
DUALITY FOR HEISENBERG ALGEBRAS AND GROUPS

SAM RASKIN

1. Outline

Let 𝑇 {𝑘 be a torus with weight lattice Λ and coweight lattice Λ̌. Let 𝑇 be the dual torus.
Let 𝜅 be a level for 𝑇 and let �̌� be the dual level for 𝑇 . (We will recall the meaning of such terms

in what follows.)

Let e.g. pt𝜅 denote the corresponding Heisenberg algebra and let pt𝜅–mod denote the appropriate
DG category of modules for it (always with the requirement that the central element acts by the
unit).

We will show how Contou-Carrère’s duality between 𝑇 p𝐾q and 𝑇 p𝐾q implies the following.

Theorem 1.0.1. (1) There is a canonical equivalence of DG categories:

pt𝜅–mod »pť�̌�–mod.

(2) In (1), the natural level 𝜅 𝑇 p𝐾q-action on the left hand side and the level �̌� 𝑇 p𝐾q action
on the right hand side canonically commute.

(3) With respect to the above bimodule structure, pt𝜅–mod induces an equivalence of categories:

𝑇 p𝐾q–mod𝜅 » 𝑇 p𝐾q–mod´�̌�
such that the diagram:

𝑇 p𝐾q–mod𝜅
» //

Oblv ''

𝑇 p𝐾q–mod´�̌�

p´q𝑇 p𝐾q,𝑤ww
DGCat𝑐𝑜𝑛𝑡

commutes.

Comparing endomorphisms of these forgetful functors, we obtain:

Corollary 1.0.2. There is a canonical equivalence of monoidal DG categories:

𝐷𝜅p𝑇 p𝐾qq » HCaff
𝑇,�̌�

where the right hand side denotes Harish-Chandra bimodules for the affine algebra pť�̌�.

For 𝜅 “ 0, we obtain:

Corollary 1.0.3. There is a canonical equivalence of monoidal DG categories:

𝐷p𝑇 p𝐾qq » QCohpLocSys𝑇 p
˝

𝒟qq.
(In fact, this equivalence is symmetric monoidal.)

Remark 1.0.4. Throughout these notes, we suppress renormalization issues.
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2. Levels

2.1. We quickly review the formalism of levels in the abelian case (c.f. [Zha]).
A naive level for 𝑇 is just a symmetric bilinear form 𝜅 on t. Recall that these are the traditional

parameters for Heisenberg algebras. The problem for this definition is that it is not clear what the
dual level �̌� should be, or what is meant by an infinite level, etc.

Clearly we need to compactify the space of naive levels. We do this in the standard way: realize
naive levels as certain maps 𝜅 : tÑ t_ “ ť, replace this map by its graph, and then take a Hilbert
scheme-style compactification.

What properties does the graph Γ𝜅 of 𝜅 : tÑ t have? Clearly it is a subspace of tˆ ť. The fact
that 𝜅 is symmetric is equivalent to its graph being Lagrangian1 for the symplectic form on tˆ ť:

pp𝜉, 𝜆q, p𝜓, 𝜇qq “ 𝜇p𝜉q ´ 𝜆p𝜓q.

Therefore, we define a level 𝜅 for 𝑇 to be a Lagrangian subspace Γ𝜅 Ď tˆ t_. Now this notion is
self-dual: the level �̌� for 𝑇 has 𝜎pΓ𝜅q “ Γ�̌� for 𝜎 the natural (up to sign) symplectic isomorphism:

𝜎 : tˆ ť » ťˆ t.

Remark 2.1.1. Geometrically, the space of levels for 𝑇 is a partial flag variety for the symplectic
group of tˆ ť and naive levels for 𝑇 constitute its open Bruhat cell.

2.2. Note that naive levels (for 𝑇 ) form a commutative group (scheme) under addition. Moreover,
they act on tˆ t_ by symplectic automorphisms. Indeed, bilinear forms on t are maps 𝜅 : t Ñ t_,

and these define automorphisms of tˆ t_ via

ˆ

id 0
𝜅 id

˙

; it is immediate to see 𝜅 is symmetric if and

only if this automorphism is symplectic.
In particular, for 𝜅 a naive level and 𝜅1 an arbitrary level, we may write 𝜅` 𝜅1 to be the image

of 𝜅1 under the above automorphism; if 𝜅1 is a naive level, this coincides with usual addition of
symmetric bilinear forms.

2.3. We now define the Heisenberg algebra pt𝜅 for a level 𝜅.
Equip tˆ ť with the symmetric form:

xp𝜉, 𝜆q, p𝜓, 𝜇qy “
1

2

`

𝜇p𝜉q ` 𝜆p𝜓q
˘

.

