let I be a small filtered category. Assume given a functor Iop × [1] → Schft,

i 7→ (Zi
fi→ Yi). Assume that for i → j in I the transition maps Yj → Yi and Zj → Zi

are smooth affine surjective. Set Z = limi∈Iop Zi, Y = limi∈Iop Yi. Let f : Z → Y be
obtained from fi by passing to the limit over Iop. Then the functor f∗ : Shv(Y ) →
Shv(Z) is well-defined in the constructible context. In the case of D-modules, we
assume in addition that each fi is smooth. Then f∗ is defined.

Indeed, for each i we have f∗
i : Shv(Yi) → Shv(Zi) compatible with the transition

∗-pullbacks, and f∗ is obtained by passing to the colimit.
For example, if Y is a placid scheme then for the diagonal f : Y → Y ×Y the functor

f∗ : Shv(Y × Y )→ Shv(Y ) is defined in the constructible context.

Lemma 0.0.58. Assume given the cartesian square of placid schemes

Z ′ f ′
→ Y ′

↓ gZ ↓ gY

Z
f→ Y,

where the vertical arrows are placid closed immersions, and f is obtained as in Sec-
tion 0.0.57. Then the same holds for f ′, and one has canonically f∗(gY )! →̃ (gZ)!(f

′)∗

as functors Shv(Y ′)→ Shv(Z).
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Proof. Pick a functor Iop × [1] → Schft, i 7→ (Zi
fi→ Yi) as in Section 0.0.57, so f is

obtained by passing to the limit from Zi
fi→ Yi over Iop. We may assume that 0 ∈ I

is initial, and we have a closed immersion Y ′
0 ↪→ Y0 such that Y ′ = Y ×Y0 Y ′

0 . By
Lemma 0.0.43, g!Y f∗ →̃ f ′

∗g
!
Z . Our claim is obtained by passing to left adjoints. □

0.1. Verdier compatible algebraic stacks.

0.1.1. For ([2], A.2.2). Let Y be quasi-compact classical algebraic stack with an affine
diagonal, which is Verdier compatible. They claim there that for f : S → Y a scheme
of finite type over Y , the objects f∗K with K ∈ Shv(S)c are compact and generate
Shv(Y ). Indeed, Shv(Y )c is the Karoubi closure (that is, idempotent closure) of the
smallest stable subcategory generated by objects of the form f!(K) with K ∈ Shv(S)c.
This implies the claim, see ([21], 9.2.27).

0.1.2. For ([2], A.2.3). Let Y, Y ′ be a quasi-compact classical algebraic stacks with
affine diagonals, which are Verdier compatible. Let f : Y → Y ′ be a morphism. Recall
that f▲ : Shv(Y ) → Shv(Y ′) is defined as the continuous extension of the functor
f∗ : Shv(Y )c → Shv(Y ′)c ⊂ Shv(Y ′).

Let Z be another algebraic stack locally of finite type with an affine diagonal, which
is Verdier compatible. Then we have the following.

Lemma 0.1.3. For K ∈ Shv(Y ), F ∈ Shv(Z) we have canonically

(f▲K)⊠ F →̃ (f × id)▲(K ⊠ F )

Besides, for L ∈ Shv(Y ′) we get (f▲K)⊗! L →̃ f▲(K ⊗! f !L).

Proof. 1) Both sides for any F fixed preserve colimits as a functor of K. Therefore, it
suffices to prove this for K of the form K = g∗K

′, where g : S → Y is a morphism,
S ∈ Schft and K ′ ∈ Shv(S)c, as such objects generate Shv(Y ). Moreover, we may
assume F ∈ Shv(Z)c. Then f▲K →̃ f∗K →̃ (fg)∗K

′, and (f × id)▲(K ⊠ F ) →̃ (f ×
id)∗(K ⊠ F ), and K ⊠ F →̃ (g × id)∗(K

′ ⊠ F ), because g × id is schematic. Now
(fg × id)∗(K

′ ⊠ F ) →̃ ((fg)∗K
′)⊠ F , because fg is schematic. The first claim follows.

2) For the second, note that both sides preserve colimits separately in each variable, so
we may assumeK of the formK = g∗K

′, where g : S → Y is a morphism, S ∈ Schft and
K ′ ∈ Shv(S)c. Then f▲K →̃ f∗K →̃ (fg)∗K

′. We may also assume L ∈ Shv(Y ′)constr.
We have the cartesian squares

S → S × Y ′

↓ g ↓ g×id

Y
Γf→ Y × Y ′

↓ ↓ f×id

Y ′ △→ Y ′ × Y ′

Now f∗ satisfies the base change againts !-pullbacks, so

(f▲K)⊗! L →̃ △! (fg × id)∗(K
′ ⊠ L) →̃ (fg)∗(K

′ ⊗! (fg)!L) →̃ f▲(K ⊗! f !L),

because f▲g∗ →̃ (fg)∗. Indeed, g and fg are schematic. □
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Recall the self-duality

(5) Shv(Y )⊗ Shv(Y )→ Vect, (K1,K2) 7→ C ·
▲(Y,K1 ⊗! K2)

from ([2], A.4.1). Under this self-duality, for f : Y → Y ′ as above the dual of the
functor f ! : Shv(Y ′) → Shv(Y ) is the functor f▲ : Shv(Y ) → Shv(Y ′), this follows
from the above projection formula.

For K ∈ Shv(Y )c,K ′ ∈ Shv(Y ′)c we have D(K ⊠ K ′) →̃ (DK) ⊠ (DK ′) naturally.
Now as in ([22], Sect. 1.0.1) one shows that the dual h∨ of the exteriour product functor
h : Shv(Y ) ⊗ Shv(Y ′) → Shv(Y × Y ′) with respect to the above dualities identifies
with the right adjoint hR : Shv(Y × Y ′)→ Shv(Y )⊗ Shv(Y ′).

So, the unit of the self-duality (5) is the object hR(△▲ ωY ), where △: Y → Y × Y is
the diagonal.

0.1.4. For algebraic stacks locally of finite type (with affine diagonal) we always have
a (!,

∗)-base change in the constructible context, this is mentioned in ([2], A.1.8) in
particular.

