
1. Action of ǧ⊗ RΓ(X) on Eisenstein series, elementary definition

1.0.1. Let k be an algebraically closed field, G reductive connected over k, [G,G] simply-
connected, B ⊂ G a Borel, B− ⊂ G opposite Borel, T = B ∩ B− a maximal torus,
Λ coweights of T , Λ̌ weights. Let Λpos be the Z+-span of positive coroots, Λ̌+ be the
dominant weights.

For µ ∈ Λpos we have the locally closed embedding j=µ : BunB ×Xµ → BunB, it

is affine. Set BunB,=µ = BunB ×Xµ. Together they form a stratification of BunB.
Here Xµ is the moduli scheme of Λpos-valued divisors on X of degree µ. Denote by
p̄ : BunB → BunG the projection extending p : BunB → BunG.

Let j≥µ : BunB ×Xµ → BunB be the map sending (FT ,F, κ,D ∈ Xµ) to (FT (−D),F, κ).
This is a finite map extending j=µ.

Let BunB,≤µ ⊂ BunB be the open substack classifying (FT ,F, κ) such that for any

λ̌ ∈ Λ̌+ the map κλ̌ : Lλ̌FT ↪→ Vλ̌F has zeros of total degree ≤ 〈µ, λ̌〉. So,

(1) BunB,≤µ = ∪µ′≤µ BunB,=µ′

Work in the usual setting of Q̄`-sheaves, ` is distinct from the characteristic of k. We
will repeat the construction of the action of ǧ⊗ RΓ(X, Q̄`) on K = p̄! ICBunB

from [3]
in more elementary terms.

1.0.2. Let α be a simple coroot. By ([2], 1.12), one has

(2) j!
=α ICBunB

→̃ IC[−1]

Note that Xα →̃X. We need the following.

Proposition 1.0.3. Let α be a simple coroot. There is a unique morphism c : IC[−1]→
j!
≥α ICBunB

on BunB ×X whose restriction to BunB ×X is the isomorphism (2).

Proof. It is immediately reduced to Lemma 1.0.4 below. �

Lemma 1.0.4. Let µ ∈ Λpos. There is a unique morphism cµ : IC[−1] → j!
≥α ICBunB

on BunB,≤µ×X whose restriction to BunB ×X is the isomorphism (2).

Set

K = DRHomBunB,≤µ×X(IC[−1], j!
≥α ICBunB

) →̃ RΓc(BunB,≤µ×X, IC⊗j∗≥α ICBunB
)[−1]

Set also
◦
K = RΓc(BunB ×X, IC⊗j∗≥α ICBunB

)[−1]

Lemma 1.0.4 is an immediate consequence of the following.

Lemma 1.0.5. Both K,
◦
K are placed in degrees ≤ 0. The natural map

◦
K→ K induces

an isomorphism H0(
◦
K)→ H0(K).

Proof. Calculate K via the stratification (1) of BunB,≤µ. Denote by B(µ) an element
of the free abelian semigroup generated by all positive coroots. For such B(µ) we have

the finite map iB(µ) : XB(µ) → Xµ as in [2]. Set

Mµ = ⊕
B(µ)

iB(µ)∗Q̄`

1
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This is a Q̄`-sheaf (placed in usual degree zero) on Xµ. By ([2], Cor. 4.7),

j∗=µ′ ICBunB
→̃ IC�DMµ′

So, the ∗-restriction of IC⊗j∗≥α ICBunB
[−1] under BunB ×Xµ′ ×Xα ↪→ BunB,≤µ×Xα

is

Q̄`[2 dim BunB] � (s∗DMµ′+α ⊗ (DMµ′ � Q̄`))

Here s : Xµ′×Xα → Xµ′+α is the sum map, and dim BunB is a function of a connected
component of BunB. The contribution of the above stratum is the sum over pairs
B(µ′),B(µ′ + α) of

