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1. Factorization algebras in topology

1.1. Setup.

1.1.1. Let M be a smooth manifold of dimension n. In this case, we can define a topological version of
the notion of factorization algebra on M . The idea is that, as in algebraic geometry, we will consider
sheaves on powers of M together with certain compatibility data. What makes the story topological is
that we will restrict ourselves to sheaves which are locally constant along the stratification on powers
of M given by diagonals. In particular, the sheaf on M will be locally constant.

1.1.2. Given a stratified topological space X, let Shv!(X) denote the category of co-sheaves on X
(valued in Vect), which are locally constant on each stratum. Note that in this case, Verdier duality
gives an equivalence between sheaves and cosheaves 1; thus we can think of objects of Shv!(X) as
sheaves on X but where the natural pullback functor is upper-!.

1.2. Topological factorization algebras.

1.2.1. Recall the notion of a (topological) factorization algebra, which we will informally define as
follows:

Definition 1.2.2. Let M be a (smooth) topological manifold. A factorization algebra on M is the data
of:

(1) An object AI ∈ Shv!(MI) for each nonempty finite set I (where MI is stratified by diagonals).
(2) (Ran’s condition) A compatible family of isomorphisms

∆!
f (A

J) ≃ A
I

for every surjective map f : J ↠ I, where ∆f : MI ↩→ MJ is the corresponding diagonal
embedding.
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1We will need to consider co-sheaves valued in more general categories which are not stable and thus Verdier duality

does not hold
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(3) (Factorization condition) A compatible family of isomorphisms

j!(AI) ≃ j!(AI0 ⊠A
I1)

for every disjoint decomposition I = I1 ⊔ I2, where j is the inclusion of the open subset of XI

consisting of (xi)i∈I1 , (yj)j∈I2 such that the sets {xi} and {yj} are disjoint.

1.2.3. For a manifold M , let FactAlg(M) denote the category of factorization algebras on M .

1.2.4. Consider the case that M = R. In this case, a factorization algebra is an associative algebra.
Namely, we have A ∈ Shv!(R) ≃ Vect is the underlying vector space of the algebra. On R2, we have
a sheaf given by A ⊗ A away from the diagonal and A on the diagonal. Note that each stratum is
contractible. Thus the data of such a sheaf on R2 is the data of specialization maps from the two
dimensional strata to the diagonal:

m1,m2 : A⊗A → A.

Ran’s condition, in particular, makes the sheaf on R2 equivariant with respect to swapping the two
coordinates. It follows that m2 ≃ m1 ◦ σ, where σ : A ⊗ A → A ⊗ A is the map swapping the two
factors. Thus the data of the sheaf on R2 gives a binary operation on A. The sheaves on higher powers
of R give the data of (higher) associativity for this binary operation.

In the case of Rn, topological factorization algebras are equivalent to En-algebras, i.e. algebras over
the little disks operad. For our purposes, we can take this to be the definition:

Definition 1.2.5. For n ≥ 0, the category of En-algebras is given by

En -alg := FactAlg(Rn).

1.2.6. Taking the limit over n, we can define E∞-algebras as factorization algebras on R∞ = colimRn.
Note all the strata of Ran(R∞), i.e. configurations of points in R∞ are contractible. Combinatorially,
we can assign to each stratum Confk(R∞) a pointed finite set consisting of a basepoint and k additional
elements. One can then see that the category Shv!(Ran(R∞)) is equivalent to the category of functors

Fin∗ → Vect,

where Fin∗ is the category of finite pointed sets. Moreover, it follows that E∞-algebras as the same as
commutative algebras (i.e. homotopy coherent algebras over the commutative operad).

A similar combinatorial construction shows that for any manifold M , we have a canonical functor

E∞ -alg → FactAlg(M).

Geometrically, this construction is the pullback of the factorization algebra on R∞ to a factorization
algebra on M along an embedding M ↩→ R∞.

1.3. O(n)-action. We shall see that we can, in a certain sense, understand factorization algebras on
arbitrary manifolds in terms of En-algebras, and in fact in terms of E1 (=associative) algebras.

Note that there is an action of the orthogonal group O(n) on the category of En-algebras (by acting
on Rn). Let En -algO(n) denote the quotient category; it comes with a natural functor En -algO(n) →
BO(n).

A key observation is that the data of a factorization algebra on M is local on M ; this implies:

Theorem 1.3.1. Let M be a smooth n-dimensional manifold. A factorization algebra on M is a locally
constant family of factorization algebras Ax on the tangent spaces TxM for all x ∈ M . More precisely,
the category of factorization algebras on M is the category of lifts

En -algO(n)

󰈃󰈃
M

󰈮󰈮

󰈣󰈣 BO(n)
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In other words (up to the O(n)-action), we have that a factorization algebra on an n-dimensional
manifold M is a family of En-algebras parametrized by M .

