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THE SPACE OF QUANTUM PARAMETERS

0.1. Defining Par(..

0.1.1. Throughout, we let k denote our ground field: an algebraically closed field of charac-
teristic zero. Let Q(A7,k)" be the vector space of W-invariant quadratic forms on Az. Its
elements identify with W-invariant, symmetric bilinear form x on A7 via the formula:

KA 1) = q(A + 1) — q(A) — q(p)-

Such forms in turn identify with G-invariant, symmetric bilinear forms x on g. Suppose g
has simple factors g1, - - , g, and center 3. Then such forms are parametrized (non-canonically)
by a product (A')*" x Sym?(3*).

0.1.2. From now on, we fix a smooth curve X (not necessarily projective). The space Parg, is
defined to be a product of:

~ Q(A7, k)" (or equivalently G-invariant, symmetric bilinear forms on g); and
— the space of extensions of O x-modules:

02wy - E—->320x —0. (0.1)

It is clear that Parg is a smooth algebraic stack. We will denote its k-points by pairs (k, F),
where k is a G-invariant symmetric bilinear form on g, and F is an extension as in (0.1).

Example 0.1. — The Killing form defines a quantum parameter (Kilg, 0) € Par(,, where 0 is
understood as the trivial extension; the critical level is defined as

1
(Critg, O) = (—5 Kﬂg,O) S Pal"z;.
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~ There are also some distinguished additional parameters E. Let Z2 denote the torus dual
to the connected component of the center Z¢,. Then for each Z&—bundle P, we may consider
its Atiyah bundle:
0 — Lie(Z3) ® Ox — At(P) — Tx — 0.

Via the isomorphism Lie(Z2) —» 3*, we see that the monoidal dual At(P)* defines an
extension (0.1). The additional parameters arising this way are called integral.

Remark 0.2. The additional parameters necessarily arise on Levi subgroups of G. Namely, for
each Levi subgroup M, a quantum parameter (k, E) for G corresponds to a unique quantum
parameter for M, such that the appropriately twisted D-modules on Bunj,; and Bung talk to
each other (in a way that we will make precise in [Ja-4]). However, the passage of quantum
parameters from G to B always introduces a nontrivial E-term.

0.1.3. We now describe how to associate a Langlands dual parameter (&, E) to a given one
(k, E) which is not critical®. Indeed, & is defined so that

k — critg and & — crit (0.2)
define mutually inverse maps between t and £ = t*. In order to define E, we note that under

the isomorphism t — { defined by (0.2), the subspace 3 C t passes to j C t. Hence the extension
F induces an extension F.

0.2. What’s in these notes?

0.2.1. The main goal of these notes is to make two constructions:

— We construct the functor:
Par, — Tw™(Grg), (K, E) ~ ‘J'(G'?GE)

where Tw'™*(Grg) is the category of factorization twistings on the affine Grassmannian
Grg. This is achieved in §1.

— In fact, in the course of the construction we will also obtain factorization multiplicative
twistings on the loop group LG;

— We also construct the functor:

Pary, —» Tw(Bung), (k,E)~ gl k)

Bung
where Tw(Bung) is the category of twistings on Bung. This is achieved in §2.

For the purpose of the workshop, only these are the necessary parts of the notes. For an
audience uninterested in global geometric Langlands theory, even the materials in §2 can be
ignored.

0.2.2. In §3, we explain some progress towards answering the question:
— What is a natural class of geometric objects classified by Parg. ¢

The naive guess would be either factorization twistings on Grg or twistings on Bung, but both
of the functors above fail to be equivalences. Our hope is that Parg classifies factorization
twistings on Grg that are regular in a certain sense. This would give an intrinsic meaning to
Parg,.

LA manifestation: in order to obtain a critically twisted D-module on Bung by induction, one needs to
start with a D-module on Buny twisted by the “Tate line bundle,” which corresponds to the parameter
(— critg, At(wg()*) € Parf.

i.e., the restriction of k to any simple factor g; is not critical.
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0.2.3. The space Pary, has a natural compactification, denoted by Parg. It includes points
where the bilinear form x “equals co.” We will define Parg and explain various constructions
associated to it in §4.

The limiting behavior of categories appearing in geometric Langlands has long been noted
by experts. Examples include:

— the Kazhdan-Lusztig category at level oo is stipulated to be Repg;

[e] o
— the Whittaker category at level oo is stipulated to be QCoh(Opg™ (D)), where Op&™ (D) is
the ind-scheme of unramified opers on the punctured formal disc.
The constructions in §4 turn these “stipulations” into precise statements regarding categories
over Parg, whose fibers at (g, 0) identify with the expected ones.

1. FACTORIZATION TWISTINGS ON Grg

The construction of factorization twistings on Grg follows the chart:

Parg, _>{ Lie-* central

factorization central
R —
extension of gp

extension of Lg
with splitting over £L1g
factorization multiplicative {
%

- twisting over LG

factorization }
with trivialization over L1TG

twisting over Grg

1.1. Lie-* extensions of gop.

1.1.1. Let X be a smooth curve (but not necessarily proper). A Lie- algebra over X is a
(right) D x-module £ together with a morphism:

[—, —] LKL — A*7dR(L)

satisfying anti-symmetry and Jacobi identity.
Let £ be a Lie-x algebra. Then an L-module is a (right) D x-module M together with a
morphism £ XM — A, qr(M) satistying the cocycle condition.

Example 1.1. The D-module gp := g® Dx is a Lie-x algebra with bracket induced from that
k

of g. More precisely, [ ® 1,§ ® 1] := [£,{]g ® 1p where 19 denotes the canonical symmetric
section of A, gr(Dx).

1.1.2. Let G denote the group jet scheme of Gx. More precisely, we regard O¢, as a Hopf al-
gebra object in QCoh(X). The functor Jet : QCoh(X) — Dx-Mod' has a symmetric monoidal
structure. Hence Og := Jet(O¢, ) is a Hopf algebra object in Dx-Mod'.

!
The notion of G-action on M € Dx-Mod" can be described by a morphism M — (0g)" @M
satisfying the cocycle condition. Alternatively, it may be described as a functorial assignment
to a test object A € Dx-Alg' with g € Mapsp a1t (Og,A) of an endormophism of M @ A.
Dx
Note that the tautological isomorphism (the definition of Jet as a left adjoint):
MapSDX—Algl (09 ’ ‘A) = MapSOx—Alg(on ?‘A)
makes this description particularly simple.

Example 1.2. To describe the adjoint action of § on gp, we take a test obejct A € DX—AIgl
and an A-section g of §. Then the usual adjoint action gives rise to the endomorphism on g®.A.
k



4 YIFEI ZHAO

1.1.3.  We define the category CExt(gn) as classifying the following data:
— a central extension of Lie-x algebras:

0= wx = gp — gp — 0. (1.1)
— an extension of the G-action on gp to a G-action on gop.

Remark 1.3. The G-action on gop is included in order to later pass from central extension of
the Lie algebra L£g to multiplicative twisting on £G. Ignoring it will not cause any conceptual
damage.

1.1.4. Given a quantum parameter (k, E) € Parg, we define an extension (1.1) as follows: as
D-modules it is the pushout along the action map wy ® Dx — wx:
Ox

0—wx ® Dx —=(gsDx)d(F ® Dx) —gp —0
Ox k Ox

\L act \L

wx go

where g, is the semisimple part of g. In other words, we have a direct sum decomposition:

ﬁ@ = (ED U(wx)')) WX) D (gs)‘D (12)
where (—)p on the right-hand-side means induced D x-modules.
The Lie-* bracket on gp is defined by the cocycle:

gp Kgp = A ar(wyx), (E@1)K(E ®@1)~ k(£ E)1,,

where 1/, is the canonical anti-symmetric section of A, 4r(wx).?