RΓc(X
B(µ′+α) ×Xµ′+α (XB(µ′) ×Xα), Q̄`)[2 | B(µ′) | +2 | B(µ′ + α) |]

tensored by RΓc(BunB, Q̄`)[2 dim BunB]. Since dimXB(µ′+α) ×Xµ′+α (XB(µ′) ×Xα) ≤
| B(µ′ + α) |, the latter complex is placed in degrees ≤ 0, and the inequality is strict
unless µ′ = 0. We are done. �

1.0.6. By adjointness, the map c of Proposition 1.0.3 yields a map also denoted c :
(j≥α)! IC[−1]→ ICBunB

. Pushing forward via p̄ : BunB → BunG, this yields a map

(3) RΓ(X, Q̄`)⊗ p̄∗ ICBunB
→ p̄∗ ICBunB

This is the action of ňα ⊗ RΓ(X, Q̄`) ⊂ ǧ ⊗ RΓ(X, Q̄`) on the Eisenstein series
p̄∗ ICBunB

. Here ň is the Lie algebra of the unipotent radical of B̌, ňα is the root

subspace corresponding to α. According to [3] and [4], these maps generate an action
of ň⊗ RΓ(X, Q̄`).

The Verdier dual of (3) gives a map p̄∗ ICBunB
→ p̄∗ ICBunB

⊗DRΓ(X, Q̄`). By
adjointness, this map yields a morphism

(4) RΓ(X, Q̄`)⊗ p̄∗ ICBunB
→ p̄∗ ICBunB

This is the action of ň−−α ⊗ RΓ(X, Q̄`) on p̄∗ ICBunB
.

The action

(5) ȟ⊗ RΓ(X, Q̄`)→ RHom(p̄∗ ICBunB
, p̄∗ ICBunB

)

is defined as follows. The algebra RΓ(BunT , Q̄`) acts on Q̄` on BunT , hence by functo-
riality a map

RΓ(BunT , Q̄`)→ RHom(p̄∗ ICBunB
, p̄∗ ICBunB

)

Pullback under the evaluation map X × BunT → B(T ) gives a morphism of algebras
Sym(ȟ[−2]) →̃ RΓ(B(T ), Q̄`)→ RΓ(X, Q̄`)⊗RΓ(X,BunT ). Here ȟ is Lie algebra of Ť
as a vector space over Q̄`. The latter by adjointness gives a morphism

ȟ[−2]⊗ DRΓ(X, Q̄`)→ RΓ(X,BunT )

Since (DRΓ(X, Q̄`))[−2] →̃ RΓ(X, Q̄`), we get a morphism ȟ⊗RΓ(X, Q̄`)→ RΓ(X,BunT ),
hence also (5) as a composition.



3

1.0.7. Write BunλT for the component of BunT classifying FT such that for any λ̌,

〈λ, λ̌〉 = detLλ̌FT . This gives Bun
λ
B,BunλB and so on. The map j≥µ induces a map

Bun
λ+µ
B ×Xµ → Bun

λ
B.

Write for brevity ICλ for IC
Bun

λ
B

. The object p̄∗ ICBunB
is Λ-graded, where the λ-

component is p̄∗ ICλ. We see that (3) gives a map RΓ(X, Q̄`) ⊗ p̄∗ ICλ+α → p̄∗ ICλ.
Similarly, (4) gives a map RΓ(X, Q̄`)⊗ p̄∗ ICλ → p̄∗ ICλ+α.

1.1. Let us generalize Proposition 1.0.3 to the case of any α ∈ Λpos. By ([2], 4.7), one
has

(6) j!
=α ICBunB

→̃ IC�Mα

Proposition 1.1.1. Let α ∈ Λpos. There is a unique morphism c : IC�Mα →
j!
≥α ICBunB

over BunB ×Xα extending (6).