0.1.5. Let f : Y → Y ′ be a morphism of algebraic stacks as in Section 0.1.2. For
F ∈ Shv(Y ),K ∈ Shv(Y ′) we have a natural transformation functorial in K,F

(f▲F )⊗K → f▲(F ⊗ f∗K)

This comes from ([2], Section A.3.3-A.3.4).
The following is also useful. For K1,K2 ∈ Shv(Y ′) there is a natural transformation

f∗(K1 ⊗! K2)→ (f !K1)⊗! (f∗K2)

Indeed, it comes from the natural map K1⊗! K2 → K1⊗! (f∗f
∗K2) and the projection

formula for f∗.
Similarly, we have a natural map f∗K1 ⊗ f !K2 → f !(K1 ⊗K2).

0.1.6. Let Z, Y, Y ′ be algebraic stacks as in Section 0.1.2, and f : Y → Y ′ be a
morphism. For K ∈ Shv(Z), F ∈ Shv(Y ) we have canonically

(id×f)∗(K ⊠ F ) →̃K ⊠ f∗F

Indeed, this is a particular case of the projection formula for f × id : Z × Y → Z × Y ′,
as K⊠F →̃ ((id×f)!(K⊠ωY ′))⊗!p!2F , so (id×f)∗(K⊠F ) →̃ (K⊠ωY ′)⊗! (id×f)∗p!2F .

0.1.7. Let f : Y → Y ′ be a morphism of algebraic stacks as in Section 0.1.2. For
F ∈ Shv(Y ),K ∈ Shv(Y ′) we have a natural transformation functorial in K,F

(f∗F )⊗K → f∗(F ⊗ f∗K)

Indeed, it comes from f∗((f∗F )⊗K)→ F ⊗ f∗K.
There is a Verdier dual version of this map. Namely, a natural transformation

f!(F ⊗! f !K)→ (f!F )⊗! K

It comes from the evident map F ⊗! f !K → f !((f!F )⊗! K).
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0.1.8. For a cartesian square of any algebraic stacks locally of finite type

Y ′
1

f ′
→ Y ′

2

↓ g1 ↓ g2

Y1
f→ Y2

we have the natural transformation

g∗2 ◦ f∗ → f ′
∗ ◦ g∗1

arising by adjointness from f∗(g1)∗ →̃ (g2)∗f
′
∗. Besides, the base change isomorphism

g∗2 ◦ f! →̃ f ′
! ◦ g∗1 gives by adjointness a natural transformation

g∗1 ◦ f ! → (f ′)! ◦ g∗2
Similarly, we have a natural transformation f ′

! g
!
1 → g!2f!.

0.1.9. Let f : Y → Y ′ be a morphism of algebraic stacks as in Section 0.1.2. Let us
construct a natural morphism functiorial in L ∈ Shv(Y ),K,M ∈ Shv(Y ′)

((f !K)⊗! L)⊗ f∗M → f !(K ⊗M)⊗! L

We have a natural map f !K ⊗ f∗M → f !(K ⊗M) by Section 0.1.5. So, it suffices to
construct a natural map (f !K ⊗! L)⊗ f∗M → (f !K ⊗ f∗M)⊗! L. It comles from the
next observation.

Lemma 0.1.10. Let Y be an algebraic stack as in Section 0.1.2. For K1,K2, L ∈
Shv(Y ) there is a natural map (K1 ⊗! K2)⊗ L→ (K1 ⊗ L)⊗! K2.

Proof. 1) First, assume K2 ∈ Shv(Y )constr. Then

(K1 ⊗! K2)⊗ L →̃Hom(DK2,K1)⊗ L

and (K1⊗L)⊗!K2 →̃Hom(DK2,K1⊗L), here Hom is the inner hom in (Shv(Y ),⊗).
The desired morphism comes from the natural map (DK2) ⊗ Hom(DK2,K1) ⊗ L →
K1 ⊗ L. The so obtained morphisms are functorial in K2. Now if K2 ∈ Shv(Y ) is
written as K2 →̃ colimi∈I K

i
2 with I small filtered and Ki

2 ∈ Shv(Y )constr then the
desired morphism of obtained by passing to the colimit over i ∈ I in the diagram
(K1 ⊗! Ki

2)⊗ L→ (K1 ⊗ L)⊗! Ki
2.

2) Simplier argument. Consider the cartesian square

Y
△→ Y × Y

↓ △ ↓ △ × id

Y × Y
id×△→ Y × Y × Y

and apply the natural transformation △∗ (id× △)! →△! (△ × id)∗. □

The map in the above lemma is not an isomorphism in general. For example, let
i : Y ′ ↪→ Y be a closed immersion. Taking K2 = i∗ωY ′ , the above map reduces to a
morphism i!K1 ⊗ i∗L → i!(K1 ⊗ L) on Y ′, which is usually not an isomorphism. For
example, if i : Spec k → Y is a closed point on a smooth curve Y and K1 = eX this is
a map i∗L[−2]→ i!L.
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0.2. Let f1 : Y1 → Z1, f2 : Y2 → Z2 be morphisms of algebraic stacks locally of finite
type (with an affine diagonal). Assume we are in the constructible context. Then for
any Fi ∈ Shv(Yi) we have

(f1 × f2)!(F1 ⊠ F2) →̃ ((f1)!F1)⊠ ((f2)!F2)

in Shv(Z1 × Z2).

Proof. 1) For morphisms between schemes of finite type this is just the (!,
∗ )-projection

formula, because (f1 × f2)! = (f1 × id)!(id×f2)!.

2) Now we prove this under the additional assumption that Yi ∈ Schft. It suffices to

establish this after any base change by h1× h2 : S1×S2 → Z1×Z2, where Si ∈ Schaffft

and hi are smooth. This follows from the (!, ∗)-base change.

