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1. Introduction

Let me begin by saying a few (rough) words about classical local Langlands. In the
classical setting, we consider irreducible, continuous G(K)-representations on vector spaces
of characteristic 0. The classical local Langlands correspondence relates such representations
to Galois representations Gal(K)→ G∨.

For G = GLn, supercuspidal representations are indeed completely classified by irre-
ducible Galois representations Gal(K)→ GLn.

However, since representations naturally form a category, we might like a more categorical
statement. A categorification of Galois representations is QCoh(Hom(Gal(K), G∨)/G∨). So
one can ask if we have an equivalence of categories

G(K)− rep↔ QCoh(Hom(Gal(K), G∨)/G∨.

Unfortunately there is no chance for this to be true, because the left side is too coarse. Work
in progress of Genestier and V. Lafforgue, and Fargues and Scholze, studies an enrichment
of the left hand side. The refinement of the left hand side is based on the idea that the
category of the LHS is obtained as the “trace of Frobenius” of some 2-category. It is through
the process of taking this trace that the coarseness appears.

We are going to start with the correct 2-categorical object. The basic object is “category
equipped with an action of a group”. We replace G(K) by a “group ind-scheme”, namely
the loop group LG of G. Then (working over an algebraically closed ground field) we have
LG(k) = G((t)). Then the 2-category is “categories acted on by LG”. This notion will be
reviewed more carefully later; for now we just want to give an overview.

2. Groups acting on categories

2.1. Weak and strong actions. For starters, let H be a (finite type) algebraic group.
What do we mean by H acting on a category C? The most naive notion would be that for
all h ∈ H, you get a functor h : C → C. But we want this in families since we are doing
algebraic geometry. Then there is already a distinction between “weak” and “strong” actions.
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Example 2.1. If H acts on Y , then H acts on the category QCoh(Y ). This is a “weak
action”.

Now we give an exampleof a “strong action”.

Example 2.2. If H acts on Y , then H acts on the category Dmod(Y ). This is a “strong
action”.

Example 2.3. The canonical action of H on h-mod is a strong action.

Example 2.4. If H acts on an associative algebra A, then H acts weakly on A-mod. To
upgrade it to a strong action, you ask for the additional structure of a map h→ A realizing
the derivative of the H-action.

2.2. Twisted actions. We need the notion of a “twisted action”. This begins with a central
extension

0→ k → ĥ→ h→ 0.

Moreover, you want an extension of the adjoint action of H on h to an action onĥ. (Note
that the action of h automatically extends). We denote this extension by the symbol κ.
There is a notion of “twisted strong action” of H on a category. Let me say a few words
about what this means.

First we need to give a definition of a group action on a category. The category QCoh(H)
has a monoidal structure. In fact it has two different monoidal structures. The action we
consider now is “convolution”, obtained by pushforward via

H ×H → H.

There is a notion of an “action of a monoidal category”.

Definition 2.5. A weak action of H on C is an action of QCoh(H) on C.

Definition 2.6. A strong action of H on C is an action of Dmod(H) on C.

It will be explained that κ leads to a notion of “twisted D-modules” Dmodκ(H).

Definition 2.7. A twisted strong action of H on C is an action of Dmodκ(H) on C as a
monoidal category.

The parameter κ is a “quantum parameter”. Our whole perspective will fit into a quantum
deformation. In the quantum formulation, Langlands duality becomes much more symmetric
between G and G∨.

3. Actions of loop groups on categories

So far we have been discussing finite-dimensional algebraic groups. But actually we want
to discuss the loop group, which is not such an object. Some technical issues need to be
addressed, but they are not significant.

Let κ be an invariant symmetric bilinear form

g⊗ g→ k.

This gives rise to a central extension

0→ k → ĝκ → g((t))→ 0

classified by the Lie bracket

[x1 ⊗ f1, x2 ⊗ f2] = ([x1, x2]⊗ f1f2, κ(x1, x2) · Res(f1df2)).



INTRODUCTION TO QUANTUM LOCAL GEOMETRIC LANGLANDS. 3

The totality of categories acted on by LG at level κ forms a (∞, 2)-category LG−modκ.
The word “quantum” in “quantum geometric Langlands” refers to a nondegeneracy condition
on κ, which we will explain later.

We give some examples of objects in this category.