Take µ ∈ Λpos. As above we extend this c to BunB,≤µ×Xα first. Set

K = DRHomBunB,≤µ×Xα(IC�Mα, j
!
≥α ICBunB

) →̃

RΓc(BunB,≤µ×Xα, (IC�Mα)⊗ j∗≥α ICBunB
)

Let also
◦
K = RΓc(BunB ×Xα, (IC�Mα)⊗ j∗≥α ICBunB

)

Proof of Lemma 1.0.5 for any α. Calculate K via the same stratification of BunB,≤µ.
Let µ′ ≤ µ, µ′ ∈ Λpos. The ∗-restriction of

(IC�Mα)⊗ j∗≥α ICBunB

to BunB,=µ′ ×Xα = BunB ×Xµ′ ×Xα becomes

Q̄`[2 dim BunB] � ((DMµ′ �Mα)⊗ s∗DMµ′+α)

Here s : Xµ′×Xα → Xµ′+α is the sum map. The complex RΓc(BunB, Q̄`)[2 dim BunB]

is placed in degrees ≤ 0. Let us show that RΓc(X
µ′ ×Xα, (DMµ′ �Mα)⊗ s∗DMµ′+α)

is placed in degrees ≤ 0, and in fact in degrees ≤ −2 unless µ′ = 0. The latter complex
is a sum over triples B(µ′),B(α),B(µ′ + α) of

RΓ((XB(µ′) ×XB(α))×Xµ′+α X
B(µ′+α), Q̄`)[2 | B(µ′) | +2 | B(µ′ + α) |]

Since dim(XB(µ′)×XB(α))×Xµ′+α XB(µ′+α) ≤ B(µ′+α), the latter complex is placed
in degrees ≤ 2, and actually in degrees ≤ −2 unless µ′ = 0. We are done. �

Proposition 1.1.1 is proved.

1.1.2. By adjointness, the map c of Proposition 1.1.1 yields a morphism also denoted
c : (j≥α)!(IC�Mα) → ICBunB

. Pushing forward via p̄ : BunB → BunG, this yields a
map

(7) RΓ(Xα,Mα)⊗ p̄! ICBunB
→ p̄! ICBunB
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1.1.3. If α is any, not necessarily simple, coroot of G, then there is a distinguished
element B(α) = α. For the corresponding map iB(α) : XB(α) → Xα we get the direct

summand RΓ(X, Q̄`) ⊂ RΓ(Xα,Mα). Restricting (7) to this direct summand, we get
the action

(8) RΓ(X, Q̄`)⊗ p̄! ICBunB
→ p̄! ICBunB

of ňα ⊗ RΓ(X, Q̄`) on p̄! ICBunB
.

The Verdier dual of (8) gives a map p̄∗ ICBunB
→ p̄∗ ICBunB

⊗DRΓ(X, Q̄`). By
adjointness, this map yields a morphism

RΓ(X, Q̄`)⊗ p̄∗ ICBunB
→ p̄∗ ICBunB

This is the action of ň−−α ⊗ RΓ(X, Q̄`) on p̄∗ ICBunB
.

1.1.4. Question. Clarify the structure of ⊕
α∈Λpos

RΓ(Xα,Mα), see [1].

2. An analog for a parabolic P

2.1. Let M ⊂ G be a standard Levi corresponding to IM ⊂ I, here I is the set of vertices
of the Dynkin diagram. We take P and P− the corresponding standard parabolics with
Levi M , so that M = P ∩ P−.

Write ΛG,P for the quotient of Λ by the Z-span of αi, i ∈ IM . Let ΛposG,P ⊂ ΛG,P be

the Z+-span of αi, i ∈ I− IM .
For θ ∈ ΛposG,P let Xθ be the scheme of ΛposG,P -valued divisors of degree θ on X. For

θ ∈ ΛposG,P we have the locally closed immersion jP,=θ : Xθ × BunP ↪→ BunP sending

(FM/[M,M ],F, κ,D ∈ Xθ)

to (FM/[M,M ](−D),F, κ). Set BunP,=θ = Xθ×BunP . They form a stratification of BunP
indexed by ΛposG,P . For θ ∈ ΛposG,P let

jP,≥θ : Xθ × BunP ↪→ BunP

be the map sending (FM/[M,M ],F, κ,D ∈ Xθ) to (FM/[M,M ](−D),F, κ). This is a finite
map extending jP,=θ.