3) For any prestack Y1 we get

Fi →̃ colim
Si

gi→Yi

(gi)!(g
!
i)F1,

where the colimit is over Schaffft /Y . So,

F1⊠F2 →̃ colim
S1

g1→Y1,S2
g2→Y2

((g1)!(g
!
1)F1)⊠((g2)!(g

!
2)F2) →̃ colim

S1
g1→Y1,S2

g2→Y2

(g1×g2)!(g1×g2)!(F1⊠F2),

where the second isomorphism uses 2). So,

(f1 × f2)!(F1 ⊠ F2) →̃ colim
S1

g1→Y1,S2
g2→Y2

(f1g1 × f2g2)!(g
!
1F1 ⊠ g!2F2) →̃

colim
S1

g1→Y1,S2
g2→Y2

((f1g1)!g
!
1F1)⊠ ((f2g2)!g

!
2F2),

where the last isomorphism used 2). The latter expression identifies with

colim
S1

g1→Y1,S2
g2→Y2

f1!(g1!g
!
1F1)⊠ f2!(g2!g

!
2F2) →̃ colim

S1
g1→Y1

f1!(g1!g
!
1F1)⊠ f2!(colim

S2
g2→Y2

g2!g
!
2F2)

The latter identifies with ((f1)!F1)⊠ ((f2)!F2). □

0.2.1. As a corollary, let Y be an algebraic stack locally of finite type (with an
affine diagonal). Then RΓc : (Shv(Y ),⊗!) → Vect is left-lax symmetric monoidal,
so sends cocommutative coalgebras to cocommutative coalgebras. So, RΓc(Y, ω) is
a cocommutative coalgebra in Vect. Moreover, ω becomes an object of RΓc(Y, ω) −
comod(Shv(Y ),⊗!) via the natural adjunction map act : ωY → RΓc(Y, ω)⊗ωY . So, for
any F ∈ Shv(Y ), F gets a coaction of RΓc(Y, ω) just by applying •⊗!F to the previous
action map. The functor RΓc extends to a functor Shv(Y )→ RΓc(Y, ω)−comod(Vect)
naturally, so the composition with oblv : RΓc(Y, ω)−comod(Vect)→ Vect is RΓc(Y, •).
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0.2.2. Assume we are in the constructible context. Let Z, Y be algebraic stacks lo-
cally of finite type (with affine diagonals), and p : Z → Y any morphism, maybe not
representable. Then for K ∈ Shv(Y ), L ∈ Shv(Z) one has canonically

p∗Hom(p∗K,L) →̃Hom(K, p∗L)

in Shv(Y ). We underline that here p∗ is maybe discontinuous if p is not representable.

Proof. Let us first assume K ∈ Shv(Y )constr. Then

p∗Hom(p∗K,L) →̃ p∗(p
!(DK)⊗! L) →̃D(K)⊗! p∗L →̃Hom(K, p∗L)

by the projection formula.
Let now K be any, pick a presentation K →̃ colimi∈I Ki with Ki ∈ Shv(Y )constr.

Then p∗ preserves limits, so we get

p∗Hom(p∗K,L) →̃ lim
i∈Iop

p∗Hom(p∗Ki, L) →̃ lim
i∈Iop

Hom(Ki, p∗L)

→̃Hom(colimi∈I Ki, p∗L)

□

I wonder if one may replace here p∗ by p▲.

0.2.3. Let I be small filtered, I → Stk, i 7→ Yi be the functor such that Yi is an
algebraic stack locally of finite type, for i → j in I, Yi → Yj is a closed immersion,
Y = colimi Yi in Stk. Then the functor RΓ : Shv(Y ) → Vect is defined by passing
to the colimit in the functors RΓ : Shv(Yi) → Vect with respect to the maps (fij)∗ :
Shv(Yi)→ Shv(Yj). Usually, RΓ : Shv(Y )→ Vect does not have a left adjoint.

A corollary of this: let K ∈ Shv(Y ), write K →̃ colimi∈I(ii)∗i
!
iK, where ii : Yi →

Y is the natural map. Assume that for each i the functor Shv(Y ) → Vect, F 7→
RΓ(Y, ((ii)∗i

!
iK)⊗! F ) is continuous. Then Shv(Y )→ Vect, F 7→ RΓ(Y, F ⊗!K) is also

continuous.

0.2.4. Let S ∈ Schft, let f : Y → S be a placid scheme over S. Then we have an action

of (Shv(S),⊗!) on Shv(Y ) such that K ∈ Shv(S) sends F ∈ Shv(Y ) to b!(F ⊠K) for
b : Y → Y × S.

The same structure is obtained as follows. Write Y →̃ limi∈Iop Yi with Yi a scheme
of finite type, for i → j in I the map fij : Yj → Yi is smooth affine surjective.
Then for i → j in I, (fij)∗ : Shv(Yj) → Shv(Yi) is a map in Shv(S) − mod, so
Shv(Y ) →̃ limi∈Iop Shv(Yi) may be understood in Shv(S)−mod.

If h : Y → Z is any morphism of placid schemes over S then h∗ : Shv(Y ) →
Shv(Z) is a map in Shv(S) − mod. Indeed, write Z = lim

j∈Jop
Zj , where J is small

filtered, Zj ∈ (Schft)/S , and for any j → j′ in J the map Zj′ → Zj in (Schft)/S
is smooth affine surjective. It suffices to show that for gj : Z → Zj the functor
(gjh)∗ : Shv(Y )→ Shv(Zj) is Shv(S)-linear. However, there is i ∈ I such that h factors

through Y → Yi
h̄→ Zj . Our claim follows from the fact that h̄∗ : Shv(Yi) → Shv(Zj)

is Shv(S)-linear.
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Remark: let S ∈ Schf t, I a small filtered category, Iop → (PreStklft)/S , i 7→ Yi a
functor such that for i→ j in I the map fij : Yj → Yi is smooth of some relative dimen-
sion d, affine, surjective. Let Y = lim

i∈Iop
Yi in PreStk. Define Shv(Y ) = colim

i∈I
Shv(Yi)

in Shv(S) −mod with respect to the functors f∗
ij : Shv(Yi) → Shv(Yj). Let 0 ∈ I be

initial. Then we get the structure functor f∗
0 : Shv(Y0)→ Shv(Y ) for f0 : Y → Y0. It

is clear that f∗
0 is Shv(S)-linear.

0.2.5. A property of the constructible context. Let S,X be schemes of finite type. Let
K1,K2 ∈ Shv(S). Then for the projection q : S ×X → S we have

q∗Hom(q∗K1, q
∗K2) →̃Hom(K1,K2)⊗ RΓ(X, e)

in Shv(S), where Hom denotes the local Hom over the corresponding scheme. This
isomorphism is compatible with compositions: given Ki ∈ Shv(S) for i = 1, 2, 3 the
composition

Hom(K1,K2)⊗Hom(K2,K3)→ Hom(K1,K3)

via the above isomorphism corresponds to the composition

Hom(q∗K1, q
∗K2)⊗Hom(q∗K2, q

∗K3)→ Hom(q∗K1, q
∗K3)

In particular, we get an isomorphism of algebras in Shv(S)

q∗Hom(q∗K, q∗K) →̃Hom(K,K)⊗ RΓ(X, e)

0.2.6. For S ∈ Schft for our sheaf theories, Shv(S) is never rigid. For example, in
the constructible context if S is smooth then for a k-point s ∈ S, δs ∈ Shv(S) is not
dualizable, though compact.

