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Summary

In the case classical limit, the ‘naive’ guess about the statement of the geometric
Langlands conjecture is false. In this talk, we discuss how to correct this matter.
The correction is required in both settings: global and local. The global case is
easier: all objects are rigorously defined. In the local case, there is a framework,
but it must be applied in a situation outside of its ‘comfort zone’, and it is not clear
how to do this.

Since the talk is concerned with the classical limit, it is essentially independent
from the rest of the conference.

1. Global correspondence

1.1. Formulation. Recall that the global quantum Langlands correspondence is
expected to be an equivalence

D-mod(BunG)κ ' D-mod(BunǦ)−κ̌.
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As κ → ∞, the correspondence degenerates into the global classical Langlands
correspondence

QCoh(LocSysG) ' D-mod(BunǦ).

(The critical twist on the right-hand side can safely be ignored.) However, the
conjecture cannot possibly be correct as stated: the left-hand side is too small. To
match the right-hand side, it needs to be enlarged as follows:

Conjecture 1. There is an equivalence

IndCohNilpglob(LocSysG) ' D-mod(BunǦ).

(Of course, there is more to be said: the properties of this equivalence, why it
is better than the original form, etc.) This was actually covered in more detail
at the 2014 school in Jerusalem, the notes are available online (Or see [1] for all
the technicalities). However, let us quickly review the general structure of this
enlargement.

1.2. Ind-coherent sheaves. Let Z be a reasonable scheme. The compact objects
in QCoh(Z) are perfect sheaves:

QCoh(Z)c = Perf(Z).

The category is compactly generated, so

QCoh(Z) = Ind(Perf(Z)).

Being a perfect sheaf is a kind of ‘smallness’ condition on a quasicoherent sheaf.
However, there is another, weaker, smallness condition, which is sometimes more
reasonable: the condition of being a coherent sheaf. (In the more ‘classical’ lan-
guage, this means being bounded with coherent cohomology.) The two categories
are different if Z is singular. By definition, the category of ind-coherent sheaves is
the ind-completion of the category of coherent sheaves:

IndCoh(Z) = Ind(Coh(Z)).

It is important to point out that although Coh(Z) starts as a subcategory of
QCoh(Z), the category IndCoh(Z) is larger. The relation between the categories
is summarized by two adjoint functors:

Ξ : QCoh(Z) � IndCoh(Z) : Ψ.

Ξ is fully faithful; what is slightly misleading is that Ψ|Coh(Z) is fully faithful as
well; this is why we normally view Coh(Z) as a subcategory in QCoh(Z). However,
Ξ ◦Ψ|Coh(Z) is not the identity.

1.3. Singular support. Suppose now that Z is a local complete intersection (per-
haps in the dg sense: quasi-smooth). In this case, there is a precise way to describe
categories that are intermediate between Perf(Z) and Coh(Z).

Let H−1T ∗Z be the shifted cotangent bundle to Z. It is a ‘vector bundle’ over Z
(but not really, its fiber is a vector space of variable dimension) that is non-zero over
the singular locus of Z. To any coherent sheaf F ∈ Coh(Z) we can assign its singular
support, which is a closed conical subset SingSupp(F ) ⊂ H−1T ∗Z. Conversely,
given any closed conical subset C ⊂ H−1T ∗Z, we obtain a full subcategories

CohC(Z) := {F ∈ Coh(Z) : SingSupp(F ) ⊂ C}
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and
IndCohC(Z) := Ind(CohC(Z)).

All of the above constructions extend to stacks, and we apply them to LocSysG(X),
which is quasi-smooth. It turns out that

H−1T ∗ LocSysG(X) = {(L,A) : L ∈ LocSysG(X), A ∈ Γ(XdR, gL)};
that is, the ‘shifted covector’ A is a (horizontal) infinitesimal symmetry of the local
system L. We now put

Nilpglob := {(L,A) : A is nilpotent} ⊂ H−1T ∗ LocSysG(X).

This is a closed conical subset, so the category

IndCohNilpglob(LocSysG(X))

on the left-hand side of Conjecture 1 makes sense.

2. Local correspondence: the stack of local systems

2.1. Formulation. Now let us look at the local version. Recall that the quantum
local correspondence is expected to be an equivalence of two 2-categories

L(G)−modκ ' L(Ǧ)−mod−κ̌ .