Let BunP,≤θ ⊂ BunP be the open substack classifying (FM/[M,M ],F, κ) such that for

any λ̌ ∈ Λ̌G,P ∩ Λ̌+ the map κλ̌ : Lλ̌FM/[M,M ]
→ Vλ̌F has zeros of total degree ≤ 〈θ, λ̌〉. So,

BunP,≤θ = ∪
θ′≤θ

BunP,=θ′ .

2.2. Let u(P ) denote the Lie algebra of the unipotent radical of P̌ . For V ∈ Rep(M̌)
write Vθ for the direct summand of V on which Z(M̌) acts by θ. Here Z(M̌) is the
center of M̌ , it is connected because [M,M ] is simply-connected.

Let Θ = {θ ∈ ΛG,P | u(P )θ 6= 0}. Then Θ ⊂ ΛposG,P . Let Z+Θ denote the free

abelian semigroup with base Θ. The inclusion Θ ⊂ ΛposG,P extends to a homomorphism

of semigroups Z+Θ→ ΛposG,P . An element of Z+Θ over θ ∈ ΛposG,P is denoted by B(θ) as in

[2]. We denote then by XB(θ) the scheme of Z+Θ-valued divisors on X of degree B(θ).
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The above homomorphism of semigroups yields a finite map iP,B(θ) : XB(θ) → Xθ.

Recall that for θ ∈ Θ, u(P )θ is an irreducible M̌ -module.
As in [2], we denote by Loc the functor from Z-graded vector spaces to sheaves on

Spec k given by V 7→ ⊕nVn[−n] (we ignore Tate twists). For a Z-graded vector space

V , viewing Loc(V ) as a constant complex on X, one gets the pure complex Loc(V )(n)

on X(n), these are Sn-invariants in sum! : Loc(V )�n for sum : Xn → X(n).
Let f ∈ LieM be the principal nilpotent defined in ([2], Section 7.1), for V ∈ Rep(M̌)

the notation V f = {v ∈ V | fv = 0} is from loc.cit. The dual of V f identifies with
(V ∗)e = {v ∈ V | ev = 0}.

We identify the dual of ǔ(P ) with ǔ(P−) as M̌ -modules, the latter is the Lie algebra
of the unipotent radical of P̌−. Under this isomorphism, the dual of the direct summand

ǔ(P )θ (resp., ǔ(P )fθ ) identifies with ǔ(P−)−θ (resp., ǔ(P−)e−θ).

2.2.1. For θ ∈ ΛposG,P denote by D(MP,θ) the direct sum over B(θ) =
∑

θm∈Θ

nmθm of the

direct images under iP,B(θ) : XB(θ) → Xθ of SB(θ)[2 | B(θ) |], where

SB(θ) = ( �
θm∈Θ

(Loc(ǔ(P )fθm)(nm))

Let MP,θ be the Verdier dual of D(MP,θ). Given B(θ) for θ ∈ ΛposG,P , set

S
B(θ)
− = ( �

θm∈Θ
(Loc(ǔ(P−)e−θm)(nm))

So, MP,θ →̃ ⊕
B(θ)

(iP,B(θ))!S
B(θ)
− . We used that D(S

B(θ)
− ) →̃SB(θ)[2 | B(θ) |]. The com-

plex SB(θ) is placed in usual degrees ≤ 0.
By ([2], 7.2), for θ ∈ ΛposG,P one has

(jP,=θ)
∗ ICBunP

→̃D(MP,θ) � ICBunP

and

(9) (jP,=θ)
! ICBunP

→̃ (MP,θ) � ICBunP

Question 1. Let θ ∈ ΛposG,P . Is it true that there is a natural morphism c : (MP,θ) �

ICBunP
→ (jP,≥θ)

! ICBunP
over Xθ × BunP extending (9) over Xθ × BunP ?