Remark 1.4. Here we are using the fact that gp splits over (gs)p, and the Lie-x bracket
gp Xgp = A, gr(gp) lands in A, gr(gs)p.

1.1.5. In order to construct the G-action on gp, we take a test object A € DX—Algl and an

A-section g of §. We ought to construct an endomorphism of gp ® A. According to the
Dx

decomposition (1.2), the required endomorphism centralizes the Ep U, ), wx-summand, acts
by adjoint on (gs)p-summand, and introduces the image of the given section along;:

~ ~tdg,—
Go @ Ao gAY T 9 A
Dy k Dy
In other words, we have constructed a functor:

Par — CExt(gp), (k,E) ~ gii'?). (1.3)

We call gg; ) the Kac-Moody Lie-+ algebra corresponding to the quantum parameter (k, E).
1.2. Central extensions of Lg.

1.2.1. Let QCoh™"(Ran) denote the category of Tate modules over Ran. In other words,
each M € QCoh™*(Ran) is an association:

S e Sch‘"/‘fIf{an ~ a Tate Og-module M’s

together with isomorphisms M‘T = M’S ® Op for any map T — S in Sch"/lfﬁan.
Os

3Using the Cousin sequence:
0= wy2 = wxz2(0A) = A, gr(wx) =0,

the section 1/, € A, gr(wx) is expressed as the image of dz A dy/(z — y)2.
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1.2.2. For any S € Sch*! equipped with a map to Ran, i.e., an I-family of S-points = of X,
we set D, as the formal completion of S x X along T' := U;c;I',: as an affine scheme.* Let

Bzz denote its localization away from T.
We define £g as a Lie algebra in QCoh™°(Ran), whose value at 2! : § — Ran is the Tate

Og-module g(X,r) := g@T(D,r,0). The Lie algebra £LTg is defined similarly, where we replace
9(X,1) by its lattice subalgebra g(0,r) := g @ I'(D,1, O).
1.2.3. We define the category CExt,.+4(£g) as classifying the following data:
— a central extension of Lie algebras in QCoh™"(Ran):
0— Oran >89 — Lg—0 (1.4)
— an extension of the LG-action on Lg to g;
— a trivialization of the above data over the Lie subalgebra £LTg — Lg.
Let CExtfffi (£g) denote the categories of “linearly factorization” objects in CExt /z+4(£g).

In other words, an object of CExtl;azig(Lg) is an object g of CExt,z+4(Lg) equipped with the

following additional datum:

— there is an isomorphism of §| (Ran X Ran) i with the pushout:
isj

ORan H Oran —= (ﬁ EEIﬁ)
J{add

ORan

as central extensions of Lg‘(Ran « Ran)an; = LgHB Lg.

1.2.4. Fix a k-point x € X, and let D, and D, denote the formal, respectively punctured, disc
around z. Recall the functor of de Rham cohomology of the parametrized formal (punctured)
disc (see [ R

[e]

H(OiR(DJL’a _)a HSR(Dza _) : DX‘MOdT — VeCtTate.

coh
Furthermore, these functors carry Lie-* algebras to Lie algebras in Vect ™",

Applying HSy (D, —) to the exact sequence (1.1), we obtain:
0=k — HiR(Dy,gp) = 6(Kz) =0 (1.5)
Lemma 1.5. The sequence (1.5) remains ezact.
Proof. We need the vanishing statements Hy (D, gn) and H'(D,,wx). The first follows from
the freeness of gp as a Dx-module. The second follows from the affineness of D,. O

The sequence (1.5) acquires the following additional structures:
— a canonical splitting over g(0,) < g(X,); indeed, this follows from applying Hig (D, —)
to the exact sequence (1.1) and noting Hg (D, wx) = 0;

— an action of £,G on the middle piece Hig (D, @p) that extends its action on g(X,).

4i.e.7 coli}n I'® in the category of affine schemes.
i€
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1.2.5. We may repeat the above construction in family. This procedure defines a functor of
k-linear groupoids:
Hig (D, —) : CExt(gp) — CExt¢} (Lg). (1.6)

Remark 1.6. The Kac-Moody object gg;’E) passes to a factorization extension of Lg that we

denote by g"F). Note that its fiber at 2 € X is the familiar Kac-Moody extension of the loop
algebra g(X,).

1.3. A quick tour of twistings.

1.3.1. Suppose A is a commutative group prestack. Write B> A for the twofold classifying
prestack of A (without sheafification). The groupoid Maps(Y, B?.A) classifies A-gerbes on Y,

5

which is neutral on every S € Sch?‘g. We define the Picard category” of A-twistings on Y as:
Tw” (Y) := Fib(Maps(Yar, B> A) — Maps(Y, B2 A)).

In other words, a twisting on Y is a A-gerbe on Ygr together with a trivialization of its
pullback to Y.

Lemma 1.7. The morphism A~ — A induces an equivalence TWA{T}(‘d) = Twh(Y).

{1}
Applying the Lemma to A = G,,, and G,, and using the identification @m = @a, we obtain:
TwOn (Y) < TwCn (Y) = TwC (Y) = TwEn (Y). (1.7)

We let Tw(Y) be one of the categories in (1.7); we call its objects simply as twistings.

Remark 1.8. One can deduce from the equivalences in (1.7) another form of flexibility in the
definition of a twisting. Namely, instead of B®G,, we may use its sheafified versions B3, G,
or B, G,p,.

Remark 1.9. For Y = Y a classical scheme of finite type, twistings have been studied under
the names twisted differential operators (TDOs), or Picard algebroids. We refer the reader to
[ ] for their definitions.

1.3.2. Aside from twistings, we may also consider gerbes; by this term we do not mean A-
gerbes as mentioned before, but something more “topological”, akin to the gerbes in analytic
topology or Z/lZ-gerbes in characteristic p. In our setting, we write:

Ge(Y) := Maps(Yqr, Bgt Gm).

In particular, there is a forgetful functor Tw(Y) — Ge(Y).
Given G € Maps(‘ddR,B2 Gyn), we may form the twisted category D-Mod? (Y). If G arises
from a twisting T, then we have a forgetful functor:

oblv : D-Mod” (Y) := D-Mod?(Y) — QCoh(Y).

Remark 1.10. There is a sequence of maps, where the stack Pic(Y) identifies with the fiber
of the second map:

Pic(Y) — Tw(Y) — Ge(Y).
A notable feature of this sequence is that it relates data of three different kinds: algebro-
geometric, differential-geometric, and topological.

Remark 1.11. Of course, Ge(Y) as defined above is not purely topological. For example, the
trivial object in Ge(A!) has the exponential local system as a nontrivial automorphism. We
will return to this question in §3.

5i.e., one can form product of twistings.
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1.4. Multiplicative twistings on £G.

1.4.1. Let H be a group prestack locally of finite type. We use h to denote its Lie algebra, and

we have an equivalence exp(h) — H{/i\}‘ It follows that we have an exact sequence of group
prestacks:

1—exp(h) > H— Hgr — 1.

In other words, Hygr is the quotient of the simplicial system - - - g H x exp(h) == H . The

H-action on exp(h) upgrades this simplicial system into one in Grp(PStk). Hence its quotient
inherits a group structure, identified with the one on Hgg.