In the constructible context the following is not known: given a map of schemes of
finite type f : S → T , is it true that Shv(S) is. dualizable as a Shv(T )-module? Here
Shv(T ) acts via the monoidal functor f !.

The functor Shv : (Schaffft )op → DGCatcont satisfies both Zarizki descent and proper

descent, hence h-descent.
A useful thing: if f : Y1 → Y2 in PreStklft is an isomorphism in the h-topology then

f ! : Shv(Y2)→ Shv(Y1) is an isomorphism.

0.2.7. Let Y be a placid scheme written as Y →̃ limi∈Iop Yi, where I is small filtered,
Yi ∈ Schft, for i → j in I, fij : Yj → Yi is smooth affine surjective. Assume 0 ∈ I is
initial, and for any i → j in I, fij : Yj → Yi is a generalized affine fibration of rank
dimYj − dimYi (locally constant function on Yi). Let p : Y → Y0 be the natural map.
Assume we are in the constructible context. Then p∗ : Shv(Y0) → Shv(Y ) admits
a left adjoint (p∗)L. The natural map (p∗)Lp∗ → id is an isomorphism. The dual
((p∗)L)∨ identifies with the right adjoint to p∗ via the self-dualities of Shv(Y ), Shv(Y0)
appearing in ([22], 1.2.11).

Proof. For i ∈ I let fi : Yi → Y0 be the map f0i. For i ∈ I with i ̸= 0 the
functors ((fi)![2 dimYi − 2 dimY0], f

∗
i ) form an adjojnt pair. The system of functors

(fi)![2 dimYi−2 dimY0] : Shv(Yi)→ Shv(Y0) is compatible with the transition functors
in Shv(Y ) →̃ colimj∈I Shv(Yj) with ∗-pullbacks, so in the colimit over j ∈ I we get a
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functor colimj∈I Shv(Yj)→ Shv(Y0). By ([21], 9.2.6), this is the left adjoint to p∗. We
used that for i ∈ I, (fij)∗f

∗
j →̃ f∗

i naturally.

By ([22], 1.2.11), the dual of p∗ : Shv(Y0) → Shv(Y ) identifies naturally with p∗ :
Shv(Y )→ Shv(Y0). So, the dual of the adjoint pair ((p∗)L, p∗) is (p∗, ((p

∗)L)∨). □

This situation happens offen. For example, if G is an affine smooth algebraic group
of finite type and O = k[[t]] then G(O) is a placid scheme satisfying the above. So, for
p : G(O)→ G in the constructible context we have an adjoint pair (p∗)L : Shv(G(O)) ⇆
Shv(G) : p∗ with p∗ fully faithful. In particular, for q : G(O) → Spec k the functor q∗

has a left adjoint (q∗)L.

0.2.8. Assume for this subsection we are in the constructible context. Let G be a group
scheme of finite type. Then Shv(G) is equipped with the monoidal structure given by
K1∗!K2 = m!(K1⊠K2), where m : G×G→ G is the product map, Ki ∈ Shv(G). Now
for Y ∈ PreStklft with a G-action, (Shv(G), ∗!) acts on Shv(Y ) so that K ∈ Shv(G)
acts on F ∈ Shv(Y ) as a!(K ⊠ F ), where a : G× Y → Y is the action map.

Consider the projections

prG : G× Y → G, prY : G× Y → Y.

Assume G smooth. Let L be a character local system on G in the usual sense, that
is, for m : G × G → G we are given m∗L →̃L ⊠ L, and a map L → i∗e for the unit
i : Spec k → G with the usual properties. Let aR : Shv(Y )→ Shv(Y ) be the comonad
given by K 7→ L ∗K, where we use the usual action (not the !-one). Then the functor
aR admits a left adjoint a : Shv(Y ) → Shv(Y ), which is automatically a monad in
Fune,cont(Shv(Y ), Shv(Y )). One has an equivalence

(6) a−mod(Shv(Y )) →̃ aR − comod(Shv(Y ))

commuting with the oblivion functors to Shv(Y ). In particular, oblv : Shv(Y )G,L →
Shv(Y ) admits a left adjoint ind : Shv(Y )→ a−mod(Shv(Y )).

Proof. For K,M ∈ Shv(Y ) one has

Hom((prY )!(pr
∗
G L−1 ⊗ a∗K)[2 dimG],M) →̃Hom(pr∗G L−1 ⊗ a∗K, e⊠M) →̃

Hom(a∗K,L⊠M) →̃Hom(K, a∗(L⊠M)) →̃Hom(K,L ∗M)

So, the functor a : Shv(Y )→ Shv(Y ) given by a(K) = (prY )!(pr
∗
G L−1⊗a∗K)[2 dimG]

is left adjoint to aR. The fact that a is monad and the equivalence (6) follow from ([21],
9.2.62). □

0.2.9. Let S ∈ Schft, f : Y → S be an ind-scheme of ind-finite type over S. Assume
Y →̃ colimi∈I Yi, where I is small filtered, Yi ⊂ Y is a closed subscheme, Yi ∈ Schft,
for i→ j in I, Yi ↪→ Yj . Assume also each map fi : Yi → S is smooth.

Let F ∈ Shv(S)c,K ∈ Shv(Y ). Then one has canonically

Hom(f !F,K) →̃Hom(f !(eS), f
!(DF )⊗! K)

Here Hom ∈ Vect is the relative inner hom for the Vect-action.
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Proof. Step 1. First, assume f : Y → S is a map in Schft with f smooth of relative

dimension d. Then f ! = f∗[2d], so the LHS is

Hom(f∗F,K[−2d]) →̃Hom(F, f∗K[−2d]) →̃ RΓ(S, (DF )⊗! f∗K[−2d])

→̃ RΓ(Y,K[−2d]⊗! f !(DF ))

The RHS identifies with

Hom(f∗(eS), f
!(DF )⊗! K[−2d]) →̃ RΓ(Y, f !(DF )⊗! K[−2d])

We are done.
Step 2. Let ii : Yi → Y be the inclusion. Write f !F →̃ colimi∈I(ii)∗f

!
iF , so the LHS

becomes

lim
i∈Iop

Hom(f !
iF, (ii)

!K) →̃ lim
i∈Iop

Hom(f !
i(eS), f

!
i(DF )⊗! (ii)

!K)

by Step 1. Write f !(eS) →̃ colimi∈I(ii)!f
!
i(eS) then the RHS of the latter expression

becomes

lim
i∈Iop

Hom(f !
i(eS), (ii)

!(f !(DF )⊗! K)) →̃ lim
i∈Iop

Hom((ii)!f
!
i(eS), f

!(DF )⊗! K)

→̃Hom(f !(eS), f
!(DF )⊗! K)

as desired. □

In the sense of ULA property in its form given by Dennis in ([12], 1.6.3) this says
that ωY is ULA with respect to the Shv(S)-action on Shv(Y ).