Now Γ𝜅 inherits a symmetric form2 and therefore Γ𝜅pp𝑡qq inherits an alternating form:

Resx´, 𝑑p´qy

in the usual way. This defines a Heisenberg central extension:

0 Ñ 𝑘 Ñpt𝜅 Ñ Γ𝜅pp𝑡qq Ñ 0.

By definition, this exact sequence of vector space is equipped with a splitting, and then the above
alternating form is taken as a Lie algebraic 2-cocycle.

1This follows from the general fact: if 𝑆 : 𝑉 Ñ 𝑊 is a morphism of finite-dimensional vector spaces and 𝑆_ :
𝑊_

Ñ 𝑉 _ the dual map, then Γ𝑆_ Ď𝑊_
ˆ 𝑉 _ is obtained from Γ𝑆 Ď 𝑉 ˆ𝑊 by taking ΓK𝑆 and pulling it back by

the inversion map along either factor 𝑊_ or 𝑉 _.
2We remark that x´,´y restricted to Γ𝜅 can be calculated as:

xp𝜉, 𝜆q, p𝜓, 𝜇qy “ 𝜇p𝜉q “ 𝜆p𝜓q.
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Example 2.3.1. If 𝜅 is a naive level, then:

Γ𝜅 ãÑ tˆ ť
𝑝1
ÝÑ t

is an isomorphism, so pt𝜅 is a central extension of tpp𝑡qq. The corresponding alternating form in this
case may be written as Resp𝜅p´, 𝑑p´qqq.

2.4. Duality for Heisenberg algebras. The above constructions were completely symmetric in

t and ť. Therefore, pt𝜅 »
pť�̌� as central extensions of Γ𝜅pp𝑡qq » Γ�̌�pp𝑡qq.

This proves Theorem 1.0.1 (1).

3. Group actions

3.1. In this section, we (formulate and) show that 𝑇 p𝐾q acts with level 𝜅 on pt𝜅–mod.

3.2. Digression: twisted 𝐺-actions. Fix 𝐺 an algebraic group. We wish to give a general format
for discussing various notions of 𝐺-action on DG categories.

3.3.

Definition 3.3.1. A twist for 𝐺 is the datum of:

‚ A group inf-scheme r𝐺

‚ A homomorphism 𝐺Ñ r𝐺 which is a nil-isomorphism (i.e., 𝐺
»
ÝÑ r𝐺 is an isomorphism when

evaluated on reduced schemes).
‚ A central extension:

1 Ñ BG𝑚 Ñ r𝐺1 Ñ r𝐺Ñ 1

equipped with a splitting over 𝐺.

A split twisting is a twisting, plus an extension of the splitting 𝐺 Ñ r𝐺1 to r𝐺. I.e., it is just the

datum 𝐺Ñ r𝐺.

Remark 3.3.2. Above, we allow r𝐺 to be in the world of derived algebraic geometry for aesthetic
reasons. This is not needed for our examples.

Example 3.3.3. (1) r𝐺 “ 𝐺 defines a split twisting.

(2) r𝐺 “ 𝐺𝑑𝑅 defines another split twisting.

(3) If h Ď g is a normal subalgebra, r𝐺 “ 𝐺{ expphq generalizes both of the above examples.
(Here expphq is the formal group associated with h.)

3.4. Suppose we are given a twist as above; we denote this datum by 𝜏 .
We then define 𝐺–mod𝜏 , the category of cocomplete DG categories with 𝜏 -twisted 𝐺-action, as

follows.
First, the twisting is split. Then we take 𝐺–mod𝜏 “ IndCohp r𝐺q–mod, where the right hand side

is equipped with the convolution monoidal structure.
In general, note that a BG𝑚-action on C P DGCat𝑐𝑜𝑛𝑡 is equivalent to giving a decomposition

C “
ś

𝑛PZ C𝑛. (The sheaves Op𝑛q on BG𝑚 define mutually commuting idempotents.) Then we take

𝐺–mod𝜏 as the full subcategory of IndCohp r𝐺1q–mod where C “ C1 in the above notation.

Example 3.4.1. Our examples are for split twists. If r𝐺 “ 𝐺, then 𝐺–mod𝜏 “ 𝐺–mod𝑤𝑒𝑎𝑘. If r𝐺 “
𝐺𝑑𝑅, then 𝐺–mod𝜏 “ 𝐺–modp:“ 𝐺–mod𝑠𝑡𝑟𝑜𝑛𝑔q.
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Remark 3.4.2. Roughly, 𝐺–mod𝜏 is ShvCat
{B r𝐺

in the split case. For any prestack Y, a G𝑚 3-gerbe3

defines a “twisted” version of ShvCat{Y; and our central extension is equivalent to specifying such

a 3-gerbeon B r𝐺 (split over B𝐺).