1.4.2. Let CExt(h) denote the category of central extensions:
0—=>k— H —h—=0
together with an H-action on H that extends the adjoint action on b.
Lemma 1.12. There is an equivalence of categories:
CExt(h) = Tw™ " (H). (1.8)

We build the functor (1.8) as follows. We interpret an object of CExt(h) as an H-equivariant

map exp(h) — B@m of group prestacks, which gives rise to a map of simplicial systems in
Grp(PStk):

- ZEH xexp(h) == H
- —=BG,;, —=pt
Taking quotient, we obtain a morphism Hgr — B? @m of group prestacks together with a

trivialization over H.

Remark 1.13. If we disregard the H-action on H in defining central extensions of b, we would
still obtain a twisting on H, but it will not come equipped with a multiplicative structure.

1.4.3. We now turn to the case of the loop group. Let Tw‘/nELfG(LG) denote the fiber of

Tw™ " (LG) - Tw™™ (£LFTG). The analogue of Lemma 1.12 provides an equivalence of cate-
gories:
CExtc+4(Lg) = TW/EG(£G).

Let TWI/T’LuErt éaCt(LG) denote the category of factorization objects in TWI/“EEG(LG). In other

words, an object of Tw%‘it éaCt (L@G) is a multiplicative twisting T on LG together with isomor-
phisms:
‘(Ran X Ran)qjs; — TKT
Then we have an equivalence of categories:
CExtl'th ;(Lg) = Tw) 5 (LG). (1.9)

1.5. Twistings on Grg.

1.5.1. Suppose H — G is a morphism of group prestacks. Given a multiplicative twisting 7 on
G equipped with a trivialization on H, we obtain an H-equivariant twisting on G, i.e., a twisting
on G/H. Indeed, the H-equivariance data of T comes from restricting the multiplicative data
of T to the simplicial system G x H"~! < G™.
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1.5.2. The above procedure defines a functor:

Twel S (LG) — Tw™ (Grg), (1.10)

Summarizing, we have a chain of functors:

757 Parg, 2 CExt(gn) L CExt/gL (Lg)

(1.9) TWI/HZEéaCt (LG) % TWfaCt(GIG)-

This composition gives rise to the factorization twisting ‘J'g"r’f) corresponding to the quantum
parameter (k, E).

2. TWISTINGS ON Bung
The construction of twistings on Bung follows the chart:

Parl, — { Lie-+ central } _, ) twisting on Bung ccs | _, {twisting }
extension of gp acted on by Lj G on Bung

2.1. Twistings on Bung o-

2.1.1. Fixz € X. Let Bung,oo, denote the prestack classifying a G-bundle P¢ together with a
trivialization a : Pg | D, =5 PY. Tt is represented by a scheme (albeit of co-type.) The canonical
projection Bung oo, — Bung realizes Bung ooy as an £ G-torsor over Bung. Furthermore, the
L} G-action on Bung oo, extends to a full £,G-action.

Given any point (Pg, ) of Bung, oz, we have an exact sequence:

0— F(X - xagipc) &) g(:Kx) — ‘J’Buncﬁwm —0

|(1Pc;,a)
where the restriction map is defined using «. The second map encodes the infinitesimal action
of £,G on Bung, eog-

2.1.2. Recall the category CExt(gp) of §1.1.3. We now describe a functor:
CExt(gn) — Tw(Bung, coz)- (2.1)

Indeed, given an object gp of CExt(gp ), we first consider its twist by the universal G-bundle
over Bung oo; xX. This procedure defines a central extension of Lie-* algebras:

0 = OBung,oee Mwx = (@0)ps — (926)p — 0 (2.2)

over Bung oo, XX (relative to Bung coz). Now, applying the functors HgR(DI, —) and HgR(Xf
x,—) on (2.2) and using Hz (X — 2,wx) = 0, we obtain an exact sequence of Lie algebroids on
Bung, e, together with a splitting:

F(X -z, g‘?c)
S
5
00— OBunG,wz - HgR(DwaaD) - g(gcw) & OBunG,ww —0
Lemma 2.1. The image of 7 is a Lie algebroid ideal.

Proof. This follows from the fact that 7 is a morphism of £,G-equivariant Opun,, .,-modules.
O
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Taking the cokernels of 4 and v, we obtain a central extension of Lie algebroids:

0 — OBung, o, — Coker(y) — Coker(y) — 0 (2.3)

Using the identification Coker(y) = TBung. ..., we see that (2.3) defines a Picard algebroid,
hence a twisting on Bung, ez

2.2. Group action on twistings.

2.2.1. In the local case, we obtained ‘J’éﬁr’f) from a twisting on the loop group using its mul-
tiplicative structure. The global analogue of the loop group is Bung,coz, which has no multi-
plicative structure. Thus, in order to “descend” the twisting (2.3) to Bung, we need to make
sense of a £} O-action on (2.3).

2.2.2. Let Y € Sch be acted on by some group scheme H. We first describe what it means
for a Lie algebroid £ on Y to be acted on by H. The required data are as follows:

— an H-equivariance structure on the underlying Oy-module of £;
— a morphism 7 : h ® Oy — £ of H-equivariant Oy -modules.
They are supposed to satisfy a (rather long) list of conditions:

— the H-equivariance structure on (the underling Oy-module of) £ is compatible with its Lie
bracket;
— the anchor map o of £ intertwines the H-equivariance on £ and Ty;
— the composition:
he 0y 5 L5 Ty
identifies with the infinitesimal action of H on Y

— 7 is compatible with the Lie bracket on £ in the following sense: given £ € h ® Oy and
l € £, there holds:

(E),l=¢-1eL (2.4)
where £ - [ denotes the infinitesimal action coming from the H-equivariance structure.
Let LieAlgdH (Y') the category of Lie algebroids on Y acted on by H. The notion of Picard

algebroids acted on by H is completely analogous.
2.2.3. We will now build a functor
Q' : LieAlgd” (Y) — LieAlgd(Y/H).

We install the assumption that H acts freely on Y, and the general case will follow from smooth
descent of Lie algebroids.

Remark 2.2. Under this assumption, 7 is necessarily injective.

Given a Lie algebroid £ acted on by H, we consider the Oy-module Coker(n). It inherits an
H-equivariant structure, and thus descends to an Oy, g-module £o. We set:

QY (L) := Lo, [lo,lo) = [7 o, 7 o).

where 77!y € Coker(n). In order to show that the Lie bracket is well-defined, we need the
vanishing of [n(€),!] for all H-invariant sections [ € L. However, this readily follows from the
identity (2.4). The analogous construction for Picard algebroids defines a functor:

Q" : PicAlgd” (V) — PicAlgd(Y/H).
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2.2.4. The above constructions has a conceptual interpretation in terms of thstlngs 6 Let us
represent a twisting 7 € Tw(Y) by its total space, regarded as a B(G ~torsor Y over Yar,
trivialized over Y':

~

Y
/ iB@m
Y —Yar

Then a strong H - actzon on 7 is an extension of the H-action on Y to a Hyr-action on Y such
that the projection Y - Yar is Hgr-equivariant. Write Tw (Y) for the category of twistings
equipped with a strong H-action.

We now define a functor:
:TwH (Y) - Tw(Y/H) (2.5)

geom

which sends an object T € Tw (Y) to the twisting represented by the diagram:
Y /Har

/ J/B@m
Y/H — (Y/H)ar
2.2.5. Recall the equivalence of categories:
Tw(Y) = PicAlgd(Y), T~ ‘Ty/?.
where T, /v denotes the relative tangent complex.