0.2.10. A generality: let S ∈ Schft, U → S be a smooth unipotent group scheme over
S. Then for f : B(S)→ S the functor f∗ : Shv(S) →̃Shv(B(S)) is an equivalence.

Let U1 → U2 be a homomorphism of smooth unipotent group schemes over S. Take
Y = U2/U1, the stack quotient over S. Let a : Y → S be the natural map. Then a∗a∗
is left t-exact.

0.3. Addition for any sheaf theory. Work in any of our 4 sheaf theory for this
subsection.

0.3.1. Let

Y ′ i′
↪→ Z ′

↓ ↓ αZ

Y
i
↪→ Z

be a cartesian square in PreStklft such that i is a closed immersion in Schft. Then the
natural functor Shv(Z ′) ⊗Shv(Z) Shv(Y ) → Shv(Y ′) is an equivalence. Here we view

Shv(Z) with the ⊗!-monoidal structure.

Proof. First, for D-modules this is true without the assumption that i is a closed
immersion by ([14], Section 1.6.4). Assume now we are in the constructible context.

Consider the comonad A := i′∗(i
′)! on Shv(Z ′), it is Shv(Z ′)-linear, hence given by

the coalgebra i′∗ω. The functor i′∗ : Shv(Y ) → Shv(Z) is comonadic. Indeed, i′∗ has a
left adjoint, hence preserves limits, and i′∗ is fully faithful.
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In fact, since i′∗ is fully faithful, we obtain that Shv(Y ′) ⊂ Shv(Z ′) is the full subcat-
egory of those K ∈ Shv(Z ′) for which the counit map A(K)→ K is an isomorphism.

We claim that the composition Shv(Z ′) ⊗Shv(Z) Shv(Y ) → Shv(Y ′) → Shv(Z ′)
is described similarly with the same comonad. Indeed, consider the adjoint pair i! :
Shv(Y ) ⇆ Shv(Z) : i! in Shv(Z) −mod. We have the comonad i!ω on Shv(Z) with
Shv(Y ) →̃ (i!ω)−comod(Shv(Z)). After the base change ·⊗Shv(Z)Shv(Z

′), our adjoint
pair becomes

L : Shv(Y )⊗Shv(Z) Shv(Z
′) ⇆ Shv(Z ′) : R

in Shv(Z ′)−mod with LR →̃α!
Zi∗ω. As a coalgebra in Shv(Z ′) it coincides with i′∗ω.

Note that L is fully faithful, because id→ RL is an isomorphism, so L is conservative.
Finally, Shv(Y )⊗Shv(Z) Shv(Z

′) ⊂ Shv(Z ′) is the full subcategory of K ∈ Shv(Z ′) for
which the natural map LR(K)→ K is an isomorphism. We are done.

Note also that Shv(Y ) is self-dual in Shv(Z)−mod, so by ([21], 9.2.57), the map L
rewrites as

(7) FunShv(Z)(Shv(Y ), Shv(Z ′))→ FunShv(Z)(Shv(Z), Shv(Z ′))

given by the composition with i! : Shv(Z) → Shv(Y ). Indeed, the dual of i∗ is i! for
the standard self-dualities. It is not clear here if (7) preserves limits, as the limits are
not ”computed pointwise”! □

0.3.2. For X ∈ Schft let j : U ↪→ X an open subscheme. Equip Shv(X) with the

⊗!-symmetric monoidal structure. The adjoint pair j∗ : Shv(X) ⇆ Shv(U) : j∗
is in Shv(X) − mod, and j∗ is right-lax nonunital symmetric monoidal. So j∗ω ∈
CAlg(Shv(X)). The functor j∗ : Shv(U)→ Shv(X) factors naturally through Shv(U)→
(j∗ω)−mod(Shv(X)). Now Shv(U) →̃ (j∗ω)−mod(Shv(X)), this is the image of the
action of the idempotent (j∗ω) on Shv(X), cf. ([21], 9.2.74). Here j∗ω is an idempotent
commutative algebra in Shv(X) in the sense of ([16], 4.8.2.8).

If M ∈ Shv(X)−mod then we get an adjoint pair j∗ : M ⇆ M ⊗Shv(X) Shv(U) : j∗
in DGCatcont, and the right adjoint is monadic. So,

M ⊗Shv(X) Shv(U) →̃ (j∗ω)−mod(M)

Recall that oblv : (j∗ω)−mod(M)→M is fully faithful, and its image is the image of
the action of j∗ω on M .

Let now A ∈ coAlg(Shv(X)). By ([21], 9.2.60), let M = A − comod(Shv(X)) ∈
Shv(X)−mod, and we have an adjoint pair in Shv(X)−mod

(8) oblv : A− comod(Shv(X)) ⇆ Shv(X) : coind.

Applying ⊗Shv(X)Shv(U), one gets the adjoint pair l : M⊗Shv(X)Shv(U) ⇆ Shv(U) : r
in Shv(U)−mod. The comonad lr : Shv(U)→ Shv(U) is given byAU ∈ coAlg(Shv(U)),
the restriction of A to U .