Remark 3.4.3. The splitting of r𝐺1 over 𝐺 implies that the functor:

𝐺–mod𝜏
C ÞÑC𝐺,𝑤

ÝÝÝÝÝÑ Vect

is well-defined and conservative.

3.5. We have the following characterization of twists.

Proposition 3.5.1. The following categories are canonically equivalent.

(1) Split twists for 𝐺.
(2) Lie algebroids on B𝐺.
(3) A DG Lie algebra h equipped with an action of 𝐺 and a 𝐺-equivariant homomorphism

𝜄 : hÑ g such that the action of h on its via 𝜄 and the infinitesimal g action coincides with
the adjoint action, plus higher homotopical data if h is not classical.

Proof. The equivalence of the first two points follows from [GR], while the third is essentially [BB]
S1.8.4.

The constructions go as follows. For a twisting 𝐺Ñ r𝐺, B𝐺ˆB r𝐺
B𝐺 is a formal groupoid on B𝐺,

and the corresponding Lie algebroid is the desired one. The corresponding Lie algebra h is the Lie

algebra of the formal group Kerp𝐺Ñ r𝐺q, (and the morphism 𝜄 is the tautological map).
�

We have the following analogue in general.

Proposition 3.5.2. The following categories are canonically equivalent.

(1) Twists for 𝐺.
(2) Lie algebroids 𝐿 on B𝐺 equipped with a central extension:4

0 Ñ OB𝐺 Ñ 𝐿1 Ñ 𝐿Ñ 0.

(3) A central extension:

0 Ñ 𝑘 Ñ h1
𝜋
ÝÑ hÑ 0

of DG Lie algebras acted on by 𝐺 (with 𝐺 acting trivially on 𝑘), and a 𝐺-equivariant
morphism 𝜄 : hÑ g, such that 𝜄 and 𝜋 ˝ 𝜄 (compatibly) satisfy the hypotheses of Proposition
3.5.1 (3).

Remark 3.5.3. In the third perspective above, ignoring higher homotopical issues, a 𝜏 -twisted 𝐺-
action on C is an action of 𝐺 and a 𝐺-equivariant trivialization of the induced action of5 h1, and
such that the two trivializations of the action of the Lie algebra 𝑘 “ LiepG𝑚q corresponds to the

canonical action of ByG𝑚 on C (through BG𝑚, with C “ C1 as above).

3Analogous to how a 2-gerbe defines a twisted version of QCoh and a 1-gerbe defines a twisted version of functions.
4Since our examples are classical, we are lazy in writing triangles in the derived category as short exact sequences.
5Here by an action of a Lie algebra h on C, we mean an action of the monoidal category IndCohpexpphqq. Equiva-

lently, this is a morphism of Lie algebras hÑ 𝐻𝐻‚pCqr1s.
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3.6. Twisted Harish-Chandra data. The main example of the above structure for our purposes
is the following.

Suppose 𝐴 P Vect is an algebra equipped with an action of 𝐺. Suppose moreover that we are given
a 𝐺-equivariant map of (DG) Lie algebras h1 Ñ 𝐴 satisfying the usual (twisted, and appropriately
homotopical) Harish-Chandra conditions. Then 𝐴–mod has a natural 𝜏 -twisted 𝐺-action.

In particular, this applies for 𝐴 “ 𝑈 1phq, the twisted enveloping algebra of h1. We denote the
category of modules in this case by h–mod1. Then h–mod1 is characterized by a universal property:
the functor on 𝐺–mod𝜏 it corepresents is p´q𝐺,𝑤.

3.7. Generalization to the infinite-dimensional setting. Recall from [Ras] that there is a
good notion of weak 𝑇 p𝐾q-action on C. The same is true for Tate Lie algebras. We freely use the
generalization of the above formalism for 𝐺 replaced by a group like 𝑇 p𝐾q and h1 (and h) being
(classical) Tate Lie algebras.

3.8. Back to Heisenberg algebras. We now return to the setting of S2. Suppose 𝜅 is a level for
𝑇 .

We obtain a datum as in Proposition 3.5.2 by the following construction.
Take 𝐺 “ 𝑇 p𝐾q, h “ Γ𝜅pp𝑡qq, and h1 “pt𝜅. The map 𝜄 : hÑ g is the composition:

Γ𝜅pp𝑡qq ãÑ tpp𝑡qq ‘ ťpp𝑡qq
𝑝1
ÝÑ tpp𝑡qq.