We will be particularly interested in factorization algebras on oriented manifolds (namely, Riemann
surfaces). We have:

Corollary 1.3.2. Let M be an oriented n-dimensional manifold. There is a natural functor

En -algSO(n) → FactAlg(M).

1.3.3. Note that in the infinite case, the strata of Ran(R∞) are contractible. Therefore, the action
of the infinite orthogonal group O on the category of E∞-algebras is trivial. In particular, this gives
another description of the functor

E∞ -alg → FactAlg(M),

for any manifold M .

1.4. Coefficients and additivity.

1.4.1. One of the advantages of working with topological spaces rather than algebraic varieties is that
we can consider (co)-sheaves valued in any category whatsoever. For a stratified space X and a category
C, let Shv!(X;C) denote the category of co-sheaves on X with values in C. Moreover, if C is a symmetric
monoidal category and M is a manifold, let FactAlg(M ;C) denote the category of factorization algebras
on M valued in C (the symmetric monoidal structure on C is needed to make sense of the factorization
isomorphisms).

For a manifold M , the category FactAlg(M) carries a natural symmetric monoidal structure given
by the !-tensor product on each MI . In particular, by the above, we can consider factorization algebras
with values in factorization algebras. A key result is the following:

Theorem 1.4.2. Let M , N be two manifolds. We have a natural equivalence

FactAlg(M ; FactAlg(N)) ≃ FactAlg(M ×N).

1.4.3. In particular, we have that E2 algebras are equivalent to E1 algebras in E1 algebras. In the
classical (i.e. not homotopical) setting, this implies that an E2-algebra is just a commutative algebra:

Exercise 1.4.4. Show that the category of monoids in the (ordinary) category of monoids is equivalent
to the category of commutative monoids.

2. Topological factorization categories

Given a manifoldM , let FactCat(M) := FactAlg(M ; DGCatcont) denote the category of factorization
categories on M . By the above discussion, we have that factorization categories on R are equivalent to
monoidal DG categories.

2.1. E2-categories and braided monoidal categories.

2.1.1. Consider a factorization category on R2. By Sect. 1.4.3 and the above discussion, this is equiv-
alent to a category C together with two monoidal structures

⊗ : C× C → C, and

⊙ : C× C → C

such that ⊙ is a monoidal functor with respect to ⊗, i.e. there are natural isomorphisms

(X1 ⊗ Y1)⊙ (X2 ⊗ Y2) ≃ (X1 ⊙X2)⊗ (Y1 ⊙ Y2).

We have,

1⊗ ≃ 1⊗ ⊗ 1⊗ ≃ (1⊗ ⊙ 1⊙)⊗ (1⊙ ⊙ 1⊗) ≃ (1⊗ ⊗ 1⊙)⊙ (1⊙ ⊗ 1⊗) ≃ 1⊙ ⊙ 1⊙ ≃ 1⊙.

Thus, we have an isomorphism between the units of the two monoidal structures. From now on, we
will denote the object 1 as the unit of both monoidal structures.
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Now, for X,Y ∈ C, consider

X ⊗ Y ≃ (X ⊙ 1)⊗ (1 ⊙ Y ) ≃ (X ⊗ 1)⊙ (Y ⊗ 1) ≃ X ⊙ Y.

Thus we obtain an isomorphism between the two tensor structures.
Moreover, we have

X ⊗ Y ≃ (1 ⊙X)⊗ (Y ⊙ 1) ≃ Y ⊗X.

Thus, we obtain a braiding morphism

bX,Y : X ⊗ Y → Y → X.

One can check that if C is an ordinary category then the above structures give an equivalence between
E2-categories and braided monoidal categories.

2.2. Ribbon twist. By the above discussion, given a braided monoidal category C, we can consider the
corresponding factorization category on R2. We will be interested in similarly constructing factorization
categories on other Riemann surfaces. To do that, we need to understand the abstract SO(2)-action
on the category of braided monoidal categories in more concrete terms.

We can describe the action of SO(2) in the following terms. Let us adopt the following convention.
We will describe an E2-category as a triple (C,⊗1,⊗2) where C is the underlying category, ⊗1 is the
monoidal structure obtained by restricting to the positively oriented x-axis and ⊗2 is the monoidal
structure obtained by restricting to the positively oriented y-axis.