Lemma 2.3. The above equivalence upgrades to an equivalence Tw" (V) — PicAlgd” (Y)
such that the following diagram commutes:

Tw (V) —> PicAlgd” ()
J/QH \LQ;qeom
w(Y/H) —> PicAlgd(Y/H)
2.3. Twistings on Bung.
2.3.1.  We now upgrade the functor (2.1) to the £} G-equivariant category:
CExt(gp) — PicAlgdLIG(Bungyooz) = TWLIG(BUHG’OOI). (2.6)

Indeed, the £} G-equivariance structure on (2.3) is clear. The morphism

n: g(ow)@oBunc,wz — HgR(va/g\rD)
arises from applying HgR(Dz, —) to the exact sequence (2.2).
2.3.2.  The construction of twistings on Bung is the following composition:

(1.3) (2-6)

e
TL) Pard rg, —— CExt(gp) —> Tw* (Bung,ooz) e Tw(Bung).

BunG

sending (k, F) to the twisting ‘J’gfl’nc) Instead of choosing © € X, we could have chosen arbitrar-
ily many points 2 C X and repeated the above construction. One can show that an inclusion

of subsets 2! C x/ produces isomorphic twistings. In particular, this argument shows:

Bun

Lemma 2.4. The twisting gl G) is independent of the choice of x € X.

6Strictly speaking, we won’t need this point of view for our applications.
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2.3.3.  'We now compare this functor to the one from §1. Let p : Grg — Bung denote the
projection map.

Lemma 2.5. The following diagram commutes:

(=)
Grg
Pary, — > Tw™"(Grg)

Thang i \Loblv

Tw(Bung) L Tw(Grg).

2.3.4. Ezamples. We mention three line bundles that are particularly important for us. The
twistings associated to them correspond to specific choices of quantum parameters.
— the line bundle Lqe; on Bung, whose fiber at Pg is det RT(X, go,[1]), corresponds to the
parameter (Kil,0) € Parg;
— the line bundle £ pate(ny on Bung, whose fiber at Pr is det RT'(X, ny,.[1]), corresponds to
the parameter (— critg, At(w%)*) € Pary;
— the line bundle Ly, that is Fourier-Mukai dual to some P; € Bung, corresponds to the
parameter (0, At(P4)*) € Pary.

Remark 2.6. One frequently normalizes the line bundles Lqet and L7 Tate(n), Which amounts
to tensoring them by a specific line. Note, however, that twistings associated to £ and £ ® [
k

are canonically isomorphic.

3. WHAT DO QUANTUM PARAMETERS PARAMETRIZE?

3.1. Regular gerbes/twistings.

3.1.1. The role of gerbes over X in the de Rham setting is played by G,,-gerbes on Xyg, i.e.,
morphisms Xgg — Bgt G- However, this notion is slightly inadequate as an analogue of Z/I-
gerbes in characteristic p, or analytic gerbes over C—the latter notions are purely “topological”
but the former is not.

Example 3.1. When X = A!, the neutral G,,-gerbe on Xgr has a nontrivial automorphism,
given by the exponential local system.

We introduce the notion of regularity to cure this problem. It amounts to allowing only
regular singular local systems as transition functions of the given gerbe.

3.1.2. Consider Picy as a functor (Sch*™)°P — Gpd, defined by:

Picy (S) := Maps(Sqr, Bst Gn),

Le., Picy(S9) is the groupoid of line bundles on S together with a flat connection. Let Picy®

denote the subgroupoid of line bundles with flat connections which are regular singular. We
set:

Gereg(s) = Maps(s, Bét Picrvfg).

For a general prestack Y, we set Ge™®(Y) := Shn}d Ge™8(9).
—
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3.1.3. Note that there is natural transformation:
Ge"® — Maps((—)dr, Bét Gm) (3.1)

induced from BPicy® — Maps((—)ar, B, G,,) upon sheafification, which in turn arises from:

pt /Maps(S, Picy) = pt / Maps(Sqr, Bet Gpn) — Maps(Sar, B, G ).
Remark 3.2. The functor Ge™8(S) — Maps(Sqr, B, G,,) is in general neither fully faithful,

nor essentially surjective.
3.1.4. We define Tw"® as the fiber of the composition:

Ge'*® ﬂ Maps((—)dr, Bét Gyn) — Maps(—, Bgt Gm).

Thus we have a functor Tw'™® — Tw, which is also neither fully faithful nor essentially

surjective.

3.1.5. One of the main consequences of the definitions is the following “purity” lemma:

Lemma 3.3. Let Z — X be an embedding of smooth schemes such that codimx (Z) = 1. Then:
~ the fiber of Ge*8(X) — Ge"8(X — Z) identifies with k/Z;"
— the fiber of Tw™8(X) — Tw'™8(X — Z) identifies with k.

The tautological map Tw™® — Ge™® has fiber Pic, the moduli stack of line bundles. We
observe that the sequence:

Pic(X) - Tw'™®(X) - Ge™®(X) (3.2)
is a fiber sequence of Picard stacks when X is a smooth curve. Indeed, we only need to show
that Tw™8(X) — Ge™#(X) is surjective on 7o, which follows from HZ (X, G,,) = 0.

3.2. Parametrizations.

3.2.1. Let Pic™"(Grg) (respectively Tw ™ (Grg), Ge™® ™" (Grg)) denote the Picard stack
of factorization line bundles (respectively regular twistings, gerbes) on Grg. We will now de-
scribe these Picard stacks more explicitly.

In order to do so, we first explain a paradigm:

{factorization gadgets} N { W -invariant } )
over Grg quadratic forms on Ap

3.2.2. Consider the “combinatorial” affine Grassmannian:

GI7 comb = colim bl
(I,A1)

where the index is taken over I € fSet, A’ : I — Ay, and we have a morphism (I, A1) — (J, A7)
whenever I —» J and A’ is obtained from A’ by “summing up the preimage.”

Given each pair (I, '), we have a morphism X’ — Grp xr sending (z1, - - - ,2|7)) to the T-
bundle O(3>; A\ x;) together with its tautological trivialization. Hence we have a morphisms:

GrT,comb — GrT — GI'G (33)
of prestacks over Ran(X). Now, given a factorization gadget on Grg, we obtain a factorization

gadget on Gry comp via pulling back along (3.3).

"k/Z (and later k) is regarded as a discrete groupoid.
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3.2.3.  Suppose the said gadget is a line bundle; we denote its factor corresponding to (I, A1) :
X! — Grr1,comb by LX), The factorization data over Gr7,comb supplies us with an isomor-
phism:
A, ~
L u)|XLA Do)

Thus, L) @ (L()‘) X L(“))_l is a line bundle on X? trivialized away from A. This supplies us
with an integer, denoted by k(A, ). One then checks that x defines a W-invariant quadratic
form on A7; this procedure defines a functor:

Pic™(Grg) — Q(Ar, Z)V. (3.4)

3.2.4.  When the factorization gadget in question is a regular twisting, or a regular gerbe, we
appeal to Lemma 3.3 to obtain functors organized in the following commutative diagram:

Picfact (GI‘G) Twrcg,fact (GI‘G) Gercg,fact (GI‘G)

| | |

QA7,Z)" ——— Q(Ar, k)" ——— Q(Ar, k/Z)"

3.2.5. Consider first a semisimple, simply connected group é, with maximal torus 7.
Lemma 3.4. The functor (3.4) is an isomorphism PicfaCt(Gré) = QA5 2)W.