Lemma 0.3.3. l is comonadic, so

(A− comod(Shv(X)))⊗Shv(X) Shv(U) →̃AU − comod(Shv(U))
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Proof. Consider the diagram, where the horizontal functors are fully faithful

M ⊗Shv(X) Shv(U)
j∗
↪→ M

↓ l ↓ oblv

Shv(U)
j∗
↪→ Shv(X)

It shows that l is conservative. Let now V be a simplicial object of (M⊗Shv(X)Shv(U))op

such that l(V ) is split in Shv(U)op. Then j∗l(V ) →̃ oblv(j∗V ) is split in Shv(X)op. By
([16], 4.7.3.5), j∗V admits a colimit in Mop, and oblv : Mop → Shv(X)op preserves this
colimit. Since M ⊗Shv(X) Shv(U) has all limits and colimits, V admits a colimit in
(M ⊗Shv(X) Shv(U))op, and j∗ preserves this colimit in Mop. Now l(V )→ l(colimV ) is
a diagram in Shv(U)op, which becomes a colimit diagram in Shv(X)op after applying
j∗. Hence, it is also a colimit diagram in Shv(U)op. That is, l preserves the colimit of
V . By ([16], 4.7.3.5), l is comonadic. □

0.3.4. For X ∈ Schft let i : Z → X be a closed subscheme. The dual pair i! :

Shv(Z) ⇆ Shv(X) : i! takes place in Shv(X) − mod, the coresponding comonad is
i∗ω ∈ coAlg(Shv(X)). The functor i! : Shv(Z) → Shv(X) is comonadic, this is easy
using the full ([16], 4.7.3.5). So, Shv(Z) →̃ (i∗ω)− comod(Shv(X)).

In turn, (i∗ω) − mod(Shv(X)op) is the image of the localization functor i∗ω ⊗! · :
Shv(X)op → Shv(X)op by ([21], 9.2.74). So, Shv(Z) is the full subcategory of those
K ∈ Shv(X), for which the map i∗ω → ω tensored by K becomes an isomorphism.

Let M ∈ Shv(X) − mod. We get an adjoint pair i! : M ⊗Shv(X) Shv(Z) ⇆ M :

i! in DGCatcont, and i! is fully faithful. For the same reasons, i! is comonadic, so
M ⊗Shv(X) Shv(Z) →̃ (i∗ω) − comod(M). The image of i! is the full subcategory of
those K ∈ M for which the map i∗ω → ω tensored by K becomes an an isomorphism
(where now ⊗ stand for the Shv(X)-action on M). Again, i∗ω ∈ ComCoAlg(Shv(X))
is an idempotent coalgebra ([16], 4.2.4.10).

Let now A ∈ coAlg(Shv(X),⊗!). Consider the adjoint pair (8) in Shv(X) −mod.
Let M = A− comod(Shv(X)). Applying ⊗Shv(X)Shv(Z), one gets the adjoint pair

l : M ⊗Shv(X) Shv(Z) ⇆ Shv(Z) : r

in Shv(Z) − mod. The comonad lr : Shv(Z) → Shv(Z) is given by tensoring with
AZ := i!A ∈ coAlg(Shv(Z)).

Lemma 0.3.5. l is comonadic, so

(A− comod(Shv(X))⊗Shv(X) Shv(Z) →̃AZ − comod(Shv(Z))

Proof. Consider the diagram, where the horizontal functors are fully faithful

M ⊗Shv(X) Shv(Z)
i∗
↪→ M

↓ l ↓ oblv

Shv(Z)
i∗
↪→ Shv(X)

It shows that l is conservative.
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Let now V be a simplicial object of (M ⊗Shv(X) Shv(Z))op such that l(V ) is split
in Shv(Z)op. Then i∗l(V ) →̃ oblv i∗(V ) is split in Shv(X)op. So, i∗V admits a col-
imit in Mop, and oblv : Mop → Shv(X)op preserves this colimit. Write W for
the colimit of i∗V in Mop, so i∗V → W is a colimits diagram in Mop. Since i! :
Mop → (M ⊗Shv(X) Shv(Z))op preserves colimits, i!i∗V → i!W is a colimit diagram

in (M ⊗Shv(X) Shv(Z))op. Note that li! →̃ i! oblv. Further, oblv(i∗V ) → oblv(W ) is a

colimit diagram in Shv(X)op, hence i! oblv(i∗V ) → i! oblv(W ) is a colimit diagram in
Shv(Z)op. The latter diagram is nothing but the desired diagram l(i!i∗V ) → l(i!W ).
Thus, the colimit of V in (M ⊗Shv(X) Shv(Z))op is preserved by l. By ([16], 4.7.3.5), l
is comonadic. □

We propose the following generalization.

Lemma 0.3.6. Let i : Z ↪→ X be a closed immersion in Schft, let Y → X be a map
in PreStklft, set Y

′ = Y ×X Z. Let

A ∈ FunShv(X)(Shv(Y ), Shv(Y ))

be a Shv(X)-linear continuous comonad, set

AZ = A⊗ id : Shv(Y )⊗Shv(X) Shv(Z)→ Shv(Y )⊗Shv(X) Shv(Z).

Then AZ ∈ FunShv(Z)(Shv(Y
′), Shv(Y ′)) is a Shv(Z)-linear continuous comonad.

Moreover, one has canonically

(9) (A− comod(Shv(Y )))⊗Shv(X) Shv(Z) →̃AZ − comod(Shv(Y ′)).

Proof. The natural functor (9) is constructed in ([21], 9.2.75) in bigger generality. Set
M = A − comod(Shv(Y )). Consider the commutative diagram, where the horizontal
functors are fully faithful

M ⊗Shv(X) Shv(Z)
i∗
↪→ M

↓ l ↓ oblv

Shv(Y )⊗Shv(X) Shv(Z)
i∗→ Shv(Y )

Here l is obtained by base change from oblv. This diagram shows that l s conservatve.
Recall the low arrow identifies with i∗ : Shv(Y

′)→ Shv(Y ) by Section 0.3.1.
Let us verify that l is comonadic by ([16], 4.7.3.5). Exactly the same argument as in

the previous lemma applies. □

0.3.7. Let Z ↪→ X
j← U be a diagram in Schft, where i is a closed immersion and j

is the complement open. Let C ∈ Shv(X) −mod. Then for any c ∈ C we get a fibre
sequence i!i

!c → c → j∗j
∗c in C, where the functors i!, i

!, j∗, j
∗ are are in the previous

subsections. It is obtained by tensoring the fibre sequence i∗ωZ → ωX → j∗ωU by c.
Applying FunShv(X)(C, ·) to the adjoint pair j∗ : Shv(X) ⇆ Shv(U) : j∗ in Shv(X)−

mod, one gets an adjoint pair

FunShv(X)(C, Shv(X)) ⇆ FunShv(X)(C, Shv(U))



35

in Shv(X)−mod, where the right adjoint is fully faithful (hence monadic). The corre-
sponding monad is given by the action of the algebra j∗ω. So,

FunShv(X)(C, Shv(U)) →̃ j∗ω −mod(FunShv(X)(C, Shv(X)))