Pick µ ∈ ΛposG,P . As above, it suffices for this µ to show that (9) extends naturally to

a morphism over Xθ × BunP,≤µ. Set

K = DRHomXθ×BunP,≤µ
(MP,θ � ICBunP

, (jP,≥θ)
! ICBunP

) →̃

RΓc(X
θ × BunP,≤µ, (MP,θ � ICBunP

)⊗ (jP,≥θ)
∗ ICBunP

)

and
◦
K = RΓc(X

θ × BunP , (MP,θ � IC)⊗ (jP,≥θ)
∗ ICBunP

)
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It is no longer true that
◦
K is placed in degrees≤ 0. The reason is that RHom(MP,θ,MP,θ)

is not placed in degrees ≥ 0. This already happens in the example of Remark 2.2.2.
The same proof of of Lemma 1.0.5 does not work in this case.

False proof of Lemma 1.0.5 in this case. Calculate K via the stratification of BunP,≤µ
by BunP,=µ′ , µ

′ ≤ µ. Let µ′ ∈ ΛposG,P with µ′ ≤ µ. The ∗-restriction of (MP,θ�ICBunP
)⊗

(jP,≥θ)
∗ ICBunP

to Xθ × BunP,=µ′ = Xθ ×Xµ′ × BunP is

((MP,θ � DMP,µ′)⊗ s∗DMP,θ+µ′) � Q̄`[2 dim BunP ]

Here s : Xθ ×Xµ → Xθ+µ′ is the sum map. The complex RΓc(BunP , Q̄`)[2 dim BunP ]
is placed in degrees ≤ 0. Let us show that

RΓ(Xθ ×Xµ′ , ((MP,θ � DMP,µ′)⊗ s∗DMP,θ+µ′)

is placed in degrees ≤ 0. The latter complex is a sum over B(θ),B(µ′),B(θ + µ′) of

RΓ((XB(θ)×XB(µ′))×Xθ+µ′X
B(θ+µ′), (S

B(θ)
− �SB(µ′))�SB(θ+µ′))[2 |B(µ′) | +2 |B(θ+µ′) |]

This is not true! The proof does not work. �

Remark 2.2.2. i) The sheaf Loc(ǔ(P )fθ ) on Spec k is placed in degrees ≤ 0. Indeed,

for a sl2-module V , V f is the space of lowest weight vectors in V .

ii) The sheaf Loc(ǔ(P )fθ ) on Spec k is not always placed in one degree. For example,
take G = GL4, M the standard parabolic corresponding to the simple root e2 − e3, so
M →̃ GL2×GL2. Let E = E1⊕E2 be the decomposition of the standard representation
E of Ǧ preserved by M̌ . Then ǔ(P ) →̃E∗2 ⊗ E1 is an irreducible M̌ -module. Let α =
e2 − e3, let θ be the image of α in ΛG,P . Then ǔ(P )θ 6= 0, the center Z(M̌) acts on

ǔ(P ) by θ. The subspace ǔ(P )fθ is 2-dimensional. One gets Loc(ǔ(P )fθ ) →̃ Q̄`[2]⊕ Q̄`.

iii) The sheaf Loc(ǔ(P )fθ ) on Spec k may be placed in degrees < 0. For example, take
n ≥ 2, G = Spin2n, and P the preimage of the Siegel parabolic of SO2n. The Lie algebra
is Lie M̌ →̃ gln. Let E be the standard representation of Lie M̌ . Then ǔ(P ) →̃ ∧2 E.
Denote by V m the m+1-dimensional irreducible representation of sl2. As a representa-
tion of principal sl2 of Lie M̌ becomes ǔ(P ) →̃ ∧2V n−1 →̃V 2n−4 +V 2n−8 + . . . according

to ([5], ex. 11.31). It contains V 0 iff n is even. So, for n odd, Loc(ǔ(P )fθ ) is placed in
degrees < 0.