Thus, given ¢q € Q(AT,Z)W, we may call its preimage under (3.4) the factorization line
bundle £ e PicfaCt(Gré) associated to q. Via pulling back along:

X3 Gricomb — Gry — Grg,
we obtain a system of line bundles £ on X together with isomorphisms:
Cat LO+R) 2y £ () ® LM @ wg((j"m,
satisfying a k-twisted commutativity condition: o5 o = (—1)“(5‘7’1) 0C; 5
3.2.6. For a more general reductive group G, we denote byf?dcr the universal cover of its

derived subgroup Gger- Denote by Tyer the preimage of T in Gger. Consider the Picard stack
ParOG(Pic) Of data (q7 L(/\)7 @) Where;

— ¢ € Q(Ar,Z)" (whose associated symmetric bilinear form is denoted by &);
— £W s a system of line bundles on X indexed by A € Ap, together with isomorphisms:

L) 2 () o L) g wf;((ku)

satisfying a x-twisted commutativity condition;

— ¢ is an isomorphism of £ ] A.  Wwith the system of line bundle LX) associated to q| A
Tder Tder

in the sense of §3.2.5 (applied to Gger)-
Since m (G) = Ar/Az, , there is a fiber sequence:
Hom(7(G), Pic(X)) — Parg(Pic) — Q(Ar,Z)Y,
which does not split in general.

Remark 3.5. The notation Pary(Pic) alludes to the fact that it is the parameter space of
factorization line bundles on Grg. For G =T a torus, it is known as #-data (see | D-
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The procedure of pulling back to the combinatorial affine Grassmannians Grrcomp and
Grz, defines a functor Pic™(Grg) — Pard(Pic).

r,comb

3.2.7.  One may replicate the above definition for regular twistings and obtain a Picard stack
Parg, (Tw'®) that fits into a fiber sequence:

Hom (7, (G), TW' (X)) — Parg(Tw"®) — Q(Ar, k)" (3.5)
Unlike the previous situation, however, the construction of §1 provides a splitting of (3.5):%
Q(Ar, k)Y — Tw™e 4 (Grg) — Parl (Tw'™®).

On the other hand, Tw**®(X) = I'(X, w¢®[1]), where w'¢® is the subsheaf of wy, consisting of
differential forms with poles of order < 1 at X — X for any compactification X of X. Thus,

Hom( (G), Tw™S(X)) = Hom(m (G), (X, wiEE[1]))
= Hom(m1(G) @ k, T'(X,w¥%[1])) = Ext(3¢ ® Ox,wi?).
Z
Altogether, we have an isomorphism of k-linear groupoids:
Parg(Tw'®) =5 Q(Ar, k)" x Ext(3¢ ® Ox,wi®).
Remark 3.6. Note that this space identifies with Par(, for proper X.

3.2.8. The (conjectural-but-within-reach) parametrization theorem of factorization gadgets on
Grg asserts that the following three vertical arrows are all equivalences:

Picfact (GTG) - Twreg,fact (GI‘G) - Gereg,fact (GFG) (36)

lu

Q(Ar,Z)Y %)k/Z

X
Hom(m (G), Ge™ (X))

IR
IR

Par®(Pic) —— Par’(Tw'™®) ———

The fact that (3.2) is a fiber sequence for a curve X implies the same for the lower sequence in
(3.6), whence also for the upper sequence.

Remark 3.7. One can view (3.6) as giving an intrinsic meaning to Par® when the curve X is
proper. Namely, it classifies regular factorizable twistings on Grg. To remove the properness
hypothesis, one may try to define a notion of regularly factorizable twistings which are only
supposed to be regular “with respect to the factorization isomorphisms.” We have not yet
pursued this trend of thought.

Remark 3.8. The third isomorphism in (3.6) is a theorem of Ryan Reich | ]. An ongoing
work of James Tao and the author tries to establish the first two isomorphisms.

4. THE Kk — o0 MACHINE

4.1. What are we trying to do?

80f course, the construction there gives a map Q(Ar, k)W — Twt(Grg); to lift it to Twreg’faCt(Grg),
one needs to appeal to R. Reich’s classification of regular gerbes [ 1.
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4.1.1. We now describe a “machine” that takes as input a category €") for the quantum
Langlands theory at parameter x and produces its incarnation at K = co.

In fact, the machine will do more—there is a “compactified” space of quantum parameters
Par¢, and as soon as we know how to produce the category C(*¥) for an arbitrary (k, E), we can
view it as a sheaf of categories over Parg whose fiber at a distinguished point (g, 0) € Parg
realizes its incarnation at kK = oo.

The guideline of these constructions can be summarized in one line:

— replace all g by g~.

We will explain what g means in §4.2.

4.1.2. Here are some examples of the degeneration behavior:

K < 00 K = 00 reference
g"-Mod QCoh(Conn(lo)m)) §4.2.5
KL, Repq §4.3.4
D-Mod"(L,G) QCoh(£L,G x Conn(D m)) §4.4.1
D-Mod"(Gre..) QCoh(Cre.v) §4.4.2
Whitc QCoh(Opg™) §4.4.3 - §4.4.15
D-Mod"(Grg )%= QCoh(LocSys (D) X LOCSySB(_lO)a:)) §4.4.16
LocSysg (D)
D-Mod" (Grg,,)“= N4z T | thdw §4.4.16
L,G-Mod"” ShVCat(LocSysG(Bm)) §4.5 (sketch)
D-Mod"(Bung) QCoh(LocSyss) [ , §6].

4.1.3. Confession. The current implementation of the machine has a drawback: we do not know
how to renormalize in a systematic manner, i.e., we obtain categories such as QCoh(LocSys)
but not IndCohyji, (LocSys).

4.2. Compactifying Parg,.

4.2.1. Consider the tautological symplectic form on g & g*, defined by the pairing:

Eop. @) :=0() ¢
Let Grfag(g@g*) denote the scheme parametrizing Lagrangian, G-invariant subspaces of g g*.
In other words, a k-point of Grgag(g @ g*) is a G-invariant linear subspace g C g @ g* such

that (&) = ¢'(&) for every pair of elements £ ® p, &' @ ¢’ € g~.
Taking G-fixed points defines a morphism:

Grig (8@ 8") = GrLa(3©35%),  (87) ~ (6.
The algebraic stack Parg is defined as the space of pairs (g*, F) where

~ g" € Gr{, (g @ g*), and
— F is an extension of O xy-modules:

0—wx —» E— (g")G%Ox - 0. (4.1)
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4.2.2. There is an immersion Parg; — Parg sending (k, F) to the pair where:
— g” is the graph of the linear map g — g* defined by «;
— along the map pr, : g~ = g, we have an isomorphism pr; : (g%)¢ — 3; thus E defines an
extension as in (4.1).
The image of Parg;, — Parg is precisely the open substack of (g”, F') where the projection
pry : g" — g is an isomorphism. To the contrary, we have points
(¢°°, F) := (9", FE) € Parg
lying “at k = 00.” Dennis likes to call these points “degenerate.”

4.2.3. We note that g” is itself a Lie algebra with bracket:
€@ @¢]:= ¢ Coade(y).

Furthermore, it admits a G-action (inherited from g @ g*.) There is a canonical symmetric
bilinear form on g* defined by:

E@p @) :=pE)=4¢8).