As κ→∞, we may ‘naively’ expect the following.

Conjecture 2 (Wrong). There is an equivalence of 2-categories

ShvCat(LocSysG(D̊)) ' L(Ǧ)−mod .

Here D̊ is the punctured formal disk, LocSysG(D̊) is the stack of local systems

on D̊, and ShvCat(LocSysG(D̊)) is the 2-category of sheaves of categories over it.

2.2. Spherical example. Before trying to make sense of all of this, here is an
example. Let the marked point ∗ ∈ LocSysG(D̊) correspond to the trivial local
system. As a stack, ∗ = BG (the trivial local system has automorphisms). For this
reason, the full subcategory

C := ShvCat(LocSysG(D̊))∗ ⊂ LocSysG(D̊)− ShvCat

consisting of categories supported over ∗ is equivalent to ShvCat(BG). (However,
see Remark 3.)

On the other side of the correspondence, C corresponds to the full subcategory

Č := LǦ−modsph

of spherical representations LǦ-modules; that is, representations that are generated
by L+Ǧ-invariants. As in the classical theory, such representations are actually
modules over the corresponding Hecke algebra (well, monoidal category), which in
this case is the spherical Hecke category

H := D-mod(GrǦ)L
+(Ǧ)

of L+(Ǧ) bi-invariant D-modules on L(Ǧ).
Thanks to the Satake equivalence, we have

H ' Rep(G).

Note that Rep(G) = QCoh(BG). Now, the stack BG is 1-affine (this means there
is an equivalence ShvCat(BG) ' QCoh(BG)−mod). This completes the proof of
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the ‘spherical’ part of the local classical geometric Langlands correspondence: it is
given by the chain of equivalences

C ' ShvCat(BG) ' QCoh(BG)−mod = Rep(G)−mod ' H−mod ' Č.

As we see, modulo some general claims, it reduces to the Satake equivalence.

Remark 3. I cheated several times in the above argument. First of all, ∗ is not an
isolated point, so the category C is not just ShvCat(BG) (equivalently, the group of
automorphisms of the trivial local system has some derived directions). Secondly,
the Hecke category is more complicated than Rep(G); the complexity is captured
by the derived Satake equivalence. Finally, the statement of Conjecture 2 needs a
‘singular support correction’ (Conjecture 11).

It is a nice exercise to verify that these cheats actually cancel out.

2.3. Stack of local systems on the punctured disk. Let us now look at the
stack LocSys(D̊). (The group G is going to be fixed, so we omit it.) Technically, it
can be defined as the quotient of connection matrices by gauge equivalence:

LocSys(D̊) = {d+ g((t))dt}/LG.
The point is, this quotient is scary. Well, perhaps not scarier than most things

at this conference, but we are trying to treat it as an algebraic stack. For instance,
the problem of classifying connections (the most familiar case is G = GL(n), when

it is known as the Turrittin-Levelt classification) describes k-points LocSys(D̊)(k).
However, the description is clearly ‘stratum-by-stratum’, and it seems completely
impossible to understand the geometry of how the strata attach to each other. For
instance, I have only a very vague idea of what LocSys(D̊)(A1) looks like.

Despite this, it turns out that the category of quasicoherent sheaves on LocSys(D̊)
is very well behaved.

Theorem 4 (Sam Raskin, [3]). For any reductive group G,

• The category QCoh(LocSys(D̊)) is compactly generated;

• The stack LocSys(D̊) is ‘weakly 1-affine’ in the sense that the localization
functor

QCoh(LocSys(D̊))−mod→ ShvCat(LocSys(D̊))

is fully faithful.

Because of Theorem 4, we should not abandon all hope concerning Conjecture 2.

3. Local correspondence: singular support

Unfortunately, Conjecture 2 cannot hold as stated. It needs a ‘singular support’
correction, similar to the correction included in Conjecture 1.

3.1. Singular support of categories over a smooth space. Inspired by Theo-
rem 4, we will first pretend that LocSys(D̊) is a smooth space. (The stack LocSys(D̊)
is indeed smooth, the pretense is ignoring its non-algebraic nature.) In this case,
there is a theory of singular support for categories (but there is no reference on
this so far, although certain points are similar to the work of Kapustin-Rozansky-
Saulina).
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Here is a summary. Let Z be a smooth variety. We have the 2-category
ShvCat(Z) of categories over Z. It turns out that Z is 1-affine, so ShvCat(Z) '
QCoh(Z)−mod. For any isotropic conical closed subset

C ⊂ T ∗Z

(no shift, the usual cotangent bundle!) we will define the 2-category ShvCat(Z)C
such that ShvCat(Z)0 = ShvCat(Z) and ShvCat(Z)C1

⊂ ShvCat(Z)C2
(full em-

bedding) for C1 ⊂ C2.