By ([21], 9.2.74), FunShv(X)(C, Shv(U)) is just the image of the action of the idempotent
j∗ω on FunShv(X)(C, Shv(X)). From Section 0.3.2 we conclude that

FunShv(U)(C ⊗Shv(X) Shv(U), Shv(U)) →̃FunShv(X)(C, Shv(U)) →̃
FunShv(X)(C, Shv(X))⊗Shv(X) Shv(U)

Applying FunShv(X)(C, ·) to the adjoint pair i! : Shv(Z) ⇆ Shv(X) : i! in Shv(X)−
mod, we get an adjoint pair in Shv(X)−mod

FunShv(X)(C, Shv(Z)) ⇆ FunShv(X)(C, Shv(X)),

where the left adjoint is fully faithful. Using this fully faithfulness, we show as above
that the left adjoint is comonadic, so

FunShv(Z)(C ⊗Shv(X) Shv(Z), Shv(Z)) →̃FunShv(X)(C, Shv(Z)) →̃
(i!ω)− comod(FunShv(X)(C, Shv(X)))

As in Section 0.3.4,

(i!ω)− comod(FunShv(X)(C, Shv(X))) →̃FunShv(X)(C, Shv(X))⊗Shv(X) Shv(Z)

We conclude that

FunShv(Z)(C ⊗Shv(X) Shv(Z), Shv(Z)) →̃FunShv(X)(C, Shv(X))⊗Shv(X) Shv(Z)

0.3.8. Let ji : Ui ↪→ S are open subsets in S ∈ Schft for i = 1, 2 with U = U1 ∩ U2

and U1 ∪ U2 = S. Then the square is cocartesian in Shv(S)−mod

Shv(U1)
(j1)∗→ Shv(S)

↑ ↑ (j2)∗

Shv(U) → Shv(U2),

where all the functors are given by ∗-direct images. Indeed, this follows from Zariski
descent for sheaves of categories on S. Namely, this diagram after restriction to each
Ui becomes cocartesian.

0.4. More about the constructible context. For this subsection we work in the
constructible context.

0.4.1. Let S ∈ Schft. The functor D : Shv(S)c →̃Shv(S)c,op is an equivalence of sym-

metric monoidal categories, where the LHS is equipped with the ⊗!-monoidal structure,
and the RHS is eqiupped with the ⊗-monoidal structure.

Proof: we have an isomorphism K1⊗! K ′ →̃D(D(K)⊗D(K ′)) in Shv(S)c functorial
in K,K ′ ∈ Shv(S). □
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0.4.2. Consider a diagram S1 → Y ← S2 in Schft. Equip Shv(Y ) with the ⊗!-
symmetric monoidal structure. Then Shv(S1)⊗Shv(Y )Shv(S2) is dualizable in DGCatcont

by ([7], I.1, 6.3.4). Indeed, the product functor Shv(Y ) ⊗ Shv(Y )
m→ Shv(Y ) and ac-

tion maps Shv(Y )⊗ Shv(Si)→ Shv(Si) admits continuous right adjoints, and for any
n ≥ 0, Shv(S1)⊗ Shv(Y )⊗n ⊗ Shv(S2) is compactly generated.

It is easy to see that Shv(S1)⊗Shv(Y ) Shv(S2) is compactly generated by objects of
the form K1 ⊠K2 with Ki ∈ Shv(Si)

c.
Let C△op : ∆op → DGCatcont be the diagram

[n] 7→ Shv(S1)⊗ Shv(Y )⊗n ⊗ Shv(S2)

such that colimC△op →̃Shv(S1)⊗Shv(Y ) Shv(S2) in DGCatcont by definition. Then we

may pass to continuous right adjoints in C△op and get the functor CR
△ : ∆→ DGCatcont,

so that limCR
△ →̃Shv(S1)⊗Shv(Y ) Shv(S2) in DGCatcont. The projection

δR := ev0 : limCR
△ → Shv(S1)⊗ Shv(S2)

has a left adjoint δ := ins0 : Shv(S1) ⊗ Shv(S2) → Shv(S1) ⊗Shv(Y ) Shv(S2). So, by

([16], 4.7.5.1), the functor δR is monadic and

Shv(S1)⊗Shv(Y ) Shv(S2) →̃ (δRδ)−mod(Shv(S1)⊗ Shv(S2)).

Lemma 0.4.3. The dual (Shv(S1)⊗Shv(Y ) Shv(S2))
∨ identifies with

Shv(S1)⊗(Shv(Y ),⊗) Shv(S2),

where now Shv(Y ) is equipped with the ⊗-symmetric monoidal structure, and the action
maps are given as compositions

Shv(Y )⊗ Shv(Si)→ Shv(Y × Si)
Γ∗
i→ Shv(Si).

Here Γi : Si → Si × Y is the graph of the map Si → Y . We used the canonical
self-dualities on Shv(Si), Shv(Y ).

Proof. The right adjoint to the composition

Shv(S)⊗ Shv(Y )
h→ Shv(S × Y )

Γ!
i→ Shv(S)

is the composition hR ◦ (Γ!
i)
R, and hR →̃h∨, (Γ!

i)
R →̃ (Γ∗

i )
∨ canonically. Similarly for

the product map

Shv(Y )⊗ Shv(Y )
h→ Shv(Y × Y )

△!

→ Shv(Y )

its right adjoint is hR ◦ (△!)R, and hR →̃h∨, (△!)R →̃ (△∗)∨. The claim follows as in
([7], I.1, 6.3.4). □

0.4.4. It is easy to see that Shv(S1) ⊗(Shv(Y ),⊗) Shv(S2) is compactly generated by
objects of the form K1 ⊠K2 with Ki ∈ Shv(Si)

c.



37

0.4.5. Let

F : Shv(S1)⊗Shv(Y ) Shv(S2)→ Shv(S1 ×Y S2)

be the natural map coming from K1 ⊠K2 7→ q!(K1 ⊠K2) for q : S1 ×Y S2 → Y1 × Y2.
For Ki ∈ Shv(Si)

c the object F(K1 ⊠ K2) ∈ Shv(S1 ×Y S2)
c, so F has a continuous

right adjoint.
We also have a natural functor

F′ : Shv(S1)⊗(Shv(Y ),⊗) Shv(S2)→ Shv(S1 ×Y S2)

coming from K1 ⊠K2 7→ q∗(K1 ⊠K2). For Ki ∈ Shv(Si)
c the object F′(K1 ⊠K2) ∈

Shv(S1 ×Y S2)
c, so F′ has a continuous right adjoint.