Now, given an E2-category (C,⊗, )̇ for every element of SO(2), we have another E2-category. The
underlying category will be the same but the monoidal structures will be different. In the case of rotation
by 90, 180 and 270 degrees, the corresponding E2-categories are given, respectively, by (C,⊙,⊗op),
(C,⊗op,⊙op), and (C,⊙op,⊗). Moreover, given a path between two elements of SO(2), we obtain
an equivalence between the corresponding E2-categories. In particular, the path around the circle
clockwise gives a functor of braided monoidal categories

T : (C,⊗) → (C,⊗)

whose underlying functor is the identity functor and the monoidal structure on T is given by the square
of the braiding

b2 = bY,XbX,Y : X ⊗ Y → X ⊗ Y.

It follows that an SO(2)-equivariant structure on a braided monoidal category is a natural equiva-
lence of braided monoidal functors between T and the identity.

Definition 2.2.1. Let C be a braided monoidal category. A ribbon twist on C is a natural transfor-
mation of braided monoidal functors between T and the identity functor. Explicitly, it consists of an
isomorphism

θX : X → X

for each X ∈ C such that for every X,Y ∈ C the diagram

X ⊗ Y
b2 󰈣󰈣

θX⊗Y

󰈃󰈃

X ⊗ Y

θX⊗θY

󰈃󰈃
X ⊗ Y

id 󰈣󰈣 X ⊗ Y

commutes.

Note that any symmetric monoidal category has a canonical ribbon twist given by the identity
natural transformation.

2.2.2. Thus we have that given a braided monoidal category with a ribbon twist (alias: balanced
monoidal category), we can construct a factorization algebra on any Riemann surface.

2.3. Reqq(T ) via twisted sheaves.
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2.3.1. Twisted sheaves. Given a topological space X, we can consider the (DG-)category of locally
constant sheaves on X.

In what follows, we will consider a twisted version of this category. Let k be the ring of coefficients
and let Gerbk = B2Gm(k) denote the (2-)Picard groupoid of Gm-gerbes over Spec(k). A Gm-gerbe on
Spec(k) gives a twisted version of the category of k-modules. These categories assemble into a sheaf of
categories over Gerbk.

Recall that if X is a topological space then a k-gerbe on X, i.e. a map

η : X → Gerbk,

allows to consider the category Shvη(X) of twisted locally constant sheaves on X (with coefficients in
k). Formally, this category is defined as the global sections of the sheaf of categories pulled back from
Gerbk.

Informally, an object F of Shvη(X) is given by the following data. For each x ∈ X, an object
Fx ∈ k -modη(x) in the category of η(x)-twisted k-modules and for each path γ from x to y, an
isomorphism between γ∗(Fx) and Fy together with higher coherence data for homotopies of paths (and
homotopies between homotopies, etc).

2.3.2. From spaces to categories. Now, suppose thatM is a manifold andX is anM -factorization space,
i.e. a factorization algebra valued in topological spaces. In this case, we can build a factorization algebra
on M valued in categories by passing to (locally constant) sheaves on M .

We can also consider a twisted version of this construction. Slightly abusing notation, we will denote
by Gerbk the factorization space on M with fibers Gerbk and factorization structure induced from the
symmetric monoidal (=E∞) structure on Gerbk.

Definition 2.3.3. Let X be a factorization space on a manifold M . A factorization gerbe on X is a
map of factorization spaces

η : X → Gerbk

Now, given a factorization gerbe η on a factorization space X, the category Shvη(X) of η-twisted
sheaves on X has a canonical structure of a factorization category on M .

2.3.4. Repq(T ). We will apply the above construction in the following case. Let Λ be a lattice (which
we will regard as corresponding to an algebraic torus T ). Regarding Λ as an abelian group, we can
form the corresponding factorization space on R2. Note that this factorization space is given by the
C-points of the algebraic factorization space GrŤ over the affine line A1.

In what follows, we will consider our coefficients to be k = C, the complex numbers.

Suppose that we have a symmetric bilinear form

κ : Λ× Λ → C,

and let

q = exp(κ) : Λ× Λ → C∗.

In this case, we can define a factorization gerbe. By definition and the above considerations, a factor-
ization gerbe is a braided monoidal functor

ηq : Λ → Gerbek.

This functor is defined as follows. For each x ∈ Λ, ηq(x) is the trivial gerbe. Moreover, for each
x, y ∈ Λ, the monoidal isomorphism

ηq(x)⊗ ηq(y) ≃ ηq(x+ y)
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is the identity isomorphism of the trivial gerbe. It remains to specify the braiding compatibility, i.e. a
natural transformation making the diagram

ηq(x)⊗ ηq(y) 󰈣󰈣

󰈃󰈃

ηq(x+ y)

󰈃󰈃
ηq(y)⊗ ηq(x) 󰈣󰈣 ηq(y + x)

commute, for every pair x, y ∈ Λ. In the diagram above every gerbe is trivial and every map is the
identity isomorphism. In other words, we are required to give an isomorphism between the identity
isomorphim of the trivial gerbe and itself for every pair of objects x, y ∈ Λ. The space of such
isomorphisms is given by k∗, and we declare it to be q(x, y).