4.2.4. All the constructions relevant for quantum geometric Langlands can (and should) be
done for the parameter space Parg rather than Parg,. For instance, given (g”, E) € Parg, there
is a central extension of Lie-x algebras:

0— wx — ﬁg;”’E) = (g")p — 0 (4.2)
such that the Jet(Gx)-action on (g*)p extends to an action on /g\(g’E). The construction of

(4.2) is analogous to the one in §1.1 (and specializes to it when (g*, E) € Parg,).
Applying the functor HgR(DI, —) to (4.2), we obtain a central extension:

0— k1 — g = g%(K,) — 0 (4.3)
together with a splitting over g*(0,) and an extension of the £,G-action on g*(X,) to g=%).
4.2.5. Specializing to the parameter (g°°,0), the extension (4.3) becomes an extension of
abelian Lie algebras:

0— k1 — g0 - g(K,) = 0

which is canonically split. The £,G-action on g(°>?) extends the co-adjoint action on g™ (%X,),
and carries an element ¢ ® f € g°>°(X,) to Res(p(g~tdg) - f) € k1.

Lemma 4.1. There is an isomorphism of topological associative algebras acted on by G:

~

520y /(1 —
U@=)/-1) =0, 5

where Conn(D,) is the ind-scheme of connections on the trivial G-torsor on D, equipped with
the G-action by gauge transformations.

An immediate consequence of Lemma 4.1 is that the category of Kac-Moody modules
3" F)_Mod degenerates to

§*%-Mod = QCoh(Conn(D,)), (44

such that the £,G-action passes to gauge transformation.

4.3. Degeneration: KLg , ~~ Repg.
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4.3.1. Recall that the (unrenormalized) Kazhdan-Lusztig category at non-degenerate param-
eter (k, F) € Par, is defined as the strong £ G-invariants of g*-¥)-Mod:

KL(C?’ZE) .— a(ﬁaE)_Mod(LIG)dR

At a possibly degenerate level (g~, E') € Parg, we need to replace (£} G)gr by the quotient:
(LHG)" = LG/ exp(™(0.).
Since the extension (4.3) splits over g"(0,), there is an action of (£} G)" on the category
3("F)-Mod, so we may set:

KLY = g P)-Mod - 9", (4.5)

4.3.2. Digression: inert Lie algebroids. To calculate (£} G)"-invariants at the fully degenerate
parameter (g°°,0) € Parg, we need some additional tools. To a smooth scheme Y and a complex
F € QCoh(Y), we may associate the abelian Lie algebroid £ with underlying (complex of)
quasi-coherent sheaf F. We call L4 the inert Lie algebroid on F.

In particular, £5-Mod is equivalent to quasi-coherent sheaves over V() := Spec,, (Sym(¥)),
and the following diagram commutes:

L5-Mod —— QCoh(V(F))

loblv lﬂ'*

QCoh(Y) ——— QCoh(Y)
where 7 : V(§F) — Y is the projection map.

4.3.3. We note that any Lie algebroid £ determines a formal moduli problem Y’ pointed by
Y. The precise definition is unimportant”, but we note:

~ Y’ is a prestack under Y such that the map ¥ — Y? is an isomorphism on reduced part,
and there is a well-behaved cotangent complex Ty /y» that identifies with £;
— The category IndCoh(Y”) identifies with £-Mod.
Let ¥ € QCoh(Y), and L5, Y? be the corresponding inert Lie algebroid and its formal
moduli problem. Given a vector space ¢, the following data are equivalent:
{maps n:t® 0y — 3"} o~y {B exp({’)—actions}
in QCoh(Y') on Y’
where the formation of exp(t) regards ¢ as an abelian Lie algebra. Furthermore, we have:
Lemma 4.2. There is a canonical equivalence of DG categories:
QCoh(V(Cofib(n))) = IndCoh(Y?)Bexp(®),
This gives us an easy way to calculate the B exp(€)-invariants of
IndCoh(Y”) =5 Lg-Mod =5 QCoh(V(F)).
Remark 4.3. There is analogue of Lemma 4.2 in the twisted settlng Here we have a fiber

sequence Oy — F - Fin QCoh(Y). This datum produces a G m-gerbe Y? over Y?, together
with a trivialization over Y. We have equivalence:

QCoh(V(F)r=1) = IndCohg, (Y?)
where V(?’)A:l denotes the fiber of A : V(?) — A X Y (coming from Oy — 5") at {1} x Y.

9See | ] for the precise definitions, or | , §3,84] for what we need here.
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Again, a morphism 7 : £® Oy — F determines a Bexp(£)-action on both objects Y — Y?
compatibly, which further preserves Y. We have an equivalence of DG categories:

QCoh(V(Cofib(7))=1) — IndCohg, (Y")BexP®),

4.3.4. We now return to the Kazhdan-Lusztig category, and specialize (4.5) to the parameter
(g°°,0). Note that we have an isomorphism:

(LEG)™ = Bexp(a™(0,)) % £1G

where the semi-direct product is formed by the co-adjoint action. Using (4.4), we obtain:

KL(GOO’O) = QCoh(Conn(DI))B exp(g”(02)) L1 G

= (QCOh(Conn(lo)z))BeXp(g*(O”)))L;G = QCoh(Conn(ng))LIG,

where we used (the twisted version of) Lemma 4.2 for the last isomorphism. Now, note that
Conn(D,)/L} G identifies with pt /G. We find:

KL(GOZZO) =5 QCoh(pt /G) = Repg, -
4.4. Degeneration: Whitg ~» QCoh(Opg&™).
4.4.1. We first study the degeneration behavior of D-modules on £,G and Grg ; this will
essentially be performing the calculation of §4.3 “over £,G.” Given a quantum parameter

(g%, E) € Parg, we recall the central extension (4.3). It defines a multiplicative central extension
of Lie algebroids on £,G:'’

0= 0s,61 = 3"PR0,,6 = £,0"®0c,¢ — 0. (4.6)
We write:
D-Mod ") (£,G) := UG"PR0,,4)/(1 — 1)-Mod.
Example 4.4. At the fully degenerate point (g, 0) € Parg, the category D-Mod*>?(£,G)
identifies with QCoh(L,G x Conn(!%z)). Indeed, this follows immediately from Lemma 4.1.
4.4.2. We define:
D-Mod ") (Gr¢ ) := D-Mod" ) (£,G) £ )",

Alternatively, we may consider the (£} G)"-quotient of the central extension (4.6), regarded

as a central extension of Lie algebroids over Grg 5, and D—Mod(“’E)(GrG’x) identifies with the
category of modules over it.

Example 4.5. At the fully degenerate point (g°°,0) € Parg, we calculate using Example 4.4
and (the twisted version of) Lemma 4.2:

D-Mod ™ (Grg..) 5 QCoh(£,G x Conn(D,))BePE" (0L G
2 QCoh(£,G x Conn(D,))*+ ¢ = QCoh(Cre.v),

where Grg,v classifies a G-bundle Pg on D,, a trivialization thereof over D, and a connection
V on Pg. The forgetful functor to QCoh(Gr¢) identifies with the pushforward along Grg v —
Grc;.

10We are careless about oo-type issues, which makes us blind to the subtleties related to the Tate extension.
However, we believe that a careful application of the ideas here can produce a fully accurate definition of the
categories over Parg.
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4.4.3. Twist by a?)i/ % In order to be completely canonical in defining the Whittaker category,
we need to introduce a twist by the theta characteristic. From now on, we fix a square root
of w, and call it wi,/ 2 We let w? denote the T-bundle induced from w;/ 2 along 2p € Ap. As
usual, its sections over the formal punctured disc will be denoted by LC:J;’.