The dual of F is the functor

F∨ : Shv(S1 ×Y S2)→ Shv(S1)⊗(Shv(Y ),⊗) Shv(S2)

The dual of F′ is the functor

F′∨ : Shv(S1 ×Y S2)→ Shv(S1)⊗Shv(Y ) Shv(S2)

0.4.6. Write δ : Shv(S1)⊗ Shv(S2)→ Shv(S1)⊗Shv(Y ) Shv(S2) and

δ⊗ : Shv(S1)⊗ Shv(S2)→ Shv(S1)⊗(Shv(Y ),⊗) Shv(S2)

for the natural functors. Let δR be the right adjoint to δ. By construction, we get
(δR)∨ →̃ δ⊗.

Lemma 0.4.7. In the situation of Section 0.4.2 one has canonically F∨ →̃ (F′)R and
F′∨ →̃FR, where R stands for the right adjoint.

Proof. Let C∆op : ∆op → DGCatcont be the functor giving rise to

Shv(S1)⊗Shv(Y ) Shv(S2)

in its colimit by definition. It sends [n] to Shv(S1) ⊗ Shv(Y )⊗n ⊗ Shv(S2). For a
map α : [i] → [j] in ∆ we have the transition functor αij : C∆op(j) → C∆op(i) in this
diagram.

Write

fn : Shv(S1)⊗ Shv(Y )⊗n ⊗ Shv(S2)→ Shv(S1 ×Y S2)

for the composition of insn with F. We have the adjoint pairs (fn, f
R
n ) and (F,FR) in

DGCatcont. We get the adjoint pairs ((fR
n )∨, (fn)

∨) and ((FR)∨,F∨) in DGCatcont.
Denote by

CR
∆ : ∆→ DGCatcont

the functor obtained from C∆op by passing to the right adjoints. Denote by C∨
∆ : ∆→

DGCatcont the functor obtained from C∆op by passing to the duals. Denote by

(CR
∆)∨ : ∆op → DGCatcont

the functor obtained from CR
∆ by passing to the duals. Recall that

colim(C∨
∆)L →̃ limC∨

∆ →̃Shv(S1)⊗(Shv(Y ),⊗) Shv(S2)
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canonically, where (C∨
∆)L : ∆op → DGCatcont is obtained from C∨

∆ by passing to the
left adjoints. Recall that

(C∨
∆)L →̃ (CR

∆)∨.

The functor FR : Shv(S1 ×Y S2)→ limCR
∆ is obtained from the compatible system

of functors fR
n for [n] ∈∆.

The functor

F∨ : Shv(S1 ×Y S2)→ Shv(S1)⊗(Shv(Y ),⊗) Shv(S2) →̃ limC∨
∆

is obtained from the compatible system of functors f∨
n , [n] ∈∆. So, the functor

(F∨)L : colim(C∨
∆)L → Shv(S1 ×Y S2)

is obtained from the compatible system of functors (f∨
n )

L.
Consider the functor D∆op : ∆op → DGCatcont such that

colimD∆op →̃Shv(S1)⊗(Shv(Y ),⊗) Shv(S2)

by definition. It sends [n] to Shv(S1)⊗ Shv(Y )⊗n ⊗ Shv(S2). It suffices to show that
the composition

Shv(S1)⊗ Shv(Y )⊗n ⊗ Shv(S2)→ Shv(S1)⊗(Shv(Y ),⊗) Shv(S2)
F′
→ Shv(S1 ×Y S2)

for any n identifies with the functor (f∨
n )

L →̃ (fR
n )∨. This is easy as in Lemma 0.4.3.

Namely, we have a natural map τn : S1 ×Y S2 → S1 × Y n × S2 coming from (S1 ×Y

S2) →̃ (S1 × Y n × S2)×Y n+2 Y →̃S1 ×Y S2. Then fn is the composition

Shv(S1)⊗ Shv(Y )⊗n ⊗ Shv(S2)→ Shv(S1 × Y n × S2)
τ !n→ Shv(S1 ×Y S2)

So, fR
n = (△∨) ◦ (τ∗n)vee as desired. □

0.4.8. In the situation of Section 0.4.2 note that Y is naturally a cocommutative
coalgebra in Schft, the coproduct being the diagonal map Y → Y × Y . Besides, S1

(resp., S2) is a Y -comodule, the coaction map is Γi : Si → Si × Y , the graph of the
map Si → Y . We get the morphism S1 ×Y S2 → lim

[n]∈∆
S1 × Y n × S2, the corresponding

version of the bar complex. It yields after applying Shv the morphisms

Shv(S1)⊗Shv(Y ) Shv(S2)
F1→ C := colim

[n]∈∆op
Shv(S1 × Y n × S2)

F2→ Shv(S1 ×Y S2),

so F →̃F2 ◦ F1. Let δ1 : Shv(S1 × S2) → C be the natural map. Note that C is
compactly generated by the images of K ∈ Shv(S1 × S2)

c under δ1.

Let C̃△op : ∆op → DGCatcont be the functor sending [n] to Shv(S1 × Y n × S2) so

that C = colim C̃△op . We may pass to continuous right adjoints in C̃△op and get the
functor C̃R

△ : ∆→ DGCatcont, so lim C̃R
△ →̃C. In particular, the right adjoint δR1 of δ1

is continuous.
For each [n] ∈ ∆ the exterious product gn : Shv(S1) ⊗ Shv(Y )⊗n ⊗ Shv(S2) →

Shv(S1 × Y n × S2) is fully faithful and has a continuous right adjoint gRn . So, the
right adjoint FR

1 of F1 is obtained by passing to the limit over [n] ∈ ∆ in the functors
gRn : Shv(S1 × Y n × S2) → Shv(S1) ⊗ Shv(Y )⊗n ⊗ Shv(S2) in DGCatcont. So, FR

1 is
continuous (cf. [21], 9.2.39).
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Clearly, if K ∈ Shv(S1 × S2)
c then F2(δ1(K)) ∈ Shv(S1 ×Y S2)

c, so F2 has a
continuous right adjoint FR

2 . Besides F
R
2 is conservative.

Since ∆op is sifted, from ([16], 3.2.3.1) we see that C ∈ CAlg(DGCatcont), and δ1
is a map in CAlg(DGCatcont) naturally. Besides, F1,F2 are naturally morphisms in
CAlg(DGCatcont).
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