2.2.3. One is tempted to do the following. Assume for simplicity P is a maximal
parabolic, and α is the unique simple coroot which is not a coroot of M . Let θ be the
image of α in ΛposG,P . Assume also Θ = {θ}. For any µ ∈ ΛposG,P now B(µ) denotes the

unique partition of µ, and iP,B(µ) : XB(µ) → Xµ is an isomorphism.

Let m ≥ 0 be the lowest degree such that Hm(Loc(ǔ(P−)e−θ) 6= 0. Equivalently, −m
is the top cohomological degree of Loc(ǔ(P )fθ ). Then Xθ = X, and MP,θ contains the
direct summand

M0
P,θ := Hm(S

B(θ)
− )[−m]

This is a constant sheaf on X placed in the usual degree m.
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Proposition 2.2.4. There is a unique morphism c : M0
P,θ � ICBunP

→ (jP,≥θ)
! ICBunP

over Xθ × BunP extending the composition

M0
P,θ � ICBunP

↪→ (MP,θ) � ICBunP
→ (jP,≥θ)

! ICBunP

over Xθ × BunP .

Pick any µ ∈ ΛposG,P . Set

K = DRHomXθ×BunP,≤µ
(M0

P,θ � ICBunP
, (jP,≥θ)

! ICBunP
) →̃

RΓc(X
θ × BunP,≤µ, (M

0
P,θ � ICBunP

)⊗ (jP,≥θ)
∗ ICBunP

)

and

◦
K = RΓc(X

θ × BunP , (M
0
P,θ � IC)⊗ (jP,≥θ)

∗ ICBunP
) →̃

DRHomXθ×BunP
(M0

P,θ � IC,MP,θ � IC)

Proof of Proposition 2.2.4. We check that the analog of Lemma 1.0.5 holds in this case.
Calculate K via the stratification of BunP,≤µ by BunP,=µ′ , µ

′ ≤ µ. Let µ′ ∈ ΛposG,P with

µ′ ≤ µ. The ∗-restriction of

(M0
P,θ � ICBunP

)⊗ (jP,≥θ)
∗ ICBunP

to Xθ × BunP,=µ′ = Xθ ×Xµ′ × BunP is

((M0
P,θ � DMP,µ′)⊗ s∗DMP,θ+µ′) � Q̄`[2 dim BunP ]

Here s : Xθ ×Xµ → Xθ+µ′ is the sum map. The complex RΓc(BunP , Q̄`)[2 dim BunP ]
is placed in degrees ≤ 0. Let us show that

RΓ(Xθ ×Xµ′ , ((M0
P,θ � DMP,µ′)⊗ s∗DMP,θ+µ′)

is placed in degrees ≤ 0, and actually in degrees ≤ −2 unless µ′ = 0. The latter complex
is

RΓ(Xθ ×Xµ′ , (M0
P,θ � SB(µ′))⊗ s∗SB(θ+µ′))[2 |B(µ′) | +2 |B(θ + µ′) |]

If µ′ = rθ then | B(µ′) |= r, | B(θ + µ′) |= r + 1, and the latter complex is placed in
usual degrees ≤ −2rm− 2r. We are done. �

2.2.5. By adjointness, the map c from Proposition 2.2.4 yields a morphism also denoted
c : (jP,θ)!M

0
P,θ � ICBunP

→ ICBunP
. Pushing forward via p̄ : BunP → BunG, this yields

a morphism

(10) RΓ(X,M0
P,θ)⊗ p∗ ICBunP

→ p∗ ICBunP

For µ ∈ ΛG,P let BunµM denote the component cassifying FM such that the induced

M/[M,M ]-torsor is of degree µ. Let BunµP ,Bun
µ
P be the corresponding components.

Write ICµ for ICBun
µ
P

. View p∗ ICBunP
as ΛG,P -graded, where the µ-component is

p̄! ICµ. Then (10) gives a map

RΓ(X,M0
P,θ)⊗ p∗ ICµ+θ → p∗ ICµ
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