Remark 5. So if you want, put A := lim−→ ShvCat(Z)C , and treat ShvCat(Z)C ⊂ A
as the full 2-subcategory of ‘categories over Z with singular support in C’.

Here is the definition of ShvCat(Z)C for special class of subsets C.

Definition 6. Let Y be another smooth variety, and let p : Y → Z be a proper
map. Consider the fiber product

Y ×Z Y.

It has a natural structure of a groupoid over Y ; it yields a convolution product on
the category IndCoh(Y ×Z Y ) of ind-coherent sheaves. Put

ShvCat(Z)C := IndCoh(Y ×Z Y )−mod,

where C = N∨Y ⊂ T ∗Z is the ‘conormal bundle’ to Y defined as follows:

N∨Y := {(z ∈ Z, ξ ∈ T ∗Z) : ξ ⊥ dp(TyY ) for some y ∈ p−1(z)}.

The distinction between indcoherent and quasicoherent sheaves is crucial here:
if we consider QCoh(Y ×Z Y )-modules instead (again, using the convolution struc-
ture), a version of proper descent will apply: the 2-category QCoh(Y ×Z Y )−mod
is equivalent to the full 2-subcategory

ShvCat(Z)p(Y ) ⊂ ShvCat(Z)

of sheaves of categories supported over p(Y ) ⊂ Z, so that we don’t get anything
new.

Remark 7. This can also be viewed as a kind of Morita equivalence: the full 2-
subcategory ShvCat(Z)p(Y ) is generated by

QCoh(Y ) ∈ QCoh(Z)− mod = ShvCat(Z),

where QCoh(Y ) is considered as a QCoh(Z)-module under p∗, and

QCoh(Y ×Z Y ) = HomQCoh(Z)(QCoh(Y ),QCoh(Y )).

Note also that while Y and Z are smooth, the fiber product Y ×ZY is only quasi-
smooth: this is why the category IndCoh(Y ×Z Y ) is larger than QCoh(Y ×Z Y ).
Using the notion of singular support, we can measure exactly the difference between
the two categories. It is easy to see that H−1T ∗(Y ×Z Y ) naturally embeds into
T ∗Z ×Z Y ×Z Y ; the embedding identifies it with the set of collections (z, ξ, y1, y2)
such that y1, y2 ∈ Y , p(y1) = p(y2) = z ∈ Z, ξ ∈ T ∗z Z, and ξ ⊥ dpTyiY for i = 1, 2.

In particular, we see that the conormal bundle N∨Z is equal to the projection of
H−1T ∗(Y ×Z Y ). We can use this observation to define ShvCat(Z)C for arbitrary
isotropic C by decreasing the monoidal category:
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Definition 8. Let C ⊂ T ∗Z be arbitrary conical isotropic closed subset. Choose
smooth Y equipped with a projection p : Y → Z such that C ⊂ N∨Y . Put

C ′ := SingH−1T∗(Y×ZY )∩C×ZY×ZY ⊂ SingH−1T∗(Y×ZY ) ⊂ T ∗Z×ZY×ZY.

Consider the full subcategory

IndCohC′(Y ×Z Y ) ⊂ IndCoh(Y ×Z Y ).

The convolution product turns it into a monoidal category, and we put

ShvCat(Z)C := IndCohC′(Y ×Z Y )−mod .

Remark 9. The embedding IndCohC′(Y ×Z Y ) ⊂ IndCoh(Y ×Z Y ) admits a right
adjoint ΨC′ . The unit object in the category IndCoh(Y ×Z Y ) is ∆∗ωY , while the
unit object of IndCohC′(Y ×Z Y ) is ΨC′(∆∗ωY ). In fact,

IndCohC′(Y ×Z Y ) = IndCohC(Y ×Z Y ) ?ΨC′(∆∗ωY ).