We let 𝑇 p𝐾q act on Γ𝜅pp𝑡qq trivially.

However, the action on pt𝜅 is6 non-trivial. Specifying such an action on our central extension is
equivalent to giving a homomorphism 𝑇 p𝐾q Ñ HompΓ𝜅pp𝑡qq, 𝑘q. We have:

HompΓ𝜅pp𝑡qq, 𝑘q “ Γ_𝜅 pp𝑡qq𝑑𝑡 “
`

ptˆ ťq{Γ𝜅

˘

pp𝑡qq𝑑𝑡.

We then obtain the desired map from the homomorphism 𝑑 log : 𝑇 p𝐾q Ñ tpp𝑡qq𝑑𝑡 and the compo-
sition:

t ãÑ tˆ ťÑ ptˆ ťq{Γ𝜅.

Example 3.8.1. If 𝜅 “ 0 (in particular, 𝜅 is a naive level). Then the above action of 𝑇 p𝐾q on pt𝜅 is
non-trivial.

Example 3.8.2. If �̌� “ 0, then the above action corresponds to the gauge action of 𝑇 p𝐾q on t-valued
1-forms.

3.9. Above, we defined a twisting for 𝑇 p𝐾q for any level 𝜅. In what follows, we refer to 𝜏 -twisted
𝑇 p𝐾q actions as (strong, if you like) actions of 𝑇 p𝐾q with level 𝜅.

For general reasons, 𝑇 p𝐾q acts on pt𝜅–mod with level 𝜅.

3.10. Commutation. We now prove Theorem 1.0.1 (2).
For tori 𝑇1 and 𝑇2, there is an obvious operation taking a level 𝜅𝑖 for 𝑇𝑖 and producing a level

𝜅1 b 𝜅2 for 𝑇1 ˆ 𝑇2. Note that commuting 𝑇1 and 𝑇2 actions with levels 𝜅𝑖 is equivalent to a
𝑇1 ˆ 𝑇2-action with level 𝜅1 b 𝜅2.

Now we observe that the above construction of the level 𝜅 𝑇 p𝐾q-action onpt𝜅–mod was symmetric
in 𝑇 and 𝑇 .

More precisely, we can instead take 𝐺 “ 𝑇 p𝐾q ˆ 𝑇 p𝐾q, h and h1 as before, 𝜄 as the map

Γ𝜅pp𝑡qq ãÑ tpp𝑡qqˆ ťpp𝑡qq, and the 𝑇 p𝐾qˆ𝑇 p𝐾q-action on pt𝜅 coming 𝑑 log (along both factors now).

6Necessarily, if pt𝜅 is non-abelian.



6 SAM RASKIN

4. Duality

4.1. We now treat the last point of Theorem 1.0.1.

4.2. Contou-Carrère review. Recall that there is a canonical bimultiplicative pairing:

𝑇 p𝐾q ˆ 𝑇 p𝐾q Ñ G𝑚.

We recall the construction in what follows.

4.3. Suppose 𝑉 is a Tate vector space. Recall that there is a (trivial) G𝑚 (2-)gerbe detp𝑉 q. E.g.,
it can be defined as the groupoid of lattices 𝐿 Ď 𝑉 with morphisms 𝐿1 Ñ 𝐿2 in this category given
by points in the relative determinant line of 𝐿1 and 𝐿2.

7

This construction behaves well in families. In particular, if a group indscheme 𝐺 acts on 𝑉 , then
𝐺 acts on detp𝑉 q. Therefore, we obtain a homomorphism 𝐺Ñ BG𝑚 “ Autpdetp𝑉 qq.

Applying this for 𝐺 “ G𝑚p𝐾q and its standard action (by multiplication) on 𝑉 “ 𝐾, we obtain
G𝑚p𝐾q Ñ BG𝑚. This defines a central extension of G𝑚p𝐾q by G𝑚, and its commutator induces a
bimultiplicative pairing:

p´,´q : G𝑚p𝐾q ˆG𝑚p𝐾q Ñ G𝑚.

This is the Contou-Carrère pairing (or “tame symbol”), and the desired pairing for 𝑇 “ G𝑚; we
refer to [BBE] for more details.

For a general torus, there is clearly a unique pairing characterized by:

p�̌�p𝑓q, 𝜇p𝑔qq “ p𝑓, 𝑔q�̌�p𝜇q

for 𝑓, 𝑔 P G𝑚p𝐾q.