Moreover, the gerbe ηq comes equipped with a natural SO(2)-equivariant structure. By above, such
a structure is defined by an isomorphism from the trivial gerbe to itself for every element x ∈ Λ,
satisfying a compatibility condition. We take this isomorphism to be q(x, x) ∈ k∗.

Passing to twisted sheaves, we obtain a braided monoidal category Shvηq (Λ). Since ηq assigns to
every element x ∈ Λ the trivial gerbe, and to every pair x, y ∈ Λ the identity isomorphism, we have that
the underlying monoidal category of Shvηq (Λ) is given by V ectΛ the monoidal category of Λ-graded
vector spaces. In particular, Shvηq (Λ) is generated by objects kx, x ∈ Λ with

kx ⊗ ky ≃ kx+y

Unwinding the definitions, we have that the braiding

kx ⊗ ky → ky ⊗ kx

in Shvηq (Λ) is given by multiplication by q(x, y). In other words, Shvηq (Λ) is the braided monoidal

category VectΛq .

Moreover, the SO(2)-equivariant structure on the factorization gerbe ηq gives a ribbon twist on the
category VectΛq . Unwinding the definitions, this ribbon twist is defined by isomorphisms

kx ≃ kx

given by multiplication by q(x, x).

3. Categorified Riemann-Hilbert correspondence

3.1. Riemann-Hilbert for categories.

3.1.1. Recall that the Riemann-Hilbert correspondence provides a correspondence between sheaves on
an algebraic variety in the topological context (i.e. constructible sheaves) and D-modules.

Namely, given a variety X over C, the Riemann-Hilbert correspondence is an equivalence of sym-
metric monoidal categories

D-modrh(X) ≃ Shv!
constr(X),

where D-modrh(X) is the subcategory of D-modules on X consisting of regular holonomic D-modules
and Shv!

constr is the category of sheaves on X(C) which are constructible with respect to some algebraic
stratification.

3.1.2. We can upgrade the above symmetric monoidal equivalence to give a Riemann-Hilbert corre-
spondence between constructible sheaves of categories on X and crystals of categories.

Recall that for a variety X, the prestack XdR is 1-affine, i.e. we have that crystals of categories on
X are modules over D-mod(X).

In the case of constructible sheaves, we have the following analogous key statement:

Theorem 3.1.3. Let X be a stratified topological space. There is a natural equivalence of categories

Shv!(X; DGCatcont) ≃ Shv!(X) -mod .
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In other words constructible (co-)sheaves of categories are given by modules over the category of
constructible sheaves.

3.1.4. Suppose that X is an algebraic variety and we have a sheaf of categories on X locally constant
along an algebraic stratification. By the theorem, this is equivalent to a category C together with an
action of Shv!(X). Suppose that C is induced from a category with an action of

Shv!
constr(X) ⊂ Shv!(X),

i.e.
C ≃ Cconstr ⊗Shv!

constr(X) Shv
!(X).

In this case, using the Riemann-Hilbert correspondence, we can define the corresponding crystal of
categories as:

Cconstr ⊗D-modrh(X) D-mod(X).

3.2. Factorization categories: topological vs algebraic.

3.2.1. Let us now apply the above discussion to the case of factorization categories over algebraic curves.
As an immediate consequence of Theorem 3.1.3, we have:

Corollary 3.2.2. Let M be a manifold. There is an equivalence between the category of factorization
categories on M and the category consisting of:

• For each I ∈ fSet, a category AI with an action of Shv!(XI).
• (Ran’s condition) for every surjective map f : I → J an equivalence of Shv!(XJ)-module

categories
∆!

f (AI) := AI ⊗Shv!(XI) Shv
!(XJ) ≃ Shv!(XI).

• Factorization isomorphisms.

3.2.3. Now, suppose that C is a ribbon braided monoidal category. Let X be an algebraic curve and
let CI for I ∈ fSet denote the corresponding factorization category on X(C).

In the case that C is given by Ind of a braided monoidal category (i.e. it is generated by a braided
monoidal category of compact objects), we have that

CI ≃ Cconstr,I ⊗Shv!
constr(X

I ) Shv
!(XI)

functorially in I and therefore we can define the algebraic factorization category

Cconstr,I⊗D-modrh
(XI ) D-mod(XI)

corresponding to C.

3.2.4. In particular, we can apply the above construction to VectΛq . Observing that the factorization
space corresponding to Λ is the complex points of GrŤ and that the factorizable gerbe ηq is given by
the complex points of the factorization gerbe given by the symmetric bilinear form κ, we have that the
factorization category

D-modk(GrŤ )

corresponds to VectΛq under the above Riemann-Hilbert correspondence.