We let £, N, denote the group scheme over D, which classifies automorphisms of the induced

B-bundle (<*) 5, which preserve the further induced T-bundle ((w?)5)r — @”. Here are some
variants of the geometric objects considered above:

— L,G,, (respectively £FG,,) denotes sections of (w?)q (respectively (w?)q);

— Grg g classifies a G-bundle over D, together with an isomorphism Pg = (83;)6;.

Bw
We can still realize Grg ;. as the quotient £,G,, /L] G,,. There is an analogue of the central
extension (4.3), denoted by:

0— k1 —g®) - £.g" — 0.

It is formed by taking the (wf% )g-twist of the Lie-+ algebra extension g(;’E) (see §1.1.4) and

then taking de Rham cohomology over D,.
In particular, £,g[ can be realized as sections of the twisted bundle (g")&p, where we regard
g" as a T-representation.

Notation 4.6. Similar notations £,(-), and £} (-), will be applied to any T-representation.
As a particular example, we have the twisted loop algebra £,g., which identifies with the Lie
algebra of the group scheme £,G,,.

4.4.4. We have &’;;/ %_twisted analogues of the above categories:

— D-Mod"™P)(£,G.,) = UG R0, ¢)/(1 — 1)-Mod;
— D-Mod™)(Grg 4..,) := D-Mod ™) (£,G,, )&+ G

The analogues of their degeneration behavior continue to hold. More precisely, we have:
D-Mod ™ (£,G.,) =5 QCoh(£,G. x Conng (D)),

o o
where Conn,, (D, ) denotes the space of connections on the G-bundle (w”)s. We use the notation
Conny,(D,) in a similar way, and there holds:

D-Mod ™ (Grg 4.0) < QCoh(L,G.y x Conn,,(D,))%s G
= QCoh(Grg,v w),
where Grg,v . classifies the data of Grg .., together with a connection on Pg.
4.4.5. We now analyze the Whittaker/oper condition. Suppose g* is a Lagrangian, G-invariant
subspace of g @ g*. Associated to g" is a subspace:
ni=g"Nhobt) —>nobt

where bt := (g/b)* C g* consists of linear functionals vanishing on b. We write nfy for the
subspace [n,n"] < n". Note that nf}) is also the intersection of n" with n() & (b(—1))*, where
b(—1) is the sum of b with the negative simple root spaces.
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4.4.6. The weights of the t-action on n"/nfy) identify with the simple roots {c;};ea.'" Thus
we may form the “canonical” character:

Xt Lol /nf) S @@L 2 B, =55k (4.7)
ieA ieA
where >~ Res denotes the “sum of residue” map. The precomposition of (4.7) with the projection
map Lq(n")e — Lo (n"/nf}))o will again be denoted by x (as no confusion should arise!)

Example 4.7. At the fully degenerate point g°°, we have:
0 /nfhy = b /(07y) = (b-p)/b)*
so x defines an element in Hom.(L.(b(—1)/b), k) that we may call the “canonical” element.
4.4.7. Define a group prestack (£,N,)" by the quotient:
(LaNL)" = LN,/ exp(Lnl),
where we use the tautological action of £, N, on L nf.

Lemma 4.8. Suppose H is a group prestack, and € is a Lie algebra together with a morphism
¢ — b. Suppose the H-action on exp(h) extends to exp(t), so the quotient H/ exp(t) is again a
group prestack. Then the following categories are equivalent:

{ H -equivariant Lie } ~ { multiplicative line bundle on } ) (4.8)
algebra character of ¢ H/ exp(t) with a trivialization over H

Lemma 4.8 shows that the character x (4.7) determines a multiplicative line bundle (£, N,,)*
together with a trivialization over £, N,,. Hence, if we have a map of prestacks Y — Y* acted on
compatibly by the group schemes £,N,, — (£,N,)", we may form the category of (£,N,)"-
equivariant sheaves IndCoh(‘éb)(LwN «)":X against the character y; it is equipped with a forgetful
functor:

oblv : IndCoh(Hb)(LzNw)ﬁ‘rX N IndCoh(y)Ler,

Example 4.9. Suppose g” is the graph of a bilinear form. Then we have an isomorphism
(LoN,)" = (LN, )ar; thus the datum on the right is precisely a multiplicative local system
on L, N, whose underlying line bundle is trivialized. The local system determined by (4.7)
identifies with the pullback of exp under:

(LoN) = (LaN)o /[(£aN ), (£2N)a] = @) Er 5% G,
ieA
12 Indeed, this follows from the fact that id : Lie(G,) — k determines the exponential local
system on G,, and the equivalence (4.8) is functorial.

H0one may be tempted to fix “Chevalley generators” {e;};ca as a t-eigenbasis of n“/n(ﬁl). However, this
cannot be done compatibly over the entire space Parg. For example, when G = SLg, such a choice amounts to
a nonvanishing global section of Op1(—1).

12 The isomorphism in the middle is constructed as follows. Consider the exact sequence of B-representations

(where ng, is the simple root space corresponding to ¢, regarded as a quotient of n/n(l)):
0—ng;, = (k1@ ng,) > k1 —0.

After we twist it by the B-bundle (835)3, the first term becomes :Jz and the last term becomes X,. An element

. . [e] . . o
of (£LzN)w thus determines a “shearing” map Xy — wg, i.e., a section of w.
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4.4.8. Let (g%, E) € Parg be a quantum parameter. Recall that the category D-Mod ") (Grg ow)
from §4.4.4. Tt is equipped with a (£,G,,)"-action. We define

Whitl"?) := D-Mod ™) (Grg 4,,,) €= V)" X

i.e., the category of objects in @—Mod(”’E)(GrG,$7w) that are (£,N,)"-equivariant against .
From Example 4.9, we have:

Lemma 4.10. Suppose (g", F) € Pary. Then Whit(g,f) identifies with the usual Whittaker

category D—Mod(’"E)(GrG,myw)LwNw’X.
4.4.9. Unramified opers. We recall the definition of the placid ind-scheme Opg”,. It classifies
triples (Pq, V, Pp, ) where:
— P¢g is a G-bundle over D,, and V is a connection on it;
— Pp is a reduction of Pg to B over D,, and « is an isomorphism of its induced T-bundle
~ [e]
(:PB)T — wg.
These data are suppose to satisfy the following oper condition. To state it, we note first that
« gives rise to an isomorphism for each simple root ¢&;:

P Ty (P S5 G000 5 (4.9)
On the other hand, we may consider the composition:
Te 5 AUP6) = AUPG)/ AUPs) = (9/0)9,- (4.10)

We require that
— the image lands in (b_1)/b)»,, and
— the projection to each negative simple root space
To = (b-s,/0)p, = P (4.11)

is the monoidal dual of (4.9).

Remark 4.11. If G is of adjoint type, then we may drop « from the definition, and simply
require the maps (4.11) to be isomorphisms. Indeed, we may recover a as follows: the isomor-
phisms (4.11) tell us what (Pp)7" is for each simple root, and the adjoint type hypothesis says
that the simple roots span Ar.

4.4.10. We introduce a piece of (standard) notation. Given the data (Pg,V,Pp), we may
form the composition (4.10). It is K,-linear, so may be regarded as an object Vp, in any of
the following vector spaces:

v/fPB € HOIH:KI ((‘TB 7(9/[’)?3) %Homxz((bL)fPBu‘f)w)

= Hom, ((61)p,,, k).
Given the additional datum «, the above requirements can be rephrased as:
— V/p, belongs to the subspace Hom,((b(_1)/0)3 ., k);
— since the B action on (b(_1)/b)* factors through 7', we have

~

(b-1)/0)3, = (b-1)/0)5,
so we require Vp, to identify with the “canonical” element in Hom.((b_1)/b)%, k) (see
Example 4.7).