4.4. In particular, we obtain a canonical (invertible) function on 𝑇 p𝐾q ˆ 𝑇 p𝐾q. This induces a
map (with continuous dual on the left hand side):

Funp𝑇 p𝐾qq_ Ñ Funp𝑇 p𝐾qq.

This map is well-known to be an isomorphism.

Exercise 4.4.1. Show this by filtering 𝑇 p𝐾q as a group scheme.

Exercise 4.4.2. Show that the above induces an equivalence QCohp𝑇 p𝐾qq♡ » Repp𝑇 p𝐾qq♡, and
that this equivalence extends to derived categories.

(Part of the exercise is defining the 𝑡-structure on QCoh to make this result true.)

Exercise 4.4.3. Show that the above equivalence extends to an equivalence 𝑇 p𝐾q–mod𝑤𝑒𝑎𝑘 »

𝑇 p𝐾q–mod𝑤𝑒𝑎𝑘 such that the diagram:

𝑇 p𝐾q–mod𝑤𝑒𝑎𝑘

Oblv

((

» // 𝑇 p𝐾q–mod𝑤𝑒𝑎𝑘

p´q𝑇 p𝐾q,𝑤vv
DGCat𝑐𝑜𝑛𝑡

commutes. Show that neither of the vertical arrows is conservative.

7There is a nicer 𝐾-theoretic construction. Roughly, the DG category of Tate vector spaces is the pushout
of Vect with Vect𝑜𝑝 along Vect𝑐 » Vect𝑐,𝑜𝑝 (for Vect𝑐 Ď Vect the subcategory of bounded complexes of finite-
dimensional vector spaces). Then 𝐾pVectq “ 𝐾pVect𝑜𝑝q are both trivial, and we are then using the determinant map
𝐾pVect𝑐q Ñ B𝑘ˆ, and similarly in families.
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For this reason, we write the above equivalence as:

p´q𝑇 p𝐾q,𝑤 : 𝑇 p𝐾q–mod𝑤𝑒𝑎𝑘 Ñ 𝑇 p𝐾q–mod𝑤𝑒𝑎𝑘.

4.5. We now complete the proof of Theorem 1.0.1.
First, note that by T pt𝜅–mod is a bimodule for the left action of 𝑇 p𝐾q with level 𝜅 and the

right action of 𝑇 p𝐾q with level ´�̌� (the sign is because we have exchanged left and right actions).
Therefore, we obtain the functor:

𝑇 p𝐾q–mod´�̌� Ñ 𝑇 p𝐾q–mod𝜅

Č ÞÑpt𝜅–mod b
𝑇 p𝐾q,´�̌�

Č “ Č𝑇 p𝐾q,𝑤.

(Here we are writing tensor product of left and right modules.)
This functor fits into the diagram:

𝑇 p𝐾q–mod´�̌�
p´q𝑇 p𝐾q,𝑤 //

Oblv
��

𝑇 p𝐾q–mod𝜅

Oblv
��

𝑇 p𝐾q–mod𝑤𝑒𝑎𝑘
p´q𝑇 p𝐾q,𝑤 // 𝑇 p𝐾q–mod𝑤𝑒𝑎𝑘

. (4.5.1)

Remark 4.5.1. Note that the bottom arrow of this diagram is an equivalence and that the vertical
arrows are conservative.

4.6. Note that we have the standard duality pt𝜅–mod_ » pt´𝜅–mod. Moreover, this upgrades to a
duality of bimodules with appropriate levels.

Therefore, it follows that our functor p´q
ˇ𝑇 p𝐾q,𝑤 : 𝑇 p𝐾q–mod´�̌� Ñ 𝑇 p𝐾q–mod𝜅 has a right (and

actually, simultaenously left) adjoint given by the formula p´q𝑇 p𝐾q,𝑤. Moreover, this functor also
makes the diagram:

𝑇 p𝐾q–mod´�̌�

Oblv
��

𝑇 p𝐾q–mod𝜅

Oblv
��

p´q𝑇 p𝐾q,𝑤oo

𝑇 p𝐾q–mod𝑤𝑒𝑎𝑘 𝑇 p𝐾q–mod𝑤𝑒𝑎𝑘
p´q𝑇 p𝐾q,𝑤oo

commute. Moreover, this diagram commutes compatibly with the adjunctions and the diagram
(4.5.1). Then the formal observations of Remark 4.5.1 imply the claim.

Exercise 4.6.1. Show that, in contrast to Exercise 4.4.3, the functors Oblv and p´q𝑇 p𝐾q,𝑤 are
conservative on 𝑇 p𝐾q–mod𝜅. (Disclaimer: I only really checked this for 𝑇 “ G𝑚.)
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