Theorem 10. The 2-category ShvCat(Z)C depends only on C, and not on the
choice of Y . It also has the properties announced above: if C1 ⊂ C2, there is a
natural full embedding ShvCat(Z)C1

↪→ ShvCat(Z)C2
, while for the zero section,

we have ShvCat(Z)0 = ShvCat(Z).

3.2. Simple example. Suppose Z = Speck[t], and Y = Speck embedded into Z
as the point 0. In this case, C = N∨Y = T ∗0Z.

The fiber product Y ×Z Y is the dg-scheme Spec k[ε], deg(ε) = −1. The
category of IndCoh(Y ×Z Y ) can be understood via the Koszul transform: Let
B = Homk[ε](k,k) be the Koszul dual ring; explicitly, B = k[η] for deg(η) = 2. The
category IndCoh(Y ×Z Y ) (resp. QCoh(Y ×Z Y )) is identified with B−mod (resp.
with the full subcategory of B −mod consisting of modules supported at zero).

The identification intertwines the convolution product with the tensor product
of B-modules. We have the following equivalences of categories:

• ShvCat(Z) is the 2-category of k[t]-linear categories;
• ShvCat(Z)0 is the 2-category of k[t]-linear categories supported at 0. By

definition, the category C is supported at 0 if

(k[t, t−1]−mod)⊗k[t]−mod C = 0.

one can check that this is equivalent to the vanishing

k[t, t−1]⊗ c = lim−→(c
t→ c

t→ c
t→ . . . ) = 0 for all c ∈ C.

• Using the Koszul transform, we can alternatively view ShvCat(Z)0 as the
category of k[η]-linear categories supported at 0. The correspondence sends
the k[t]-linear category C to

(k−mod)⊗k[t]−mod C.

• ShvCat(Z)C is the 2-category of all k[η]-linear categories.

3.3. Formulation of the local geometric Langlands correspondence. We
can now correct Conjecture 2; however, this requires applying the techniques sketched
in this section to LocSysG(D̊); at this point, it is not clear how to make this rigorous.

Similar to the global case, it is easy to check that

T ∗ LocSysG(D̊) = {(L,A) : L ∈ LocSysG(D̊), A ∈ Γ(XdR, gL)};
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that is, the covector A is a (horizontal) infinitesimal symmetry of the local system
L. We now put

Nilploc := {(L,A) : A is nilpotent} ⊂ T ∗ LocSysG(D̊).

This is a closed conical isotropic subset, and we can now state the following con-
jecture.

Conjecture 11. There is an equivalence of 2-categories

ShvCat(LocSysG(D̊))Nilploc ' L(Ǧ)−mod .

4. Affine Hecke algebra

We can reinterpret the results of Bezrukavnikov [2] in this language. The main
result of [2] can be stated as follows.

Let I ⊂ L+Ǧ be the Iwahori subgroup, so that it fits into the pullback square

I //

��

L+Ǧ

��
B̌ // Ǧ.

Consider the corresponding Hecke category

H := D-mod(I\LǦ/I),

which may be viewed as the geometrization of the affine Hecke algebra. The
monoidal structure on H is given by the convolution of D-modules.

Theorem 12 (Bezrukavnikov). There is a monoidal equivalence

H ' IndCoh((Spr×g Spr)/G);

here Spr = T ∗(G/B) is the Springer variety.

The right-hand side of Theorem 12 fits into the framework of singular support
for categories. Indeed, put Z := g /G, and Y = Spr /G. (Note that we are using
the framework in the setting of smooth stacks rather than varieties.) The natural
map p : Y → Z is proper. Let us identify g with its dual; we then have

T ∗ Z = {(z, ξ) ∈ g× g : [ξ, z] = 0}/G
and

N∨Y = {(z, ξ) : [ξ, z] = 0, ξ and z are nilpotent.}
In this way, we get a corollary of Theorem 12:

Corollary 13. There is an equivalence of 2-categories

H−mod ' ShvCat(g /G)N∨Y .

Similar to Section 2.2, H−mod identifies with the full subcategory of LǦ−mod
consisting of categories that are generated by I-invariants. On the other side of the
correspondence, there is a natural map

g /G→ LocSysG(D̊) : x 7→ d+ x
dt

t
.

The map is an isomorphism on the formal neighborhood of the nilpotent cone of
g. We can now see that Corollary 13 in fact verifies Conjecture 11 on the formal
neighborhood of local systems with regular singularity and nilpotent residue.
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