Example 3.1. The affine Grassmannian is GrG := LG/L+G. The datum of κ gives rise to
a twisting on GrG. Then Dmodκ(GrG) is strongly acted on by LG at level κ.

The affine flag variety is FlG := LG/I, where I is the Iwahori subgroup. The datum of κ
gives rise to a twisting on GrG. Then Dmodκ(GrG) is strongly acted on by LG at level κ.

In fact we can take LG/H for any subgroup H, and we will get an action of the loop
group on its category of D-modules.

Example 3.2. We consider ĝκ − mod (representations of gκ on which the center acts
trivially).

Example 3.3. Here is an example which is important for the local-global interaction
(but not for this workshop). Let X be a global curve. We consider Bunlevelx

G . Then
Dmodκ(Bun

levelx
G ) ∈ LG−modκ.

4. Local quantum geometric Langlands

Note that there are two actions of LG on LG, by multiplication on either side. We can
view Dmodκ(LG) in (LG × LG) −mod(κ,−κ). We’ll explain what we mean by −κ. There
is actually a shift, as the “0” should be the “critical level” κ0 = −1/2κkilling. With respect
to this level the story is “untwisted” (you actually see the Galois group). Then −κ means
reflection with respect to κ0.

From κ we get a bilinear form on the Cartan, by κ|h − κ0|h. At some point we’ll see the
reason for this shift. Then the critical value gives the 0 form on h.

Definition 4.1. The situation is quantum when κ|h − κ0|h is nondegenerate.

With this definition in place, we can state what we mean by local geometric Langlands.

Definition 4.2. We say that κ is (positive-rational, negative-rational, or irrational) if for
every simple factor of g, κ = κKilling · c has c + 1/2 being a (positive-rational, negative-
rational, or irrational) number.

The behavior of the Langlands correpondence is different depending on which of these
three cases applies. When we write κ we are thinking positive-rational or irrational; for the
negative rational case we write −κ.

We consider LG −modκ and LG∨ −mod. Then h∨ = h∗. The invariant bilinear forms
on g are in bijection with W -invariant forms on h.

Conjecture 4.3 (Local Geometric Langlands). Assume that κ is positive rational or irra-
tional. There is an equivalence

Lκ : LG−modκ
∼−→ LG∨ −mod−κ∨ .

We will also formulate various expectations about this equivalence.

Example 4.4. Consider Dmodκ(GrG) ∈ LG − modκ. What is its image under Lκ? The
expectation is that the answer is Dmod−κ(GrG∨).

Example 4.5. Consider ĝκ −mod ∈ LG−modκ. The expectation is that

Lκ(ĝκ −mod) = Whit−κ∨(LG∨).
This is an instance of the philosophy: “Kac-Moody brane goes to Whittaker brane”.
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Example 4.6. Consider Dmodκ(Bun
levelx
G ) ∈ LG−modκ. The expectation is that

Lκ(Dmodκ(Bun
levelx
G ) = Dmod−κ∨(BunlevelxG∨ ).

We can’t even formulate these expectations as conjectures, without the functor Lκ. We
will try to formulate some more tangible conjectures, which are just about (∞, 1)-categories
(the equivalence in the main conjecture is about (∞, 2)-categories).

Let C1, C2 ∈ LG − modκ. Suppose you have guessed C∨1 = Lκ(C1) and C∨2 = Lκ(C2).
Consider Funct(C1, C2) and FunctLG∨(C∨1 , C∨2 ). These are only 1-categories, and they should
be equivalent.

Remark 4.7. If κ is irrational, then we get a functor L−κ in the opposite direction. Is it the
inverse? No, as with the Fourier transform it is off by an involution - a Cartan involution.

Let C ∈ LG−modκ and C∨ = Lκ(C) ∈ LG∨ −mod−κ∨ . It is expected that

Whit(C) ∼= KM(C∨) and KM(C) ∼= Whit(C∨).
What does this mean? We define

Whit(C) := CLN,χ

(here CLN,χ means invariants of C with respect to the action of LN,χ). We define

KM(C) := FunctLG(ĝ−modκ, C)
or equivalently,

KM(C) := CLG,weak.

This already leads to a conjecture:

Whit(Dmodκ(GrG)) ∼= KM(Dmod−κ∨(GrĜ)).

This is known as the fundamental local equivalence (FLE), and will be the focus of the talks
after the third day.