Remark 4.12. Of course, we can combine the two requirements into saying that V 5 . identifies
with the “canonical” element in Hom.((b(_1)/b)}, k) — Hom.((g/b)3 ., k).
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4.4.11. We can now state the degeneration result:
Lemma 4.13. There is a canonical equivalence of DG categories:
Whit;%” = QCoh(Opg™). (4.12)
We first note from §4.4.4 the isomorphisms:
D-Mod ) (Grg 4.0) = QCoh(£,G.y x Conn, (Dy))%* ¢ = QCoh(CGre.v )
so we tautologically have:
Whit;9” 5 QCoh(Gra,v.w) =M% & (QCoh(Grg,y o) B P EenZ)x) Lol

4.4.12. We define the following auxiliary objects:

~ let Conn®P(D,) be the closed subscheme of Conn,(D,) consisting of connections V on

(wP) e whose restriction to D, satisfies the oper condition.
— let GrgpV ., be the closed subscheme of Grg v ., where the connection V on P¢ restricts to

one on Pgl. — (w?)g that satisfies the oper condition (as above).

Bm
Clearly, we have a Cartesian square:
£,Gy x ConnOP(D, ) £,G x Conn(D,)

J{z;ew Ltra,

Grgf)v,w( GrG,V,w
where the vertical maps are £} G,,-torsors.
4.4.13. On the other hand, £, N, acts on Grgf)v,w and there is a canonical isomorphism:
LN\ Greh, , = Opis .
Thus we have reduced the statement of Lemma 4.13 to an £, N,-equivariant equivalence:
QCoh(Grg,v )P oPE=n)X = QCoh(Grohy - (4.13)
The equivalence (4.13) will in turn follow from an (£, N, £ G,,)-bi-equivariant equivalence:
QCoh(£,G,, x Conn,, (D,))BePma)X =y QCoh(L,G,, x ConnoP(D,)). (4.14)

4.4.14. To prove (4.14), we note a generalization of Lemma 4.2. Let us be in the set-up of
§4.3.3, together with the additional datum of a character (of abelian Lie algebras) y : ¢ — k.
Note that the map 7 : € ® Oy — JF gives rise to a morphism:

char : V() —» & x ¥ 25 ¢*,
We let V(F)char=y denote its fiber at {x}.
Lemma 4.14. There is a canonical equivalence of DG categories:
IndCoh(Y")BeP®X =5 QCOh(V(F) char=y)

Recall that IndCoh(Y?) = QCoh(V(J)), so we have an easy way to calculate its B exp(£)-
invariants against a character.

Remark 4.15. Since V(F)char—o identifies with V(Cofib(n)), we recover Lemma 4.2 as the
special case of taking y = 0.
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Remark 4.16. Like Lemma 4.2, there is also a twisted version of Lemma 4.14 which asserts
an equivalence of DG categories:

IndCohg, (Y*)BP®X 2 QCoh(V(F) a1 charmy)
where we recall IndCohg, (V") = QCoh(V(f;")Azl).

4.4.15. We now apply (the twisted version of) Lemma 4.14 to the following situation:
— Y is the loop group £,.G;
— the central extension of inert Lie algebroids Oy — F — F is given by:

Oc,¢ = 80 ®0z,a, = 95®0c,q,

—t=n> 5 bt;

— x is the “canonical” element of Hom,(L.(b(—1)/b)%,k) (see Example 4.7), embedded in
Hom, (£, b}, k).

the Bexp(¥)-action is supplied by the inclusion 7 : bX®0; ¢ — §°00¢, ¢.

~

In particular, the morphism char : V(F)y=1 — ¢* is given by:

£,Gy x Conng,(D,) — Hom (b5, k), (9,V) ~ V/p,.

Hence the object V(§") A=1,char—y identifies with £,G,, x ConnOp(Dm). The equivalence of

w
Lemma 4.14 then gives produces (4.14). We omit checking that it is equivariant with respect

to both £, N,, and £} G, -actions. O(Lemma 4.13)

4.4.16. Variants. As a variant of the Whittaker category construction, we may define the prin-
cipal series category as D—Mod(”’E)(Grg,g;)w’”]\/)n.13 By a similar (but easier) calculation, we
have:

D-Mod ¥ (Grg,,) “=M™ Z5(QCoh(Grg,y )BP(£=b))LaN

=5 QCoh(LocSysg(D.) X LocSysg (Bm))
LocSysg (BT)

A further variant defines the semi-infinite category 'D—Mod(”’E)(GrG,x)(LIN)K(LIT)R and
we have:

D-Mod (™) (Grg , ) (=M™ (£ T)

=5 QCoh(LocSysg(D.) X LocSysg (Bx) X LocSysy(Dy)).
LocSysG(Bz) LocSysT(Bw)

4.5. Degeneration: G((t)-Mod ~~ Sthat(LocSys(lo?)).

4.5.1. Given a prestack Y and a 3-gerbe G on Y, i.e., a map Y — B*G,,, we may form the
“twisted” (oo, 2)-category ShvCatg(Y). Suppose that instead of G,,, we have a 3-gerbe § for

the group G,,. We use the same notation Sthatg(H) for the sheaves of categories twisted by
its induced 3-gerbe for G,,.

I3Note that we removed the Lf)g-twist as well as the character x
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4.5.2. Let (g~, E) € Parg be a quantum parameter. Recall that we have an associated group
prestack (£,G)* and a multiplicative G,,-gerbe (£,G)"¥) over it defined by the central ex-
tension g\**) of £,g". Delooping, we obtain a 3-gerbe B(£,G)"F) over B(L,G)*. Write:

£,G-Mod"#) := ShvCaty ¢ _c)m.m (B(£2G)")
as an (00, 2)-category.

Example 4.17. When g" is the graph of a bilinear form &, there is an isomorphism (£,G)* =
(L:G)ar. Note that ShvCat(B(£,G)4r) identifies with the 2-category of categories with a
strong L£,G-action. A twisted version of this identification shows that our definition recovers
the classical one at such levels.

4.5.3. We state the degeneration behavior of £,G-Mod " ™);

Lemma 4.18. There is a canonical equivalence of (0o, 2)-categories:

£,G-Mod™® s ShyCat(LocSys(Ds)).

Recall that (£,G)>® = Bexp(£,9%)%L,G, and the G,,-gerbe over it is given by B exp(£,§(*%))x
£,G. Thus we may regard £,G-Mod ™" as:

£,G-Mod®>>? =, (ShvCatpe exp(ﬁwawE))(BQ exp(L,g*)))*=C.
In other words, we reduce Lemma 4.18 to an £,G-equivariant equivalence:
ShvCatp2 exp(c, x5 (B% exp(£,g")) = ShvCat(Conn(D,)). (4.15)
4.5.4. Suppose V is a finite dimensional vector space. Then we have a canonical equivalence:
ShvCat(B? exp(V)) = ShvCat (V™). (4.16)

Indeed, the left-hand-side identifies with categories together with a B exp(V)-action, i.e., an
action of the monoidal category

QCoh(Bexp(V)) = Repy, — QCoh(V*),

which identifies with the right-hand-side. Since both sides of (4.16), regarded as functors
Vect — (00, 2)-Cat, commute with limits and filtered colimits, the same equivalence is valid
for Tate vector spaces. Hence we obtain:

ShvCat (B2 exp(L,g")) = ShvCat(w,).

The equivalence (4.15) is a twisted version of this.
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